WorldWideScience

Sample records for plasma-enhanced hot filament

  1. Oriented carbon nanostructures grown by hot-filament plasma-enhanced CVD from self-assembled Co-based catalyst on Si substrates

    Science.gov (United States)

    Fleaca, Claudiu Teodor; Morjan, Ion; Rodica, Alexandrescu; Dumitrache, Florian; Soare, Iuliana; Gavrila-Florescu, Lavinia; Sandu, Ion; Dutu, Elena; Le Normand, François; Faerber, Jacques

    2012-03-01

    We report the synthesis of coral- and caterpillar-like carbon nanostructures assemblies starting from cobalt nitrate ethanol solutions deposited by drop-casting onto blank or carbon nanoparticles film covered Si(1 0 0) substrates. The seeded films were pre-treated with glow discharge hydrogen plasma aided by hot-filaments at 550 °C followed by introduction of acetylene at 700 °C. The resultant carbon nanostructure assemblies contain a high density of aligned carbon nanotubes/nanofibers (CNTs/CNFs). The influence of the forces that act during liquid-mediated self-assembly of Co catalyst precursor is discussed.

  2. Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-05-01

    Full Text Available This paper reports on the poisoning of tungsten filaments during the hot-filament chemical vapour deposition process at typical carbon nanotube (CNT) deposition conditions and filament temperatures ranging from 1400 to 2000 °C. The morphological...

  3. Developments in hot-filament metal oxide deposition (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Steven F. [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco, 511, Alto de Boa Vista, 18087-180 Sorocaba, SP (Brazil)], E-mail: steve@sorocaba.unesp.br; Trasferetti, Benedito C. [Departamento de Policia Federal, Superintendencia Regional no Piaui, Setor Tecnico-Cientifico, Avenida Maranhao, 1022/N, 64.000-010, Teresina, PI (Brazil); Scarminio, Jair [Departamento de Fisica, Universidade Estadual de Londrina (UEL), 86051-990, Londrina, PR (Brazil); Davanzo, Celso U. [Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP (Brazil); Rouxinol, Francisco P.M.; Gelamo, Rogerio V.; Bica de Moraes, Mario A. [Laboratorio de Processos de Plasma, Departamento de Fisica Aplicada, Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP (Brazil)

    2008-01-15

    Hot-filament metal oxide deposition (HFMOD) is a variant of conventional hot-filament chemical vapor deposition (HFCVD) recently developed in our laboratory and successfully used to obtain high-quality, uniform films of MO{sub x}, WO{sub x} and VO{sub x}. The method employs the controlled oxidation of a filament of a transition metal heated to 1000 deg. C or more in a rarefied oxygen atmosphere (typically, of about 1 Pa). Metal oxide vapor formed on the surface of the filament is transported a few centimetres to deposit on a suitable substrate. Key system parameters include the choice of filament material and diameter, the applied current and the partial pressures of oxygen in the chamber. Relatively high film deposition rates, such as 31 nm min{sup -1} for MoO{sub x}, are obtained. The film stoichiometry depends on the exact deposition conditions. MoO{sub x} films, for example, present a mixture of MoO{sub 2} and MoO{sub 3} phases, as revealed by XPS. As determined by Li{sup +} intercalation using an electrochemical cell, these films also show a colouration efficiency of 19.5 cm{sup 2} C{sup -1} at a wavelength of 700 nm. MO{sub x} and WO{sub x} films are promising in applications involving electrochromism and characteristics of their colouring/bleaching cycles are presented. The chemical composition and structure of VO{sub x} films examined using IRRAS (infrared reflection-absorption spectroscopy), RBS (Rutherford backscattering spectrometry) and XPS (X-ray photoelectron spectrometry) are also presented.

  4. Formation and Transport of Atomic Hydrogen in Hot-Filament Chemical Vapor Deposition Reactors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant ishydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers forheat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phaseheat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature andH concentration distributions between the filament and the substrate. Examination of the relative importance ofhomogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecularhydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociationrates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the liter-ature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociationrates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lowereffective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heattransfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.

  5. Mechanical and piezoresistive properties of thin silicon films deposited by plasma-enhanced chemical vapor deposition and hot-wire chemical vapor deposition at low substrate temperatures

    Science.gov (United States)

    Gaspar, J.; Gualdino, A.; Lemke, B.; Paul, O.; Chu, V.; Conde, J. P.

    2012-07-01

    This paper reports on the mechanical and piezoresistance characterization of hydrogenated amorphous and nanocrystalline silicon thin films deposited by hot-wire chemical vapor deposition (HWCVD) and radio-frequency plasma-enhanced chemical vapor deposition (PECVD) using substrate temperatures between 100 and 250 °C. The microtensile technique is used to determine film properties such as Young's modulus, fracture strength and Weibull parameters, and linear and quadratic piezoresistance coefficients obtained at large applied stresses. The 95%-confidence interval for the elastic constant of the films characterized, 85.9 ± 0.3 GPa, does not depend significantly on the deposition method or on film structure. In contrast, mean fracture strength values range between 256 ± 8 MPa and 600 ± 32 MPa: nanocrystalline layers are slightly stronger than their amorphous counterparts and a pronounced increase in strength is observed for films deposited using HWCVD when compared to those grown by PECVD. Extracted Weibull moduli are below 10. In terms of piezoresistance, n-doped radio-frequency nanocrystalline silicon films deposited at 250 °C present longitudinal piezoresistive coefficients as large as -(2.57 ± 0.03) × 10-10 Pa-1 with marginally nonlinear response. Such values approach those of crystalline silicon and of polysilicon layers deposited at much higher temperatures.

  6. A hot X-ray filament associated with A3017 galaxy cluster

    Science.gov (United States)

    Parekh, V.; Durret, F.; Padmanabh, P.; Pandge, M. B.

    2017-09-01

    Recent simulations and observations have shown large-scale filaments in the cosmic web connecting nodes, with accreting materials (baryonic and dark matter) flowing through them. Current high-sensitivity observations also show that the propagation of shocks through filaments can heat them up and make filaments visible between two or more galaxy clusters or around massive clusters, based on optical and/or X-ray observations. We are reporting here the special case of the cluster A3017 associated with a hot filament. The temperature of the filament is 3.4^{-0.77}_{+1.30} keV and its length is ∼1 Mpc. We have analysed its archival Chandra data and report various properties. We also analysed GMRT 235/610 MHz radio data. Radio observations have revealed symmetric two-sided lobes that fill cavities in the A3017 cluster core region, associated with central active galactic nucleus. In the radio map, we also noticed a peculiar linear vertical radio structure in the X-ray filament region which might be associated with a cosmic filament shock. This radio structure could be a radio phoenix or old plasma where an old relativistic population is re-accelerated by shock propagation. Finally, we put an upper limit on the radio luminosity of the filament region.

  7. Degradation of a tantalum filament during the hot-wire CVD of silicon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oliphant, C.J. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Arendse, C.J., E-mail: cjarendse@uwc.ac.za [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Muller, T.F.G. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Jordaan, W.A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Knoesen, D. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-01-30

    Electron backscatter diffraction revealed that during the hot-wire deposition of silicon nitride, a tantalum filament partially transformed to some of its nitrides and silicides. The deposition of an encapsulating silicon nitride layer occurred at the cooler filament ends. Time-of-flight secondary ion mass spectroscopy disclosed the presence of hydrogen, nitrogen and silicon containing ions within the aged filament bulk. Hardness measurements revealed that the recrystallized tantalum core experienced significant hardening, whereas the silicides and nitrides were harder but more brittle. Crack growth, porosity and the different thermal expansion amongst the various phases are all enhanced at the hotter centre regions, which resulted in failure at these areas. - Highlights: • Tantalum filament degrades and fails during hot-wire CVD of silicon nitride thin films. • An encapsulating silicon nitride layer is deposited at the cooler ends. • Electron backscatter diffraction reveals Ta-silicides and -nitrides with a Ta core. • Filament failure occurs at hot centre regions due to different mechanical properties of Ta, its silicides and nitrides.

  8. The adhesion of hot-filament CVD diamond films on AISI type 316 austenitic stainless steel

    NARCIS (Netherlands)

    Buijnsters, J.G.; Shankar, P.; Enckevort, W.J.P. van; Schermer, J.J.; Meulen, J.J. ter

    2004-01-01

    Steel ball indentation and scratch adhesion testing of hot filament chemical vapour deposited diamond films onto AISI type 316 austenitic stainless steel substrates using two different interlayer systems, namely chromium nitride and borided steel, have been investigated. In order to compare the adhe

  9. Extension of the lifetime of tantalum filaments in the hot-wire (Cat) 3 Chemical Vapor Deposition process

    CSIR Research Space (South Africa)

    Knoesen, D

    2008-01-01

    Full Text Available One of the prime components of a hot-wire (Cat) Chemical Vapor Deposition system is the filament used to pyro-catalytically crack the gases like silane. Burnt out tantalum filaments were studied to determine the possible improvement of lifetime...

  10. Simultaneous growth of diamond and nanostructured graphite thin films by hot-filament chemical vapor deposition

    Science.gov (United States)

    Ali, M.; Ürgen, M.

    2012-01-01

    Diamond and graphite films on silicon wafer were simultaneously synthesized at 850 °C without any additional catalyst. The synthesis was achieved in hot-filament chemical vapor deposition reactor by changing distance among filaments in traditional gas mixture. The inter-wire distance for diamond and graphite deposition was kept 5 and 15 mm, whereas kept constant from the substrate. The Raman spectroscopic analyses show that film deposited at 5 mm is good quality diamond and at 15 mm is nanostructured graphite and respective growths confirm by scanning auger electron microscopy. The scanning electron microscope results exhibit that black soot graphite is composed of needle-like nanostructures, whereas diamond with pyramidal featured structure. Transformation of diamond into graphite mainly attributes lacking in atomic hydrogen. The present study develops new trend in the field of carbon based coatings, where single substrate incorporate dual application can be utilized.

  11. FABRICATION OF DIAMOND TUBES IN BIAS-ENHANCED HOT-FILAMENT CHEMICAL VAPOR DEPOSITION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming; MA Yuping; XIANG Daohui; SUN Fanghong

    2007-01-01

    Deposition of diamond thin films on tungsten wire Substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hol filament chemical vapor deposition (CVD) with the tantalum wires being optimized arranged is investigated. The self-supported diamond tubes are obtained by etching away the tungsten Substrates. The quality of the diamond film before and after the removal of Substrates is observed by scanning electron microscope (SEM) and Raman spectrum. The results show that the cylindrical diamond tubes with good quality and uniform thickness are obtained on tungsten wires by using bias enhanced hot filament CVD. The compressive stress in diamond film formed during the deposition is released after the Substrate etches away by mixture of H202 and NH4OH. There is no residual stress in diamond tube after Substrate removal.

  12. Synthesis and oxidation behavior of boron-substituted carbon powders by hot filament chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Boron-substituted carbon powder, BxC1-x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared BxC1-x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10―20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize ap-proximately at 620℃ and has a higher oxidation resistance than carbon.

  13. Plasma-enhanced Deposition of Nano-Structured Carbon Films

    Institute of Scientific and Technical Information of China (English)

    Yang Qiaoqin (杨巧勤); Xiao Chijin (肖持进); A. Hirose

    2005-01-01

    By pre-treating substrate with different methods and patterning the catalyst, selective and patterned growth of diamond and graphitic nano-structured carbon films have been realized through DC Plasma-Enhanced Hot Filament Chemical Vapor Deposition (PE-HFCVD).Through two-step processing in an HFCVD reactor, novel nano-structured composite diamond films containing a nanocrystalline diamond layer on the top of a nanocone diamond layer have been synthesized. Well-aligned carbon nanotubes, diamond and graphitic carbon nanocones with controllable alignment orientations have been synthesized by using PE-HFCVD. The orientation of the nanostructures can be controlled by adjusting the working pressure. In a Microwave Plasma Enhanced Chemical Vapor Deposition (MW-PECVD) reactor, high-quality diamond films have been synthesized at low temperatures (310 ℃~550 ℃) without adding oxygen or halogen gas in a newly developed processing technique. In this process, carbon source originates from graphite etching, instead of hydrocarbon. The lowest growth temperature for the growth of nanocrystalline diamond films with a reasonable growth rate without addition of oxygen or halogen is 260 ℃.

  14. In situ ecophysiology of Aigarchaeota from an oxic, hot-spring filamentous 'streamer' community

    Science.gov (United States)

    Beam, J.; Jay, Z.; Tringe, S. G.; Glavina del Rio, T.; Rusch, D.; Schmid, M.; Wagner, M.; Inskeep, W.

    2014-12-01

    The candidate phylum Aigarchaeota contains thermophilic archaea from terrestrial, subsurface, and marine geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, an accurate description of their metabolism, potential ecological interactions, and role in biogeochemical cycling is lacking. Here we report possible ecological interactions and the in situ metabolism of an uncultivated lineage of Aigarchaeota from an oxic, terrestrial hot-spring filamentous 'streamer' community (Octopus Spring, pH = 8; T = 78 - 84 °C, Yellowstone National Park, Wyoming, USA). Fluorescence in situ hybridization (FISH) was combined with detailed genomic and transcriptomic reconstruction to elucidate the ecophysiological role of Aigarchaeota in these streamer communities. This novel population of Aigarchaeota are filamentous (~500 nm diameter by ~10-30 μm length), which is consistent with the morphology predicted by the presence and transcription of a single actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both thermophilic bacteria and archaea. Metabolic reconstruction suggests that this aigarchaeon is an aerobic, chemoorganotroph. A single heme copper oxidase complex was identified in de novo genome assemblies, and was highly transcribed in environmental samples. Potential electron donors include acetate, fatty acids, sugars, peptides, and aromatic compounds. Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this population of Aigarchaeota likely utilizes a broad range of reduced carbon substrates. Potential electron donors for this population may include extracellular polymeric substances produced by other microorganisms in close proximity. Flagellum genes were also highly transcribed, which suggests a potential mechanism for motility and/or cell-cell attachment

  15. EBSD analysis of tungsten-filament carburization during the hot-wire CVD of multi-walled carbon nanotubes.

    Science.gov (United States)

    Oliphant, Clive J; Arendse, Christopher J; Camagu, Sigqibo T; Swart, Hendrik

    2014-02-01

    Filament condition during hot-wire chemical vapor deposition conditions of multi-walled carbon nanotubes is a major concern for a stable deposition process. We report on the novel application of electron backscatter diffraction to characterize the carburization of tungsten filaments. During the synthesis, the W-filaments transform to W2C and WC. W-carbide growth followed a parabolic behavior corresponding to the diffusion of C as the rate-determining step. The grain size of W, W2C, and WC increases with longer exposure time and increasing filament temperature. The grain size of the recrystallizing W-core and W2C phase grows from the perimeter inwardly and this phenomenon is enhanced at filament temperatures in excess of 1,400°C. Cracks appear at filament temperatures >1,600°C, accompanied by a reduction in the filament operational lifetime. The increase of the W2C and recrystallized W-core grain size from the perimeter inwardly is ascribed to a thermal gradient within the filament, which in turn influences the hardness measurements and crack formation.

  16. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  17. Diamond films grown without seeding treatment and bias by hot-filament CVD system

    Science.gov (United States)

    Ali, M.; Ürgen, M.

    2012-04-01

    Diamond film growth without seeding treatment has been the subject of numerous studies. In the present study, diamond films with/without seeding treatment were grown on silicon using hot-filament chemical vapour deposition. An inexpensive and simple approach, namely, "dry ultrasonic treatment", was introduced in which full coverage of diamond film was achieved on unseeded substrate. For comparison, one substrate was seeded with 5 μm diamond particles, prior to deposition. The resulting diamond films were examined through standard characterization tools and distinct features were observed in each film. Here we present the results of uniform and high purity diamond film, free from nano-sized grains, which is grown without seeding treatment and is expected to be potential candidate for electro-optical applications, particularly as heat sinks.

  18. Effect of substrate roughness on growth of diamond by hot filament CVD

    Indian Academy of Sciences (India)

    Awadesh K Mallik; S R Binu; L N Satapathy; Chandrabhas Narayana; Md Motin Seikh; S A Shivashankar; S K Biswas

    2010-06-01

    Polycrystalline diamond coatings are grown on Si (100) substrate by hot filament CVD technique. We investigate here the effect of substrate roughening on the substrate temperature and methane concentration required to maintain high quality, high growth rate and faceted morphology of the diamond coatings. It has been shown that as we increase the substrate roughness from 0.05 m to 0.91 m (centre line average or CLA) there is enhancement in deposited film quality (Raman peak intensity ratio of 3 to non-3 content increases from 1.65 to 7.13) and the substrate temperature can be brought down to 640°C without any additional substrate heating. The coatings grown at adverse conditions for 3 deposition has cauliflower morphology with nanocrystalline grains and coatings grown under favourable 3 condition gives clear faceted grains.

  19. Low resistance polycrystalline diamond thin films deposited by hot filament chemical vapour deposition

    Indian Academy of Sciences (India)

    Mahtab Ullah; Ejaz Ahmed; Abdelbary Elhissi; Waqar Ahmed

    2014-05-01

    Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications.

  20. Nanocrystalline Diamond Films Deposited by Electron Assisted Hot Filament Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Nanocrystalline diamond films were deposited on polished Si wafer surface with electron assisted hot filament chemical vapor deposition at 1 kPa gas pressure, the deposited films were characterized and observed by Raman spectrum, X-ray diffraction, atomic force microscopy and semiconductor characterization system. The results show that when 8 A bias current is applied for 5 h, the surface roughness decreases to 28.5 nm. After 6 and 8 A bias current are applied for 1 h, and the nanocrystalline films deposition continue for 4 h with 0 A bias current at 1 kPa gas pressure. The nanocrystalline diamond films with 0.5×109 and 1×1010 Ω·cm resistivity respectively are obtained. It is demonstrated that electron bombardment plays an important role of nucleation to deposit diamond films with smooth surface and high resistivity.

  1. N-Type Conductive Ultrananocrystalline Diamond Films Grown by Hot Filament CVD

    Directory of Open Access Journals (Sweden)

    Michael Mertens

    2015-01-01

    Full Text Available We present the synthesis of ultrananocrystalline diamond (UNCD films by application of hot filament chemical vapor deposition (HFCVD. We furthermore studied the different morphological, structural, and electrical properties. The grown films are fine grained with grain sizes between 4 and 7 nm. The UNCD films exhibit different electrical conductivities, dependent on grain boundary structure. We present different contact metallizations exhibiting ohmic contact behavior and good adhesion to the UNCD surface. The temperature dependence of the electrical conductivity is presented between −200 and 900°C. We furthermore present spectroscopic investigations of the films, supporting that the origin of the conductivity is the structure and volume of the grain boundary.

  2. Selective growth of diamond by hot filament CVD using patterned carbon film as mask

    Institute of Scientific and Technical Information of China (English)

    HE Zhoutong; YANG Shumin; LI Qintao; ZHU Dezhang; GONG Jinlong

    2008-01-01

    Selected-area deposition (SAD) of diamond films was achieved on silicon substrates with carbon film mask by hot filament chemical vapor deposition. Needle tip scraped lines were used to grow diamond films. Scanning electron microscope (SEM) investigation demonstrates that highly selective and sharp edged diamond films were produced. The results also demonstrate that the proper substrate temperature is very important for diamond selective growth in this deposition process. Since the enhancement of diamond growth was not observed on the needle tip scraped area of Si wafer with diamond powder scratching, the selective growth was considered to be closely correlated to silicon carbide formed during carbon film deposition and the residual carbon in the scraped area.

  3. Levitation and collection of diamond fine particles in the rf plasma chamber equipped with a hot filament

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, S.; Shimizu, T.; Thomas, H. M.; Morfill, G. E. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Jacob, W. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-11-15

    We demonstrate the levitation of diamond fine particles in a H{sub 2} rf plasma chamber equipped with a hot filament and heated electrodes. The levitation conditions should be carefully chosen to compensate the strong thermophoretic forces caused by the filament and the electrodes. This levitation technique with the existence of a hot filament can be applied, e.g., for the efficient growth of diamond layers on seed particles injected and levitated in an rf plasma with reactive gases, e.g., CH{sub 4}/H{sub 2}. Additionally, the method for direct capture of levitated particles on a planar substrate was established, which is useful if it is necessary to analyze the particles after the levitation.

  4. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web

    CERN Document Server

    Eckert, Dominique; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Celine

    2015-01-01

    Observations of the cosmic microwave background indicate that baryons account for 5% of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons might not have condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of $10^5-10^7$ kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at $10^7$ kelvin associated with the galaxy cluster Abell 2744. Previous obs...

  5. Carburization of tungsten filaments in a hot-wire chemical vapor deposition process using 1,1,3,3-tetramethyl-1,3-disilacyclobutane.

    Science.gov (United States)

    Tong, L; Shi, Y J

    2009-09-01

    The alloying of tungsten filament when using 1,1,3,3-tetramethyl-1,3-disilacyclobutane (TMDSCB) in a hot-wire chemical vapor deposition reactor was systematically studied by scanning electron microscopy, Auger electron spectroscopy, analysis of the power consumed by the filament, and in situ mass spectrometric measurements of the gas-phase species produced in the process. Only carburization of the W filament was observed. The carburization is mainly caused by the interaction of methyl radicals with the filament. Graphite as well as both WC and W2C alloys can form on the filament surface, depending on the filament temperatures and source gas pressures. Both WC and graphite are converted to W2C with the diffusion of C into the filament. It is shown that filament carburization affects the consumption rate of the source gas and the intensities of gas-phase reaction products. Gas-phase reactions dominate at T or = 1800 degrees C.

  6. Effect of surface treatment on hot-filament chemical vapour deposition grown diamond films

    Science.gov (United States)

    Ali, M.; Ürgen, M.; Atta, M. A.

    2012-02-01

    Diamond film growth without seeding treatment has been the subject of numerous studies. In this study, diamond films with/without seeding treatment were grown on silicon using hot-filament chemical vapour deposition. An inexpensive and simple approach, namely ‘dry ultrasonic treatment’, was introduced in which full coverage of the diamond film was achieved over the substrate having no prior seeding treatment. For comparison purposes, two substrates were seeded with different sizes of diamond particles, 5 µm by hand and 30-40 µm by ultrasonic agitation, prior to deposition. The produced diamond films were examined through standard characterization tools and distinct features were observed in each film. The diamond film grown without the seeding treatment shows slightly lower growth rate (1 µm h-1) but bigger grain size up to 8 µm compared with seeded films. Here we show the growth of uniform and high-purity diamond films free from nano-sized grains, which are grown without any seeding treatment.

  7. Structural evolution of a Ta-filament during hot-wire chemical vapour deposition of Silicon investigated by electron backscatter diffraction

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2012-03-01

    Full Text Available In this study we investigate the structural changes of a burnt-out tantalum filament that was operated at typical hydrogenated nanocrystalline silicon synthesis conditions in our hot-wire chemical vapour deposition chamber. Scanning electron...

  8. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling.

    Science.gov (United States)

    Melocchi, Alice; Parietti, Federico; Maroni, Alessandra; Foppoli, Anastasia; Gazzaniga, Andrea; Zema, Lucia

    2016-07-25

    Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation. Challenges in this field are mainly related to the paucity of adequate filaments composed of pharmaceutical grade materials, which are needed for feeding the FDM equipment. Accordingly, a number of polymers of common use in pharmaceutical formulation were evaluated as starting materials for fabrication via hot melt extrusion of filaments suitable for FDM processes. By using a twin-screw extruder, filaments based on insoluble (ethylcellulose, Eudragit(®) RL), promptly soluble (polyethylene oxide, Kollicoat(®) IR), enteric soluble (Eudragit(®) L, hydroxypropyl methylcellulose acetate succinate) and swellable/erodible (hydrophilic cellulose derivatives, polyvinyl alcohol, Soluplus(®)) polymers were successfully produced, and the possibility of employing them for printing 600μm thick disks was demonstrated. The behavior of disks as barriers when in contact with aqueous fluids was shown consistent with the functional application of the relevant polymeric components. The produced filaments were thus considered potentially suitable for printing capsules and coating layers for immediate or modified release, and, when loaded with active ingredients, any type of dosage forms.

  9. Surface morphology, growth rate and quality of diamond films synthesized in hot filament CVD system under various methane concentrations

    Science.gov (United States)

    Ali, M.; Ürgen, M.

    2011-08-01

    Hot filament chemical vapor deposition (CVD) technique has been used to deposit diamond films on silicon substrate. In the present study, diamond films were grown at various vol.% CH 4 in H 2 from 0.5% to 3.5%, at substrate temperature and pressure of 850 °C and 80 torr, respectively. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy were employed to analyze the properties of deposited films. The formation of methyl radicals as a function of vol.% CH 4 not only changes film morphology but also increase film growth rate. At low, intermediate and high vol.% CH 4, cluster, faceted cubes and pyramidal features growth, were dominant. By increasing vol.% CH 4 from 0.5% to 3.5%, as the growth rate improved from ˜0.25 μm/h to ˜2.0 μm/h. Raman studies features revealed high purity diamond films at intermediate range of vol.% CH 4 and grain density increased by increasing CH 4 concentration. The present study represents experimentally surface morphology, growth rate and quality of diamond films grown in hot filament CVD system at various CH 4 concentrations.

  10. Role of Duty Ratio in Diamond Growth by Pulsed DC-Bias Enhanced Hot Filament Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    MENG Liang; ZHOU Haiyang; ZHU Xiaodong

    2007-01-01

    In this study, the role of the pulse duty ratio was investigated during the deposition of diamond films in a hot filament chemical vapour deposition reactor with a pulsed-dc biased substrate positively relative to the hot filaments. The voltage-current characteristics showed that the discharge current rose with the increase of biasing voltage, which was modified by the duty ratio. Before deposition, two approaches were adopted for the pre-treatment of the silicon substrates, respectively, and the substrates were scratched by diamond paste or seeded by diamond powders using the so-called 'soft dry polished' technique. Diamond films were deposited under a fixed discharge power by changing the duty ratios. In the first group with scratched substrates, it was found that under a high duty ratio the diamond grew slowly with quite poor nucleation, while in the second case a high duty ratio induced a high deposition rate and good diamond quality. Reactive hydrocarbon species with high energy are essential for the initial nucleation process, which is more effectively achieved at a high biasing voltage in the condition of a low duty ratio. In the film growth process, the large discharge current at a high duty ratio represents an increased concentration of electrons and reactive species as well, promoting the growth of diamond films.

  11. In situ diagnostics of the decomposition of silacyclobutane on a hot filament by vacuum ultraviolet laser ionization mass spectrometry.

    Science.gov (United States)

    Shi, Y J; Lo, B; Tong, L; Li, X; Eustergerling, B D; Sorensen, T S

    2007-05-01

    The gas-phase reaction products of silacyclobutane (SCB) and 1, 1-dideuterio-silacyclobutane (SCB-d(2)) from a hot-wire chemical vapor deposition (HWCVD) chamber were diagnosed in situ using vacuum ultraviolet (VUV) laser single-photon ionization (SPI) coupled with time-of-flight (TOF) mass spectrometry. The SCB molecule was found to decompose at a filament temperature as low as 900 degrees C. Both Si- (silylene, methylsilylene, and silene) and C-containing (ethene and propene) species were produced from the SCB decomposition on the filament. Ethene and propene were detected by the mass spectrometer. It is demonstrated that the formation of ethene is favored over that of propene. The experimental study of hot-wire decomposition of SCB-d(2) shows that propene is most likely produced by a process that is initiated by a 1,2-H(D) migration to form n-propylsilylene, followed by an equilibration with silacyclopropane, which then decomposes to propene. The detection of ethene in our experiment indicates that a competitive route of fragmentation exists for SCB decomposition on the filament. It has been shown that this competitive route occurs without H/D scrambling. The highly reactive silylene, silene, and methylsilylene species produced from SCB decomposition underwent either insertion reactions into the Si-H bonds of the parent molecule or pi-type addition reaction across the double and triple CC bonds. The dimerization product of silene, 1,3-disilacyclobutane, at m/z = 88 was also observed.

  12. Facile synthesis of titania nanowires via a hot filament method and conductometric measurement of their response to hydrogen sulfide gas.

    Science.gov (United States)

    Munz, Martin; Langridge, Mark T; Devarepally, Kishore K; Cox, David C; Patel, Pravin; Martin, Nicholas A; Vargha, Gergely; Stolojan, Vlad; White, Sam; Curry, Richard J

    2013-02-01

    Titania nanostructures are of increasing interest for a variety of applications, including photovoltaics, water splitting, and chemical sensing. Because of the photocatalytical properties of TiO₂, chemical processes that occur at its surface can be exploited for highly efficient nanodevices. A facile and fast synthesis route has been explored that is free of catalysts or templates. An environmental scanning electron microscopy (ESEM) system was employed to grow titania nanowires (NWs) in a water vapor atmosphere (∼1 mbar) and to monitor the growth in situ. In addition, the growth process was also demonstrated using a simple vacuum chamber. In both processes, a titanium filament was heated via the Joule effect and NWs were found to grow on its surface, as a result of thermal oxidation processes. A variety of nanostructures were observed across the filament, with morphologies changing with the wire temperature from the center to the end points. The longest NWs were obtained for temperatures between ∼730 °C and 810 °C. Typically, they have an approximate thickness of ∼300 nm and lengths of up to a few micrometers. Cross sections prepared by focused-ion-beam milling revealed the presence of a porous layer beneath the NW clusters. This indicates that the growth of NWs is driven by oxidation-induced stresses in the subsurface region of the Ti filament and by enhanced diffusion along grain boundaries. To demonstrate the potential of titania NWs grown via the hot filament method, single NW devices were fabricated and used for conductometric sensing of hydrogen sulfide (H₂S) gas. The NW electric resistance was found to decrease in the presence of H₂S. Its variation can be explained in terms of the surface depletion model.

  13. Diamond films grown on seeded substrates by hot-filament chemical vapour deposition with H sub 2 as the only feeding gas

    CERN Document Server

    LiuHongWu; Gao Chun Xi; Han Yong; Luo Ji Feng; Zou Guang Tian; Wen Chao

    2002-01-01

    Diamond films have been grown on polished Si substrates seeded with nanocrystalline diamond powder colloid using hot-filament chemical vapour deposition. Instead of using the conventional gaseous carbon source, a carbonized W filament was used as the carbon source. The only feeding gas was hydrogen. Compared with those produced by traditional methods, the polycrystalline diamond grown by this new method has smaller grain size. The growth mechanism is also discussed.

  14. Structural Properties of Zn-ZnO Core-Shell Microspheres Grown by Hot-Filament CVD Technique

    Directory of Open Access Journals (Sweden)

    R. López

    2012-01-01

    Full Text Available We report the hot-filament chemical vapor deposition (HFCVD growth of Zn-ZnO core-shell microspheres in the temperature range of 350–650°C only using ZnO pellets as raw material. The samples were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD techniques. SEM micrographs showed the presence of solid microspheres and a Zn-ZnO layer in all samples. The observed heterogeneous morphology on each sample suggested two different growth mechanisms. On the one hand, solid microspheres were formed by means of gas phase nucleation of Zn atoms. The Zn-ZnO layer was formed on the substrate as result of surface reactions. It is possible that Zn microspheres condensed during the natural cooling of the HFCVD reactor as they were observed on the Zn-ZnO layer.

  15. Regular growth combined with lateral etching in diamond deposited over silicon substrate by using hot filament chemical vapor deposition technique

    Science.gov (United States)

    Ali, M.; Ürgen, M.

    2013-05-01

    Hot filament chemical vapor deposition has proved to be an attractive method for growing diamond films with good quality and higher growth rate. Diamond films were produced at deposition parameters under which, it is possible to have regular growth combined with lateral etching (RGCLE). Fracture cross-section SEM images showed that RGCLE initiated over polycrystalline diamond film and proceeded by the growth of consecutive steps in each crystallite, which terminated with square/rectangle shaped facets. All the diamond films exhibit RGCLE but with different type of growth behavior. Present work discusses the cyclic formation of the steps in diamond crystallites and RGCLE modes. RGCLE in diamond film may find important applications where heat absorption and dissipation are key issues.

  16. Decomposition of hexamethyldisilane on a hot tungsten filament and gas-phase reactions in a hot-wire chemical vapor deposition reactor.

    Science.gov (United States)

    Shi, Yujun; Li, Xinmao; Tong, Ling; Toukabri, Rim; Eustergerling, Brett

    2008-05-14

    To study the effect of an Si-Si bond on gas-phase reaction chemistry in the hot-wire chemical vapor deposition (HWCVD) process with a single source alkylsilane molecule, soft ionization with a vacuum ultraviolet wavelength of 118 nm was used with time-of-flight mass spectrometry to examine the products from the primary decomposition of hexamethyldisilane (HMDS) on a heated tungsten (W) filament and from secondary gas-phase reactions in a HWCVD reactor. It is found that both Si-Si and Si-C bonds break when HMDS decomposes on the W filament. The dominance of the breakage of Si-Si over Si-C bond has been demonstrated. In the reactor, the abstraction of methyl and H atom, respectively, from the abundant HMDS molecules by the dominant primary trimethylsilyl radicals produces tetramethylsilane (TMS) and trimethylsilane (TriMS). Along with TMS and TriMS, various other alkyl-substituted silanes (m/z = 160, 204, 262) and silyl-substituted alkanes (m/z = 218, 276, 290) are also formed from radical combination reactions. With HMDS, an increasing number of Si-Si bonds are found in the gas-phase reaction products aside from the Si-C bond which has been shown to be the major bond connection in the products when TMS is used in the same reactor. Three methyl-substituted 1,3-disilacyclobutane species (m/z = 116, 130, 144) are present in the reactor with HMDS, suggesting a more active involvement from the reactive silene intermediates.

  17. Filamentous anoxygenic phototrophic bacteria from cyanobacterial mats of Alla hot springs (Barguzin Valley, Russia).

    Science.gov (United States)

    Gaisin, Vasil A; Kalashnikov, Alexander M; Sukhacheva, Marina V; Namsaraev, Zorigto B; Barhutova, Darima D; Gorlenko, Vladimir M; Kuznetsov, Boris B

    2015-11-01

    Alkaline hydrotherms of the Baikal rift zone are unique systems to study the diversity of thermophilic bacteria. In this study, we present data on the phototrophic bacterial community of cyanobacterial mats from the alkaline Alla hot spring. Using a clonal analysis approach, this study evaluated the species diversity, the proportion of oxygenic and anoxygenic phototrophs and their distribution between various areas of the spring. Novel group-specific PCR primers were designed and applied to detect representatives of the Chloroflexus and Roseiflexus genera in mat samples. For the first time, the presence of Roseiflexus-like bacteria was detected in the Baikal rift zone.

  18. Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium.

    Science.gov (United States)

    Otaki, Hiroyo; Everroad, R Craig; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons).

  19. Structural properties of WO{sub 3} dependent of the annealing temperature deposited by hot-filament metal oxide deposition

    Energy Technology Data Exchange (ETDEWEB)

    Flores M, J. E. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de San Manuel, 72570 Puebla (Mexico); Diaz R, J. [IPN, Centro de Investigacion en Biotecnologia Aplicada, Ex-Hacienda de San Molino Km 1.5 Tepetitla, 90700 Tlaxcala (Mexico); Balderas L, J. A., E-mail: eflores@ece.buap.mx [IPN, Unidad Profesional Interdisciplinaria de Biotecnologia, Av. Acueducto s/n, Col. Barrio la Laguna, 07340 Mexico D. F. (Mexico)

    2012-07-01

    In this work presents a study of the effect of the annealing temperature on structural and optical properties of WO{sub 3} that has been grown by hot-filament metal oxide deposition. The chemical stoichiometry was determined by X-ray photoelectron spectroscopy. By X-ray diffraction obtained that the as-deposited WO{sub 3} films present mainly monoclinic crystalline phase. WO{sub 3} optical band gap energy can be varied from 2.92 to 3.15 eV obtained by transmittance measurements by annealing WO{sub 3} from 100 to 500 C. The Raman spectrum of the as-deposited WO{sub 3} film shows four intense peaks that are typical Raman peaks of crystalline WO{sub 3} (m-phase) that corresponds to the stretching vibrations of the bridging oxygen that are assigned to W-O stretching ({upsilon}) and W-O bending ({delta}) modes, respectively, which enhanced and increased their intensity with the annealing temperature. (Author)

  20. Towards the statistical detection of the warm-hot intergalactic medium in inter-cluster filaments of the cosmic web

    CERN Document Server

    Tejos, Nicolas; Crighton, Neil H M; Morris, Simon L; Werk, Jessica K; Theuns, Tom; Padilla, Nelson; Bielby, Rich M; Finn, Charles W

    2015-01-01

    [Abridged] Modern analyses of structure formation predict a universe tangled in a cosmic web of dark matter and diffuse baryons. These theories further predict that by the present day, a significant fraction of the baryons will be shock-heated to $T \\sim 10^{5}-10^{7}$K yielding a warm-hot intergalactic medium (WHIM), but whose actual existence has eluded a firm observational confirmation. We have designed a novel experiment to search for signatures of the WHIM, by targeting the putative filaments connecting galaxy clusters. Here, we detail the experimental design and report on our first study of a remarkable QSO sightline, that passes within $\\Delta d 50$ km/s) and OVI absorption lines within $\\Delta v < 1000$ km/s from the cluster-pairs redshifts, corresponding to $\\sim 2$, $\\sim 2$, $\\sim 6$ and $\\sim 4$ times their field expectations, respectively. We also report on covering fractions, $f_c$, of gas close to cluster-pairs, and find that the $f_c$ of BLAs are $\\sim 4-7$ times higher than the random expe...

  1. Physical properties characterization of WO{sub 3} films grown by hot-filament metal oxide deposition

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Reyes, J., E-mail: jdiazr2001@yahoo.com [Centro de Investigacion en Biotecnologia Aplicada del Instituto Politecnico Nacional, Ex-Hacienda de San Juan Molino, Km. 1.5, Tepetitla, Tlaxcala, 90700 (Mexico); Delgado-Macuil, R.J. [Centro de Investigacion en Biotecnologia Aplicada del Instituto Politecnico Nacional, Ex-Hacienda de San Juan Molino, Km. 1.5, Tepetitla, Tlaxcala, 90700 (Mexico); Dorantes-Garcia, V. [Preparatoria ' Simon Bolivar' de la Benemerita Universidad Autonoma de Puebla, 4 Oriente 408, Col. Centro, Atlixco, Puebla, C. P. 74200 (Mexico); Perez-Benitez, A. [Facultad de Ciencias Quimicas de la Benemerita Universidad Autonoma Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, Puebla, Puebla, C. P. 72570 (Mexico); Balderas-Lopez, J.A. [Unidad Profesional Interdisciplinaria de Biotecnologia del Instituto Politecnico Nacional, Avenida Acueducto S/N, Col. Barrio la Laguna, Ticoman, Del. Gustavo A. Madero, Mexico, D.F. 07340 (Mexico); Ariza-Ortega, J.A. [Centro de Investigacion en Biotecnologia Aplicada del Instituto Politecnico Nacional, Ex-Hacienda de San Juan Molino, Km. 1.5, Tepetitla, Tlaxcala, 90700 (Mexico)

    2010-10-25

    WO{sub 3} is grown by hot-filament metal oxide deposition (HFMOD) technique under atmospheric pressure and an oxygen atmosphere. By X-ray diffraction obtains that WO{sub 3} presents mainly monoclinic crystalline phase. The chemical stoichiometry is obtained by X-ray Photoelectron Spectroscopy (XPS). The IR spectrum of the as-grown WO{sub 3} presents broad peaks in the range of 1100 to 3600 cm{sup -1}. A broad band in the 2200 to 3600 cm{sup -1} region and the peaks sited at 1645 and 1432 cm{sup -1} are well resolved, which are originated from moisture and are assigned to {nu}(OH) and {delta}(OH) modes of adsorbed water and the corresponding tungsten oxide vibrations are in infrared region from 400 to 1453 cm{sup -1} and around 3492 cm{sup -1}, which correspond to tungsten-oxygen (W-O) stretching, bending and lattice modes. The Raman spectrum shows intense peaks at 801, 710, 262 and 61 cm{sup -1} that are typical Raman peaks of crystalline WO{sub 3} (m-phase) that correspond to stretching vibrations of the bridging oxygen, which are assigned to W-O stretching ({nu}) and W-O bending ({delta}) modes, respectively. By transmittance measurements obtains that the WO{sub 3} band gap can be varied from 2.92 to 3.13 eV in the investigated annealing temperature range.

  2. Nucleation and Oriented Textured Growth of Diamond Films on Si(100) via Electron Emission in Ho.t Filament Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Oriented textured diamond films were obtained on Si(100) substrate via electron emission in hot filament chemical vapor deposition (HFCVD). A dc bias voltage relative to the filament was applied to the tungsten electrode between the substrate and the filament. The nucleation and subsequent growth of diamond films were characterized by scanning electron microscopy and Raman spectroscopy. The experimental results showed that the electron emission from the diamond coating on the electrode played a critical role during the nucleation.The maximum value of nucleation density was up to 1011 cm-2 on pristine Si surface at emission current of 250 mA. The effect of the electron emission on the reactive gas composition was analyzed by in situ infrared absorption, indicating that the concentration of CH3 and C2H2 near the substrate surface was extremely increased. This may be responsible for the enhanced nucleation by electron emission.

  3. Friction Behaviors of the Hot Filament Chemical Vapor Deposition Diamond Film under Ambient Air and Water Lubricating Conditions

    Institute of Scientific and Technical Information of China (English)

    SHEN Bin; SUN Fanghong

    2009-01-01

    The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films;SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing of oil lubricating, in a variety of mechanical processing fields to

  4. Dual catalytic purpose of the tungsten filament during the synthesis of single-helix carbon microcoils by hot-wire CVD.

    Science.gov (United States)

    Oliphant, C J; Arendse, C J; Malgas, G F; Motaung, D E; Muller, T F G; Knoesen, D

    2009-10-01

    We report on the deposition of crystalline single-helix carbon microcoils, in the as-deposited state, by the hot-wire chemical vapor deposition process without any special preparation of nano-sized transition metal catalysts and subsequent post-deposition annealing. Tungsten, originating from the heated tungsten filament, is identified as the catalyst material responsible for the growth of the microcoils. High-resolution transmission spectroscopy, combined with Raman spectroscopy, confirm that the as-deposited microcoils are crystalline, which is induced by the high deposition temperature in the vicinity of the heated filament. These results suggest a simplified, less tedious deposition process for the growth of carbon microcoils, once the process has been optimized.

  5. The role of catalytic nanoparticle pretreatment on the growth of vertically aligned carbon nanotubes by hot-filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Gohier, Aurélien; Bourée, Jean Eric; Châtelet, Marc; Cojocaru, Costel-Sorin, E-mail: costel-sorin.cojocaru@polytechnique.edu

    2015-01-30

    The effect of atomic hydrogen assisted pre-treatment on the growth of vertically aligned carbon nanotubes using hot-filament chemical vapor deposition was investigated. Iron nanoparticle catalysts were formed on an aluminum oxide support layer by spraying of iron chloride salt solutions as catalyst precursor. It is found that pre-treatment time and process temperature tune the density as well as the shape and the structure of the grown carbon nanotubes. An optimum pre-treatment time can be found for the growth of long and well aligned carbon nanotubes, densely packed to each other. To provide insight on this behavior, the iron catalytic nanoparticles formed after the atomic hydrogen assisted pre-treatment were analyzed by atomic force microscopy. The relations between the size and the density of the as-formed catalyst and the as-grown carbon nanotube's structure and density are discussed. - Highlights: • Effect of the atomic hydrogen assisted pre-treatment on the growth of VACNT using hot-filament CVD. • Pre-treatment time and process temperature tune the density, the shape and the structure of the CNTs. • Correlations between size and density of the as-formed catalyst and the CNT’s structure and density. • Carbon nanotubes synthesized at low temperature down to 500 °C using spayed iron chloride salts. • Density of the CNT carpet adjusted by catalytic nanoparticle engineering.

  6. Effect of hot-filament annealing in a hydrogen atmosphere on the electrical and structural properties of Nb-doped TiO{sub 2} sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, C.J., E-mail: ctavares@fisica.uminho.pt [Centre of Physics, University of Minho, 4710-057 Braga (Portugal); Castro, M.V.; Marins, E.S.; Samantilleke, A.P.; Ferdov, S.; Rebouta, L.; Benelmekki, M.; Cerqueira, M.F.; Alpuim, P. [Centre of Physics, University of Minho, 4710-057 Braga (Portugal); Xuriguera, E. [Dept. Ciencia dels Materials, Universitat de Barcelona, Barcelona (Spain); Riviere, J.-P.; Eyidi, D.; Beaufort, M.-F. [Institut P' , University of Poitiers, Bat. SP2MI, Bd. Pierre et Marie Curie, BP 30179, 86962 Futuroscope (France); Mendes, A. [Laboratory of Process, Environment and Energy Engineering (LEPAE), Chemical Engineering Department, Faculty of Engineering, University of Porto, 4200-465 Porto (Portugal)

    2012-01-31

    In this work Nb-doped TiO2 thin films were deposited by d.c.-pulsed reactive magnetron sputtering at 500 Degree-Sign C from a composite target with weight fractions of 96% Ti and 4% Nb, using oxygen as reactive gas. In order to enhance the conductive properties, the as-deposited samples were treated in vacuum with atomic hydrogen at a substrate temperature of 500 Degree-Sign C. The atomic hydrogen flow was generated by a hot filament, inside a high-vacuum chemical vapour deposition reactor, at a temperature of 1750 Degree-Sign C. In order to optimise the hydrogen hot-wire treatments, the H{sub 2} pressure was varied between 1.3 and 67 Pa, the treatment time was monitored between 1 and 5 min and the hot-filament current was changed between 12 and 17 A. Dark conductivity was measured as a function of temperature and its value at room temperature was extrapolated and used to assess the effect of the hydrogen annealing on the charge transport properties. A two-order of magnitude increase in dark conductivity was typically observed for optimised hydrogen treatments (10 Pa), when varying the hydrogen pressure, resulting in a minimum resistivity of {approx} 3 Multiplication-Sign 10{sup -3} {Omega} cm at room temperature. The maximum amount of atomic H incorporation in oxygen vacancies was determined to be {approx} 5.7 at.%. Carrier mobility and resistivity were also investigated using Hall effect measurements. Correlations between structural and electrical properties and the hydrogen treatment conditions are discussed. The purpose of these films is to provide a transparent and conductive front contact layer for a-Si based photovoltaics, with a refractive index that better matches that of single and tandem solar cell structures. This can be achieved by an appropriate incorporation of a very small amount of cationic doping (Nb{sup 5+}) into the titanium dioxide lattice.

  7. Synthesis of SiO{sub 2}/β-SiC/graphite hybrid composite by low temperature hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhikun; Bi, Kaifeng; Liu, Yanhong; Qin, Fuwen; Liu, Hongzhu [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bian, Jiming, E-mail: jmbian@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Dong [New Energy Source Research Center of Shenyang Institute of Engineering, Shengyang 110136 (China); Miao, Lihua [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Department of Computer and Mathematical Basic Teaching, Shenyang Medical College, Shenyan 110034 (China)

    2013-11-18

    β-SiC thin films were synthesized directly on graphite by hot filament chemical vapor deposition at low temperature. SiH{sub 4} diluted in hydrogen was employed as the silicon source, while graphite was functioned as both substrate and carbon source for the as-grown β-SiC films. X-ray diffraction and Fourier transform infrared analysis indicate that SiO{sub 2}/β-SiC/graphite hybrid composite was formed after post annealing treatment, and its crystalline quality can be remarkably improved under optimized annealing conditions. The possible growth mechanism was proposed based on in situ etching of graphite by reactive hydrogen radicals at the atomic level.

  8. EBSD analysis of tungsten-filament carburization during the hot-wire CVD of multi-walled carbon nanotubes

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2014-02-01

    Full Text Available -scale synthesis of multi-walled carbon nanotubes ~MWCNTs! using HWCVD ~Dillon et al., 2003!. Despite the efforts to reduce filament aging, the fila- ment alloying process is still being investigated. Previous studies have focused primarily on linking microscopy, X... pyrometer. At Received August 23, 2013; accepted November 26, 2013 *Corresponding author. E-mail: coliphant@nmisa.org Microsc. Microanal. Page 1 of 10 doi:10.1017/S1431927613014001 MicroscopyAND Microanalysis © MICROSCOPY SOCIETY OF AMERICA 2013 each...

  9. Effect of Substrate Temperature on the Structural, Electrical and Optical Properties of Nanocrystalline Silicon Films in Hot-Filament Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-Song; ZHANG Shan-Shan; BAO Zhong; ZHANG Hong-Liang; CHEN Chang-Cheng; LIU Li-Xin; LIU Yan-Xia; XIE Er-Qing

    2011-01-01

    Hydrogenated nanocrystalline silicon films are deposited onto glass substrates at different substrate temperatures (140-400℃) by hot-filament chemical vapor deposition. The effect of substrate temperature on the structural properties are investigated. With an increasing substrate temperature, the Raman crystalline volume fraction increases, but decreases with a further increase. The maximum Raman crystalline volume fraction of the nanocrystalline silicon films is about 74% and also has the highest microstructural factor (R = 0.89) at a substrate temperature of 250 ℃. The deposition rate exhibits a contrary tendency to that of the crystalline volume fraction.The continuous transition of the film structures from columnar to agglomerated is observed at a substrate temperature of 300℃. The optical band gaps of the grown thin films declines (from 1.89 to 1.53eV) and dark electrical conductivity increases (from about 10-10 to about 10-6 S/cm) with the increasing substrate temperature.%@@ Hydrogenated nanocrystalline silicon fi1ms are deposited onto glass substrates at different substrate temperatures (140-400℃) by hot-filament chemical vapor deposition.The effect of substrate temperature on the structural properties are investigated.With an increasing substrate temperature, the Raman crystalline volume fraction increases, but decreases with a further increase.The maximum Raman crystalline volume fraction of the nanocrystalline silicon 61ms is about 74% and also has the highest microstructural factor (R = 0.89) at a substrate temperature of 250℃.The deposition rate exhibits a contrary tendency to that of the crystalline volume fraction.The continuous transition of the fi1m structures from columnar to agglomerated is observed at a substrate temperature of 300℃.The optical band gaps of the grown thin 61ms declines (from 1.89 to 1.53 eV) and dark electrical conductivity increases (from about 10-10 to about 10-6 S/cm) with the increasing substrate temperature.

  10. Annealing effects on the structural and optical properties of vanadium oxide film obtained by the hot-filament metal oxide deposition technique (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Scarminio, Jair; Silva, Paulo Rogerio Catarini da, E-mail: scarmini@uel.br, E-mail: prcsilva@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Departamento de Fisica; Gelamo, Rogerio Valentim, E-mail: rogelamo@gmail.com [Universidade Federal do Triangulo Mineiro (UFTM), Uberaba, MG (Brazil); Moraes, Mario Antonio Bica de, E-mail: bmoraes@mailhost.ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2017-01-15

    Vanadium oxide films amorphous, nonstoichiometric and highly absorbing in the optical region were deposited on ITO-coated glass and on silicon substrates, by the hot-filament metal oxide deposition technique (HFMOD) and oxidized by ex-situ annealing in a furnace at 200, 300, 400 and 500 deg C, under an atmosphere of argon and rarefied oxygen. X-ray diffraction, Raman and Rutherford backscattering spectroscopy as well as optical transmission were employed to characterize the amorphous and annealed films. When annealed at 200 and 300 deg C the as-deposited opaque films become transparent but still amorphous. Under treatments at 400 and 500 deg C a crystalline nonstoichiometric V{sub 2}O{sub 5} structure is formed. All the annealed films became semiconducting, with their optical absorption coefficients changing with the annealing temperature. An optical gap of 2.25 eV was measured for the films annealed at 400 and 500 deg C. The annealing in rarefied oxygen atmosphere proved to be a useful and simple ex-situ method to modulate the structural and optical properties of vanadium oxide films deposited by HFMOD technique. This technique could be applied to other amorphous and non-absorbing oxide films, replacing the conventional and sometimes expensive method of modulate desirable film properties by controlling the film deposition parameters. Even more, the HFMOD technique can be an inexpensive alternative to deposit metal oxide films. (author)

  11. Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion.

    Science.gov (United States)

    Ameen, Sadia; Akhtar, M Shaheer; Song, Minwu; Shin, Hyung Shik

    2012-08-01

    Vertically aligned zinc oxide (ZnO) nanorods (NRs) were grown by the low-temperature hydrothermal method on graphene oxide (GO) coated FTO substrates, where GO was directly deposited on fluorine doped tin oxide (FTO) substrates using hydrogen (H(2), 65 sccm) and methane (CH(4), 50 sccm) through hot filament chemical vapor deposition (HFCVD) technique. The vertically aligned ZnO NRs were applied as effective photoanode for the fabrication of efficient dye sensitized solar cells (DSSCs). Highly uniform ZnO NRs were grown on GO deposited FTO substrate with the average length of ∼2-4 μm and diameter of ∼200-300 nm. The possible mechanism of grown ZnO NRs clearly revealed the significant role of GO on FTO in architecting the aligned growth of ZnO NRs. The grown vertically aligned ZnO NRs possessed a typical wurtzite hexagonal crystal structure. The structural and the optical studies confirmed the formation of partial hydrogen bonding between surface functional groups of GO and ZnO NRs. A solar-to-electricity conversion efficiency of ∼2.5% was achieved by DSSC fabricated with ZnO NRs deposited on graphene oxide (GO-ZnO NRs) thin film photoanode. The presence of GO on FTO substrate expressively increased the surface area of GO-ZnO photoanode, which resulted in high dye loading as well as high light harvesting efficiency and thus ensued the increased photocurrent density and the improved performance of DSSCs.

  12. Dual catalytic purpose of the tungsten filament during the synthesis of single-helix carbon microcoils by hot-wire CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-10-01

    Full Text Available post-deposition annealing. Tungsten, originating from the heated tungsten filament, is identified as the catalyst material responsible for the growth of the microcoils. High-resolution transmission spectroscopy, combined with Raman spectroscopy, confirm...

  13. Helical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Nicholas; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin [Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Hosseinimakarem, Zahra; Johnson, Eric [Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634 (United States)

    2014-06-30

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  14. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    Science.gov (United States)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  15. Low-temperature synthesis of diamond films by photoemission-assisted plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, Mayuri, E-mail: kawata@mail.tagen.tohoku.ac.jp; Ojiro, Yoshihiro; Ogawa, Shuichi; Takakuwa, Yuji [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Masuzawa, Tomoaki; Okano, Ken [International Christian University, 3-10-2 Osawa, Mitaka 181-8585 (Japan)

    2014-03-15

    Photoemission-assisted plasma-enhanced chemical vapor deposition (PA-PECVD), a process in which photoelectrons emitted from a substrate irradiated with ultraviolet light are utilized as a trigger for DC discharge, was investigated in this study; specifically, the DC discharge characteristics of PA-PECVD were examined for an Si substrate deposited in advance through hot-filament chemical vapor deposition with a nitrogen-doped diamond layer of thickness ∼1 μm. Using a commercially available Xe excimer lamp (hν = 7.2 eV) to illuminate the diamond surface with and without hydrogen termination, the photocurrents were found to be 3.17 × 10{sup 12} and 2.11 × 10{sup 11} electrons/cm{sup 2}/s, respectively. The 15-fold increase in photocurrent was ascribed to negative electron affinity (NEA) caused by hydrogen termination on the diamond surfaces. The DC discharge characteristics revealed that a transition bias voltage from a Townsend-to-glow discharge was considerably decreased because of NEA (from 490 to 373 V for H{sub 2} gas and from 330 to 200 V for Ar gas), enabling a reduction in electric power consumption needed to synthesize diamond films through PA-PECVD. In fact, the authors have succeeded in growing high-quality diamond films of area 2.0 cm{sup 2} at 540 °C with a discharge power of only 1.8 W, plasma voltage of 156.4 V, and discharge current of 11.7 mA under the glow discharge of CH{sub 4}/H{sub 2}/Ar mixed gases. In addition to having only negligible amounts of graphite and amorphous carbon, the diamond films exhibit a relatively high diamond growth rate of 0.5 μm/h at temperatures as low as 540 °C, which is attributed to Ar{sup +} ions impinging on the diamond surface, and causing the removal of hydrogen atoms from the surface through sputtering. This process leads to enhanced CH{sub x} radical adsorption, because the sample was applied with a negative potential to accelerate photoelectrons in PA-PECVD.

  16. The Dark Matter filament between Abell 222/223

    Science.gov (United States)

    Dietrich, Jörg P.; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora

    2016-10-01

    Weak lensing detections and measurements of filaments have been elusive for a long time. The reason is that the low density contrast of filaments generally pushes the weak lensing signal to unobservably low scales. To nevertheless map the dark matter in filaments exquisite data and unusual systems are necessary. SuprimeCam observations of the supercluster system Abell 222/223 provided the required combination of excellent seeing images and a fortuitous alignment of the filament with the line-of-sight. This boosted the lensing signal to a detectable level and led to the first weak lensing mass measurement of a large-scale structure filament. The filament connecting Abell 222 and Abell 223 is now the only one traced by the galaxy distribution, dark matter, and X-ray emission from the hottest phase of the warm-hot intergalactic medium. The combination of these data allows us to put the first constraints on the hot gas fraction in filaments.

  17. Plasma enhanced atomic layer deposition of silicon nitride using neopentasilane

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, Stephen, E-mail: Stephen.Weeks@intermolecular.com; Nowling, Greg; Fuchigami, Nobi; Bowes, Michael; Littau, Karl [Intermolecular, 3011 North 1st Street, San Jose, California 95134 (United States)

    2016-01-15

    Progress in transistor scaling has increased the demands on the material properties of silicon nitride (SiN{sub x}) thin films used in device fabrication and at the same time placed stringent restrictions on the deposition conditions employed. Recently, low temperature plasma enhanced atomic layer deposition has emerged as a viable technique for depositing these films with a thermal budget compatible with semiconductor processing at sub-32 nm technology nodes. For these depositions, it is desirable to use precursors that are free from carbon and halogens that can incorporate into the film. Beyond this, it is necessary to develop processing schemes that minimize the wet etch rate of the film as it will be subjected to wet chemical processing in subsequent fabrication steps. In this work, the authors introduce low temperature deposition of SiN{sub x} using neopentasilane [NPS, (SiH{sub 3}){sub 4}Si] in a plasma enhanced atomic layer deposition process with a direct N{sub 2} plasma. The growth with NPS is compared to a more common precursor, trisilylamine [TSA, (SiH{sub 3}){sub 3 }N] at identical process conditions. The wet etch rates of the films deposited with NPS are characterized at different plasma conditions and the impact of ion energy is discussed.

  18. Triggering filamentation using turbulence

    CERN Document Server

    Eeltink, D; Marchiando, N; Hermelin, S; Gateau, J; Brunetti, M; Wolf, J P; Kasparian, J

    2016-01-01

    We study the triggering of single filaments due to turbulence in the beam path for a laser of power below the filamenting threshold. Turbulence can act as a switch between the beam not filamenting and producing single filaments. This 'positive' effect of turbulence on the filament probability, combined with our observation of off-axis filaments suggests the underlying mechanism is modulation instability caused by transverse perturbations. We hereby experimentally explore the interaction of modulation instability and turbulence, commonly associated with multiple-filaments, in the single-filament regime.

  19. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  20. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    Science.gov (United States)

    Cassell, Alan M.; Li, J.; Ye, Q.; Koehne, J.; Chen, H.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  1. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    Science.gov (United States)

    Cassell, Alan M.; Li, J.; Ye, Q.; Koehne, J.; Chen, H.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  2. Plasma enhanced diamond deposition on steel and Si substrates

    Institute of Scientific and Technical Information of China (English)

    Y.S. Li; Y. Tang; W. Chen; Q. Yang; C. Xiao; A. Hirose

    2009-01-01

    Diamond growth on Fe-Cr-Al-Si steel and Si substrates was comparatively investigated in microwave plasma enhanced chemical vapor deposition (MPCVD) reactor with different deposition parameters. Adherent nanocrystalline diamond films were directly deposited on this steel substrate under a typical deposition condition, whereas microcrystalline diamond films were produced on Si wafer. With increasing CH4 concentration, reaction pressure, or the total gas flow rate, the quality of nanocrystalline diamond films formed on Fe-Cr-Al-Si substrates is gradually deteriorated in terms of density and adhesion. This impaired diamond quality on steels is primarily associated with a combined effect by the substrate composition and the specific process conditions that favor excessive nucleation of diamond.

  3. Use of plasma enhanced ALD to construct efficient interference filters for astronomy in the FUV

    Science.gov (United States)

    Scowen, Paul A.; Nemanich, Robert; Eller, Brianna; Yu, Hongbin; Mooney, Tom; Beasley, Matt

    2016-07-01

    Over the past few years the advent of atomic layer deposition (ALD) technology has opened new capabilities to the field of coatings deposition for use in optical elements. At the same time, there have been major advances in both optical designs and detector technologies that can provide orders of magnitude improvement in throughput in the far ultraviolet (FUV) and near ultraviolet (NUV) passbands. Recent review work has shown that a veritable revolution is about to happen in astronomical diagnostic work for targets ranging from protostellar and protoplanetary systems, to the intergalactic medium that feeds gas supplies for galactic star formation, and supernovae and hot gas from star forming regions that determine galaxy formation feedback. These diagnostics are rooted in access to a forest of emission and absorption lines in the ultraviolet (UV)[1], and all that prevents this advance is the lack of throughput in such systems, even in space-based conditions. We outline an approach to use a range of materials to implement stable optical layers suitable for protective overcoats with high UV reflectivity and unprecedented uniformity, and use that capability to leverage innovative ultraviolet/optical filter construction to enable astronomical science. These materials will be deposited in a multilayer format over a metal base to produce a stable construct. Specifically, we will employ the use of PEALD (plasma-enhanced atomic layer deposition) methods for the deposition and construction of reflective layers that can be used to construct unprecedented filter designs for use in the ultraviolet.

  4. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  5. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    Science.gov (United States)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  6. Filamentation in Laser Wakefields

    Science.gov (United States)

    Los, Eva; Trines, Raoul; Silva, Luis; Bingham, Robert

    2016-10-01

    Laser filamentation instability is observed in plasma wakefields with sub-critical densities, and in high density inertial fusion plasmas. This leads to non-uniform acceleration or compression respectively. Here, we present simulation results on laser filamentation in plasma wakefields. The 2-D simulations are carried out using the particle-in-cell code Osiris. The filament intensity was found to increase exponentially before saturating. The maximum amplitude to which the highest intensity filament grew for a specific set of parameters was also recorded, and plotted against a corresponding parameter value. Clear, positively correlated linear trends were established between plasma density, transverse wavenumber k, laser pulse amplitude and maximum filament amplitude. Plasma density and maximum filament amplitude also showed a positive correlation, which saturated after a certain plasma density. Pulse duration and interaction length did not affect either filament intensity or transverse k value in a predictable manner. There was no discernible trend between pulse amplitude and filament width.

  7. Mechanical alloying and sintering of aluminum reinforced with SiC nanopowders produced by plasma-enhanced chemical-vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Costa, J.; Fort, J.; Roura, P. [GRM, Dept. de Enginyeria Industrial, Universitat de Girona (Spain); Froyen, L. [MTM Katholieke Universiteit Leuven (Belgium); Viera, G.; Bertran, E. [FEMAN, Dept. Fisica Aplicada i Optica, Universitat de Barcelona (Spain)

    2000-07-01

    Nanometric powders of stoichiometric SiC have been synthesised by plasma-enhanced chemical-vapour deposition. These are constituted by amorphous particles with diameters ranging from 10 to 100 nm. Due to their high hydrogen content, a heat treatment at 900 C was needed to prevent spontaneous oxidation. The stabilized SiC powder was mechanically alloyed with aluminum particles of 40 {mu}m in diameter and the alloy was formed by hot isostatic sintering. The SiC content ranged from 0 to 5% in weight. A detailed analysis of the alloyed powder microstructure is presented as well as preliminary results concerning the mechanical properties after sintering. (orig.)

  8. Plasma-enhanced microwave solid-state synthesis of cadmium sulfide: reaction mechanism and optical properties.

    Science.gov (United States)

    Du, Ke-zhao; Chaturvedi, Apoorva; Wang, Xing-zhi; Zhao, Yi; Zhang, Ke-ke; Iqbal Bakti Utama, M; Hu, Peng; Jiang, Hui; Xiong, Qi-hua; Kloc, Christian

    2015-08-14

    CdS synthesis by plasma-enhanced microwave physical vapor transport (PMPVT) has been developed in this work. The photoluminescence (PL), absorbance, Raman spectra and the mechanism of CdS crystal growth have been investigated. Furthermore, plasma-enhanced microwave chemical vapour transport (PMCVT) synthesis of CdS with additional chemical transport agents has been explored. In addition, other II-VI chalcogenides were also synthesized by PMPVT.

  9. Solar Features - Prominences and Filaments - Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun (David Hathaway/NASA)

  10. Large-Scale Patterns of Filament Channels and Filaments

    Science.gov (United States)

    Mackay, Duncan

    2016-07-01

    In this review the properties and large-scale patterns of filament channels and filaments will be considered. Initially, the global formation locations of filament channels and filaments are discussed, along with their hemispheric pattern. Next, observations of the formation of filament channels and filaments are described where two opposing views are considered. Finally, the wide range of models that have been constructed to consider the formation of filament channels and filaments over long time-scales are described, along with the origin of the hemispheric pattern of filaments.

  11. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition.

    Science.gov (United States)

    Cojocaru, C S; Senger, A; Le Normand, F

    2006-05-01

    Carbon nanofibers are grown by direct current and hot filaments-activated catalytic chemical vapor deposition while varying the power of the hot filaments. Observations of these carbon nanofibers vertically oriented on a SiO2 (8 nm thick)/Si(100) substrate covered with Co nanoparticles (10-15 nm particle size) by Scanning Electron and Transmission Electron Microscopies show the presence of a graphitic "nest" either on the surface of the substrate or at the end of the specific nanofiber that does not encapsulate the catalytic particle. Strictly in our conditions, the activation by hot filaments is required to grow nanofibers with a C2H2 - H2 gas mixture, as large amounts of amorphous carbon cover the surface of the substrate without using hot filaments. From these observations as well as data of the literature, it is proposed that the nucleation of carbon nanofibers occurs through a complex process involving several steps: carbon concentration gradient starting from the catalytic carbon decomposition and diffusion from the surface of the catalytic nanoparticles exposed to the activated gas and promoted by energetic ionic species of the gas phase; subsequent graphitic condensation of a "nest" at the interface of the Co particle and substrate. The large concentration of highly reactive hydrogen radicals mainly provided by activation with hot filaments precludes further spreading out of this interfacial carbon nest over the entire surface of the substrate and thus selectively orientates the growth towards the condensation of graphene over facets that are perpendicular to the surface. Carbon nanofibers can then be grown within the well-known Vapor-Liquid-Solid process. Thus the effect of energetic ions and highly reactive neutrals like atomic hydrogen in the preferential etching of carbon on the edge of graphene shells and on the broadening of the carbon nanofiber is underlined.

  12. Plasma-enhanced mixing and flameholding in supersonic flow

    Science.gov (United States)

    Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.

    2015-01-01

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434

  13. Semiflexible filamentous composites

    NARCIS (Netherlands)

    Huisman, E.M.; Heussinger, C.; Storm, C.; Barkema, G.T.

    2010-01-01

    Inspired by the ubiquity of composite filamentous networks in nature, we investigate models of biopolymer networks that consist of interconnected floppy and stiff filaments. Numerical simulations carried out in three dimensions allow us to explore the microscopic partitioning of stresses and strains

  14. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with

  15. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with technologica

  16. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  17. Ni-catalysed carbon nanotubes and nanofibers assemblies grown on TiN/Si(1 0 0) substrates using hot-filaments combined with d.c. plasma CVD

    Science.gov (United States)

    Fleaca, Claudiu Teodor; Le Normand, François

    2014-02-01

    Different carbon nanotubes or nanofibers (CNTs or CNFs) assemblies were obtained using Ni catalyst deposited by Pulsed Laser Deposition (PLD) on TiN/Si(1 0 0) substrate from a H2/C2H2 mixture using plasma emerging from triode configured electrodes with two pairs of intercalated incandescent filaments at 1 kPa and 700 °C. In the presence of a relative intense plasma (54 W power), a dense CNT carpet was grown. The TEM images revealed the presence of elongated yet contorted 10-15 nm diameter CNTs with encapsulated Ni particles at their tips. Using a low plasma power (8 W) in similar conditions and from the same catalyst, a different morphology resulted: few self-sustained long fibrils (diameter around 1 μm) which are curved under the action of their own weight containing compacted CNTs/CNFs and (only in the confined zones near the lateral edges) 50-200 nm thick filaments presenting buds-like structures and Y-shape junctions.

  18. Hot Money, Hot Potato

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    International hot money flowing into Chinese capital markets has caught the attention of Chinese watchdogs The Chinese are not the only ones feasting on the thriving property and stock markets. Apparently, these markets are the targets of international h

  19. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  20. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  1. Blistering of viscoelastic filaments

    CERN Document Server

    Sattler, R; Wagner, C

    2007-01-01

    When a dilute polymer solution experiences capillary thinning, it forms an almost uniformly cylindrical thread, which we study experimentally. In the last stages of thinning, when polymers have become fully stretched, the filament becomes prone to instabilities, of which we describe two: A novel "breathing" instability, originating from the edge of the filament, and a sinusoidal instability in the interior, which ultimately gives rise to a "blistering" pattern of beads on the filament. We describe the linear instability with a spatial resolution of 80 nm in the disturbance amplitude. For sufficiently high polymer concentrations, the filament eventually separates out into a "solid" phase of entangled polymers, connected by fluid beads. A solid polymer fiber of about 100 nanometer thickness remains, which is essentially permanent.

  2. Plasma-enhanced Chemical Vapor Deposition of Aluminum Oxide Using Ultrashort Precursor Injection Pulses

    NARCIS (Netherlands)

    Dingemans, G.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the precurs

  3. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics.

  4. Catalytic Carbon Submicron Fabrication Using Home-Built Very-High Frequency Plasma Enhanced Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Sukirno

    2008-09-01

    Full Text Available In this research, carbon nanotubes (CNT fabrication is attempted by using existing home-made Plasma Enhanced Chemical Vapour Deposition (PECVD system. The fabrication is a catalytic growth process, which Fe catalyst thin film is grown on the Silicon substrate by using dc-Unbalanced Magnetron Sputtering method. By using methane (CH4 as the source of carbon and diluted silane (SiH4 in hydrogen as the source of hydrogen with 10:1 ratio, CNT fabrications have been attempted by using Very High Frequency PECVD (VHF-PECVD method. The fabrication processes are done at relatively low temperature, 250oC, but with higher operated plasma frequency, 70 MHz. Recently, it is also been attempted a fabrication process with only single gas source, but using one of the modification of the VHF-PECVD system, which is by adding hot-wire component. The attempt was done in higher growth temperature, 400oC. Morphological characterizations, by using Scanning Electron Micrograph (SEM and Scanning Probe Microscopy (SPM, as well as the composition characterization, by using Energy Dispersion Analysis by X-Ray (EDAX, show convincing results that there are some signatures of CNT present.

  5. SiC-Si[sub 3]N[sub 4] composite coatings produced by plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gerretsen, J. (Centre for Technical Ceramics, Netherlands Organization for Applied Scientific Research, Eindhoven (Netherlands)); Kirchner, G. (Centre for Technical Ceramics, Netherlands Organization for Applied Scientific Research, Eindhoven (Netherlands)); Kelly, T. (Irish Science and Technology Agency, Dublin (Ireland)); Mernagh, V. (Irish Science and Technology Agency, Dublin (Ireland)); Koekoek, R. (Tempress, Hoogeveen (Netherlands)); McDonnell, L. (Tekscan Ltd., Cork (Ireland))

    1993-10-08

    Silicon carbonitride coatings have been produced by plasma-enhanced chemical vapour deposition (CVD) on AISI 440C steel in a hot-wall reactor at 250 C from a mixture of SiH[sub 4], N[sub 2]-NH[sub 3] and C[sub 2]H[sub 4], and analysed by electron probe microanalysis and Rutherford backscattering spectroscopy-elastic recoil detection. Coatings with different ratios of silicon carbide to silicon nitride and silicon suband superstoichiometries have been deposited. Stoichiometric coatings show a maximum in their mechanical properties. Depending on the SiC-to-Si[sub 3]N[sub 4] ratio, the Knoop hardness values vary between 1500 and 2800 HK[sub 0.025]. Internal stress is low at a level of 100-300 MPa. The pinhole density is less than 2 cm[sup -2]. The fracture toughness as determined from indention tests is 4 MPa m[sup 1/2]. Linear polarization testing results show excellent protection of the substrate material against chemically aggressive media as compared with conventional CVD. (orig.)

  6. Reversibility of silicidation of Ta filaments in HWCVD of thin film silicon

    NARCIS (Netherlands)

    van der Werf, C.H.M.; Li, H. B. T.; Verlaan, V.; Oliphant, C.J.; Bakker, R.; Houweling, Z.S.; Schropp, R.E.I.

    2009-01-01

    If tantalum filaments are used for the hot wire chemical vapour deposition (HWCVD) of thin film silicon, various types of tantalum silicides are formed, depending on the filament temperature. Under deposition conditions employed for device quality amorphous and microcrystalline silicon (Twire ≈ 1750

  7. Characterization of HI Filaments

    Science.gov (United States)

    Lubar, Emily; Verschuur, Gerrit L.

    2017-01-01

    We characterized the properties of dramatic interstellar HI filaments to learn more about the dynamics and structure of such features. Using Gauss fitting software, we searched the Effelsburg-Bonn HI Survey data for indications of a simple twisting (toroidal) motion across these filaments. Instead, we found that the structure was more complicated than expected. Apparent angular widths of several filaments were measured using the Galactic Arecibo L-band Feed Array HI (GALFA-HI), Bonn, and Leident/Argentine/Bonn (LAB) surveys. Based on filament widths and other parameters, we conclude that magnetism is the dominant force opposing internal motion and maintaining the structure of these filaments. The apparent width as a function of beam width closely follows a relationship reported in 1993 for HI features in general. They tend to subtend an angle two times the beam width, suggesting that the features remain unresolved.The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association. The Arecibo Observatory REU is funded under grant AST-1559849 to Universidad Metropolitana.

  8. Filaments in Lupus I

    Science.gov (United States)

    Takahashi, Satoko; Rodon, J.; De Gregorio-Monsalvo, I.; Plunkett, A.

    2017-06-01

    The mechanisms behind the formation of sub-stellar mass sources are key to determine the populations at the low-mass end of the stellar distribution. Here, we present mapping observations toward the Lupus I cloud in C18O(2-1) and 13CO(2-1) obtained with APEX. We have identified a few velocity-coherent filaments. Each contains several substellar mass sources that are also identified in the 1.1mm continuum data (see also SOLA catalogue presentation). We will discuss the velocity structure, fragmentation properties of the identified filaments, and the nature of the detected sources.

  9. Aerogel-supported filament

    Science.gov (United States)

    Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.

    1995-01-01

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.

  10. Plasma-Enhanced Chemical Vapor Deposition as a Method for the Deposition of Peptide Nanotubes

    Science.gov (United States)

    2013-09-17

    peptide nanotubes, plasma-enhanced chemical vapor deposition, nano assembly 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...Using physical vapor deposition ( PVD ) well-ordered assemblies of peptide nanotubes (PNTs) composed of dipeptide subunits are obtained on various...for the deposition of thin films (Figure 1b). A. B. Figure 1. (a) Illustration of physical vapor deposition ( PVD ) process of diphenylalanine

  11. Simulation of low-temperature, atmospheric-pressure plasma enhanced chemical vapor deposition reactors

    OpenAIRE

    Lorant, Christophe; Descamps, Pierre; De Wilde, Juray; 1st BeLux workshop on “Coating, Materials, surfaces and Interfaces

    2014-01-01

    The simulation of low-temperature, atmospheric-pressure plasma enhanced chemical vapor deposition reactors is challenging due to the coupling of the fluid dynamics, the chemical reactions and the electric field and the stiffness of the resulting mathematical system. The model equations and the rigorous model reduction to reduce the stiffness are addressed in this paper. Considering pure nitrogen plasma, simulations with two configurations are discussed.

  12. Synthesis of carbon nanotubes by plasma-enhanced CVD process: gas phase study of synthesis conditions

    OpenAIRE

    Guláš, Michal; Cojocaru, Costel Sorin; Fleaca, Claudiu; Farhat, Samir; Veis, Pavel; Le Normand, Francois

    2008-01-01

    International audience; To support experimental investigations, a model based on ChemkinTM software was used to simulate gas phase and surface chemistry during plasma-enhanced catalytic CVD of carbon nanotubes. According to these calculations, gas phase composition, etching process and growth rates are calculated. The role of several carbon species, hydrocarbon molecules and ions in the growth mechanism of carbon nanotubes is presented in this study. Study of different conditions of gas phase ...

  13. Synthesis of carbon nanbotubes by plasma-enhanced CVD process: gas phase study of synthesis conditions

    Science.gov (United States)

    Guláš, M.; Cojocaru, C. S.; Fleaca, C. T.; Farhat, S.; Veis, P.; Le Normand, F.

    2008-09-01

    To support experimental investigations, a model based on Chemkin^TM software was used to simulate gas phase and surface chemistry during plasma-enhanced catalytic CVD of carbon nanotubes. According to these calculations, gas phase composition, etching process and growth rates are calculated. The role of several carbon species, hydrocarbon molecules and ions in the growth mechanism of carbon nanotubes is presented in this study. Study of different conditions of gas phase activation sources and pressure is performed.

  14. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......, and it increased the barrier property of the modified low-density polyethylene, polyethylene terephthalate, and polylactide by 96.48%, 99.69%, and 99.25%, respectively....

  15. Branching of keratin intermediate filaments.

    Science.gov (United States)

    Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward

    2016-06-01

    Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation.

  16. Kilometer range filamentation

    OpenAIRE

    Durand, Magali; Houard, Aurélien; Prade, Bernard; Mysyrowicz, André; Durécu, Anne; Moreau, Bernard; Fleury, Didier; Vasseur, Olivier; Borchert, Hartmut; Diener, Karsten; Schmitt, Rudiger; Théberge, Francis; Chateauneuf, Marc; Daigle, Jean-François; Dubois, Jacques

    2013-01-01

    International audience; We demonstrate for the first time the possibility to generate long plasma channels up to a distance of 1 km, using the terawatt femtosecond T&T laser facility. The plasma density was optimized by adjusting the chirp, the focusing and beam diameter. The interaction of filaments with transparent and opaque targets was studied.

  17. Solar Features - Prominences and Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prominences and filaments are two manifestations of the same phenomenon. Both prominences and filaments are features formed above the chromosphere by cool dense...

  18. Positrusion Filament Recycling System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers use...

  19. Properties of twisted ferromagnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Belovs, Mihails; Cebers, Andrejs [University of Latvia, Zellu 8, LV-1002 (Latvia)], E-mail: aceb@tesla.sal.lv

    2009-02-01

    The full set of equations for twisted ferromagnetic filaments is derived. The linear stability analysis of twisted ferromagnetic filament is carried out. Two different types of the buckling instability are found - monotonous and oscillatory. The first in the limit of large twist leads to the shape of filament reminding pearls on the string, the second to spontaneous rotation of the filament, which may constitute the working of chiral microengine.

  20. Different approaches to modeling the LANSCE H- ion source filament performance

    Science.gov (United States)

    Draganic, I. N.; O'Hara, J. F.; Rybarcyk, L. J.

    2016-02-01

    An overview of different approaches to modeling of hot tungsten filament performance in the Los Alamos Neutron Science Center (LANSCE) H- surface converter ion source is presented. The most critical components in this negative ion source are two specially shaped wire filaments heated up to the working temperature range of 2600 K-2700 K during normal beam production. In order to prevent catastrophic filament failures (creation of hot spots, wire breaking, excessive filament deflection towards source body, etc.) and to improve understanding of the material erosion processes, we have simulated the filament performance using three different models: a semi-empirical model, a thermal finite-element analysis model, and an analytical model. Results of all three models were compared with data taken during LANSCE beam production. The models were used to support the recent successful transition from the beam pulse repetition rate of 60 Hz-120 Hz.

  1. Use of Plasma Enhanced ALD to Construct Efficient Interference Filters for Astronomy in the FUV - Year 2 Update

    Science.gov (United States)

    Scowen, Paul A.; Nemanich, Robert; Eller, Brianna; Yu, Hongbin; Mooney, Tom; Beasley, Matt

    2017-01-01

    Over the past few years the advent of atomic layer deposition (ALD) technology has opened new capabilities to the field of coatings deposition for use in optical elements. At the same time, there have been major advances in both optical designs and detector technologies that can provide orders of magnitude improvement in throughput in the far ultraviolet (FUV) and near ultraviolet (NUV) passbands. Recent review work has shown that a veritable revolution is about to happen in astronomical diagnostic work for targets ranging from protostellar and protoplanetary systems, to the intergalactic medium that feeds gas supplies for galactic star formation, and supernovae and hot gas from star forming regions that determine galaxy formation feedback. These diagnostics are rooted in access to a forest of emission and absorption lines in the ultraviolet (UV), and all that prevents this advance is the lack of throughput in such systems, even in space-based conditions. We are pursuing an approach to use a range of materials to implement stable optical layers suitable for protective overcoats with high UV reflectivity and unprecedented uniformity, and to use that capability to leverage innovative ultraviolet/optical filter construction to enable astronomical science. These materials will be deposited in a multilayer format over a metal base to produce a stable construct. Specifically, we are employing PEALD (plasma-enhanced atomic layer deposition) methods for the deposition and construction of reflective layers that can be used to construct unprecedented filter designs for use in the ultraviolet. Our paper reports on our work as we enter year 2 of our 3-year program.

  2. A filament of dark matter between two clusters of galaxies.

    Science.gov (United States)

    Dietrich, Jörg P; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora

    2012-07-12

    It is a firm prediction of the concordance cold-dark-matter cosmological model that galaxy clusters occur at the intersection of large-scale structure filaments. The thread-like structure of this 'cosmic web' has been traced by galaxy redshift surveys for decades. More recently, the warm–hot intergalactic medium (a sparse plasma with temperatures of 10(5) kelvin to 10(7) kelvin) residing in low-redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying dark-matter skeleton, which should contain more than half of all matter, has remained elusive, because earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignments of dark and luminous matter. Here we report the detection of a dark-matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies and diffuse, soft-X-ray emission, and contributes a mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. By combining this result with X-ray observations, we can place an upper limit of 0.09 on the hot gas fraction (the mass of X-ray-emitting gas divided by the total mass) in the filament.

  3. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  4. Solid friction between soft filaments

    CERN Document Server

    Ward, Andrew; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes' drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the prop...

  5. Hot microswimmers

    Science.gov (United States)

    Kroy, Klaus; Chakraborty, Dipanjan; Cichos, Frank

    2016-11-01

    Hot microswimmers are self-propelled Brownian particles that exploit local heating for their directed self-thermophoretic motion. We provide a pedagogical overview of the key physical mechanisms underlying this promising new technology. It covers the hydrodynamics of swimming, thermophoresis and -osmosis, hot Brownian motion, force-free steering, and dedicated experimental and simulation tools to analyze hot Brownian swimmers.

  6. Fundamentals of Filament Interaction

    Science.gov (United States)

    2017-05-19

    provide a 1:1 image of the filament profile onto a CCD camera (The Imaging Source DMK72BUC02). Neutral density filters were used to prevent the...thermal velocity, until their momentum was arrested by collisions with neutral air molecules. This results in a short distance, transient current which...Martin Richardson, 3rd ELI-ALPS User Workshop, Szeged, Hungary November 2015 126 “Photonics and the Changing Energy Scene ”, Martin Richardson

  7. Properties of Cosmological Filaments extracted from Eulerian Simulations

    CERN Document Server

    Gheller, Claudio; Favre, Jean; Brüggen, Marcus

    2015-01-01

    Using a new parallel algorithm implemented within the VisIt framework, we analysed large cosmological grid simulations to study the properties of baryons in filaments. The procedure allows us to build large catalogues with up to $\\sim 3 \\cdot 10^4$ filaments per simulated volume and to investigate the properties of cosmic filaments for very large volumes at high resolution (up to $300^3 ~\\rm Mpc^3$ simulated with $2048^3$ cells). We determined scaling relations for the mass, volume, length and temperature of filaments and compared them to those of galaxy clusters. The longest filaments have a total length of about $200 ~\\rm Mpc$ with a mass of several $10^{15} M_{\\odot}$. We also investigated the effects of different gas physics. Radiative cooling significantly modifies the thermal properties of the warm-hot-intergalactic medium of filaments, mainly by lowering their mean temperature via line cooling. On the other hand, powerful feedback from active galactic nuclei in surrounding halos can heat up the gas in ...

  8. Studies on non-oxide coating on carbon fibers using plasma enhanced chemical vapor deposition technique

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Prajapati, K. K.; Vyas, M. M.; Batra, N. M.

    2016-05-01

    A new way of improving the oxidative behavior of carbon fibers coated with SiC through Plasma Enhanced Chemical Vapor Deposition technique. The complete study includes coating of SiC on glass slab and Stainless steel specimen as a starting test subjects but the major focus was to increase the oxidation temperature of carbon fibers by PECVD technique. This method uses relatively lower substrate temperature and guarantees better stoichiometry than other coating methods and hence the substrate shows higher resistance towards mechanical and thermal stresses along with increase in oxidation temperature.

  9. Synthesis of carbon nanotube array using corona discharge plasma-enhanced chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A corona discharge plasma-enhanced chemical vapor deposition with the features of atmospheric pressure and low temperature has been developed to synthesize the carbon nanotube array. The array was synthesized from methane and hydrogen mixture in anodic aluminum oxide template channels in that cobalt was electrodeposited at the bottom. The characterization results by the scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy indicate that the array consists of carbon nanotubes with the diameter of about 40 nm and the length of more than 4 -m, and the carbon nanotubes are mainly restrained within the channels of templates.

  10. Growth and characterization of titanium oxide by plasma enhanced atomic layer deposition

    KAUST Repository

    Zhao, Chao

    2013-09-01

    The growth of TiO2 films by plasma enhanced atomic layer deposition using Star-Ti as a precursor has been systematically studied. The conversion from amorphous to crystalline TiO2 was observed either during high temperature growth or annealing process of the films. The refractive index and bandgap of TiO2 films changed with the growth and annealing temperatures. The optimization of the annealing conditions for TiO2 films was also done by morphology and density studies. © 2013 Elsevier B.V. All rights reserved.

  11. Chemical Structure of Carbon Nitride Films Prepared by MW-ECR Plasma Enhanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    XUJun,GAOPeng; DINGWan-yu; LIXin; DENGXin-lu; DONGChuang

    2004-01-01

    Amorphous carbon nitride thin films were prepared by plasma-enhanced DC magnetron sputtering using twinned microwave electron cyclotron resonance plasma sources. Chemical structure of deposited films was investigated using X-ray photoelectron spectroscopy and Fourier transtorm infrared spectroscopy. The results indicate that the deposition rate is strongly affected by direct current bias, and the films are mainly composed of a single amorphous carbon nitride phase with N/C ratio close to C3N4, and the bonding is predominantly of C-N type.

  12. Plasma-enhanced CVD of functional coatings in Ar/maleic anhydride/C2H2 homogeneous dielectric barrier discharges at atmospheric pressure

    Science.gov (United States)

    Zajíčková, Lenka; Jelínek, Petr; Obrusník, Adam; Vodák, Jiří; Nečas, David

    2017-03-01

    In this contribution, we focus on the general problems of plasma-enhanced chemical vapor deposition in atmospheric pressure dielectric barrier discharges, i.e. deposition uniformity, film roughness and the formation of dust particles, and demonstrate them on the example of carboxyl coatings prepared by co-polymerization of acetylene and maleic anhydride. Since the transport of monomers at atmospheric pressure is advection-driven, special attention is paid to the gas dynamics simulations, gas flow patterns, velocity and residence time. By using numerical simulations, we design an optimized gas supply geometry capable of synthesizing uniform layers. The selection of the gas mixture containing acetylene was motivated by two of its characteristics: (i) suppression of filaments in dielectric barrier discharges, and (ii) improved film cross-linking, keeping the amount of functional groups high. However, acetylene discharges are prone to the formation of nanoparticles that can be incorporated into the deposited films, leading to their high roughness. Therefore, we also discuss the role of the gas composition, the spatial position of the substrate with respect to gas flow and the deposition time on the topography of the deposited films.

  13. Filament Identification through Mathematical Morphology

    CERN Document Server

    Koch, Eric W

    2015-01-01

    We present a new algorithm for detecting filamentary structure FilFinder. The algorithm uses the techniques of mathematical morphology for filament identification, presenting a complementary approach to current algorithms which use matched filtering or critical manifolds. Unlike other methods, FilFinder identifies filaments over a wide dynamic range in brightness. We apply the new algorithm to far infrared imaging data of dust emission released by the Herschel Gould Belt Survey team. Our preliminary analysis characterizes both filaments and fainter striations. We find a typical filament width of 0.09 pc across the sample, but the brightness varies from cloud to cloud. Several regions show a bimodal filament brightness distribution, with the bright mode (filaments) being an order of magnitude brighter than the faint mode (striations). Using the Rolling Hough Transform, we characterize the orientations of the striations in the data, finding preferred directions that agree with magnetic field direction where dat...

  14. Chaperonin filaments: The archael cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  15. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  16. Current filamentation model for the Weibel/Filamentation instabilities

    Science.gov (United States)

    Ryu, Chang-Mo; Huynh, Cong Tuan; Kim, Chul Min

    2016-10-01

    A current filamentaion model for a nonrelativistic plasma with e +/e- beam has been presented together with PIC simulations, which can explain the mangetic field enhancement during the Weibel/ Filamentation instabilities. This filament model assumes the Hammer-Rostoker equilibrium. In addition, this model predicts preferential acceleration/deceleration for electron-ion plasmas depending on the injected beam to be e +/e-.

  17. Metabolomics protocols for filamentous fungi.

    Science.gov (United States)

    Gummer, Joel P A; Krill, Christian; Du Fall, Lauren; Waters, Ormonde D C; Trengove, Robert D; Oliver, Richard P; Solomon, Peter S

    2012-01-01

    Proteomics and transcriptomics are established functional genomics tools commonly used to study filamentous fungi. Metabolomics has recently emerged as another option to complement existing techniques and provide detailed information on metabolic regulation and secondary metabolism. Here, we describe broad generic protocols that can be used to undertake metabolomics studies in filamentous fungi.

  18. MICROSTRUCTURE OF SiOx:H FILMS PREPARED BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    MA ZHI-XUN; LIAO XIAN-BO; KONG GUANG-LIN; CHU JUN-HAO

    2000-01-01

    The micro-Raman spectroscopy and infrared (IR) spectroscopy have been performed for the study of the microstructure of amorphous hydrogenated oxidized silicon (a-SiOx:H) films prepared by Plasma Enhanced Chemical Vapor Deposition technique. It is found that a-SiOx :H consists of two phases: an amorphous silicon-rich phase and an oxygen-rich phase mainly comprised of HSi-SiO2 and HSi-O3. The Raman scattering results exhibit that the frequency of TO-like mode of amorphous silicon red-shifts with decreasing size of silicon-rich region. This is related to the quantum confinement effects, similar to the nanocrystalline silicon.

  19. Electroluminescence and photoluminescence of conjugated polymer films prepared by plasma enhanced chemical vapor deposition of naphthalene

    CERN Document Server

    Rajabi, Mojtaaba; Firouzjah, Marzieh Abbasi; Hosseini, Seyed Iman; Shokri, Babak

    2012-01-01

    Polymer light-emitting devices were fabricated utilizing plasma polymerized thin films as emissive layers. These conjugated polymer films were prepared by RF Plasma Enhanced Chemical Vapor Deposition (PECVD) using naphthalene as monomer. The effect of different applied powers on the chemical structure and optical properties of the conjugated polymers was investigated. The fabricated devices with structure of ITO/PEDOT:PSS/ plasma polymerized Naphthalene/Alq3/Al showed broadband Electroluminescence (EL) emission peaks with center at 535-550 nm. Using different structural and optical tests, connection between polymers chemical structure and optical properties under different plasma powers has been studied. Fourier transform infrared (FTIR) and Raman spectroscopies confirmed that a conjugated polymer film with a 3-D cross-linked network was developed. By increasing the power, products tended to form as highly cross-linked polymer films. Photoluminescence (PL) spectra of plasma polymers showed different excimerc ...

  20. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  1. Plasma-enhanced growth, composition, and refractive index of silicon oxy-nitride films

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1995-01-01

    Secondary ion mass spectrometry and refractive index measurements have been carried out on silicon oxy-nitride produced by plasma-enhanced chemical vapor deposition (PECVD). Nitrous oxide and ammonia were added to a constant flow of 2% silane in nitrogen, to produce oxy-nitride films with atomic...... nitrogen concentrations between 2 and 10 at. %. A simple atomic valence model is found to describe both the measured atomic concentrations and published material compositions for silicon oxy-nitride produced by PECVD. A relation between the Si–N bond concentration and the refractive index is found....... This relation suggest that the refractive index of oxy-nitride with a low nitrogen concentration is determined by the material density. It is suggested that the relative oxygen concentration in the gas flow is the major deposition characterization parameter, and that water vapor is the predominant reaction by...

  2. High quality plasma-enhanced chemical vapor deposited silicon nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Cotler, T.J.; Chapple-Sokol, J. (IBM General Technology Division, Hopewell Junction, NY (United States))

    1993-07-01

    The qualities of plasma-enhanced chemical vapor deposited (PECVD) silicon nitride films can be improved by increasing the deposition temperature. This report compares PECVD silicon nitride films to low pressure chemical vapor deposited (LPCVD) films. The dependence of the film properties on process parameters, specifically power and temperature, are investigated. The stress is shown to shift from tensile to compressive with increasing temperature and power. The deposition rate, uniformity, wet etch rate, index of refraction, composition, stress, hydrogen content, and conformality are considered to evaluate the film properties. Temperature affects the hydrogen content in the films by causing decreased incorporation of N-H containing species whereas the dependence on power is due to changes in the gas-phase precursors. All PECVD film properties, with the exception of conformality, are comparable to those of LPCVD films.

  3. Plasma-enhanced chemical vapor deposition of graphene on copper substrates

    Directory of Open Access Journals (Sweden)

    Nicolas Woehrl

    2014-04-01

    Full Text Available A plasma enhanced vapor deposition process is used to synthesize graphene from a hydrogen/methane gas mixture on copper samples. The graphene samples were transferred onto SiO2 substrates and characterized by Raman spectroscopic mapping and atomic force microscope topographical mapping. Analysis of the Raman bands shows that the deposited graphene is clearly SLG and that the sheets are deposited on large areas of several mm2. The defect density in the graphene sheets is calculated using Raman measurements and the influence of the process pressure on the defect density is measured. Furthermore the origin of these defects is discussed with respect to the process parameters and hence the plasma environment.

  4. Deposition of electrochromic tungsten oxide thin films by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Henley, W.B.; Sacks, G.J. [Univ. of South Florida, Tampa, FL (United States). Center of Microelectronics

    1997-03-01

    Use of plasma-enhanced chemical vapor deposition (PECVD) for electrochromic WO{sub 3} film deposition is investigated. Oxygen, hydrogen, and tungsten hexafluoride were used as source gases. Reactant gas flow was investigated to determine the effect on film characteristics. High quality optical films were obtained at deposition rates on the order of 100 {angstrom}/s. Higher deposition rates were attainable but film quality and optical coherence degraded. Atomic emission spectroscopy (AES), was used to provide an in situ assessment of the plasma deposition chemistry. Through AES, it is shown that the hydrogen gas flow is essential to the deposition of the WO{sub 3} film. Oxygen gas flow and tungsten hexafluoride gas flow must be approximately equal for high quality films.

  5. Plasma-enhanced chemical vapor deposition of amorphous Si on graphene

    Science.gov (United States)

    Lupina, G.; Strobel, C.; Dabrowski, J.; Lippert, G.; Kitzmann, J.; Krause, H. M.; Wenger, Ch.; Lukosius, M.; Wolff, A.; Albert, M.; Bartha, J. W.

    2016-05-01

    Plasma-enhanced chemical vapor deposition of thin a-Si:H layers on transferred large area graphene is investigated. Radio frequency (RF, 13.56 MHz) and very high frequency (VHF, 140 MHz) plasma processes are compared. Both methods provide conformal coating of graphene with Si layers as thin as 20 nm without any additional seed layer. The RF plasma process results in amorphization of the graphene layer. In contrast, the VHF process keeps the high crystalline quality of the graphene layer almost intact. Correlation analysis of Raman 2D and G band positions indicates that Si deposition induces reduction of the initial doping in graphene and an increase of compressive strain. Upon rapid thermal annealing, the amorphous Si layer undergoes dehydrogenation and transformation into a polycrystalline film, whereby a high crystalline quality of graphene is preserved.

  6. Characterization of Thin Films Deposited with Precursor Ferrocene by Plasma Enhanced Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    YAO Kailun; ZHENG Jianwan; LIU Zuli; JIA Lihui

    2007-01-01

    In this paper,the characterization of thin films,deposited with the precursor ferrocene(FcH)by the plasma enhanced chemical vapour deposition(PECVD)technique,was investigated.The films were measured by Scanning Electronic Microscopy(SEM),Atomic Force Microscopy(AFM),Electron Spectroscopy for Chemical Analysis(ESCA),and superconducting Quantum Interference Device(SQUID).It was observed that the film's layer is homogeneous in thickness and has a dense morphology without cracks.The surface roughness is about 36 nm.From the results of ESCA,it can be inferred that the film mainly contains the compound FeOOH,and carbon is combined with oxygen in different forms under different supply-powers.The hysteresis loops indicate that the film is of soft magnetism.

  7. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Wang Jin-Liang; Wu Er-Xing

    2007-01-01

    The B-and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD) .The microstructures of doped nc-Si:H films are carefully and systematically char acterized by using high resolution electron microscopy (HREM) ,Raman scattering,x-ray diffraction (XRD) ,Auger electron spectroscopy (AES) ,and resonant nucleus reaction (RNR) .The results show that as the doping concentration of PH3 increases,the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously.For the B-doped samples,as the doping concentration of B2H6 increases,no obvious change in the value of d is observed,but the value of Xc is found to decrease.This is especially apparent in the case of heavy B2H6 doped samples,where the films change from nanocrystalline to amorphous.

  9. Silicon dioxide mask by plasma enhanced atomic layer deposition in focused ion beam lithography

    Science.gov (United States)

    Liu, Zhengjun; Shah, Ali; Alasaarela, Tapani; Chekurov, Nikolai; Savin, Hele; Tittonen, Ilkka

    2017-02-01

    In this work, focused ion beam (FIB) lithography was developed for plasma enhanced atomic layer deposited (PEALD) silicon dioxide SiO2 hard mask. The PEALD process greatly decreases the deposition temperature of the SiO2 hard mask. FIB Ga+ ion implantation on the deposited SiO2 layer increases the wet etch resistivity of the irradiated region. A programmed exposure in FIB followed by development in a wet etchant enables the precisely defined nanoscale patterning. The combination of FIB exposure parameters and the development time provides greater freedom for optimization. The developed process provides high pattern dimension accuracy over the tested range of 90–210 nm. Utilizing the SiO2 mask developed in this work, silicon nanopillars with 40 nm diameter were successfully fabricated with cryogenic deep reactive ion etching and the aspect ratio reached 16:1. The fabricated mask is suitable for sub-100 nm high aspect ratio silicon structure fabrication.

  10. TiN coating on wall of holes and stitches by pulsed DC plasma enhanced CVD

    Institute of Scientific and Technical Information of China (English)

    马胜利; 徐可为; 介万奇

    2003-01-01

    TiN coating samples with narrow-stitch or deep-hole of different sizes and real dies with complex shape were processed by a larger-scale pulsed plasma enhanced CVD(PECVD) reactor. Scanning electron microscopy, optical microscopy, Vicker's hardness and interfacial adhesion tests were conducted to find the relation between the microstructure and properties of TiN coating on a flat and an inner surface. The results indicate that the inner-wall of holes (d>2 mm) and inner surface of narrow-stitches (d>3 mm) can be coated with the aid of pulsed DC plasma in an industrial-scale reactor. The quality of coatings on different surfaces is almost the same. The coating was applied to aluminum extrusion mould, and the mould life was increased at least by one time.

  11. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  12. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  13. Perturbation growth in accreting filaments

    CERN Document Server

    Clarke, Seamus D; Hubber, David A

    2016-01-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long, initially sub-critical but accreting filaments. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length scale which is roughly 4 times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multi-wavelength density power spectrum there exists a clear preferred core separation equal to the largest peak in the dispe...

  14. Resonantly enhanced filamentation in gases

    CERN Document Server

    Doussot, J; Billard, F; Béjot, P; Faucher, O

    2016-01-01

    In this Letter, a low-loss Kerr-driven optical filament in Krypton gas is experimentally reported in the ultraviolet. The experimental findings are supported by ab initio quantum calculations describing the atomic optical response. Higher-order Kerr effect induced by three-photon resonant transitions is identified as the underlying physical mechanism responsible for the intensity stabilization during the filamentation process, while ionization plays only a minor role. This result goes beyond the commonly-admitted paradigm of filamentation, in which ionization is a necessary condition of the filament intensity clamping. At resonance, it is also experimentally demonstrated that the filament length is greatly extended because of a strong decrease of the optical losses.

  15. Properties of N-rich Silicon Nitride Film Deposited by Plasma-Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Jhang, Pei-Ci; Lu, Chi-Pin; Shieh, Jung-Yu; Yang, Ling-Wu; Yang, Tahone; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    An N-rich silicon nitride film, with a lower refractive index (RI) than the stoichiometric silicon nitride (RI = 2.01), was deposited by alternating the exposure of dichlorosilane (DCS, SiH2Cl2) and that of ammonia (NH3) in a plasma-enhanced atomic layer deposition (PEALD) process. In this process, the plasma ammonia was easily decomposed to reactive radicals by RF power activating so that the N-rich silicon nitride was easily formed by excited ammonia radicals. The growth kinetics of N-rich silicon nitride were examined at various deposition temperatures ranging from 400 °C to 630 °C; the activation energy (Ea) decreased as the deposition temperature decreased below 550 °C. N-rich silicon nitride film with a wide range of values of refractive index (RI) (RI = 1.86-2.00) was obtained by regulating the deposition temperature. At the optimal deposition temperature, the effects of RF power, NH3 flow rate and NH3 flow time were on the characteristics of the N-rich silicon nitride film were evaluated. The results thus reveal that the properties of the N-rich silicon nitride film that was formed by under plasma-enhanced atomic layer deposition (PEALD) are dominated by deposition temperature. In charge trap flash (CTF) study, an N-rich silicon nitride film was applied to MAONOS device as a charge-trapping layer. The films exhibit excellent electron trapping ability and favor a fresh cell data retention performance as the deposition temperature decreased.

  16. Hot-filament chemical vapour deposition of diamond onto steel

    NARCIS (Netherlands)

    Buijnsters, Ivan

    2003-01-01

    The main goal of this project was to establish the feasibility of depositing well adhering polycrystalline diamond coatings on steel substrates. It is well known that the growth and adhesion of diamond layers directly onto steels is complicated by the high carbon solubility and the high thermal expa

  17. Perturbation growth in accreting filaments

    Science.gov (United States)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  18. Activity Cycle of Solar Filaments

    Indian Academy of Sciences (India)

    K. J. Li; Q. X. Li; P. X. Gao; J. Mu; H. D. Chen; T. W. Su

    2007-06-01

    Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).

  19. Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors

    DEFF Research Database (Denmark)

    Storgaard-Larsen, Torben; Leistiko, Otto

    1997-01-01

    In this paper the influence of RF power, ammonia flow, annealing temperature, and annealing time on the optical and mechanical properties of plasma-enhanced chemically vapor deposited silicon oxynitride films, is presented. A low refractive index (1.47 to 1.48) film having tensile stress has been...

  20. Comparative Biomechanics of Thick Filaments and Thin Filaments with Functional Consequences for Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Mark S. Miller

    2010-01-01

    Full Text Available The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.

  1. Stream instabilities in relativistically hot plasma

    CERN Document Server

    Shaisultanov, Rashid; Eichler, David

    2011-01-01

    The instabilities of relativistic ion beams in a relativistically hot electron background are derived for general propagation angles. It is shown that the Weibel instability in the direction perpendicular to the streaming direction is the fastest growing mode, and probably the first to appear, consistent with the aligned filaments that are seen in PIC simulations. Oblique, quasiperpendicular modes grow almost as fast, as the growth rate varies only moderately with angle, and they may distort or corrugate the filaments after the perpendicular mode saturates.

  2. Effect of plasma parameters on characteristics of silicon nitride film deposited by single and dual frequency plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Sahu, B. B.; Yin, Yongyi; Han, Jeon G.

    2016-03-01

    This work investigates the deposition of hydrogenated amorphous silicon nitride films using various low-temperature plasmas. Utilizing radio-frequency (RF, 13.56 MHz) and ultra-high frequency (UHF, 320 MHz) powers, different plasma enhanced chemical vapor deposition processes are conducted in the mixture of reactive N2/NH3/SiH4 gases. The processes are extensively characterized using different plasma diagnostic tools to study their plasma and radical generation capabilities. A typical transition of the electron energy distribution function from single- to bi-Maxwellian type is achieved by combining RF and ultra-high powers. Data analysis revealed that the RF/UHF dual frequency power enhances the plasma surface heating and produces hot electron population with relatively low electron temperature and high plasma density. Using various film analysis methods, we have investigated the role of plasma parameters on the compositional, structural, and optical properties of the deposited films to optimize the process conditions. The presented results show that the dual frequency power is effective for enhancing dissociation and ionization of neutrals, which in turn helps in enabling high deposition rate and improving film properties.

  3. Centromeres of filamentous fungi

    Science.gov (United States)

    Smith, Kristina M.; Galazka, Jonathan M.; Phatale, Pallavi A.; Connolly, Lanelle R.; Freitag, Michael

    2012-01-01

    How centromeres are assembled and maintained remains one of the fundamental questions in cell biology. Over the past 20 years the idea of centromeres as precise genetic loci has been replaced by the realization that it is predominantly the protein complement that defines centromere localization and function. Thus, placement and maintenance of centromeres are excellent examples of epigenetic phenomena in the strict sense. In contrast, the highly derived “point centromeres” of the budding yeast Saccharomyces cerevisiae and its close relatives are counterexamples for this general principle of centromere maintenance. While we have learned much in the past decade, it remains unclear if mechanisms for epigenetic centromere placement and maintenance are shared amongst various groups of organisms. For that reason it seems prudent to examine species from many different phylogenetic groups with the aim to extract comparative information that will yield a more complete picture of cell division in all eukaryotes. This review addresses what has been learned by studying the centromeres of filamentous fungi, a large, heterogeneous group of organisms that includes important plant, animal and human pathogens, saprobes and symbionts that fulfill essential roles in the biosphere, as well as a growing number of taxa that have become indispensable for industrial use. PMID:22752455

  4. Collisions of Vortex Filament Pairs

    Science.gov (United States)

    Banica, Valeria; Faou, Erwan; Miot, Evelyne

    2014-12-01

    We consider the problem of collisions of vortex filaments for a model introduced by Klein et al. (J Fluid Mech 288:201-248, 1995) and Zakharov (Sov Phys Usp 31(7):672-674, 1988, Lect. Notes Phys 536:369-385, 1999) to describe the interaction of almost parallel vortex filaments in three-dimensional fluids. Since the results of Crow (AIAA J 8:2172-2179, 1970) examples of collisions are searched as perturbations of antiparallel translating pairs of filaments, with initial perturbations related to the unstable mode of the linearized problem; most results are numerical calculations. In this article, we first consider a related model for the evolution of pairs of filaments, and we display another type of initial perturbation leading to collision in finite time. Moreover, we give numerical evidence that it also leads to collision through the initial model. We finally study the self-similar solutions of the model.

  5. Filament Identification through Mathematical Morphology

    OpenAIRE

    Koch, Eric W.; Rosolowsky, Erik W.

    2015-01-01

    We present a new algorithm for detecting filamentary structure FilFinder. The algorithm uses the techniques of mathematical morphology for filament identification, presenting a complementary approach to current algorithms which use matched filtering or critical manifolds. Unlike other methods, FilFinder identifies filaments over a wide dynamic range in brightness. We apply the new algorithm to far infrared imaging data of dust emission released by the Herschel Gould Belt Survey team. Our prel...

  6. Study of filament performance in heat transfer and hydrogen dissociation in diamond chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Hot-filament chemical vapor deposition (HFCVD) is a promising method for commercial production of diamond films.Filament performance in heat transfer and hydrogen decomposition in reactive environment was investigated. Power consumption by the filament in vacuum, helium and 2% CH4/H2 was experimentally determined in temperature range 1300℃-2200℃. Filament heat transfer mechanism in C-H reactive environment was calculated and analyzed. The result shows that due to surface carburization and slight carbon deposition, radiation in stead of hydrogen dissociation, becomes the largest contributor to power consumption. Filament-surface dissociation of H2 was observed at temperatures below 1873K, demonstrating the feasibility of diamond growth at low filament temperatures. The effective activation energies of hydrogen dissociation on several clean refractory filaments were derived from power consumption data in literatures. They are all lower than that of thermal dissociation of hydrogen, revealing the nature of catalytic dissociation of hydrogen on filament surface. Observation of substrate temperature suggested a weakerrole of atomic hydrogen recombination in heating substrates in C-H environment than in pure hydrogen.

  7. Real-time monitoring of the silicidation process of tungsten filaments at high temperature used as catalysers for silane decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Nos, O., E-mail: oriol.nos@gmail.com; Frigeri, P.A.; Bertomeu, J.

    2014-01-15

    The scope of this work is the systematic study of the silicidation process affecting tungsten filaments at high temperature (1900 °C) used for silane decomposition in the hot-wire chemical vapour deposition technique (HWCVD). The correlation between the electrical resistance evolution of the filaments, R{sub fil}(t), and the different stages of the their silicidation process is exposed. Said stages correspond to: the rapid formation of two WSi{sub 2} fronts at the cold ends of the filaments and their further propagation towards the middle of the filaments; and, regarding the hot central portion of the filaments: an initial stage of silicon dissolution into the tungsten bulk, with a random duration for as-manufactured filaments, followed by the inhomogeneous nucleation of W{sub 5}Si{sub 3} (which is later replaced by WSi{sub 2}) and its further growth towards the filaments core. An electrical model is used to obtain real-time information about the current status of the filaments silicidation process by simply monitoring their R{sub fil}(t) evolution during the HWCVD process. It is shown that implementing an annealing pre-treatment to the filaments leads to a clearly repetitive trend in the monitored R{sub fil}(t) signatures. The influence of hydrogen dilution of silane on the filaments silicidation process is also discussed. - Highlights: • The silicidation process of tungsten filaments at 1900 °C has been elucidated. • The silicidation process is correlated with the electrical resistance evolution. • Hydrogen dilution of silane delays the precipitation of silicides. • A thermal treatment of the filaments makes the silicidation process repeatable. • Raman spectroscopy and EDX analysis allow the tungsten silicides identification.

  8. Cell proliferation on modified DLC thin films prepared by plasma enhanced chemical vapor deposition.

    Science.gov (United States)

    Stoica, Adrian; Manakhov, Anton; Polčák, Josef; Ondračka, Pavel; Buršíková, Vilma; Zajíčková, Renata; Medalová, Jiřina; Zajíčková, Lenka

    2015-06-12

    Recently, diamondlike carbon (DLC) thin films have gained interest for biological applications, such as hip and dental prostheses or heart valves and coronary stents, thanks to their high strength and stability. However, the biocompatibility of the DLC is still questionable due to its low wettability and possible mechanical failure (delamination). In this work, DLC:N:O and DLC: SiOx thin films were comparatively investigated with respect to cell proliferation. Thin DLC films with an addition of N, O, and Si were prepared by plasma enhanced CVD from mixtures of methane, hydrogen, and hexamethyldisiloxane. The films were optically characterized by infrared spectroscopy and ellipsometry in UV-visible spectrum. The thickness and the optical properties were obtained from the ellipsometric measurements. Atomic composition of the films was determined by Rutherford backscattering spectroscopy combined with elastic recoil detection analysis and by x-ray photoelectron spectroscopy. The mechanical properties of the films were studied by depth sensing indentation technique. The number of cells that proliferate on the surface of the prepared DLC films and on control culture dishes were compared and correlated with the properties of as-deposited and aged films. The authors found that the level of cell proliferation on the coated dishes was high, comparable to the untreated (control) samples. The prepared DLC films were stable and no decrease of the biocompatibility was observed for the samples aged at ambient conditions.

  9. Surface modification of silicon-containing fluorocarbon films prepared by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Jin, Yoonyoung; Desta, Yohannes; Goettert, Jost; Lee, G. S.; Ajmera, P. K.

    2005-07-01

    Surface modification of silicon-containing fluorocarbon (SiCF) films achieved by wet chemical treatments and through x-ray irradiation is examined. The SiCF films were prepared by plasma-enhanced chemical vapor deposition, using gas precursors of tetrafluoromethane and disilane. As-deposited SiCF film composition was analyzed by x-ray photoelectron spectroscopy. Surface modification of SiCF films utilizing n-lithiodiaminoethane wet chemical treatment is discussed. Sessile water-drop contact angle changed from 95°+/-2° before treatment to 32°+/-2° after treatment, indicating a change in the film surface characteristics from hydrophobic to hydrophilic. For x-ray irradiation on the SiCF film with a dose of 27.4 kJ/cm3, the contact angle of the sessile water drop changed from 95°+/-2° before radiation to 39°+/-3° after x-ray exposure. The effect of x-ray exposure on chemical bond structure of SiCF films is studied using Fourier transform infrared measurements. Electroless Cu deposition was performed to test the applicability of the surface modified films. The x-ray irradiation method offers a unique advantage in making possible surface modification in a localized area of high-aspect-ratio microstructures. Fabrication of a Ti-membrane x-ray mask is introduced here for selective surface modification using x-ray irradiation.

  10. Nanostructured silicon carbon thin films grown by plasma enhanced chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Coscia, U. [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Ambrosone, G., E-mail: ambrosone@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); SPIN-CNR, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Basa, D.K. [Department of Physics, Utkal University, Bhubaneswar 751004 (India); Rigato, V. [INFN Laboratori Nazionali Legnaro, 35020 Legnaro (Padova) (Italy); Ferrero, S.; Virga, A. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-09-30

    Nanostructured silicon carbon thin films, composed of Si nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix, have been prepared by varying rf power in ultra high vacuum plasma enhanced chemical vapour deposition system using silane and methane gas mixtures diluted in hydrogen. In this paper we have studied the compositional, structural and electrical properties of these films as a function of rf power. It is shown that with increasing rf power the atomic densities of carbon and hydrogen increase while the atomic density of silicon decreases, resulting in a reduction in the mass density. Further, it is demonstrated that carbon is incorporated into amorphous matrix and it is mainly bonded to silicon. The study has also revealed that the crystalline volume fraction decreases with increase in rf power and that the films deposited with low rf power have a size distribution of large and small crystallites while the films deposited with relatively high power have only small crystallites. Finally, the enhanced transport properties of the nanostructured silicon carbon films, as compared to amorphous counterpart, have been attributed to the presence of Si nanocrystallites. - Highlights: • The mass density of silicon carbon films decreases from 2.3 to 2 g/cm{sup 3}. • Carbon is incorporated in the amorphous phase and it is mainly bonded to silicon. • Nanostructured silicon carbon films are deposited at rf power > 40 W. • Si nanocrystallites in amorphous silicon carbon enhance the electrical properties.

  11. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dechana, A. [Program of Physics and General Science, Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla 90000 (Thailand); Thamboon, P. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  12. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Science.gov (United States)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  13. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Santra, T. S.; Liu, C. H.; Bhattacharyya, T. K.; Patel, P.; Barik, T. K.

    2010-06-01

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of CC, CH, SiC, and SiH bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio ID/IG. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  14. Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Zhao, Rong; Ahktar, Meysam; Alruqi, Adel; Dharmasena, Ruchira; Jasinski, Jacek B.; Thantirige, Rukshan M.; Sumanasekera, Gamini U.

    2017-05-01

    In this work, we report the electrical transport properties of uniform and vertically oriented graphene (graphene nanowalls) directly synthesized on multiple substrates including glass, Si/SiO2 wafers, and copper foils using radio-frequency plasma enhanced chemical vapor deposition (PECVD) with methane (CH4) as the precursor at relatively low temperatures. The temperature for optimum growth was established with the aid of transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. This approach offers means for low-cost graphene nanowalls growth on an arbitrary substrate with the added advantage of transfer-free device fabrication. The temperature dependence of the electrical transport properties (resistivity and thermopower) were studied in the temperature range, 30-300 K and analyzed with a combination of 2D-variable range hopping (VRH) and thermally activated (TA) conduction mechanisms. An anomalous temperature dependence of the thermopower was observed for all the samples and explained with a combination of a diffusion term having a linear temperature dependence plus a term with an inverse temperature dependence.

  15. Switchable hydrophobic-hydrophilic layer obtained onto porous alumina by plasma-enhanced fluorination

    Institute of Scientific and Technical Information of China (English)

    A.TRESSAUD; C.LABRUG(E)RE; E.DURAND; C.BRIGOULEIX; H.ANDRIESSEN

    2009-01-01

    Conventional lithographic printing processes using porous alumina for offset applications generally use "wet" routes. Recently "dry" processes have been developed which are based on a heat-induced hydrophilic/oleophilic conversion of one or more layers of the coating so that a stronger affinity to-wards ink or water fountain is created at the exposed areas with respect to the surface of the unex-posed coating. Treatments involving rf plasma-enhanced fluorination (PEF) constitute exceptional tools for modifying the surface properties of materials. Many advantages of these techniques can be indeed outlined, when compared to more conventional methods: room-temperature reactions, chemical modi-fications limited to surface only without changing the bulk properties, possible non-equilibrium reac-tions. The influence of PEF treatments on porous alumina layer used in printing plates has been tested with various fluorinated gases (CF4, C3F8and C4F8) and characterized by XPS. The hydrophobic prop-erties of the fluorinated layer have been deduced from contact angle measurements. Using C4Fs rf-PEF treatment, the outmost surface of the hydrophilic alumina substrate used for lithographic printing is hydrophobized, or in other words, the hydrophilic substrate is converted into a support with hydro-phobic properties. Once being hydrophobized, the surface layer may be rendered hydrophilic using a heat pulse, thus giving rise to switchable hydrophobic-hydrophilic properties of the material.

  16. Plasma-enhanced atomic layer deposition of titanium oxynitrides films: A comparative spectroscopic and electrical study

    Energy Technology Data Exchange (ETDEWEB)

    Sowińska, Małgorzata, E-mail: malgorzata.sowinska@b-tu.de; Henkel, Karsten; Schmeißer, Dieter [Brandenburg University of Technology Cottbus-Senftenberg, Applied Physics and Sensors, K.-Wachsmann-Allee 17, 03046 Cottbus (Germany); Kärkkänen, Irina; Schneidewind, Jessica; Naumann, Franziska; Gruska, Bernd; Gargouri, Hassan [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

    2016-01-15

    The process parameters' impact of the plasma-enhanced atomic layer deposition (PE-ALD) method on the oxygen to nitrogen (O/N) ratio in titanium oxynitride (TiO{sub x}N{sub y}) films was studied. Titanium(IV)isopropoxide in combination with NH{sub 3} plasma and tetrakis(dimethylamino)titanium by applying N{sub 2} plasma processes were investigated. Samples were characterized by the in situ spectroscopic ellipsometry, x-ray photoelectron spectroscopy, and electrical characterization (current–voltage: I-V and capacitance–voltage: C-V) methods. The O/N ratio in the TiO{sub x}N{sub y} films is found to be very sensitive for their electric properties such as conductivity, dielectric breakdown, and permittivity. Our results indicate that these PE-ALD film properties can be tuned, via the O/N ratio, by the selection of the process parameters and precursor/coreactant combination.

  17. Plasma Enhanced Chemical Vapor Deposition Nanocrystalline Tungsten Carbide Thin Film and Its Electro-catalytic Activity

    Institute of Scientific and Technical Information of China (English)

    Huajun ZHENG; Chunan MA; Jianguo HUANG; Guohua LI

    2005-01-01

    Nanocrystalline tungsten carbide thin films were fabricated on graphite substrates by plasma enhanced chemical vapor deposition (PECVD) at H2 and Ar atmosphere, using WF6 and CH4 as precursors. The crystal phase, structure and chemical components of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS), respectively. The results show that the film prepared at CH4/WF6concentration ratio of 20 and at 800℃ is composed of spherical particles with a diameter of 20~35 nm. Electrochemical investigations show that the electrochemical real surface area of electrode of the film is large, and the electrode of the film exhibits higher electro-catalytic activity in the reaction of methanol oxidation. The designated constant current of the film catalyst is 123.6 mA/cm2 in the mixture solution of H2SO4 and CH3OH at the concentration of 0.5 and 2.0 mol/L at 70℃, and the designated constant potential is only 0.306 V (vs SCE).

  18. Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces.

    Science.gov (United States)

    Jampala, Soujanya N; Sarmadi, M; Somers, E B; Wong, A C L; Denes, F S

    2008-08-19

    We have investigated bottom-up chemical synthesis of quaternary ammonium (QA) groups exhibiting antibacterial properties on stainless steel (SS) and filter paper surfaces via nonequilibrium, low-pressure plasma-enhanced functionalization. Ethylenediamine (ED) plasma under suitable conditions generated films rich in secondary and tertiary amines. These functional structures were covalently attached to the SS surface by treating SS with O 2 and hexamethyldisiloxane plasma prior to ED plasma treatment. QA structures were formed by reaction of the plasma-deposited amines with hexyl bromide and subsequently with methyl iodide. Structural compositions were examined by electron spectroscopy for chemical analysis and Fourier transform infrared spectroscopy, and surface topography was investigated with atomic force microscopy and water contact angle measurements. Modified SS surfaces exhibited greater than a 99.9% decrease in Staphylococcus aureus counts and 98% in the case of Klebsiella pneumoniae. The porous filter paper surfaces with immobilized QA groups inactivated 98.7% and 96.8% of S. aureus and K. pneumoniae, respectively. This technique will open up a novel way for the synthesis of stable and very efficient bactericidal surfaces with potential applications in development of advanced medical devices and implants with antimicrobial surfaces.

  19. FTIR Characterization of Fluorine Doped Silicon Dioxide Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Peng-Fei; DING Shi-Jin; ZHANG Wei; ZHANG Jian-Yun; WANGJi-Tao; WEI William Lee

    2000-01-01

    Fluorine doped silicon dioxide (SiOF) thin films have been prepared by plasma enhanced chemical vapor depo sition. The Fourier transform infrared spectrometry (FTIR) spectra of SiOF films are deliberated to reveal the structure change of SiO2 and the mechanism of dielectric constant reduction after doping fluorine. When F is doped in SiO2 films, the Si-O stretching absorption peak will have a blue-shift due to increase of the partial charge of the O atom. The FTIR spectra indicate that some Si-OH components in the thin film can be removed after doping fluorine. These changes reduce the ionic and orientational polarization, and result in the reduction in dielectric constant of the film. According to Gaussian fitting, it is found that the Si-F2 bonds will appear in the SiOF film with increase of the fluorine content. The Si-F2 structures are liable to react with water, and cause the same increase of absorbed moisture in the film.

  20. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    Science.gov (United States)

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results.

  1. Conformal encapsulation of three-dimensional, bioresorbable polymeric scaffolds using plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Hawker, Morgan J; Pegalajar-Jurado, Adoracion; Fisher, Ellen R

    2014-10-21

    Bioresorbable polymers such as poly(ε-caprolactone) (PCL) have a multitude of potential biomaterial applications such as controlled-release drug delivery and regenerative tissue engineering. For such biological applications, the fabrication of porous three-dimensional bioresorbable materials with tunable surface chemistry is critical to maximize their surface-to-volume ratio, mimic the extracellular matrix, and increase drug-loading capacity. Here, two different fluorocarbon (FC) precursors (octofluoropropane (C3F8) and hexafluoropropylene oxide (HFPO)) were used to deposit FC films on PCL scaffolds using plasma-enhanced chemical vapor deposition (PECVD). These two coating systems were chosen with the intent of modifying the scaffold surfaces to be bio-nonreactive while maintaining desirable bulk properties of the scaffold. X-ray photoelectron spectroscopy showed high-CF2 content films were deposited on both the exterior and interior of PCL scaffolds and that deposition behavior is PECVD system specific. Scanning electron microscopy data confirmed that FC film deposition yielded conformal rather than blanket coatings as the porous scaffold structure was maintained after plasma treatment. Treated scaffolds seeded with human dermal fibroblasts (HDF) demonstrate that the cells do not attach after 72 h and that the scaffolds are noncytotoxic to HDF. This work demonstrates conformal FC coatings can be deposited on 3D polymeric scaffolds using PECVD to fabricate 3D bio-nonreactive materials.

  2. Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Broas, Mikael, E-mail: mikael.broas@aalto.fi; Vuorinen, Vesa [Department of Electrical Engineering and Automation, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sippola, Perttu; Pyymaki Perros, Alexander; Lipsanen, Harri [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä (Finland); Paulasto-Kröckel, Mervi [Department of Electrical Engineering and Automation, Aalto University. P.O. Box 13500, FIN-00076 Aalto, Espoo (Finland)

    2016-07-15

    Plasma-enhanced atomic layer deposition was utilized to grow aluminum nitride (AlN) films on Si from trimethylaluminum and N{sub 2}:H{sub 2} plasma at 200 °C. Thermal treatments were then applied on the films which caused changes in their chemical composition and nanostructure. These changes were observed to manifest in the refractive indices and densities of the films. The AlN films were identified to contain light element impurities, namely, H, C, and excess N due to nonideal precursor reactions. Oxygen contamination was also identified in the films. Many of the embedded impurities became volatile in the elevated annealing temperatures. Most notably, high amounts of H were observed to desorb from the AlN films. Furthermore, dinitrogen triple bonds were identified with infrared spectroscopy in the films. The triple bonds broke after annealing at 1000 °C for 1 h which likely caused enhanced hydrolysis of the films. The nanostructure of the films was identified to be amorphous in the as-deposited state and to become nanocrystalline after 1 h of annealing at 1000 °C.

  3. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    Science.gov (United States)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the "Plasmalab System 100" reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.

  4. Facile plasma-enhanced deposition of ultrathin crosslinked amino acid films for conformal biometallization.

    Science.gov (United States)

    Anderson, Kyle D; Slocik, Joseph M; McConney, Michael E; Enlow, Jesse O; Jakubiak, Rachel; Bunning, Timothy J; Naik, Rajesh R; Tsukruk, Vladimir V

    2009-03-01

    A novel method for the facile fabrication of conformal, ultrathin, and uniform synthetic amino acid coatings on a variety of practical surfaces by plasma-enhanced chemical vapor deposition is introduced. Tyrosine, which is utilized as an agent to reduce gold nanoparticles from solution, is sublimed into the plasma field and directly deposited on a variety of substrates to form a homogeneous, conformal, and robust polyamino acid coating in a one-step, solvent-free process. This approach is applicable to many practical surfaces and allows surface-induced biometallization while avoiding multiple wet-chemistry treatments that can damage many soft materials. Moreover, by placing a mask over the substrate during deposition, the tyrosine coating can be micropatterned. Upon its exposure to a solution of gold chloride, a network of gold nanoparticles forms on the surface, replicating the initial micropattern. This method of templated biometallization is adaptable to a variety of practical inorganic and organic substrates, such as silicon, glass, nitrocellulose, polystyrene, polydimethylsiloxane, polytetrafluoroethylene, polyethylene, and woven silk fibers. No special pretreatment is necessary, and the technique results in a rapid, conformal amino acid coating that can be utilized for further biometallization.

  5. Control of interface nanoscale structure created by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Peri, Someswara R; Akgun, Bulent; Satija, Sushil K; Jiang, Hao; Enlow, Jesse; Bunning, Timothy J; Foster, Mark D

    2011-09-01

    Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W. Varying the distance of the feed from the plasma impacts the degree of cross-linking in the film center, thickness of the surface layer, and thickness of the transition region at the substrate. Deposition at the highest power, 65 W, both enhances cross-linking and creates loose fragments with fluorine content higher than the average. The thickness of the low cross-link density region at the air interface plays an important role in determining the width of the interface built with a layer subsequently deposited atop the first.

  6. Luminescent Nanocrystalline Silicon Carbide Thin Film Deposited by Helicon Wave Plasma Enhanced Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LU Wan-bing; YU Wei; WU Li-ping; CUI Shuang-kui; FU Guang-sheng

    2006-01-01

    Hydrogenated nanocrystalline silicon carbide (SiC) thin films were deposited on the single-crystal silicon substrate using the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. The influences of magnetic field and hydrogen dilution ratio on the structures of SiC thin film were investigated with the atomic force microscopy (AFM), the Fourier transform infrared absorption (FTIR) and the transmission electron microscopy (TEM). The results indicate that the high plasma activity of the helicon wave mode proves to be a key factor to grow crystalline SiC thin films at a relative low substrate temperature. Also, the decrease in the grain sizes from the level of microcrystalline to that of nanocrystalline can be achieved by increasing the hydrogen dilution ratios. Transmission electron microscopy measurements reveal that the size of most nanocrystals in the film deposited under the higher hydrogen dilution ratios is smaller than the doubled Bohr radius of 3C-SiC (approximately 5.4 nm), and the light emission measurements also show a strong blue photoluminescence at the room temperature, which is considered to be caused by the quantum confinement effect of small-sized SiC nanocrystals.

  7. Switchable hydrophobic-hydrophilic layer obtained onto porous alumina by plasma-enhanced fluorination

    Institute of Scientific and Technical Information of China (English)

    A.; TRESSAUD; C.; LABRUGèRE; E.; DURAND; C.; BRIGOULEIX; H.; ANDRIESSEN

    2009-01-01

    Conventional lithographic printing processes using porous alumina for offset applications generally use "wet" routes. Recently "dry" processes have been developed which are based on a heat-induced hydrophilic/oleophilic conversion of one or more layers of the coating so that a stronger affinity to-wards ink or water fountain is created at the exposed areas with respect to the surface of the unex-posed coating. Treatments involving rf plasma-enhanced fluorination (PEF) constitute exceptional tools for modifying the surface properties of materials. Many advantages of these techniques can be indeed outlined, when compared to more conventional methods: room-temperature reactions, chemical modi-fications limited to surface only without changing the bulk properties, possible non-equilibrium reac-tions. The influence of PEF treatments on porous alumina layer used in printing plates has been tested with various fluorinated gases (CF4, C3F8 and C4F8) and characterized by XPS. The hydrophobic prop-erties of the fluorinated layer have been deduced from contact angle measurements. Using C4F8 rf-PEF treatment, the outmost surface of the hydrophilic alumina substrate used for lithographic printing is hydrophobized, or in other words, the hydrophilic substrate is converted into a support with hydro-phobic properties. Once being hydrophobized, the surface layer may be rendered hydrophilic using a heat pulse, thus giving rise to switchable hydrophobic-hydrophilic properties of the material.

  8. Influence of deposition rate on the structural properties of plasma-enhanced CVD epitaxial silicon

    Science.gov (United States)

    Chen, Wanghua; Cariou, Romain; Hamon, Gwenaëlle; Léal, Ronan; Maurice, Jean-Luc; Cabarrocas, Pere Roca i

    2017-01-01

    Solar cells based on epitaxial silicon layers as the absorber attract increasing attention because of the potential cost reduction. In this work, we studied the influence of the deposition rate on the structural properties of epitaxial silicon layers produced by plasma-enhanced chemical vapor deposition (epi-PECVD) using silane as a precursor and hydrogen as a carrier gas. We found that the crystalline quality of epi-PECVD layers depends on their thickness and deposition rate. Moreover, increasing the deposition rate may lead to epitaxy breakdown. In that case, we observe the formation of embedded amorphous silicon cones in the epi-PECVD layer. To explain this phenomenon, we develop a model based on the coupling of hydrogen and built-in strain. By optimizing the deposition conditions to avoid epitaxy breakdown, including substrate temperatures and plasma potential, we have been able to synthesize epi-PECVD layers up to a deposition rate of 8.3 Å/s. In such case, we found that the incorporation of hydrogen in the hydrogenated crystalline silicon can reach 4 at. % at a substrate temperature of 350 °C. PMID:28262840

  9. Growth of nanocrystalline silicon carbide thin films by plasma enhanced chemical vapor deposition

    CERN Document Server

    Lee, S W; Moon, J Y; Ahn, S S; Kim, H Y; Shin, D H

    1999-01-01

    Nanocrystalline silicon carbide thin films have been deposited by plasma enhanced chemical vapor deposition (PECVD) using SiH sub 4 , CH sub 4 , and H sub 2 gases. The effects of gas mixing ratio (CH sub 4 /SiH sub 4), deposition temperature, and RF power on the film properties have been studied. The growth rate, refractive index, and the optical energy gap depends critically on the growth conditions. The dependence of the growth rate on the gas flow ratio is quite different from the results obtained for the growth using C sub 2 H sub 2 gas instead of CH sub 4. As the deposition temperature is increased from 300 .deg. C to 600 .deg. C, hydrogen and carbon content in the film decreases and as a result the optical gap decreases. At the deposition temperature of 600 .deg. C and RF power of 150 W, the film structure si nanocrystalline, As the result of the nanocrystallization the dark conductivity is greatly improved. The nanocrystalline silicon carbide thin films may be used for large area optoelectronic devices...

  10. RF plasma enhanced MOCVD of yttria stabilized zirconia thin films using octanedionate precursors and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chopade, S.S. [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Nayak, C.; Bhattacharyya, D.; Jha, S.N.; Tokas, R.B.; Sahoo, N.K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Deo, M.N. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Biswas, A. [Atomic & Molecular Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Rai, Sanjay [Indus Synchrotron Utilization Division, RRCAT, Indore 452013 (India); Thulasi Raman, K.H.; Rao, G.M. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Kumar, Niranjan [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Patil, D.S., E-mail: dspatil@iitb.ac.in [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)

    2015-11-15

    Highlights: • YSZ films are deposited by RF plasma MOCVD using Zr(tod){sub 4} and Y(tod){sub 3} precursors. • Films are deposited under the influence of RF self-bias on the substrates. • Films are characterized by different techniques. • Films properties are dependent on yttria content and film structure. - Abstract: Yttria stabilized zirconia thin films have been deposited by RF plasma enhanced MOCVD technique on silicon substrates at substrate temperature of 400 °C. Plasma of precursor vapors of (2,7,7-trimethyl-3,5-octanedionate) yttrium (known as Y(tod){sub 3}), (2,7,7-trimethyl-3,5-octanedionate) zirconium (known as Zr(tod){sub 4}), oxygen and argon gases is used for deposition. To the best of our knowledge, plasma assisted MOCVD of YSZ films using octanediaonate precursors have not been reported in the literature so far. The deposited films have been characterized by GIXRD, FTIR, XPS, FESEM, AFM, XANES, EXAFS, EDAX and spectroscopic ellipsometry. Thickness of the films has been measured by stylus profilometer while tribological property measurement has been done to study mechanical behavior of the coatings. Characterization by different techniques indicates that properties of the films are dependent on the yttria content as well as on the structure of the films.

  11. Boron nitride nanowalls: low-temperature plasma-enhanced chemical vapor deposition synthesis and optical properties

    Science.gov (United States)

    Merenkov, Ivan S.; Kosinova, Marina L.; Maximovskii, Eugene A.

    2017-05-01

    Hexagonal boron nitride (h-BN) nanowalls (BNNWs) were synthesized by plasma-enhanced chemical vapor deposition (PECVD) from a borazine (B3N3H6) and ammonia (NH3) gas mixture at a low temperature range of 400 °C-600 °C on GaAs(100) substrates. The effect of the synthesis temperature on the structure and surface morphology of h-BN films was investigated. The length and thickness of the h-BN nanowalls were in the ranges of 50-200 nm and 15-30 nm, respectively. Transmission electron microscope images showed the obtained BNNWs were composed of layered non-equiaxed h-BN nanocrystallites 5-10 nm in size. The parallel-aligned h-BN layers as an interfacial layer were observed between the film and GaAs(100) substrate. BNNWs demonstrate strong blue light emission, high transparency (>90%) both in visible and infrared spectral regions and are promising for optical applications. The present results enable a convenient growth of BNNWs at low temperatures.

  12. Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique

    Science.gov (United States)

    Ahmad Kamal, Shafarina Azlinda; Ritikos, Richard; Abdul Rahman, Saadah

    2015-02-01

    Tuning the wettability of various coating materials by simply controlling the deposition parameters is essential for various specific applications. In this work, carbon nitride (CNx) films were deposited on silicon (1 1 1) substrates using radio-frequency plasma enhanced chemical vapour deposition employing parallel plate electrode configuration. Effects of varying the electrode distance (DE) on the films' structure and bonding properties were investigated using Field emission scanning electron microscopy, Atomic force microscopy, Fourier transform infrared and X-ray photoemission spectroscopy. The wettability of the films was analyzed using water contact angle measurements. At high DE, the CNx films' surface was smooth and uniform. This changed into fibrous nanostructures when DE was decreased. Surface roughness of the films increased with this morphological transformation. Nitrogen incorporation increased with decrease in DE which manifested the increase in both relative intensities of Cdbnd N to Cdbnd C and Nsbnd H to Osbnd H bonds. sp2-C to sp3-C ratio increased as DE decreased due to greater deformation of sp2 bonded carbon at lower DE. The films' characteristics changed from hydrophilic to super-hydrophobic with the decrease in DE. Roughness ratio, surface porosity and surface energy calculated from contact angle measurements were strongly dependent on the morphology, surface roughness and bonding properties of the films.

  13. Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Li, Dong-ling; Feng, Xiao-fei; Wen, Zhi-yu; Shang, Zheng-guo; She, Yin

    2016-07-01

    Stress controllable silicon nitride (SiNx) films deposited by plasma enhanced chemical vapor deposition (PECVD) are reported. Low stress SiNx films were deposited in both high frequency (HF) mode and dual frequency (HF/LF) mode. By optimizing process parameters, stress free (-0.27 MPa) SiNx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited SiNx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit (IC), micro-electro-mechanical systems (MEMS) and bio-MEMS.

  14. Inhibition of Crystal Growth during Plasma Enhanced Atomic Layer Deposition by Applying BIAS

    Directory of Open Access Journals (Sweden)

    Stephan Ratzsch

    2015-11-01

    Full Text Available In this study, the influence of direct current (DC biasing on the growth of titanium dioxide (TiO2 layers and their nucleation behavior has been investigated. Titania films were prepared by plasma enhanced atomic layer deposition (PEALD using Ti(OiPr4 as metal organic precursor. Oxygen plasma, provided by remote inductively coupled plasma, was used as an oxygen source. The TiO2 films were deposited with and without DC biasing. A strong dependence of the applied voltage on the formation of crystallites in the TiO2 layer is shown. These crystallites form spherical hillocks on the surface which causes high surface roughness. By applying a higher voltage than the plasma potential no hillock appears on the surface. Based on these results, it seems likely, that ions are responsible for the nucleation and hillock growth. Hence, the hillock formation can be controlled by controlling the ion energy and ion flux. The growth per cycle remains unchanged, whereas the refractive index slightly decreases in the absence of energetic oxygen ions.

  15. Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using a Novel Silylamine Precursor.

    Science.gov (United States)

    Park, Jae-Min; Jang, Se Jin; Yusup, Luchana L; Lee, Won-Jun; Lee, Sang-Ick

    2016-08-17

    We report the plasma-enhanced atomic layer deposition (PEALD) of silicon nitride thin film using a silylamine compound as the silicon precursor. A series of silylamine compounds were designed by replacing SiH3 groups in trisilylamine by dimethylaminomethylsilyl or trimethylsilyl groups to obtain sufficient thermal stability. The silylamine compounds were synthesized through redistribution, amino-substitution, lithiation, and silylation reactions. Among them, bis(dimethylaminomethylsilyl)trimethylsilyl amine (C9H29N3Si3, DTDN2-H2) was selected as the silicon precursor because of the lowest bond dissociation energy and sufficient vapor pressures. The energies for adsorption and reaction of DTDN2-H2 with the silicon nitride surface were also calculated by density functional theory. PEALD silicon nitride thin films were prepared using DTDN2-H2 and N2 plasma. The PEALD process window was between 250 and 400 °C with a growth rate of 0.36 Å/cycle. The best film quality was obtained at 400 °C with a RF power of 100 W. The PEALD film prepared showed good bottom and sidewall coverages of ∼80% and ∼73%, respectively, on a trench-patterned wafer with an aspect ratio of 5.5.

  16. Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition

    CERN Document Server

    Kim, H

    2002-01-01

    We have investigated the growth kinetics of plasma-enhanced Ti atomic layer deposition (ALD) using a quartz crystal microbalance. Ti ALD films were grown at temperatures from 20 to 200 deg. C using TiCl sub 4 as a source gas and rf plasma-produced atomic H as the reducing agent. Postdeposition ex situ chemical analyses of thin films showed that the main impurity is oxygen, mostly incorporated during the air exposure prior to analysis. The thickness per cycle, corresponding to the growth rate, was measured by quartz crystal microbalance as a function of various key growth parameters, including TiCl sub 4 and H exposure time, rf plasma power, and sample temperature. The growth rates were independent of TiCl sub 4 exposure above 1x10 sup 3 L, indicating typical ALD mode growth. The key kinetic parameters for Cl extraction reaction and TiCl sub 4 adsorption kinetics were obtained and the growth kinetics were modeled to predict the growth rates based upon these results. Also, the dependency of growth kinetics on d...

  17. The physical properties of cubic plasma-enhanced atomic layer deposition TaN films

    Science.gov (United States)

    Kim, H.; Lavoie, C.; Copel, M.; Narayanan, V.; Park, D.-G.; Rossnagel, S. M.

    2004-05-01

    Plasma-enhanced atomic layer deposition (PE-ALD) is a promising technique to produce high quality metal and nitride thin films at low growth temperature. In this study, very thin (<10 nm) low resistivity (350 μΩ cm) cubic TaN Cu diffusion barrier were deposited by PE-ALD from TaCl5 and a plasma of both hydrogen and nitrogen. The physical properties of TaN thin films including microstructure, conformality, roughness, and thermal stability were investigated by various analytical techniques including x-ray diffraction, medium energy ion scattering, and transmission electron microscopy. The Cu diffusion barrier properties of PE-ALD TaN thin films were studied using synchrotron x-ray diffraction, optical scattering, and sheet resistance measurements during thermal annealing of the test structures. The barrier failure temperatures were obtained as a function of film thickness and compared with those of PE-ALD Ta, physical vapor deposition (PVD) Ta, and PVD TaN. A diffusion kinetics analysis showed that the microstructure of the barrier materials is one of the most critical factors for Cu diffusion barrier performance.

  18. Hot Tickets

    Science.gov (United States)

    Fox, Bette-Lee; Hoffert, Barbara; Kuzyk, Raya; McCormack, Heather; Williams, Wilda

    2008-01-01

    This article describes the highlights of this year's BookExpo America (BEA) held at the Los Angeles Convention Center. The attendees at BEA had not minded that the air was recycled, the lighting was fluorescent, and the food was bad. The first hot book sighting came courtesy of Anne Rice. Michelle Moran, author of newly published novel, "The…

  19. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  20. Dynamics of multiple bubbles, excited by femtosecond filament in water: Role of aberrations

    CERN Document Server

    Potemkin, F V

    2014-01-01

    Using shadow photography, we observed microsecond time scale evolution of multiple cavitation bubbles, excited by tighty focused femtosecond laser pulse in water under supercritical power regime (~100 Pcr). In these extreme conditions high energy delivery into the microvolume of liquid sample leads to creation of single filament which becomes a source of cavitation region formation. When aberrations were added to the optical scheme the hot spots along the filament axis are formed. At high energies (more than 40uJ) filaments in these hot spots are fired and, as a result, complex pattern of cavitation bubbles is created. The bubbles can be isolated from each other or build exotic drop-shaped cavitation region, which evolution at the end of its life, before the final collapse, contains the jet emission. The dynamics of the cavitation pattern was investigated from pulse energy and focusing. We found that greater numerical aperture of the focusing optics leads to greater cavitation area length. The strong interact...

  1. Galaxy pairs align with galactic filaments

    CERN Document Server

    Tempel, Elmo

    2015-01-01

    Context. Gravitational collapse theory and numerical simulations suggest that the velocity field within large-scale galaxy filaments is dominated by motions along the filaments. Aims. Our aim is to check whether observational data reveal any preferred orientation of galaxy pairs with respect to the underlying filaments as a result of the expectedly anisotropic velocity field. Methods. We use galaxy pairs and galaxy filaments identified from the Sloan Digital Sky Survey data. For filament extraction, we use the Bisous model that is based the marked point process technique. During the filament detection, we use the centre point of each pair instead of the positions of galaxies to avoid a built-in influence of pair orientation on the filament construction. For pairs lying within filaments (3012 cases), we calculate the angle between the line connecting galaxies of each pair and their host filament. To avoid redshift-space distortions, the angle is measured in the plain of the sky. Results. The alignment analysis...

  2. Mobile setup for synchrotron based in situ characterization during thermal and plasma-enhanced atomic layer deposition

    Science.gov (United States)

    Dendooven, Jolien; Solano, Eduardo; Minjauw, Matthias M.; Van de Kerckhove, Kevin; Coati, Alessandro; Fonda, Emiliano; Portale, Giuseppe; Garreau, Yves; Detavernier, Christophe

    2016-11-01

    We report the design of a mobile setup for synchrotron based in situ studies during atomic layer processing. The system was designed to facilitate in situ grazing incidence small angle x-ray scattering (GISAXS), x-ray fluorescence (XRF), and x-ray absorption spectroscopy measurements at synchrotron facilities. The setup consists of a compact high vacuum pump-type reactor for atomic layer deposition (ALD). The presence of a remote radio frequency plasma source enables in situ experiments during both thermal as well as plasma-enhanced ALD. The system has been successfully installed at different beam line end stations at the European Synchrotron Radiation Facility and SOLEIL synchrotrons. Examples are discussed of in situ GISAXS and XRF measurements during thermal and plasma-enhanced ALD growth of ruthenium from RuO4 (ToRuS™, Air Liquide) and H2 or H2 plasma, providing insights in the nucleation behavior of these processes.

  3. Nonthermal atmospheric pressure plasma enhances mouse limb bud survival, growth, and elongation.

    Science.gov (United States)

    Chernets, Natalie; Zhang, Jun; Steinbeck, Marla J; Kurpad, Deepa S; Koyama, Eiki; Friedman, Gary; Freeman, Theresa A

    2015-01-01

    The enhanced differentiation of mesenchymal cells into chondrocytes or osteoblasts is of paramount importance in tissue engineering and regenerative therapies. A newly emerging body of evidence demonstrates that appendage regeneration is dependent on reactive oxygen species (ROS) production and signaling. Thus, we hypothesized that mesenchymal cell stimulation by nonthermal (NT)-plasma, which produces and induces ROS, would (1) promote skeletal cell differentiation and (2) limb autopod development. Stimulation with a single treatment of NT-plasma enhanced survival, growth, and elongation of mouse limb autopods in an in vitro organ culture system. Noticeable changes included enhanced development of digit length and definition of digit separation. These changes were coordinated with enhanced Wnt signaling in the distal apical epidermal ridge (AER) and presumptive joint regions. Autopod development continued to advance for approximately 144 h in culture, seemingly overcoming the negative culture environment usually observed in this in vitro system. Real-time quantitative polymerase chain reaction analysis confirmed the up-regulation of chondrogenic transcripts. Mechanistically, NT-plasma increased the number of ROS positive cells in the dorsal epithelium, mesenchyme, and the distal tip of each phalange behind the AER, determined using dihydrorhodamine. The importance of ROS production/signaling during development was further demonstrated by the stunting of digital outgrowth when anti-oxidants were applied. Results of this study show NT-plasma initiated and amplified ROS intracellular signaling to enhance development of the autopod. Parallels between development and regeneration suggest that the potential use of NT-plasma could extend to both tissue engineering and clinical applications to enhance fracture healing, trauma repair, and bone fusion.

  4. Plasma-enhanced synthesis of surfaces that kill bacteria on contact

    Science.gov (United States)

    Jampala, Soujanya Naga

    High incidences of microbial contamination and infections are a major concern in all existing and evolving technologies of medicine and biology. The propensity towards infections is directly related to bacterial colonization and biofilms on surfaces. This dissertation presents the development of surfaces that can kill bacteria on contact by using cold plasma technology. Quaternary ammonium (QA) groups are known to exhibit antibacterial characteristics in water-based environments. To overcome the limitations of residual toxicity, alternative strategies involving covalent attachment of QA groups to metallic and cellulosic surfaces have been developed. Low pressure, non-equilibrium plasma-enhanced functionalization and subsequent ex situ chemical reactions were designed for step-by-step "bottom-up" chemical synthesis of QA groups covalently anchored to surfaces. The plasma processes under selected discharge parameters generated structure- and functionality-controlled crosslinked networks of macromolecular layers with high concentrations of reactive amine groups. Subsequent derivatization of the plasma-deposited films with alkyl halides yielded surface-bound QA groups rendering surfaces with high bactericidal efficacy against Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae. Stainless steel and cotton surfaces sequentially treated with ethylene diamine plasma, n-hexyl bromide and methyl iodide exhibited at least 99.9% and 98% kill of S. aureus and K. pneumoniae respectively. The influence of chemical architecture of QA groups with different alkyl substituents on the efficacy of bactericidal surfaces was quantified. Results from this work will permit the development of novel plasma-aided technologies for the synthesis of antibacterial surfaces with potential biomedical applications. The cold plasma approach can be used on any solid material surfaces including polymers, metals, ceramics and semiconductors.

  5. Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Peralvarez, M; Carreras, Josep; Navarro-Urrios, D; Lebour, Y; Garrido, B [MIND, IN2UB, Department of Electronics, University of Barcelona, C/Marti i Franques 1, PL2, E-08028 Barcelona (Spain); Barreto, J; DomInguez, C [IMB-CNM, CSIC, Bellaterra, E-08193 Barcelona (Spain); Morales, A, E-mail: mperalvarez@el.ub.e [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico)

    2009-10-07

    An in-depth study of the physical and electrical properties of Si-nanocrystal-based MOSLEDs is presented. The active layers were fabricated with different concentrations of Si by both ion implantation and plasma-enhanced chemical vapour deposition. Devices fabricated by ion implantation exhibit a combination of direct current and field-effect luminescence under a bipolar pulsed excitation. The onset of the emission decreases with the Si excess from 6 to 3 V. The direct current emission is attributed to impact ionization and is associated with the reasonably high current levels observed in current-voltage measurements. This behaviour is in good agreement with transmission electron microscopy images that revealed a continuous and uniform Si nanocrystal distribution. The emission power efficiency is relatively low, {approx}10{sup -3}%, and the emission intensity exhibits fast degradation rates, as revealed from accelerated ageing experiments. Devices fabricated by chemical deposition only exhibit field-effect luminescence, whose onset decreases with the Si excess from 20 to 6 V. The absence of the continuous emission is explained by the observation of a 5 nm region free of nanocrystals, which strongly reduces the direct current through the gate. The main benefit of having this nanocrystal-free region is that tunnelling current flow assisted by nanocrystals is blocked by the SiO{sub 2} stack so that power consumption is strongly reduced, which in return increases the device power efficiency up to 0.1%. In addition, the accelerated ageing studies reveal a 50% degradation rate reduction as compared to implanted structures.

  6. Modelling and optimization of film thickness variation for plasma enhanced chemical vapour deposition processes

    Science.gov (United States)

    Waddell, Ewan; Gibson, Des; Lin, Li; Fu, Xiuhua

    2011-09-01

    This paper describes a method for modelling film thickness variation across the deposition area within plasma enhanced chemical vapour deposition (PECVD) processes. The model enables identification and optimization of film thickness uniformity sensitivities to electrode configuration, temperature, deposition system design and gas flow distribution. PECVD deposition utilizes a co-planar 300mm diameter electrodes with separate RF power matching to each electrode. The system has capability to adjust electrode separation and electrode temperature as parameters to optimize uniformity. Vacuum is achieved using dry pumping with real time control of butterfly valve position for active pressure control. Comparison between theory and experiment is provided for PECVD of diamond-like-carbon (DLC) deposition onto flat and curved substrate geometries. The process utilizes butane reactive feedstock with an argon carrier gas. Radiofrequency plasma is used. Deposited film thickness sensitivities to electrode geometry, plasma power density, pressure and gas flow distribution are demonstrated. Use of modelling to optimise film thickness uniformity is demonstrated. Results show DLC uniformity of 0.30% over a 200 mm flat zone diameter within overall electrode diameter of 300mm. Thickness uniformity of 0.75% is demonstrated over a 200mm diameter for a non-conformal substrate geometry. Use of the modelling method for PECVD using metal-organic chemical vapour deposition (MOCVD) feedstock is demonstrated, specifically for deposition of silica films using metal-organic tetraethoxy-silane. Excellent agreement between experimental and theory is demonstrated for conformal and non-conformal geometries. The model is used to explore scalability of PECVD processes and trade-off against film thickness uniformity. Application to MEMS, optical coatings and thin film photovoltaics is discussed.

  7. Plasma enhanced chemical vapor deposition of iron doped thin dioxide films, their structure and photowetting effect

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk-Guzenda, A., E-mail: anna.sobczyk-guzenda@p.lodz.pl [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz (Poland); Owczarek, S.; Szymanowski, H. [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz (Poland); Wypych-Puszkarz, A. [Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz (Poland); Volesky, L. [Technical University of Liberec, Institute for Nanomaterials, Advanced Technologies and Innovation, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic); Gazicki-Lipman, M. [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz (Poland)

    2015-08-31

    Radio frequency plasma enhanced chemical vapor deposition (RF PECVD) technique was applied for the purpose of deposition of iron doped titanium dioxide coatings from a gaseous mixture of oxygen with titanium (IV) chloride and iron (0) pentacarbonyl. Glass slides and silicon wafers were used as substrates. The coatings morphology was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental and chemical composition was studied with the help of X-ray energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy, respectively, while their phase composition was analyzed with the Raman spectroscopy. For the determination of the film optical properties, ultraviolet (UV–Vis) spectroscopy techniques were used. Iron content in the range of 0.07 to 11.5 at.% was found in the coatings. FTIR studies showed that iron was built-in in the structure of TiO{sub 2} matrix. Surface roughness, assessed with the SEM and AFM techniques, increases with an increasing content of this element. Trace amounts of iron resulted in a lowering of an absorption threshold of the films and their optical gap, but the tendency was reversed for high concentrations of that element. The effect of iron doping on UV photowettability of the films was also studied and, for coatings containing up to 5% of iron, it was stronger than that exhibited by pure TiO{sub 2}. - Highlights: • Iron doped TiO{sub 2} films were deposited with the PECVD method. • Differences of surface morphology of the films with different iron content were shown. • Depending on the iron content, the film structure is either amorphous or crystalline. • A parabolic character of the optical gap dependence on the concentration of iron was observed. • Up to a concentration of 5% of iron, doped TiO{sub 2} films exhibit a super-hydrophilic effect.

  8. The Role of Plasma in Plasma Enhanced Chemical Vapour Deposition of Nanostructure Growth

    Science.gov (United States)

    Hash, David B.; Meyyappan, M.; Teo, Kenneth B. K.; Lacerda, Rodrigo G.; Rupesinghe, Nalin L.

    2004-01-01

    Chemical vapour deposition (CVD) has become the preferred process for high yield growth of carbon nanotubes and nanofibres because of its ability to pattern growth through lithographic positioning of transition metal catalysts on substrates. Many potential applications of nanotubes such as field emitters [1] require not only patterned growth but also vertical alignment. Some degree of ali,ment in thermal CVD processes can be obtained when carbon nanotubes are grown closely together as a result of van der Waals interactions. The ali,onment however is marginal, and the van der Waals prerequisite makes growth of freestanding nanofibres with thermal CVD unrealizable. The application of electric fields as a means of ali,onment has been shown to overcome this limitation [2-5], and highly aligned nanostructures can be grown if electric fields on the order of 0.5 V/microns are employed. Plasma enhanced CVD in various configurations including dc, rf, microwave, inductive and electron cyclotron resonance has been pursued as a means of enabling alignment in the CVD process. However, the sheath fields for the non-dc sources are in general not sufficient for a high degree of ali,pment and an additional dc bias is usually applied to the growth substrate. This begs the question as to the actual role of the plasma. It is clear that the plasma itself is not required for aligned growth as references [3] and [4] employed fields through small applied voltages (3-20 V) across very small electrode spacings (10-100 microns) and thus avoided striking a discharge.

  9. Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films

    Science.gov (United States)

    Liu, A. Y.; Sun, C.; Markevich, V. P.; Peaker, A. R.; Murphy, J. D.; Macdonald, D.

    2016-11-01

    It is known that the interstitial iron concentration in silicon is reduced after annealing silicon wafers coated with plasma-enhanced chemical vapour deposited (PECVD) silicon nitride films. The underlying mechanism for the significant iron reduction has remained unclear and is investigated in this work. Secondary ion mass spectrometry (SIMS) depth profiling of iron is performed on annealed iron-contaminated single-crystalline silicon wafers passivated with PECVD silicon nitride films. SIMS measurements reveal a high concentration of iron uniformly distributed in the annealed silicon nitride films. This accumulation of iron in the silicon nitride film matches the interstitial iron loss in the silicon bulk. This finding conclusively shows that the interstitial iron is gettered by the silicon nitride films during annealing over a wide temperature range from 250 °C to 900 °C, via a segregation gettering effect. Further experimental evidence is presented to support this finding. Deep-level transient spectroscopy analysis shows that no new electrically active defects are formed in the silicon bulk after annealing iron-containing silicon with silicon nitride films, confirming that the interstitial iron loss is not due to a change in the chemical structure of iron related defects in the silicon bulk. In addition, once the annealed silicon nitride films are removed, subsequent high temperature processes do not result in any reappearance of iron. Finally, the experimentally measured iron decay kinetics are shown to agree with a model of iron diffusion to the surface gettering sites, indicating a diffusion-limited iron gettering process for temperatures below 700 °C. The gettering process is found to become reaction-limited at higher temperatures.

  10. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bartlome, Richard, E-mail: richard.bartlome@alumni.ethz.ch; De Wolf, Stefaan; Demaurex, Bénédicte; Ballif, Christophe [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue de la Maladière 71b, 2000 Neuchâtel (Switzerland); Amanatides, Eleftherios; Mataras, Dimitrios [University of Patras, Department of Chemical Engineering, Plasma Technology Laboratory, P.O. Box 1407, 26504 Patras (Greece)

    2015-05-28

    We clarify the difference between the SiH{sub 4} consumption efficiency η and the SiH{sub 4} depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH{sub 4} consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH{sub 4} concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH{sub 4} concentration in the plasma c{sub p}, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH{sub 4} density measurements throughout the ignition and the termination of a plasma.

  11. Properties of HfAlO film deposited by plasma enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duo [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); Cheng, Xinhong, E-mail: xh_cheng@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); Jia, Tingting; Zheng, Li; Xu, Dawei; Wang, Zhongjian; Xia, Chao; Yu, Yuehui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China)

    2013-07-15

    Plasma enhanced atomic layer deposition (PEALD) method can reduce film growing temperature, and allow in situ plasma treatment. In this work, HfAlO and HfO{sub 2} films were deposited with PEALD at 160 °C. Microstructure analysis showed that both films were amorphous after rapid thermal annealing (RTA) treatment, and HfAlO sample showed better interfacial structure than HfO{sub 2}. X-ray photoelectron spectroscopy (XPS) spectra indicated that main component of the interfacial layer of HfAlO sample was Hf–Si–O and Al–Si–O bonds, the valence band offset value between the HfAlO film and Si substrate was calculated to be 2.5 eV. The dominant leakage current mechanism of the samples was Schottky emission at a low electric field (<1.4 MV/cm), and Poole–Frenkel emission mechanism at a higher electric field (>1.4 MV/cm). The equivalent oxide thicknesses (EOT) of the HfAlO samples were 1.0 nm and 1.3 nm, respectively. The density of interface states between dielectric and substrate were calculated to be 1.2 × 10{sup 12} eV{sup −1}cm{sup −2} and 1.3 × 10{sup 12} eV{sup −1}cm{sup −2}, respectively. In comparison with HfO{sub 2} film, HfAlO film has good interfacial structure and electrical performance.

  12. Ag films grown by remote plasma enhanced atomic layer deposition on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Amusan, Akinwumi A., E-mail: akinwumi.amusan@ovgu.de; Kalkofen, Bodo; Burte, Edmund P. [Institute of Micro and Sensor Systems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Gargouri, Hassan; Wandel, Klaus; Pinnow, Cay [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany); Lisker, Marco [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

    2016-01-15

    Silver (Ag) layers were deposited by remote plasma enhanced atomic layer deposition (PALD) using Ag(fod)(PEt{sub 3}) (fod = 2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) as precursor and hydrogen plasma on silicon substrate covered with thin films of SiO{sub 2}, TiN, Ti/TiN, Co, Ni, and W at different deposition temperatures from 70  to 200 °C. The deposited silver films were analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive x-ray spectroscopy, four point probe measurement, ellipsometric measurement, x-ray fluorescence (XRF), and x-ray diffraction (XRD). XPS revealed pure Ag with carbon and oxygen contamination close to the detection limit after 30 s argon sputtering for depositions made at 120 and 200 °C substrate temperatures. However, an oxygen contamination was detected in the Ag film deposited at 70 °C after 12 s argon sputtering. A resistivity of 5.7 × 10{sup −6} Ω cm was obtained for approximately 97 nm Ag film on SiO{sub 2}/Si substrate. The thickness was determined from the SEM cross section on the SiO{sub 2}/Si substrate and also compared with XRF measurements. Polycrystalline cubic Ag reflections were identified from XRD for PALD Ag films deposited at 120 and 200 °C. Compared to W surface, where poor adhesion of the films was found, Co, Ni, TiN, Ti/TiN and SiO{sub 2} surfaces had better adhesion for silver films as revealed by SEM, TEM, and AFM images.

  13. Metallo–organic compound-based plasma enhanced CVD of ZrO2 films for microelectronic applications

    Indian Academy of Sciences (India)

    S Chatterjee; S K Samanta; H D Banerjee; C K Maiti

    2001-12-01

    ZrO2 films on silicon wafer were deposited by microwave plasma enhanced chemical vapour deposition technique using zirconium tetratert butoxide (ZTB). The structure and composition of the deposited layers were studied by fourier transform infrared spectroscopy (FTIR). The deposition rates were also studied. MOS capacitors fabricated using deposited oxides were used to characterize the electrical properties of ZrO2 films. The films showed their suitability for microelectronic applications.

  14. Plasma-enhanced atomic-layer-deposited MoO{sub x} emitters for silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Johannes; Schneider, Thomas; Sprafke, Alexander N. [Martin-Luther-University Halle-Wittenberg, mu-MD Group, Institute of Physics, Halle (Germany); Mews, Mathias; Korte, Lars [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institute for Silicon-Photovoltaics, Berlin (Germany); Kaufmann, Kai [Fraunhofer Center for Silicon Photovoltaics CSP, Halle (Germany); University of Applied Sciences, Hochschule Anhalt Koethen, Koethen (Germany); Wehrspohn, Ralf B. [Martin-Luther-University Halle-Wittenberg, mu-MD Group, Institute of Physics, Halle (Germany); Fraunhofer Institute for Mechanics of Materials IWM Halle, Halle (Germany)

    2015-09-15

    A method for the deposition of molybdenum oxide (MoO{sub x}) with high growth rates at temperatures below 200 C based on plasma-enhanced atomic layer deposition is presented. The stoichiometry of the over-stoichiometric MoO{sub x} films can be adjusted by the plasma parameters. First results of these layers acting as hole-selective contacts in silicon heterojunction solar cells are presented and discussed. (orig.)

  15. Temperature Controlled Filamentation in Argon Gas

    Institute of Scientific and Technical Information of China (English)

    CAO Shi-Ying; KONG Wei-Peng; SONG Zhen-Ming; QIN Yu; LI Ru-Xin; WANG Qing-Yue; ZHANG Zhi-Gang

    2008-01-01

    Temperature controlled filamentation is experimentally demonstrated in a temperature gradient gas-filled tube.The proper position of the tube is heated by a furnace and two ends of the tube are cooled by air. The experimental results show that multiple filaments are shrunken into a single fila.ment or no filament only by increasing the temperature at the beginning of the filament. This technique offers another degree of freedom of controlling the filamentation and opens a new way for intense monocycle pulse generation through gradient temperature in a noble gas.

  16. Intermediate Filaments in Caenorhabditis elegans.

    Science.gov (United States)

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses.

  17. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  18. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...... and quantified. (C) 1999 The Society of Rheology. [S0148-6055(99)00103-0]....

  19. Merger of Long Vortex Filaments

    CERN Document Server

    Khandekar, Akshay

    2012-01-01

    This fluid dynamics video demonstrates the merger of long vortex filaments is shown experimentally. Two counter-rotating vortices are generated using in a tank with very high aspect ratio. PIV demonstrates the merger of the vortices within a single orbit.

  20. Picosecond laser filamentation in air

    Science.gov (United States)

    2016-09-02

    LeibnizUniversityHannover,Welfengarten 1, D-30167Hannover, Germany 3 CEA-DAM,DIF, F-91297Arpajon, France 4 Univ.Bordeaux—CNRS—CEA,Centre Lasers ...optics.arizona.edu Keywords: laser filamentation, picosecond laser pulses, nonlinear propagation, optical ionization Abstract The propagation of intense

  1. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  2. Filament Winding. A Unified Approach

    NARCIS (Netherlands)

    Koussios, S.

    2004-01-01

    In this dissertation we have presented an overview and comprehensive treatment of several facets of the filament winding process. With the concepts of differential geometry and the theory of thin anisotropic shells of revolution, a parametric shape generator has been formulated for the design proced

  3. Role of Intermediate Filaments in Vesicular Traffic

    Directory of Open Access Journals (Sweden)

    Azzurra Margiotta

    2016-04-01

    Full Text Available Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.

  4. Hot Money,Hot Problems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    After emerging from the economic doldrums, developing economies are now confronted with a new danger-a flood of international hot money. But how has the speculative capital circumvented regulatory controls and what are the consequences concerning the stability of the developing world? Zhao Zhongwei, a senior researcher with the Institute of World Politics and Economics at the Chinese Academy of Social Sciences, discussed these issues in an article recently published in the China Securities Journal. Edited excerpts follow

  5. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    Pavel Ambrož; Alfred Schroll

    2000-09-01

    Precise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.

  6. Preparation and Characterization of Carbon Filaments

    Science.gov (United States)

    1991-04-01

    catalysts gave straight filaments, while the use of nickel and other catalysts resulted in a variety of vermicular forms of filaments. Ferrocene, (C5H5)2Fe...vapor deposition of carbon filaments is presented along with a theory for the vermicular growth of filaments on quartz substrates. I U I I I I I I...one hour. The experimental details of the matrix and results are discussed, also theories for the role of hydrogen and the vermicular growth of

  7. Analysis of a filament stretching rheometer

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1996-01-01

    A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown.......A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown....

  8. Remote electrical arc suppression by laser filamentation

    CERN Document Server

    Schubert, Elise; Kasparian, Jérôme; Wolf, Jean-Pierre

    2015-01-01

    We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, due to the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation.

  9. Are 'hot spots' hot spots?

    Science.gov (United States)

    Foulger, Gillian R.

    2012-07-01

    The term 'hot spot' emerged in the 1960s from speculations that Hawaii might have its origins in an unusually hot source region in the mantle. It subsequently became widely used to refer to volcanic regions considered to be anomalous in the then-new plate tectonic paradigm. It carried with it the implication that volcanism (a) is emplaced by a single, spatially restricted, mongenetic melt-delivery system, assumed to be a mantle plume, and (b) that the source is unusually hot. This model has tended to be assumed a priori to be correct. Nevertheless, there are many geological ways of testing it, and a great deal of work has recently been done to do so. Two fundamental problems challenge this work. First is the difficulty of deciding a 'normal' mantle temperature against which to compare estimates. This is usually taken to be the source temperature of mid-ocean ridge basalts (MORBs). However, Earth's surface conduction layer is ˜200 km thick, and such a norm is not appropriate if the lavas under investigation formed deeper than the 40-50 km source depth of MORB. Second, methods for estimating temperature suffer from ambiguity of interpretation with composition and partial melt, controversy regarding how they should be applied, lack of repeatability between studies using the same data, and insufficient precision to detect the 200-300 °C temperature variations postulated. Available methods include multiple seismological and petrological approaches, modelling bathymetry and topography, and measuring heat flow. Investigations have been carried out in many areas postulated to represent either (hot) plume heads or (hotter) tails. These include sections of the mid-ocean spreading ridge postulated to include ridge-centred plumes, the North Atlantic Igneous Province, Iceland, Hawaii, oceanic plateaus, and high-standing continental areas such as the Hoggar swell. Most volcanic regions that may reasonably be considered anomalous in the simple plate-tectonic paradigm have been

  10. Tandem solar cells deposited using hot-wire chemical vapor deposition

    NARCIS (Netherlands)

    Veen, M.K. van

    2003-01-01

    In this thesis, the application of the hot-wire chemical vapor deposition (HWCVD) technique for the deposition of silicon thin films is described. The HWCVD technique is based on the dissociation of silicon-containing gasses at the catalytic surface of a hot filament. Advantages of this technique ar

  11. Electrochromic Devices Deposited on Low-Temperature Plastics by Plasma-Enhanced Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua; Seman, Michael

    2005-09-20

    Electrochromic windows have been identified by the Basic energy Sciences Advisory committee as an important technology for the reduction of energy spent on heating and cooling in residential and commercial buildings. Electrochromic devices have the ability to reversibly alter their optical properties in response to a small electric field. By blocking ultraviolet and infrared radiation, while modulating the incoming visible radiation, electrochromics could reduce energy consumption by several Quads per year. This amounts to several percent of the total annual national energy expenditures. The purpose of this project was to demonstrate proof of concept for using plasma-enhanced chemical vapor deposition (PECVD) for depositing all five layers necessary for full electrochromic devices, as an alternative to sputtering techniques. The overall goal is to produce electrochromic devices on flexible polymer substrates using PECVD to significantly reduce the cost of the final product. We have successfully deposited all of the films necessary for a complete electrochromic devices using PECVD. The electrochromic layer, WO3, displayed excellent change in visible transmission with good switching times. The storage layer, V2O5, exhibited a high storage capacity and good clear state transmission. The electrolyte, Ta2O5, was shown to functional with good electrical resistivity to go along with the ability to transfer Li ions. There were issues with leakage over larger areas, which can be address with further process development. We developed a process to deposit ZnO:Ga with a sheet resistance of < 50 W/sq. with > 90% transmission. Although we were not able to deposit on polymers due to the temperatures required in combination with the inverted position of our substrates. Two types of full devices were produced. Devices with Ta2O5 were shown to be functional using small aluminum dots as the top contact. The polymer electrolyte devices were shown to have a clear state transmission of

  12. Photoinduced Charge Transfer at Metal Oxide/Oxide Interfaces Prepared with Plasma Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Kaur, Manpuneet

    LiNbO3 and ZnO have shown great potential for photochemical surface reactions and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due to recombination or back reactions and ZnO exhibits a chemical instability in a liquid cell. In this dissertation, both materials were coated with precise thickness of metal oxide layers to passivate the surfaces and to enhance their photocatalytic efficiency. LiNbO 3 was coated with plasma enhanced atomic layer deposited (PEALD) ZnO and Al2O3, and molecular beam deposited TiO2 and VO2. On the other hand, PEALD ZnO and single crystal ZnO were passivated with PEALD SiO2 and Al2O3. Metal oxide/LiNbO3 heterostructures were immersed in aqueous AgNO3 solutions and illuminated with ultraviolet (UV) light to form Ag nanoparticle patterns. Alternatively, Al2O3 and SiO2/ZnO heterostructures were immersed in K3PO 4 buffer solutions and studied for photoelectrochemical reactions. A fundamental aspect of the heterostructures is the band alignment and band bending, which was deduced from in situ photoemission measurements. This research has provided insight to three aspects of the heterostructures. First, the band alignment at the interface of metal oxides/LiNbO 3, and Al2O3 or SiO2/ZnO were used to explain the possible charge transfer processes and the direction of carrier flow in the heterostructures. Second, the effect of metal oxide coatings on the LiNbO3 with different internal carrier concentrations was related to the surface photochemical reactions. Third is the surface passivation and degradation mechanism of Al2O 3 and SiO2 on ZnO was established. The heterostructures were characterized after stability tests using atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross-section transmission electron microscopy (TEM). The results indicate that limited thicknesses of ZnO or TiO2 on polarity patterned LiNbO3 (PPLN) enhances the Ag+ photoinduced reduction process. ZnO seems more efficient

  13. Long period gratings coated with hafnium oxide by plasma-enhanced atomic layer deposition for refractive index measurements.

    Science.gov (United States)

    Melo, Luis; Burton, Geoff; Kubik, Philip; Wild, Peter

    2016-04-04

    Long period gratings (LPGs) are coated with hafnium oxide using plasma-enhanced atomic layer deposition (PEALD) to increase the sensitivity of these devices to the refractive index of the surrounding medium. PEALD allows deposition at low temperatures which reduces thermal degradation of UV-written LPGs. Depositions targeting three different coating thicknesses are investigated: 30 nm, 50 nm and 70 nm. Coating thickness measurements taken by scanning electron microscopy of the optical fibers confirm deposition of uniform coatings. The performance of the coated LPGs shows that deposition of hafnium oxide on LPGs induces two-step transition behavior of the cladding modes.

  14. Picosecond laser filamentation in air

    Science.gov (United States)

    Schmitt-Sody, Andreas; Kurz, Heiko G.; Bergé, Luc; Skupin, Stefan; Polynkin, Pavel

    2016-09-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.

  15. Picosecond laser filamentation in air

    CERN Document Server

    Schmitt-Sody, Andreas; Bergé, L; Skupin, S; Polynkin, Pavel

    2016-01-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled with the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which is paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions are limited and the pulse fluence is also clamped. The resulting unique feature of the picosecond filamentation regime is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for numerous applications.

  16. Microwave processing of ceramic oxide filaments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  17. Dynamics of 3D isolated thermal filaments

    CERN Document Server

    Walkden, N R; Militello, F; Omotani, J T

    2016-01-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the filament has a significant temperature perturbation compared to its density perturbation: They lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  18. Dynamics of 3D isolated thermal filaments

    Science.gov (United States)

    Walkden, N. R.; Easy, L.; Militello, F.; Omotani, J. T.

    2016-11-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the pressure perturbation within the filament is supported primarily through a temperature increase as opposed to density: they lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  19. Hydrogen Two-Photon Continuum Emission from the Horseshoe Filament in NGC 1275

    CERN Document Server

    Johnstone, R M; Fabian, A C; Ferland, G J; Lykins, M; Porter, R L; van Hoof, P A M; Williams, R J R

    2012-01-01

    Far ultraviolet emission has been detected from a knot of Halpha emission in the Horseshoe filament, far out in the NGC 1275 nebula. The flux detected relative to the brightness of the Halpha line in the same spatial region is very close to that expected from Hydrogen two-photon continuum emission in the particle heating model of Ferland et al. (2009) if reddening internal to the filaments is taken into account. We find no need to invoke other sources of far ultraviolet emission such as hot stars or emission lines from CIV in intermediate temperature gas to explain these data.

  20. Evolution of cosmic filaments and of their galaxy population from MHD cosmological simulations

    Science.gov (United States)

    Gheller, C.; Vazza, F.; Brüggen, M.; Alpaslan, M.; Holwerda, B. W.; Hopkins, A. M.; Liske, J.

    2016-10-01

    Despite containing about a half of the total matter in the Universe, at most wavelengths the filamentary structure of the cosmic web is difficult to observe. In this work, we use large unigrid cosmological simulations to investigate how the geometrical, thermodynamical and magnetic properties of cosmological filaments vary with mass and redshift (z ≤ 1). We find that the average temperature, length, volume and magnetic field of filaments scales well with their total mass. This reflects the role of self-gravity in shaping their properties and enables statistical predictions of their observational properties based on their mass. We also focus on the properties of the simulated population of galaxy-sized haloes within filaments, and compare their properties to the results obtained from the spectroscopic GAMA survey. Simulated and observed filaments with the same length are found to contain an equal number of galaxies, with very similar distribution of masses. The total number of galaxies within each filament and the total/average stellar mass in galaxies can now be used to predict also the large-scale properties of the gas in the host filaments across tens or hundreds of Mpc in scale. These results are the first steps towards the future use of galaxy catalogues in order to select the best targets for observations of the warm-hot intergalactic medium.

  1. Force-induced dynamical properties of multiple cytoskeletal filaments are distinct from that of single filaments

    CERN Document Server

    Das, Dipjyoti; Padinhateeri, Ranjith

    2014-01-01

    How cytoskeletal filaments collectively undergo growth and shrinkage is an intriguing question. Collective properties of multiple bio-filaments (actin or microtubules) undergoing hydrolysis, have not been studied extensively earlier, within simple theoretical frameworks. In this paper, we show that collective properties of multiple filaments under force are very distinct from the properties of a single filament under similar conditions -- these distinctions manifest as follows: (i) the collapse time during collective catastrophe for a multifilament system is much larger than that of a single filament with the same average length, (ii) force-dependence of the cap-size distribution of multiple filaments are quantitatively different from that of single filament, (iii) the diffusion constant associated with the system length fluctuations is distinct for multiple filaments, (iv) switching dynamics of multiple filaments between capped and uncapped states and the fluctuations therein are also distinct. We build a un...

  2. Optical and electrical characteristics of plasma enhanced chemical vapor deposition boron carbonitride thin films derived from N-trimethylborazine precursor

    Energy Technology Data Exchange (ETDEWEB)

    Sulyaeva, Veronica S., E-mail: veronica@niic.nsc.ru [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kosinova, Marina L.; Rumyantsev, Yurii M.; Kuznetsov, Fedor A. [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, Valerii G. [Laboratory of Physical Principles for Integrated Microelectronics, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Kirienko, Viktor V. [Laboratory of Nonequilibrium Semiconductors Systems, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation)

    2014-05-02

    Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition using N-trimethylborazine as a precursor. The films were deposited on Si(100) and fused silica substrates. The grown films were characterized by ellipsometry, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, spectrophotometry, capacitance–voltage and current–voltage measurements. The deposition parameters, such as substrate temperature (373–973 K) and gas phase composition were varied. Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers in the range of 300–2000 nm, the transmittance as high as 93% has been achieved. BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9 depending on the synthesis conditions. - Highlights: • Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition. • N-trimethylborazine was used as a precursor. • Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers (93%). • BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9.

  3. Thermal and plasma enhanced atomic layer deposition of SiO{sub 2} using commercial silicon precursors

    Energy Technology Data Exchange (ETDEWEB)

    Putkonen, Matti, E-mail: matti.putkonen@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, Espoo (Finland); Laboratory of Inorganic Chemistry, Aalto University School of Chemical Technology, P.O. Box 16100, FI-00076, Espoo (Finland); Bosund, Markus [Beneq Oy, Ensimmäinen savu, FI-01510, Vantaa (Finland); Ylivaara, Oili M.E.; Puurunen, Riikka L.; Kilpi, Lauri; Ronkainen, Helena [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, Espoo (Finland); Sintonen, Sakari; Ali, Saima; Lipsanen, Harri [Aalto University School of Electrical Engineering, Department of Micro- and Nanosciences, P.O. Box 13500, FI-00076 Espoo (Finland); Liu, Xuwen; Haimi, Eero; Hannula, Simo-Pekka [Aalto University School of Chemical Technology, Department of Materials Science and Engineering, P.O. Box 16200, FI-00076 Espoo (Finland); Sajavaara, Timo [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Buchanan, Iain; Karwacki, Eugene [Air Products and Chemicals Inc., 7201 Hamilton Blvd., Allentown, PA 18195 (United States); Vähä-Nissi, Mika [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, Espoo (Finland)

    2014-05-02

    In this paper, we report ALD deposition of silicon dioxide using either thermal or plasma enhanced atomic layer deposition (PEALD). Several aminosilanes with differing structures and reactivity were used as silicon precursors in R and D single wafer ALD tools. One of the precursors was also tested on pilot scale batch ALD using O{sub 3} as oxidant and with substrates measuring 150 × 400 mm. The SiO{sub 2} film deposition rate was greatly dependent on the precursors used, highest values being 1.5–2.0 Å/cycle at 30–200 °C for one precursor with an O{sub 2} plasma. According to time-of-flight-elastic recoil detection analysis measurements carbon and nitrogen impurities were relatively low, but hydrogen content increased at low deposition temperatures. - Highlights: • SiO{sub 2} thin film is deposited by thermal and plasma enhanced atomic layer deposition (PEALD). • We report low-temperature deposition of SiO{sub 2} even at 30 °C by PEALD. • Scaling up of the atomic layer deposition processes to industrial batch is reported. • Deposited films had low low compressive residual stress and good conformality.

  4. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    Science.gov (United States)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  5. Mechanical properties of branched actin filaments

    CERN Document Server

    Razbin, Mohammadhosein; Benetatos, Panayotis; Zippelius, Annette

    2015-01-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measur...

  6. Muscle myosin filaments: cores, crowns and couplings.

    Science.gov (United States)

    Squire, John M

    2009-09-01

    Myosin filaments in muscle, carrying the ATPase myosin heads that interact with actin filaments to produce force and movement, come in multiple varieties depending on species and functional need, but most are based on a common structural theme. The now successful journeys to solve the ultrastructures of many of these myosin filaments, at least at modest resolution, have not been without their false starts and erroneous sidetracks, but the picture now emerging is of both diversity in the rotational symmetries of different filaments and a degree of commonality in the way the myosin heads are organised in resting muscle. Some of the remaining differences may be associated with how the muscle is regulated. Several proteins in cardiac muscle myosin filaments can carry mutations associated with heart disease, so the elucidation of myosin filament structure to understand the effects of these mutations has a clear and topical clinical relevance.

  7. Filamentous Biological Entities Obtained from the Stratosphere

    Science.gov (United States)

    Wainwright, Milton; Rose, Christopher E.; Baker, Alexander J.; Wickramasinghe, N. Chandra

    2013-03-01

    We previously reported the presence of large, non-filamentous, biological entities including a diatom fragment in the stratosphere at heights of between 22-27km. Here we report clear evidence for the presence of filamentous entities associated with a relatively large particle mass collected from the stratosphere. Although viable fungi have previously been isolated from the stratosphere, this is the first report of a filamentous microorganism being observed in situ on a stratospheric particle mass.

  8. Solubilization and fractionation of paired helical filaments.

    Science.gov (United States)

    González, P J; Correas, I; Avila, J

    1992-09-01

    Paired helical filaments isolated from brains of two different patients with Alzheimer's disease were extensively treated with the ionic detergent, sodium dodecyl sulphate. Filaments were solubilized at different extents, depending on the brain examined, thus suggesting the existence of two types of paired helical filaments: sodium dodecyl sulphate-soluble and insoluble filaments. In the first case, the number of structures resembling paired helical filaments greatly decreased after the detergent treatment, as observed by electron microscopy. Simultaneously, a decrease in the amount of sedimentable protein was also observed upon centrifugation of the sodium dodecyl sulfate-treated paired helical filaments. A sodium dodecyl sulphate-soluble fraction was isolated as a supernatant after low-speed centrifugation of the sodium dodecyl sulphate-treated paired helical filaments. The addition of the non-ionic detergent Nonidet-P40 to this fraction resulted in the formation of paired helical filament-like structures. When the sodium dodecyl sulphate-soluble fraction was further fractionated by high-speed centrifugation, three subfractions were observed: a supernatant, a pellet and a thin layer between these two subfractions. No paired helical filaments were observed in any of these subfractions, even after addition of Nonidet P-40. However, when they were mixed back together, the treatment with Nonidet P-40 resulted in the visualization of paired helical filament-like structures. These results suggest that at least two different components are needed for the reconstitution of paired helical filaments as determined by electron microscopy. The method described here may allow the study of the components involved in the formation of paired helical filaments and the identification of possible factors capable of blocking this process.

  9. Equilibrium shapes of twisted magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Belovs, Mihails; Cirulis, Teodors; Cebers, Andrejs [University of Latvia, Zellu 8, LV-1002 (Latvia)], E-mail: aceb@tesla.sal.lv

    2009-06-12

    It is shown that ferromagnetic filaments with free and unclamped ends undergo buckling instabilities under the action of twist. Solutions of nonlinear equations describing the buckled shapes are found, and it is shown that the transition to the buckled shape is subcritical if the magnetization is parallel to the field and supercritical when the magnetization of the straight filament is opposite to the external field. Solutions with the localized curvature distribution are found in the case of long filaments. The class of solutions corresponding to helices is described, and the behavior of coiled ferromagnetic and superparamagnetic filaments is compared.

  10. Hydrodynamic interactions between nearby slender filaments

    CERN Document Server

    Man, Yi; Lauga, Eric

    2016-01-01

    Cellular biology abound with filaments interacting through fluids, from intracellular microtubules, to rotating flagella and beating cilia. While previous work has demonstrated the complexity of capturing nonlocal hydrodynamic interactions between moving filaments, the problem remains difficult theoretically. We show here that when filaments are closer to each other than their relevant length scale, the integration of hydrodynamic interactions can be approximately carried out analytically. This leads to a set of simplified local equations, illustrated on a simple model of two interacting filaments, which can be used to tackle theoretically a range of problems in biology and physics.

  11. Probing the Physical Structures of Dense Filaments

    Science.gov (United States)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  12. Deep coronal hole associated with quiescent filament

    Science.gov (United States)

    Kesumaningrum, Rasdewita; Herdiwidjaya, Dhani

    2014-03-01

    We present a study of the morphology of quiescent filament observed by H-alpha Solar Telescope at Bosscha Observatory in association with coronal hole observed by Atmospheric Imaging Assembly (AIA) instrument in 193 Å from Solar Dynamics Observatory. H-alpha images were processed by imaging softwares, namely Iris 5.59 and ImageJ, to enhance the signal to noise ratio and to identify the filament features associated with coronal hole. For images observed on October 12, 2011, November 14, 2011 and January 2, 2012, we identified distinct features of coronal holes above the quiescent filaments. This associated coronal holes have filament-like morphology with a thick long thread as it's `spine', defined as Deep Coronal Hole. Because of strong magnetic field of sunspot, these filaments and coronal holes emerged far from active region and lasted for several days. It is interesting as for segmented filament, deep coronal holes above the filaments lasted for a quite long period of time and merged. This association between filament and deep coronal hole can be explained by filament magnetic loop.

  13. Filamentation with nonlinear Bessel vortices.

    Science.gov (United States)

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.

  14. HST imaging of the dusty filaments and nucleus swirl in NGC4696 at the centre of the Centaurus Cluster

    CERN Document Server

    Fabian, A C; Russell, H R; Pinto, C; Canning, R E A; Salome, P; Sanders, J S; Taylor, G B; Zweibel, E G; Conselice, C J; Combes, F; Crawford, C S; Ferland, G J; Gallagher, J S; Hatch, N A; Johnstone, R M; Reynolds, C S

    2016-01-01

    Narrow-band HST imaging has resolved the detailed internal structure of the 10 kpc diameter H alpha+[NII] emission line nebulosity in NGC4696, the central galaxy in the nearby Centaurus cluster, showing that the dusty, molecular, filaments have a width of about 60pc. Optical morphology and velocity measurements indicate that the filaments are dragged out by the bubbling action of the radio source as part of the AGN feedback cycle. Using the drag force we find that the magnetic field in the filaments is in approximate pressure equipartition with the hot gas. The filamentary nature of the cold gas continues inward, swirling around and within the Bondi accretion radius of the central black hole, revealing the magnetic nature of the gas flows in massive elliptical galaxies. HST imaging resolves the magnetic, dusty, molecular filaments at the centre of the Centaurus cluster to a swirl around and within the Bondi radius.

  15. Origin of Enigmatic Galactic-center Filaments Revealed

    Science.gov (United States)

    2004-06-01

    were oriented perpendicular to the plane of the Galaxy, which would have aligned them with the Galaxy’s own magnetic field. "The problem with this hypothesis is that more recent images have revealed a population of weaker filaments oriented randomly in relation to the plane of the Galaxy," said Yusef-Zadeh. "This makes it difficult to explain the origin of the filaments by an organized Galactic magnetic field." In March and June of 2004, a team of astronomers using the GBT made images of the Galactic center at various wavelengths. The purpose of these surveys was to help identify radio features produced by hot gas (thermal emission) and those produced in magnetic fields (non-thermal emission). In general, thermal features radiate more strongly at shorter wavelengths and non-thermal at longer wavelengths. By comparing the GBT images with earlier VLA data taken of the same region, Yusef-Zadeh determined that a number of the non-thermal filaments seemed to connect to concentrated areas of thermal emission, which identify pockets of star formation. Galatic Center Combined radio image from the Very Large Array and Green Bank Telescope. The linear filaments near the top are some of the nonthermal radio filaments (NRFs) studied by the researchers. Other features, such as supernova remnants (SNRs) and the area surrounding our Galaxy's supermassive black hole (Sgr A) are shown. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) "What this showed us is that two seemingly disparate processes, thermal and non-thermal radio emission, can be created by the very same phenomenon," said Yusef-Zadeh. "In this case, that phenomenon is pockets of starburst activity." Yusef-Zadeh notes that the exact mechanism for how the areas of starburst generate the magnetic fields is still being investigated. "There are many ideas about the mechanism that generates these filaments," added Yusef-Zadeh, "but one possibility is that they are produced by the collision of winds

  16. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    Science.gov (United States)

    Choi, S. W.; Lucovsky, G.; Bachmann, K. J.

    1992-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) have been grown by remote plasma enhanced chemical vapor deposition utilizing in situ-generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (RF) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate; however, the saturation of the growth rate at even higher RF power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  17. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    Science.gov (United States)

    Choi, S. W.; Lucovsky, G.; Bachmann, Klaus J.

    1993-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) were grown by remote plasma enhanced chemical vapor deposition utilizing in situ generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (rf) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate, however, the saturation of the growth rate at even higher rf power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  18. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology

    Science.gov (United States)

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-01

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (˜0-600 s). Silicon nanopores within a 50-400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices.

  19. Microstructural modification of nc-Si/SiO{sub x} films during plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.W. [State Key Laboratory of Silicon Materials Science, Zhejiang University, Hangzhou 310027 (China)

    2005-07-01

    Nanocrystalline-silicon embedded silicon oxide films are prepared by plasma-enhanced chemical vapor deposition (PECVD) at 300 C without post-heat treatment. Measurements of XPS, IR, XRD, and HREM are performed. Microstructural modifications are found occurring throughout the film deposition. The silica network with a high oxide state is suggested to be formed directly under the abduction of the former deposited layer, rather than processing repeatedly from the original low-oxide state of silica. Nanocrystalline silicon particles with a size of 6-10 nm are embedded in the SiO{sub x} film matrix, indicating the potential application in Si-based optoelectronic integrity. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Preparation and Characterization of DLC Films by Twinned ECR Microwave Plasma Enhanced CVD for Microelectromechanical Systems (MEMS) Applications

    Institute of Scientific and Technical Information of China (English)

    LI Xin; TANG Zhen-an; DENG Xin-lu; SHEN Yu-xiu; DING Hai-tao

    2004-01-01

    Diamond-like carbon (DLC) films have recently been pursued as the protection of MEMS against their friction and wear.Plasma enhanced chemical vapor deposition (PECVD) technique is very attractive to prepare DLC coating for MEMS.This paper describes the preparation of DLC films using twinned electron cyclotron resonance (ECR) microwave PECVD process.Raman spectra confirmed the DLC characteristics of the films.Fourier-transform infrared (FT-IR)characterization indicates the carbon is bonded in the form sp3 and sp2 with hydrogen participating in bonding.The surface roughness of the films is as low as approximately 0.093nm measured with an atomic force microscope.A CERT microtribometer system is employed to obtain information about the scratch resistance,friction properties,and sliding wear resistance of the films.The results show the deposited DLC films have low friction and good scratch/wear resistance properties.

  1. Room temperature radio-frequency plasma-enhanced pulsed laser deposition of ZnO thin films

    Science.gov (United States)

    Huang, S.-H.; Chou, Y.-C.; Chou, C.-M.; Hsiao, V. K. S.

    2013-02-01

    In this study, we compared the crystalline structures, optical properties, and surface morphologies of ZnO thin films deposited on silicon and glass substrates by conventional pulsed laser deposition (PLD) and radio-frequency (RF) plasma-enhanced PLD (RF-PEPLD). The depositions were performed at room temperature under 30-100 mTorr pressure conditions. The RF-PEPLD process was found to have deposited a ZnO structure with preferred (0 0 2) c-axis orientation at a higher deposition rate; however, the RF-PEPLD process generated more defects in the thin films. The application of oxygen pressure to the RF-PEPLD process reduced defects effectively and also increased the deposition rate.

  2. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology.

    Science.gov (United States)

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-24

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (∼0-600 s). Silicon nanopores within a 50-400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices.

  3. Room-Temperature Ferromagnetic ZnMnO Thin Films Synthesized by Plasma Enhanced Chemical Vapour Deposition Method

    Institute of Scientific and Technical Information of China (English)

    LIN Ying-Bin; ZHANG Feng-Ming; DU You-Wei; HUANG Zhi-Gao; ZHENG Jian-Guo; LU Zhi-Hai; ZOU Wen-Qin; LU Zhong-Lin; XU Jian-Ping; JI Jian-Ti; LIU Xing-Chong; WANG Jian-Feng; LV Li-Ya

    2007-01-01

    Room-temperature ferromagnetic Mn-doped ZnO films are grown on Si (001) substrates by plasma enhanced chemical vapour deposition (PECVD). X-ray diffraction measurements reveal that the Zn1-xMnxO films have the single-phase wurtzite structure. X-ray photoelectron spectroscopy indicates the existence of Mn2+ ions in Mndoped ZnO films. Furthermore, the decreasing additional Raman peak with increasing Mn-doping is considered to relate to the substitution of Mn ions for the Zn ions in ZnO lattice. Superconducting quantum interference device (SQUID) measurements demonstrate that Mn-doped ZnO films have ferromagnetic behaviour at room temperature.

  4. High rate deposition of microcrystalline silicon films by high-pressure radio frequency plasma enhanced chemical vapor deposition (PECVD)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality μc-Si:H films have been achieved with a high deposition rate of 7.8 /s at a high pressure. The Voc of 560 mV and the FF of 0.70 have been achieved for a single-junction μc-Si:H p-i-n solar cell at a deposition rate of 7.8 /s.

  5. Plasma-Enhanced Atomic Layer Deposition (PEALD of TiN using the Organic Precursor Tetrakis(ethylmethylamidoTitanium (TEMAT

    Directory of Open Access Journals (Sweden)

    Chen Z.X.

    2016-01-01

    Full Text Available This paper presents the plasma-enhanced atomic layer deposition (PEALD of titanium nitride (TiN using the organic precursor tetrakis(ethylmethylamidotitanium (TEMAT, with remote ammonia (NH3 plasma as reactant gas. This work investigates the impact of substrate temperature, from 150-350°C, and plasma times, from 5-30s, on deposition rate, resistivity, carbon content, N/Ti ratio and film density. The lowest resistivity of ~ 250 μΩ.cm was achieved at substrate temperatures 300-350°C and plasma time of 20s. At low substrate temperatures, although deposition was possible, carbon concentration was found to be higher, which thus affects film resistivity and density.

  6. A Statistical Study of Solar Filament Eruptions

    Science.gov (United States)

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  7. A Hot Spot in Coma

    CERN Document Server

    Donnelly, R H; Forman, W R; Jones, C; Churazov, E; Gilfanov, M R

    1999-01-01

    We study the temperature structure of the central part (r<18' ~0.7 h50**-1 Mpc) of the Coma cluster of galaxies using ASCA data. Two different analysis methods produce results in good agreement with each other and reveal the presence of interesting structures in the gas temperature distribution. Globally, the average temperature in the center of the cluster is 9.0 +/- 0.6 keV in good agreement with previous results. Superimposed on this, we find a cool area with temperatures of 4-6 keV associated with a filament of X-ray emission extending southeast from the cluster center detected by Vikhlinin and coworkers. We also find a hot spot with a temperature of around 13 keV displaced north from the central peak of emission. The distribution of the gas temperatures and relative specific entropies suggests that the cool features are most likely gas stripped from a galaxy group centered on NGC 4874 falling toward the core from outside, while the hot spot located ``ahead'' of this in-falling gas is due to shock heat...

  8. Obtaining of films of tungsten trioxide (WO3) by resistive heating of a tungsten filament

    OpenAIRE

    2008-01-01

    Thin film of tungsten oxide (WO3) has been studied extensively as an electrochromic material and has numerous applications in electrochromic devices, smart windows, gas sensors and optical windows. In order to explore the possibility of using it in electrochromic devices, thorough study the optical properties of the WO3 is an important step. The WO3 layers have been grown by hot-filament metal oxide deposition technique under atmospheric pressure and an oxygen atmosphere. By FTIR and Raman sc...

  9. TENSILE FORCE AT BREAK OF GEL-SPUN HOT-DRAWN ULTRAHIGH MOLECULAR-WEIGHT POLYETHYLENE FIBERS

    NARCIS (Netherlands)

    PENNING, JP; PENNINGS, AJ

    1991-01-01

    Fibres obtained by gel spinning of ultrahigh molecular weight polyethylene (UHMWPE) were drawn to various ratios, and the improvement of the tensile strength of the hot-drawn filaments with increasing draw ratio has been studied. The tensile force at break of gel-spun/hot-drawn UHMWPE fibres appeare

  10. Spectral stability of Alfven filament chains

    NARCIS (Netherlands)

    Bergmans, J.; Kuvshinov, B. N.; Lakhin, V. P.; Schep, T. J.

    2000-01-01

    The two-fluid model of nonlinear Alfven perturbations has singular solutions in the form of current-vortex filaments. We investigate analytically and numerically the spectral stability of single and double rows of filaments. Staggered and non-staggered double rows (von Karman streets) are studied. I

  11. Spectral stability of Alfven filament configurations

    NARCIS (Netherlands)

    Bergmans, J.; Kuvshinov, B. N.; Lakhin, V. P.; Schep, T. J.

    2000-01-01

    The two-fluid plasma equations that describe nonlinear Alfven perturbations have singular solutions in the form of current-vortex filaments. These filaments are analogous to point vortices in ideal hydrodynamics and geostrophic fluids. In this work the spectral (linear) stability of current-vortex f

  12. Radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Fundamenski, W.

    2006-01-01

    reduces the radial velocity of isolated filaments. The results are discussed in the context of convective transport in scrape-off layer plasmas, comprising both blob-like structures in low confinement modes and edge localized mode filaments in unstable high confinement regimes. (c) 2006 American Institute...

  13. Reconstitution of the muscle thin filament from recombinant troponin components and the native thin filaments.

    Science.gov (United States)

    Matsumoto, Fumiko; Deshimaru, Shungo; Oda, Toshiro; Fujiwara, Satoru

    2010-04-15

    We have developed a technique by which muscle thin filaments are reconstituted from the recombinant troponin components and the native thin filaments. By this technique, the reconstituted troponin complex is exchanged into the native thin filaments in the presence of 20% glycerol and 0.3M KCl at pH 6.2. More than 90% of endogenous troponin complex was replaced with the recombinant troponin complex. Structural integrity and Ca(2+) sensitivity of the reconstituted thin filament prepared by this technique was confirmed by X-ray fiber diffraction measurements and the thin filament-activated myosin subfragment 1 ATPase measurements, respectively.

  14. Solar Filaments as Tracers of Subsurface Processes

    Indian Academy of Sciences (India)

    D. M. Rust

    2000-09-01

    Solar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields' sources in the photo-sphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.

  15. Quantifying protein diffusion and capture on filaments

    CERN Document Server

    Reithmann, Emanuel; Frey, Erwin

    2015-01-01

    The functional relevance of regulating proteins is often limited to specific binding sites such as the ends of microtubules or actin-filaments. A localization of proteins on these functional sites is of great importance. We present a quantitative theory for a diffusion and capture process, where proteins diffuse on a filament and stop diffusing when reaching the filament's end. It is found that end-association after one-dimensional diffusion is the main source for tip-localization of such proteins. As a consequence, diffusion and capture is highly efficient in enhancing the reaction velocity of enzymatic reactions, where proteins and filament ends are to each other as enzyme and substrate. We show that the reaction velocity can effectively be described within a Michaelis-Menten framework. Together one-dimensional diffusion and capture beats the (three-dimensional) Smoluchowski diffusion limit for the rate of protein association to filament ends.

  16. Theory of Semiflexible Filaments and Networks

    Directory of Open Access Journals (Sweden)

    Fanlong Meng

    2017-02-01

    Full Text Available We briefly review the recent developments in the theory of individual semiflexible filaments, and of a crosslinked network of such filaments, both permanent and transient. Starting from the free energy of an individual semiflexible chain, models on its force-extension relation and other mechanical properties such as Euler buckling are discussed. For a permanently crosslinked network of filaments, theories on how the network responds to deformation are provided, with a focus on continuum approaches. Characteristic features of filament networks, such as nonlinear stress-strain relation, negative normal stress, tensegrity, and marginal stability are discussed. In the new area of transient filament network, where the crosslinks can be dynamically broken and re-formed, we show some recent attempts for understanding the dynamics of the crosslinks, and the related rheological properties, such as stress relaxation, yield stress and plasticity.

  17. Natural colorants from filamentous fungi.

    Science.gov (United States)

    Torres, Fábio Aurélio Esteves; Zaccarim, Bruna Regina; de Lencastre Novaes, Letícia Celia; Jozala, Angela Faustino; Dos Santos, Carolina Alves; Teixeira, Maria Francisca Simas; Santos-Ebinuma, Valéria Carvalho

    2016-03-01

    In the last years, there is a trend towards the replacement of synthetic colorants by natural ones, mainly due to the increase of consumer demand for natural products. The natural colorants are used to enhance the appearance of pharmaceutical products, food, and different materials, making them preferable or attractive. This review intends to provide and describe a comprehensive overview of the history of colorants, from prehistory to modern time, of their market and their applications, as well as of the most important aspects of the fermentation process to obtain natural colorants. Focus is given to colorants produced by filamentous fungal species, aiming to demonstrate the importance of these microorganisms and biocompounds, highlighting the production performance to get high yields and the aspects of conclusion that should be taken into consideration in future studies about natural colorants.

  18. Particles trajectories in magnetic filaments

    CERN Document Server

    Bret, Antoine

    2015-01-01

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  19. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...... of molecular tools for E. cymbalariae to enable a faster and more efficient approach for genetic comparisons between Eremothecium genus fungi....

  20. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...... of molecular tools for E. cymbalariae to enable a faster and more efficient approach for genetic comparisons between Eremothecium genus fungi....

  1. Particles trajectories in magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  2. Automatic Detect and Trace of Solar Filaments

    Science.gov (United States)

    Fang, Cheng; Chen, P. F.; Tang, Yu-hua; Hao, Qi; Guo, Yang

    We developed a series of methods to automatically detect and trace solar filaments in solar Hα images. The programs are able to not only recognize filaments and determine their properties, such as the position, the area and other relevant parameters, but also to trace the daily evolution of the filaments. For solar full disk Hα images, the method consists of three parts: first, preprocessing is applied to correct the original images; second, the Canny edge-detection method is used to detect the filaments; third, filament properties are recognized through the morphological operators. For each Hα filament and its barb features, we introduced the unweighted undirected graph concept and adopted Dijkstra shortest-path algorithm to recognize the filament spine; then, using polarity inversion line shift method for measuring the polarities in both sides of the filament to determine the filament axis chirality; finally, employing connected components labeling method to identify the barbs and calculating the angle between each barb and spine to indicate the barb chirality. Our algorithms are applied to the observations from varied observatories, including the Optical & Near Infrared Solar Eruption Tracer (ONSET) in Nanjing University, Mauna Loa Solar Observatory (MLSO) and Big Bear Solar Observatory (BBSO). The programs are demonstrated to be effective and efficient. We used our method to automatically process and analyze 3470 images obtained by MLSO from January 1998 to December 2009, and a butterfly diagram of filaments is obtained. It shows that the latitudinal migration of solar filaments has three trends in the Solar Cycle 23: The drift velocity was fast from 1998 to the solar maximum; after the solar maximum, it became relatively slow and after 2006, the migration became divergent, signifying the solar minimum. About 60% filaments with the latitudes larger than 50 degree migrate towards the Polar Regions with relatively high velocities, and the latitudinal migrating

  3. Unwinding motion of a twisted active region filament

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  4. Unwinding Motion of a Twisted Active Region Filament

    Science.gov (United States)

    Yan, X. L.; Xue, Z. K.; Liu, J. H.; Kong, D. F.; Xu, C. L.

    2014-12-01

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  5. Striation and convection in penumbral filaments

    Science.gov (United States)

    Spruit, H. C.; Scharmer, G. B.; Löfdahl, M. G.

    2010-10-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward propagating striations with inclination angles suggesting that they are aligned with the local magnetic field. We interpret it as the equivalent of the striations seen in the walls of small isolated magnetic structures. Their origin is then a corrugation of the boundary between an overturning convective flow inside the filament and the magnetic field wrapping around it. The outward propagation is a combination of a pattern motion due to the downflow observed along the sides of bright filaments, and the Evershed flow. The observed short wavelength of the striation argues against the existence of a dynamically significant horizontal field inside the bright filaments. Its intensity contrast is explained by the same physical effect that causes the dark cores of filaments, light bridges and “canals”. In this way striation represents an important clue to the physics of penumbral structure and its relation with other magnetic structures on the solar surface. We put this in perspective with results from the recent 3-D radiative hydrodynamic simulations. 4 movies are only available in electronic form at http://www.aanda.org

  6. Filamentation of Campylobacter in broth cultures

    Directory of Open Access Journals (Sweden)

    Nacheervan M Ghaffar

    2015-06-01

    Full Text Available The transition from rod to filamentous cell morphology has been identified as a response to stressful conditions in many bacterial species and has been ascribed to confer certain survival advantages. Filamentation of Campylobacter jejuni was demonstrated to occur spontaneously on entry in to stationary phase distinguishing it from many other bacteria where a reduction in size is more common. The aim of this study was to investigate the cues that give rise to filamentation of C. jejuni and C. coli and gain insights into the process. Using minimal medium, augmentation of filamentation occurred and it was observed that this morphological change was wide spread amongst C. jejuni strains tested but was not universal in C. coli strains. Filamentation did not appear to be due to release of diffusible molecules, toxic metabolites, or be in response to oxidative stress in the medium. Separated filaments exhibited greater intracellular ATP contents (2.66 to 17.4 fg than spiral forms (0.99 to 1.7 fg and showed enhanced survival in water at 4oC and 37oC compared to spiral cells. These observations support the conclusion that the filaments are adapted to survive extra-intestinal environments. Differences in cell morphology and physiology need to be considered in the context of the design of experimental studies and the methods adopted for the isolation of campylobacters from food, clinical and environmental sources.

  7. Star forming filaments in warm dark models

    CERN Document Server

    Gao, Liang; Springel, Volker

    2014-01-01

    We performed a hydrodynamical cosmological simulation of the formation of a Milky Way-like galaxy in a warm dark matter (WDM) cosmology. Smooth and dense filaments, several co-moving mega parsec long, form generically above z 2 in this model. Atomic line cooling allows gas in the centres of these filaments to cool to the base of the cooling function, resulting in a very striking pattern of extended Lyman-limit systems (LLSs). Observations of the correlation function of LLSs might hence provide useful limits on the nature of the dark matter. We argue that the self-shielding of filaments may lead to a thermal instability resulting in star formation. We implement a sub-grid model for this, and find that filaments rather than haloes dominate star formation until z 6. Reionisation decreases the gas density in filaments, and the more usual star formation in haloes dominates below z 6, although star formation in filaments continues until z=2. Fifteen per cent of the stars of the z=0 galaxy formed in filaments. At hi...

  8. Filamentous Biopolymers on Surfaces: Atomic Force Microscopy Images Compared with Brownian Dynamics Simulation of Filament Deposition

    Science.gov (United States)

    Mücke, Norbert; Klenin, Konstantin; Kirmse, Robert; Bussiek, Malte; Herrmann, Harald; Hafner, Mathias; Langowski, Jörg

    2009-01-01

    Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarly on the interaction strength between the filament and the support: i) For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii) For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a ‘trapping’ mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these ‘ideal’ adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica (‘ideal’ trapping) and on glass (‘ideal’ equilibrated) with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions. PMID:19888472

  9. Filamentous biopolymers on surfaces: atomic force microscopy images compared with Brownian dynamics simulation of filament deposition.

    Directory of Open Access Journals (Sweden)

    Norbert Mücke

    Full Text Available Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarily on the interaction strength between the filament and the support: i For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a 'trapping' mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these 'ideal' adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica ('ideal' trapping and on glass ('ideal' equilibrated with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions.

  10. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  11. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253 but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  12. Can We Determine the Filament Chirality by the Filament Footpoint Location or the Barb-bearing?

    CERN Document Server

    Hao, Q; Fang, C; Chen, P F; Cao, W

    2015-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the unweighted undirected graph concept and adopt the Dijkstra shortest-path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with H-alpha filtergrams from the Big Bear Solar Observatory (BBSO) H-alpha archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have ...

  13. Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas microwave CVD system

    Energy Technology Data Exchange (ETDEWEB)

    Fendrych, Frantisek; Taylor, Andrew; Peksa, Ladislav; Kratochvilova, Irena; Kluiber, Zdenek; Fekete, Ladislav [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i, Na Slovance 2, CZ-18221 Prague 8 (Czech Republic); Vlcek, Jan [Department of Physics and Measurement, Institute of Chemical Technology Prague, Technicka 5, CZ-16628 Prague 6 (Czech Republic); Rezacova, Vladimira; Petrak, Vaclav [Faculty of Biomedical Engineering, Czech Technical University, Sitna 3105, CZ-27201 Kladno 2 (Czech Republic); Liehr, Michael [Leybold Optics Dresden GmbH, Zur Wetterwarte 50, D-01109 Dresden (Germany); Nesladek, Milos, E-mail: fendrych@fzu.c [IMOMEC division, IMEC, Institute for Materials Research, University Hasselt, Wetenschapspark 1, B-3590 Diepenbeek (Belgium)

    2010-09-22

    Industrial applications of plasma-enhanced chemical vapour deposition (CVD) diamond grown on large area substrates, 3D shapes, at low substrate temperatures and on standard engineering substrate materials require novel plasma concepts. Based on the pioneering work of the group at AIST in Japan, the high-density coaxial delivery type of plasmas has been explored (Tsugawa et al 2006 New Diamond Front. Carbon Technol. 16 337-46). However, an important challenge is to obtain commercially interesting growth rates at very low substrate temperatures. In this work we introduce the concept of novel linear antenna sources, designed at Leybold Optics Dresden, using high-frequency pulsed MW discharge with a high plasma density. This type of pulse discharges leads to the preparation of nanocrystalline diamond (NCD) thin films, compared with ultra-NCD thin films prepared in (Tsugawa et al 2006 New Diamond Front. Carbon Technol. 16 337-46). We present optical emission spectroscopy data for the CH{sub 4}-CO{sub 2}-H{sub 2} gas chemistry and we discuss the basic properties of the NCD films grown.

  14. Influence of ignition condition on the growth of silicon thin films using plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Hai-Long; Liu Feng-Zhen; Zhu Mei-Fang; Liu Jin-Long

    2012-01-01

    The influences of the plasma ignition condition in plasma enhanced chemical vapour deposition (PECVD) on the interfaces and the microstructures of hydrogenated microcrystalline Si (μc-Si:H) thin films are investigated.The plasma ignition condition is modified by varying the ratio of SiH4 to H2 (RH).For plasma ignited with a constant gas ratio,the time-resolved optical emission spectroscopy presents a low value of the emission intensity ratio of Hα to SiH(IHα/IsiH) at the initial stage,which leads to a thick amorphous incubation layer.For the ignition condition with a profiling RH,the higher IHα/IsiH values are realized.By optimizing the RH modulation,a uniform crystallinity along the growth direction and a denser μc-Si:H film can be obtained.However,an excessively high IHα/IsiH* may damage the interface properties,which is indicated by capacitance-voltage (C-V) measurements.Well controlling the ignition condition is critically important for the applications of Si thin films.

  15. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  16. Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO2/TiN stacks

    Science.gov (United States)

    Chernikova, A. G.; Kuzmichev, D. S.; Negrov, D. V.; Kozodaev, M. G.; Polyakov, S. N.; Markeev, A. M.

    2016-06-01

    We report the possibility of employment of low temperature (≤330 °C) plasma-enhanced atomic layer deposition for the formation of both electrodes and hafnium-oxide based ferroelectric in the metal-insulator-metal structures. The structural and ferroelectric properties of La doped HfO2-based layers and its evolution with the change of both La content (2.1, 3.7 and 5.8 at. %) and the temperature of the rapid thermal processing (550-750 °C) were investigated in detail. Ferroelectric properties emerged only for 2.1 and 3.7 at. % of La due to the structural changes caused by the given doping levels. Ferroelectric properties were also found to depend strongly on annealing temperature, with the most robust ferroelectric response for lowest La concentration and intermediate 650 °C annealing temperature. The long term wake-up effect and such promising endurance characteristics as 3 × 108 switches by bipolar voltage cycles with 30 μs duration and ± 3 MV/cm amplitude without any decrease of remnant polarization value were demonstrated.

  17. Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

    Directory of Open Access Journals (Sweden)

    Jörg Haeberle

    2013-11-01

    Full Text Available We report on results on the preparation of thin (2O3 films on silicon substrates using thermal atomic layer deposition (T-ALD and plasma enhanced atomic layer deposition (PE-ALD in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt and 200 °C. We show data from spectroscopic ellipsometry (thickness, refractive index, growth rate over 4” wafers and correlate them to X-ray photoelectron spectroscopy (XPS results. The 200 °C T-ALD and PE-ALD processes yield films with similar refractive indices and with oxygen to aluminum elemental ratios very close to the stoichiometric value of 1.5. However, in both also fragments of the precursor are integrated into the film. The PE-ALD films show an increased growth rate and lower carbon contaminations. Reducing the deposition temperature down to rt leads to a higher content of carbon and CH-species. We also find a decrease of the refractive index and of the oxygen to aluminum elemental ratio as well as an increase of the growth rate whereas the homogeneity of the film growth is not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films.

  18. Plasma-enhanced chemical vapor deposition of low- loss as-grown germanosilicate layers for optical waveguides

    Science.gov (United States)

    Ay, Feridun; Agan, Sedat; Aydinli, Atilla

    2004-08-01

    We report on systematic growth and characterization of low-loss germanosilicate layers for use in optical waveguides. Plasma enhanced chemical vapor deposition (PECVD) technique was used to grow the films using silane, germane and nitrous oxide as precursor gases. Chemical composition was monitored by Fourier transform infrared (FTIR) spectroscopy. N-H bond concentration of the films decreased from 0.43x1022 cm-3 down to below 0.06x1022 cm-3, by a factor of seven as the GeH4 flow rate increased from 0 to 70 sccm. A simultaneous decrease of O-H related bonds was also observed by a factor of 10 in the same germane flow range. The measured TE rate increased from 5 to 50 sccm, respectively. In contrast, the propagation loss values for TE polarization at λ=632.8 nm were found to increase from are 0.20 +/- 0.02 to 6.46 +/- 0.04 dB/cm as the germane flow rate increased from 5 to 50 sccm, respectively. In contrast, the propagation loss values for TE polarization at λ=1550 nm were found to decrease from 0.32 +/- 0.03 down to 0.14 +/- 0.06 dB/cm for the same samples leading to the lowest values reported so far in the literature, eliminating the need for high temperature annealing as is usually done for these materials to be used in waveguide devices.

  19. Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition

    Science.gov (United States)

    Park, Hamin; Kim, Tae Keun; Cho, Sung Woo; Jang, Hong Seok; Lee, Sang Ick; Choi, Sung-Yool

    2017-01-01

    Hexagonal boron nitride (h-BN) has been previously manufactured using mechanical exfoliation and chemical vapor deposition methods, which make the large-scale synthesis of uniform h-BN very challenging. In this study, we produced highly uniform and scalable h-BN films by plasma-enhanced atomic layer deposition, which were characterized by various techniques including atomic force microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. The film composition studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy corresponded to a B:N stoichiometric ratio close to 1:1, and the band-gap value (5.65 eV) obtained by electron energy loss spectroscopy was consistent with the dielectric properties. The h-BN-containing capacitors were characterized by highly uniform properties, a reasonable dielectric constant (3), and low leakage current density, while graphene on h-BN substrates exhibited enhanced electrical performance such as the high carrier mobility and neutral Dirac voltage, which resulted from the low density of charged impurities on the h-BN surface.

  20. Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films.

    Science.gov (United States)

    Haeberle, Jörg; Henkel, Karsten; Gargouri, Hassan; Naumann, Franziska; Gruska, Bernd; Arens, Michael; Tallarida, Massimo; Schmeißer, Dieter

    2013-01-01

    We report on results on the preparation of thin (<100 nm) aluminum oxide (Al2O3) films on silicon substrates using thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt) and 200 °C. We show data from spectroscopic ellipsometry (thickness, refractive index, growth rate) over 4" wafers and correlate them to X-ray photoelectron spectroscopy (XPS) results. The 200 °C T-ALD and PE-ALD processes yield films with similar refractive indices and with oxygen to aluminum elemental ratios very close to the stoichiometric value of 1.5. However, in both also fragments of the precursor are integrated into the film. The PE-ALD films show an increased growth rate and lower carbon contaminations. Reducing the deposition temperature down to rt leads to a higher content of carbon and CH-species. We also find a decrease of the refractive index and of the oxygen to aluminum elemental ratio as well as an increase of the growth rate whereas the homogeneity of the film growth is not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films.

  1. Thermal and plasma enhanced atomic layer deposition of TiO{sub 2}: Comparison of spectroscopic and electric properties

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chittaranjan, E-mail: chittaiit@yahoo.com; Henkel, Karsten; Tallarida, Massimo; Schmeißer, Dieter [Brandenburg University of Technology Cottbus-Senftenberg, Applied Physics and Sensors, K.-Wachsmann-Allee 17, D-03046 Cottbus (Germany); Gargouri, Hassan; Kärkkänen, Irina; Schneidewind, Jessica; Gruska, Bernd; Arens, Michael [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

    2015-01-15

    Titanium oxide (TiO{sub 2}) deposited by atomic layer deposition (ALD) is used as a protective layer in photocatalytic water splitting system as well as a dielectric in resistive memory switching. The way ALD is performed (thermally or plasma-assisted) may change the growth rate as well as the electronic properties of the deposited films. In the present work, the authors verify the influence of the ALD mode on functional parameters, by comparing the growth rate and electronic properties of TiO{sub 2} films deposited by thermal (T-) and plasma-enhanced (PE-) ALD. The authors complete the study with the electrical characterization of selected samples by means of capacitance–voltage and current–voltage measurements. In all samples, the authors found a significant presence of Ti{sup 3+} states, with the lowest content in the PE-ALD grown TiO{sub 2} films. The observation of Ti{sup 3+} states was accompanied by the presence of in-gap states above the valence band maximum. For films thinner than 10 nm, the authors found also a strong leakage current. Also in this case, the PE-ALD films showed the weakest leakage currents, showing a correlation between the presence of Ti{sup 3+} states and leakage current density.

  2. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  3. Room temperature plasma enhanced atomic layer deposition for TiO{sub 2} and WO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Alexander; Schnabel, Hans-Dieter, E-mail: Hans.Dieter.Schnabel@fh-zwickau.de; Reinhold, Ullrich; Rauer, Sebastian; Neidhardt, Andreas [Department of Physical Engineering and Informatics, University of Applied Science, Westsächsische Hochschule Zwickau, Dr.-Friedrichs-Ring 2a, 08056 Zwíckau (Germany)

    2016-01-15

    This paper presents a study on plasma enhanced atomic layer deposition (ALD) of TiO{sub 2} and WO{sub 3} films on silicon substrates. At low temperatures, ALD processes, which are not feasible at high temperatures, could be possible. For example, temperatures at 180 °C and above allow no WO{sub 3} ALD process with WF{sub 6} as a precursor because etching processes hinder film growth. Further low temperature deposition techniques are needed to coat temperature sensitive materials. For the deposition, WF{sub 6} and TiCl{sub 4} are used as metal precursors and O{sub 2} and H{sub 2}O as oxygen sources. The depositions were accomplished in the temperature range of 30 °C up to 180 °C for both metal oxides. Spectroscopic ellipsometry, x-ray reflection, and grazing incidence diffraction were used to investigate the deposited ALD thin films. Film growth, density, crystallinity, and roughness are discussed as functions of temperature after ensuring the ALD requirement of self-saturating adsorption. Growth rates and measured material properties are in good agreement with literature data.

  4. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Science.gov (United States)

    Provine, J.; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin; Kim, Ki-Hyun; Prinz, Fritz B.

    2016-06-01

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiNx), particularly for use a low k dielectric spacer. One of the key material properties needed for SiNx films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiNx and evaluate the film's WER in 100:1 dilutions of HF in H2O. The remote plasma capability available in PEALD, enabled controlling the density of the SiNx film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiNx of 6.1 Å/min, which is similar to WER of SiNx from LPCVD reactions at 850 °C.

  5. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.

  6. Plasma-enhanced chemical vapor deposition of ortho-carborane: structural insights and interaction with Cu overlayers.

    Science.gov (United States)

    James, Robinson; Pasquale, Frank L; Kelber, Jeffry A

    2013-09-01

    X-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) are used to investigate the chemical and electronic structure of boron carbide films deposited from ortho-carborane precursors using plasma-enhanced chemical vapor deposition (PECVD), and the reactivity of PECVD films toward sputter-deposited Cu overlayers. The XPS data provide clear evidence of enhanced ortho-carborane reactivity with the substrate, and of extra-icosahedral boron and carbon species; these results differ from results for films formed by condensation and electron beam induced cross-linking of ortho-carborane (EBIC films). The UPS data show that the valence band maximum for PECVD films is ∼1.5 eV closer to the Fermi level than for EBIC films. The XPS data also indicate that PECVD films are resistant to thermally-stimulated diffusion of Cu at temperatures up to 1000 K in UHV, in direct contrast to recently reported results, but important for applications in neutron detection and in microelectronics.

  7. Bamboo and herringbone shaped carbon nanotubes and carbon nanofibres synthesized in direct current-plasma enhanced chemical vapour deposition.

    Science.gov (United States)

    Zhang, Lu; Chen, Li; Wells, Torquil; El-Gomati, Mohamed

    2009-07-01

    Carbon nanotubes with different structures were catalytically synthesized on Ni coated SiO2/Si substrate in a Direct Current Plasma Enhanced Chemical Vapour Deposition system, in which C2H2 acted as the carbon source and NH3 as the etchant gas. A Scanning Electron Microscope study showed that carbon nanotubes were all vertically aligned with respect to the substrate, with diameters ranging from 10 nm to 200 nm. Different sizes of Ni catalyst particles were observed on the tips of carbon nanotubes. Transmission Electron Microscopy was used to study the morphology of the grown tubes and the results obtained show that the diameters and structures of these carbon nanotubes were closely correlated to the sizes and structures of the Ni nanoparticles. Two main structures namely bamboo shaped carbon nanotubes and herringbone shaped carbon nanofibres were found on the same sample. It is suggested that by controlling the pre-growth condition, desired structure of carbon nanotubes or carbon nanofibres could be produced for practical applications.

  8. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Kim, Ki-Hyun [Manufacturing Technology Center, Samsung Electronics, Suwon, Gyeonggi-Do (Korea, Republic of); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-06-15

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{sub x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.

  9. Plasma-enhanced chemical vapor deposition of low-loss SiON optical waveguides at 15-microm wavelength.

    Science.gov (United States)

    Bruno, F; Guidice, M D; Recca, R; Testa, F

    1991-11-01

    Good optical-quality SiON layers deposited upon a SiO(2) buffer layer placed upon silicon wafers have been obtained by using plasma-enhanced chemical vapor deposition from SiH(4), NH(3), and N(2)O. Optical planar waveguides with a thickness of 5 microm and a refractive index of 1.470 have been deposited and investigated in the wavelength region of 1.3-1.6 microm. Three absorption bands at 1.40, 1.48, and 1.54 microm have been detected and interpreted as Si-OH, N-H, and Si-H vibrational modes, respectively. Absorption losses of 3.8 dB/cm at 1.4 microm and 3.2 dB/cm at 1.51 microm have been measured. A mild annealing at approximately 800 degrees C completely removes the band at 1.40 microm, whereas strong reduction of absorption at 1.51 microm requires 3 h of annealing at 1100 degrees C. As a result, propagation losses of 0.36 to 0.54 dB/cm have been measured at 1.54-microm wavelength.

  10. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Antonia Terriza

    2014-01-01

    Full Text Available The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide (PLGA membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD, onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR. HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes.

  11. A new perspective on structural and morphological properties of carbon nanotubes synthesized by Plasma Enhanced Chemical Vapor Deposition technique

    Science.gov (United States)

    Salar Elahi, A.; Agah, K. Mikaili; Ghoranneviss, M.

    CNTs were produced on a silicon wafer by Plasma Enhanced Chemical Vapor Deposition (PECVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs.

  12. Highly Uniform Wafer-scale Synthesis of α-MoOsub>3sub> by Plasma Enhanced Chemical Vapor Deposition.

    Science.gov (United States)

    Kim, HyeongU; Son, Juhyun; Kulkarni, Atul; Ahn, Chisung; Kim, Ki Seok; Shin, Dongjoo; Yeom, Geun; Kim, Taesung

    2017-03-20

    Molybdenum oxide (MoOsub>3sub>) has gained immense attention because of its high electron mobility, wide band gap, and excellent optical and catalytic properties. However, the synthesis of uniform and large-area MoOsub>3sub> is challenging. Here, we report the synthesis of wafer-scale α-MoO3 by plasma oxidation of Mo-deposited on Si/SiOsub>2sub>. Mo was oxidized by Osub>2sub> plasma in a plasma enhanced chemical vapor deposition (PECVD) system at 150 °C. Mo was oxidized by Osub>2sub> plasma in a PECVD system at 150 °C. It was found that the synthesized α-MoOsub>3sub> had a highly uniform crystalline structure. For the as-synthesized α-MoOsub>3sub> sensor, we observed a current change when the relative humidity was increased from 11% to 95%. The sensor was exposed to different humidity levels with fast recovery time of about 8 s. Hence this feasibility study shows that MoOsub>3sub> synthesized at low temperature can be utilized for the gas sensing applications by adopting flexible device technology.

  13. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Terriza, Antonia; Vilches-Pérez, Jose I.; de la Orden, Emilio; Yubero, Francisco; Gonzalez-Caballero, Juan L.; González-Elipe, Agustin R.; Vilches, José; Salido, Mercedes

    2014-01-01

    The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide) (PLGA) membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD), onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR). HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes. PMID:24883304

  14. Catalyst-free growth and tailoring morphology of zinc oxide nanostructures by plasma-enhanced deposition at low temperature

    Science.gov (United States)

    Chen, W. Z.; Wang, B. B.; Qu, Y. Z.; Huang, X.; Ostrikov, K.; Levchenko, I.; Xu, S.; Cheng, Q. J.

    2017-03-01

    ZnO nanostructures were grown under different deposition conditions from Zn films pre-deposited onto Si substrates in O2-Ar plasma, ignited in an advanced custom-designed plasma-enhanced horizontal tube furnace deposition system. The morphology and structure of the synthesized ZnO nanostructures were systematically and extensively investigated by scanning and transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. It is shown that the morphology of ZnO nanostructures changes from the hybrid ZnO/nanoparticle and nanorod system to the mixture of ZnO nanosheets and nanorods when the growth temperature increases, and the density of ZnO nanorods increases with the increase of oxygen flow rate. The formation of ZnO nanostructures was explained in terms of motion of Zn atoms on the Zn nanoparticle surfaces, and to the local melting of Zn nanoparticles or nanosheets. Moreover, the photoluminescence properties of ZnO nanostructures were studied, and it was revealed that the photoluminescence spectrum features two strong ultraviolet bands at about 378 and 399 nm and a series of weak blue bands within a range of 440-484 nm, related to the emissions of free excitons, near-band edge, and defects of ZnO nanostructures. The obtained results enrich our knowledge on the synthesis of ZnO-based nanostructures and contribute to the development of ZnO-based optoelectronic devices.

  15. Plasma-enhanced Chemical Vapordeposition SiO2 Film after Ion Implantation Induces Quantum Well Intermixing

    Institute of Scientific and Technical Information of China (English)

    PENG Jucun; WU Boying; CHEN Jie; ZHAO Jie; WANG Yongchen

    2006-01-01

    A method of QWI ( quantum well intermixing) realizing through plasma-enhanced chemical vapordepositiom (PECVD) SiO2 film following ion implantation was investigated. PECVD 200 nm SiO2 film after 160 keV phosphorus(P) ion implantation was performed to induce InP-based multiple-quantum-well (MQW) laser structural intermixing, annealing process was carried out at 780 ℃ for 30 seconds under N2 flue, the blue shift ofphotoluminescence (PL) peak related to implanted dose: 1 × 1011 , 1 × 1012, 1 × 1013 ,3 × 1013 , 7 × 1013 ion/ cm2 is 22 nm, 65 nm, 104 nm, 109 nm, 101 nm, respectively. Under the same conditions, by comparing the blue shift of PL peak with P ion implantation only, slight differentiation between the two methods was observed, and results reveal that the defects in the implanting layers generated by ion implantation are much more than those in SiO2 film. So, the blue shift results mainly from ion implantation. However , SiO2 film also may promote the quantum well intermixing.

  16. Evaluation of chemical and structural properties of germanium-carbon coatings deposited by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, Hossein, E-mail: h.jamali@mut-es.ac.ir; Mozafarinia, Reza; Eshaghi, Akbar

    2015-10-15

    Germanium-carbon coatings were deposited on silicon and glass substrates by plasma enhanced chemical vapor deposition (PECVD) using three different flow ratios of GeH{sub 4} and CH{sub 4} precursors. Elemental analysis, structural evaluation and microscopic investigation of coatings were performed using laser-induced breakdown spectroscopy (LIBS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. Based on the results, the coatings exhibited a homogeneous and dense structure free of pores with a very good adhesion to substrate. The structural evaluation revealed that the germanium-carbon coatings were a kind of a Ge-rich composite material containing the amorphous and crystalline germanium and amorphous carbon with the mixture of Ge–Ge, Ge–C, C–C, Ge–H and C–H bonds. The result suggested that the amorphisation of the coatings could be increased with raising CH{sub 4}:GeH{sub 4} flow rate ratio and subsequently increasing C amount incorporated into the coating. - Highlights: • Germanium-carbon coatings were prepared by PECVD technique. • The germanium-carbon coatings were a kind of composite material. • The amorphisation of the coatings were increased with raising CH{sub 4}:GeH{sub 4} flow ratio.

  17. Effect of Hydrogen Dilution on Growth of Silicon Nanocrystals Embedded in Silicon Nitride Thin Film bv Plasma-Enhanced CVD

    Institute of Scientific and Technical Information of China (English)

    DING Wenge; ZHEN Lanfang; ZHANG Jiangyong; LI Yachao; YU Wei; FU Guangsheng

    2007-01-01

    An investigation was conducted into the effect of hydrogen dilution on the mi-crostructure and optical properties of silicon nanograins embedded in silicon nitride (Si/SiNx) thin film deposited by the helicon wave plasma-enhanced chemical vapour deposition technique. With Ar-diluted SiH4 and N2 as the reactant gas sources in the fabrication of thin film, the film was formed at a high deposition rate. There was a high density of defect at the amorphous silicon (a-Si)/SiNx interface and a relative low optical gap in the film. An addition of hydrogen into the reactant gas reduced the film deposition rate sharply. The silicon nanograins in the SiNx matrix were in a crystalline state, and the density of defects at the silicon nanocrystals (nc-Si)/SiNx interface decreased significantly and the optical gap of the films widened. These results suggested that hydrogen activated by the plasma could not only eliminate in the defects between the interface of silicon nanograins and SiNx matrix, but also helped the nanograins transform from the amorphous into crystalline state. By changing the hydrogen dilution ratio in the reactant gas sources, a tunable band gap from 1.87 eV to 3.32 eV was obtained in the Si/SiNx film.

  18. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Directory of Open Access Journals (Sweden)

    J. Provine

    2016-06-01

    Full Text Available The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD of silicon nitride (SiNx, particularly for use a low k dielectric spacer. One of the key material properties needed for SiNx films is a low wet etch rate (WER in hydrofluoric (HF acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD of SiNx and evaluate the film’s WER in 100:1 dilutions of HF in H2O. The remote plasma capability available in PEALD, enabled controlling the density of the SiNx film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiNx of 6.1 Å/min, which is similar to WER of SiNx from LPCVD reactions at 850 °C.

  19. Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Sungin; Kim, Jun-Rae; Kim, Seongkyung; Hwang, Cheol Seong; Kim, Hyeong Joon, E-mail: thinfilm@snu.ac.kr [Department of Materials Science and Engineering with Inter-University Semiconductor Research Center (ISRC), Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Ryu, Seung Wook, E-mail: tazryu78@gmail.com [Department of Electrical Engineering, Stanford University, Stanford, California 94305-2311 (United States); Cho, Seongjae [Department of Electronic Engineering and New Technology Component & Material Research Center (NCMRC), Gachon University, Seongnam-si, Gyeonggi-do 13120 (Korea, Republic of)

    2016-01-15

    It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films prepared by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness.

  20. Selective adhesion of intestinal epithelial cells on patterned films with amine functionalities formed by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Seop; Choi, Changrok; Kim, Soo Heon; Choi, Kun oh [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Jeong Min [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Kim, Hong Ja [Department of Internal Medicine, Dankook University College of Medicine, Cheonan 330-715 (Korea, Republic of); Yeo, Sanghak [R and D Center, ELBIO Incorporation, 426-5 Gasan-dong Geumchun-gu, Seoul (Korea, Republic of); Park, Heonyong [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Jung, Donggeun, E-mail: djung@skku.ac.kr [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2010-11-01

    Control of cell adhesion to surfaces is important to develop analytical tools in the areas of biomedical engineering. To control cell adhesiveness of the surface, we constructed a variety of plasma polymerized hexamethyldisiloxane (PPHMDSO) thin films deposited at the plasma power range of 10-100 W by plasma enhanced chemical vapor deposition (PECVD). The PPHMDSO film that was formed at 10 W was revealed to be resistant to cell adhesion. The resistance to cell adhesion is closely related to physicochemical properties of the film. Atomic force microscopic data show an increase in surface roughness from 0.52 nm to 0.74 nm with increasing plasma power. From Fourier transform infrared (FT-IR) absorption spectroscopy data, it was also determined that the methyl (-CH{sub 3}) peak intensity increases with increasing plasma power, whereas the hydroxyl (-OH) peak decreases. X-ray photoelectron spectroscopy data reveal an increase in C-O bonding with increasing plasma power. These results suggest that C-O bonding and hydroxyl (-OH) and methyl (-CH{sub 3}) functional groups play a critical part in cell adhesion. Furthermore, to enhance a diversity of film surface, we accumulated the patterned plasma polymerized ethylenediamine (PPEDA) thin film on the top of the PPHMDSO thin film. The PPEDA film is established to be strongly cell-adherent. This patterned two-layer film stacking method can be used to form the selectively limited cell-adhesive PPEDA spots over the adhesion-resistant surface.

  1. Tunnel ionization, population trapping, filamentation and applications

    Science.gov (United States)

    Leang Chin, See; Xu, Huailiang

    2016-11-01

    The advances in femtosecond Ti-sapphire laser technology have led to the discovery of a profusion of new physics. This review starts with a brief historical account of the experimental realization of tunnel ionization, followed by high harmonic generation and the prediction of attosecond pulses. Then, the unique phenomenon of dynamic population trapping during the ionization of atoms and molecules in intense laser fields is introduced. One of the consequences of population trapping in the highly excited states is the neutral dissociation into simple molecular fragments which fluoresce. Such fluorescence could be amplified in femtosecond laser filamentation in gases. The experimental observations of filament-induced fluorescence and lasing in the atmosphere and combustion flames are given. Excitation of molecular rotational wave packets (molecular alignment) and their relaxation and revival in a gas filament are described. Furthermore, filament-induced condensation and precipitation inside a cloud chamber is explained. Lastly, a summary and future outlook is given.

  2. Interaction and merging of vortex filaments

    Science.gov (United States)

    Liu, C. H.; Weston, R. P.; Ishii, K.; Ting, L.; Visintainer, J. A.

    1988-01-01

    The asymptotic solutions of Navier-Stokes equations for vortex filaments of finite strength with small effective vortical cores are summarized with special emphasis placed on the physical meaning and the practical limit to the applicability of the asymptotic solution. Finite-difference solutions of Navier-Stokes equations for the marging of the filament(s) are described with a focus on the development of the approximate boundary conditions for the computational domain. An efficiency study employing a model problem is used to assess the advantages of the present approximate boundary condition method over previously used techniques. Applications of the present method are presented for the motion and decay of a 3:1 elliptic vortex ring, and for the merging process of a pair of coaxial vortex rings. A numerical procedure for the problem of local merging of vortex filaments, which requires the asymptotic analysis as well as the numerical Navier-Stokes solver, is also presented.

  3. Organizing Filament of Small Amplitude Scroll Waves

    Institute of Scientific and Technical Information of China (English)

    ZHOU TianShou; ZHANG SuoChun

    2001-01-01

    We theoretically analyze the organizing filament of small amplitude scroll waves in general excitable media by perturbation method and explicitly give the expressions of coefficients in Keener theory. In particular for the excitable media with equal diffusion, we obtain a close system for the motion of the filament. With an example of the Oregonator model, our results are in good agreement with those simulated by Winfree.``

  4. Flux Cancellation Leading to CME Filament Eruptions

    Science.gov (United States)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  5. Morgellons disease: a filamentous borrelial dermatitis

    OpenAIRE

    Middelveen MJ; Stricker RB

    2016-01-01

    Marianne J Middelveen, Raphael B Stricker International Lyme and Associated Diseases Society, Bethesda, MD, USA Abstract: Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they resu...

  6. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    Science.gov (United States)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.

  7. On the nature of star-forming filaments: II. Sub-filaments and velocities

    CERN Document Server

    Smith, Rowan J; Klessen, Ralf S; Fuller, Gary A

    2015-01-01

    We show that hydrodynamic turbulent cloud simulations naturally produce large filaments made up of a network of smaller and coherent sub-filaments. Such simulations resemble observations of filaments and fibres in nearby molecular clouds. The sub-filaments are dynamical features formed at the stagnation points of the turbulent velocity field where shocks dissipate the turbulent energy. They are a ubiquitous feature of the simulated clouds, which appear from the beginning of the simulation and are not formed by gradual fragmentation of larger filaments. Most of the sub-filaments are gravitationally sub-critical and do not fragment into cores, however, there is also a significant fraction of supercritical sub-filaments which break up into star-forming cores. The sub-filaments are coherent along their length, and the residual velocities along their spine show that they are subsonically contracting without any ordered rotation on scales of ~0.1 pc. Accretion flows along the sub-filaments can feed material into st...

  8. Actin filament attachments for sustained motility in vitro are maintained by filament bundling.

    Directory of Open Access Journals (Sweden)

    Xiaohua Hu

    Full Text Available We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+ generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+ abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+, Lys-Lys(2+, or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+ buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.

  9. Planck intermediate results. VIII. Filaments between interacting clusters

    CERN Document Server

    Ade, P A R; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Balbi, A; Banday, A J; Barreiro, R B; Bartlett, J G; Battaner, E; Benabed, K; Benoît, A; Bernard, J -P; Bersanelli, M; Bhatia, R; Böhringer, H; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Bourdin, H; Burigana, C; Cabella, P; Cardoso, J -F; Castex, G; Catalano, A; Cayón, L; Chamballu, A; Chary, R -R; Chiang, L -Y; Chon, G; Christensen, P R; Clements, D L; Colafrancesco, S; Colombo, L P L; Comis, B; Coulais, A; Crill, B P; Cuttaia, F; Da Silva, A; Dahle, H; Danese, L; Davis, R J; de Bernardis, P; de Gasperis, G; de Zotti, G; Delabrouille, J; Désert, F -X; Diego, J M; Dolag, K; Dole, H; Donzelli, S; Doré, O; Dörl, U; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Finelli, F; Flores-Cacho, I; Forni, O; Frailis, M; Franceschi, E; Frommert, M; Galeotta, S; Ganga, K; Génova-Santos, R T; Giard, M; Gilfanov, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Hansen, F K; Harrison, D; Hempel, A; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hovest, W; Hurier, G; Jaffe, T R; Jaffe, A H; Jagemann, T; Jones, W C; Juvela, M; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lawrence, C R; Jeune, M Le; Leonardi, R; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Luzzi, G; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Marleau, F; Marshall, D J; Martínez-González, E; Masi, S; Massardi, M; Matarrese, S; Matthai, F; Mazzotta, P; Mei, S; Melchiorri, A; Melin, J -B; Mendes, L; Mennella, A; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Nørgaard-Nielsen, H U; Noviello, F; Osborne, S; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Piffaretti, R; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prunet, S; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Roman, M; Rosset, C; Rossetti, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Savini, G; Schaefer, B M; Scott, D; Smoot, G F; Starck, J -L; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Valenziano, L; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Welikala, N; White, S D M; Yvon, D; Zacchei, A; Zonca, A

    2012-01-01

    About half of the baryons of the Universe are expected to be in the form of filaments of hot and low density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories which are limited in sensitivity to the diffuse low density medium. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we select physical pairs of clusters as candidates. Using the Planck data we construct a local map of the tSZ effect centered on each pair of galaxy...

  10. Filaments in the Lupus molecular clouds

    CERN Document Server

    Benedettini, M; Pezzuto, S; Elia, D; André, P; Könyves, V; Schneider, N; Tremblin, P; Arzoumanian, D; di Giorgio, A M; Di Francesco, J; Hill, T; Molinari, S; Motte, F; Nguyen-Luong, Q; Palmeirim, P; Rivera-Ingraham, A; Roy, A; Rygl, K L J; Spinoglio, L; Ward-Thompson, D; White, G J

    2015-01-01

    We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of $\\sim$1.5$\\times$10$^{21}$ cm$^{-2}$ and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.

  11. Filaments in Simulations of Molecular Cloud Formation

    CERN Document Server

    Gomez, Gilberto C

    2013-01-01

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse is hierarchical in nature, proceeding along its shortest dimension first. This naturally produces filaments in cloud, and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features, through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump, but other, smaller-scale clumps form along the infalli...

  12. Filaments in the Lupus molecular clouds

    Science.gov (United States)

    Benedettini, M.; Schisano, E.; Pezzuto, S.; Elia, D.; André, P.; Könyves, V.; Schneider, N.; Tremblin, P.; Arzoumanian, D.; di Giorgio, A. M.; Di Francesco, J.; Hill, T.; Molinari, S.; Motte, F.; Nguyen-Luong, Q.; Palmeirim, P.; Rivera-Ingraham, A.; Roy, A.; Rygl, K. L. J.; Spinoglio, L.; Ward-Thompson, D.; White, G. J.

    2015-10-01

    We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of ˜1.5 × 1021 cm-2 and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.

  13. Hot-dome anemometry

    Science.gov (United States)

    Thompson, Brian E.

    1998-05-01

    Hot-dome anemometry obtains three components of flow velocity using an array of sensors, specifically five hot films in the present contribution, which are mounted around the hemispherical tip of a cylindrical support. Calibration for speed and angle resembles that of hot wires and split films except that the procedures accommodate heat transfer dominated by forced convection from the surface of a sphere rather than single or multiple cylinders. Measurements are obtained with hot domes, conventional hot wires, and impact probes in the wake of a wing to quantify measurement uncertainties.

  14. Otomycosis due to filamentous fungi.

    Science.gov (United States)

    García-Agudo, Lidia; Aznar-Marín, Pilar; Galán-Sánchez, Fátima; García-Martos, Pedro; Marín-Casanova, Pilar; Rodríguez-Iglesias, Manuel

    2011-10-01

    Otomycosis is common throughout the world but barely studied in Spain. Our objective was to determine the microbiological and epidemiological characteristics of this pathology in Cadiz (Spain) between 2005 and 2010. Samples from patients with suspicion of otomycosis underwent a direct microscopic examination and culture on different media for fungi and bacteria. Mycological cultures were incubated at 30°C for at least seven days. Identification of fungi was based on colonial morphology and microscopic examination of fungal structure. From a total of 2,633 samples, microbial growth was present in 1,375 (52.2%) and fungal isolation in 390 (28.4%). We identified 228 yeasts and 184 filamentous fungi (13.4% of positive cultures and 47.2% of otomycosis), associated with yeasts in 22 cases (5.6%). The most frequent species were Aspergillus flavus (42.4%), A. niger (35.9%), A. fumigatus (12.5%), A. candidus (7.1%), A. terreus (1.6%), and Paecilomyces variotii (0.5%). Infection was predominant in men (54.9%) and patients beyond 55 years old (46.8%). The most common clinical symptoms were itching (98.9%), otalgia (59.3%), and hypoacusis (56.0%). Fall season reported the lowest number of cases (20.1%). Incidence of otomycosis and fungi producing otomycosis vary within the distinct geographical areas. In Cadiz, this infection is endemic due to warm temperatures, high humidity, sea bathing, and wind, which contributes to disseminate the conidia. Despite Aspergillus niger has been reported as the main causative agent, A. flavus is predominant in Cadiz. Although infection is usually detected in warm months, we observed a homogeneous occurrence of otomycosis in almost all the seasons.

  15. Hot-wire polysilicon waveguides with low deposition temperature.

    Science.gov (United States)

    Masaud, Taha M Ben; Tarazona, Antulio; Jaberansary, Ehsan; Chen, Xia; Reed, Graham T; Mashanovich, Goran Z; Chong, H M H

    2013-10-15

    We fabricated and measured the optical loss of polysilicon waveguides deposited using hot-wire chemical vapor deposition at a temperature of 240°C. A polysilicon film 220 nm thick was deposited on top of a 2000 nm thick plasma-enhanced chemical vapor deposition silicon dioxide layer. The crystalline volume fraction of the polysilicon film was measured by Raman spectroscopy to be 91%. The optical propagation losses of 400, 500, and 600 nm waveguides were measured to be 16.9, 15.9, and 13.5 dB/cm, respectively, for transverse electric mode at the wavelength of 1550 nm. Scattering loss is expected to be the major contributor to the propagation loss.

  16. Mysterious ionization in cooling flow filaments: a test with deep COS FUV spectroscopy

    Science.gov (United States)

    Tremblay, Grant

    2013-10-01

    The Cosmic Origins Spectrograph is capable of unraveling a two decade old mystery regarding the filamentary emission line nebulae found in the brightest cluster galaxies {BCGs} of cool core {CC} clusters. These kpc-scale filaments are characterized by elevated H-alpha luminosities and puzzling ionization states that cannot be accounted for by recombination or photionization alone, and are instead excited by an unknown ionization mechanism. The most hotly debated proposed solutions invoke thermal conduction, shocks, or cosmic-ray heating, but progress toward consensus awaits unambiguous spectral discriminants between these models that can only be found in the FUV. We propose deep {9 orbit}, off-nuclear observations of two strategically selected BCGs in well-studied cool core clusters with cross-spectrum archival datasets. We also propose a shorter {5 orbit} on-nuclear observation for one of our targets to assess possible AGN contributions to the spectra. These proposed observations represent critical tests that can unambiguously discriminate between the various candidate ionziation models. Constraining the mechanisms by which CC BCG filaments are excited remains one of the most important roadblocks to a better understanding of cooling from hot ambient medium to cold star forming clouds and filaments, a process important for both galaxy and black hole growth. It is therefore important that, before HST ends its mission and we lose FUV capability, we advance our understanding of this decades old mystery.

  17. Far-ultraviolet morphology of star-forming filaments in cool core brightest cluster galaxies

    Science.gov (United States)

    Tremblay, G. R.; O'Dea, C. P.; Baum, S. A.; Mittal, R.; McDonald, M. A.; Combes, F.; Li, Y.; McNamara, B. R.; Bremer, M. N.; Clarke, T. E.; Donahue, M.; Edge, A. C.; Fabian, A. C.; Hamer, S. L.; Hogan, M. T.; Oonk, J. B. R.; Quillen, A. C.; Sanders, J. S.; Salomé, P.; Voit, G. M.

    2015-08-01

    We present a multiwavelength morphological analysis of star-forming clouds and filaments in the central (≲50 kpc) regions of 16 low-redshift (z atlas of star formation locales relative to the ambient hot (˜107-8 K) and warm ionized (˜104 K) gas phases, as well as the old stellar population and radio-bright active galactic nucleus (AGN) outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend towards and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed in situ by cloud collapse at the interface of a radio lobe or rapid cooling in a cavity's compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations in which the AGN powers a self-regulating rain of thermally unstable star-forming clouds that precipitate from the hot atmosphere. In this model, precipitation triggers where the cooling-to-free-fall time ratio is tcool/tff ˜ 10. This condition is roughly met at the maximal projected FUV radius for more than half of our sample, and clustering about this ratio is stronger for sources with higher star formation rates.

  18. Fast Radio Bursts as Probes of Magnetic Fields in Filaments of Galaxies

    CERN Document Server

    Akahori, Takuya; Gaensler, B M

    2016-01-01

    We examine the proposal that the dispersion measures (DMs) and Faraday rotation measures (RMs) of extragalactic linearly-polarized fast radio bursts (FRBs) can be used to probe the intergalactic magnetic field (IGMF) in filaments of galaxies. The DM through the cosmic web is dominated by contributions from the warm-hot intergalactic medium (WHIM) in filaments and from the gas in voids. On the other hand, RM is induced mostly by the hot medium in galaxy clusters, and only a fraction of it is produced in the WHIM. We show that if one excludes FRBs whose sightlines pass through galaxy clusters, the line-of-sight strength of the IGMF in filaments, $B_{||}$, is approximately $C(\\langle 1+z \\rangle/f_{DM})(RM/DM)$, where $C$ is a known constant. Here, {the redshift of the FRB is not required to be known;} $f_{DM}$ is the fraction of total DM due the WHIM, while $\\langle 1+z \\rangle$ is the redshift of interevening gas weighted by the WHIM gas density, both of which can be evaluated for a given cosmology model solel...

  19. Potential fields of merging and splitting filaments in air

    Institute of Scientific and Technical Information of China (English)

    Ma Yuan-Yuan; Lu Xin; Xi Ting-Ting; Hao Zuo-Qiang; Gong Qi-Huang; Zhang Jie

    2007-01-01

    Two interacting light filaments with different initial phases propagating in air are investigated numerically by using a ray tracing method. The evolution of the rays of a filament is governed by a potential field. During propagation, the two potential wells of the two filaments can merge into one or repel each other, depending on the initial phase difference between the two filaments. The study provides a simple description of the interacting filaments.

  20. PDGF induces reorganization of vimentin filaments.

    Science.gov (United States)

    Valgeirsdóttir, S; Claesson-Welsh, L; Bongcam-Rudloff, E; Hellman, U; Westermark, B; Heldin, C H

    1998-07-30

    In this study we demonstrate that stimulation with platelet-derived growth factor (PDGF) leads to a marked reorganization of the vimentin filaments in porcine aortic endothelial (PAE) cells ectopically expressing the PDGF beta-receptor. Within 20 minutes after stimulation, the well-spread fine fibrillar vimentin was reorganized as the filaments aggregated into a dense coil around the nucleus. The solubility of vimentin upon Nonidet-P40-extraction of cells decreased considerably after PDGF stimulation, indicating that PDGF caused a redistribution of vimentin to a less soluble compartment. In addition, an increased tyrosine phosphorylation of vimentin was observed. The redistribution of vimentin was not a direct consequence of its tyrosine phosphorylation, since treatment of cells with an inhibitor for the cytoplasmic tyrosine kinase Src, attenuated phosphorylation but not redistribution of vimentin. These changes in the distribution of vimentin occurred in conjunction with reorganization of actin filaments. In PAE cells expressing a Y740/751F mutant receptor that is unable to bind and activate phosphatidylinositol 3'-kinase (PI3-kinase), the distribution of vimentin was virtually unaffected by PDGF stimulation. Thus, PI3-kinase is important for vimentin reorganization, in addition to its previously demonstrated role in actin reorganization. The small GTPase Rac has previously been shown to be involved downstream of PI3-kinase in the reorganization of actin filaments. In PAE cells overexpressing dominant negative Rac1 (N17Rac1), no change in the fine fibrillar vimentin network was seen after PDGF-BB stimulation, whereas in PAE cells overexpressing constitutively active Rac1 (V12Rac1), there was a dramatic change in vimentin filament organization independent of PDGF stimulation. These data indicate that PDGF causes a reorganization of microfilaments as well as intermediate filaments in its target cells and suggest an important role for Rac downstream of PI3-kinase in

  1. Really Hot Stars

    Science.gov (United States)

    2003-04-01

    ), very blue and very hot, with surface temperatures of a few tens of thousands of degrees. Another property of these exceptional stars is their very strong stellar winds: they continuously eject energetic particles - like the "solar wind" from the Sun - but some 10 to 1000 million times more intensely than our star! These powerful winds exert an enormous pressure on the surrounding interstellar material and forcefully shape those clouds into "bubbles". These photos have now provided the astronomers with sufficient information to understand exactly what is going on in three of those unusual nebulae - while one case still remains ambiguous. The nebulae around BAT99-2, BAT99-49 and AB7 BAT99-2 (cf. PR Photo 09b/03) is one of the hottest WR-stars known in the Large Magellanic Cloud (LMC). Before this star reached this phase of its short life, the strong stellar wind from its progenitor O-type star swept the interstellar medium and created a "bubble", much like a snowplough pushes aside the snow on a road. Part of this "bubble" can still be seen as a large half-ring to the south of the star. When the star did become a WR, the increasingly intense stellar wind impacted on the material previously ejected from the star. This created a new bubble, now visible as a small arc-like structure to the north-west of the star. We are appparently witnessing an ongoing merger of these two bubbles. With its strong ultraviolet (UV) radiation, BAT99-2 is strongly heating its immediate surroundings, in particular the above mentioned arc-like feature that, due to the resulting high excitation, is seen as a violet-pink region in the colour image. The entire field is very complex - the presence of a supernova remnant (SNR) is revealed by a few faint red filaments rather close to the high excitation nebula, to the north-west of the arc-like structure. AB7 (PR Photo 09a/03) and BAT99-49 (PR Photo 09c/03) are both binary stars, consisting of one WR-star and a companion O-type star. Like in the case

  2. Comparison of hafnium silicate thin films on silicon (1 0 0) deposited using thermal and plasma enhanced metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rangarajan, Vishwanathan; Bhandari, Harish; Klein, Tonya M

    2002-11-01

    Hafnium silicate thin films were deposited by metal organic chemical vapor deposition (MOCVD) on Si at 400 deg. C using hafnium (IV) t-butoxide. Films annealed in O{sub 2} were compared to as-deposited films using X-ray photoelectron spectroscopy and X-ray diffraction. Hafnium silicate films were deposited by both thermal and plasma enhanced MOCVD using 2% SiH{sub 4} in He as the Si precursor. An O{sub 2} plasma increased Si content to as much as {approx}26 at.% Si. Both thermal and plasma deposited Hf silicates are amorphous as deposited, however, thermal films exhibit crystallinity after anneal. Surface roughness as measured by atomic force microscopy was found to be 1.1 and 5.1 nm for MOCVD hafnium silicate and plasma enhanced MOCVD hafnium silicate, respectively.

  3. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    CERN Document Server

    Li, Ting; Ji, Haisheng

    2015-01-01

    We make a comparative analysis for two filaments that showed quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) are carried out to analyze the two filaments on 2013 August 17-20 and September 29. The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4*10^21 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed within 3 days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2*10^20 Mx, about one ...

  4. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hao [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States)]. E-mail: hao.jiang@wpafb.af.mil; Hong Lianggou [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States); Venkatasubramanian, N. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Grant, John T. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Eyink, Kurt [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Wiacek, Kevin [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Fries-Carr, Sandra [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Enlow, Jesse [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Bunning, Timothy J. [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States)

    2007-02-26

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant ({epsilon} {sub r}) and dielectric loss (tan {delta}) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F {sub b}) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F{sub b} of 610 V/{mu}m, an {epsilon} {sub r} of 3.07, and a tan {delta} of 7.0 x 10{sup -3} at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss.

  5. FUV and X-Ray absorption in the warm-hot intergalactic medium

    NARCIS (Netherlands)

    Richter, P.; Paerels, F.; Kaastra, J.S.

    2008-01-01

    The Warm-Hot Intergalactic Medium (WHIM) arises from shock-heated gas collapsing in large-scale filaments and probably harbours a substantial fraction of the baryons in the local Universe. Absorption-line measurements in the ultraviolet (UV) and in the X-ray band currently represent the best method

  6. Electrically active, doped monocrystalline silicon nanoparticles produced by hot wire thermal catalytic pyrolysis

    CSIR Research Space (South Africa)

    Scriba, MR

    2011-05-01

    Full Text Available Doped silicon nanoparticles have successfully been produced by hot wire thermal catalytic pyrolysis at 40 mbar and a filament temperature of 1800 °C, using a mixture of silane and diborane or phosphine. All particles are monocrystalline with shapes...

  7. Growth Process Conditions of Tungsten Oxide Thin Films Using Hot-Wire Chemical Vapor Deposition

    NARCIS (Netherlands)

    Houweling, Z.S.; Geus, J.W.; de Jong, M.; Harks, P.P.R.M.L.; van der Werf, C.H.M.; Schropp, R.E.I.

    2011-01-01

    We report the growth conditions of nanostructured tungsten oxide (WO3−x) thin films using hot-wire chemical vapor deposition (HWCVD). Two tungsten filaments were resistively heated to various temperatures and exposed to an air flow at various subatmospheric pressures. The oxygen partial pressure was

  8. Drops moving along and across a filament

    Science.gov (United States)

    Sahu, Rakesh P.; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam

    2013-11-01

    The present work is devoted to the experimental study of oil drop motion both along and across a filament due to the air jet blowing. In case of drop moving along the filament, phenomena such as drop stick-slip motion, shape oscillations, shedding of a tail along the filament, the tail capillary instability and drop recoil motion were observed which were rationalized in the framework of simplified models. Experiments with cross-flow of the surrounding gas relative to the filament with an oil drop on it were conducted, with air velocity in the range of 7.23 to 22.7 m s-1. The Weber number varied from 2 to 40 and the Ohnesorge number varied from 0.07 to 0.8. The lower and upper critical Weber numbers were introduced to distinguish between the beginning of the drop blowing off the filament and the onset of the bag-stamen breakup. The range of the Weber number between these two critical values is filled with three types of vibrational breakup: V1 (a balloon-like drop being blown off), V2 (a drop on a single stamen being blown off), and V3 (a drop on a double stamen being blown off). The Weber number/Ohnesorge number plane was delineated into domains of different breakup regimes. The work is supported by the Nonwovens Cooperative Research Center (NCRC).

  9. The hydrodynamic stability of gaseous cosmic filaments

    CERN Document Server

    Birnboim, Yuval; Zinger, Elad

    2016-01-01

    Virial shocks at edges of cosmic-web structures are a clear prediction of standard structure formation theories. We derive a criterion for the stability of the post-shock gas and of the virial shock itself in spherical, filamentary and planar infall geometries. When gas cooling is important, we find that shocks become unstable, and gas flows uninterrupted towards the center of the respective halo, filament or sheet. For filaments, we impose this criterion on self-similar infall solutions. We find that instability is expected for filament masses between $10^{11}-10^{13}M_\\odot Mpc^{-1}.$ Using a simplified toy model, we then show that these filaments will likely feed halos with $10^{10}M_{\\odot}\\lesssim M_{halo}\\lesssim 10^{13}M_{\\odot}$ at redshift $z=3$, as well as $10^{12}M_{\\odot}\\lesssim M_{halo}\\lesssim 10^{15}M_{\\odot}$ at $z=0$. The instability will affect the survivability of the filaments as they penetrate gaseous halos in a non-trivial way. Additionally, smaller halos accreting onto non-stable filam...

  10. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    2000-09-30

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests

  11. Free-Space Nonlinear Beam Combining Towards Filamentation

    CERN Document Server

    Rostami, Shermineh; Kepler, Daniel; Baudelet, Matthieu; Litchinitser, Natalia M; Richardson, Martin

    2016-01-01

    Multi-filamentation opens new degrees of freedom for manipulating electromagnetic waves in air. However, without control, multiple filament interactions, including attraction, repulsion or fusion often result in formation of complex disordered filament distributions. Moreover, high power beams conventionally used in multi-filament formation experiments often cause significant surface damage. The growing number of applications for laser filaments requires fine control of their formation and propagation. We demonstrate, experimentally and theoretically, that the attraction and fusion of ultrashort beams with initial powers below the critical value enable the eventual formation of a filament downstream. Filament formation is delayed to a predetermined distance in space, avoiding optical damage to external beam optics while still enabling robust filaments with controllable properties as if formed from a single high power beam. This paradigm introduces new opportunities for filament engineering eliminating the nee...

  12. Mini-filament Eruption as the Initiation of a Jet along Coronal Loops

    Science.gov (United States)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan

    2016-10-01

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST Hα images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  13. Unwinding motion of a twisted active-region filament

    CERN Document Server

    Yan, X L; Liu, J H; Kong, D F; Xu, C L

    2014-01-01

    To better understand the structures of active-region filaments and the eruption process, we study an active-region filament eruption in active region NOAA 11082 in detail on June 22, 2010. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament is consisted of twisted magnetic field lines. The total twist of the filament is at least 5$\\pi$ obtained by using time slice method. According to the morphology change during the filament eruption, it is found that the active-region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magn...

  14. Formation and X-ray emission from Hot Bubbles in Planetary Nebulae. I. Hot Bubble formation

    CERN Document Server

    Toalá, J A

    2014-01-01

    We carry out high resolution two-dimensional radiation-hydrodynamic numerical simulations to study the formation and evolution of hot bubbles inside planetary nebulae (PNe). We take into account the evolution of the stellar parameters, wind velocity and mass-loss rate from the final thermal pulses during the asymptotic giant branch (AGB) through to the post-AGB stage for a range of initial stellar masses. The instabilities that form at the interface between the hot bubble and the swept-up AGB wind shell lead to hydrodynamical interactions, photoevaporation flows and opacity variations. We explore the effects of hydrodynamical mixing combined with thermal conduction at this interface on the dynamics, photoionization, and emissivity of our models. We find that even models without thermal conduction mix significant amounts of mass into the hot bubble. When thermal conduction is not included, hot gas can leak through the gaps between clumps and filaments in the broken swept-up AGB shell and this depressurises the...

  15. Oscillating Filaments: I - Oscillation and Geometrical Fragmentation

    CERN Document Server

    Gritschneder, Matthias; Burkert, Andreas

    2016-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid based AMR-code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, e.g. with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process `geometrical fragmentation'. In our realization the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristical scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. ...

  16. Filament velocity scaling laws for warm ions

    Energy Technology Data Exchange (ETDEWEB)

    Manz, P. [Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Carralero, D.; Birkenmeier, G.; Müller, H. W.; Scott, B. D. [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Müller, S. H. [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego 92093 (United States); Fuchert, G. [Insitut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität Stuttgart, 70569 Stuttgart (Germany); Stroth, U. [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany)

    2013-10-15

    The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.

  17. Filament velocity scaling laws for warm ions

    Science.gov (United States)

    Manz, P.; Carralero, D.; Birkenmeier, G.; Müller, H. W.; Müller, S. H.; Fuchert, G.; Scott, B. D.; Stroth, U.

    2013-10-01

    The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.

  18. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  19. Flexible magnetic filaments in a shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Cebers, Andrejs [Institute of Physics, University of Latvia, Salaspils-1 LV-2169 (Latvia)]. E-mail: aceb@tesla.sal.lv

    2006-05-15

    By flexible magnetic filament model its behavior under the simultaneous action of the shear flow and the magnetic field is investigated. It is found that for magnetoelastic numbers larger as the critical value, which depends on the shear rate, the periodic regime is established. For the values of the magnetoelastic number close to the critical the periodical regime is characterized by a rather slow development of the buckling instability due to the action of magnetic torques with the subsequent stage of the fast straightening of the filament. For the magnetoelastic numbers below the critical slightly bent shape of the filament orientated along the flow is established. The application of the results for the description of the viscoelasticity of the magnetorheological suspensions is discussed.

  20. Production of recombinant proteins by filamentous fungi.

    Science.gov (United States)

    Ward, Owen P

    2012-01-01

    The initial focus of recombinant protein production by filamentous fungi related to exploiting the extraordinary extracellular enzyme synthesis and secretion machinery of industrial strains, including Aspergillus, Trichoderma, Penicillium and Rhizopus species, was to produce single recombinant protein products. An early recognized disadvantage of filamentous fungi as hosts of recombinant proteins was their common ability to produce homologous proteases which could degrade the heterologous protein product and strategies to prevent proteolysis have met with some limited success. It was also recognized that the protein glycosylation patterns in filamentous fungi and in mammals were quite different, such that filamentous fungi are likely not to be the most suitable microbial hosts for production of recombinant human glycoproteins for therapeutic use. By combining the experience gained from production of single recombinant proteins with new scientific information being generated through genomics and proteomics research, biotechnologists are now poised to extend the biomanufacturing capabilities of recombinant filamentous fungi by enabling them to express genes encoding multiple proteins, including, for example, new biosynthetic pathways for production of new primary or secondary metabolites. It is recognized that filamentous fungi, most species of which have not yet been isolated, represent an enormously diverse source of novel biosynthetic pathways, and that the natural fungal host harboring a valuable biosynthesis pathway may often not be the most suitable organism for biomanufacture purposes. Hence it is expected that substantial effort will be directed to transforming other fungal hosts, non-fungal microbial hosts and indeed non microbial hosts to express some of these novel biosynthetic pathways. But future applications of recombinant expression of proteins will not be confined to biomanufacturing. Opportunities to exploit recombinant technology to unravel the

  1. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio...... in the optical field causes spatial hole-burning and thus filamentation. To reduce filamentation we propose a new, relatively simple design based on inhomogeneous pumping in which the injected current has a gradual transverse profile. We confirm the improved laser performance theoretically and experimentally...

  3. Generation of stable overlaps between antiparallel filaments

    CERN Document Server

    Johann, D; Kruse, K

    2015-01-01

    During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. Establishing a stable overlap region is essential for maintenance of bipolarity, but the underlying mechanisms are poorly understood. Using a particle-based stochastic model, we find that the interplay of motors and passive cross linkers can robustly generate partial overlaps between antiparallel filaments. Our analysis shows that motors reduce the overlap in a length-dependent manner, whereas passive cross linkers increase it independently of the length. In addition to maintaining structural integrity, passive cross linkers can thus also have a dynamic role for size regulation.

  4. Filament stretching rheometer: inertia compensation revisited

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.

    2003-01-01

    The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the e......The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end...

  5. Nuclear flow in a filamentous fungus

    CERN Document Server

    Hickey, Patrick C; Read, Nick; Glass, N Louise; Roper, Marcus

    2012-01-01

    The syncytial cells of a filamentous fungus consist of a mass of growing, tube-like hyphae. Each extending tip is fed by a continuous flow of nuclei from the colony interior, pushed by a gradient in turgor pressure. The myco-fluidic flows of nuclei are complex and multidirectional, like traffic in a city. We map out the flows in a strain of the model filamentous fungus {\\it N. crassa} that has been transformed so that nuclei express either hH1-dsRed (a red fluorescent nuclear protein) or hH1-GFP (a green-fluorescent protein) and report our results in a fluid dynamics video.

  6. On the nature of star-forming filaments: I. Filament morphologies

    CERN Document Server

    Smith, Rowan J; Klessen, Ralf S

    2014-01-01

    We use a suite of high resolution molecular cloud simulations carried out with the moving mesh code Arepo to explore the nature of star-forming filaments. The simulated filaments are identified and categorised from column density maps in the same manner as for recent Herschel observations. When fit with a Plummer-like profile the filaments are in excellent agreement with observations, and have shallow power-law profiles of p~2.2 without the need for magnetic support. The derived filament widths depend on the data range that is fitted. When data within 1 pc of the filament centre is fitted with a Gaussian function, the average FWHM is ~0.3 pc, in agreement with predictions for accreting filaments. However, if the fit is constructed using only data within 0.35 pc of the centre, in order to better match the procedure used to derive filament widths from Herschel observations, the resulting FWHM is only ~0.2 pc. This value is larger than that measured in IC 5146 and Taurus, but is similar to that found in the Plan...

  7. Analytical Core Mass Function (CMF) from Filaments: Under Which Circumstances Can Filament Fragmentation Reproduce the CMF?

    Science.gov (United States)

    Lee, Yueh-Ning; Hennebelle, Patrick; Chabrier, Gilles

    2017-10-01

    Observations suggest that star formation in filamentary molecular clouds occurs in a two-step process, with the formation of filaments preceding that of prestellar cores and stars. Here, we apply the gravoturbulent fragmentation theory of Hennebelle & Chabrier to a filamentary environment, taking into account magnetic support. We discuss the induced geometrical effect on the cores, with a transition from 3D geometry at small scales to 1D at large ones. The model predicts the fragmentation behavior of a filament for a given mass per unit length (MpL) and level of magnetization. This core mass function (CMF) for individual filaments is then convolved with the distribution of filaments to obtain the final system CMF. The model yields two major results. (i) The filamentary geometry naturally induces a hierarchical fragmentation process, first into groups of cores, separated by a length equal to a few filament Jeans lengths, i.e., a few times the filament width. These groups then fragment into individual cores. (ii) Non-magnetized filaments with high MpL are found to fragment excessively, at odds with observations. This is resolved by taking into account the magnetic field (treated simply as additional pressure support). The present theory suggests two complementary modes of star formation: although small (spherical or filamentary) structures will collapse directly into prestellar cores, according to the standard Hennebelle–Chabrier theory, the large (filamentary) ones, the dominant population according to observations, will follow the aforedescribed two-step process.

  8. Preferential soft-tissue preservation in the Hot Creek carbonate spring deposit, British Columbia, Canada

    Science.gov (United States)

    Rainey, Dustin K.; Jones, Brian

    2010-05-01

    The relict Holocene Hot Creek carbonate spring deposit in southeast British Columbia is characterized by excellent preservation of soft-tissue organisms (e.g. cyanobacteria), but poor preservation of organisms with hard-tissue (e.g. wood, diatoms). The deposit is formed mainly of calcified cyanobacteria, with fewer mineralized macrophytes (plants), bryophytes (mosses), wood, and diatoms. Cyanobacteria grew as solitary filaments ( Lyngbya) and as radiating hemispherical colonies ( Rivularia). Both were preserved by encrustation and encapsulation while alive, and as casts after filament death and decay. Sheath impregnation was rare to absent. Filament encrustation, whereby calcite crystals nucleated on, and grew away from the sheath exterior, produced moulds that replicated external filament morphology, but hastened filament decay. Filament encapsulation, whereby calcite nucleated in the vicinity of, and grew towards the encapsulated filament, promoted sheath preservation even after trichome decay. Subsequent calcite precipitation inside the hollow sheath generated sheath casts. The inability of mineralizing spring water to penetrate durable cell walls meant that bryophytes, macrophytes, and most wood was preserved by encrustation. Some wood resisted complete decay for several thousand years, and its lignified cell walls allowed rare permineralizations. Diatoms were not preserved in the relict deposit because the frustules were dissolved by the basic spring water. Amorphous calcium carbonate produced by photosynthetic CO 2 removal may have acted as nucleation sites for physicochemically precipitated calcite. Thus, metabolic activities of floral organisms probably initiated biotic mineralization, but continuous inorganic calcite precipitation on and in flora ensured that soft tissues were preserved.

  9. Modelling the chemistry of star-forming filaments - II. Testing filament characteristics with synthetic observations

    Science.gov (United States)

    Seifried, D.; Sánchez-Monge, Á.; Suri, S.; Walch, S.

    2017-06-01

    We present synthetic continuum and 13CO and C18O line emission observations of dense and cold filaments. The filaments are dynamically evolved using 3D-magnetohydrodynamic simulations that include one of the largest on-the-fly chemical networks used to date, which models the detailed evolution of H2 and CO. We investigate the reliability of observable properties, in particular filament mass and width, under different simulation conditions like magnetic field orientation and cosmic ray ionization rate. We find that filament widths of ˜0.1 pc can be probed with both line and continuum emission observations with a high accuracy (deviations ≤20 per cent). However, the width of more narrow filaments can be significantly overestimated by up to a factor of a few. Masses obtained via the dust emission are accurate within a few per cent whereas the masses inferred from molecular line emission observations deviate from the actual mass by up to a factor of 10 and show large differences for different J transitions. The inaccurate estimate of filament masses and widths of narrow filaments using molecular line observations can be attributed to (i) the non-isothermal state of the filaments, (ii) optical depth effects and (iii) the subthermally excited state of CO, while inclination effects and opacity correction only influence the obtained masses and widths by less than 50 per cent. Both, mass and width estimates, can be improved by using two isotopes to correct for the optical depth. Since gas and dust temperatures generally differ (by up to 25 K), the filaments appear more gravitationally unstable if the (too low) dust temperature is used for the stability analysis.

  10. Comparative band alignment of plasma-enhanced atomic layer deposited high-k dielectrics on gallium nitride

    Science.gov (United States)

    Yang, Jialing; Eller, Brianna S.; Zhu, Chiyu; England, Chris; Nemanich, Robert J.

    2012-09-01

    Al2O3 films, HfO2 films, and HfO2/Al2O3 stacked structures were deposited on n-type, Ga-face, GaN wafers using plasma-enhanced atomic layer deposition (PEALD). The wafers were first treated with a wet-chemical clean to remove organics and an in-situ combined H2/N2 plasma at 650 °C to remove residual carbon contamination, resulting in a clean, oxygen-terminated surface. This cleaning process produced slightly upward band bending of 0.1 eV. Additional 650 °C annealing after plasma cleaning increased the upward band bending by 0.2 eV. After the initial clean, high-k oxide films were deposited using oxygen PEALD at 140 °C. The valence band and conduction band offsets (VBOs and CBOs) of the Al2O3/GaN and HfO2/GaN structures were deduced from in-situ x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). The valence band offsets were determined to be 1.8 and 1.4 eV, while the deduced conduction band offsets were 1.3 and 1.0 eV, respectively. These values are compared with the theoretical calculations based on the electron affinity model and charge neutrality level model. Moreover, subsequent annealing had little effect on these offsets; however, the GaN band bending did change depending on the annealing and processing. An Al2O3 layer was investigated as an interfacial passivation layer (IPL), which, as results suggest, may lead to improved stability, performance, and reliability of HfO2/IPL/GaN structures. The VBOs were ˜0.1 and 1.3 eV, while the deduced CBOs were 0.6 and 1.1 eV for HfO2 with respect to Al2O3 and GaN, respectively.

  11. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    Science.gov (United States)

    Su, Yingna; Li, Shangwei; Zhou, Tuanhui; Van Ballegooijen, Adriaan A.; Sun, Xudong; Ji, Haisheng

    2017-08-01

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope (NVST) on 2015 October 15. The full picture of the eruptions is obtained from the corresponding SDO/AIA observations. The two filaments start from the east border of active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts firstly, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions are failed, since the filaments firstly rise up, then flow towards the south and merge into the southern large quiescent filament. We also observe repeating activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO/HMI magnetograms by flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.

  12. The exo-metabolome in filamentous fungi

    DEFF Research Database (Denmark)

    Thrane, Ulf; Andersen, Birgitte; Frisvad, Jens Christian

    2007-01-01

    Filamentous fungi are a diverse group of eukaryotic microorganisms that have a significant impact on human life as spoilers of food and feed by degradation and toxin production. They are also most useful as a source of bulk and fine chemicals and pharmaceuticals. This chapter focuses on the exo...

  13. The Apis mellifera filamentous virus genome

    Science.gov (United States)

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double strand DNA molecule of approximately 498’500 nucleotides with a GC content of 50.8%. It encompasses 251 non overlapping open reading frames (ORFs), e...

  14. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  15. Conformational phases of membrane bound cytoskeletal filaments

    Science.gov (United States)

    Quint, David A.; Grason, Gregory; Gopinathan, Ajay

    2013-03-01

    Membrane bound cytoskeletal filaments found in living cells are employed to carry out many types of activities including cellular division, rigidity and transport. When these biopolymers are bound to a membrane surface they may take on highly non-trivial conformations as compared to when they are not bound. This leads to the natural question; What are the important interactions which drive these polymers to particular conformations when they are bound to a surface? Assuming that there are binding domains along the polymer which follow a periodic helical structure set by the natural monomeric handedness, these bound conformations must arise from the interplay of the intrinsic monomeric helicity and membrane binding. To probe this question, we study a continuous model of an elastic filament with intrinsic helicity and map out the conformational phases of this filament for various mechanical and structural parameters in our model, such as elastic stiffness and intrinsic twist of the filament. Our model allows us to gain insight into the possible mechanisms which drive real biopolymers such as actin and tubulin in eukaryotes and their prokaryotic cousins MreB and FtsZ to take on their functional conformations within living cells.

  16. Filament eruption with apparent reshuffle of endpoints

    CERN Document Server

    Filippov, Boris

    2014-01-01

    Filament eruption on 30 April - 1 May 2010, which shows the reconnection of one filament leg with a region far away from its initial position, is analyzed. Observations from three viewpoints are used for as precise as possible measurements of endpoint coordinates. The northern leg of the erupting prominence loop 'jumps' laterally to the latitude lower than the latitude of the originally southern endpoint. Thus, the endpoints reshuffled their positions in the limb view. Although this behaviour could be interpreted as the asymmetric zipping-like eruption, it does not look very likely. It seems more likely to be reconnection of the flux-rope field lines in its northern leg with ambient coronal magnetic field lines rooted in a quiet region far from the filament. From calculations of coronal potential magnetic field, we found that the filament before the eruption was stable for vertical displacements, but was liable to violation of the horizontal equilibrium. This is unusual initiation of an eruption with combinat...

  17. Morphology and rheology in filamentous cultivations.

    Science.gov (United States)

    Wucherpfennig, T; Kiep, K A; Driouch, H; Wittmann, C; Krull, R

    2010-01-01

    Because of their metabolic diversity, high production capacity, secretion efficiency, and capability of carrying out posttranslational modifications, filamentous fungi are widely exploited as efficient cell factories in the production of metabolites, bioactive substances, and native or heterologous proteins, respectively. There is, however, a complex relationship between the morphology of these microorganisms, transport phenomena, the viscosity of the cultivation broth, and related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass, every growth form having a distinct influence on broth rheology. Hence, the advantages and disadvantages for mycelial or pellet cultivation have to be balanced out carefully. Because of the still inadequate understanding of the morphogenesis of filamentous microorganisms, fungal morphology is often a bottleneck of productivity in industrial production. To obtain an optimized production process, it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the relevant approaches in biochemical engineering. In this chapter, morphology and growth of filamentous fungi are described, with special attention given to specific problems as they arise from fungal growth forms; growth and mass transfer in fungal biopellets are discussed as an example. To emphasize the importance of the flow behavior of filamentous cultivation broths, an introduction to rheology is also given, reviewing important rheological models and recent studies concerning rheological parameters. Furthermore, current knowledge on morphology and productivity in relation to the environom is outlined in the last section of this review. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...

  19. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  20. Using Drosophila for Studies of Intermediate Filaments.

    Science.gov (United States)

    Bohnekamp, Jens; Cryderman, Diane E; Thiemann, Dylan A; Magin, Thomas M; Wallrath, Lori L

    2016-01-01

    Drosophila melanogaster is a useful organism for determining protein function and modeling human disease. Drosophila offers a rapid generation time and an abundance of genomic resources and genetic tools. Conservation in protein structure, signaling pathways, and developmental processes make studies performed in Drosophila relevant to other species, including humans. Drosophila models have been generated for neurodegenerative diseases, muscular dystrophy, cancer, and many other disorders. Recently, intermediate filament protein diseases have been modeled in Drosophila. These models have revealed novel mechanisms of pathology, illuminated potential new routes of therapy, and make whole organism compound screens feasible. The goal of this chapter is to outline steps to study intermediate filament function and model intermediate filament-associated diseases in Drosophila. The steps are general and can be applied to study the function of almost any protein. The protocols outlined here are for both the novice and experienced Drosophila researcher, allowing the rich developmental and cell biology that Drosophila offers to be applied to studies of intermediate filaments.

  1. Self-assembly of Artificial Actin Filaments

    Science.gov (United States)

    Grosenick, Christopher; Cheng, Shengfeng

    Actin Filaments are long, double-helical biopolymers that make up the cytoskeleton along with microtubules and intermediate filaments. In order to further understand the self-assembly process of these biopolymers, a model to recreate actin filament geometry was developed. A monomer in the shape of a bent rod with vertical and lateral binding sites was designed to assemble into single or double helices. With Molecular Dynamics simulations, a variety of phases were observed to form by varying the strength of the binding sites. Ignoring lateral binding sites, we have found a narrow range of binding strengths that lead to long single helices via various growth pathways. When lateral binding strength is introduced, double helices begin to form. These double helices self-assemble into substantially more stable structures than their single helix counterparts. We have found double helices to form long filaments at about half the vertical binding strength of single helices. Surprisingly, we have found that triple helices occasionally form, indicating the importance of structural regulation in the self-assembly of biopolymers.

  2. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  3. Featured Image: A Filament Forms and Erupts

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    This dynamic image of active region NOAA 12241 was captured by the Solar Dynamics Observatorys Atmospheric Imaging Assembly in December 2014. Observations of this region from a number of observatories and instruments recently presented by Jincheng Wang (University of Chinese Academy of Sciences) and collaborators reveal details about the formation and eruption of a long solar filament. Wang and collaborators show that the right part of the filament formed by magnetic reconnection between two bundles of magnetic field lines, while the left part formed as a result of shearing motion. When these two parts interacted, the filament erupted. You can read more about the teams results in the article linked below. Also, check out this awesome video of the filament formation and eruption, again by SDO/AIA:http://cdn.iopscience.com/images/0004-637X/839/2/128/Full/apjaa6bf3f1_video.mp4CitationJincheng Wang et al 2017 ApJ 839 128. doi:10.3847/1538-4357/aa6bf3

  4. Filament Channel Formation, Eruption, and Jet Generation

    Science.gov (United States)

    DeVore, C. Richard; Antiochos, Spiro K.; Karpen, Judith T.

    2017-08-01

    The mechanism behind filament-channel formation is a longstanding mystery, while that underlying the initiation of coronal mass ejections and jets has been studied intensively but is not yet firmly established. In previous work, we and collaborators have investigated separately the consequences of magnetic-helicity condensation (Antiochos 2013) for forming filament channels (Zhao et al. 2015; Knizhnik et al. 2015, 2017a,b) and of the embedded-bipole model (Antiochos 1996) for generating reconnection-driven jets (Pariat et al. 2009, 2010, 2015, 2016; Wyper et al. 2016, 2017). Now we have taken a first step toward synthesizing these two lines of investigation. Our recent study (Karpen et al. 2017) of coronal-hole jets with gravity and wind employed an ad hoc, large-scale shear flow at the surface to introduce magnetic free energy and form the filament channel. In this effort, we replace the shear flow with an ensemble of local rotation cells, to emulate the Sun’s ever-changing granules and supergranules. As in our previous studies, we find that reconnection between twisted flux tubes within the closed-field region concentrates magnetic shear and free energy near the polarity inversion line, forming the filament channel. Onset of reconnection between this field and the external, unsheared, open field releases stored energy to drive the impulsive jet. We discuss the results of our new simulations with implications for understanding solar activity and space weather.

  5. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  6. Interaction of Two Filament Channels of Different Chiralities

    CERN Document Server

    Joshi, Navin Chandra; Schmieder, Brigitte; Magara, Tetsuya; Moon, Young-Jae; Uddin, Wahab

    2016-01-01

    We present observations of interactions between the two filament channels of different chiralities and associated dynamics that occurred during 2014 April 18 -- 20. While two flux ropes of different helicity with parallel axial magnetic fields can only undergo a bounce interaction when they are brought together, the observations at the first glance show that the heated plasma is moving from one filament channel to the other. The SDO/AIA 171 A observations and the PFSS magnetic field extrapolation reveal the presence of fan-spine magnetic configuration over the filament channels with a null point located above them. Three different events of filament activations, partial eruptions, and associated filament channel interactions have been observed. The activation initiated in one filament channel seems to propagate along the neighbour filament channel. We believe that the activation and partial eruption of the filaments bring the field lines of flux ropes containing them closer to the null point and trigger the m...

  7. Assembly characteristics of plant keratin intermediate filaments in vitro

    Institute of Scientific and Technical Information of China (English)

    闵光伟; 杨澄; 佟向军; 翟中和

    1999-01-01

    After selective extraction and purification, plant keratin intermediate filaments were reassembled in vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filaments in vitro. In higher magnification images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24—25 nm periodic structural repeat alone the axis of beth the 10 nm filaments and protofilaments. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.

  8. Mechanical heterogeneity favors fragmentation of strained actin filaments.

    Science.gov (United States)

    De La Cruz, Enrique M; Martiel, Jean-Louis; Blanchoin, Laurent

    2015-05-05

    We present a general model of actin filament deformation and fragmentation in response to compressive forces. The elastic free energy density along filaments is determined by their shape and mechanical properties, which were modeled in terms of bending, twisting, and twist-bend coupling elasticities. The elastic energy stored in filament deformation (i.e., strain) tilts the fragmentation-annealing reaction free-energy profile to favor fragmentation. The energy gradient introduces a local shear force that accelerates filament intersubunit bond rupture. The severing protein, cofilin, renders filaments more compliant in bending and twisting. As a result, filaments that are partially decorated with cofilin are mechanically heterogeneous (i.e., nonuniform) and display asymmetric shape deformations and energy profiles distinct from mechanically homogenous (i.e., uniform), bare actin, or saturated cofilactin filaments. The local buckling strain depends on the relative size of the compliant segment as well as the bending and twisting rigidities of flanking regions. Filaments with a single bare/cofilin-decorated boundary localize energy and force adjacent to the boundary, within the compliant cofilactin segment. Filaments with small cofilin clusters were predicted to fragment within the compliant cofilactin rather than at boundaries. Neglecting contributions from twist-bend coupling elasticity underestimates the energy density and gradients along filaments, and thus the net effects of filament strain to fragmentation. Spatial confinement causes compliant cofilactin segments and filaments to adopt higher deformation modes and store more elastic energy, thereby promoting fragmentation. The theory and simulations presented here establish a quantitative relationship between actin filament fragmentation thermodynamics and elasticity, and reveal how local discontinuities in filament mechanical properties introduced by regulatory proteins can modulate both the severing efficiency

  9. Flexible ferromagnetic filaments and the interface with biology

    Energy Technology Data Exchange (ETDEWEB)

    Erglis, K.; Belovs, M. [University of Latvia, Zellu 8, Riga LV-1002 (Latvia); Cebers, A. [University of Latvia, Zellu 8, Riga LV-1002 (Latvia)], E-mail: aceb@tesla.sal.lv

    2009-04-15

    Flexible ferromagnetic filaments are studied both theoretically and experimentally. Two main deformation modes of the filament at magnetic field inversion are theoretically described and observed experimentally by using DNA-linked chains of ferromagnetic particles. Anomalous orientation of ferromagnetic filaments perpendicular to AC field with a frequency which is high enough is predicted and confirmed experimentally. By experimental studies of magnetotactic bacteria it is demonstrated how these properties of ferromagnetic filaments may be used to measure the flexibility of the chain of magnetosomes.

  10. Architecture and fine structure of gill filaments in the brown mussel, perna perna

    CSIR Research Space (South Africa)

    Gregory, MA

    1996-10-01

    Full Text Available attention was paid to filament architecture, enervation of filaments, number and type of cells populating filament epithelia and variations in epithelial cell morphotogy and cilia ultra structure. Filament shape was maintained by thickened chitin...

  11. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    Science.gov (United States)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  12. Electron energy-loss spectroscopy analysis of low-temperature plasma-enhanced chemically vapor deposited a-C:H films

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J.; Benson, D.K.; Tracy, C.E.; Kazmerski, L.L.; Wager, J.F.

    1989-05-01

    Electron energy-loss spectroscopy (EELS) has been applied to the analysis of a-C:H films grown on various substrates by a unique low-temperature (<100 /sup 0/C) plasma-enhanced chemical vapor deposition (PECVD) process using ethylene and hydrogen gases. EELS data are used to characterize the relative amounts of fourfold coordinated sp/sup 3/ carbon bonding to threefold coordinated sp/sup 2/ carbon bonding as well as the relative order/disorder due to substrate effects. Ellipsometric and transmission measurements provide optical constants for the PECVD a-C:H films.

  13. Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hyuk; Castro, Edward Joseph; Hwang, Yong Gyoo; Lee, Choong Hun [Wonkwang University, Iksan (Korea, Republic of)

    2011-01-15

    In this work, few-layer graphene (FLG) was successfully grown on polycrystalline Ni a large scale by using DC plasma enhanced chemical vapor deposition (DC PE-CVD), which may serve as an alternative route in large-scale graphene synthesis. The synthesis time had an effect on the quality of the graphene produced. The applied DC voltage, on the other hand, influenced the minimization of the defect densities in the graphene grown. We also present a method of producing a free-standing polymethyl methacrylate (PMMA)/graphene membrane on a FeCl{sub 3(aq)} solution, which could then be transferred to the desired substrate.

  14. Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate.

    Science.gov (United States)

    Ji, Sanghoon; Cho, Gu Young; Yu, Wonjong; Su, Pei-Chen; Lee, Min Hwan; Cha, Suk Won

    2015-02-11

    Nanoscale yttria-stabilized zirconia (YSZ) electrolyte film was deposited by plasma-enhanced atomic layer deposition (PEALD) on a porous anodic aluminum oxide supporting substrate for solid oxide fuel cells. The minimum thickness of PEALD-YSZ electrolyte required for a consistently high open circuit voltage of 1.17 V at 500 °C is 70 nm, which is much thinner than the reported thickness of 180 nm using nonplasmatic ALD and is also the thinnest attainable value reported in the literatures on a porous supporting substrate. By further reducing the electrolyte thickness, the grain size reduction resulted in high surface grain boundary density at the cathode/electrolyte interface.

  15. Driven transport on open filaments with interfilament switching processes

    Science.gov (United States)

    Ghosh, Subhadip; Pagonabarraga, Ignacio; Muhuri, Sudipto

    2017-02-01

    We study a two-filament driven lattice gas model with oppositely directed species of particles moving on two parallel filaments with filament-switching processes and particle inflow and outflow at filament ends. The filament-switching process is correlated with the occupation number of the adjacent site such that particles switch filaments with finite probability only when oppositely directed particles meet on the same filament. This model mimics some of the coarse-grained features observed in context of microtubule-(MT) based intracellular transport, wherein cellular cargo loaded and off-loaded at filament ends are transported on multiple parallel MT filaments and can switch between the parallel microtubule filaments. We focus on a regime where the filaments are weakly coupled, such that filament-switching rate of particles scale inversely as the length of the filament. We find that the interplay of (off-) loading processes at the boundaries and the filament-switching process of particles leads to some distinctive features of the system. These features includes occurrence of a variety of phases in the system with inhomogeneous density profiles including localized density shocks, density difference across the filaments, and bidirectional current flows in the system. We analyze the system by developing a mean field (MF) theory and comparing the results obtained from the MF theory with the Monte Carlo (MC) simulations of the dynamics of the system. We find that the steady-state density and current profiles of particles and the phase diagram obtained within the MF picture matches quite well with MC simulation results. These findings maybe useful for studying multifilament intracellular transport.

  16. Hot plasma dielectric tensor

    NARCIS (Netherlands)

    Westerhof, E.

    1996-01-01

    The hot plasma dielectric tensor is discussed in its various approximations. Collisionless cyclotron resonant damping and ion/electron Bernstein waves are discussed to exemplify the significance of a kinetic description of plasma waves.

  17. Planck intermediate results. VIII. Filaments between interacting clusters

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, J. G. Bartlett E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Burenin, R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombo, L. P. L.; Comis, B.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Ganga, K.; Génova-Santos, T.; Giard, M.; Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hurier, G.; Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Luzzi, G.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschènes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Smoot, G. F.; Starck, J.-L.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2013-02-01

    Context. About half of the baryons of the Universe are expected to be in the form of filaments of hot and low-density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories, which are limited in sensitivity to the diffuse low-density medium. Aims: The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low-density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Methods: Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we selected physical pairs of clusters as candidates. Using the Planck data, we constructed a local map of the tSZ effect centred on each pair of galaxy clusters. ROSAT data were used to construct X-ray maps of these pairs. After modelling and subtracting the tSZ effect and X-ray emission for each cluster in the pair, we studied the residuals on both the SZ and X-ray maps. Results: For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 ± 0.9 keV (consistent with previous estimates) and a baryon density of (3.7 ± 0.2) × 10-4 cm-3. Conclusions: The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.

  18. Absorption in the Cosmic Web: Characterizing the Intergalactic Medium in Cosmological Filaments

    Science.gov (United States)

    Tejos, Nicolas

    2014-10-01

    We propose to observe and characterize the IGM associated with cosmological filaments in a statistical manner up to redshift ~0.4. For this purpose, we have used a published cluster catalog (Hao et al. 2010) to identify massive nodes in the cosmic web. We used cluster-pairs separated by 10 to ensure a full characterization of HI and OVI lines at column densities N~10^13 cm^-2. This setup will allow us to detect broad and shallow HI and OVI lines (if any) at the redshifts of these filaments, believed to trace portions of the warm-hot intergalactic medium (WHIM). Combining these new observations with those from our pilot study carried out in cycle 20 (ID 12958, PI Tejos), we aim to provide a firm detection of the WHIM in cosmological filaments, at the 95% confidence level. Our findings will test our understanding of galaxy formation and the role of AGN/supernova feedback by comparing them with state-of-the-art hydrodynamical simulations. We will also test the the hypothesis which states that the majority of OVI absorbers at low-z are confined within Prochaska et al. 2011; Tumlinson et al. 2011).

  19. Filaments of the radio cosmic web: opportunities and challenges for SKA

    CERN Document Server

    Vazza, Franco; Bonafede, Annalisa; Brüggen, Marcus; Gheller, Claudio; Braun, Robert; Brown, Shea

    2015-01-01

    The detection of the diffuse gas component of the cosmic web remains a formidable challenge. In this work we study synchrotron emission from the cosmic web with simulated SKA1 observations, which can represent an fundamental probe of the warm-hot intergalactic medium. We investigate radio emission originated by relativistic electrons accelerated by shocks surrounding cosmic filaments, assuming diffusive shock acceleration and as a function of the (unknown) large-scale magnetic fields. The detection of the brightest parts of large ($>10 \\rm Mpc$) filaments of the cosmic web should be within reach of the SKA1-LOW, if the magnetic field is at the level of a $\\sim 10$ percent equipartition with the thermal gas, corresponding to $\\sim 0.1 \\mu G$ for the most massive filaments in simulations. In the course of a 2-years survey with SKA1-LOW, this will enable a first detection of the "tip of the iceberg" of the radio cosmic web, and allow for the use of the SKA as a powerful tool to study the origin of cosmic magneti...

  20. Far Ultraviolet Morphology of Star Forming Filaments in Cool Core Brightest Cluster Galaxies

    CERN Document Server

    Tremblay, Grant R; Baum, Stefi A; Mittal, Rupal; McDonald, Michael; Combes, Françoise; Li, Yuan; McNamara, Brian; Bremer, Malcolm N; Clarke, Tracy E; Donahue, Megan; Edge, Alastair C; Fabian, Andrew C; Hamer, Stephen L; Hogan, Michael T; Oonk, Raymond; Quillen, Alice C; Sanders, Jeremy S; Salomé, Philippe; Voit, G Mark

    2015-01-01

    We present a multiwavelength morphological analysis of star forming clouds and filaments in the central ($ 5$ \\Msol) stars reveals filamentary and clumpy morphologies, which we quantify by means of structural indices. The FUV data are compared with X-ray, Ly$\\alpha$, narrowband H$\\alpha$, broadband optical/IR, and radio maps, providing a high spatial resolution atlas of star formation locales relative to the ambient hot ($\\sim10^{7-8}$ K) and warm ionised ($\\sim 10^4$ K) gas phases, as well as the old stellar population and radio-bright AGN outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend toward and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed {\\it in situ} by cloud collapse at the interface of a radio lobe or rapid cooling in a cavity's compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations...

  1. Intergalactic Filaments as Isothermal Gas Cylinders

    CERN Document Server

    Harford, A Gayler

    2010-01-01

    Using a cosmological simulation at redshift 5, we find that the baryon-rich cores of intergalactic filaments radiating from galaxies commonly form isothermal gas cylinders. The central gas density is typically about 500 times the cosmic mean total density, and the temperature is typically 1-2 times 10^4 K, just above the Lyman alpha cooling floor. These findings argue that the hydrodynamic properties of the gas are more important than the dark matter in determining the structure. Filaments form a major pipeline for the transport of gas into the centers of galaxies. Since the temperature and ionization state of the gas completely determine the mass per unit length of an isothermal gas cylinder, our findings suggest a constraint upon gas transport into galaxies by this mechanism.

  2. Morgellons disease: a filamentous borrelial dermatitis

    Science.gov (United States)

    Middelveen, Marianne J; Stricker, Raphael B

    2016-01-01

    Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii, Borrelia miyamotoi, and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined. PMID:27789971

  3. Morgellons disease: a filamentous borrelial dermatitis.

    Science.gov (United States)

    Middelveen, Marianne J; Stricker, Raphael B

    2016-01-01

    Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii, Borrelia miyamotoi, and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined.

  4. Merging and energy exchange between optical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, D. A., E-mail: dgeorgieva@tu-sofia.bg [Faculty of Applied Mathematics and Computer Science, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1000 Sofia (Bulgaria); Kovachev, L. M. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradcko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2015-10-28

    We investigate nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing P{sub cr} trough the processes of cross-phase modulation (CPM) and degenerate four-photon parametric mixing (FPPM). When there is no initial phase difference between the pulses we observe attraction between pulses due to CPM. The final result is merging between the pulses in a single filament with higher power. By method of moments it is found that the attraction depends on the distance between the pulses and has potential character. In the second case we study energy exchange between filaments. This process is described through FPPM scheme and requests initial phase difference between the waves.

  5. Laser filamentation mathematical methods and models

    CERN Document Server

    Lorin, Emmanuel; Moloney, Jerome

    2016-01-01

    This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...

  6. In situ ellipsometric study of surface immobilization of flagellar filaments

    Energy Technology Data Exchange (ETDEWEB)

    Kurunczi, S., E-mail: kurunczi@mfa.kfki.hu [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Nemeth, A.; Huelber, T. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Kozma, P. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Petrik, P. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Jankovics, H. [Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Sebestyen, A. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Vonderviszt, F. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Institute of Enzymology, Karolina ut 29-33, Budapest, H-1113 (Hungary); and others

    2010-10-15

    Protein filaments composed of thousands of subunits are promising candidates as sensing elements in biosensors. In this work in situ spectroscopic ellipsometry is applied to monitor the surface immobilization of flagellar filaments. This study is the first step towards the development of layers of filamentous receptors for sensor applications. Surface activation is performed using silanization and a subsequent glutaraldehyde crosslinking. Structure of the flagellar filament layers immobilized on activated and non-activated Si wafer substrates is determined using a two-layer effective medium model that accounted for the vertical density distribution of flagellar filaments with lengths of 300-1500 nm bound to the surface. The formation of the first interface layer can be explained by the multipoint covalent attachment of the filaments, while the second layer is mainly composed of tail pinned filaments floating upwards with the free parts. As confirmed by atomic force microscopy, covalent immobilization resulted in an increased surface density compared to absorption.

  7. Motion of current filaments in avalanching PIN diodes

    Science.gov (United States)

    Xingrong, Ren; Changchun, Chai; Zhenyang, Ma; Yintang, Yang; Liping, Qiao; Chunlei, Shi; Lihua, Ren

    2013-04-01

    The motion of current filaments in avalanching PIN diodes has been investigated in this paper by 2D transient numerical simulations. The simulation results show that the filament can move along the length of the PIN diode back and forth when the self-heating effect is considered. The voltage waveform varies periodically due to the motion of the filament. The filament motion is driven by the temperature gradient in the filament due to the negative temperature dependence of the impact ionization rates. Contrary to the traditional understanding that current filamentation is a potential cause of thermal destruction, it is shown in this paper that the thermally-driven motion of current filaments leads to the homogenization of temperature in the diode and is expected to have a positive influence on the failure threshold of the PIN diode.

  8. COMPLEX FLARE DYNAMICS INITIATED BY A FILAMENT–FILAMENT INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chunming; McAteer, R. T. James [Department of Astronomy, New Mexico State University, NM 88003 (United States); Liu, Rui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Alexander, David [Department of Physics and Astronomy, Rice University, TX 77005 (United States); Sun, Xudong, E-mail: czhu@nmsu.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2015-11-01

    We report on an eruption involving a relatively rare filament–filament interaction on 2013 June 21, observed by SDO and STEREO-B. The two filaments were separated in height with a “double-decker” configuration. The eruption of the lower filament began simultaneously with a descent of the upper filament, resulting in a convergence and direct interaction of the two filaments. The interaction was accompanied by the heating of surrounding plasma and an apparent crossing of a loop-like structure through the upper filament. The subsequent coalescence of the filaments drove a bright front ahead of the erupting structures. The whole process was associated with a C3.0 flare followed immediately by an M2.9 flare. Shrinking loops and descending dark voids were observed during the M2.9 flare at different locations above a C-shaped flare arcade as part of the energy release, giving us unique insight into the flare dynamics.

  9. Topological Aspect of Knotted Vortex Filaments in Excitable Media

    Institute of Scientific and Technical Information of China (English)

    REN Ji-Rong; ZHU Tao; DUAN Yi-Shi

    2008-01-01

    Scroll waves exist ubiquitously in three-dimensional excitable media.The rotation centre can be regarded as a topological object called the vortex filament.In three-dimensional space,the vortex filaments usually form closed loops,and can be even linked and knotted.We give a rigorous topological description of knotted vortex filaments.By using the Φ-mapping topological current theory,we rewrite the topological current form of the charge density of vortex filaments,and using this topological current we reveal that the Hopf invariant of vortex filaments is just the sum of the linking and self-linking numbers of the knotted vortex filaments.We think that the precise expression of the Hopf invariant may imply a new topological constraint on knotted vortex filaments.

  10. Alma Observations of Massive Molecular Gas Filaments Encasing Radio Bubbles in the Phoenix Cluster

    Science.gov (United States)

    Russell, H. R.; McDonald, M.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Bayliss, M. B.; Benson, B. A.; Brodwin, M.; Carlstrom, J. E.; Edge, A. C.; Hlavacek-Larrondo, J.; Marrone, D. P.; Reichardt, C. L.; Vieira, J. D.

    2017-02-01

    We report new ALMA observations of the CO(3-2) line emission from the 2.1+/- 0.3× {10}10 {M}ȯ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fueling a vigorous starburst at a rate of 500{--}800 {M}ȯ {{yr}}-1 and powerful black hole activity in the forms of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each 10{--}20 {kpc} long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low-entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.

  11. Formation of magnetic filaments: A kinetic study

    Science.gov (United States)

    Martínez-Pedrero, F.; Tirado-Miranda, M.; Schmitt, A.; Callejas-Fernández, J.

    2007-07-01

    In order to form magnetic filaments or chains, aqueous suspensions of superparamagnetic colloidal particles were aggregated under the action of an external magnetic field in the presence of different amounts of an indifferent 1:1 electrolyte (KBr). This allowed the influence of the anisotropic magnetic and isotropic electrostatic interactions on the aggregation behavior of these electric double-layered magnetic particles to be studied. Dynamic light scattering was used for monitoring the average diffusion coefficient of the magnetic filaments formed. Hydrodynamic equations were employed for obtaining the average chain lengths from the experimental mean diffusion coefficients. The results show that, for the same exposure time to the magnetic field, the average filament size is monotonously related to the amount of electrolyte added. The chain growth behavior was found to follow a power law with a similar exponent for all electrolyte concentrations used in this work. The time evolution of the average filament size can be rescaled such that all the curves collapse on a single master curve. Since the electrolyte added does not have any effect on the scaling behavior, the mechanism of aggregation seems to be completely controlled by the dipolar interaction. However, electrolyte addition not only controls the range of the total interaction between the particles, but also enhances the growth rate of the aggregation process. Taking into account the anisotropic character of these aggregation processes we propose a kernel that depends explicitly on the range of the dipolar interaction. The corresponding solutions of the Smoluchowski equation combined with theoretical models for the diffusion and light scattering by rigid rods reproduce the measured time evolution of the average perpendicular aggregate diffusion coefficient quite satisfactorily.

  12. Cold Milky Way HI Gas in Filaments

    Science.gov (United States)

    Kalberla, P. M. W.; Kerp, J.; Haud, U.; Winkel, B.; Ben Bekhti, N.; Flöer, L.; Lenz, D.

    2016-04-01

    We investigate data from the Galactic Effelsberg-Bonn H i Survey, supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all-sky distribution of the local Galactic H i gas with | {v}{{LSR}}| \\lt 25 km s-1 on angular scales of 11‧-16‧. Unsharp masking is applied to extract small-scale features. We find cold filaments that are aligned with polarized dust emission and conclude that the cold neutral medium (CNM) is mostly organized in sheets that are, because of projection effects, observed as filaments. These filaments are associated with dust ridges, aligned with the magnetic field measured on the structures by Planck at 353 GHz. The CNM above latitudes | b| \\gt 20^\\circ is described by a log-normal distribution, with a median Doppler temperature TD = 223 K, derived from observed line widths that include turbulent contributions. The median neutral hydrogen (H i) column density is NH i ≃ 1019.1 cm-2. These CNM structures are embedded within a warm neutral medium with NH i ≃ 1020 cm-2. Assuming an average distance of 100 pc, we derive for the CNM sheets a thickness of ≲0.3 pc. Adopting a magnetic field strength of Btot = (6.0 ± 1.8) μG, proposed by Heiles & Troland, and assuming that the CNM filaments are confined by magnetic pressure, we estimate a thickness of 0.09 pc. Correspondingly, the median volume density is in the range 14 ≲ n ≲ 47 cm-3. The authors thank the Deutsche Forschungsgemeinschaft (DFG) for support under grant numbers KE757/11-1, KE757/7-3, KE757/7-2, KE757/7-1, and BE4823/1-1.

  13. [Elimination of microscopic filamentous fungi with disinfectants].

    Science.gov (United States)

    Laciaková, A; Laciak, V

    1994-01-01

    The antifungal effectivity of three single-component (Persteril, Septonex, Glutaraldehyd) and of three combined (Persteril+Septonex, Pesteril+Glutaraldehyd, Glutaraldehyd+Septonex) commercially available disinfectants was monitored by the diffuse method on five fen of the microscopic filamentous fungi Aspergillus alternata, Aspergillus niger, Mucor fragillis, Fusarium moniliforme, Penicillium glabrum. The highest antifungal activity was observed in 2% Persteril while 2% Persteril + 1% Septonex were the most effective among the combined disinfectants. M. fragilis was the most resistant strain.

  14. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...... it is demonstrated that surface tension plays a key role in the selection of the most unstable mode...

  15. The tidal filament of NGC 4660

    CERN Document Server

    Kemp, S N; Marquez-Lugo, R A; Zepeda-Garcia, D; Franco-Hernandez, R; Nigoche-Netro, A; Ramos-Larios, G; Navarro, S G; Corral, L J

    2016-01-01

    NGC 4660, in the Virgo cluster, is a well-studied elliptical galaxy which has a strong disk component (D/T about 0.2-0.3). The central regions including the disk component have stellar populations with ages about 12-13 Gyr from SAURON studies. However we report the discovery of a long narrow tidal filament associated with the galaxy in deep co-added Schmidt plate images and deep CCD frames, implying that the galaxy has undergone a tidal interaction and merger within the last few Gyr. The relative narrowness of the filament implies a wet merger with at least one spiral galaxy involved, but the current state of the system has little evidence for this. However a 2-component photometric fit using GALFIT shows much bluer B-V colours for the disk component than for the elliptical component, which may represent a residual trace of enhanced star formation in the disk caused by the interaction 1-2 Gyr ago. There are brighter concentrations within the filament which resemble Tidal Dwarf Galaxies, although they are at l...

  16. Mechanical Properties of Intermediate Filament Proteins.

    Science.gov (United States)

    Charrier, Elisabeth E; Janmey, Paul A

    2016-01-01

    Purified intermediate filament (IF) proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filaments form viscoelastic gels. The cross-links holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking nonlinear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large strains resembling those that soft tissues undergo in vivo. Individual IFs can be stretched to more than two or three times their resting length without breaking. At least 10 different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of cytoplasmic IFs on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations.

  17. Oscillating Filaments. I. Oscillation and Geometrical Fragmentation

    Science.gov (United States)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas

    2017-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  18. A first approach to filament dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P E S; De Abreu, F Vistulo; Dias, R G [Department of Physics, University of Aveiro (Portugal); Simoes, R, E-mail: fva@ua.p [I3N-Institute for Nanostructures, Nanomodelling and Nanofabrication (Portugal)

    2010-11-15

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  19. Modelling the chemistry of star forming filaments

    CERN Document Server

    Seifried, D

    2015-01-01

    We present simulations of star forming filaments incorporating - to our knowledge - the largest chemical network used to date on-the-fly in a 3D-MHD simulation. The network contains 37 chemical species and about 300 selected reaction rates. For this we use the newly developed package KROME (Grassi et al. 2014). We combine the KROME package with an algorithm which allows us to calculate the column density and attenuation of the interstellar radiation field necessary to properly model heating and ionisation rates. Our results demonstrate the feasibility of using such a complex chemical network in 3D-MHD simulations on modern supercomputers. We perform simulations with different strengths of the interstellar radiation field and the cosmic ray ionisation rate. We find that towards the centre of the filaments there is gradual conversion of hydrogen from H^+ over H to H_2 as well as of C^+ over C to CO. Moreover, we find a decrease of the dust temperature towards the centre of the filaments in agreement with recent...

  20. Single liquid-source plasma enhanced metalorganic chemical vapor deposition of YBa sub 2 Cu sub 3 O sub 7-x thin films. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Gardiner, R.; Kirlin, P.S.; Boerstler, R.W.; Steinbeck, J.

    1992-07-29

    High quality YBa2Cu3O7-x films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd)n, (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction. measurements indicated that single phase, highly c-axis oriented YBa2Cu3O7-x was formed in-situ at a substrate temperature 680 degC. The as-deposited films exhibited a mirror-like surface, had transition temperature Tc = 89 K, Delta Tc < 1K, and Jc(77K) = 106 A/cm2. Plasma enhanced metalorganic chemical vapor deposition, YBCO, superconductors.

  1. Tuning of undoped ZnO thin film via plasma enhanced atomic layer deposition and its application for an inverted polymer solar cell

    Directory of Open Access Journals (Sweden)

    Mi-jin Jin

    2013-10-01

    Full Text Available We studied the tuning of structural and optical properties of ZnO thin film and its correlation to the efficiency of inverted solar cell using plasma-enhanced atomic layer deposition (PEALD. The sequential injection of DEZn and O2 plasma was employed for the plasma-enhanced atomic layer deposition of ZnO thin film. As the growth temperature of ZnO film was increased from 100 °C to 300 °C, the crystallinity of ZnO film was improved from amorphous to highly ordered (002 direction ploy-crystal due to self crystallization. Increasing oxygen plasma time in PEALD process also introduces growing of hexagonal wurtzite phase of ZnO nanocrystal. Excess of oxygen plasma time induces enhanced deep level emission band (500 ∼ 700 nm in photoluminescence due to Zn vacancies and other defects. The evolution of structural and optical properties of PEALD ZnO films also involves in change of electrical conductivity by 3 orders of magnitude. The highly tunable PEALD ZnO thin films were employed as the electron conductive layers in inverted polymer solar cells. Our study indicates that both structural and optical properties rather than electrical conductivities of ZnO films play more important role for the effective charge collection in photovoltaic device operation. The ability to tune the materials properties of undoped ZnO films via PEALD should extend their functionality over the wide range of advanced electronic applications.

  2. Bacterial composition of microbial mats in hot springs in Northern Patagonia: variations with seasons and temperature.

    Science.gov (United States)

    Mackenzie, Roy; Pedrós-Alió, Carlos; Díez, Beatriz

    2013-01-01

    Seasonal shifts in bacterial diversity of microbial mats were analyzed in three hot springs (39-68 °C) of Patagonia, using culture-independent methods. Three major bacterial groups were detected in all springs: Phyla Cyanobacteria and Bacteroidetes, and Order Thermales. Proteobacteria, Acidobacteria and Green Non-Sulfur Bacteria were also detected in small amounts and only in some samples. Thermophilic filamentous heterocyst-containing Mastigocladus were dominant Cyanobacteria in Porcelana Hot Spring and Geyser, and Calothrix in Cahuelmó, followed by the filamentous non-heterocyst Leptolyngbya and Oscillatoria. Bacteroidetes were detected in a wide temperature range and their relative abundance increased with decreasing temperature in almost all samples. Two Meiothermus populations with different temperature optima were found. Overall, fingerprinting analysis with universal bacterial primers showed high similarities within each hot spring despite differences in temperature. On the other hand, Cahuelmó Hot Spring showed a lower resemblance among samples. Porcelana Hot Spring and Porcelana Geyser were rather similar to each other, possibly due to a common geological substrate given their geographic proximity. This was even more evident with specific cyanobacterial primers. The different geological substrate and the seawater influence in Cahuelmó might have caused the differences in the microbial community structure with the other two hot springs.

  3. The Effect of the Double-Deck Filament Setup on Enhancing the Uniformity of Temperature Field on Long-Flute Cutting Tools

    Science.gov (United States)

    Shen, Bin; Chen, Sulin; Cheng, Lei; Sun, Fanghong

    2014-09-01

    In the present study, a double-deck filament setup is proposed for the hot filament chemical vapor deposition (HFCVD) method and an optimization method is presented to determine its optimal geometry that is able to produce a highly uniform temperature field on the whole flute surface of long-flute cutting tools. The optimization method is based on the finite volume method (FVM) simulation and the Taguchi method. The simulation results show that this double-deck filament setup always produce a highly uniform temperature distribution along the filament direction. Comparatively, for the temperature uniformity along the drill axis, the heights of the two filament decks present virtually significant influence, while the separations between the two filaments in either deck exhibit a relative weak effect. An optimized setup is obtained that can produce a highly uniform temperature field with an average temperature of 834°C, a standard deviation (σ) of 2.59°C and a temperature range (R) of 11.75°C. Finally, the precision of the proposed simulation method is verified by an additional temperature measurement. The measured temperature results show that a highly uniform temperature fields with σ/R = 9.6/35.2°C can be generated by the optimized setup and the deviation of the simulated results from the measured actual temperatures are within 0.5-3.5%, which justifies the correctness of the simulation method proposed in present study.

  4. Synthesis of thin films in boron-carbon-nitrogen ternary system by microwave plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Kukreja, Ratandeep Singh

    The Boron Carbon Nitorgen (B-C-N) ternary system includes materials with exceptional properties such as wide band gap, excellent thermal conductivity, high bulk modulus, extreme hardness and transparency in the optical and UV range that find application in most fields ranging from micro-electronics, bio-sensors, and cutting tools to materials for space age technology. Interesting materials that belong to the B-C-N ternary system include Carbon nano-tubes, Boron Carbide, Boron Carbon Nitride (B-CN), hexagonal Boron Nitride ( h-BN), cubic Boron Nitride (c-BN), Diamond and beta Carbon Nitride (beta-C3N4). Synthesis of these materials requires precisely controlled and energetically favorable conditions. Chemical vapor deposition is widely used technique for deposition of thin films of ceramics, metals and metal-organic compounds. Microwave plasma enhanced chemical vapor deposition (MPECVD) is especially interesting because of its ability to deposit materials that are meta-stable under the deposition conditions, for e.g. diamond. In the present study, attempt has been made to synthesize beta-carbon nitride (beta-C3N4) and cubic-Boron Nitride (c-BN) thin films by MPECVD. Also included is the investigation of dependence of residual stress and thermal conductivity of the diamond thin films, deposited by MPECVD, on substrate pre-treatment and deposition temperature. Si incorporated CNx thin films are synthesized and characterized while attempting to deposit beta-C3N4 thin films on Si substrates using Methane (CH4), Nitrogen (N2), and Hydrogen (H2). It is shown that the composition and morphology of Si incorporated CNx thin film can be tailored by controlling the sequence of introduction of the precursor gases in the plasma chamber. Greater than 100mum size hexagonal crystals of N-Si-C are deposited when Nitrogen precursor is introduced first while agglomerates of nano-meter range graphitic needles of C-Si-N are deposited when Carbon precursor is introduced first in the

  5. Patterns of molecular motors that guide and sort filaments.

    Science.gov (United States)

    Rupp, Beat; Nédélec, François

    2012-11-21

    Molecular motors can be immobilized to transport filaments and loads that are attached to these filaments inside a nano-device. However, if motors are distributed uniformly over a flat surface, the motility is undirected, and the filaments move equally in all directions. For many applications it is important to control the direction in which the filaments move, and two strategies have been explored to achieve this: applying external forces and confining the filaments inside channels. In this article, we discuss a third strategy in which the topography of the sample remains flat, but the motors are distributed non-uniformly over the surface. Systems of filaments and patterned molecular motors were simulated using a stochastic engine that included Brownian motion and filament bending elasticity. Using an evolutionary algorithm, patterns were optimized for their capacity to precisely control the paths of the filaments. We identified patterns of motors that could either direct the filaments in a particular direction, or separate short and long filaments. These functionalities already exceed what has been achieved with confinement. The patterns are composed of one or two types of motors positioned in lines or along arcs and should be easy to manufacture. Finally, these patterns can be easily combined into larger designs, allowing one to precisely control the motion of microscopic objects inside a device.

  6. Connectin filaments in stretched skinned fibers of frog skeletal muscle

    Science.gov (United States)

    1984-01-01

    Indirect immunofluorescence microscopy of highly stretched skinned frog semi-tendinous muscle fibers revealed that connectin, an elastic protein of muscle, is located in the gap between actin and myosin filaments and also in the region of myosin filaments except in their centers. Electron microscopic observations showed that there were easily recognizable filaments extending from the myosin filaments to the I band region and to Z lines in the myofibrils treated with antiserum against connectin. In thin sections prepared with tannic acid, very thin filaments connected myosin filaments to actin filaments. These filaments were also observed in myofibrils extracted with a modified Hasselbach-Schneider solution (0.6 M KCl, 0.1 M phosphate buffer, pH 6.5, 2 mM ATP, 2 mM MgCl2, and 1 mM EGTA) and with 0.6 M Kl. SDS PAGE revealed that connectin (also called titin) remained in extracted myofibrils. We suggest that connectin filaments play an important role in the generation of tension upon passive stretch. A scheme of the cytoskeletal structure of myofibrils of vertebrate skeletal muscle is presented on the basis of our present information of connectin and intermediate filaments. PMID:6384237

  7. Degradation of thin tungsten filaments at high temperature in HWCVD

    Energy Technology Data Exchange (ETDEWEB)

    Frigeri, P.A., E-mail: pfrigeri@phys.ethz.ch; Nos, O.; Bertomeu, J.

    2015-01-30

    The degradation of the filaments is usually studied by checking the silicidation or carbonization status of the refractory metal used as catalysts, and their effects on the structural stability of the filaments. In this paper, it will be shown that the catalytic stability of a filament heated at high temperature is much shorter than its structural lifetime. The electrical resistance of a thin tungsten filament and the deposition rate of the deposited thin film have been monitored during the filament aging. It has been found that the deposition rate drops drastically once the quantity of dissolved silicon in the tungsten reaches the solubility limit and the silicides start precipitating. This manuscript concludes that the catalytic stability is only guaranteed for a short time and that for sufficiently thick filaments it does not depend on the filament radius. - Highlights: • A model for the electrical resistance of a tungsten filament during aging is presented. • Catalytic activity of the filament drops when W5Si3 precipitation takes place at its surface. • The catalytic stability of the filament does not depend on its radius in most practical situations.

  8. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Science.gov (United States)

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.

  9. IR Hot Wave

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  10. Hot Air Engines

    Directory of Open Access Journals (Sweden)

    P. Stouffs

    2011-01-01

    Full Text Available Invented in 1816, the hot-air engines have known significant commercial success in the nineteenth century, before falling into disuse. Nowadays they enjoy a renewed interest for some specific applications. The "hot-air engines" family is made up of two groups: Stirling engines and Ericsson engines. The operating principle of Stirling and Ericsson engines, their troubled history, their advantages and their niche applications are briefly presented, especially in the field of micro-combined heat and power, solar energy conversion and biomass energy conversion. The design of an open cycle Ericsson engine for solar application is proposed. A first prototype of the hot part of the engine has been built and tested. Experimental results are presented.

  11. Interaction of carbon nanotubes and diamonds under hot-filament chemical vapor deposition conditions

    Science.gov (United States)

    Shankar, Nagraj

    A composite of CNTs and diamond can be expected to have unique mechanical, electrical and thermal properties due to the synergetic combination of the excellent properties of these two allotropes of carbon. The composite may find applications in various fields that require a combination of good mechanical, thermal, electrical and optical properties such as, wear-resistant coatings, thermal management of integrated chips (ICs), and field emission devices. This research is devoted to the experimental studies of phase stability of diamond and CNTs under chemical vapor deposition conditions to investigate the possibility of combining these materials to produce a hybrid composite. Growth of the hybrid material is investigated by starting with a pre-existing film of CNTs and subsequently growing diamond on it. The diamond growth phase space is systematically scanned to determine optimal conditions where diamond nucleates on the CNT without destroying it. Various techniques including SEM, TEM, and Micro Raman spectroscopy are used to characterize the hybrid material. A selective window where the diamond directly nucleates on the CNT without destroying the underlying CNT network is identified. Based on the material characterization, a growth mechanism based on etching of CNT at the defective sites to produce sp3 dangling bonds onto which diamond nucleates is proposed. Though a hybrid material is synthesized, the nucleation density of diamond on the CNTs is low and highly non-homogenous. Improvements to the CNT dispersion in the hybrid material are investigated in order to produce a homogenous material with predictable CNT loading fractions and to probe the low nucleation density of diamond on the CNT. The effect of several dispersion techniques and solvents on CNT surface homogeneity is studied using SEM, and a novel, vacuum drying based approach using CNT/dichlorobenzene dispersions is suggested. SEM and Raman analysis of the early stage nucleation are used to develop a hypothesis of diamond nucleation enhancement by CNT under HFCVD conditions. It is found that the nucleation takes places by etching of the CNT to create a new carbonaceous surface, onto which diamond nucleates. This mechanism is different from the present understanding of the diamond nucleation enhancement by CNTs.

  12. Coatings for Oxidation and Hot Corrosion Protection of Disk Alloys

    Science.gov (United States)

    Nesbitt, Jim; Gabb, Tim; Draper, Sue; Miller, Bob; Locci, Ivan; Sudbrack, Chantal

    2017-01-01

    Increasing temperatures in aero gas turbines is resulting in oxidation and hot corrosion attack of turbine disks. Since disks are sensitive to low cycle fatigue (LCF), any environmental attack, and especially hot corrosion pitting, can potentially seriously degrade the life of the disk. Application of metallic coatings are one means of protecting disk alloys from this environmental attack. However, simply the presence of a metallic coating, even without environmental exposure, can degrade the LCF life of a disk alloy. Therefore, coatings must be designed which are not only resistant to oxidation and corrosion attack, but must not significantly degrade the LCF life of the alloy. Three different Ni-Cr coating compositions (29, 35.5, 45wt. Cr) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One coating also received a thin ZrO2 overcoat. The coated samples were also given a short oxidation exposure in a low PO2 environment to encourage chromia scale formation. Without further environmental exposure, the LCF life of the coated samples, evaluated at 760C, was less than that of uncoated samples. Hence, application of the coating alone degraded the LCF life of the disk alloy. Since shot peening is commonly employed to improve LCF life, the effect of shot peening the coated and uncoated surface was also evaluated. For all cases, shot peening improved the LCF life of the coated samples. Coated and uncoated samples were shot peened and given environmental exposures consisting of 500 hrs of oxidation followed by 50 hrs of hot corrosion, both at 760C). The high-Cr coating showed the best LCF life after the environmental exposures. Results of the LCF testing and post-test characterization of the various coatings will be presented and future research directions discussed.

  13. Filament Eruptions, Jets, and Space Weather

    Science.gov (United States)

    Moore, Ronald; Sterling, Alphonse; Robe, Nick; Falconer, David; Cirtain, Jonathan

    2013-01-01

    Previously, from chromospheric H alpha and coronal X-ray movies of the Sun's polar coronal holes, it was found that nearly all coronal jets (greater than 90%) are one or the other of two roughly equally common different kinds, different in how they erupt: standard jets and blowout jets (Yamauchi et al 2004, Apl, 605, 5ll: Moore et all 2010, Apj, 720, 757). Here, from inspection of SDO/AIA He II 304 A movies of 54 polar x-ray jets observed in Hinode/XRT movies, we report, as Moore et al (2010) anticipated, that (1) most standard x-ray jets (greater than 80%) show no ejected plasma that is cool enough (T is less than or approximately 10(exp 5K) to be seen in the He II 304 A movies; (2) nearly all blownout X-ray jets (greater than 90%) show obvious ejection of such cool plasma; (3) whereas when cool plasma is ejected in standard X-ray jets, it shows no lateral expansion, the cool plasma ejected in blowout X-ray jets shows strong lateral expansion; and (4) in many blowout X-ray jets, the cool plasma ejection displays the erupting-magnetic-rope form of clasic filament eruptions and is thereby seen to be a miniature filament eruption. The XRT movies also showed most blowout X-ray jets to be larger and brighter, and hence to apparently have more energy, than most standard X-ray jets. These observations (1) confirm the dichotomy of coronal jets, (2) agree with the Shibata model for standard jets, and (3) support the conclusion of Moore et al (2010) that in blowout jets the magnetic-arch base of the jet erupts in the manner of the much larger magnetic arcades in which the core field, the field rooted along the arcade's polarity inversion line, is sheared and twisted (sigmoid), often carries a cool-plasma filament, and erupts to blowout the arcade, producing a CME. From Hinode/SOT Ca II movies of the polar limb, Sterling et al (2010, ApJ, 714, L1) found that chromospheric Type-II spicules show a dichotomy of eruption dynamics similar to that found here for the cool

  14. Heterocyst placement strategies to maximize growth of cyanobacterial filaments

    CERN Document Server

    Brown, Aidan I

    2012-01-01

    Under conditions of limited fixed-nitrogen, some filamentous cyanobacteria develop a regular pattern of heterocyst cells that fix nitrogen for the remaining vegetative cells. We examine three different heterocyst placement strategies by quantitatively modelling filament growth while varying both external fixed-nitrogen and leakage from the filament. We find that there is an optimum heterocyst frequency which maximizes the growth rate of the filament; the optimum frequency decreases as the external fixed-nitrogen concentration increases but increases as the leakage increases. In the presence of leakage, filaments implementing a local heterocyst placement strategy grow significantly faster than filaments implementing random heterocyst placement strategies. With no extracellular fixed-nitrogen, consistent with recent experimental studies of Anabaena sp. PCC 7120, the modelled heterocyst spacing distribution using our local heterocyst placement strategy is qualitatively similar to experimentally observed patterns...

  15. Hamiltonian Dynamics of Protein Filament Formation.

    Science.gov (United States)

    Michaels, Thomas C T; Cohen, Samuel I A; Vendruscolo, Michele; Dobson, Christopher M; Knowles, Tuomas P J

    2016-01-22

    We establish the Hamiltonian structure of the rate equations describing the formation of protein filaments. We then show that this formalism provides a unified view of the behavior of a range of biological self-assembling systems as diverse as actin, prions, and amyloidogenic polypeptides. We further demonstrate that the time-translation symmetry of the resulting Hamiltonian leads to previously unsuggested conservation laws that connect the number and mass concentrations of fibrils and allow linear growth phenomena to be equated with autocatalytic growth processes. We finally show how these results reveal simple rate laws that provide the basis for interpreting experimental data in terms of specific mechanisms controlling the proliferation of fibrils.

  16. Intermediate filaments: from cell architecture to nanomechanics.

    Science.gov (United States)

    Herrmann, Harald; Bär, Harald; Kreplak, Laurent; Strelkov, Sergei V; Aebi, Ueli

    2007-07-01

    Intermediate filaments (IFs) constitute a major structural element of animal cells. They build two distinct systems, one in the nucleus and one in the cytoplasm. In both cases, their major function is assumed to be that of a mechanical stress absorber and an integrating device for the entire cytoskeleton. In line with this, recent disease mutations in human IF proteins indicate that the nanomechanical properties of cell-type-specific IFs are central to the pathogenesis of diseases as diverse as muscular dystrophy and premature ageing. However, the analysis of these various diseases suggests that IFs also have an important role in cell-type-specific physiological functions.

  17. Semiflexible biopolymers: Microrheology and single filament condensation

    Science.gov (United States)

    Schnurr, Bernhard

    Polymers and their elementary subunits, called monomers, come in an immense variety of structures and sizes, and are of great importance for their material properties as well as a multitude of biological functions. The emphasis here is on semiflexible polymers, which are identified by their intermediate degree of stiffness. Their individual as well as their collective properties when assembled into entangled networks is a topic of great interest to polymer physics, materials science, and biology. Some of the most important semiflexible polymers are biopolymers, with such prominent examples as DNA, F-actin, and microtubules. Their functions range from their use as structural elements in the cytoskeleton of most plant and animal cells, to their role as transport tracks for molecular motors, and the storage of genetic information in their linear sequence. The two parts of this experimental and theoretical thesis address single filament aspects as well as network properties of solutions of semiflexible polymers. In the first part, we describe an optical technique for measuring the bulk properties of soft materials at the local scale. We apply it to a solution of entangled, filamentous actin, a particularly difficult material to characterize with conventional techniques. Beyond a description of measurements and apparatus, we also discuss, from a theoretical point of view, the interpretation and fundamental limitations of this and other microrheological techniques. In the second part, we describe the condensation dynamics of a single, semiflexible filament, induced by changing solvent conditions. A biologically important example of this phenomenon is the condensation of DNA into toroidal structures, which occurs, for instance, in viral capsids. Our observations of a molecular simulation motivate an unexpected pathway of collapse via a series of metastable intermediates we call ``racquet'' states. The analysis of the conformational energies of these structures in the

  18. Langmuir wave filamentation in the kinetic regime

    CERN Document Server

    Silantyev, Denis A; Rose, Harvey A

    2016-01-01

    Nonlinear Langmuir wave in the kinetic regime $k\\lambda_D\\gtrsim0.2$ has a transverse instability, where $k$ is the wavenumber and $\\lambda_D$ is the Debye length. The nonlinear stage of that instability development leads to the filamentation of Langmuir waves. Here we study the linear stage of transverse instability of both Bernstein-Greene-Kruskal (BGK) modes and dynamically prepared BGK-like initial conditions to find the same instability growth rate suggesting the universal mechanism for the kinetic saturation of stimulated Raman scatter in laser-plasma interaction experiments. Multidimensional Vlasov simulations results are compared to the theoretical predictions.

  19. Filament winding cylinders. I - Process model

    Science.gov (United States)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.

  20. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living......Oxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters......, electrical cables add a new dimension to the understanding of interactions in nature and may find use in technology development....

  1. Numerical simulations of a filament in a flowing soap film

    Science.gov (United States)

    Farnell, D. J. J.; David, T.; Barton, D. C.

    2004-01-01

    Experiments concerning the properties of soap films have recently been carried out and these systems have been proposed as experimental versions of theoretical two-dimensional liquids. A silk filament introduced into a flowing soap film, was seen to demonstrate various stable modes, and these were, namely, a mode in which the filament oscillates and one in which the filament is stationary and aligns with the flow of the liquid. The system could be forced from the oscillatory mode into the non- oscillatory mode by varying the length of the filament. In this article we use numerical and computational techniques in order to simulate the strongly coupled behaviour of the filament and the fluid. Preliminary results are presented for the specific case in which the filament is seen to oscillate continuously for the duration of our simulation. We also find that the filament oscillations are strongly suppressed when we reduce the effective length of the filament. We believe that these results are reminiscent of the different oscillatory and non-oscillatory modes observed in experiment. The numerical solutions show that, in contrast to experiment, vortices are created at the leading edge of the filament and are preferentially grown in the curvature of the filament and are eventually released from the trailing edge of the filament. In a similar manner to oscillating hydrofoils, it seems that the oscillating filaments are in a minimal energy state, extracting sufficient energy from the fluid to oscillate. In comparing numerical and experimental results it is possible that the soap film does have an effect on the fluid flow especially in the boundary layer where surface tension forces are large.

  2. Characterization of osmotically induced filaments of Salmonella enterica.

    Science.gov (United States)

    Pratt, Zachary L; Chen, Bingming; Czuprynski, Charles J; Wong, Amy C L; Kaspar, Charles W

    2012-09-01

    Salmonella enterica forms aseptate filaments with multiple nucleoids when cultured in hyperosmotic conditions. These osmotic-induced filaments are viable and form single colonies on agar plates even though they contain multiple genomes and have the potential to divide into multiple daughter cells. Introducing filaments that are formed during osmotic stress into culture conditions without additional humectants results in the formation of septa and their division into individual cells, which could present challenges to retrospective analyses of infectious dose and risk assessments. We sought to characterize the underlying mechanisms of osmotic-induced filament formation. The concentration of proteins and chromosomal DNA in filaments and control cells was similar when standardized by biomass. Furthermore, penicillin-binding proteins in the membrane of salmonellae were active in vitro. The activity of penicillin-binding protein 2 was greater in filaments than in control cells, suggesting that it may have a role in osmotic-induced filament formation. Filaments contained more ATP than did control cells in standardized cell suspensions, though the levels of two F(0)F(1)-ATP synthase subunits were reduced. Furthermore, filaments could septate and divide within 8 h in 0.2 × Luria-Bertani broth at 23°C, while nonfilamentous control cells did not replicate. Based upon the ability of filaments to septate and divide in this diluted broth, a method was developed to enumerate by plate count the number of individual, viable cells within a population of filaments. This method could aid in retrospective analyses of infectious dose of filamented salmonellae.

  3. Ultrasonic Hot Embossing

    Directory of Open Access Journals (Sweden)

    Werner Karl Schomburg

    2011-05-01

    Full Text Available Ultrasonic hot embossing is a new process for fast and low-cost production of micro systems from polymer. Investment costs are on the order of 20.000 € and cycle times are a few seconds. Microstructures are fabricated on polymer foils and can be combined to three-dimensional systems by ultrasonic welding.

  4. What's Hot? What's Not?

    Science.gov (United States)

    Buczynski, Sandy

    2006-01-01

    When Goldilocks finds three bowls of porridge at different temperatures in the three bears' house, she accurately assesses the situation and comes up with one of the most recognizable lines in children's literature," This porridge is too hot; this porridge is too cold; aahh, this porridge is just right!" Goldilocks' famous line is a perfect…

  5. Hot house bad house

    OpenAIRE

    Azzopardi, Shaun

    2014-01-01

    Shaun Azzopardi met up with a team of researchers led by Eur. Ing. Charles Yousif to take the concrete block to the next level. It is more exciting than it sounds. Photography by Dr Edward Duca. http://www.um.edu.mt/think/hot-house-bad-house/

  6. Fending Off Hot Money

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Amid uncertainties about the amount of hot money,the government strives to curb the harmful capital The benchmark Shanghai Composite Index was plagued by dips, climbs and dives as the stock market slumped from 3,186 to 2,838 points

  7. Preparation of Aligned Ultra-long and Diameter-controlled Silicon Oxide Nanotubes by Plasma Enhanced Chemical Vapor Deposition Using Electrospun PVP Nanofiber Template

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2009-01-01

    Full Text Available Abstract Well-aligned and suspended polyvinyl pyrrolidone (PVP nanofibers with 8 mm in length were obtained by electrospinning. Using the aligned suspended PVP nanofibers array as template, aligned ultra-long silicon oxide (SiOx nanotubes with very high aspect ratios have been prepared by plasma-enhanced chemical vapor deposition (PECVD process. The inner diameter (20–200 nm and wall thickness (12–90 nm of tubes were controlled, respectively, by baking the electrospun nanofibers and by coating time without sacrificing the orientation degree and the length of arrays. The micro-PL spectrum of SiOx nanotubes shows a strong blue–green emission with a peak at about 514 nm accompanied by two shoulders around 415 and 624 nm. The blue–green emission is caused by the defects in the nanotubes.

  8. Tensile test of a silicon microstructure fully coated with submicrometer-thick diamond like carbon film using plasma enhanced chemical vapor deposition method

    Science.gov (United States)

    Zhang, Wenlei; Uesugi, Akio; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    This paper reports the tensile properties of single-crystal silicon (SCS) microstructures fully coated with sub-micrometer thick diamond like carbon (DLC) film using plasma enhanced chemical vapor deposition (PECVD). To minimize the deformations or damages caused by non-uniform coating of DLC, which has high compression residual stress, released SCS specimens with the dimensions of 120 µm long, 4 µm wide, and 5 µm thick were coated from the top and bottom side simultaneously. The thickness of DLC coating is around 150 nm and three different bias voltages were used for deposition. The tensile strength improved from 13.4 to 53.5% with the increasing of negative bias voltage. In addition, the deviation in strength also reduced significantly compared to bare SCS sample.

  9. Effects of boron addition on a-Si90Ge10:H films obtained by low frequency plasma enhanced chemical vapour deposition

    Science.gov (United States)

    Pérez, Arllene M.; Renero, Francisco J.; Zúñiga, Carlos; Torres, Alfonso; Santiago, César

    2005-06-01

    Optical, structural and electric properties of (a-(Si90Ge10)1-yBy:H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10-3 to 101 Ω-1 cm-1 when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  10. Effect of residual stresses on the strength, adhesion and wear resistance of SiC coatings obtained by plasma-enhanced chemical vapor deposition on low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Kattamis, T.Z. (Department of Metallurgy, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States)); Chen, M. (Department of Metallurgy, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States)); Skolianos, S. (Aristoteles University, Thessaloniki (Greece)); Chambers, B.V. (Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States))

    1994-11-01

    Amorphous hydrogenated silicon carbide thin coatings were deposited on AISI 4340 low alloy steel wafers and thicker steel specimens by plasma-enhanced chemical vapor deposition. The cohesion of the coating, its adhesion to the substrate and its friction coefficient were evaluated by automatic scratch testing, and its wear resistance by pin-on-disk tribometry. During annealing, the residual stress attributed to hydrogen entrapment during deposition gradually changed from compressive to tensile and its rate of increase decreased with increasing annealing time. The cohesion and adhesion failure loads and the abrasive wear resistance decreased with decreasing residual compressive stress and increasing residual tensile stress. The friction coefficient between the coating surface and a diamond stylus decreased with increasing annealing time. ((orig.))

  11. The α and γ plasma modes in plasma-enhanced atomic layer deposition with O2–N2 capacitive discharges

    Science.gov (United States)

    Napari, M.; Tarvainen, O.; Kinnunen, S.; Arstila, K.; Julin, J.; Fjellvåg, Ø. S.; Weibye, K.; Nilsen, O.; Sajavaara, T.

    2017-03-01

    Two distinguishable plasma modes in the O2–N2 radio frequency capacitively coupled plasma (CCP) used in remote plasma-enhanced atomic layer deposition (PEALD) were observed. Optical emission spectroscopy and spectra interpretation with rate coefficient analysis of the relevant processes were used to connect the detected modes to the α and γ modes of the CCP discharge. To investigate the effect of the plasma modes on the PEALD film growth, ZnO and TiO2 films were deposited using both modes and compared to the films deposited using direct plasma. The growth rate, thickness uniformity, elemental composition, and crystallinity of the films were found to correlate with the deposition mode. In remote CCP operations the transition to the γ mode can result in a parasitic discharge leading to uncontrollable film growth and thus limit the operation parameters of the capacitive discharge in the PEALD applications.

  12. Plasma-Enhanced Atomic Layer Deposition of SiN-AlN Composites for Ultra Low Wet Etch Rates in Hydrofluoric Acid.

    Science.gov (United States)

    Kim, Yongmin; Provine, J; Walch, Stephen P; Park, Joonsuk; Phuthong, Witchukorn; Dadlani, Anup L; Kim, Hyo-Jin; Schindler, Peter; Kim, Kihyun; Prinz, Fritz B

    2016-07-13

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposited (ALD) of hydrofluoric acid (HF) etch resistant and electrically insulating films for sidewall spacer processing. Silicon nitride (SiN) has been the prototypical material for this need and extensive work has been conducted into realizing sufficiently lower wet etch rates (WERs) as well as leakage currents to meet industry needs. In this work, we report on the development of plasma-enhanced atomic layer deposition (PEALD) composites of SiN and AlN to minimize WER and leakage current density. In particular, the role of aluminum and the optimum amount of Al contained in the composite structures have been explored. Films with near zero WER in dilute HF and leakage currents density similar to pure PEALD SiN films could be simultaneously realized through composites which incorporate ≥13 at. % Al, with a maximum thermal budget of 350 °C.

  13. Automated image analysis for quantification of filamentous bacteria

    DEFF Research Database (Denmark)

    Fredborg, M.; Rosenvinge, F. S.; Spillum, E.

    2015-01-01

    Background: Antibiotics of the beta-lactam group are able to alter the shape of the bacterial cell wall, e.g. filamentation or a spheroplast formation. Early determination of antimicrobial susceptibility may be complicated by filamentation of bacteria as this can be falsely interpreted as growth...... displaying different resistant profiles and differences in filamentation kinetics were used to study a novel image analysis algorithm to quantify length of bacteria and bacterial filamentation. A total of 12 beta-lactam antibiotics or beta-lactam-beta-lactamase inhibitor combinations were analyzed...

  14. Dynamics of Actin Filament Ends in a Network

    Science.gov (United States)

    Yang, Le; Sept, David; Carlsson, Anders

    2004-03-01

    The formation of filopodia-like bundles in vitro from a dendritic actin network has been observed(D. Vignjevic et al, J. Cell Biol. 160, 951 (2003)) to occur as a result of a nucleation process. We study the dynamics of the actin filament ends in such a network in order to evaluate the dynamics of the bundle nucleation process. Our model treats two semiflexible actin filaments fixed at one end and free at the other, moving according to Brownian dynamics. The initial filament positions are chosen according to a thermal distribution, and we evaluate the time for the filaments to come close enough to each other to interact and bind. The capture criterion is based either on the distance between filaments, or on a combination of distance and relative orientation. We evaluate the dependence of the capture time on the filament length and radius, and the distance between the filament bases. Since treating the movement of the individual monomers in filaments is computationally unwieldy, we treat the filament motion using a normal mode analysis which permits use of a much longer timestep. We find that this method yields rapid convergence even when only the few longest-wavelength modes are included.

  15. Formation and evolution of an active region filament

    CERN Document Server

    Kuckein, C; Pillet, V Martínez

    2013-01-01

    Several scenarios explaining how filaments are formed can be found in literature. In this paper, we analyzed the observations of an active region filament and critically evaluated the observed properties in the context of current filament formation models. This study is based on multi-height spectropolarimetric observations. The inferred vector magnetic field has been extrapolated starting either from the photosphere or from the chromosphere. The line-of-sight motions of the filament, which was located near disk center, have been analyzed inferring the Doppler velocities. We conclude that a part of the magnetic structure emerged from below the photosphere.

  16. Material Supply and Magnetic Configuration of an Active Region Filament

    Science.gov (United States)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q.; Cao, Wenda

    2016-11-01

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the Hα filtergrams, cool material is seen to be injected into the filament spine with a speed of 5-10 km s-1. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7-9 km s-1 in the Hα red-wing filtergrams and 9-25 km s-1 in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  17. Controlling multiple filaments by relativistic optical vortex beams in plasmas

    Science.gov (United States)

    Ju, L. B.; Huang, T. W.; Xiao, K. D.; Wu, G. Z.; Yang, S. L.; Li, R.; Yang, Y. C.; Long, T. Y.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.; Zhou, C. T.

    2016-09-01

    Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.

  18. Plutonium ion emission from carburized rhenium mass spectrometer filaments

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, J.M.; Robertson, D.M.

    1985-01-01

    Physicochemical processes important to the application of thermal emission mass spectrometry were identified and clarified. Effects of filament carbon concentration and temperature on plutonium ion emissions from a carburized rhenium filament were determined. Filament carbon concentration profoundly affected the appearance and duration of an ion signal. A useful ion signal was produced only when the carbon saturation temperature of the filament was exceeded, at which point first-order kinetics were either achieved or closely approached. This paper explains observed ion emission behavior in terms of pausible carbothermic reduction reactions and carbon diffusion processes that direct the course of those reactions. 31 references, 5 figures.

  19. Frenet algorithm for simulations of fluctuating continuous elastic filaments

    Science.gov (United States)

    Kats, Yevgeny; Kessler, David A.; Rabin, Yitzhak

    2002-02-01

    We present an algorithm for generating the equilibrium configurations of fluctuating continuous elastic filaments, based on a combination of statistical mechanics and differential geometry. We use this to calculate the distribution function of the end-to-end distance of filaments with nonvanishing spontaneous curvature and show that for small twist and large bending rigidities there is an intermediate temperature range in which the filament becomes nearly completely stretched. We show that volume interactions can be incorporated into our algorithm, demonstrating this through the calculation of the effect of excluded volume on the end-to-end distance of the filament.

  20. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  1. Origin of graphitic filaments on improving the electron field emission properties of negative bias-enhanced grown ultrananocrystalline diamond films in CH4/Ar plasma

    Science.gov (United States)

    Sankaran, K. J.; Huang, B. R.; Saravanan, A.; Tai, N. H.; Lin, I. N.

    2014-10-01

    Microstructural evolution of bias-enhanced grown (BEG) ultrananocrystalline diamond (UNCD) films has been investigated using microwave plasma enhanced chemical vapor deposition in gas mixtures of CH4 and Ar under different negative bias voltages ranging from -50 to -200 V. Scanning electron microscopy and Raman spectroscopy were used to characterize the morphology, growth rate, and chemical bonding of the synthesized films. Transmission electron microscopic investigation reveals that the application of bias voltage induced the formation of the nanographitic filaments in the grain boundaries of the films, in addition to the reduction of the size of diamond grains to ultra-nanosized granular structured grains. For BEG-UNCD films under -200 V, the electron field emission (EFE) process can be turned on at a field as small as 4.08 V/μm, attaining a EFE current density as large as 3.19 mA/cm2 at an applied field of 8.64 V/μm. But the films grown without bias (0 V) have mostly amorphous carbon phases in the grain boundaries, possessing poorer EFE than those of the films grown using bias. Consequently, the induction of nanographitic filaments in grain boundaries of UNCD films grown in CH4/Ar plasma due to large applied bias voltage of -200 V is the prime factor, which possibly forms interconnected paths for facilitating the transport of electrons that markedly enhance the EFE properties.

  2. Thermal Instability with Anisotropic Thermal Conduction and Adiabatic Cosmic Rays: Implications for Cold Filaments in Galaxy Clusters

    CERN Document Server

    Sharma, Prateek; Quataert, Eliot

    2010-01-01

    Observations of the cores of nearby galaxy clusters show H$\\alpha$ and molecular emission line filaments. We argue that these are the result of {\\em local} thermal instability in a {\\em globally} stable galaxy cluster core. We present local, high resolution, two-dimensional magnetohydrodynamic simulations of thermal instability for conditions appropriate to the intracluster medium (ICM); the simulations include thermal conduction along magnetic field lines and adiabatic cosmic rays. Thermal conduction suppresses thermal instability along magnetic field lines on scales smaller than the Field length ($\\gtrsim$10 kpc for the hot, diffuse ICM). We show that the Field length in the cold medium must be resolved both along and perpendicular to the magnetic field in order to obtain numerically converged results. Because of negligible conduction perpendicular to the magnetic field, thermal instability leads to fine scale structure in the perpendicular direction. Filaments of cold gas along magnetic field lines are thu...

  3. Amorphous silicon carbon films prepared by hybrid plasma enhanced chemical vapor/sputtering deposition system: Effects of r.f. power

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nur Maisarah Abdul, E-mail: nurmaisarahrashid@gmail.com [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ritikos, Richard; Othman, Maisara; Khanis, Noor Hamizah; Gani, Siti Meriam Ab. [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Muhamad, Muhamad Rasat [Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Rahman, Saadah Abdul, E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)

    2013-02-01

    Silicon carbon films were deposited using a hybrid radio frequency (r.f.) plasma enhanced chemical vapor deposition (PECVD)/sputtering deposition system at different r.f. powers. This deposition system combines the advantages of r.f. PECVD and sputtering techniques for the deposition of silicon carbon films with the added advantage of eliminating the use of highly toxic silane gas in the deposition process. Silicon (Si) atoms were sputtered from a pure amorphous silicon (a-Si) target by argon (Ar) ions and carbon (C) atoms were incorporated into the film from C based growth radicals generated through the discharge of methane (CH{sub 4}) gas. The effects of r.f. powers of 60, 80, 100, 120 and 150 W applied during the deposition process on the structural and optical properties of the films were investigated. Raman spectroscopic studies showed that the silicon carbon films contain amorphous silicon carbide (SiC) and amorphous carbon (a-C) phases. The r.f. power showed significant influence on the C incorporation in the film structure. The a-C phases became more ordered in films with high C incorporation in the film structure. These films also produced high photoluminescence emission intensity at around 600 nm wavelength as a result of quantum confinement effects from the presence of sp{sup 2} C clusters embedded in the a-SiC and a-C phases in the films. - Highlights: ► Effects of radio frequency (r.f.) power on silicon carbon (SiC) films were studied. ► Hybrid plasma enhanced chemical vapor deposition/sputtering technique was used. ► r.f. power influences C incorporation in the film structure. ► High C incorporation results in higher ordering of the amorphous C phase. ► These films produced high photoluminescence emission intensity.

  4. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghrib, M., E-mail: mondherghrib@yahoo.fr [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Gaidi, M.; Ghrib, T.; Khedher, N. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Ben Salam, M. [L3M, Department of Physics, Faculty of Sciences of Bizerte, 7021 Zarzouna (Tunisia); Ezzaouia, H. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia)

    2011-08-15

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  5. Characterising Radio Emissions in Cosmic Filaments

    Science.gov (United States)

    Miller, R. O.

    2014-02-01

    A growing number of radio studies probe galaxy clusters into the low-power regime in which star formation is the dominant source of radio emission. However, at the time of writing no comparably deep observations have focused exclusively on the radio populations of cosmic filaments. This thesis describes the ATCA 2.1 GHz observations and subsequent analysis of two such regions - labelled Zone 1 (between clusters A3158 and A3125/A3128) and Zone 2 (between A3135 and A3145) - in the Horologium-Reticulum Supercluster (HRS). Source count profiles of both populations are discussed and a radio luminosity function for Zone 1 is generated. While the source counts of Zone 2 appear to be consistent with expected values, Zone 1 exhibits an excess of counts across a wide flux range (1 mJy< S_1.4 < 200 mJy). An excess in radio activity at the lower extent of this range (log P_1.4 < 22.5; within the SF-dominated regime) is also suggested by the radio luminosity function for that region, and brief colour analysis suggests that such an excess is indeed predominantly associated with a starforming population. The differences between the two filamentary zones is attributed to cosmic variation. The regions are both small (~ 1 degree square), and are significantly separated in the HRS. Further radio observations of filaments are required and the results combined into a larger sample size in order to arrive at a generalised model filamentary population.

  6. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  7. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2012-11-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon-oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by acids generated by the photo-ionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  8. The Golgi apparatus: insights from filamentous fungi.

    Science.gov (United States)

    Pantazopoulou, Areti

    2016-01-01

    Cargo passage through the Golgi, albeit an undoubtedly essential cellular function, is a mechanistically unresolved and much debated process. Although the main molecular players are conserved, diversification of the Golgi among different eukaryotic lineages is providing us with tools to resolve standing controversies. During the past decade the Golgi apparatus of model filamentous fungi, mainly Aspergillus nidulans, has been intensively studied. Here an overview of the most important findings in the field is provided. Golgi architecture and dynamics, as well as the novel cell biology tools that were developed in filamentous fungi in these studies, are addressed. An emphasis is placed on the central role the Golgi has as a crossroads in the endocytic and secretory-traffic pathways in hyphae. Finally the major advances that the A. nidulans Golgi biology has yielded so far regarding our understanding of key Golgi regulators, such as the Rab GTPases RabC(Rab6) and RabE(Rab11), the oligomeric transport protein particle, TRAPPII, and the Golgi guanine nucleotide exchange factors of Arf1, GeaA(GBF1/Gea1) and HypB(BIG/Sec7), are highlighted.

  9. Morgellons disease: a filamentous borrelial dermatitis

    Directory of Open Access Journals (Sweden)

    Middelveen MJ

    2016-10-01

    Full Text Available Marianne J Middelveen, Raphael B Stricker International Lyme and Associated Diseases Society, Bethesda, MD, USA Abstract: Morgellons disease (MD is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii, Borrelia miyamotoi, and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined. Keywords: Morgellons disease, dermatitis, Lyme disease, Borrelia burgdorferi, spirochetes

  10. Filamentation and supercontinuum generation in lanthanum glass

    Science.gov (United States)

    Yang, Yuxia; Liao, Meisong; Li, Xia; Bi, Wanjun; Ohishi, Yasutake; Cheng, Tonglei; Fang, Yongzheng; Zhao, Guoying; Gao, Weiqing

    2017-01-01

    A broadband supercontinuum (SC) covering 400-2800 nm in a 20 dB dynamic range is reported in a piece of highly nonlinear, low-dispersion bulk lanthanum glass without employing any lens to focus the pump pulse. The spectrum width obtained in this study is broader than the maximum spectrum width obtained in silica photonic crystal fibers. The filaments and bright conical visible emission patterns of the SC are analyzed. Under optimum pump conditions, an SC conversion efficiency of 75% is obtained. The SC conversion efficiency is confirmed to be stable. Additionally, the relationship between the input peak intensity and the output beam radius is elucidated by simulating the propagation of a Gaussian beam in the bulk lanthanum glass. A 0.20 mm stable laser beam radius at the end of the propagation domain is demonstrated in a certain input peak intensity range. This small value of the beam radius indicates that most of the output power is localized over a small region because of the Kerr focusing effect despite the existence of conical emission in the SC generation by filamentation. The findings of this study are of significance for the development of ultra-broadband SC sources based on bulk glasses and high peak power lasers.

  11. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage.

  12. Strategies for Detecting the Missing Hot Baryons in the Universe

    CERN Document Server

    Bregman, Joel N; Miller, Matthew J

    2015-01-01

    About 30-50% of the baryons in the local Universe are unaccounted for and are thought to be in a hot phase, 10^5.5-10^8 K, due to the gravitational collapse of cosmic filaments, accretion onto virialized systems, and feedback from stars and AGNs. A hot halo (2E6 K) is detected around the Milky Way through the O VII and O VIII resonance lines absorption and emission in the soft X-ray band. Current instruments are not sensitive enough to detect this gas in absorption around other galaxies and galaxy groups, the two most likely sites. We show that resonant line absorption by this hot gas can be detected with current technology, with a collecting area exceeding about 300 cm^2 and a resolution R > 2000. For a few notional X-ray telescope configurations, we calculate the differential number of O VII and O VIII absorbers as a function of equivalent width through redshift space, dN/dz. We show that if other galaxies have a hot halo like the Milky Way, their absorption should be detectable out to and possibly beyond t...

  13. Hot electron generation and energy coupling in planar experiments with shock ignition high intensity lasers

    Science.gov (United States)

    Wei, M. S.; Krauland, C.; Alexander, N.; Zhang, S.; Peebles, J.; Beg, F. N.; Theobald, W.; Borwick, E.; Ren, C.; Yan, R.; Haberberger, D.; Betti, R.; Campbell, E. M.

    2016-10-01

    Hot electrons produced in nonlinear laser plasma interactions are critical issues for shock ignition (SI) laser fusion. We conducted planar target experiments to characterize hot electron and energy coupling using the high energy OMEGA EP laser system at SI high intensities. Targets were multilayered foils consisting of an ablator (either plastic or lithium) and a Cu layer to facilitate hot electron detection via fluorescence and bremsstrahlung measurements. The target was first irradiated by multi-kJ, low-intensity UV beams to produce a SI-relevant mm-scale hot ( 1 keV) preformed plasma. The main interaction pulse, either a kJ 1-ns UV pulse with intensity 1.6x1016 Wcm-2 or a kJ 0.1-ns IR pulse with intensity up to 2x1017 Wcm-2was injected at varied timing delays. The high intensity IR beam was found to strongly interact with underdense plasmas breaking into many filaments near the quarter critical density region followed by propagation of those filaments to critical density, producing hot electrons with Thot 70 keV in a well-contained beam. While the high intensity UV beam showed poor energy coupling. Details of the experiments and the complementary PIC modeling results will be presented. Work supported by U.S. DOE under contracts DE-NA0002730 (NLUF) and DE-SC0014666 (HEDLP).

  14. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  15. What Is Hot Yoga (Bikram)?

    Science.gov (United States)

    Healthy Lifestyle Consumer health What is hot yoga? Answers from Edward R. Laskowski, M.D. Hot yoga is a vigorous form of yoga performed in a studio ... you check with your doctor before trying hot yoga if you have any health concerns. If you have heart disease, problems with ...

  16. Hot Subluminous Stars

    Science.gov (United States)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  17. The hot Hagedorn Universe

    CERN Document Server

    Rafelski, Johann

    2016-01-01

    In the context of the half-centenary of Hagedorn temperature and the statistical bootstrap model (SBM) we present a short account of how these insights coincided with the establishment of the hot big-bang model (BBM) and helped resolve some of the early philosophical difficulties. We then turn attention to the present day context and show the dominance of strong interaction quark and gluon degrees of freedom in the early stage, helping to characterize the properties of the hot Universe. We focus attention on the current experimental insights about cosmic microwave background (CMB) temperature fluctuation, and develop a much improved understanding of the neutrino freeze-out, in this way paving the path to the opening of a direct connection of quark-gluon plasma (QGP) physics in the early Universe with the QCD-lattice, and the study of the properties of QGP formed in the laboratory.

  18. The hot chocolate effect

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Frank S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    1982-05-01

    The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.

  19. Hot chocolate effect

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, F.S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  20. Hot Spring Metagenomics

    Directory of Open Access Journals (Sweden)

    Olalla López-López

    2013-04-01

    Full Text Available Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communities—their diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats.

  1. Peppery Hot Bean Curd

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Peppery Hot Bean Curd is a famous dish that originated in Chengdu,Sichuan Province.Dating back to the year under the reign of Emperor Tongzhi during the Qing Dynasty(1862-1875),a woman chef named Chen created this dish.In Chinese it is called Mapo Bean Curd. Ingredients:Three pieces of bean curd,100 grams lean pork,25 grams green soy beans or garlic

  2. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  3. Motion of a Vortex Filament in the Half Space

    CERN Document Server

    Aiki, Masashi

    2010-01-01

    A model equation for the motion of a vortex filament immersed in three dimensional, incompressible and inviscid fluid is investigated as a humble attempt to model the motion of a tornado. We solve an initial-boundary value problem in the half space where we impose a boundary condition in which the vortex filament is allowed to move on the boundary.

  4. Remote Sub-Diffraction Imaging with Femtosecond Laser Filaments

    Science.gov (United States)

    2012-04-10

    from low-density plasma . Hence the size of the filaments is not limited by the aperture of an optical system [1] which would ordinarily determine the...The diameter of the filament is around 40 μm (estimated by knife -edge transmission measurements; not shown), which together with the scan step

  5. Fossil evidence for spin alignment of SDSS galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J.T.; Weygaert, Rien van de; Arag´on-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic fila

  6. Physical principles of filamentous protein self-assembly kinetics

    Science.gov (United States)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  7. Filament Shape Versus Coronal Potential Magnetic Field Structure

    CERN Document Server

    Filippov, Boris

    2015-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in H$\\alpha$ chromospheric images. We found that the most of the filament material is enclosed between two polarity inversion lines (PILs), one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the {\\it STEREO} spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disk observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that th...

  8. A Filament-Associated Halo Coronal Mass Ejection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There are only a few observations published so far that show the initiation of a coronal mass ejection (CME) and illustrate the magnetic changes in the surface origin of a CME. Any attempt to connect a CME with its local solar activities is meaningful. In this paper we present a clear instance of a halo CME initiation. A careful analysis of magnetograms shows that the only obvious magnetic changes in the surface region of the CME is a magnetic flux cancellation underneath a quiescent filament. The early disturbance was seen as the slow upward motion in segments of the quiescent filament. Four hours later, the filament was accelerated to about 50 km s-1 and erupted. While a small part of the material in the filament was ejected into the upper corona, most of the mass was transported to a nearby region. About forty minutes later, the transported mass was also ejected partially to the upper corona. The eruption of the filament triggered a two-ribbon flare, with post-flare loops connecting the flare ribbons. A halo CME, which is inferred to be associated with the eruptive filament, was observed from LASCO/C2 and C3. The halo CME contained two CME events, each event corresponded to a partial mass ejection of the filament. We suggest that the magnetic reconnection at the lower atmosphere is responsible for the filament eruption and the halo CME.

  9. Calibration and Temperature Profile of a Tungsten Filament Lamp

    Science.gov (United States)

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  10. Hot subluminous stars

    CERN Document Server

    Heber, Ulrich

    2016-01-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich vs. He-poor hot subdwarf stars of the globular clusters omega Cen and NGC~2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope phase of evolution.They provide a clean-cut laboratory to study this important but yet purely understood phase of stellar evolution. Substellar companions to sdB stars have also been found. For HW~Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the pulsator V391 ...

  11. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  12. Jupiter's Hot, Mushy Moon

    Science.gov (United States)

    Taylor, G. Jeffrey

    2003-01-01

    Jupiter's moon Io is the most volcanically active body in the Solar System. Observations by instruments on the Galileo spacecraft and on telescopes atop Mauna Kea in Hawai'i indicate that lava flows on Io are surprisingly hot, over 1200 oC and possibly as much as 1300 oC; a few areas might have lava flows as hot as 1500 oC. Such high temperatures imply that the lava flows are composed of rock that formed by a very large amount of melting of Io's mantle. This has led Laszlo Keszthelyi and Alfred S. McEwen of the University of Arizona and me to reawaken an old hypothesis that suggests that the interior of Io is a partially-molten mush of crystals and magma. The idea, which had fallen out of favor for a decade or two, explains high-temperature hot spots, mountains, calderas, and volcanic plains on Io. If correct, Io gives us an opportunity to study processes that operate in huge, global magma systems, which scientists believe were important during the early history of the Moon and Earth, and possibly other planetary bodies as well. Though far from proven, the idea that Io has a ocean of mushy magma beneath its crust can be tested with measurements by future spacecraft.

  13. Biophysics of filament length regulation by molecular motors

    CERN Document Server

    Kuan, Hui-Shun

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kines...

  14. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II.

    Science.gov (United States)

    Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo; Cruz, Christina M; Laster, Kyle; Gratton, Enrico; Kudryashov, Dmitri; Kosak, Steven T; Gottardi, Cara J; de Lanerolle, Primal

    2016-09-15

    Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.

  15. Conformations, hydrodynamic interactions, and instabilities of sedimenting semiflexible filaments

    CERN Document Server

    Saggiorato, G; Winkler, R G; Gompper, G

    2015-01-01

    The conformations and dynamics of semiflexible filaments subject to a homogeneous external (gravitational) field, e.g., in a centrifuge, are studied numerically and analytically. The competition between hydrodynamic drag and bending elasticity generates new shapes and dynamical features. We show that the shape of a semiflexible filament undergoes instabilities as the external field increases. We identify two transitions that correspond to the excitation of higher bending modes. In particular, for strong fields the filament stabilizes in a non-planar shape, resulting in a sideways drift or in helical trajectories. For two interacting filaments, we find the same transitions, with the important consequence that the new non-planar shapes have an effective hydrodynamic repulsion, in contrast to the planar shapes which attract themselves even when their osculating planes are rotated with respect to each other. For the case of planar filaments, we show analytically and numerically that the relative velocity is not n...

  16. Sedimentation of slender elastic filaments in a viscous liquid

    Science.gov (United States)

    Raspa, Veronica; Lindner, Anke; Du Roure, Olivia; Duprat, Camille

    2016-11-01

    We explore experimentally the dynamics of slender flexible filaments sedimenting in a viscous fluid at low Reynolds number. The observed deformations and dynamics result from a balance between viscous, elastic and gravitational forces on the slender body and thus are characterized by a dimensionless elasto-gravity number. We present measurements of the filaments stationary shape, velocities and trajectories for different initial conditions and filament characteristics (i.e: density, bending rigidity, size). In particular, we observe bending and reorientation of the filament, and investigate the conditions under which the filament can buckle. The introduction of elasticity broadens the spectrum of accessible sedimentation stationary states, compared to those appearing for their rigid counterparts where nor bending or buckling are allowed.

  17. Energetic protons from a disappearing solar filament

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S.W.; Cliver, E.W.; Cane, R.E.; McGuire, H.V.; Stone, R.G.

    1985-01-01

    A solar energetic (E> 50MeV) particle (SEP) event observed at 1 AU began about 1500 UT on 1981 December 5. This event was associated with a fast coronal mass ejection observed with the Solwind coronagraph on the P78-1 satellite. No metric type II or type IV burst was observed, but a weak interplanetary type II burst was observed with the low-frequency radio experimentation ISEE-3 satellite. The mass ejection was associated with the eruption of a large solar quiescent filament that lay well away from any active regions. The eruption resulted in a H-alpha double-ribbon structure which straddled the magnetic inversion line. No impulsive phase was obvious in either the H-alpha or the microwave observations. The event indicates that neither a detectable impulsive phase nor a strong or complex magnetic field is necessary for the production of energetic ions.

  18. Filament wound data base development, revision 1

    Science.gov (United States)

    Sharp, R. Scott; Braddock, William F.

    1985-01-01

    The objective was to update the present Space Shuttle Solid Rocket Booster (SRB) baseline reentry aerodynamic data base and to develop a new reentry data base for the filament wound case SRB along with individual protuberance increments. Lockheed's procedures for performing these tasks are discussed. Free fall of the SRBs after separation from the Space Shuttle Launch Vehicle is completely uncontrolled. However, the SRBs must decelerate to a velocity and attitude that is suitable for parachute deployment. To determine the SRB reentry trajectory parameters, including the rate of deceleration and attitude history during free-fall, engineers at Marshall Space Flight Center are using a six-degree-of-freedom computer program to predict dynamic behavior. Static stability aerodynamic coefficients are part of the information required for input into this computer program. Lockheed analyzed the existing reentry aerodynamic data tape (Data Tape 5) for the current steel case SRB. This analysis resulted in the development of Data Tape 7.

  19. Bending artificial muscle from nylon filaments

    Science.gov (United States)

    Mirvakili, Seyed M.; Hunter, Ian W.

    2016-04-01

    Highly oriented nylon and polyethylene fibers shrink in length and expand in diameter when heated. Using this property, in this work, for the first time we are introducing a type of bending artificial muscle from nylon filaments such as fishing line. Reversible radius of curvature of 0.23 mm-1 was achieved with maximum reversible bending amplitude of 115 mm for the nylon bending actuator. Peak force of up to 2040 mN was measured with a catch-state force of up to 40% of the active force. A 3 dB roll-off frequency of around 0.7 Hz was observed in the frequency response of the bending actuator in water.

  20. Radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Fundamenski, W.

    2006-01-01

    Radial convection of isolated filamentary structures due to interchange motions in magnetized plasmas is investigated. Following a basic discussion of vorticity generation, ballooning, and the role of sheaths, a two-field interchange model is studied by means of numerical simulations...... on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends...... as the acoustic speed times the square root of the structure size relative to the length scale of the magnetic field. The plasma filament eventually decelerates due to mixing and collisional dissipation. Finally, the role of sheath dissipation is investigated. When included in the simulations, it significantly...

  1. Validation of the filament winding process model

    Science.gov (United States)

    Calius, Emilo P.; Springer, George S.; Wilson, Brian A.; Hanson, R. Scott

    1987-01-01

    Tests were performed toward validating the WIND model developed previously for simulating the filament winding of composite cylinders. In these tests two 24 in. long, 8 in. diam and 0.285 in. thick cylinders, made of IM-6G fibers and HBRF-55 resin, were wound at + or - 45 deg angle on steel mandrels. The temperatures on the inner and outer surfaces and inside the composite cylinders were recorded during oven cure. The temperatures inside the cylinders were also calculated by the WIND model. The measured and calculated temperatures were then compared. In addition, the degree of cure and resin viscosity distributions inside the cylinders were calculated for the conditions which existed in the tests.

  2. Introduction to vortex filaments in equilibrium

    CERN Document Server

    Andersen, Timothy D

    2014-01-01

    This book presents fundamental concepts and seminal results to the study of vortex filaments in equilibrium. It also presents new discoveries in quasi-2D vortex structures with applications to geophysical fluid dynamics and magnetohydrodynamics in plasmas.  It fills a gap in the vortex statistics literature by simplifying the mathematical introduction to this complex topic, covering numerical methods, and exploring a wide range of applications with numerous examples. The authors have produced an introduction that is clear and easy to read, leading the reader step-by-step into this topical area. Alongside the theoretical concepts and mathematical formulations, interesting applications are discussed. This combination makes the text useful for students and researchers in mathematics and physics.

  3. Natural Fiber Filament Wound Composites: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed Ansari Suriyati

    2017-01-01

    Full Text Available In recent development, natural fibers have attracted the interest of engineers, researchers, professionals and scientists all over the world as an alternative reinforcement for fiber reinforced polymer composites. This is due to its superior properties such as high specific strength, low weight, low cost, fairly good mechanical properties, non-abrasive, eco-friendly and bio-degradable characteristics. In this point of view, natural fiber-polymer composites (NFPCs are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residue from the industrial and agricultural processes are still underutilized as low-value energy sources. This is a comprehensive review discussing about natural fiber reinforced composite produced by filament winding technique.

  4. PREFACE: Hot Quarks 2004

    Science.gov (United States)

    Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs

    2005-04-01

    Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or

  5. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  6. Ultrafine-grained Al composites reinforced with in-situ Al{sub 3}Ti filaments

    Energy Technology Data Exchange (ETDEWEB)

    Krizik, Peter, E-mail: peter.krizik@savba.sk [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 83102 Bratislava (Slovakia); Balog, Martin; Nosko, Martin [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 83102 Bratislava (Slovakia); Riglos, Maria Victoria Castro [Centro Atómico Bariloche, Av. Bustillo 9500 (8400) Bariloche, Río Negro (Argentina); Dvorak, Jiri [CEITEC-IPM, Institute of Physics of Materials, ASCR, Zizkova 22, 61662 Brno (Czech Republic); Bajana, Oto [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 83102 Bratislava (Slovakia)

    2016-03-07

    Ultrafine-grained (UFG) Al matrix composites reinforced with 15 and 30 vol% in-situ Al{sub 3}Ti filaments were fabricated by extrusion of Al–Ti powder mixtures followed by solid-state reactive diffusion. Fine Al powder particles (1.3 µm) heavily deformed the coarser Ti particles (24.5 µm) into filaments during extrusion. Upon a subsequent operation of hot isostatic pressing (HIP), the micrometric Al{sub 3}Ti filaments elongated along the extrusion direction and formed in situ in the UFG Al matrix. Fabricated composites are free of pores and voids with perfect bonding created at the Al–Al{sub 3}Ti interfaces. In parallel, a small portion (2.4 vol%) of nanoscale γ-Al{sub 2}O{sub 3} particles, which originate from native amorphous films on fine Al powders, formed in situ and were homogenously dispersed in the Al matrix. The microstructures of as-extruded and after HIP composites were analyzed by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and electron back-scattered diffraction (EBSD). Owing to the presence of nanometric γ-Al{sub 2}O{sub 3} particles with Al high angle grain boundaries (HAGBs), the UFG Al matrix remained stable even after HIP at 600 °C for 9 h. The mechanical properties and creep performance of composites at testing temperatures of up to 600 °C were systematically studied. The Al–Al{sub 3}Ti composites exhibited a combination of increased strength and Young’s modulus in addition to excellent creep performance and structural stability, which indicates that the studied composites are potential structural materials capable of service at elevated temperatures.

  7. Missing baryons traced by the galaxy luminosity density in the large-scale WHIM filaments

    CERN Document Server

    Nevalainen, J; Liivamägi, L J; Branchini, E; Roncarelli, M; Giocoli, C; Heinämäki, P; Saar, E; Tamm, A; Finoguenov, A; Nurmi, P; Bonamente, M

    2015-01-01

    We propose a new approach to the missing baryons problem. Building on the common assumption that the missing baryons are in the form of the Warm Hot Intergalactic Medium (WHIM), we further assumed here that the galaxy luminosity density can be used as a tracer of the WHIM. The latter assumption is supported by our finding of a significant correlation between the WHIM density and the galaxy luminosity density in the hydrodynamical simulations of Cui et al. (2012). We further found that the fraction of the gas mass in the WHIM phase is substantially (by a factor of $\\sim$1.6) higher within the large scale galactic filaments, i.e. $\\sim$70\\%, compared to the average in the full simulation volume of $\\sim$0.1\\,Gpc$^3$. The relation between the WHIM overdensity and the galaxy luminosity overdensity within the galactic filaments is consistent with linear: $\\delta_{\\rm whim}\\,=\\,0.7\\,\\pm\\,0.1\\,\\times\\,\\delta_\\mathrm{LD}^{0.9 \\pm 0.2}$. We applied our procedure to the line of sight to the blazar H2356-309 and found e...

  8. A VLA H92alpha Study of the Arched Filament Complex Near the Galactic Center

    CERN Document Server

    Lang, C C; Lang, Cornelia C.

    2001-01-01

    The VLA has been used at 8.3 GHz in the DnC and CnB array configurations to carry out an H92alpha recombination line study (at 8.3 GHz) of the ionized gas in the Arched Filaments H II complex, which defines the western edge of the Galactic center Radio Arc. The H92alpha line properties of the ionized gas are consistent with photoionization from hot stars,and consistent with the physical properties of other Galactic center H II regions. The LTE electron temperatures vary only slightly across the entire extent of the source, and have an average value of 6200 K. The velocity field is very complex, with velocities ranging from +15 to - 70 km/s and the majority of velocities having negative values. Large velocity gradients (2-7 km/s/pc, with gradients in some regions >10 km/s/pc) occur along each of the filaments, with the velocities becoming increasingly negative with decreasing distance from the Galactic center. The magnitudes of the velocity gradient are consistent with the cloud residing on an inner, elongated...

  9. ALMA observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster

    CERN Document Server

    Russell, H R; McNamara, B R; Fabian, A C; Nulsen, P E J; Bayliss, M B; Benson, B A; Brodwin, M; Carlstrom, J E; Edge, A C; Hlavacek-Larrondo, J; Marrone, D P; Reichardt, C L; Vieira, J D

    2016-01-01

    We report new ALMA observations of the CO(3-2) line emission from the $2.7\\pm0.4\\times10^{10}\\rm\\thinspace M_{\\odot}$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $500-800\\rm\\thinspace M_{\\odot}\\rm\\; yr^{-1}$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $10-20\\rm\\; kpc$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities ...

  10. Hot bitumen grouting rediscovered

    Energy Technology Data Exchange (ETDEWEB)

    Naudts, A. [ECO Grouting Specialists, Grand Valley, ON (Canada)

    2001-10-01

    The article extols the value of hot bitumen grouting, in conjunction with cement-based grout, as a fast, safe, environmentally-friendly and cost-effective sealant. A major advantage of bitumen grout is that blown bitumen will never wash out. The article discusses the properties and some applications of bitumen grout. A diagram shows an application of bitumen and cement-based grout at a large dam. Examples of preventing water flow in dams, in a coal mine and in a potash mine are also given.

  11. Fossil evidence for spin alignment of SDSS galaxies in filaments

    CERN Document Server

    Jones, Bernard J T; Aragon-Calvo, Miguel A

    2010-01-01

    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic filaments. To this end, we constructed a catalogue of clean filaments containing edge-on galaxies. We started by applying the Multiscale Morphology Filter (MMF) technique to the galaxies in a redshift-distortion corrected version of the Sloan Digital Sky Survey DR5. From that sample we extracted those 426 filaments that contained edge-on galaxies (b/a < 0.2). These filaments were then visually classified relative to a variety of quality criteria. Statistical analysis using "feature measures" indicates that the distribution of orientations of these edge-on galaxies relative to their parent filament deviate significantly from what would be expected on the basis of a random distribution of orientations. The interpretat...

  12. An observational detection of the bridge effect of void filaments

    CERN Document Server

    Shim, Junsup; Hoyle, Fiona

    2015-01-01

    The bridge effect of void filaments is a phrase coined by Park & Lee (2009b) to explain the correlations found in a numerical experiment between the luminosity of the void galaxies and the degree of the straightness of their host filaments. Their numerical finding implies that a straight void filament provides a narrow channel for the efficient transportation of gas and matter particles from the surroundings into the void galaxies. To observationally confirm the presence of the bridge effect of void filaments, we identify the filamentary structures from the Sloan void catalog and determine the specific size of each void filament as a measure of its straightness. Using both classical and Bayesian statistics, we indeed detect a strong tendency that the void galaxies located in the more straight filaments are on average more luminous, which is in agreement with the numerical prediction. It is also shown that the strength of correlation increases with the spatial extent of the void filaments, which can be phy...

  13. Structure and assembly of calf hoof keratin filaments.

    Science.gov (United States)

    Sayers, Z; Michon, A M; Sicre, P; Koch, M H

    1990-05-01

    Keratin filament polypeptides were purified from calf hoof stratum corneum with the aim of studying the in vitro assembly process and determining structural parameters of reconstituted filaments. Anion exchange chromatography was used to obtain the most complete fractionation and identification of the acidic and basic components in the purified polypeptide mixture to date. The reassembly products of the fractionated components were investigated by electron microscopy. Fully reconstituted filaments yield homogeneous solutions, and values of 9.8 nm for the filament diameter and 25 kDa/nm for the mass per unit length (M/L) were obtained by X-ray solution scattering. The structures formed in solution at various stages of filament assembly were not sufficiently homogeneous to be studied by this technique. X-ray diffraction patterns from native stratum corneum display strong maxima at 3.6 and 5.4 nm. Contrary to previous reports, these maxima do not appear to be due to lipids since they are also observed with delipidated rehydrated specimens. A series of weak maxima is also detected in the patterns of dry tissue. The absence of these features in the patterns of reconstituted filaments suggests that, in contrast to some electron microscopic observations, there are no prominent regularities in the structure of calf hoof keratin filaments.

  14. MUSE discovers perpendicular arcs in Cen A inner filament

    CERN Document Server

    Hamer, Stephen; Combes, Francoise; Salomé, Quentin

    2014-01-01

    Evidence of AGN interaction with the intergalactic medium is observed in some galaxies and many cool core clusters. Radio-jets are suspected to dig large cavities into the surrounding gas. In most cases, very large optical filaments (several kpc) are also seen all around the central galaxy. The origin of these filaments is still not understood. Star forming regions are sometimes observed inside the filaments and are interpreted as evidence of positive feedback (AGN-triggered star formation). Cen A is a very nearby galaxy with huge optical filaments aligned with AGN radio-jet direction. Here, we search for line ratio variations along the filaments, kinematic evidence of shock-broadend line widths and large scale dynamical structures. We observe a 1'x1' region around the inner filament of Cen A with MUSE on the VLT during the Science Verification period. The brightest lines are the Halpha, [NII], [OIII] and [SII]. MUSE shows that the filaments are made of clumpy structures inside a more diffuse medium aligned w...

  15. Origin of the dense core mass function in contracting filaments

    CERN Document Server

    Myers, Philip C

    2013-01-01

    Mass functions of starless dense cores (CMFs) may arise from contraction and dispersal of core-forming filaments. In an illustrative model, a filament contracts radially by self-gravity, increasing the mass of its cores. During this contraction, FUV photoevaporation and ablation by shocks and winds disperse filament gas and limit core growth. The stopping times of core growth are described by a waiting-time distribution. The initial filament column density profile and the resulting CMF each match recent Herschel observations in detail. Then low-mass cores have short growth ages and arise from the innermost filament gas, while massive cores have long growth ages and draw from more extended filament gas. The model fits the initial density profile and CMF best for mean core density 2 10^4 cm^-3 and filament dispersal time scale 0.5 Myr. Then the typical core mass, radius, mean column density, and contraction speed are respectively 0.8 solar masses, 0.06 pc, 6 10^21 cm^-2, and 0.07 km s^-1, also in accord with ob...

  16. Is Gravitational Lensing by Intercluster Filaments Always Negligible?

    CERN Document Server

    Xu, Dong; Shan, HuanYuan; Famaey, Benoit; Limousin, Marceau; Zhao, HongSheng

    2007-01-01

    Intercluster filaments negligibly contribute to the weak lensing signal in General Relativity (GR), $\\gamma_{N}\\sim 10^{-4}-10^{-3}$. In the context of relativistic Modified Newtonian Dynamics (MOND) (Bekenstein 2004), however, a single filament inclined by $\\approx 45^\\circ$ from the line of sight can cause substantial distortion of background sources pointing towards the filament's axis ($\\kappa=\\gamma=(1-A^{-1})/2\\sim 0.01$); this is rigourous for infinitely long uniform filaments, but also qualitatively true for short filaments ($\\sim 30$Mpc), and even in regions where the projected matter density of the filament equals to zero. Since galaxies and galaxy clusters are generally embedded in filaments or are projected on such structures, this contribution complicates the interpretation of the weak lensing shear map in the context of MOND. While our analysis is of mainly theoretical interest providing order-of-magnitude estimates only, it seems safe to conclude that when modeling systems with anomalous weak l...

  17. The supramolecular organization of the C. elegans nuclear lamin filament.

    Science.gov (United States)

    Ben-Harush, Kfir; Wiesel, Naama; Frenkiel-Krispin, Daphna; Moeller, Dorothee; Soreq, Eyal; Aebi, Ueli; Herrmann, Harald; Gruenbaum, Yosef; Medalia, Ohad

    2009-03-13

    Nuclear lamins are involved in most nuclear activities and are essential for retaining the mechano-elastic properties of the nucleus. They are nuclear intermediate filament (IF) proteins forming a distinct meshwork-like layer adhering to the inner nuclear membrane, called the nuclear lamina. Here, we present for the first time, the three-dimensional supramolecular organization of lamin 10 nm filaments and paracrystalline fibres. We show that Caenorhabditis elegans nuclear lamin forms 10 nm IF-like filaments, which are distinct from their cytoplasmic counterparts. The IF-like lamin filaments are composed of three and four tetrameric protofilaments, each of which contains two partially staggered anti-parallel head-to-tail polymers. The beaded appearance of the lamin filaments stems from paired globular tail domains, which are spaced regularly, alternating between 21 nm and 27 nm. A mutation in an evolutionarily conserved residue that causes Hutchison-Gilford progeria syndrome in humans alters the supramolecular structure of the lamin filaments. On the basis of our structural analysis, we propose an assembly pathway that yields the observed 10 nm IF-like lamin filaments and paracrystalline fibres. These results serve also as a platform for understanding the effect of laminopathic mutations on lamin supramolecular organization.

  18. Investigating the Global Collapse of Filaments Using Smoothed Particle Hydrodynamics

    CERN Document Server

    Clarke, Seamus D

    2015-01-01

    We use Smoothed Particle Hydrodynamic simulations of cold, uniform density, self-gravitating filaments, to investigate their longitudinal collapse timescales; these timescales are important because they determine the time available for a filament to fragment into cores. A filament is initially characterised by its line-mass, $\\mu$, its radius, $R$ (or equivalently its density $\\rho\\!=\\!\\mu/\\pi R^2$), and its aspect ratio, $A\\;\\,(\\equiv Z/R$, where $Z$ is its half-length). The gas is only allowed to contract longitudinally, i.e. parallel to the symmetry axis of the filament (the $z$-axis). Pon et al. (2012) have considered the global dynamics of such filaments analytically. They conclude that short filaments ($A\\! \\!5$) undergo end-dominated collapse, i.e. two dense clumps form at the ends of the filament and converge on the centre sweeping up mass as they go, on a time-scale $t_{_{\\rm END}} \\sim 0.98\\,A^{1/2}\\,(G\\rho)^{-1/2}$. Our simulations do not corroborate these predictions. First, for all $A\\! > \\!2$, ...

  19. Formation of interstellar filaments: the role of magnetic fields

    Science.gov (United States)

    Ntormousi, Evangelia; Hennebelle, Patrick

    2014-07-01

    The filamentary structure of interstellar matter and its potential link to star formation has been brought back into focus recently by high resolution observational surveys. The densest of these filaments host pre-stellar and star forming cores, so explaining their properties is tightly correlated to revealing the initial conditions for star formation. To that end, in this work we employ high-resolution, 3D MHD simulations performed with the AMR code RAMSES to investigate two filament formation mechanisms: turbulence and sheet fragmentation. The first series of simulations has as a particular aim to address the origin of the characteristic filament thickness found in observations. Starting from the hypothesis that diffusive processes are responsible, our numerical experiments consist of (driven or decaying) ideal and non-ideal MHD turbulence, at a resolution that greatly exceeds the reported 0.1pc thickness. The comparison points to ion-neutral friction as an excellent candidate for setting a characteristic scale. In this picture dense filaments are the diffusive end of the turbulent cascade, an interpretation with important implications for our understanding of the dynamical behavior of the ISM. A second series of simulations investigates filament formation by the fragmentation of supershells, a scenario inspired by the analytical work of Nagai (1998). We find a striking difference between hydrodynamical and MHD runs as in the first case the sheets fragment into small cores, while in the latter they produce large filaments. In addition though, we see that low-density filaments preferentially form along the dominant component of the magnetic field. In this scenario filaments are prominent features in the ISM, but their fate is still determined by the local magnetic field. A detailed comparison of the filament properties between the two runs is work in progress and will reveal the physical mechanisms responsible for shaping the ISM and setting the initial conditions

  20. Magnetic Structure of a Filament during its Phase of Activity

    Science.gov (United States)

    Sasso, C.; Lagg, A.; Solanki, S. K.

    2008-09-01

    We analyze and interpret spectropolarimetric observations of an active region filament located close to the solar disc center, during its phase of activity. The observations are obtained in the chromospheric He I lines at 1083.0 nm. We provide novel observational results on the magnetic field measurements in solar filaments to give constraints to the theoretical models of their support in the solar corona. Our main goal is to interpret the behavior of the atmospheric parameters retrieved from the spectropolarimetric data to give a picture of the magnetic structure of the observed filament. The analysis of the observed polarization of the He I 1083.0 nm multiplet in the filament, carried out by inverting the Stokes profiles, reveals the presence of different unresolved atmospheric components of the He lines, coexisting within the resolution element (1.2 arcsec). The different components, belonging to different magnetic field lines, show supersonic up- and downflows, sometimes within the same resolution element. The He blueshifted components belong to mostly transversal field lines in the body of the filament. These field lines are found to be curving upwards on both sides. This picture suggests the presence of dipped field lines that are moving upward, carrying with them the filament material. During this movement, we also observe filament material flowing down along field lines having the same polarity as the photospheric field (i.e. they have the opposite inclination with respect to the dipped field lines). These downflows are faster at the filament end points and can reach values close to 10 times the speed of sound. The field lines are found to be almost parallel to the filament axis in the plane perpendicular to the line of sight. We use the two main theoretical models of prominence support (dip or flux rope models) to interpret the results obtained.