WorldWideScience

Sample records for plasma-assisted heterogeneous catalysis

  1. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States); Wan, C.Z.; Rice, G.W.; Voss, K.E. [Engelhard Corp., Iselin, NJ (United States)

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  2. Heterogeneous Catalysis.

    Science.gov (United States)

    Vannice, M. A.

    1979-01-01

    Described is a graduate course in catalysis offered at Penn State University. A detailed course outline with 30 lecture topics is presented. A list of 42 references on catalysis used in place of a textbook is provided. (BT)

  3. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  4. Room-temperature cataluminescence from CO oxidation in a non-thermal plasma-assisted catalysis system.

    Science.gov (United States)

    Han, Feifei; Yang, Yuhan; Han, Jiaying; Ouyang, Jin; Na, Na

    2015-08-15

    Cataluminescence (CTL) is a kind of chemiluminescence during catalytic reaction on surface of catalysts under a heated condition. Due to the low catalytic reactivity of CO, normally low intensity of CTL is obtained during heterogeneously catalytic oxidation of CO under heated conditions (normally higher than 150°C), even catalyzed by precious-metal-based catalysts. Therefore, seeking enhanced CTL of CO at room temperature and using low-cost catalysts becomes significant. Here, CTL generated from CO oxidation was firstly reported at room temperature, which was carried out in a non-thermal plasma-assisted (NTPA) catalysis system. With air acting as discharge gas, carrier gas as well as oxidant, a Mn/SiO2 nanomaterials-based NTPA catalysis system was fabricated for CO catalytic oxidation at room temperature, whose temperature was much lower than previous CTL methods. Relatively high and selective CTL responses were acquired during CO oxidation on surface of Mn/SiO2 nanomaterials, whereas no significant CTL signal was recorded without plasma assistance or on other metals-doped SiO2 catalysts. Without any excitation light source or heating element, a low cost and simple CO sensor was fabricated by using common and easily synthesized catalysts. The present work has greatly simplified the constructions, and enlarged CTL applications.

  5. Homogeneous, Heterogeneous, and Enzymatic Catalysis.

    Science.gov (United States)

    Oyama, S. Ted; Somorjai, Gabor A.

    1988-01-01

    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  6. Concepts in Heterogeneous Catalysis

    Science.gov (United States)

    1974-06-01

    The group Vill metals have vacant atomic d-orbilals (holes in the d-band) which were ex- peeled to promote celuemiorplion and catalysisA by...Houston, Texas, February 24.26 1971. Mango , F. D., Advances in Catalysis, 19 (1969). Mango , F. D. and i. H. Schachtschnelder, J. Am. Chem. Soc., 89

  7. Reaction Selectivity in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  8. Operando research in heterogeneous catalysis

    CERN Document Server

    Groot, Irene

    2017-01-01

    This book is devoted to the emerging field of techniques for visualizing atomic-scale properties of active catalysts under actual working conditions, i.e. high gas pressures and high temperatures. It explains how to understand these observations in terms of the surface structures and dynamics and their detailed interplay with the gas phase. This provides an important new link between fundamental surface physics and chemistry, and applied catalysis. The book explains the motivation and the necessity of operando studies, and positions these with respect to the more traditional low-pressure investigations on the one hand and the reality of industrial catalysis on the other. The last decade has witnessed a rapid development of new experimental and theoretical tools for operando studies of heterogeneous catalysis. The book has a strong emphasis on the new techniques and illustrates how the challenges introduced by the harsh, operando conditions are faced for each of these new tools. Therefore, one can also read th...

  9. Fundamental concepts in heterogeneous catalysis

    CERN Document Server

    Norskov, Jens K; Abild-Pedersen, Frank; Bligaard, Thomas

    2014-01-01

    This book is based on a graduate course and suitable as a primer for any newcomer to the field, this book is a detailed introduction to the experimental and computational methods that are used to study how solid surfaces act as catalysts.   Features include:First comprehensive description of modern theory of heterogeneous catalysisBasis for understanding and designing experiments in the field   Allows reader to understand catalyst design principlesIntroduction to important elements of energy transformation technologyTest driven at Stanford University over several semesters

  10. Molecular modeling of heterogeneous catalysis

    Science.gov (United States)

    Gislason, Jason Joseph

    A novel method for modeling heterogeneous catalysis was developed to further facilitate the understanding of catalytic reactor mechanisms. The method employs molecular dynamics simulations, statistical mechanical, and Unity Bond Index - Quadratic Exponential Potential (UBI-QEP) calculations to calculate the rate constants for reactions on metal surfaces. The primary difficulty of molecular dynamics simulations on metal surfaces has been the lack of reliable reactive potential energy surfaces. We have overcome this through the development of the Normalized Bond Index - Reactive Potential Function (NBI-RPF), which can accurately describe the reaction of adsorbates on metal surfaces. The first calculations of rate constants for a reaction on a metal surface using molecular dynamics simulations are presented. This method is applied to the determination of the mechanism for selective hydrogenation of acetylene in an ethylene rich flow. It was determined that the selectivity for acetylene hydrogenation is attributable to the higher reactivity of acetylene versus ethylene with respect to hydrogenation by molecular hydrogen. It was shown that hydrogen transfer from the carbonaceous layer to acetylene or ethylene is insignificant in the hydrogenation process. Molecular dynamics simulations and molecular mechanics calculations were used to determine the diffusion rate constants for dimethylnaphthalene isomers is mordenite. 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene were found to have similar diffusion rate constants. Grand canonical Monte Carlo calculations were performed on the competitive adsorption of 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene in type X zeolites exchanged individually with barium, calcium, potassium, and rubidium ions, calcium exchanged MCM-22, and hydrogen form mordenite (MOR), X zeolite, Y zeolite, hypBEB, ZSM- 12, and MCM-22. These calculations showed that barium exchanged X zeolite was the most selective toward 2

  11. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  12. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  13. Heterogeneous catalysis at nanoscale for energy applications

    CERN Document Server

    Tao, Franklin (Feng); Kamat, Prashant V

    2015-01-01

    This book presents both the fundamentals concepts and latest achievements of a field that is growing in importance since it represents a possible solution for global energy problems.  It focuses on an atomic-level understanding of heterogeneous catalysis involved in important energy conversion processes. It presents a concise picture for the entire area of heterogeneous catalysis with vision at the atomic- and nano- scales, from synthesis, ex-situ and in-situ characterization, catalytic activity and selectivity, to mechanistic understanding based on experimental exploration and theoretical si

  14. Diffusion and Surface Reaction in Heterogeneous Catalysis

    Science.gov (United States)

    Baiker, A.; Richarz, W.

    1978-01-01

    Ethylene hydrogenation on a platinum catalyst, electrolytically applied to a tube wall, is a good system for the study of the interactions between diffusion and surface reaction in heterogeneous catalysis. Theoretical background, apparatus, procedure, and student performance of this experiment are discussed. (BB)

  15. Heterogeneous catalysis through microcontact printing

    NARCIS (Netherlands)

    Spruell, Jason M.; Sheriff, Bonnie A.; Rozkiewicz, D.I.; Dichtel, William R.; Rohde, Rosemary D.; Reinhoudt, David; Stoddart, Fraser; Heath, James R.

    2008-01-01

    Minting a Stamp: The preparation of copper metal-coated elastomeric stamps and their use in catalyzing the Cu-catalyzed azide-alkyne cycloaddition reaction heterogeneously through microcontact printing is described. This StampCat process is compared to other conventional surface-functionalization te

  16. Heterogenous Catalysis Mediated by Plasmon Heating

    OpenAIRE

    Adleman, J.R.; Boyd, D. A.; Goodwin, D. G.; Psaltis, D.

    2009-01-01

    We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the he...

  17. Heterogeneous Catalysis on a Disordered Surface

    OpenAIRE

    Frachebourg, L.; Krapivsky, P. L.; Redner, S

    1995-01-01

    We introduce a simple model of heterogeneous catalysis on a disordered surface which consists of two types of randomly distributed sites with different adsorption rates. Disorder can create a reactive steady state in situations where the same model on a homogeneous surface exhibits trivial kinetics with no steady state. A rich variety of kinetic behaviors occur for the adsorbate concentrations and catalytic reaction rate as a function of model parameters.

  18. Heterogenous catalysis mediated by plasmon heating.

    Science.gov (United States)

    Adleman, James R; Boyd, David A; Goodwin, David G; Psaltis, Demetri

    2009-12-01

    We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO(2), CO, and H(2), are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles.

  19. Shape-controlled nanostructures in heterogeneous catalysis.

    Science.gov (United States)

    Zaera, Francisco

    2013-10-01

    Nanotechnologies have provided new methods for the preparation of nanomaterials with well-defined sizes and shapes, and many of those procedures have been recently implemented for applications in heterogeneous catalysis. The control of nanoparticle shape in particular offers the promise of a better definition of catalytic activity and selectivity through the optimization of the structure of the catalytic active site. This extension of new nanoparticle synthetic procedures to catalysis is in its early stages, but has shown some promising leads already. Here, we survey the major issues associated with this nanotechnology-catalysis synergy. First, we discuss new possibilities associated with distinguishing between the effects originating from nanoparticle size versus those originating from nanoparticle shape. Next, we survey the information available to date on the use of well-shaped metal and non-metal nanoparticles as active phases to control the surface atom ensembles that define the catalytic site in different catalytic applications. We follow with a brief review of the use of well-defined porous materials for the control of the shape of the space around that catalytic site. A specific example is provided to illustrate how new selective catalysts based on shape-defined nanoparticles can be designed from first principles by using fundamental mechanistic information on the reaction of interest obtained from surface-science experiments and quantum-mechanics calculations. Finally, we conclude with some thoughts on the state of the field in terms of the advances already made, the future potentials, and the possible limitations to be overcome.

  20. Heterogeneous Catalysis with Renewed Attention: Principles, Theories, and Concepts

    Science.gov (United States)

    Dumeignil, Franck; Paul, Jean-Francois; Paul, Sebastien

    2017-01-01

    With the development of a strong bioeconomy sector related to the creation of next-generation biorefineries, heterogeneous catalysis is receiving renewed attention. Indeed, catalysis is at the core of biorefinery design, and many new catalysts and catalytic processes are being developed. On the one hand, they are based on knowledge acquired during…

  1. The nature of the active site in heterogeneous metal catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Larsen, Britt Hvolbæk

    2008-01-01

    This tutorial review, of relevance for the surface science and heterogeneous catalysis communities, provides a molecular-level discussion of the nature of the active sites in metal catalysis. Fundamental concepts such as "Bronsted-Evans-Polanyi relations'' and "volcano curves'' are introduced...

  2. Bridging heterogeneous and homogeneous catalysis concepts, strategies, and applications

    CERN Document Server

    Li, Can

    2014-01-01

    This unique handbook fills the gap in the market for an up-to-date work that links both homogeneous catalysis applied to organic reactions and catalytic reactions on surfaces of heterogeneous catalysts.

  3. Selective Oxidation and Ammoxidation of Olefins by Heterogeneous Catalysis.

    Science.gov (United States)

    Grasselli, Robert K.

    1986-01-01

    Shows how the ammoxidation of olefins can be understood in terms of free radicals and surface bound organometallic intermediates. Also illustrates the close intellectual relationships between heterogeneous catalysis and organometallic chemistry. (JN)

  4. Biodiesel forming reactions using heterogeneous catalysis

    Science.gov (United States)

    Liu, Yijun

    Biodiesel synthesis from biomass provides a means for utilizing effectively renewable resources, a way to convert waste vegetable oils and animal fats to a useful product, a way to recycle carbon dioxide for a combustion fuel, and production of a fuel that is biodegradable, non-toxic, and has a lower emission profile than petroleum-diesel. Free fatty acid (FFA) esterification and triglyceride (TG) transesterification with low molecular weight alcohols constitute the synthetic routes to prepare biodiesel from lipid feedstocks. This project was aimed at developing a better understanding of important fundamental issues involved in heterogeneous catalyzed biodiesel forming reactions using mainly model compounds, representing part of on-going efforts to build up a rational base for assay, design, and performance optimization of solid acids/bases in biodiesel synthesis. As FFA esterification proceeds, water is continuously formed as a byproduct and affects reaction rates in a negative manner. Using sulfuric acid (as a catalyst) and acetic acid (as a model compound for FFA), the impact of increasing concentrations of water on acid catalysis was investigated. The order of the water effect on reaction rate was determined to be -0.83. Sulfuric acid lost up to 90% activity as the amount of water present increased. The nature of the negative effect of water on esterification was found to go beyond the scope of reverse hydrolysis and was associated with the diminished acid strength of sulfuric acid as a result of the preferential solvation by water molecules of its catalytic protons. The results indicate that as esterification progresses and byproduct water is produced, deactivation of a Bronsted acid catalyst like H2SO4 occurs. Using a solid composite acid (SAC-13) as an example of heterogeneous catalysts and sulfuric acid as a homogeneous reference, similar reaction inhibition by water was demonstrated for homogeneous and heterogeneous catalysis. This similarity together with

  5. SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

    2003-08-24

    The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of

  6. Heterogeneous Catalysis: On Bathroom Mirrors and Boiling Stones

    Science.gov (United States)

    Philipse, Albert P.

    2011-01-01

    Though heterogeneous nucleation of liquid droplets on a smooth surface (such as a bathroom mirror) is a classical topic in nucleation theory, it is not well-known that this topic is actually a pedagogical example of heterogeneous catalysis: the one and only effect of the surface is to lower the activation Gibbs energy of droplet formation. In…

  7. Heterogeneous Catalysis: On Bathroom Mirrors and Boiling Stones

    Science.gov (United States)

    Philipse, Albert P.

    2011-01-01

    Though heterogeneous nucleation of liquid droplets on a smooth surface (such as a bathroom mirror) is a classical topic in nucleation theory, it is not well-known that this topic is actually a pedagogical example of heterogeneous catalysis: the one and only effect of the surface is to lower the activation Gibbs energy of droplet formation. In…

  8. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.

    Science.gov (United States)

    Liu, Jiewei; Chen, Lianfen; Cui, Hao; Zhang, Jianyong; Zhang, Li; Su, Cheng-Yong

    2014-08-21

    This review summarizes the use of metal-organic frameworks (MOFs) as a versatile supramolecular platform to develop heterogeneous catalysts for a variety of organic reactions, especially for liquid-phase reactions. Following a background introduction about catalytic relevance to various metal-organic materials, crystal engineering of MOFs, characterization and evaluation methods of MOF catalysis, we categorize catalytic MOFs based on the types of active sites, including coordinatively unsaturated metal sites (CUMs), metalloligands, functional organic sites (FOS), as well as metal nanoparticles (MNPs) embedded in the cavities. Throughout the review, we emphasize the incidental or deliberate formation of active sites, the stability, heterogeneity and shape/size selectivity for MOF catalysis. Finally, we briefly introduce their relevance into photo- and biomimetic catalysis, and compare MOFs with other typical porous solids such as zeolites and mesoporous silica with regard to their different attributes, and provide our view on future trends and developments in MOF-based catalysis.

  9. A conceptual translation of homogeneous catalysis into heterogeneous catalysis: homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter.

    Science.gov (United States)

    Li, Zhen-Xing; Xue, Wei; Guan, Bing-Tao; Shi, Fu-Bo; Shi, Zhang-Jie; Jiang, Hong; Yan, Chun-Hua

    2013-02-07

    Translation of homogeneous catalysis into heterogeneous catalysis is a promising solution to green and sustainable development in chemical industry. For this purpose, noble metal nanoparticles represent a new frontier in catalytic transformations. Many challenges remain for researchers to transform noble metal nanoparticles of heterogeneous catalytic active sites into ionic species of homogeneous catalytic active sites. We report here a successful design on translating homogeneous gold catalysis into a heterogeneous system with a clear understanding of the catalytic pathway. This study initiates a novel concept to immobilize a homogeneous catalyst based on electron transfer between supporting base and supported nanoparticles. Meanwhile, on the basis of theoretical calculation, it has deepened the understanding of the interactions between noble metal nanoparticles and the catalyst support.

  10. Heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Olsen, Jakob Lind

    This thesis present a highly sensitive silicon microreactor and examples of its use in studying catalysis. The experimental setup built for gas handling and temperature control for the microreactor is described. The implementation of LabVIEW interfacing for all the experimental parts makes...... automated experiments and data collection possible. An argon ush at the O-rings (used to interface the silicon microreactor with the gas system), which was developed, is presented. It enables experiments with temperatures up to 400., and up to 500. for short periods of time. The CO oxidation reaction...... of adsorbates readily converted to methanol as the source of the transient increase in methanol production, is eliminated. A study of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source, deposited in microreactors, is presented. It is, shown that CO methanation can be measured...

  11. Applications of neutron scattering to heterogeneous catalysis

    Science.gov (United States)

    Parker, Stewart F.; Lennon, David

    2016-09-01

    Historically, most studies of heterogeneous catalysts that have used neutron vibrational spectroscopy have employed indirect geometry instruments with a low (methane to synthesis gas (CO + H2) over Ni/Al2O3 catalysts and an operando study of CO oxidation. We conclude with a proposal for a unique instrument that combines both indirect and direct geometry spectrometers.

  12. Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids

    Directory of Open Access Journals (Sweden)

    Yuanhang Ren

    2015-03-01

    Full Text Available Organic–inorganic hybrid polyoxometalate (POM compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  13. Heterogeneous Catalysis of Polyoxometalate Based Organic-Inorganic Hybrids.

    Science.gov (United States)

    Ren, Yuanhang; Wang, Meiyin; Chen, Xueying; Yue, Bin; He, Heyong

    2015-03-31

    Organic-inorganic hybrid polyoxometalate (POM) compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic-inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  14. Value-added Chemicals from Biomass by Heterogeneous Catalysis

    DEFF Research Database (Denmark)

    Voss, Bodil

    In the contemporary debate on resource utilisation, biomass has been discussed as an alternative carbon source to fossil reserves in order to reduce the emission of CO2 to the atmosphere. The replacement or supplement of oil based transportation fuels through biomass based conversions has already...... feedstock, having retained one C-C bond originating from the biomass precursor, the aspects of utilising heterogeneous catalysis for its conversion to value added chemicals is investigated. Through a simple analysis of known, but not industrialised catalytic routes, the direct conversion of ethanol....... The results of the thesis, taking one example of biomass conversion, show that the utilisation of biomass in the production of chemicals by heterogeneous catalysis is promising from a technical point of view. But risks of market price excursions dominated by fossil based chemicals further set a criterion...

  15. Mechanisms in homogeneous and heterogeneous epoxidation catalysis

    CERN Document Server

    Oyama, S Ted

    2011-01-01

    The catalytic epoxidation of olefins plays an important role in the industrial production of several commodity compounds, as well as in the synthesis of many intermediates, fine chemicals, and pharmaceuticals. The scale of production ranges from millions of tons per year to a few grams per year. The diversity of catalysts is large and encompasses all the known categories of catalyst type: homogeneous, heterogeneous, and biological. This book summarizes the current status in these fields concentrating on rates, kinetics, and reaction mechanisms, but also covers broad topics including modeli

  16. Catalysis at the Homogeneous-Heterogeneous Chemistry Interface

    Institute of Scientific and Technical Information of China (English)

    Howard; Alper

    2007-01-01

    1 Results Significant progress has been made in recent years in developing efficient, atom economical catalytic reactions of potential applicability to the pharmaceutical, petrochemical, and commodity chemical business sectors. In some cases, homogeneous catalytic processes offer advantages, but in others the use of heterogenized homogeneous catalysis provides a competitive advantage concerning recyclability and catalyst recovery. This presentation will consider new approaches to cyclization reactions a...

  17. On the compensation effect in heterogeneous catalysis

    DEFF Research Database (Denmark)

    Pedersen, Thomas Bligaard; Honkala, Johanna Karoliina; Logadottir, Ashildur

    2003-01-01

    For a class of heterogeneously catalyzed reactions, we explain the compensation effect in terms of a switching of kinetic regimes leading to a concomitant change in the apparent activation energy and in the prefactor for the overall rate of the reaction. We first use the ammonia synthesis...... to illustrate the effect. Both experiments and a detailed kinetic model show a compensation effect. Second, we use density functional theory calculations to show that the compensation effect is not only due to changes in the activation barrier and prefactor of the rate-determining step, N-2 dissociation. We...... why this should be a general effect for a broad class of reactions. We will show that the compensation effect in the rate is intimately linked to the underlying linear relationships between activation energy and stability of intermediates, which have been found to hold for a number of surface...

  18. Molecular-Level Design of Heterogeneous Chiral Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Zaera

    2012-03-21

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration

  19. Application of gold in the field of heterogeneous catalysis

    CERN Document Server

    Luo, Siwei

    2014-01-01

    Gold has been long thought as an inert metal which finds most of its use in jewelry and monetary exchange. However, catalysis by gold has rapidly become a hot topic in chemistry ever since Haruta and Hutchings found gold to be an extraordinary good heterogeneous catalyst in certain reactions. Here in this paper, several model reactions which made gold historically famous as a catalyst and a currently hot topic will be demonstrated, such as oxidation of CO, selective oxidation, and hydrodechlorination. Conclusions on the chemical nature of gold will be made as well as future perspectives of designing gold as a better catalyst.

  20. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy.

    Science.gov (United States)

    Esfandiari, N Melody; Blum, Suzanne A

    2011-11-16

    A high-sensitivity and high-resolution single-particle fluorescence microscopy technique differentiated between homogeneous and heterogeneous metathesis polymerization catalysis by imaging the location of the early stages of polymerization. By imaging single polymers and single crystals of Grubbs II, polymerization catalysis was revealed to be solely homogeneous rather than heterogeneous or both.

  1. Contrast and Synergy between Electrocatalysis and Heterogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Andrzej Wieckowski

    2011-01-01

    Full Text Available The advances in spectroscopy and theory that have occurred over the past two decades begin to provide detailed in situ resolution of the molecular transformations that occur at both gas/metal as well as aqueous/metal interfaces. These advances begin to allow for a more direct comparison of heterogeneous catalysis and electrocatalysis. Such comparisons become important, as many of the current energy conversion strategies involve catalytic and electrocatalytic processes that occur at fluid/solid interfaces and display very similar characteristics. Herein, we compare and contrast a few different catalytic and electrocatalytic systems to elucidate the principles that cross-cut both areas and establish characteristic differences between the two with the hope of advancing both areas.

  2. First principles investigation of heterogeneous catalysis on metal oxide surfaces

    Science.gov (United States)

    Ghoussoub, Mireille

    Metal oxides possess unique electronic and structural properties that render them highly favourable for applications in heterogeneous catalysis. In this study, computational atomistic modelling based on Density Functional Theory was used to investigate the reduction of carbon dioxide over hydroxylated indium oxide nanoparticles, as well at the activation of methane over oxygen-covered bimetallic surfaces. The first study employed metadynamics-biased ab initio molecular dynamics to obtain the free energy surface of the various reaction steps at finite temperature. In the second study, the nudged elastic band method was used to probe the C-H activation mechanisms for different surface configurations. In both cases, activation energies, reaction energies, transition state structures, and charge analysis results are used to explain the underlying mechanistic pathways.

  3. Nanoscale magnetic stirring bars for heterogeneous catalysis in microscopic systems.

    Science.gov (United States)

    Yang, Shuliang; Cao, Changyan; Sun, Yongbin; Huang, Peipei; Wei, Fangfang; Song, Weiguo

    2015-02-23

    Nanometer-sized magnetic stirring bars containing Pd nanoparticles (denoted as Fe3 O4 -NC-PZS-Pd) for heterogeneous catalysis in microscopic system were prepared through a facile two-step process. In the hydrogenation of styrene, Fe3 O4 -NC-PZS-Pd showed an activity similar to that of the commercial Pd/C catalyst, but much better stability. In microscopic catalytic systems, Fe3 O4 -NC-PZS-Pd can effectively stir the reaction solution within microdrops to accelerate mass transfer, and displays far better catalytic activity than the commercial Pd/C for the hydrogenation of methylene blue in an array of microdroplets. These results suggested that the Fe3 O4 -NC-PZS-Pd could be used as nanoscale stirring bars in nanoreactors.

  4. Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design.

    Science.gov (United States)

    Greeley, Jeffrey

    2016-06-01

    Scaling relationships are theoretical constructs that relate the binding energies of a wide variety of catalytic intermediates across a range of catalyst surfaces. Such relationships are ultimately derived from bond order conservation principles that were first introduced several decades ago. Through the growing power of computational surface science and catalysis, these concepts and their applications have recently begun to have a major impact in studies of catalytic reactivity and heterogeneous catalyst design. In this review, the detailed theory behind scaling relationships is discussed, and the existence of these relationships for catalytic materials ranging from pure metal to oxide surfaces, for numerous classes of molecules, and for a variety of catalytic surface structures is described. The use of the relationships to understand and elucidate reactivity trends across wide classes of catalytic surfaces and, in some cases, to predict optimal catalysts for certain chemical reactions, is explored. Finally, the observation that, in spite of the tremendous power of scaling relationships, their very existence places limits on the maximum rates that may be obtained for the catalyst classes in question is discussed, and promising strategies are explored to overcome these limitations to usher in a new era of theory-driven catalyst design.

  5. Nanoporous oxidic solids: the confluence of heterogeneous and homogeneous catalysis.

    Science.gov (United States)

    Thomas, John Meurig; Hernandez-Garrido, Juan Carlos; Raja, Robert; Bell, Robert G

    2009-04-28

    The several factors that render certain kinds of nanoporous oxidic solids valuable for the design of a wide range of new heterogeneous catalysts are outlined and exemplified. These factors include: (i), their relative ease of preparation, when both mesoporous siliceous frameworks (ca. 20 to 250 A diameter pores) and microporous framework-substituted aluminophosphates (ca. 4 to 14 A diameter pores) can be tailored to suit particular catalytic needs according to whether regiospecific or enantio- or shape-selective conversions are the goal; (ii), the enormous internal (three-dimensional) areas that these nanoporous solids possess (typically 10(3) m(2) g(-1)) and the consequential ease of access of reactants through the internal pores of the solids; (iii), the ability, by judicious solid-state preparative methods to assemble spatially isolated, single-site active centres at the internal surfaces of these open-structure solids, thereby making the heterogeneous catalyst simulate the characteristic features of homogenous and enzymatic catalysts; (iv), the wide variety of in situ, time-resolved and ex situ experimental techniques, coupled with computational methods, that can pin-point the precise structure of the active site under operating conditions and facilitate the formulation of reaction intermediates and mechanisms. Varieties of catalysts are described for the synthesis (often under environmentally benign and solvent-free conditions) of a wide range of organic materials including commodity chemicals (such as adipic and terephthalic acid), fine and pharmaceutical chemicals (e.g. vitamin B(3)), alkenes, epoxides, and for the photocatalytic preferential destruction of carbon monoxide in the presence of hydrogen. Nanoporous oxidic solids are ideal materials to investigate the phenomenology of catalysis because, in many of them, little distinction exists between a model and a real catalyst.

  6. A Course in Heterogeneous Catalysis: Principles, Practice, and Modern Experimental Techniques.

    Science.gov (United States)

    Wolf, Eduardo E.

    1981-01-01

    Outlines a multidisciplinary course which comprises fundamental, practical, and experimental aspects of heterogeneous catalysis. The course structure is a combination of lectures and demonstrations dealing with the use of spectroscopic techniques for surface analysis. (SK)

  7. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  8. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.

    Science.gov (United States)

    Zhao, Min; Ou, Sha; Wu, Chuan-De

    2014-04-15

    Metalloporphyrins are the active sites in monooxygenases that oxidize a variety of substrates efficiently and under mild conditions. Researchers have developed artificial metalloporphyrins, but these structures have had limited catalytic applications. Homogeneous artificial metalloporphyrins can undergo catalytic deactivation via suicidal self-oxidation, which lowers their catalytic activity and sustainability relative to their counterparts in Nature. Heme molecules in protein scaffolds can maintain high efficiency over numerous catalytic cycles. Therefore, we wondered if immobilizing metalloporphyrin moieties within porous metal-organic frameworks (MOFs) could stabilize these structures and facilitate the molecular recognition of substrates and produce highly efficient biomimetic catalysis. In this Account, we describe our research to develop multifunctional porphyrinic frameworks as highly efficient heterogeneous biomimetic catalysts. Our studies indicate that porous porphyrinic frameworks provide an excellent platform for mimicking the activity of biocatalysts and developing new heterogeneous catalysts that effect new chemical transformations under mild conditions. The porous structures and framework topologies of the porphyrinic frameworks depend on the configurations, coordination donors, and porphyrin metal ions of the metalloporphyrin moieties. To improve the activity of porous porphyrinic frameworks, we have developed a two-step synthesis that introduces the functional polyoxometalates (POMs) into POM-porphyrin hybrid materials. To tune the pore structures and the catalytic properties of porphyrinic frameworks, we have designed metalloporphyrin M-H8OCPP ligands with four m-benzenedicarboxylate moieties, and introduced the secondary auxiliary ligands. The porphyrin metal ions and the secondary functional moieties that are incorporated into porous metal-organic frameworks greatly influence the catalytic properties and activities of porphyrinic frameworks in

  9. Converting Homogeneous to Heterogeneous in Electrophilic Catalysis using Monodisperse Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witham, Cole A.; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N.; Somorjai, Gabor A.; Toste, F. Dean

    2009-10-15

    A continuing goal in catalysis is the transformation of processes from homogeneous to heterogeneous. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this conversion is supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl{sub 2}, and catalyze a range of {pi}-bond activation reactions previously only homogeneously catalyzed. Multiple experimental methods are utilized to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, our size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared to larger, polymer-capped analogues.

  10. Heterogeneous Molecular Catalysis of Electrochemical Reactions: Volcano Plots and Catalytic Tafel Plots.

    Science.gov (United States)

    Costentin, Cyrille; Savéant, Jean-Michel

    2017-06-14

    We analyze here, in the framework of heterogeneous molecular catalysis, the reasons for the occurrence or nonoccurrence of volcanoes upon plotting the kinetics of the catalytic reaction versus the stabilization free energy of the primary intermediate of the catalytic process. As in the case of homogeneous molecular catalysis or catalysis by surface-active metallic sites, a strong motivation of such studies relates to modern energy challenges, particularly those involving small molecules, such as water, hydrogen, oxygen, proton, and carbon dioxide. This motivation is particularly pertinent for what concerns heterogeneous molecular catalysis, since it is commonly preferred to homogeneous molecular catalysis by the same molecules if only for chemical separation purposes and electrolytic cell architecture. As with the two other catalysis modes, the main drawback of the volcano plot approach is the basic assumption that the kinetic responses depend on a single descriptor, viz., the stabilization free energy of the primary intermediate. More comprehensive approaches, investigating the responses to the maximal number of experimental factors, and conveniently expressed as catalytic Tafel plots, should clearly be preferred. This is more so in the case of heterogeneous molecular catalysis in that additional transport factors in the supporting film may additionally affect the current-potential responses. This is attested by the noteworthy presence of maxima in catalytic Tafel plots as well as their dependence upon the cyclic voltammetric scan rate.

  11. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.

    2010-01-01

    of combination involves one-pot cascade catalysis with active sites from bio- and inorganic catalysts. In this article the emphasis is placed specifically on oxidase systems involving the coproduction of hydrogen peroxide, which can be used to create new in situ collaborative oxidation reactions for bulk...

  12. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO2. The yield for this phenomenon is on the order of 10-4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D2 compared to H2, contrary to what is expected given the higher mass of D2. Reversible changes in the rectification factor of the diode are observed when switching between D2 and H2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H2 oxidation. Absorption of the light in the Si, combined with

  13. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Keller, D.E.

    2003-01-01

    Supported vanadium oxide catalysts are active in a wide range of applications. In this review, an overview is given of the current knowledge available about vanadium oxide-based catalysts. The review starts with the importance of vanadium in heterogeneous catalysis, a discussion of the molecular str

  14. Interrelation of chemistry and process design in biodiesel manufacturing by heterogeneous catalysis

    NARCIS (Netherlands)

    Dimian, A.C.; Srokol, Z.W.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.

    2010-01-01

    The pros and cons of using heterogeneous catalysis for biodiesel manufacturing are introduced, and explained from a chemistry and engineering viewpoint. Transesterification reactions of various feed types are then compared in batch and continuous process operation modes. The results show that the

  15. Appreciating Formal Similarities in the Kinetics of Homogeneous, Heterogeneous, and Enzyme Catalysis

    Science.gov (United States)

    Ashby, Michael T.

    2007-01-01

    Because interest in catalysts is widespread, the kinetics of catalytic reactions have been investigated by widely diverse groups of individuals, including chemists, engineers, and biologists. This has lead to redundancy in theories, particularly with regard to the topics of homogeneous, heterogeneous, and enzyme catalysis. From a pedagogical…

  16. Real-Time Monitoring of Heterogeneous Catalysis with Mass Spectrometry

    Science.gov (United States)

    Young, Mark A.

    2009-01-01

    Heterogeneous, gas-solid processes constitute an important class of catalytic reactions that play a key role in a variety of applications, such as industrial processing and environmental controls. Heterogeneous catalytic chemistry can be demonstrated in a simple heated flow reactor containing a fragment of the catalytic converter from a vehicular…

  17. Real-Time Monitoring of Heterogeneous Catalysis with Mass Spectrometry

    Science.gov (United States)

    Young, Mark A.

    2009-01-01

    Heterogeneous, gas-solid processes constitute an important class of catalytic reactions that play a key role in a variety of applications, such as industrial processing and environmental controls. Heterogeneous catalytic chemistry can be demonstrated in a simple heated flow reactor containing a fragment of the catalytic converter from a vehicular…

  18. π Activation of Alkynes in Homogeneous and Heterogeneous Gold Catalysis.

    Science.gov (United States)

    Bistoni, Giovanni; Belanzoni, Paola; Belpassi, Leonardo; Tarantelli, Francesco

    2016-07-14

    The activation of alkynes toward nucleophilic attack upon coordination to gold-based catalysts (neutral and positively charged gold clusters and gold complexes commonly used in homogeneous catalysis) is investigated to elucidate the role of the σ donation and π back-donation components of the Au-C bond (where we consider ethyne as prototype substrate). Charge displacement (CD) analysis is used to obtain a well-defined measure of σ donation and π back-donation and to find out how the corresponding charge flows affect the electron density at the electrophilic carbon undergoing the nucleophilic attack. This information is used to rationalize the activity of a series of catalysts in the nucleophilic attack step of a model hydroamination reaction. For the first time, the components of the Dewar-Chatt-Duncanson model, donation and back-donation, are put in quantitative correlation with the kinetic parameters of a chemical reaction.

  19. Magnetically Separable Base Catalysts: Heterogeneous Catalysis vs. Quasi-Homogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Raed Abu-Reziq

    2012-03-01

    Full Text Available The synthesis of magnetically separable quasi-homogeneous base catalyst and heterogeneous base catalyst is described. The quasi-homogeneous catalyst is achieved by supporting silane monomers functionalized with different amine groups directly on the surface of magnetite nanoparticles. The heterogeneous catalyst is prepared via a sol-gel process in which silane monomers containing different amine groups are copolymerized with tetraethoxysilane in the presence of magnetite nanoparticles functionalized with ionic liquid moieties. The reactivity of the quasi-homogeneous and the heterogeneous base catalysts is compared in the nitroaldol condensation.

  20. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis.

    Science.gov (United States)

    Astruc, Didier; Lu, Feng; Aranzaes, Jaime Ruiz

    2005-12-01

    Interest in catalysis by metal nanoparticles (NPs) is increasing dramatically, as reflected by the large number of publications in the last five years. This field, "semi-heterogeneous catalysis", is at the frontier between homogeneous and heterogeneous catalysis, and progress has been made in the efficiency and selectivity of reactions and recovery and recyclability of the catalytic materials. Usually NP catalysts are prepared from a metal salt, a reducing agent, and a stabilizer and are supported on an oxide, charcoal, or a zeolite. Besides the polymers and oxides that used to be employed as standard, innovative stabilizers, media, and supports have appeared, such as dendrimers, specific ligands, ionic liquids, surfactants, membranes, carbon nanotubes, and a variety of oxides. Ligand-free procedures have provided remarkable results with extremely low metal loading. The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.

  1. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles.

    Science.gov (United States)

    Witham, Cole A; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N; Somorjai, Gabor A; Toste, F Dean

    2010-01-01

    A continuing goal in catalysis is to unite the advantages of homogeneous and heterogeneous catalytic processes. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this unification can also be supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl(2), and catalyse a range of π-bond activation reactions previously only catalysed through homogeneous processes. Multiple experimental methods are used to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, a size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared with larger, polymer-capped analogues.

  2. Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong; MENG Lie; CHEN Rizhi; JIN Wanqin; XING Weihong; XU Nanping

    2013-01-01

    Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes,but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry.A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis.This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis,which covers classification of configurations of porous ceramic membrane reactor,major considerations and some important industrial applications.A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design,optimization of ceramic membrane reactor performance and membrane fouling mechanism.Finally,brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.

  3. Heterogeneous Catalysis: The Horiuti-Polanyi Mechanism and Alkene Hydrogenation

    Science.gov (United States)

    Mattson, Bruce; Foster, Wendy; Greimann, Jaclyn; Hoette, Trisha; Le, Nhu; Mirich, Anne; Wankum, Shanna; Cabri, Ann; Reichenbacher, Claire; Schwanke, Erika

    2013-01-01

    The hydrogenation of alkenes by heterogeneous catalysts has been studied for 80 years. The foundational mechanism was proposed by Horiuti and Polanyi in 1934 and consists of three steps: (i) alkene adsorption on the surface of the hydrogenated metal catalyst, (ii) hydrogen migration to the beta-carbon of the alkene with formation of a delta-bond…

  4. Heterogeneous catalysis: on bathroom mirrors and boiling stones

    NARCIS (Netherlands)

    Philipse, A.P.|info:eu-repo/dai/nl/073532894

    2011-01-01

    A catalyst is defined as a substance that accelerates a process without undergoing a net change due to that process. Most chemistry students learn about catalysts in the context of chemical reactions, such as the enzymes in biochemistry or the heterogeneous metal catalysts in inorganic chemistry (1,

  5. Heterogeneous catalysis: on bathroom mirrors and boiling stones

    NARCIS (Netherlands)

    Philipse, A.P.

    2011-01-01

    A catalyst is defined as a substance that accelerates a process without undergoing a net change due to that process. Most chemistry students learn about catalysts in the context of chemical reactions, such as the enzymes in biochemistry or the heterogeneous metal catalysts in inorganic chemistry (1,

  6. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Samira Bagheri

    2014-01-01

    Full Text Available The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2 was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications.

  7. Surface-Enhanced Raman Spectroscopy for Heterogeneous Catalysis Research

    NARCIS (Netherlands)

    Harvey, C.E.

    2013-01-01

    Raman spectroscopy is valuable characterization technique for the chemical analysis of heterogeneous catalysts, both under ex-situ and in-situ conditions. The potential for Raman to shine light on the chemical bonds present in a sample makes the method highly desirable for detailed catalyst characte

  8. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  9. Heterogeneous and homogeneous chiral Cu(II) catalysis in water: enantioselective boron conjugate additions to dienones and dienoesters.

    Science.gov (United States)

    Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū

    2013-09-25

    It was proved that a judicious choice of counteranion played a prominent role in Cu(II) catalysis for enantioselective boron conjugate additions in water; the use of Cu(OH)2 renders heterogeneous catalysis, whereas Cu(OAc)2 renders homogeneous catalysis; cyclic dienones underwent a remarkable switch of regioselectivity between 1,4- and 1,6-modes of the additions through these catalyses.

  10. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry.

    Science.gov (United States)

    Guo, Zhen; Liu, Bin; Zhang, Qinghong; Deng, Weiping; Wang, Ye; Yang, Yanhui

    2014-05-21

    Oxidation catalysis not only plays a crucial role in the current chemical industry for the production of key intermediates such as alcohols, epoxides, aldehydes, ketones and organic acids, but also will contribute to the establishment of novel green and sustainable chemical processes. This review is devoted to dealing with selective oxidation reactions, which are important from the viewpoint of green and sustainable chemistry and still remain challenging. Actually, some well-known highly challenging chemical reactions involve selective oxidation reactions, such as the selective oxidation of methane by oxygen. On the other hand some important oxidation reactions, such as the aerobic oxidation of alcohols in the liquid phase and the preferential oxidation of carbon monoxide in hydrogen, have attracted much attention in recent years because of their high significance in green or energy chemistry. This article summarizes recent advances in the development of new catalytic materials or novel catalytic systems for these challenging oxidation reactions. A deep scientific understanding of the mechanisms, active species and active structures for these systems are also discussed. Furthermore, connections among these distinct catalytic oxidation systems are highlighted, to gain insight for the breakthrough in rational design of efficient catalytic systems for challenging oxidation reactions.

  11. Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films.

    Science.gov (United States)

    Costentin, Cyrille; Porter, Thomas R; Savéant, Jean-Michel

    2016-05-04

    Cyclic voltammetry of phosphate cobalt oxide (CoPi) films catalyzing O2-evolution from water oxidation as a function of scan rate, phosphate concentration and film thickness allowed for new insights into the coupling between charge transport and catalysis. At pH = 7 and low buffer concentrations, the film is insulating below 0.8 (V vs SHE) but becomes conductive above 0.9 (V vs SHE). Between 1.0 to 1.3 (V vs SHE), the mesoporous structure of the film gives rise to a large thickness-dependent capacitance. At higher buffer concentrations, two reversible proton-coupled redox couples appear over the capacitive response with 0.94 and 1.19 (V vs SHE) pH = 7 standard potentials. The latter is, at most, very weakly catalytic and not responsible for the large catalytic current observed at higher potentials. CV-response analysis showed that the amount of redox-active cobalt-species in the film is small, less than 10% of total. The catalytic process involves a further proton-coupled-electron-transfer and is so fast that it is controlled by diffusion of phosphate, the catalyst cofactor. CV-analysis with newly derived relationships led to a combination of the catalyst standard potential with the catalytic rate constant and a lower-limit estimation of these parameters. The large currents resulting from the fast catalytic reaction result in significant potential losses related to charge transport through the film. CoPi films appear to combine molecular catalysis with semiconductor-type charge transport. This mode of heterogeneous molecular catalysis is likely to occur in many other catalytic films.

  12. Metal Catalysts Recycling and Heterogeneous/Homogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Masahiko Arai

    2015-05-01

    Full Text Available Heterogeneous metal catalysts rather than homogeneous ones are recommended for industrial applications after considering their performance in activity, separation, and recycling [1]. The recycling of metal catalysts is important from economic and environmental points of view. When supported and bulk metal catalysts are used in liquid-phase organic reactions, there is a possibility that active metal species are leaching away into the liquid phases [2,3]. The metal leaching would make it difficult for the catalysts to maintain their desired initial performance for repeated batch reactions and during continuous ones. The metal leaching would also cause some undesired contamination of products by the metal species dissolved in the reaction mixture, and the separation of the metal contaminants would be required to purify the products. Therefore, various novel methods have been proposed so far to immobilize/stabilize the active metal species and to separate/collect/reuse the dissolved metal species [4]. In addition, knowledge on the heterogeneous and homogeneous natures of organic reactions using heterogeneous catalysts is important to discuss their reaction mechanisms and catalytically working active species. [...

  13. ISHHC XIII International Symposium on the Relations betweenHomogeneous and Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai (Ed.), G.A.

    2007-06-11

    The International Symposium on Relations between Homogeneous and Heterogeneous Catalysis (ISHHC) has a long and distinguished history. Since 1974, in Brussels, this event has been held in Lyon, France (1977), Groeningen, The Netherlands (1981); Asilomar, California (1983); Novosibirsk, Russia (1986); Pisa, Italy (1989); Tokyo, Japan (1992); Balatonfuered, Hungary (1995); Southampton, United Kingdom (1999); Lyon, France (2001); Evanston, Illinois (2001) and Florence, Italy (2005). The aim of this international conference in Berkeley is to bring together practitioners in the three fields of catalysis, heterogeneous, homogeneous and enzyme, which utilize mostly nanosize particles. Recent advances in instrumentation, synthesis and reaction studies permit the nanoscale characterization of the catalyst systems, often for the same reaction, under similar experimental conditions. It is hoped that this circumstance will permit the development of correlations of these three different fields of catalysis on the molecular level. To further this goal we aim to uncover and focus on common concepts that emerge from nanoscale studies of structures and dynamics of the three types of catalysts. Another area of focus that will be addressed is the impact on and correlation of nanosciences with catalysis. There is information on the electronic and atomic structures of nanoparticles and their dynamics that should have importance in catalyst design and catalytic activity and selectivity.

  14. Mechanistic Insights into Homogeneous and Heterogeneous Asymmetric Iron Catalysis

    Science.gov (United States)

    Sonnenberg, Jessica

    Our group has been focused on replacing toxic and expensive precious metal catalysts with iron for the synthesis of enantiopure compounds for industrial applications. During an investigation into the mechanism of asymmetric transfer hydrogenation with our first generation iron-(P-N-N-P) catalysts we found substantial evidence for zero-valent iron nanoparticles coated in chiral ligand acting as the active site. Extensive experimental and computational experiments were undertaken which included NMR, DFT, reaction profile analysis, substoichiometric poisoning, electron microscope imaging, XPS and multiphasic analysis, all of which supported the fact that NPs were the active species in catalysis. Reversibility of this asymmetric reaction on the nanoparticle surface was then probed using oxidative kinetic resolution of racemic alcohols, yielding modest enantiopurity and high turnover frequencies (TOF) for a range of aromatic alcohols. Efficient dehydrogenation of ammonia-borane for hydrogen evolution and the formation of B-N oligomers was also shown using the NP system, yielding highly active systems, with a maximum TOF of 3.66 H2/s-1 . We have also begun to focus on the development of iron catalysts for asymmetric direct hydrogenation of ketones using hydrogen gas. New chiral iron-(P-N-P) catalysts were developed and shown to be quite active and selective for a wide range of substrates. Mechanistic investigations primarily using NMR and DFT indicated that a highly active trans-dihydride species was being formed during catalyst activation. Lastly, a new library of chiral P-N-P and P-NH-P ligands were developed, as well as their corresponding iron complexes, some of which show promise for the development of future generations of active asymmetric direct hydrogenation catalysts.

  15. Stability of the Martian atmosphere: Is heterogeneous catalysis essential?

    Science.gov (United States)

    Atreya, Sushil K.; Gu, Zhen Gang

    1994-01-01

    A comprehensive homogeneous gas phase photochemical model is developed to study the problem of stability of the Martian atmosphere. The one-dimensional model extends from the ground up to 220 km, passing through the homopause at 125 km. The model thus couples the lower (neutral) atmosphere to the ionosphere above which provides significant downward flux of carbon monoxide and oxygen atoms. It is concluded on the basic of currently accepted values for globally and seasonally averaged water vapor abundance, dust opacity and the middle atmospheric eddy mixing coefficient, as well as the relevant laboratory data (particularly the temperature dependence of CO2 absorption cross section and the rate constant for CO+OH reaction), that the rate of re-formation of carbon dioxide exceeds its photolytic destruction rate by about 40%. Furthermore, it is found that this result is virtually independent of the choice of eddy mixing coefficient, unless its value in the middle atmosphere exceeds 10(exp 8) sq cm/sec or is far smaller than 10(exp 5)sq cm/sec, or the dust opacity, unless it exceeds unity, or the water vapor mixing ratio at the surface, unless it is far smaller (less than or = 1 ppm) or far greater (greater than or = 500 ppm) than the average value (approximately 150 ppm). Since none of these extremes represent globally and seasonally averaged conditions on Mars, we propose that the present model requires existence of a mechanism to throttle down the recycling rate of carbon dioxide on Mars. Therefore, it is suggested that a heterogeneous process which provides a sink to the species that participate in the recycling of CO2, i.e., H2O, H2O2, OH, CO or O, in particular, may be necessary to bring about the balance between the CO2 recycling rate and its photolytic destruction rate. Aerosols of dust or ice (pure or doped water or carbon dioxide ice present in the atmosphere of Mars) can provide the appropriate adsorption sites for the above heterogeneous process. Despite our

  16. Reactor for In-Situ Measurements of Spatially Resolved Kinetic Data in Heterogeneous Catalysis

    OpenAIRE

    Horn, R; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-01-01

    The present work describes a reactor that allows in-situ measurements of spatially resolved kinetic data in heterogenous catalysis. The reactor design allows measurements up to temperatures of 1300 ±C and 45 bar pressure, i.e. conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical de...

  17. Linking homogeneous and heterogeneous enantioselective catalysis through a self-assembled coordination polymer.

    Science.gov (United States)

    García, José I; López-Sánchez, Beatriz; Mayoral, José A

    2008-11-01

    Combining the advantages of homogeneous and heterogeneous enantioselective catalysis is possible through self-supported copper coordination polymers, based on a new kind of ditopic chiral ligand bearing two azabis(oxazoline) moieties. When the coordination polymer is used to catalyze a cyclopropanation reaction, it becomes soluble in reaction conditions but precipitates after reaction completion, allowing easy recovery and efficient reuse in the same reaction up to 14 times.

  18. Value-added Chemicals from Biomass by Heterogeneous Catalysis

    DEFF Research Database (Denmark)

    Voss, Bodil

    In the contemporary debate on resource utilisation, biomass has been discussed as an alternative carbon source to fossil reserves in order to reduce the emission of CO2 to the atmosphere. The replacement or supplement of oil based transportation fuels through biomass based conversions has already...... been implemented. The subject on chemical production has received less attention. This thesis describes and evaluates the quest for an alternative conversion route, based on a biomass feedstock and employing a heterogeneous catalyst capable of converting the feedstock, to a value-added chemical...... obtained for such a process and the hypothesis that process feasibility in comparison with the conventional synthesis gas based technologies may further be attainable, taking advantage of the conservation of chemical C-C bonds in biomass based feedstocks. With ethanol as one example of a biomass based...

  19. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de, E-mail: mmoura@ufpi.edu.br [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Departamento de Quimica; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/IQ/CEMPEQC), Araraquara, SP (Brazil). Instituto de Quimica. Centro de Monitoramento e Pesquisa da Qualidade de Combustiveis, Biocombustiveis, Petroleo e Derivados

    2013-04-15

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO{sub 3} + SrO + Sr (OH){sub 2}) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  20. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO2. The yield for this phenomenon is on the order of 10-4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D2 compared to H2, contrary to what is expected given the higher mass of D2. Reversible changes in the rectification factor of the diode are observed when switching between D2 and H2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H2 oxidation. Absorption of the light in the Si, combined with

  1. First Principles Molecular Dynamics Study of Catalysis for Polyolefins: the Ziegler-Natta Heterogeneous System.

    Directory of Open Access Journals (Sweden)

    Michele Parrinello

    2002-04-01

    Full Text Available Abstract: We review part of our recent ab initio molecular dynamics study on the Ti-based Ziegler-Natta supported heterogeneous catalysis of α-olefins. The results for the insertion of ethylene in the metal-carbon bond are discussed as a fundamental textbook example of polymerization processes. Comparison with the few experimental data available has shown that simulation can reproduce activation barriers and the overall energetics of the reaction with sufficient accuracy. This puts these quantum dynamical simulations in a new perspective as a virtual laboratory where the microscopic picture of the catalysis, which represents an important issue that still escapes experimental probes, can be observed and understood. These results are then discussed in comparison with a V-based catalyst in order to figure out analogies and differences with respect to the industrially more successful Tibased systems.

  2. Molecular Catalysis of O2 Reduction by Iron Porphyrins in Water: Heterogeneous versus Homogeneous Pathways.

    Science.gov (United States)

    Costentin, Cyrille; Dridi, Hachem; Savéant, Jean-Michel

    2015-10-28

    Despite decades of active attention, important problems remain pending in the catalysis of dioxygen reduction by iron porphyrins in water in terms of selectivity and mechanisms. This is what happens, for example, for the distinction between heterogeneous and homogeneous catalysis for soluble porphyrins, for the estimation of H2O2/H2O product selectivity, and for the determination of the reaction mechanism in the two situations. With water-soluble iron tetrakis(N-methyl-4-pyridyl)porphyrin as an example, procedures are described that allow one to operate this distinction and determine the H2O2/H2O product ratio in each case separately. It is noteworthy that, despite the weak adsorption of the iron(II) porphyrin on the glassy carbon electrode, the contribution of the adsorbed complex to catalysis rivals that of its solution counterpart. Depending on the electrode potential, two successive catalytic pathways have been identified and characterized in terms of current-potential responses and H2O2/H2O selectivity. These observations are interpreted in the framework of the commonly accepted mechanism for catalytic reduction of dioxygen by iron porphyrins, after checking its compatibility with a change of oxygen concentration and pH. The difference in intrinsic catalytic reactivity between the catalyst in the adsorbed state and in solution is also discussed. The role of heterogeneous catalysis with iron tetrakis(N-methyl-4-pyridyl)porphyrin has been overlooked in previous studies because of its water solubility. The main objective of the present contribution is therefore to call attention, by means of this emblematic example, to such possibilities to reach a correct identification of the catalyst, its performances, and reaction mechanism. This is a question of general interest, so that reduction of dioxygen remains a topic of high importance in the context of contemporary energy challenges.

  3. Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time

    Science.gov (United States)

    Gross, Elad; Liu, Jack Hung-Chang; Toste, F. Dean; Somorjai, Gabor A.

    2012-11-01

    A combination of the advantages of homogeneous and heterogeneous catalysis could enable the development of sustainable catalysts with novel reactivity and selectivity. Although heterogeneous catalysts are often recycled more easily than their homogeneous counterparts, they can be difficult to apply in traditional organic reactions and modification of their properties towards a desired reactivity is, at best, complex. In contrast, tuning the properties of homogeneous catalysts by, for example, modifying the ligands that coordinate a metal centre is better understood. Here, using olefin cyclopropanation reactions catalysed by dendrimer-encapsulated Au nanoclusters as examples, we demonstrate that changing the dendrimer properties allows the catalytic reactivity to be tuned in a similar fashion to ligand modification in a homogeneous catalyst. Furthermore, we show that these heterogeneous catalysts employed in a fixed-bed flow reactor allow fine control over the residence time of the reactants and thus enables the control over product distribution in a way that is not easily available for homogeneous catalysts.

  4. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis?

    Science.gov (United States)

    Artero, Vincent; Fontecave, Marc

    2013-03-21

    Catalysis is a key enabling technology for solar fuel generation. A number of catalytic systems, either molecular/homogeneous or solid/heterogeneous, have been developed during the last few decades for both the reductive and oxidative multi-electron reactions required for fuel production from water or CO(2) as renewable raw materials. While allowing for a fine tuning of the catalytic properties through ligand design, molecular approaches are frequently criticized because of the inherent fragility of the resulting catalysts, when exposed to extreme redox potentials. In a number of cases, it has been clearly established that the true catalytic species is heterogeneous in nature, arising from the transformation of the initial molecular species, which should rather be considered as a pre-catalyst. Whether such a situation is general or not is a matter of debate in the community. In this review, covering water oxidation and reduction catalysts, involving noble and non-noble metal ions, we limit our discussion to the cases in which this issue has been directly and properly addressed as well as those requiring more confirmation. The methodologies proposed for discriminating homogeneous and heterogeneous catalysis are inspired in part by those previously discussed by Finke in the case of homogeneous hydrogenation reaction in organometallic chemistry [J. A. Widegren and R. G. Finke, J. Mol. Catal. A, 2003, 198, 317-341].

  5. Combination of sunlight irradiated oxidative processes for landfill leachate: heterogeneous catalysis (TiO2 versus homogeneous catalysis (H2O2

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Cobra Guimarães

    2013-04-01

    Full Text Available The objective of this work was to study the treatment of landfill leachate liquid in nature, after the use of a combination of advanced oxidation processes. More specifically, it compared heterogeneous catalysis with TiO2 to homogeneous catalysis with H2O2, both under photo-irradiated sunlight. The liquid used for the study was the leachate from the landfill of the city of Cachoeira Paulista, São Paulo State, Brazil. The experiments were conducted in a semi-batch reactor open to the absorption of solar UV radiation, with 120 min reaction time. The factors and their respective levels (-1, 0 and 1 were distributed in a experimental design 24-1 with duplicate and triplicate in the central point, resulting in an array with 19 treatment trials. The studied factors in comparing the two catalytic processes were: liquid leachate dilution, TiO2 concentration on the reactor plate, the H2O2 amount and pH level. The leachate had low photo-catalytic degradability, with NOPC reductions ranging from 1% to a maximum of 24.9%. When considering each factor alone, neither homogeneous catalysis with H2O2, nor heterogeneous catalysis with TiO2, could degrade the percolated liquid without significant reductions (5% level in total NOPC. On the other hand, the combined use of homogenous catalysis with H2O2 and heterogeneous catalysis H2O2 resulted in the greatest reductions in NOPC. The optimum condition for the NOPC reduction was obtained at pH 7, dilution of percolated:water at 1:1 (v v-1 rate; excess of 12.5% H2O2 and coating plate reactor with 0.025 g cm-2 TiO2.

  6. Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal-Organic Frameworks.

    Science.gov (United States)

    Liang, Jie; Liang, Zibin; Zou, Ruqiang; Zhao, Yanli

    2017-08-01

    Crystalline porous materials are important in the development of catalytic systems with high scientific and industrial impact. Zeolites, ordered mesoporous silica, and metal-organic frameworks (MOFs) are three types of porous materials that can be used as heterogeneous catalysts. This review focuses on a comparison of the catalytic activities of zeolites, mesoporous silica, and MOFs. In the first part of the review, the distinctive properties of these porous materials relevant to catalysis are discussed, and the corresponding catalytic reactions are highlighted. In the second part, the catalytic behaviors of zeolites, mesoporous silica, and MOFs in four types of general organic reactions (acid, base, oxidation, and hydrogenation) are compared. The advantages and disadvantages of each porous material for catalytic reactions are summarized. Conclusions and prospects for future development of these porous materials in this field are provided in the last section. This review aims to highlight recent research advancements in zeolites, ordered mesoporous silica, and MOFs for heterogeneous catalysis, and inspire further studies in this rapidly developing field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chlorobenzene degradation by electro-heterogeneous catalysis in aqueous solution: intermediates and reaction mechanism

    Institute of Scientific and Technical Information of China (English)

    WANG Jiade; MEI Yu; LIU Chenliang; CHEN Jianmeng

    2008-01-01

    This study was performed to investigate the variables that influence chlorobenzene (CB) degradation in aqueous solution by electro-heterogeneous catalysis. The effects of current density, pH, and electrolyte concentration on CB degradation were determined. The degradation efficiency of CB was almost 100% with an initial CB concentration of 50 mg/L, current density 15 mA/cm2, initial pH 10, electrolyte concentration 0.1 mol/L, and temperature 25℃ after 90 min of reaction. Under the same conditions, the degradation efficiency of CB was only 51% by electrochemical (EC) process, which showed that electro-heterogeneous catalysis was more efficient than EC alone. The analysis results of Purge-and-Trap chromatography-mass spectrometry (P&T/GC/MS) and ion chromatography the release of Cl-. Further oxidation of phenol and biphenyl produced p-Vinylbenzoic acid and hydroquinol. Finally, the compounds were oxidized to butenedioic acid and other small-molecule acids.

  8. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip

    Science.gov (United States)

    Navin, Chelliah V.; Krishna, Katla Sai; Theegala, Chandra S.; Kumar, Challa S. S. R.

    2016-03-01

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors.Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06752a

  9. Combining the Benefits of Homogeneous and Heterogeneous Catalysis with Tunable Solvents and Nearcritical Water

    Directory of Open Access Journals (Sweden)

    Charles A. Eckert

    2010-11-01

    Full Text Available The greatest advantage of heterogeneous catalysis is the ease of separation, while the disadvantages are often limited activity and selectivity.  We report solvents that use tunable phase behavior to achieve homogeneous catalysis with ease of separation.  Tunable solvents are homogeneous mixtures of water or polyethylene glycol with organics such as acetonitrile, dioxane, and THF that can be used for homogeneously catalyzed reactions. Modest pressures of a soluble gas, generally CO2, achieve facile post-reaction heterogeneous separation of products from the catalyst. Examples shown here are rhodium-catalyzed hydroformylation of 1-octene and p-methylstyrene and palladium catalyzed C-O coupling to produce o-tolyl-3,5-xylyl ether and 3,5-di-tert-butylphenol. Both were successfully carried out in homogeneous tunable solvents followed by separation efficiencies of up to 99% with CO2 pressures of 3 MPa. Further examples in tunable solvents are enzyme catalyzed reactions such as kinetic resolution of rac-1-phenylethyl acetate and hydrolysis of 2-phenylethyl acetate (2PEA to 2-phenylethanol (2PE. Another tunable solvent is nearcritical water (NCW, whose unique properties offer advantages for developing sustainable alternatives to traditional processes. Some examples discussed are Friedel-Crafts alkylation and acylation, hydrolysis of benzoate esters, and water-catalyzed deprotection of N-Boc-protected amine compounds.

  10. Crossing the divide between homogeneous and heterogeneous catalysis in water oxidation.

    Science.gov (United States)

    Vannucci, Aaron K; Alibabaei, Leila; Losego, Mark D; Concepcion, Javier J; Kalanyan, Berç; Parsons, Gregory N; Meyer, Thomas J

    2013-12-24

    Enhancing the surface binding stability of chromophores, catalysts, and chromophore-catalyst assemblies attached to metal oxide surfaces is an important element in furthering the development of dye sensitized solar cells, photoelectrosynthesis cells, and interfacial molecular catalysis. Phosphonate-derivatized catalysts and molecular assemblies provide a basis for sustained water oxidation on these surfaces in acidic solution but are unstable toward hydrolysis and loss from surfaces as the pH is increased. Here, we report enhanced surface binding stability of a phosphonate-derivatized water oxidation catalyst over a wide pH range (1-12) by atomic layer deposition of an overlayer of TiO2. Increased stability of surface binding, and the reactivity of the bound catalyst, provides a hybrid approach to heterogeneous catalysis combining the advantages of systematic modifications possible by chemical synthesis with heterogeneous reactivity. For the surface-stabilized catalyst, greatly enhanced rates of water oxidation are observed upon addition of buffer bases -H2PO(-)(4)/HPO(2-)(4), B(OH)3/B(OH)2 O-, HPO(2-)4 /PO(3-)(4) - and with a pathway identified in which O-atom transfer to OH(-) occurs with a rate constant increase of 10(6) compared to water oxidation in acid.

  11. Combining the benefits of homogeneous and heterogeneous catalysis with tunable solvents and nearcritical water.

    Science.gov (United States)

    Fadhel, Ali Z; Pollet, Pamela; Liotta, Charles L; Eckert, Charles A

    2010-11-16

    The greatest advantage of heterogeneous catalysis is the ease of separation, while the disadvantages are often limited activity and selectivity. We report solvents that use tunable phase behavior to achieve homogeneous catalysis with ease of separation. Tunable solvents are homogeneous mixtures of water or polyethylene glycol with organics such as acetonitrile, dioxane, and THF that can be used for homogeneously catalyzed reactions. Modest pressures of a soluble gas, generally CO₂, achieve facile post-reaction heterogeneous separation of products from the catalyst. Examples shown here are rhodium-catalyzed hydroformylation of 1-octene and p-methylstyrene and palladium catalyzed C-O coupling to produce o-tolyl-3,5-xylyl ether and 3,5-di-tert-butylphenol. Both were successfully carried out in homogeneous tunable solvents followed by separation efficiencies of up to 99% with CO₂ pressures of 3 MPa. Further examples in tunable solvents are enzyme catalyzed reactions such as kinetic resolution of rac-1-phenylethyl acetate and hydrolysis of 2-phenylethyl acetate (2PEA) to 2-phenylethanol (2PE). Another tunable solvent is nearcritical water (NCW), whose unique properties offer advantages for developing sustainable alternatives to traditional processes. Some examples discussed are Friedel-Crafts alkylation and acylation, hydrolysis of benzoate esters, and water-catalyzed deprotection of N-Boc-protected amine compounds.

  12. Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass.

    Science.gov (United States)

    Wheeldon, Ian; Christopher, Phillip; Blanch, Harvey

    2017-06-01

    The past decade has seen significant government and private investment in fundamental research and process development for the production of biofuels and chemicals from lignocellulosic biomass-derived sugars. This investment has helped create new metabolic engineering and synthetic biology approaches, novel homogeneous and heterogeneous catalysts, and chemical and biological routes that convert sugars, lignin, and waste products such as glycerol into hydrocarbon fuels and valuable chemicals. With the exception of ethanol, economical biofuels processes have yet to be realized. A potentially viable way forward is the integration of biological and chemical catalysis into processes that exploit the inherent advantages of each technology while circumventing their disadvantages. Microbial fermentation excels at converting sugars from low-cost raw materials streams into simple alcohols, acids, and other reactive intermediates that can be condensed into highly reduced, long and branched chain hydrocarbons and other industrially useful compounds. Chemical catalysis most often requires clean feed streams to avoid catalyst deactivation, but the chemical and petroleum industries have developed large scale processes for C-C coupling, hydrogenation, and deoxygenation that are driven by low grade heat and low-cost feeds such as hydrogen derived from natural gas. In this context, we suggest that there is a reasonably clear route to the high yield synthesis of biofuels from biomass- or otherwise derived-fermentable sugars: the microbial production of reactive intermediates that can be extracted or separated into clean feed stream for upgrading by chemical catalysis. When coupled with new metabolic engineering strategies that maximize carbon and energy yields during fermentation, biomass-to-fuels processes may yet be realized. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Comparison of homogeneous and heterogeneous catalysis for synthesis of biodiesel from Madhuca indica oil

    Directory of Open Access Journals (Sweden)

    B. SINGH

    2011-06-01

    Full Text Available Biodiesel was developed by transesterification of Madhuca indica oil by homogeneous and heterogeneous catalysis. KOH and CaO were taken as homogeneous and heterogeneous catalysts, respectively. It was found that the homogeneous catalyst (KOH took 1.0 h of reaction time, 6:1 methanol to oil molar ratio, 0.75 mass% of catalyst amount, 55±0.5 C reaction temperature for completion of the reaction. The heterogeneous catalyst (CaO was found to give optimum yield in 2.5 h of reaction time at 8:1 methanol to oil molar ratio, 2.5 mass% of catalyst amount, at 65±0.5 C. A high yield (95-97% and conversion (>96.5% was obtained from both the catalysts. CaO was found to leach to some extent in the reactants and a biodiesel conversion of 27-28% was observed as a result of leaching.

  14. Immobilization of polyoxometalates in crystalline solids for highly efficient heterogeneous catalysis.

    Science.gov (United States)

    Ye, Ji-Jie; Wu, Chuan-De

    2016-06-21

    Polyoxometalates (POMs) are a unique class of molecular metal-oxygen clusters with attractive architecture and tunable properties. Due to their strong acidity, redox chemistry, photoactivity, charge distribution and multielectron transformation, POMs have been used as efficient catalysts in a variety of chemical reactions. To meet the requirement of sustainable chemistry, great effort has been focused on immobilization of the active POMs on different solid supports to realize heterogeneous catalysis. This short review summarizes the recent progress on immobilization of POM moieties in crystalline solids with defined crystal structures, including organic-inorganic hybrid materials, POM-based inorganic crystalline solids and POM-encapsulated metal-organic frameworks (POM@MOFs), and their catalytic properties in oxidation, hydrolysis, cyanosilylation, photocatalysis and electrocatalysis. As illustrated in the text, these crystalline solids exhibit interesting catalytic properties, such as high activity, stability and selectivity, and simple recovery and easy recycling, which are much superior to those of the corresponding constituent species in most cases.

  15. Metal-surface reaction energetics. Theory and application to heterogeneous catalysis, chemisorption, and surface diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Shustorovich, E. (ed.)

    1991-01-01

    The title is esoteric. The subtitle is specialized. This is an edited book containing five chapters written by eight authors. It is not a book to read from beginning to end, but kept perusing this handsomely printed and well-edited volume, learned so much that he wishes to convey his message to a small but very successful group of chemists and chemical engineers in heterogeneous catalysis: there is a lot to learn in this book, not so much in theory but in the facts that the theorists who wrote the book are trying to explain today with the faint hope that tomorrow they will actually predict new chemistry in as yet unknown catalytic cycles.

  16. Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis

    Science.gov (United States)

    Fehl, Charlie

    2016-01-01

    Despite nature’s prevalent use of metals as prosthetics to adapt or enhance the behaviour of proteins, our ability to programme such architectural organization remains underdeveloped. Multi-metal clusters buried in proteins underpin the most remarkable chemical transformations in nature, but we are not yet in a position to fully mimic or exploit such systems. With the advent of copious, relevant structural information, judicious mechanistic studies and the use of accessible computational methods in protein design coupled with new synthetic methods for building biomacromolecules, we can envisage a ‘new dawn’ that will allow us to build de novo metalloenzymes that move beyond mono-metal centres. In particular, we highlight the need for systems that approach the multi-centred clusters that have evolved to couple electron shuttling with catalysis. Such hybrids may be viewed as exciting mid-points between homogeneous and heterogeneous catalysts which also exploit the primary benefits of biocatalysis. PMID:27279776

  17. Ethyl oleate production by means of pervaporation-assisted esterification using heterogeneous catalysis

    Directory of Open Access Journals (Sweden)

    K. C. S. Figueiredo

    2010-12-01

    Full Text Available Pervaporation-assisted esterification of oleic acid and ethanol was investigated by means of heterogeneous acid catalysis with the aim of increasing the ethyl oleate yield. The experimental strategy comprised kinetic tests with Amberlyst 15 Wet (Rohm & Haas, the characterization of hydrophilic Pervap 1000 membrane (Sulzer and the evaluation of the membrane-assisted reactor. Kinetic tests were carried out to study the effect of temperature, catalyst loading and ethanol/organic acid molar ratio for the esterification of oleic acid and ethanol. The ester yield and initial reaction rate were used as response. The hydrophilic poly(vinyl alcohol membrane was able to remove water from the reaction medium and, hence, the ester yield was increased. The potential of coupling esterification and pervaporation was demonstrated, with a two-fold increase in the reaction yield of ethyl oleate.

  18. At the frontier between heterogeneous and homogeneous catalysis : hydrogenation of olefins and alkynes with soluble iron nanoparticles

    NARCIS (Netherlands)

    Rangheard, Claudine; Julián Fernández, César de; Phua, Pim-Huat; Hoorn, Johan; Lefort, Laurent; Vries, Johannes G. de

    2010-01-01

    The use of non-supported Fe nanoparticles in the hydrogenation of unsaturated C–C bonds is a green catalytic concept at the frontier between homogeneous and heterogeneous catalysis. Iron nanoparticles can be obtained by reducing Fe salts with strong reductants in various solvents. FeCl3 reduced by 3

  19. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts

    KAUST Repository

    Pelletier, Jeremie

    2016-03-09

    ConspectusHeterogeneous catalysis, a field important industrially and scientifically, is increasingly seeking and refining strategies to render itself more predictable. The main issue is due to the nature and the population of catalytically active sites. Their number is generally low to very low, their "acid strengths" or " redox properties" are not homogeneous, and the material may display related yet inactive sites on the same material. In many heterogeneous catalysts, the discovery of a structure-activity reationship is at best challenging. One possible solution is to generate single-site catalysts in which most, if not all, of the sites are structurally identical. Within this context and using the right tools, the catalyst structure can be designed and well-defined, to reach a molecular understanding. It is then feasible to understand the structure-activity relationship and to develop predictable heterogeneous catalysis. Single-site well-defined heterogeneous catalysts can be prepared using concepts and tools of surface organometallic chemistry (SOMC). This approach operates by reacting organometallic compounds with surfaces of highly divided oxides (or of metal nanoparticles). This strategy has a solid track record to reveal structure-activity relationship to the extent that it is becoming now quite predictable. Almost all elements of the periodical table have been grafted on surfaces of oxides (from simple oxides such as silica or alumina to more sophisticated materials regarding composition or porosity).Considering catalytic hydrocarbon transformations, heterogeneous catalysis outcome may now be predicted based on existing mechanistic proposals and the rules of molecular chemistry (organometallic, organic) associated with some concepts of surface sciences. A thorough characterization of the grafted metal centers must be carried out using tools spanning from molecular organometallic or surface chemistry. By selection of the metal, its ligand set, and the

  20. Heterogeneous photo-catalysis system for the degradation of azo dye Reactive Black 5 (RB5).

    Science.gov (United States)

    Huang, Yao-Hui; Wei, Hau-Cheng; Chen, Hung-Ta

    2012-01-01

    This study investigated a heterogeneous photo-catalysis system by introducing a novel brick supported iron oxide (denoted as B1) for the heterogeneous photoassisted degradation of Reactive Black 5 (RB5) at pH value from 3 to 7 in a three-phase (gas-liquid-solid) fluidized bed reactor (3P-FBR). Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N(2) adsorption/desorption were used to characterize the B1 catalyst. The in situ formation of hydrogen peroxide and the depletion of oxalic acid by photochemical cycle of Fe(III)-oxalate complex under UVA light (λ = 365 nm) were studied. The effects of the solution pH and the concentration of oxalic acid on the degradation of RB5 are elucidated. About 90% decolourization was measured and 80% of the total organic carbon (TOC) was eliminated at pH 5.0 after 120 min for 20 mg/L RB5 in presence of 10 g/L B1 catalyst, 30 mg/L oxalic acid under 15 W UVA light. A mechanism for the photocatalytic degradation of RB5 over B1 catalyst is proposed.

  1. Chemistry of Platinum and Palladium Metal Complexes in Homogeneous and Heterogeneous Catalysis: A Mini Review

    Directory of Open Access Journals (Sweden)

    Mehrban Ashiq

    2013-04-01

    Full Text Available Transition metal complexes of platinum and palladium are most widely used in catalysis. Many synthetic reactions have been carried out with such complexes (used as a catalyst which have specifically polymer ligands, through hydrosilylation, acetoxylation, hydrogenation, hydro-formylation, oligo-merisation and polymerization. Almost many platinum and palladium catalysts are heterogeneous in nature i.e. the reaction taking place on a solid surface. Now from few years homogeneous catalysts which are completely soluble in the liquid phase reactant, has acknowledged too much attention, yet having small industrial applications, mainly due to the striving of platinum and palladium complexes separation from the catalytic products. More recently a transitional type of platinum and palladium catalysts have been synthesized through attachment of the activated transition metal complexes on the surface of polymer support particularly insoluble which has been establish to offer encouraging new collection of catalysts for effective research on synthesis. Many of such complexes will be based on the palladium and platinum metals group. The major objective of this review is to inaugurate the relationship among the reactivity’s of homogeneous platinum and palladium complexes and heterogeneous complexes of these metals (those bonded to the surface of metals.

  2. Zeolites and Catalysis

    Science.gov (United States)

    1999-12-15

    Handbook of Heterogeneous Catalysis ,Vol. als: State of the Art 1994, Studies in Surface Science and 5, Wiley-VCH, Weinheim, 1997, p. 2329. Catalysis, Vol...Weitkamp (Eds.), in Zeolite and Microporous Materials, Studies in Surface Handbook of Heterogeneous Catalysis , Vol. 4, Wiley-VCH, Science and Catalysis

  3. Heterogeneous oxidation catalysis on ruthenium: bridging the pressure and materials gaps and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, J; Narkhede, V; Breuer, N A; Muhler, M [Lehrstuhl fuer Technische Chemie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Seitsonen, A P [IMPMC, CNRS and Universite Pierre et Marie Curie 4 place Jussieu, case 115 F-75252 Paris (France); Knapp, M; Crihan, D; Farkas, A; Mellau, G; Over, H [Physikalisch-Chemisches Institut, Justus-Liebig-Universitaet, Heinrich-Buff-Ring 58, D-35392 Giessen (Germany)], E-mail: muhler@techem.rub.de, E-mail: ari.p.seitsonen@iki.fi, E-mail: herbert.over@phys.chemie.uni-giessen.de

    2008-05-07

    It is shown that both the materials and the pressure gaps can be bridged for ruthenium in heterogeneous oxidation catalysis using the oxidation of carbon monoxide as a model reaction. Polycrystalline catalysts, such as supported Ru catalysts and micrometer-sized Ru powder, were compared to single-crystalline ultrathin RuO{sub 2} films serving as model catalysts. The microscopic reaction steps on RuO{sub 2} were identified by a combined experimental and theoretical approach applying density functional theory. Steady-state CO oxidation and transient kinetic experiments such as temperature-programmed desorption were performed with polycrystalline catalysts and single-crystal surfaces and analyzed on the basis of a microkinetic model. Infrared spectroscopy turned out to be a valuable tool allowing us to identify adsorption sites and adsorbed species under reaction conditions both for practical catalysts and for the model catalyst over a wide temperature and pressure range. The close interplay of the experimental and theoretical surface science approach with the kinetic and spectroscopic research on catalysts applied in plug-flow reactors provides a synergistic strategy for improving the performance of Ru-based catalysts. The most active and stable state was identified with an ultrathin RuO{sub 2} shell coating a metallic Ru core. The microscopic processes causing the structural deactivation of Ru-based catalysts while oxidizing CO have been identified.

  4. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach.

    Science.gov (United States)

    Zhang, Weiping; Xu, Shutao; Han, Xiuwen; Bao, Xinhe

    2012-01-07

    In situ solid-state NMR is a well-established tool for investigations of the structures of the adsorbed reactants, intermediates and products on the surface of solid catalysts. The techniques allow identifications of both the active sites such as acidic sites and reaction processes after introduction of adsorbates and reactants inside an NMR rotor under magic angle spinning (MAS). The in situ solid-state NMR studies of the reactions can be achieved in two ways, i.e. under batch-like or continuous-flow conditions. The former technique is low cost and accessible to the commercial instrument while the latter one is close to the real catalytic reactions on the solids. This critical review describes the research progress on the in situ solid-state NMR techniques and the applications in heterogeneous catalysis under batch-like and continuous-flow conditions in recent years. Some typical probe molecules are summarized here to detect the Brønsted and Lewis acidic sites by MAS NMR. The catalytic reactions discussed in this review include methane aromatization, olefin selective oxidation and olefin metathesis on the metal oxide-containing zeolites. With combining the in situ MAS NMR spectroscopy and the density functional theoretical (DFT) calculations, the intermediates on the catalyst can be identified, and the reaction mechanism is revealed. Reaction kinetic analysis in the nanospace instead of in the bulk state can also be performed by employing laser-enhanced MAS NMR techniques in the in situ flow mode (163 references).

  5. Progress of the Application of Mesoporous Silica-Supported Heteropolyacids in Heterogeneous Catalysis and Preparation of Nanostructured Metal Oxides

    Directory of Open Access Journals (Sweden)

    Heyong He

    2010-01-01

    Full Text Available Mesoporous silica molecular sieves are a kind of unique catalyst support due to their large pore size and high surface area. Several methods have been developed to immobilize heteropolyacids (HPAs inside the channels of these mesoporous silicas. The mesoporous silica-supported HPA materials have been widely used as recyclable catalysts in heterogeneous systems. They have shown high catalytic activities and shape selectivities in some reactions, compared to the parent HPAs in homogeneous systems. This review summarizes recent progress in the field of mesoporous silica-supported HPAs applied in the heterogeneous catalysis area and preparation of nanostructured metal oxides using HPAs as precursors and mesoporous silicas as hard templates.

  6. Heterogeneous catalysis on the phage surface: Display of active human enteropeptidase.

    Science.gov (United States)

    Gasparian, Marine E; Bobik, Tatyana V; Kim, Yana V; Ponomarenko, Natalia A; Dolgikh, Dmitry A; Gabibov, Alexander G; Kirpichnikov, Mikhail P

    2013-11-01

    Enteropeptidase (EC 3.4.21.9) plays a key role in mammalian digestion as the enzyme that physiologically activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the recognition sequence D4K. The high specificity of enteropeptidase makes it a powerful tool in modern biotechnology. Here we describe the application of phage display technology to express active human enteropeptidase catalytic subunits (L-HEP) on M13 filamentous bacteriophage. The L-HEP/C122S gene was cloned in the g3p-based phagemid vector pHEN2m upstream of the sequence encoding the phage g3p protein and downstream of the signal peptide-encoding sequence. Heterogeneous catalysis of the synthetic peptide substrate (GDDDDK-β-naphthylamide) cleavage by phage-bound L-HEP was shown to have kinetic parameters similar to those of soluble enzyme, with the respective Km values of 19 μM and 20 μM and kcat of 115 and 92 s(-1). Fusion proteins containing a D4K cleavage site were cleaved with phage-bound L-HEP/C122S as well as by soluble L-HEP/C122S, and proteolysis was inhibited by soybean trypsin inhibitor. Rapid large-scale phage production, one-step purification of phage-bound L-HEP, and easy removal of enzyme activity from reaction samples by PEG precipitation make our approach suitable for the efficient removal of various tag sequences fused to the target proteins. The functional phage display technology developed in this study can be instrumental in constructing libraries of mutants to analyze the effect of structural changes on the activity and specificity of the enzyme or generate its desired variants for biotechnological applications.

  7. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    Energy Technology Data Exchange (ETDEWEB)

    Boszormenyi, I.

    1991-05-01

    This (<100 [Angstrom]) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 [times] r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm[sup 2] catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on Pt-on-alumina'' and on alumina-on-Pt'' are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  8. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study

    Energy Technology Data Exchange (ETDEWEB)

    Boszormenyi, I.

    1991-05-01

    This (<100 {Angstrom}) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 {times} r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm{sup 2} catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on ``Pt-on-alumina`` and on ``alumina-on-Pt`` are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

  9. Heterogeneous and Homogeneous Routes in Water Oxidation Catalysis Starting from Cu(II) Complexes with Tetraaza Macrocyclic Ligands.

    Science.gov (United States)

    Prevedello, Andrea; Bazzan, Irene; Dalle Carbonare, Nicola; Giuliani, Angela; Bhardwaj, Sunil; Africh, Cristina; Cepek, Cinzia; Argazzi, Roberto; Bonchio, Marcella; Caramori, Stefano; Robert, Marc; Sartorel, Andrea

    2016-04-20

    Since the first report in 2012, molecular copper complexes have been proposed as efficient electrocatalysts for water oxidation reactions, carried out in alkaline/neutral aqueous media. However, in some cases the copper species have been recognized as precursors of an active copper oxide layer, electrodeposited onto the working electrode. Therefore, the question whether copper catalysis is molecular or not is particularly relevant in the field of water oxidation. In this study, we investigate the electrochemical activity of copper(II) complexes with two tetraaza macrocyclic ligands, distinguishing heterogeneous or homogeneous processes depending on the reaction media. In an alkaline aqueous solution, and upon application of an anodic bias to working electrodes, an active copper oxide layer is observed to electrodeposit at the electrode surface. Conversely, water oxidation in neutral aqueous buffers is not associated to formation of the copper oxide layer, and could be exploited to evaluate and optimize a molecular, homogeneous catalysis.

  10. Application of Heterogeneous Catalysis in Small-Scale Biomass Combustion Systems

    Directory of Open Access Journals (Sweden)

    Christian Thiel

    2012-04-01

    Full Text Available Combustion of solid biomass fuels for heat generation is an important renewable energy resource. The major part among biomass combustion applications is being played by small-scale systems like wood log stoves and small wood pellet burners, which account for 75% of the overall biomass heat production. Despite an environmentally friendly use of renewable energies, incomplete combustion in small-scale systems can lead to the emission of environmental pollutants as well as substances which are hazardous to health. Besides particles of ash and soot, a wide variety of gaseous substances can also be emitted. Among those, polycyclic aromatic hydrocarbons (PAH and several organic volatile and semi-volatile compounds (VOC are present. Heterogeneous catalysis is applied for the reduction of various gaseous compounds as well as soot. Some research has been done to examine the application of catalytic converters in small-scale biomass combustion systems. In addition to catalyst selection with respect to complete oxidation of different organic compounds, parameters such as long-term stability and durability under flue gas conditions are considered for use in biomass combustion furnaces. Possible catalytic procedures have been identified for investigation by literature and market research. Experimental studies with two selected oxidation catalysts based on noble metals have been carried out on a wood log stove with a retrofit system. The measurements have been performed under defined conditions based on practical mode of operation. The measurements have shown that the catalytic flue gas treatment is a promising method to reduce carbon monoxide and volatile organic compounds. Even a reduction of particulate matter was observed, although no filtering effect could be detected. Therefore, the oxidation of soot or soot precursors can be assumed. The selected catalysts differed in their activity, depending on the compound to be oxidized. Examinations showed that

  11. Nano-catalysts: Bridging the gap between homogeneous and heterogeneous catalysis

    Science.gov (United States)

    Functionalized nanoparticles have emerged as sustainable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. We envisioned a catalyst system, which can bridge the homogenous and heterogeneous system. Postsynthetic surface modifica...

  12. Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Li, Yimin

    2009-11-21

    Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science.

  13. Development of a novel heterogeneous flow reactor -- Soot formation and nanoparticle catalysis

    Science.gov (United States)

    Camacho, Joaquin

    The development of novel experimental approaches to investigate fundamental surface kinetics is presented. Specifically, fundamental soot formation and surface catalysis processes are examined in isolation from other competing processes. In terms of soot formation, two experimental techniques are presented: the Burner Stabilized Stagnation (BSS) flame configuration is extended to isolate the effect of the parent fuel structure on soot formation and the fundamental rate of surface oxidation for nascent soot is measured in a novel aerosol flow reactor. In terms of nanoparticles, the physical and chemical properties of freely suspended nanoparticles are investigated in a novel aerosol flow reactor for methane oxidation catalyzed by palladium. The role of parent fuel structure within soot formation is examined by following the time resolved formation nascent soot from the onset of nucleation to later growth stages for premixed BSS flames. Specifically, the evolution of the detailed particle size distribution function (PSDF) is compared for butanol, butane and C6 hydrocarbons in two separate studies where the C/O ratio and temperature are fixed. Under this constraint, the overall sooting process were comparable as evidenced by similar time resolved bimodal PSDF. However, the nucleation time and the persistence of nucleation with time is strongly dependent upon the structure of the parent fuel. For the C6 hydrocarbon fuels, the fastest onset of soot nucleation is observed in cyclohexane and benzene flames and this may be due to significant aromatic formation that is predicted in the pre-flame region. In addition, the evolution of the PSDF shows that nucleation ends sooner in cylclohexane and benzene flames and this may be due to relatively quick depletion of soot precursors such as acetylene and benzene. Interestingly,within the butanol fuels studied the effect of the branched chain in i-butanol and i-butane was more significant than the presence of fuel bound oxygen. A

  14. Enzymatic catalysis in heterogenous mixtures of substrates: The role of the liquid phase and the effects of "Adjuvants".

    Science.gov (United States)

    López-Fandiño, R; Gill, I; Vulfson, E N

    1994-05-01

    The physicochemical mechanism of protease-catalyzed peptide synthesis in heterogenous etuectic mixtures of substrates has been examined by a combination of microscopic techniques. Using a number of model reactions of dipeptide amide synthesis, it was determined that liquid phase catalysis was mostly, if not exclusively, responsible for the observed conversion of substrates. Furthermore, the formation of liquid or semiliquid eutectics was an important requirement for the occurrence of those reactions where both substrates were solids in the pure state. The addition of small quantities of hydrophilic solvents (adjuvants) often resulted in significat improvements in the rates and yields of the reactions. This was due to the ability of these adjuvants to promote the formation of eutectics, thereby increasing the proportion, as well as affecting the composition the properties, as well as affecting the composition and properties of the liquid phase. (c) 1994 John Wiley & Sons, Inc.

  15. At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles.

    Science.gov (United States)

    Rangheard, Claudine; de Julián Fernández, César; Phua, Pim-Huat; Hoorn, Johan; Lefort, Laurent; de Vries, Johannes G

    2010-09-28

    The use of non-supported Fe nanoparticles in the hydrogenation of unsaturated C-C bonds is a green catalytic concept at the frontier between homogeneous and heterogeneous catalysis. Iron nanoparticles can be obtained by reducing Fe salts with strong reductants in various solvents. FeCl(3) reduced by 3 equivalents of EtMgCl forms an active catalyst for the hydrogenation of a range of olefins and alkynes. Olefin hydrogenation is relatively fast at 5 bar using 5 mol% of catalyst. The catalyst is also active for terminal olefins and 1,1' and 1,2-cis disubstituted olefins while trans-olefins react much slower. 1-Octyne is hydrogenated to mixtures of 1-octene and octane. Kinetic studies led us to propose a mechanism for this latter transformation where octane is obtained by two different pathways. Characterization of the nanoparticles via TEM, magnetic measurements and poisoning experiments were undertaken to understand the true nature of our catalyst.

  16. Modified Fats by Heterogeneous Catalysis: Changes on the Way to Green Chemistry

    Directory of Open Access Journals (Sweden)

    O.D. Gamallo,

    2015-09-01

    Full Text Available Green chemistry is the design, development and implementation of chemical products and processes to reduce or eliminate the use and generation of contaminants. Within this approach, heterogeneous catalysts have proven to be a promising alternative to replace homogeneous catalysts. This study aimed to investigate the feasibility of using heterogeneous catalysts in the production of modified fats by chemical interesterification reaction

  17. Incorporation of Molecular Catalysts in Metal-Organic Frameworks for Highly Efficient Heterogeneous Catalysis.

    Science.gov (United States)

    Wu, Chuan-De; Zhao, Min

    2017-04-01

    Porous metal-organic frameworks (MOFs) are built from periodically alternate organic moieties and metal ions/clusters. The unique features of the open framework structures, the high surface areas, the permanent porosity, and the appropriate hydrophilic and hydrophobic pore nature mean that MOF materials are a class of ideal host matrices for immobilization of molecular catalysts. The emerging porous materials can not only retain but are also able to enhance the catalytic functions of the single individuals. MOF catalysts have the following super characters: i) uniformly dispersed catalytic sites on the pore surfaces to improve the utility, ii) appropriate hydrophilic and hydrophobic pore nature to facilitate the recognition and transportation of reactant and product molecules, iii) a collaborative microenvironment to realize synergistic catalysis, and iv) simple separation and recovery for long-term usage. Accompanying the development of the synthetic strategies and the technologies for the characterization of MOF materials, MOF catalysis has undergone an upsurge, which has transcended the stage of opportunism. Here, the rational design and synthesis of MOF catalysts are discussed, along with the key factors of active sites, microenvironments, and transmission channels that lead to the distinct catalytic properties of MOF catalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Plasma-Assisted Combustion Studies at AFRL

    Science.gov (United States)

    2009-11-04

    important for lean, gas-turbine ( powerplant ) operation Might one also mitigate/influence acoustic fluctuations? Potential for uniform performance with...Thermometry with pulsed -W Source No -W Pulsed -W Direct coupled plasma torch: flame OH vs. - wave power: Plasma-assisted Ignition Cathey, Gundersen, Wang...Determine physical mechanism, primarily for transient plasma ignition  What is role of humidity: XH2O affects detonation wave speed in PDE but not

  19. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    Science.gov (United States)

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-06-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes.

  20. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    Science.gov (United States)

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-01-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes. PMID:28660882

  1. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    Science.gov (United States)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

  2. Production of glycerol-free biofuel from canola oil and dimethyl carbonate using triazabicyclodecene in homogeneous and heterogeneous catalysis operations

    Science.gov (United States)

    Islam, Mohammad Rafiqul

    Due to the increasing awareness of the dwindling fossil fuel resources and environmental issues, biofuel became an alternative renewable fuel to meet the steady increase of energy consumption and environmental demands. This work was designed to produce biofuel free from glycerol, soap, catalyst and wastes from canola oil and dimethyl carbonate (DMC) using an organocatalyst, triazabicyclodecene (TBD). To achieve these goals, several interconnected research activities were undertaken. First, a flow sheet was developed for the process and operating criteria were identified by laboratory experimentation verified with Aspen Plus. Mass and energy integration studies were performed to minimize the consumption of materials and energy utilities. Next, kinetics of canola oil transesterification using TBD as homogeneous catalyst in dimethyl carbonate has been investigated and a model was developed. Kinetics data were vital in process assessment and kinetics model was essential in the study of chemical reaction and catalyst development. Finally, a heterogeneous catalyst was developed for use as a biofuel catalyst through the immobilization of TBD into MgAl layered double hydroxides (LDHs) which can combine the advantages of homogeneous catalysis with the best properties of heterogeneous materials.

  3. ECUT: Energy Conversion and Utilization Technologies program. Heterogeneous catalysis modeling program concept

    Science.gov (United States)

    Voecks, G. E.

    1983-01-01

    Insufficient theoretical definition of heterogeneous catalysts is the major difficulty confronting industrial suppliers who seek catalyst systems which are more active, selective, and stable than those currently available. In contrast, progress was made in tailoring homogeneous catalysts to specific reactions because more is known about the reaction intermediates promoted and/or stabilized by these catalysts during the course of reaction. However, modeling heterogeneous catalysts on a microscopic scale requires compiling and verifying complex information on reaction intermediates and pathways. This can be achieved by adapting homogeneous catalyzed reaction intermediate species, applying theoretical quantum chemistry and computer technology, and developing a better understanding of heterogeneous catalyst system environments. Research in microscopic reaction modeling is now at a stage where computer modeling, supported by physical experimental verification, could provide information about the dynamics of the reactions that will lead to designing supported catalysts with improved selectivity and stability.

  4. Modular Approach to Heterogenous Catalysis. Manipulation of Cross-Coupling Catalyst Activity.

    Science.gov (United States)

    Stibingerova, Iva; Voltrova, Svatava; Kocova, Sarka; Lindale, Matthew; Srogl, Jiri

    2016-01-15

    A new type of robust, heterogeneous, modular Pd catalyst with metal embedded in the gel matrix is presented. The regulatory element of its catalytic activity has been introduced via chemical changes in the gel. The concept is illustrated in a series of Suzuki-Miyaura cross-coupling reactions. The demonstrated catalyst activity variations depend on the structure of the gel.

  5. Linker-free, silica-bound olefin-metathesis catalysts: applications in heterogeneous catalysis.

    Science.gov (United States)

    Cabrera, José; Padilla, Robin; Bru, Miriam; Lindner, Ronald; Kageyama, Takeharu; Wilckens, Kristina; Balof, Shawna L; Schanz, Hans-Jörg; Dehn, Richard; Teles, J Henrique; Deuerlein, Stephan; Müller, Kevin; Rominger, Frank; Limbach, Michael

    2012-11-12

    A set of heterogenized olefin-metathesis catalysts, which consisted of Ru complexes with the H(2)ITap ligand (1,3-bis(2',6'-dimethyl-4'dimethyl aminophenyl)-4,5-dihydroimidazol-2-ylidene) that had been adsorbed onto a silica support, has been prepared. These complexes showed strong binding to the solid support without the need for tethering groups on the complex or functionalized silica. The catalysts were tested in the ring-opening-ring-closing-metathesis (RO-RCM) of cyclooctene (COE) and the self-metathesis of methyl oleate under continuous-flow conditions. The best complexes showed a TON>4000, which surpasses the previously reported materials that were either based on the Grubbs-Hoveyda II complex on silica or on the classical heterogeneous Re(2)O(7)/B(2)O(3) catalyst.

  6. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions.

    Science.gov (United States)

    Pritchard, James; Filonenko, Georgy A; van Putten, Robbert; Hensen, Emiel J M; Pidko, Evgeny A

    2015-06-01

    The catalytic reduction of carboxylic acid derivatives has witnessed a rapid development in recent years. These reactions, involving molecular hydrogen as the reducing agent, can be promoted by heterogeneous and homogeneous catalysts. The milestone achievements and recent results by both approaches are discussed in this Review. In particular, we focus on the mechanistic aspects of the catalytic hydrogenation and highlight the bifunctional nature of the mechanism that is preferred for supported metal catalysts as well as homogeneous transition metal complexes.

  7. Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst.

    Science.gov (United States)

    Zhang, Liping; Sheng, Boyang; Xin, Zhong; Liu, Qun; Sun, Shuzhen

    2010-11-01

    The transesterification of palm oil with dimethyl carbonate (DMC) for preparing biodiesel has been studied in solvent-free system at the catalysis of potassium hydroxide (KOH) as heterogeneous catalyst. Fatty acid methyl esters (FAMEs) were analyzed by GC with internal standard method. The effects of reaction conditions (molar ratio of DMC and palm oil, catalyst amount and time) on FAMEs yield were investigated. The highest FAMEs yield could reach 96.2% at refluxing temperature for 8h with molar ratio of DMC and oil 9:1 and 8.5% KOH (based on oil weight). Kinetics of the KOH-catalyzed transesterification of palm oil and DMC was researched over a temperature range of 65-75 degrees C. A pseudo first-order model was proposed. The activation energy (E(a)) was 79.1 kJ mo1(-1) and the pre-exponential factor (k(o)) was 1.26 x 10(9) min(-1) from Arrhenius equation. Further, a plausible reaction mechanism for the catalytic process with DMC as acyl acceptor was proposed.

  8. In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis

    OpenAIRE

    Teschner, D.; Novell-Leruth, G.; Farra, R; Knop-Gericke, A; Schlögl, R.; Szentimiklósi, L.; Hevia, M; Soerijanto, H.; Schomäcker, R.; Pérez-Ramírez, J.; López, N.

    2012-01-01

    In heterogeneous catalysis, rates with Arrhenius-like temperature dependence are ubiquitous. Compensation phenomena, which arise from the linear correlation between the apparent activation energy and the logarithm of the apparent pre-exponential factor, are also common. Here, we study the origin of compensation and find a similar dependence on the rate-limiting surface coverage term for each Arrhenius parameter. This result is derived from an experimental determination of the surface coverage...

  9. Use Virtual Instrument to Improve Heterogeneous Catalysis%用虚拟仪器对多相催化反应的改进

    Institute of Scientific and Technical Information of China (English)

    张爱莲; 周显锋; 李治; 陈耀强

    2001-01-01

    用先进的虚拟仪器进行多相催化反应,从仪器技术方面对多相催化反应方法进行改进,用“多点”检测方法进行多相催化反应。具体研究了Ni/Al2O3催化剂上温度对甲烷催化部分氧化制合成气反应性能的影响。研究结果的正确性说明用虚拟仪器做多相催化反应实验,既实现了实验界面化,又使得实验便于控制,从而缩短了实验时间,提高了实验效率。%Virtual instrument is an instrument technique that is newborn in recent years. A large number of experiments must be done in all research related to the domain of chemical technique, so experimental apparatus is necessary. This paper suggest using advanced virtual instrument to improve heterogeneous catalysis in instrument technique aspect to conduct heterogeneous catalysis, put forward a proposal of using “multiple spot” detection to carry on heterogeneous catalysis. We study the effect of temperature on the reaction capability of methane conversion to synthesis gas by catalytic partial oxidation.The accuracy of the result show that doing heterogeneous catalysis with virtual instrument can realize visual experiment, control experiment easily and improve working efficiency.

  10. Elucidation of intermediates and mechanisms in heterogeneous catalysis using infrared spectroscopy.

    Science.gov (United States)

    Savara, Aditya; Weitz, Eric

    2014-01-01

    Infrared spectroscopy has a long history as a tool for the identification of chemical compounds. More recently, various implementations of infrared spectroscopy have been successfully applied to studies of heterogeneous catalytic reactions with the objective of identifying intermediates and determining catalytic reaction mechanisms. We discuss selective applications of these techniques with a focus on several heterogeneous catalytic reactions, including hydrogenation, deNOx, water-gas shift, and reverse-water-gas shift. The utility of using isotopic substitutions and other techniques in tandem with infrared spectroscopy is discussed. We comment on the modes of implementation and the advantages and disadvantages of the various infrared techniques. We also note future trends and the role of computational calculations in such studies. The infrared techniques considered are transmission Fourier transform infrared spectroscopy, infrared reflection-absorption spectroscopy, polarization-modulation infrared reflection-absorption spectroscopy, sum-frequency generation, diffuse reflectance infrared Fourier transform spectroscopy, attenuated total reflectance, infrared emission spectroscopy, photoacoustic infrared spectroscopy, and surface-enhanced infrared absorption spectroscopy.

  11. Is it homogeneous or heterogeneous catalysis derived from [RhCp*Cl2]2? In operando XAFS, kinetic, and crucial kinetic poisoning evidence for subnanometer Rh4 cluster-based benzene hydrogenation catalysis.

    Science.gov (United States)

    Bayram, Ercan; Linehan, John C; Fulton, John L; Roberts, John A S; Szymczak, Nathaniel K; Smurthwaite, Tricia D; Özkar, Saim; Balasubramanian, Mahalingam; Finke, Richard G

    2011-11-23

    Determining the true, kinetically dominant catalytically active species, in the classic benzene hydrogenation system pioneered by Maitlis and co-workers 34 years ago starting with [RhCp*Cl(2)](2) (Cp* = [η(5)-C(5)(CH(3))(5)]), has proven to be one of the most challenging case studies in the quest to distinguish single-metal-based "homogeneous" from polymetallic, "heterogeneous" catalysis. The reason, this study will show, is the previous failure to use the proper combination of: (i) in operando spectroscopy to determine the dominant form(s) of the precatalyst's mass under catalysis (i.e., operating) conditions, and then crucially also (ii) the previous lack of the necessary kinetic studies, catalysis being a "wholly kinetic phenomenon" as J. Halpern long ago noted. An important contribution from this study will be to reveal the power of quantitiative kinetic poisoning experiments for distinguishing single-metal, or in the present case subnanometer Rh(4) cluster-based catalysis, from larger, polymetallic Rh(0)(n) nanoparticle catalysis, at least under favorable conditions. The combined in operando X-ray absorption fine structure (XAFS) spectroscopy and kinetic evidence provide a compelling case for Rh(4)-based, with average stoichiometry "Rh(4)Cp*(2.4)Cl(4)H(c)", benzene hydrogenation catalysis in 2-propanol with added Et(3)N and at 100 °C and 50 atm initial H(2) pressure. The results also reveal, however, that if even ca. 1.4% of the total soluble Rh(0)(n) had formed nanoparticles, then those Rh(0)(n) nanoparticles would have been able to account for all the observed benzene hydrogenation catalytic rate (using commercial, ca. 2 nm, polyethyleneglycol-dodecylether hydrosol stabilized Rh(0)(n) nanoparticles as a model system). The results--especially the poisoning methodology developed and employed--are of significant, broader interest since determining the nature of the true catalyst continues to be a central, often vexing issue in any and all catalytic reactions

  12. Novel macroporous palladium cation crosslinked chitosan membranes for heterogeneous catalysis application.

    Science.gov (United States)

    Zeng, Minfeng; Yuan, Xia; Yang, Zhen; Qi, Chenze

    2014-07-01

    A novel palladium supported on chitosan porous membrane heterogeneous catalyst has been prepared by freeze-drying of Pd(2+)-crosslinked chitosan gel solution. The prepared membrane catalyst has three-dimensional porous structure (porosity: >70%). The crosslinking effects of Pd(2+) to chitosan were good for the improvement of the mechanical properties and thermal stabilities. Pd(2+) cations have been shown not only as the crosslinker, but also as the catalytic active sites. The reductive palladium species of the recycled membrane catalysts was found in the nanometer scale (20-40nm). Excellent cross-coupling yields were achieved using as low as 0.12mol% palladium catalyst loading for the Heck-type reaction of aromatic halides with acrylates. The catalyst could be recycled six times without obvious decreased conversion. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry.

    Science.gov (United States)

    Wang, Yong; Wang, Xinchen; Antonietti, Markus

    2012-01-02

    Polymeric graphitic carbon nitride materials (for simplicity: g-C(3)N(4)) have attracted much attention in recent years because of their similarity to graphene. They are composed of C, N, and some minor H content only. In contrast to graphenes, g-C(3)N(4) is a medium-bandgap semiconductor and in that role an effective photocatalyst and chemical catalyst for a broad variety of reactions. In this Review, we describe the "polymer chemistry" of this structure, how band positions and bandgap can be varied by doping and copolymerization, and how the organic solid can be textured to make it an effective heterogenous catalyst. g-C(3)N(4) and its modifications have a high thermal and chemical stability and can catalyze a number of "dream reactions", such as photochemical splitting of water, mild and selective oxidation reactions, and--as a coactive catalytic support--superactive hydrogenation reactions. As carbon nitride is metal-free as such, it also tolerates functional groups and is therefore suited for multipurpose applications in biomass conversion and sustainable chemistry.

  14. Heterogeneous catalysis: Enigmas, illusions, challenges, realities, and emergent strategies of design

    Science.gov (United States)

    Thomas, John Meurig

    2008-05-01

    Predominantly this article deals with the question of how to design new solid catalysts for a variety of industrial and laboratory-orientated purposes. A generally applicable strategy, illustrated by numerous examples, is made possible based on the use of nanoporous materials on to the (high-area) inner surfaces of which well-defined (experimentally and computationally) active centers are placed in a spatially separated fashion. Such single-site catalysts, which have much in common with metal-centered homogenous catalysts and enzymes, enable a wide range of new catalysts to be designed for a variety of selective oxidations, hydrogenations, hydrations and hydrodewaxing, and other reactions that the "greening" of industrial processes demand. Examples are given of new shape-selective, regio-selective, and enantioselective catalysts, many of which operate under mild, environmentally benign conditions. Also considered are some of the reasons why detailed studies of adsorption and stoichiometric reactions at single-crystal surfaces have, disappointingly, not hitherto paved the way to the design and production of many new heterogenous catalysts. Recent work of a theoretical and high-throughout nature, allied to some experimental studies of well-chosen model systems, holds promise for the identification of new catalysts for simple, but industrially important reactions.

  15. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis

    Science.gov (United States)

    Hoffmann, Max J.; Engelmann, Felix; Matera, Sebastian

    2017-01-01

    Lattice kinetic Monte Carlo simulations have become a vital tool for predictive quality atomistic understanding of complex surface chemical reaction kinetics over a wide range of reaction conditions. In order to expand their practical value in terms of giving guidelines for the atomic level design of catalytic systems, it is very desirable to readily evaluate a sensitivity analysis for a given model. The result of such a sensitivity analysis quantitatively expresses the dependency of the turnover frequency, being the main output variable, on the rate constants entering the model. In the past, the application of sensitivity analysis, such as degree of rate control, has been hampered by its exuberant computational effort required to accurately sample numerical derivatives of a property that is obtained from a stochastic simulation method. In this study, we present an efficient and robust three-stage approach that is capable of reliably evaluating the sensitivity measures for stiff microkinetic models as we demonstrate using the CO oxidation on RuO2(110) as a prototypical reaction. In the first step, we utilize the Fisher information matrix for filtering out elementary processes which only yield negligible sensitivity. Then we employ an estimator based on the linear response theory for calculating the sensitivity measure for non-critical conditions which covers the majority of cases. Finally, we adapt a method for sampling coupled finite differences for evaluating the sensitivity measure for lattice based models. This allows for an efficient evaluation even in critical regions near a second order phase transition that are hitherto difficult to control. The combined approach leads to significant computational savings over straightforward numerical derivatives and should aid in accelerating the nano-scale design of heterogeneous catalysts.

  16. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.

    Science.gov (United States)

    Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū

    2014-01-01

    We have developed Cu(II)-catalyzed enantioselective conjugate-addition reactions of boron to α,β-unsaturated carbonyl compounds and α,β,γ,δ-unsaturated carbonyl compounds in water. In contrast to the previously reported Cu(I) catalysis that required organic solvents, chiral Cu(II) catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1; cat. 2: Cu(OH)2 and acetic acid with ligand L1; and cat. 3: Cu(OAc)2 with ligand L1. Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β-unsaturated carbonyl compounds and an α,β-unsaturated nitrile compound, including acyclic and cyclic α,β-unsaturated ketones, acyclic and cyclic β,β-disubstituted enones, acyclic and cyclic α,β-unsaturated esters (including their β,β-disubstituted forms), and acyclic α,β-unsaturated amides (including their β,β-disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43,200 h(-1) ) for an asymmetric conjugate-addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ-unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4-Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ-unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ-unsaturated carbonyl compounds with compound 2, whereas 1,4-addition products

  17. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  18. Computational studies of heterogeneous and homogeneous catalysis by late transition metals

    Science.gov (United States)

    Kua, Jeremy Soo Pin

    To design new catalysts that meet the environmental, materials and energy concerns of modern society, it is vital to understand the fundamental mechanisms involved in catalytic reactions. This thesis focuses on using quantum mechanical methods to determine the mechanisms for several critical catalytic processes in chemical industry. Late transition metals are widely used as heterogeneous catalysts involving organic substrates. To lay a foundation for developing an orbital view useful for reasoning about surface reactions, we have developed the interstitial electron model (IEM) for bonding in platinum described in Chapter 1. To test the validity of the model cluster chosen to represent the surface, we studied the chemistry of C1 and C2 hydrocarbons, for which the most single-crystal experimental data is available, as described in Chapter 2. In Chapter 3, we extend this model to the second and third row Group VHI transition metals (Ir, Os, Pd, Rh, Ru) and develop a thermochemical group additivity framework for hydrocarbons on metal surfaces similar to the Benson scheme so useful for gas phase hydrocarbons. This provides a potentially powerful technique for deriving a mechanistic understanding on complex hydrocarbon reactions on catalytic surfaces, applicable to hydrocarbon reforming processes. An advantage of direct methanol fuel cells (DMFCs) over the internal combustion engines is to avoid the environmental damage caused by the latter. Chapter 4 describes our studies on electrocatalysis of methanol oxidation in direct methanol fuel cells. In particular, we focus on the role of different metals at the anode as alloys and as promoters for various aspects of the reaction converting methanol and water to CO2and energy. One of the most important challenges is to find ways to utilize the enormous resources in methane around the world as the fundamental feedstock for the chemical and energy industries. Perhaps the most promising progress in developing low

  19. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    Science.gov (United States)

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  20. A BRIEF HISTORY OF INDUSTRIAL CATALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Heinz

    1979-06-01

    This history covers: catalytic cracking and other acid catalysed reactions; zeolite catalysis; dual functional catalysis; hydrogenation catalysis and hydrogen production; catalytic hydrocarbon dehydrogenation; catalytic alkylation and dealkylation; catalytic coal liquefaction and gasification; heterogeneous oxidation, arnmoxidation, chlorination, and oxychlorination catalysis; olefin disproportionation catalysis; industrial homogeneous catalysis; catalytic polymerization; catalysis for motor vehicle emission control; fuel cell catalysis; and the profession of the catalytic chemist or engineer. The discussion is mostly limited to the rapid growth of industrial catalysis between the second World War and 1978.

  1. Catalysis seen in action

    NARCIS (Netherlands)

    Tromp, M.

    2015-01-01

    Synchrotron radiation techniques are widely applied in materials research and heterogeneous catalysis. In homogeneous catalysis, its use so far is rather limited despite its high potential. Here, insights in the strengths and limitations of X-ray spectroscopy technique in the field of homogeneous ca

  2. Non-equilibrium Plasma-Assisted Combustion

    Science.gov (United States)

    Sun, Wenting

    As a promising method to enhance combustion, plasma-assisted combustion has drawn considerable attention. Due to the fast electron impact excitation and dissociation of molecules at low temperatures, plasma introduces new reaction pathways, changes fuel oxidation timescales, and can dramatically modify the combustion processes. In this dissertation, the radical generation from the plasma and its effect on flame extinction and ignition were investigated experimentally together with detailed numerical simulation on a counterflow CH4 diffusion flame. It was found that the atomic oxygen production played a dominant role in enhancing the chain-branching reaction pathways and accelerating fuel oxidation at near limit flame conditions. To understand the direct coupling effect between plasma and flame, a novel plasma-assisted combustion system with in situ discharge in a counterflow diffusion flame was developed. The ignition and extinction characteristics of CH4/O 2/He diffusion flames were investigated. For the first time, it was demonstrated that the strong plasma-flame coupling in in situ discharge could significantly modify the ignition/extinction characteristics and create a new fully stretched ignition S-curve. To understand low temperature kinetics of combustion, it is critical to measure the formation and decomposition of H2O2. A molecular beam mass spectrometry (MBMS) system was developed and integrated with a laminar flow reactor. H2O2 measurements were directly calibrated, and compared to kinetic models. The results confirmed that low and intermediate temperature DME oxidation produced significant amounts of H2O2. The experimental characterizations of important intermediate species including H2O2, CH2O and CH3OCHO provided new capabilities to investigate and improve the chemical kinetics especially at low temperatures. A numerical scheme for model reduction was developed to improve the computational efficiency in the simulation of combustion with detailed

  3. Plasma assisted synthesis of vanadium pentoxide nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Megha; Sharma, Rabindar Kumar; Kumar, Prabhat, E-mail: prabhat89k@gmail.com; Reddy, G. B. [Thin film laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India)

    2015-08-28

    In this work, we report the growth of α-V{sub 2}O{sub 5} (orthorhombic) nanoplates on glass substrate using plasma assisted sublimation process (PASP) and Nickel as catalyst. 100 nm thick film of Ni is deposited over glass substrate by thermal evaporation process. Vanadium oxide nanoplates have been deposited treating vanadium metal foil under high vacuum conditions with oxygen plasma. Vanadium foil is kept at fixed temperature growth of nanoplates of V{sub 2}O{sub 5} to take place. Samples grown have been studied using XPS, XRD and HRTEM to confirm the growth of α-phase of V{sub 2}O{sub 5}, which revealed pure single crystal of α- V{sub 2}O{sub 5} in orthorhombic crystallographic plane. Surface morphological studies using SEM and TEM show nanostructured thin film in form of plates. Uniform, vertically aligned randomly oriented nanoplates of V{sub 2}O{sub 5} have been deposited.

  4. Universality in heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Pedersen, Thomas Bligaard; Logadottir, Ashildur

    2002-01-01

    Based on an extensive set of density functional theory calculations it is shown that for a class of catalytic reactions there is a universal, reactant independent relation between the reaction activation energy and the stability of reaction intermediates. This leads directly to a universal relati...

  5. Theoretical Studies in Heterogenous Catalysis: Towards a Rational Design of Novel Catalysts for Hydrodesulfurization and Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez,J.A.; Liu, P.

    2008-10-01

    Traditionally, knowledge in heterogeneous catalysis has come through empirical research. Nowadays, there is a clear interest to change this since millions of dollars in products are generated every year in the chemical and petrochemical industries through catalytic processes. To obtain a fundamental knowledge of the factors that determine the activity of heterogeneous catalysts is a challenge for modern science since many of these systems are very complex in nature. In principle, when a molecule adsorbs on the surface of a heterogeneous catalyst, it can interact with a large number of bonding sites. It is known that the chemical properties of these bonding sites depend strongly on the chemical environment around them. Thus, there can be big variations in chemical reactivity when going from one region to another in the surface of a heterogeneous catalyst. A main objective is to understand how the structural and electronic properties of a surface affect the energetics for adsorption processes and the paths for dissociation and chemical reactions. In recent years, advances in instrumentation and experimental procedures have allowed a large series of detailed works on the surface chemistry of heterogeneous catalysts. In many cases, these experimental studies have shown interesting and unique phenomena. Theory is needed to unravel the basic interactions behind these phenomena and to provide a general framework for the interpretation of experimental results. Ideally, theoretical calculations based on density-functional theory have evolved to the point that one should be able to predict patterns in the activity of catalytic surfaces. As in the case of experimental techniques, no single theoretical approach is able to address the large diversity of phenomena occurring on a catalyst. Catalytic surfaces are usually modeled using either a finite cluster or a two-dimensionally periodic slab. Many articles have been published comparing the results of these two approaches. An

  6. Stabilization of pulverized coal combustion by plasma assist

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M.; Maruta, K.; Takeda, K.; Solonenko, O.P.; Sakashita, M.; Nakamura, M. [Akita Prefectural University, Akita (Japan). Faculty of System Science & Technology

    2002-03-01

    Ignition and stabilization of pulverized coal combustion by plasma assist is investigated with a 10 kW plasma torch for three different kinds of coal, such as high, medium and low volatile matter coals. Not only high volatile matter coal but also low quality coal can be successfully burned with plasma assist. Research for volatile component of coal shows that a higher temperature field is necessary to extract the volatile matter from inferior coal, while their compositions are almost the same.

  7. In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis.

    Science.gov (United States)

    Teschner, Detre; Novell-Leruth, Gerard; Farra, Ramzi; Knop-Gericke, Axel; Schlögl, Robert; Szentmiklósi, László; González Hevia, Miguel; Soerijanto, Hary; Schomäcker, Reinhard; Pérez-Ramírez, Javier; López, Núria

    2012-09-01

    In heterogeneous catalysis, rates with Arrhenius-like temperature dependence are ubiquitous. Compensation phenomena, which arise from the linear correlation between the apparent activation energy and the logarithm of the apparent pre-exponential factor, are also common. Here, we study the origin of compensation and find a similar dependence on the rate-limiting surface coverage term for each Arrhenius parameter. This result is derived from an experimental determination of the surface coverage of oxygen and chlorine species using temporal analysis of products and prompt gamma activation analysis during HCl oxidation to Cl(2) on a RuO(2) catalyst. It is also substantiated by theory. We find that compensation phenomena appear when the effect on the apparent activation energy caused by changes in surface coverage is balanced out by the entropic configuration contributions of the surface. This result sets a new paradigm in understanding the interplay of compensation effects with the kinetics of heterogeneously catalysed processes.

  8. Catalysis seen in action.

    Science.gov (United States)

    Tromp, Moniek

    2015-03-06

    Synchrotron radiation techniques are widely applied in materials research and heterogeneous catalysis. In homogeneous catalysis, its use so far is rather limited despite its high potential. Here, insights in the strengths and limitations of X-ray spectroscopy technique in the field of homogeneous catalysis are given, including new technique developments. A relevant homogeneous catalyst, used in the industrially important selective oligomerization of ethene, is taken as a worked-out example. Emphasis is placed on time-resolved operando X-ray absorption spectroscopy with outlooks to novel high energy resolution and emission techniques. All experiments described have been or can be done at the Diamond Light Source Ltd (Didcot, UK).

  9. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges

    NARCIS (Netherlands)

    Profijt, H. B.; Potts, S. E.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2011-01-01

    Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A angstrom-level resolution in which a plasma is employed during one step of the cyclic deposition process. The use of plasma species as reactants allows for more freedom in processi

  10. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges

    NARCIS (Netherlands)

    Profijt, H. B.; Potts, S. E.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2011-01-01

    Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A angstrom-level resolution in which a plasma is employed during one step of the cyclic deposition process. The use of plasma species as reactants allows for more freedom in

  11. Nanomaterials in catalysis

    CERN Document Server

    Serp, Philippe; Somorjai, Gabor A; Chaudret, Bruno

    2012-01-01

    Nanocatalysis has emerged as a field at the interface between homogeneous and heterogeneous catalysis and offers unique solutions to the demanding requirements for catalyst improvement. Heterogeneous catalysis represents one of the oldest commercial applications of nanoscience and nanoparticles of metals, semiconductors, oxides, and other compounds have been widely used for important chemical reactions. The main focus of this fi eld is the development of well-defined catalysts, which may include both metal nanoparticles and a nanomaterial as the support. These nanocatalysts should display the

  12. EDITORIAL: Non-thermal plasma-assisted fuel conversion for green chemistry Non-thermal plasma-assisted fuel conversion for green chemistry

    Science.gov (United States)

    Nozaki, Tomohiro; Gutsol, Alexander

    2011-07-01

    This special issue is based on the symposium on Non-thermal Plasma Assisted Fuel Conversion for Green Chemistry, a part of the 240th ACS National Meeting & Exposition held in Boston, MA, USA, 22-26 August 2010. Historically, the Division of Fuel Chemistry of the American Chemical Society (ACS) has featured three plasma-related symposia since 2000, and has launched special issues in Catalysis Today on three occasions: 'Catalyst Preparation using Plasma Technologies', Fall Meeting, Washington DC, USA, 2000. Special issue in Catalysis Today 72 (3-4) with 12 peer-reviewed articles. 'Plasma Technology and Catalysis', Spring Meeting, New Orleans, LA, USA, 2003. Special issue in Catalysis Today 89 (1-2) with more than 30 peer-reviewed articles. 'Utilization of Greenhouse Gases II' (partly focused on plasma-related technologies), Spring Meeting, Anaheim, CA, USA, 2004. Special issue in Catalysis Today 98 (4) with 25 peer-reviewed articles. This time, selected presentations are published in this Journal of Physics D: Applied Physics special issue. An industrial material and energy conversion technology platform is established on thermochemical processes including various catalytic reactions. Existing industry-scale technology is already well established; nevertheless, further improvement in energy efficiency and material saving has been continuously demanded. Drastic reduction of CO2 emission is also drawing keen attention with increasing recognition of energy and environmental issues. Green chemistry is a rapidly growing research field, and frequently highlights renewable bioenergy, bioprocesses, solar photocatalysis of water splitting, and regeneration of CO2 into useful chemicals. We would also like to emphasize 'plasma catalysis' of hydrocarbon resources as an important part of the innovative next-generation green technologies. The peculiarity of non-thermal plasma is that it can generate reactive species almost independently of reaction temperature. Plasma

  13. Stereodirection of an α-ketoester at sub-molecular sites on chirally modified Pt(111): Heterogeneous asymmetric catalysis

    DEFF Research Database (Denmark)

    Demers-Carpentier, V.; Rasmussen, A.M.H.; Goubert, G.

    2013-01-01

    Chirally modified Pt catalysts are used in the heterogeneous asymmetric hydrogenation of α-ketoesters. Stereoinduction is believed to occur through the formation of chemisorbed modifier–substrate complexes. In this study, the formation of diastereomeric complexes by coadsorbed methyl 3,3,3-triflu......Chirally modified Pt catalysts are used in the heterogeneous asymmetric hydrogenation of α-ketoesters. Stereoinduction is believed to occur through the formation of chemisorbed modifier–substrate complexes. In this study, the formation of diastereomeric complexes by coadsorbed methyl 3...

  14. Examining the Potential of Plasma-Assisted Pretreated Wheat Straw for Enzyme Production by Trichoderma reesei

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Lehmann, Linda Olkjær; Schultz-Jensen, Nadja

    2012-01-01

    Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation...

  15. Spindle-shaped nanoscale yolk/shell magnetic stirring bars for heterogeneous catalysis in macro- and microscopic systems.

    Science.gov (United States)

    Yang, Shuliang; Cao, Changyan; Peng, Li; Huang, Peipei; Sun, Yongbin; Wei, Fang; Song, Weiguo

    2016-01-28

    A new type of spindle-shaped nanoscale yolk/shell magnetic stirring bar containing noble metal nanoparticles was prepared. The as-synthesized Pd-Fe@meso-SiO2 not only showed impressive activity and stability as a heterogeneous catalyst in a macroscopic flask system, but also acted as an efficient nanoscale magnetic stir bar in a microscopic droplet system.

  16. Asymmetric C-C Bond-Formation Reaction with Pd: How to Favor Heterogeneous or Homogeneous Catalysis?

    DEFF Research Database (Denmark)

    Reimann, S.; Grunwaldt, Jan-Dierk; Mallat, T.

    2010-01-01

    The enantioselective allylic alkylation of (E)-1,3-diphenylallyl acetate was studied to clarify the heterogeneous or homogeneous character of the Pd/Al2O3-(R)-BINAP catalyst system. A combined approach was applied: the catalytic tests were completed with in situ XANES measurements to follow...

  17. In situ biosynthesis of ultrafine metal nanoparticles within a metal-organic framework for efficient heterogeneous catalysis

    Science.gov (United States)

    Tang, Lei; Shi, Jiafu; Wu, Hong; Zhang, Shaohua; Liu, Hua; Zou, Hongjian; Wu, Yizhou; Zhao, Jingjing; Jiang, Zhongyi

    2017-09-01

    The synthesis of ultrafine, uniform, well-dispersed functional nanoparticles (NPs) under mild conditions in a controlled manner remains a great challenge. In biological systems, a well-defined biomineralization process is exploited, in which the control over NPs’ size, shape and distribution is temporally and spatially regulated by a variety of biomolecules in a confined space. Inspired by this, we embedded proteins into metal-organic frameworks (MOFs) and explored a novel approach to synthesize metallic NPs by taking the synergy of protein-induced biomineralization process and space-confined effect of MOFs. The generation and growth of ultrafine metal NPs (Ag or Au) was induced by the entrapped lysozyme molecules and confined by the ZIF-8 pores. Due to the narrow size distribution and homogeneous spatial distribution of metal NPs, the as-synthesized NPs exhibit remarkably elevated catalytic activity. These findings demonstrate that MOFs can be loaded with specific proteins to selectively deposit inorganic NPs via biomimetic mineralization and these novel kinds of nanohybrid materials may find applications in catalysis, sensing and optics.

  18. Plasma assisted deposition of metal fluorides for 193nm applications

    Science.gov (United States)

    Bischoff, Martin; Sode, Maik; Gaebler, Dieter; Kaiser, Norbert; Tuennermann, Andreas

    2008-10-01

    The ArF lithography technology requires a minimization of optical losses due to scattering and absorption. Consequently it is necessary to optimize the coating process of metal fluorides. The properties of metal fluoride thin films are mainly affected by the deposition methods, their parameters, and the vacuum conditions. Until now the best results were achieved by metal boat evaporation with high substrate temperature and without plasma assistance. In fact, it was demonstrated that the plasma assisted deposition process results in optical thin films with high packing density but the losses due to absorption were extremely high for deep and vacuum ultraviolet applications. This paper will demonstrate that most of the common metal fluorides can be deposited by electron beam evaporation with plasma assistance. In comparison to other deposition methods, the prepared thin films show low absorption in the VUV spectral range, high packing density, and less water content. The densification of the thin films was performed by a Leybold LION plasma source. As working gas, a variable mixture of fluorine and argon gas was chosen. To understand the deposition process and the interaction of the plasma with the deposition material, various characterization methods like plasma emission spectroscopy and ion current measurements were implemented.

  19. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.

    Science.gov (United States)

    Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-01-01

    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.

  20. Solid-Solid heterogeneous catalysis: the role of potassium in promoting the dehydrogenation of the Mg(NH(2))(2)/2 LiH composite.

    Science.gov (United States)

    Wang, Jianhui; Chen, Ping; Pan, Hongge; Xiong, Zhitao; Gao, Mingxia; Wu, Guotao; Liang, Chu; Li, Cao; Li, Bo; Wang, Jieru

    2013-11-01

    Considerable efforts have been devoted to the catalytic modification of hydrogen storage materials. The K-modified Mg(NH2 )2 /2 LiH composite is a typical model for such studies. In this work, we analyze the origin of the kinetic barrier in the first step of the dehydrogenation and investigate how K catalyzes this heterogeneous solid-state reaction. Our results indicate that the interface reaction of Mg(NH2 )2 and LiH is the main source of the kinetic barrier at the early stage of the dehydrogenation for the intensively ball-milled Mg(NH2 )2 /2 LiH sample. K can effectively activate Mg(NH2 )2 as well as promote LiH to participate in the dehydrogenation. Three K species of KH, K2 Mg(NH2 )4 , and Li3 K(NH2 )4 likely transform circularly in the dehydrogenation (KH↔K2 Mg(NH2 )4 ↔KLi3 (NH2 )4 ), which creates a more energy-favorable pathway and thus leads to the overall kinetic enhancement. This catalytic role of K in the amide/hydride system is different from the conventional catalysis of transition metals in the alanate system. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis.

    Science.gov (United States)

    Marzun, Galina; Levish, Alexander; Mackert, Viktor; Kallio, Tanja; Barcikowski, Stephan; Wagener, Philipp

    2017-03-01

    Platinum and iridium are rare and expensive noble metals that are used as catalysts for different sectors including in heterogeneous chemical automotive emission catalysis and electrochemical energy conversion. Nickel and its alloys are promising materials to substitute noble metals. Nickel based materials are cost-effective with good availability and show comparable catalytic performances. The nickel-molybdenum system is a very interesting alternative to platinum in water electrolysis. We produced ligand-free nickel-molybdenum nanoparticles by laser ablation in water and acetone. Our results show that segregated particles were formed in water due to the oxidation of the metals. X-ray diffraction shows a significant change in the lattice parameter due to a diffusion of molybdenum atoms into the nickel lattice with increasing activity in the electrochemical oxygen evolution reaction. Even though the solubility of molecular oxygen in acetone is higher than in water, there were no oxides and a more homogeneous metal distribution in the particles in acetone as seen by TEM-EDX. This showed that dissolved molecular oxygen does not control oxide formation. Overall, the laser ablation of pressed micro particulate mixtures in liquids offers a combinational synthesis approach that allows the screening of alloy nanoparticles for catalytic testing and can convert micro-mixtures into nano-alloys.

  2. A Plasma-Assisted Route to the Rapid Preparation of Transition-Metal Phosphides for Energy Conversion and Storage

    KAUST Repository

    Liang, Hanfeng

    2017-06-06

    Transition-metal phosphides (TMPs) are important materials that have been widely used in catalysis, supercapacitors, batteries, sensors, light-emitting diodes, and magnets. The physical and chemical structure of a metal phosphide varies with the method of preparation as the electronic, catalytic, and magnetic properties of the metal phosphides strongly depend on their synthesis routes. Commonly practiced processes such as solid-state synthesis and ball milling have proven to be reliable routes to prepare TMPs but they generally require high temperature and long reaction time. Here, a recently developed plasma-assisted conversion route for the preparation of TMPs is reviewed, along with their applications in energy conversion and storage, including water oxidation electrocatalysis, sodium-ion batteries, and supercapacitors. The plasma-assisted synthetic route should open up a new avenue to prepare TMPs with tailored structure and morphology for various applications. In fact, the process may be further extended to the synthesis of a wide range of transition-metal compounds such as borides and fluorides at low temperature and in a rapid manner.

  3. Micro-reactor for heterogeneous catalysis. Applications: hydrogen storage in hydrocarbons and filter for gas sensor; Microreacteur pour la catalyse heterogene: applications: stockage d'hydrogene dans les hydrocarbures: filtre pour capteur gaz

    Energy Technology Data Exchange (ETDEWEB)

    Roumanie, M

    2005-10-15

    This manuscript presents the design and the use of silicon micro-structured reactor for heterogeneous catalysis and especially for the dehydrogenation of methyl-cyclohexane reaction. This reaction enables on one hand to store hydrogen and on the other hand to realize technological developments since it is endothermic and difficult to carry out. By consequence, a new micro-reactor obtained by DRIE was designed and capped with a Pyrex wafer. It bundles micro-heaters deposited by screen-printing and a high temperature metallic connection. It comprises either a catalyst coming from micro-technology, Pt film deposited by sputtering or a classic catalyst, platinum supported on alumina. For this last catalyst, the micro-reactor previously pre-oxidized is pretreated by oxygen plasma or liquid way so that the deposit to walls. The wash coat could be done in open micro-reactor by dip coating in the suspension or in closed micro-reactor under vacuum or by liquid circulation. After catalytic tests realised in a macro-reactor, the Pt/Al{sub 2}O{sub 3} catalyst was chosen to be inserted in the micro-reactor. The catalytic tests realised in a micro-reactor coupled with a mass spectrometer let to show the presence of hydrogen. In parallel, the micro-reactor was used as filter to improve gas sensor selectivity. (author)

  4. New Combustion Regimes and Kinetic Studies of Plasma Assisted Combustion

    Science.gov (United States)

    2012-11-01

    Tasks 8 and 9: Kinetic model validation) Today’s Presentation 2. Multispecies diagnostics in a flow reactor with Mid-IR and molecular beam mass...S-Curve Competition between low T RO2 kinetics high T chain branching reactions 0.00 0.02 0.04 0.06 0.08 0.10 0.12 1x10 5 2x10 5 3x10 5 4x10...in Plasma assisted combustion • LTC in turbulent combustion at engine time scales 0-D modeling of DME /O2/He (0.03/0.1/0.896) ignition, P = 72

  5. Nanometallic chemistry: deciphering nanoparticle catalysis from the perspective of organometallic chemistry and homogeneous catalysis.

    Science.gov (United States)

    Yan, Ning; Yuan, Yuan; Dyson, Paul J

    2013-10-07

    Nanoparticle (NP) catalysis is traditionally viewed as a sub-section of heterogeneous catalysis. However, certain properties of NP catalysts, especially NPs dispersed in solvents, indicate that there could be benefits from viewing them from the perspective of homogeneous catalysis. By applying the fundamental approaches and concepts routinely used in homogeneous catalysis to NP catalysts it should be possible to rationally design new nanocatalysts with superior properties to those currently in use.

  6. Accurate Experimental and Theoretical Enthalpies of Association of TiCl4 with Typical Lewis Bases Used in Heterogeneous Ziegler-Natta Catalysis

    KAUST Repository

    Credendino, Raffaele

    2017-09-18

    Adducts of TiCl4 with Lewis bases used as internal or external donors in heterogeneous Ziegler-Natta (ZN) catalysis represents a fundamental interaction contributing to the final composition of MgCl2 supported ZN-catalysts. This study presents the accurate experimental evaluation, from titration calorimetry, of the formation enthalpy of TiCl4 adducts with 15 Lewis bases of industrial interests. In addition, we report accurate energies of association of TiCl4 with the same Lewis bases from calculations at the DLPNO-CCSD(T) level of theory. These accurate experimental and theoretical association values are compared with selected methods based on density functional theory (DFT) in combination with popular continuum solvation models. Calculations suggest that the PBE-D3, and M06 functionals in combination with a triple-ζ plus polarization quality basis set provide the best performance when the basis set superposition error (BSSE) is not removed from the association energies. Cleaning the association energies by the BSSE with the counterpoise protocol suggests the B3LYP-D3, TPSS-D3 and M06L as the best performing functionals. Introducing solvent effects with the PCM and SMD continuum solvation models allows comparing the DFT based association enthalpies with the experimental values obtained from titration calorimetry. Both solvation models in combination with the PBE-D3, PBE0-D3, B3LYP-D3, TPSS-D3, M06L, and M06 functionals provide association enthalpies close to the experimental values with MUEs in range 10 – 15 kJ/mol.

  7. Kinetic Study of Nonequilibrium Plasma-Assisted Methane Steam Reforming

    Directory of Open Access Journals (Sweden)

    Hongtao Zheng

    2014-01-01

    Full Text Available To develop a detailed reaction mechanism for plasma-assisted methane steam reforming, a comprehensive numerical and experimental study of effect laws on methane conversion and products yield is performed at different steam to methane molar ratio (S/C, residence time s, and reaction temperatures. A CHEMKIN-PRO software with sensitivity analysis module and path flux analysis module was used for simulations. A set of comparisons show that the developed reaction mechanism can accurately predict methane conversion and the trend of products yield in different operating conditions. Using the developed reaction mechanism in plasma-assisted kinetic model, the reaction path flux analysis was carried out. The result shows that CH3 recombination is the limiting reaction for CO production and O is the critical species for CO production. Adding 40 wt.% Ni/SiO2 in discharge region has significantly promoted the yield of H2, CO, or CO2 in dielectric packed bed (DPB reactor. Plasma catalytic hybrid reforming experiment verifies the reaction path flux analysis tentatively.

  8. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    Science.gov (United States)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  9. Plasma-assisted cataluminescence sensor array for gaseous hydrocarbons discrimination.

    Science.gov (United States)

    Na, Na; Liu, Haiyan; Han, Jiaying; Han, Feifei; Liu, Hualin; Ouyang, Jin

    2012-06-05

    Combining plasma activation and cross-reactivity of sensor array, we have developed a plasma-assisted cataluminescence (PA-CTL) sensor array for fast sensing and discrimination of gaseous hydrocarbons, which can be potentially used for fast diagnosis of lung cancer. Based on dielectric barrier discharge, a low-temperature plasma is generated to activate gaseous hydrocarbons with low cataluminescence (CTL) activities. Extremely increased CTL responses have been obtained, which resulted in a plasma assistance factor of infinity (∞) for some hydrocarbons. On a 4 × 3 PA-CTL sensor array made from alkaline-earth nanomaterials, gaseous hydrocarbons showed robust and unique CTL responses to generate characteristic patterns for fast discrimination. Because of the difference in the component of hydrocarbons in breath, exhaled breath samples from donors with and without lung cancer were tested, and good discrimination has been achieved by this technique. In addition, the feasibility of multidimentional detection based on temperature was confirmed. It had good reproducibility and gave a linear range of 65-6500 ng/mL or 77-7700 ppmv (R > 0.98) for CH(4) with a detection limit of 33 ng/mL (38 ppmv) on MgO. The PA-CTL sensor array is simple, low-cost, thermally stable, nontoxic, and has an abundance of alkaline-earth nanomaterials to act as sensing elements. This has expanded the applications of CTL-based senor arrays and will show great potential in clinical fast diagnosis.

  10. Heterogeneous catalysis: Uniformity begets selectivity

    Science.gov (United States)

    Yang, Dong; Gates, Bruce C.

    2017-07-01

    A Pd4 cluster, supported by a metal-organic framework and formed by post-synthesis methods, shows high catalytic activity and selectivity for carbene-mediated reactions. This crystallographically precise material may lead to a large class of catalysts.

  11. Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting

    KAUST Repository

    Liang, Hanfeng

    2016-11-09

    Efficient water splitting requires highly active, earth-abundant, and robust catalysts. Monometallic phosphides such as NiP have been shown to be active toward water splitting. Our theoretical analysis has suggested that their performance can be further enhanced by substitution with extrinsic metals, though very little work has been conducted in this area. Here we present for the first time a novel PH plasma-assisted approach to convert NiCo hydroxides into ternary NiCoP. The obtained NiCoP nanostructure supported on Ni foam shows superior catalytic activity toward the hydrogen evolution reaction (HER) with a low overpotential of 32 mV at 10 mA cm in alkaline media. Moreover, it is also capable of catalyzing the oxygen evolution reaction (OER) with high efficiency though the real active sites are surface oxides in situ formed during the catalysis. Specifically, a current density of 10 mA cm is achieved at overpotential of 280 mV. These overpotentials are among the best reported values for non-noble metal catalysts. Most importantly, when used as both the cathode and anode for overall water splitting, a current density of 10 mA cm is achieved at a cell voltage as low as 1.58 V, making NiCoP among the most efficient earth-abundant catalysts for water splitting. Moreover, our new synthetic approach can serve as a versatile route to synthesize various bimetallic or even more complex phosphides for various applications.

  12. Cobalt particle size effects in catalysis

    NARCIS (Netherlands)

    den Breejen, J.P.

    2010-01-01

    Aim of the work described in this thesis was first to investigate cobalt particle size effects in heterogeneous catalysis. The main focus was to provide a deeper understanding of the origin of the cobalt particle size effects in Fischer-Tropsch (FT) catalysis in which synthesis gas (H2/CO) is conver

  13. DOE Laboratory Catalysis Research Symposium - Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, T.

    1999-02-01

    The conference consisted of two sessions with the following subtopics: (1) Heterogeneous Session: Novel Catalytic Materials; Photocatalysis; Novel Processing Conditions; Metals and Sulfides; Nuclear Magnetic Resonance; Metal Oxides and Partial Oxidation; Electrocatalysis; and Automotive Catalysis. (2) Homogeneous Catalysis: H-Transfer and Alkane Functionalization; Biocatalysis; Oxidation and Photocatalysis; and Novel Medical, Methods, and Catalyzed Reactions.

  14. Cobalt particle size effects in catalysis

    NARCIS (Netherlands)

    den Breejen, J.P.

    2010-01-01

    Aim of the work described in this thesis was first to investigate cobalt particle size effects in heterogeneous catalysis. The main focus was to provide a deeper understanding of the origin of the cobalt particle size effects in Fischer-Tropsch (FT) catalysis in which synthesis gas (H2/CO) is

  15. A Course in Kinetics and Catalysis.

    Science.gov (United States)

    Bartholomew, C. H.

    1981-01-01

    Describes a one-semester, three-credit hour course integrating the fundamentals of kinetics and the scientific/engineering principles of heterogeneous catalysis. Includes course outline, list of texts, background readings, and topical journal articles. (SK)

  16. Current trends of surface science and catalysis

    CERN Document Server

    Park, Jeong Young

    2014-01-01

    Including detail on applying surface science in renewable energy conversion, this book covers the latest results on model catalysts including single crystals, bridging "materials and pressure gaps", and hot electron flows in heterogeneous catalysis.

  17. Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M

    2005-07-21

    A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.

  18. Energy Considerations for Plasma-Assisted N-Fixation Reactions

    Directory of Open Access Journals (Sweden)

    Aikaterini Anastasopoulou

    2014-09-01

    Full Text Available In a time of increasing concerns about the immense energy consumption and poor environmental performance of contemporary processes in the chemical industry, there is great need to develop novel sustainable technologies that enhance energy efficiency. There is abundant chemical literature on process innovations (laboratory-scale around the plasma reactor itself, which, naturally, is the essential part to be intensified to achieve a satisfactory process. In essence, a plasma process needs attention beyond reaction engineering towards the process integration side and also with strong electrical engineering focus. In this mini-review, we have detailed our future focus on the process and energy intensification of plasma-based N-fixation. Three focal points are mainly stressed throughout the review: (I the integration of renewable energy; (II the power supply system of plasma reactors and (III process design of industrial plasma-assisted nitrogen fixation. These different enabling strategies will be set in a holistic and synergetic picture so as to improve process performance.

  19. Investigation of sewage sludge treatment using air plasma assisted gasification.

    Science.gov (United States)

    Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis

    2017-06-01

    This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Electron-silane scattering cross section for plasma assisted processes

    Science.gov (United States)

    Verma, Pankaj; Kaur, Jaspreet; Antony, Bobby

    2017-03-01

    Silane is an important molecule with numerous applications to natural and technological plasmas. In such environments, where plasma assisted processes are vital, electron induced reactions play a major role in its chemistry. In view of this, electron induced scattering of molecules such as silane finds significance. This article reports a comprehensive study of electron impact cross sections for silane over a wide energy range. In particular, the emphasis is given in providing a complete dataset for various electron scattering events possible with silane. Such dataset is the need for the plasma modeling community. Moreover, literature survey shows that the cross section database for silane is fragmentary. To fill this void, we have computed the differential elastic, total, rotational excitation, and momentum transfer cross sections. Two formalisms that are reliable in their energy domain are employed to accomplish the task: the R-matrix method through QUANTEMOL-N at low incident energies and the spherical complex optical potential formalism at intermediate to high energies. Interestingly, the comparison of the present cross section exhibits a good concurrence with the previous data, wherever available.

  1. Request for Symposia Support: Advances in Olefin Polymerization Catalysis

    Science.gov (United States)

    2014-11-24

    included, but were not limited to, heterogeneous catalysis , homogeneous catalysis , advances in catalyst activation, methods for polymer topological...SECURITY CLASSIFICATION OF: This Advances in Olefin Polymerization Catalysis symposium was held at the 247th ACS National Meeting and Exposition...March 19, 2014 in Dallas, Texas and consisted of twelve (12) invited/contributed talks. The hosting ACS division was the Division of Catalysis Science

  2. Enantioconvergent catalysis

    Directory of Open Access Journals (Sweden)

    Justin T. Mohr

    2016-09-01

    Full Text Available An enantioconvergent catalytic process has the potential to convert a racemic starting material to a single highly enantioenriched product with a maximum yield of 100%. Three mechanistically distinct approaches to effecting enantioconvergent catalysis are identified, and recent examples of each are highlighted. These processes are compared to related, non-enantioconvergent methods.

  3. 手性有机多孔材料在多相不对称催化中的应用研究进展%Advances in Chiral Porous Organic Polymers for Heterogeneous Asymmetric Catalysis

    Institute of Scientific and Technical Information of China (English)

    李延伟; 王昌安

    2015-01-01

    Porous organic polymers ( POPs) have become one of a frontier of the research in recent years . POPs include amorphous ( eg CMP, HCP, PIM, etc.) and crystalline ( eg COFs etc.) porous organic poly-mers.Due to their inherent porosity , large specific surface area , light weight and easy functionalization at the molecular level , POPs have recently received significant attention for potential applications in gas storage /sep-aration, organic photoelectric, sensoring and heterogeneous catalysis .Here, this review focuses on recent ad-vances of Chiral POPs in heterogeneous asymmetric catalysis .Currently , the research on the application of Chiral POPs for heterogeneous asymmetric catalysis is classified into two sections: a ) "bottom-up"embed-ding chiral metal-ligand catalyst into POPs for heterogeneous asymmetric catalysis; b) "bottom -up"em-bedding chiral organocatalyst into POPs for heterogeneous asymmetric organocatalyst .Benefiting from its struc-tural superiority , these functional POPs exhibit excellent catalytic activity .%近年来,有机多孔材料成为研究的前沿和热点领域之一。有机多孔材料POPs ( Porous Organic Polymers)包括非晶型有机多孔材料(比如CMP,HCP,PIM等)和晶型有机多孔材料(比如COFs等)。由于其具有优异的孔性质、较大的比表面积、稳定性好、重量轻以及易与功能化等诸多优点,有机多孔材料被广泛应用于气体存储分离、传感、有机光电和多相催化等重要领域。伴随着均相催化尤其是不对称催化的巨大发展,将有机多孔材料与手性催化剂结合起来构建手性有机多孔材料,并将其应用于多相不对称催化的研究越来越受到重视。目前,关于手性有机多孔材料在多相不对称催化领域应用的研究工作主要有两类:一类是通过“bottom-up”策略将手性配体-金属类催化剂嵌入有机多孔材料骨架来构建多相催化剂;一类是通过

  4. Plasma-assisted ignition and deflagration-to-detonation transition.

    Science.gov (United States)

    Starikovskiy, Andrey; Aleksandrov, Nickolay; Rakitin, Aleksandr

    2012-02-13

    Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc. As a rule, the dominant mechanism of the effect of non-equilibrium plasma on ignition and combustion is associated with the generation of active particles in the discharge plasma. For plasma-assisted ignition and combustion in mixtures containing air, the most promising active species are O atoms and, to a smaller extent, some other neutral atoms and radicals. These active particles are efficiently produced in high-voltage, nanosecond, pulse discharges owing to electron-impact dissociation of molecules and electron-impact excitation of N(2) electronic states, followed by collisional quenching of these states to dissociate the molecules. Mechanisms of deflagration-to-detonation transition (DDT) initiation by non-equilibrium plasma were analysed. For longitudinal discharges with a high power density in a plasma channel, two fast DDT mechanisms have been observed. When initiated by a spark or a transient discharge, the mixture ignited simultaneously over the volume of the discharge channel, producing a shock wave with a Mach number greater than 2 and a flame. A gradient mechanism of DDT similar to that proposed by Zeldovich has been observed experimentally under streamer initiation.

  5. Density functional theory studies of transition metal nanoparticles in catalysis

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Rankin, Rees; Zeng, Zhenhua

    2013-01-01

    Periodic Density Functional Theory calculations are capable of providing powerful insights into the structural, energetics, and electronic phenomena that underlie heterogeneous catalysis on transition metal nanoparticles. Such calculations are now routinely applied to single crystal metal surfaces...... and to subnanometer metal clusters. Descriptions of catalysis on truly nanosized structures, however, are generally not as well developed. In this talk, I will illustrate different approaches to analyzing nanocatalytic phenomena with DFT calculations. I will describe case studies from heterogeneous catalysis...

  6. Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons

    Science.gov (United States)

    Starikovskiy, Andrey; Aleksandrov, Nikolay

    2016-09-01

    Nonequilibrium plasma demonstrates ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions. A new, validated mechanism for high-temperature hydrocarbon plasma assisted combustion was built and allows to qualitatively describe plasma-assisted combustion close and above the self-ignition threshold. The principal mechanisms of plasma-assisted ignition and combustion have been established and validated for a wide range of plasma and gas parameters. These results provide a basis for improving various energy-conversion combustion systems, from automobile to aircraft engines, using nonequilibrium plasma methods.

  7. Comparative research of plasma-assisted milling and traditional milling in synthesizing AlN

    Science.gov (United States)

    Wang, Sen; Wang, Wenchun; Liu, Zhijie; Yang, Dezheng

    2017-06-01

    In this paper, traditional milling and discharge plasma-assisted milling are employed to synthesize aluminum nitride (AlN) powder at nanometer scale by milling the mixture of aluminum and lithium hydroxide monohydrate. AlN powders can be generated in traditional milling and plasma-assisted milling in an hour milling time. Differential thermal analysis curves show that the reaction temperature of the powders treated by plasma-assisted milling is lower than that of traditional milling. These results indicate that plasma-assisted milling has higher efficiency in the synthesis of AlN, getting smaller crystallite size and activating powder. Moreover, an optical emission spectrum is employed to demonstrate the active species in plasma. The different formation process of AlN in the two-milling process, and the promotion effects of plasma in the milling process are discussed.

  8. Cu(II)-mediated atom transfer radical polymerization of methyl methacrylate via a strategy of thermo-regulated phase-separable catalysis in a liquid/liquid biphasic system: homogeneous catalysis, facile heterogeneous separation, and recycling.

    Science.gov (United States)

    Pan, Jinlong; Zhang, Bingjie; Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2014-09-01

    A strategy of thermo-regulated phase-separable catalysis (TPSC) is applied to the Cu(II)-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in a p-xylene/PEG-200 biphasic system. Initiators for continuous activator regeneration ATRP (ICAR ATRP) are used to establish the TPSC-based ICAR ATRP system using water-soluble TPMA as a ligand, EBPA as an initiator, CuBr2 as a catalyst, and AIBN as a reducing agent. By heating to 70 °C, unlimited miscibility of both solvents is achieved and the polymerization can be carried out under homogeneous conditions; then on cooling to 25 °C, the mixture separates into two phases again. As a result, the catalyst complex remains in the PEG-200 phase while the obtained polymers stay in the p-xylene phase. The catalyst can therefore be removed from the resultant polymers by easily separating the two different layers and can be reused again. It is important that well-defined PMMA with a controlled molecular weight and narrow molecular weight distribution could be obtained using this TPSC-based ICAR ATRP system.

  9. Kinetic modeling and sensitivity analysis of plasma-assisted combustion

    Science.gov (United States)

    Togai, Kuninori

    Plasma-assisted combustion (PAC) is a promising combustion enhancement technique that shows great potential for applications to a number of different practical combustion systems. In this dissertation, the chemical kinetics associated with PAC are investigated numerically with a newly developed model that describes the chemical processes induced by plasma. To support the model development, experiments were performed using a plasma flow reactor in which the fuel oxidation proceeds with the aid of plasma discharges below and above the self-ignition thermal limit of the reactive mixtures. The mixtures used were heavily diluted with Ar in order to study the reactions with temperature-controlled environments by suppressing the temperature changes due to chemical reactions. The temperature of the reactor was varied from 420 K to 1250 K and the pressure was fixed at 1 atm. Simulations were performed for the conditions corresponding to the experiments and the results are compared against each other. Important reaction paths were identified through path flux and sensitivity analyses. Reaction systems studied in this work are oxidation of hydrogen, ethylene, and methane, as well as the kinetics of NOx in plasma. In the fuel oxidation studies, reaction schemes that control the fuel oxidation are analyzed and discussed. With all the fuels studied, the oxidation reactions were extended to lower temperatures with plasma discharges compared to the cases without plasma. The analyses showed that radicals produced by dissociation of the reactants in plasma plays an important role of initiating the reaction sequence. At low temperatures where the system exhibits a chain-terminating nature, reactions of HO2 were found to play important roles on overall fuel oxidation. The effectiveness of HO2 as a chain terminator was weakened in the ethylene oxidation system, because the reactions of C 2H4 + O that have low activation energies deflects the flux of O atoms away from HO2. For the

  10. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    Science.gov (United States)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and

  11. Molecular catalysis science: Perspective on unifying the fields of catalysis.

    Science.gov (United States)

    Ye, Rong; Hurlburt, Tyler J; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A

    2016-05-10

    Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.

  12. Advancing Sustainable Catalysis with Magnetite Surface ...

    Science.gov (United States)

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heterogeneous catalysis is highlighted. Use of an oxide of earth-abundant iron for various applications in catalysis and environmental remediation.

  13. Experimental Investigation on the Ignition Delay Time of Plasma-Assisted Ignition

    Science.gov (United States)

    Xiao, Yang; Yu, Jin-Lu; He, Li-Ming; Jiang, Yong-Jian; Wu, Yong

    2016-09-01

    This paper investigates the ignition performances of plasma-assisted ignition in propane/air mixture. The results show that a shorter ignition delay time is obtained for the plasma ignition than the spark ignition and the average ignition delay time of plasma-assisted ignition can be reduced at least by 50%. The influence of air flow rate of combustor, the arc current and argon flow rate of plasma igniter on ignition delay time are also investigated. The ignition delay time of plasma-assisted ignition increases with increasing air flow rate in the combustor. By increasing the arc current, the plasma ignition will gain more ignition energy to ignite the mixture more easily. The influence of plasma ignition argon flow rates on the ignition delay time is quite minor.

  14. Development of a transient response technique for heterogeneous catalysis in the liquid phase, Part 1: Applying an electrospray ionization mass spectrometry (ESI-MS) detector.

    NARCIS (Netherlands)

    Radivojevic, D.; Ruitenbeek, M.; Seshan, Kulathuiyer; Lefferts, Leonardus

    2008-01-01

    We have developed a novel, transient response technique for liquid-phase heterogeneous catalytic studies, equipped with an electrospray ionization mass spectrometry (ESI-MS) detector. The technique was successfully applied as an online method for real-time detection of species dissolved in aqueous

  15. A new type of self-supported, polymeric Ru-carbene complex for homogeneous catalysis and heterogeneous recovery: synthesis and catalytic activities for ring-closing metathesis.

    Science.gov (United States)

    Chen, Shu-Wei; Kim, Ju Hyun; Shin, Hyunik; Lee, Sang-Gi

    2008-08-01

    A novel 2nd generation Grubbs-type catalyst tethering an isopropoxystyrene has been synthesized and automatically polymerized in solution to form a self-supported polymeric Ru-carbene complex, which catalyzed ring-closing metathesis homogeneously, but was recovered heterogeneously.

  16. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis: Advantages and Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Frenkel, A.I.; Hanson, J.; Wang, Q.; Marinkovic, N.; Chen, J.G.; Barrio, L.; Si, R.; Lopez Camara, A.; Estrella, A.M.; Rodriguez, J.A.

    2011-08-05

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe{sub 2}O{sub 4} under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO{sub 2} that underwent isothermal reduction (with CO) and oxidation (with O{sub 2}), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  17. Special Issue: Coinage Metal (Copper, Silver, and Gold Catalysis

    Directory of Open Access Journals (Sweden)

    Sónia Alexandra Correia Carabineiro

    2016-06-01

    Full Text Available The subject of catalysis by coinage metals (copper, silver, and gold comes up increasingly day-by-day. This Special Issue aims to cover the numerous aspects of the use of these metals as catalysts for several reactions. It deals with synthesis and characterization of copper, silver and gold based catalysis, their characterization and use, both for heterogeneous and homogeneous catalysis, and some of their potential applications.

  18. Dielectric Properties of Thermal and Plasma-Assisted Atomic Layer Deposited Al2O3 Thin Films

    NARCIS (Netherlands)

    Jinesh, K. B.; van Hemmen, J. L.; M. C. M. van de Sanden,; Roozeboom, F.; Klootwijk, J. H.; Besling, W. F. A.; Kessels, W. M. M.

    2011-01-01

    A comparative electrical characterization study of aluminum oxide (Al2O3) deposited by thermal and plasma-assisted atomic layer depositions (ALDs) in a single reactor is presented. Capacitance and leakage current measurements show that the Al2O3 deposited by the plasma-assisted ALD shows excellent d

  19. Experimental study into plasma-assisted PM removal for diesel engines

    NARCIS (Netherlands)

    Willems, F.P.T.; Creyghton, Y.; Gulijk, C. van; Oonk, H; Maisuls, S.

    2003-01-01

    Plasma-assisted PM removal is examined in a packed-bed plasma system. This study focuses on the effect of plasma power, space velocity and exhaust gas composition on PM filtration. Experiments are done on an engine dynamometer with a VW 1.2l TDI engine. During these experiments, the airflow is throt

  20. The thermal engineering characteristics of plasma-assisted ignition of coal

    Science.gov (United States)

    Peregudov, V. S.

    2010-06-01

    The parameters playing an important role in implementing a technology of preparing coal for combustion by subjecting it to plasma-assisted thermal—chemical treatment are considered, and their effect on the main characteristics of the obtained product is analyzed. The optimal values of such parameters are determined.

  1. Experimental study into plasma-assisted PM removal for diesel engines

    NARCIS (Netherlands)

    Willems, F.P.T.; Creyghton, Y.; Gulijk, C. van; Oonk, H; Maisuls, S.

    2003-01-01

    Plasma-assisted PM removal is examined in a packed-bed plasma system. This study focuses on the effect of plasma power, space velocity and exhaust gas composition on PM filtration. Experiments are done on an engine dynamometer with a VW 1.2l TDI engine. During these experiments, the airflow is

  2. Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example.

    Science.gov (United States)

    Galeano, Carolina; Güttel, Robert; Paul, Michael; Arnal, Pablo; Lu, An-Hui; Schüth, Ferdi

    2011-07-18

    The use of nanostructured yolk-shell materials offers a way to discriminate support and particle-size effects for mechanistic studies in heterogeneous catalysis. Herein, gold yolk-shell materials have been synthesized and used as model catalysts for the investigation of support effects in CO oxidation. Carbon has been selected as catalytically inert support to study the intrinsic activity of the gold nanoparticles, and for comparison, zirconia has been used as oxidic support. Au, @C materials have been synthesized through nanocasting using two different nonporous-core@mesoporous-shell exotemplates: Au@SiO(2)@ZrO(2) and Au@SiO(2)@m-SiO(2). The catalytic activity of Au, @C with a gold core of about 14 nm has been evaluated and compared with Au, @ZrO(2) of the same gold core size. The strong positive effect of metal oxide as support material on the activity of gold has been proved. Additionally, size effects were investigated using carbon as support to determine only the contribution of the nanoparticle size on the catalytic activity of gold. Therefore, Au, @C with a gold core of about 7 nm was studied showing a less pronounced positive effect on the activity than the metal oxide support effect.

  3. Reaction cell for in situ soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering measurements of heterogeneous catalysis up to 1 atm and 250 °C

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, P. T. [Department of Physics and Astronomy, Division of Molecular and Condensed Matter Physics, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Abteilung Anorganische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Helmholtz-Zentrum Berlin für Materialien und Energie Albert-Einstein-Str. 15, D-12489 Berlin (Germany); Rocha, T. C. R.; Knop-Gericke, A. [Abteilung Anorganische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Guo, J. H. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Duda, L. C. [Department of Physics and Astronomy, Division of Molecular and Condensed Matter Physics, Uppsala University, Box 516, S-751 20 Uppsala (Sweden)

    2013-11-15

    We present a novel in situ reaction cell for heterogeneous catalysis monitored in situ by x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS). The reaction can be carried out at a total pressure up to 1 atm, a regime that has not been accessible to comparable in situ techniques and thus closes the pressure gap to many industrial standard conditions. Two alternate catalyst geometries were tested: (A) a thin film evaporated directly onto an x-ray transparent membrane with a flowing reaction gas mixture behind it or (B) a powder placed behind both the membrane and a gap of flowing reaction gas mixture. To illustrate the working principle and feasibility of our reaction cell setup we have chosen ethylene epoxidation over a silver catalyst as a test case. The evolution of incorporated oxygen species was monitored by total electron/fluorescence yield O K-XAS as well as O K-RIXS, which is a powerful method to separate contributions from inequivalent sites. We find that our method can reliably detect transient species that exist during catalytic reaction conditions that are hardly accessible using other spectroscopic methods.

  4. Rh(I)-catalyzed transformation of propargyl vinyl ethers into (E,Z)-dienals: stereoelectronic role of trans effect in a metal-mediated pericyclic process and a shift from homogeneous to heterogeneous catalysis during a one-pot reaction.

    Science.gov (United States)

    Vidhani, Dinesh V; Krafft, Marie E; Alabugin, Igor V

    2014-01-01

    The combination of experiments and computations reveals unusual features of stereoselective Rh(I)-catalyzed transformation of propargyl vinyl ethers into (E,Z)-dienals. The first step, the conversion of propargyl vinyl ethers into allene aldehydes, proceeds under homogeneous conditions via a "cyclization-mediated" mechanism initiated by Rh(I) coordination at the alkyne. This path agrees well with the small experimental effects of substituents on the carbinol carbon. The key feature revealed by the computational study is the stereoelectronic effect of the ligand arrangement at the catalytic center. The rearrangement barriers significantly decrease due to the greater transfer of electron density from the catalytic metal center to the CO ligand oriented trans to the alkyne. This effect increases electrophilicity of the metal and lowers the calculated barriers by 9.0 kcal/mol. Subsequent evolution of the catalyst leads to the in situ formation of Rh(I) nanoclusters that catalyze stereoselective tautomerization. The intermediacy of heterogeneous catalysis by nanoclusters was confirmed by mercury poisoning, temperature-dependent sigmoidal kinetic curves, and dynamic light scattering. The combination of experiments and computations suggests that the initially formed allene-aldehyde product assists in the transformation of a homogeneous catalyst (or "a cocktail of catalysts") into nanoclusters, which in turn catalyze and control the stereochemistry of subsequent transformations.

  5. Application of Mössbauer spectroscopy in industrial heterogeneous catalysis: effect of oxidant on FePO{sub 4} material phase transformations in direct methanol synthesis from methane

    Energy Technology Data Exchange (ETDEWEB)

    Dasireddy, Venkata D. B. C., E-mail: dasireddy@ki.si [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia); Khan, Faiza B. [Energy Technology (South Africa); Hanzel, Darko [Jozef Stefan Institute (Slovenia); Bharuth-Ram, Krish [Durban University of Technology, Physics Department (South Africa); Likozar, Blaž [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia)

    2017-11-15

    The effect of the FePO{sub 4} material phase transformation in the direct selective oxidation of methane to methanol was studied using various oxidants, i.e. O{sub 2}, H{sub 2}O and N{sub 2}O. The phases of the heterogeneous catalyst applied, before and after the reactions, were characterized by M¨ossbauer spectroscopy. The main reaction products were methanol, carbon monoxide and carbon dioxide, whereas formaldehyde was produced in rather minute amounts. The Mössbauer spectra showed the change of the initial catalyst material, FePO{sub 4} (tridymite-like phase (tdm)), to the reduced metal form, iron(II) pyrophosphate, Fe{sub 2}P{sub 2}O{sub 7}, and thereafter, the material phase change was governed by the oxidation with individual oxidizing species.Mössbauer spectroscopy measurements applied along with X-ray diffraction (XRD) studies on fresh, reduced and spent catalytic materials demonstrated a transformation of the catalyst to a mixture of phases which depended on operating process conditions. Generally, activity was low and should be a subject of further material optimization and engineering, while the selectivity towards methanol at low temperatures applied was adequate. The proceeding redox mechanism should thus play a key role in catalytic material design, while the advantage of iron-based heterogeneous catalysts primarily lies in them being comparably inexpensive and comprising non-critical raw materials only.

  6. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  7. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol.

    Science.gov (United States)

    Narayanan, Kannan Badri; Sakthivel, Natarajan

    2011-05-15

    Greener synthesis of nanogold-biocomposite by fungus, Cylindrocladium floridanum was reported in this study. Results revealed that when cultured in static condition for a period of 7d, the fungus accumulated gold nanoparticles on the surface of the mycelia. Bionanocomposites with Au nanocrystals were characterized by UV-Vis spectroscopy, XRD, SEM, EDX and high-resolution TEM. The SPR band of UV-Vis spectrum at 540 nm confirmed the presence of gold nanoparticles on the surface of the fungal mycelia. The fcc (111)-oriented crystalline nature of particles was identified by XRD pattern. The synthesized particles are spherical in shape as evidenced by TEM image. The biocomposites with Au nanoparticles function as an efficient heterogeneous catalyst in the degradation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), in the presence of reducing agent, sodium borohydride which was reflected by UV-Vis spectra of the catalytic reaction kinetics. The reduction of 4-nitrophenol follows pseudo-first-order kinetic model with the reaction rate constant of 2.67 × 10(-2)min(-1) with 5.07 × 10(-6)mol/dm(3) of gold at ca. 25 nm. The rate of the reaction was increased by increasing the concentration of gold nanoparticles from 2.54 × 10(-6) to 12.67 × 10(-6)mol/dm(3) (∼ 25 nm) and with reduced size from 53.2 to 18.9 nm respectively. This is the first report on fungal-matrixed gold(0) nanocomposites heterogeneously catalyzing the reduction of the toxic organic pollutant, 4-nitrophenol that enable the recovery and recycling of AuNPs catalysts.

  8. Catalysis of Photochemical Reactions.

    Science.gov (United States)

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  9. LEAN NO{sub X} REDUCTION BY PLASMA ASSISTED CATA

    Energy Technology Data Exchange (ETDEWEB)

    Tonkyn, Russell

    2000-08-20

    The widespread use of light duty diesel engines in the United States would naturally lead to a large reduction of fuel consumption, due to their generally higher efficiency. By extension, savings in fuel consumption would decrease the total CO2 emitted from mobile sources. Although this is a desirable goal, at present a major stumbling block to increased diesel engine use is the difficulty in reducing noxious exhaust components, mainly NOx and particulates, to acceptable levels. We are studying the possibility of reducing NOx emissions through the combination of non-thermal plasma with appropriate catalysts. The broad outline of how this technique works has been worked out both experimentally and theoretically.1-3 The presently accepted model is that a non-thermal plasma in the presence of water, oxygen and hydrocarbon will efficiently convert NO to NO2, while only partially oxidizing the hydrocarbon present. Some catalysts will reduce NO2 (but not necessarily NO) i n the presence of excess oxygen if the proper hydrocarbon is present. In this paper we report results using non-thermal plasma in conjunction with a commonly available zeolite catalyst, NaY, to treat synthetic diesel exhaust. We focus on details of the heterogeneous chemistry on NaY by comparing the thermal and plasma driven chemistry. EXPERIMENT Details of our experiment have been published elsewhere, so only a brief summary is included here.4 Synthetic exhaust gas was created by blending gases from cylinders of known composition using mass flow controllers. Besides NO, the exhaust mixture included CO, CO2, propylene, water, oxygen and nitrogen. A typical mixture contained 6% oxygen, 2% water, and, unless otherwise noted, a 3:1 ratio of propylene to NOx. This corresponds to a 9:1 ratio on a C1 basis. CO and CO2 were sometimes included, but we found that their presence did not materially affect our results. For nitrogen balance experiments we omitted CO and CO2 and replaced the nitrogen bath gas with

  10. Magnetically separable core-shell structural γ-Fe2O3@Cu/Al-MCM-41 nanocomposite and its performance in heterogeneous Fenton catalysis.

    Science.gov (United States)

    Ling, Yuhan; Long, Mingce; Hu, Peidong; Chen, Ya; Huang, Juwei

    2014-01-15

    To target the low catalytic activity and the inconvenient separation of copper loading nanocatalysts in heterogeneous Fenton-like reaction, a core-shell structural magnetically separable catalyst, with γ-Fe2O3 nanoparticles as the core layer and the copper and aluminum containing MCM-41 as the shell layer, has been fabricated. The role of aluminum has been discussed by comparing the copper containing mesoporous silica with various Cu contents. Their physiochemical properties have been characterized by XRD, UV-vis, FT-IR, TEM, nitrogen physisorption and magnetite susceptibility measurements. Double content Cu incorporation results in an improved catalytic activity for phenol degradation at the given condition (40°C, initial pH=4), but leads to a declined BET surface area and less ordered mesophase structure. Aluminum incorporation helps to retain the high BET surface area (785.2m(2)/g) and the regular hexagonal mesoporous structure of MCM-41, which make the catalyst possess a lower copper content and even a higher catalytic activity than that with the double copper content in the absence of aluminum. The catalysts can be facilely separated by an external magnetic field for recycle usage.

  11. Bifunctional heterogeneous catalysis of silica-alumina-supported tertiary amines with controlled acid-base interactions for efficient 1,4-addition reactions.

    Science.gov (United States)

    Motokura, Ken; Tanaka, Satoka; Tada, Mizuki; Iwasawa, Yasuhiro

    2009-10-19

    We report the first tunable bifunctional surface of silica-alumina-supported tertiary amines (SA-NEt(2)) active for catalytic 1,4-addition reactions of nitroalkanes and thiols to electron-deficient alkenes. The 1,4-addition reaction of nitroalkanes to electron-deficient alkenes is one of the most useful carbon-carbon bond-forming reactions and applicable toward a wide range of organic syntheses. The reaction between nitroethane and methyl vinyl ketone scarcely proceeded with either SA or homogeneous amines, and a mixture of SA and amines showed very low catalytic activity. In addition, undesirable side reactions occurred in the case of a strong base like sodium ethoxide employed as a catalytic reagent. Only the present SA-supported amine (SA-NEt(2)) catalyst enabled selective formation of a double-alkylated product without promotions of side reactions such as an intramolecular cyclization reaction. The heterogeneous SA-NEt(2) catalyst was easily recovered from the reaction mixture by simple filtration and reusable with retention of its catalytic activity and selectivity. Furthermore, the SA-NEt(2) catalyst system was applicable to the addition reaction of other nitroalkanes and thiols to various electron-deficient alkenes. The solid-state magic-angle spinning (MAS) NMR spectroscopic analyses, including variable-contact-time (13)C cross-polarization (CP)/MAS NMR spectroscopy, revealed that acid-base interactions between surface acid sites and immobilized amines can be controlled by pretreatment of SA at different temperatures. The catalytic activities for these addition reactions were strongly affected by the surface acid-base interactions.

  12. Abatement of VOCs with Alternate Adsorption and Plasma-Assisted Regeneration: A Review

    Directory of Open Access Journals (Sweden)

    Sharmin Sultana

    2015-04-01

    Full Text Available Energy consumption is an important concern for the removal of volatile organic compounds (VOCs from waste air with non-thermal plasma (NTP. Although the combination of NTP with heterogeneous catalysis has shown to reduce the formation of unwanted by-products and improve the energy efficiency of the process, further optimization of these hybrid systems is still necessary to evolve to a competitive air purification technology. A newly developed innovative technique, i.e., the cyclic operation of VOC adsorption and NTP-assisted regeneration has attracted growing interest of researchers due to the optimized energy consumption and cost-effectiveness. This paper reviews this new technique for the abatement of VOCs as well as for regeneration of adsorbents. In the first part, a comparison of the energy consumption between sequential and continuous treatment is given. Next, studies dealing with adsorption followed by NTP oxidation are reviewed. Particular attention is paid to the adsorption mechanisms and the regeneration of catalysts with in-plasma and post-plasma processes. Finally, the influence of critical process parameters on the adsorption and regeneration steps is summarized.

  13. In Situ Nanocalorimetric Investigations of Plasma Assisted Deposited Poly(ethylene oxide)-like Films by Specific Heat Spectroscopy.

    Science.gov (United States)

    Madkou, Sherif; Melnichu, Iurii; Choukourov, Andrei; Krakovsky, Ivan; Biederman, Hynek; Schönhals, Andreas

    2016-04-28

    In recent years, highly cross-linked plasma polymers have started to unveil their potential in numerous biomedical applications in thin-film form. However, conventional diagnostic methods often fail due to their diverse molecular dynamics conformations. Here, glassy dynamics and the melting transition of thin PEO-like plasma assisted deposited (ppPEO) films (thickness 100 nm) were in situ studied by a combination of specific heat spectroscopy, utilizing a pJ/K sensitive ac-calorimeter chip, and composition analytical techniques. Different cross-linking densities were obtained by different plasma powers during the deposition of the films. Glassy dynamics were observed for all values of the plasma power. It was found that the glassy dynamics slows down with increasing the plasma power. Moreover, the underlying relaxation time spectra broaden indicating that the molecular motions become more heterogeneous with increasing plasma power. In a second set of the experiment, the melting behavior of the ppPEO films was studied. The melting temperature of ppPEO was found to decrease with increasing plasma power. This was explained by a decrease of the order in the crystals due to formation of chemical defects during the plasma process.

  14. Advances in catalysis

    CERN Document Server

    Gates, Bruce C

    2012-01-01

    Advances in Catalysis fills the gap between the journal papers and the textbooks across the diverse areas of catalysis research. For more than 60 years Advances in Catalysis has been dedicated to recording progress in the field of catalysis and providing the scientific community with comprehensive and authoritative reviews. This series in invaluable to chemical engineers, physical chemists, biochemists, researchers and industrial chemists working in the fields of catalysis and materials chemistry. * In-depth, critical, state-of-the-art reviews * Comprehensive, covers of all as

  15. Advances in catalysis

    CERN Document Server

    Jentoft, Friederike C

    2014-01-01

    Advances in Catalysis fills the gap between the journal papers and the textbooks across the diverse areas of catalysis research. For more than 60 years Advances in Catalysis has been dedicated to recording progress in the field of catalysis and providing the scientific community with comprehensive and authoritative reviews. This series is invaluable to chemical engineers and chemists working in the field of catalysis in academia or industry. Authoritative reviews written by experts in the field. Topics selected to reflect progress of the field. Insightful and critical articles, fully edite

  16. Differentiating homogeneous and heterogeneous water oxidation catalysis: confirmation that [Co4(H2O)2(α-PW9O34)2]10- is a molecular water oxidation catalyst.

    Science.gov (United States)

    Vickers, James W; Lv, Hongjin; Sumliner, Jordan M; Zhu, Guibo; Luo, Zhen; Musaev, Djamaladdin G; Geletii, Yurii V; Hill, Craig L

    2013-09-25

    Distinguishing between homogeneous and heterogeneous catalysis is not straightforward. In the case of the water oxidation catalyst (WOC) [Co4(H2O)2(PW9O34)2](10-) (Co4POM), initial reports of an efficient, molecular catalyst have been challenged by studies suggesting that formation of cobalt oxide (CoOx) or other byproducts are responsible for the catalytic activity. Thus, we describe a series of experiments for thorough examination of active species under catalytic conditions and apply them to Co4POM. These provide strong evidence that under the conditions initially reported for water oxidation using Co4POM (Yin et al. Science, 2010, 328, 342), this POM anion functions as a molecular catalyst, not a precursor for CoOx. Specifically, we quantify the amount of Co(2+)(aq) released from Co4POM by two methods (cathodic adsorptive stripping voltammetry and inductively coupled plasma mass spectrometry) and show that this amount of cobalt, whatever speciation state it may exist in, cannot account for the observed water oxidation. We document that catalytic O2 evolution by Co4POM, Co(2+)(aq), and CoOx have different dependences on buffers, pH, and WOC concentration. Extraction of Co4POM, but not Co(2+)(aq) or CoOx into toluene from water, and other experiments further confirm that Co4POM is the dominant WOC. Recent studies showing that Co4POM decomposes to a CoOx WOC under electrochemical bias (Stracke and Finke, J. Am. Chem. Soc., 2011, 133, 14872), or displays an increased ability to reduce [Ru(bpy)3](3+) upon aging (Scandola, et al., Chem. Commun., 2012, 48, 8808) help complete the picture of Co4POM behavior under various conditions but do not affect our central conclusions.

  17. High N-content a-C:N films elaborated by femtosecond PLD with plasma assistance

    Energy Technology Data Exchange (ETDEWEB)

    Maddi, C. [Université de Lyon, F-69003, Lyon, France, Université de Saint-Étienne, Laboratoire Hubert Curien (UMR 5516 CNRS) , 42000 Saint-Étienne (France); Donnet, C., E-mail: Christophe.Donnet@univ-st-etienne.fr [Université de Lyon, F-69003, Lyon, France, Université de Saint-Étienne, Laboratoire Hubert Curien (UMR 5516 CNRS) , 42000 Saint-Étienne (France); Loir, A.-S.; Tite, T. [Université de Lyon, F-69003, Lyon, France, Université de Saint-Étienne, Laboratoire Hubert Curien (UMR 5516 CNRS) , 42000 Saint-Étienne (France); Barnier, V. [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 Saint-Etienne (France); Rojas, T.C.; Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) , Avda. Américo Vespucio 49, 41092 Sevilla (Spain); Wolski, K. [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 Saint-Etienne (France); Garrelie, F. [Université de Lyon, F-69003, Lyon, France, Université de Saint-Étienne, Laboratoire Hubert Curien (UMR 5516 CNRS) , 42000 Saint-Étienne (France)

    2015-03-30

    Graphical abstract: - Highlights: • Nitrogen doped amorphous carbon films were deposited by DC reactive plasma femtosecond (fs) -PLD and conventional fs-PLD. • High nitrogen content in plasma assisted films. • More ordered sp2 rich graphitic clusters both in terms of structural and topological order. • Correlation length La of the clusters increases with nitrogen incorporation. • Formation of CN bonds at the expense of CC bonds with N content. • At the highest nitrogen concentration, terminal C≡N groups are incorporated in the film. • Correlation between film composition and plasma process. - Abstract: Amorphous carbon nitride (a-C:N) thin films are a interesting class of carbon-based electrode materials. Therefore, synthesis and characterization of these materials have found lot of interest in environmental analytical microsystems. Herein, we report the nitrogen-doped amorphous carbon thin film elaboration by femtosecond pulsed laser deposition (fs-PLD) both with and without a plasma assistance. The chemical composition and atomic bonding configuration of the films were investigated by multi-wavelength (MW) Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and electron energy-loss spectroscopy (EELS). The highest nitrogen content, 28 at.%, was obtained with plasma assistance. The I(D)/I(G) ratio and the G peak position increased as a function of nitrogen concentration, whereas the dispersion and full width at half maximum (FWHM) of G peak decreased. This indicates more ordered graphitic like structures in the films both in terms of topological and structural, depending on the nitrogen content. EELS investigations were correlated with MW Raman results. The interpretation of XPS spectra of carbon nitride films remains a challenge. Plasma assisted PLD in the femtosecond regime led to a significant high nitrogen concentration, which is highlighted on the basis of collisional processes in the carbon plasma plume interacting with the nitrogen

  18. Synthesis of magnetic nanoparticles by atmospheric-pressure glow discharge plasma-assisted electrolysis

    Science.gov (United States)

    Shirai, Naoki; Yoshida, Taketo; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2017-07-01

    For the synthesis of magnetic nanoparticles (NPs), we used plasma-assisted electrolysis in which atmospheric-pressure DC glow discharge using a liquid electrode is combined with electrolysis. The solution surface is exposed to positive ions or electrons in plasma. To synthesize magnetic NPs, aqueous solutions of FeCl2 or an iron electrode immersed in liquid was used to supply iron ions in the liquid. Magnetic NPs were synthesized at the plasma-liquid interface upon the electron irradiation of the liquid surface. In the case of using aqueous solutions of FeCl2, the condition of magnetic NP synthesis depended on the gas species of plasma and the chemical agent in the liquid for controlling oxidization. The amount of magnetic NPs synthesized using plasma is not very large. On the other hand, in the case of using an iron electrode immersed in NaCl solution, magnetic NPs were synthesized without using FeCl2 solutions. When plasma-assisted electrolysis was operated, the iron electrode eluted Fe cations, resulting in the formation of magnetic NPs at the plasma-liquid interface. Magnetic NP synthesis depended on the concentration of NaCl solution and discharge current. The magnetic NPs were identified to be magnetite. By using this method, more magnetite NPs were synthesized than in the case of plasma-assisted electrolysis with FeCl2 aqueous solutions. The pH of the liquid used in plasma-assisted electrolysis was important for the synthesis of magnetite NPs.

  19. 多级纳米孔分子筛在非均相催化中的应用现状及发展前景%Application status and development prospects of hierarchically nanoporous molecular sieves in heterogeneous catalysis

    Institute of Scientific and Technical Information of China (English)

    亢玉红; 李健; 马向荣; 马亚军

    2016-01-01

    传统分子筛因其单一的微孔孔道,在工业应用中表现为扩散阻力差、催化易失活,尤其在涉及大分子的反应过程中催化活性较差是阻碍其工业应用的现实难题,通过优化制备路线得到的多级纳米孔分子筛催化材料可有效解决传统分子筛存在的上述应用缺陷。多级纳米孔分子筛相比传统分子筛因其特殊的孔道结构和物化性能,在非均相催化方面具有丰富的催化活性位点、较短的扩散路径、较高的传递效率和较长的催化寿命,特别在涉及非均相催化反应的现代化学工业中展现出重要的潜在应用价值。综述多级纳米孔分子筛在烃类异构化反应、加氢裂化反应、烷基化与酰基化反应、烯烃氧化反应以及甲醇制烃类等反应中的诸多优势及潜在应用。%Compared to the conventional molecular sieves with single microporous channels,the main pur-pose of the development of synthetic routes for hierarchically nanoporous molecular sieves is to improve the catalytic performances of conventional molecular sieves by resolving some problems such as low molec-ular diffusion efficiency,quick catalytic deactivation and weak activity to bulky molecules. Hierarchically nanoporous molecular sieves with special texture and physicochemical properties possess rich catalytic active sites,short diffusion path,high transfer efficiency,and long catalytic life in heterogeneous catalysis aspect. Hierarchically nanoporous molecular sieves have important and potential application in modern chemical industry involving heterogeneous catalytic reactions. In this paper,the advantages and potential applications of hierarchically nanoporous molecular sieves in hydrocarbon isomerization reaction,hydro-cracking reaction,alkylation and acylation reaction,hydrocarbon oxidation reaction and methanol to hydro-carbon reaction were reviewed.

  20. Emission characteristics of kerosene-air spray combustion with plasma assistance

    Directory of Open Access Journals (Sweden)

    Xingjian Liu

    2015-09-01

    Full Text Available A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.

  1. Simulations of chemical catalysis

    Science.gov (United States)

    Smith, Gregory K.

    This dissertation contains simulations of chemical catalysis in both biological and heterogeneous contexts. A mixture of classical, quantum, and hybrid techniques are applied to explore the energy profiles and compare possible chemical mechanisms both within the context of human and bacterial enzymes, as well as exploring surface reactions on a metal catalyst. A brief summary of each project follows. Project 1 - Bacterial Enzyme SpvC The newly discovered SpvC effector protein from Salmonella typhimurium interferes with the host immune response by dephosphorylating mitogen-activated protein kinases (MAPKs) with a beta-elimination mechanism. The dynamics of the enzyme substrate complex of the SpvC effector is investigated with a 3.2 ns molecular dynamics simulation, which reveals that the phosphorylated peptide substrate is tightly held in the active site by a hydrogen bond network and the lysine general base is positioned for the abstraction of the alpha hydrogen. The catalysis is further modeled with density functional theory (DFT) in a truncated active-site model at the B3LYP/6-31 G(d,p) level of theory. The truncated model suggested the reaction proceeds via a single transition state. After including the enzyme environment in ab initio QM/MM studies, it was found to proceed via an E1cB-like pathway, in which the carbanion intermediate is stabilized by an enzyme oxyanion hole provided by Lys104 and Tyr158 of SpvC. Project 2 - Human Enzyme CDK2 Phosphorylation reactions catalyzed by kinases and phosphatases play an indispensable role in cellular signaling, and their malfunctioning is implicated in many diseases. Ab initio quantum mechanical/molecular mechanical studies are reported for the phosphoryl transfer reaction catalyzed by a cyclin-dependent kinase, CDK2. Our results suggest that an active-site Asp residue, rather than ATP as previously proposed, serves as the general base to activate the Ser nucleophile. The corresponding transition state features a

  2. Heterogeneous catalysis in complex, condensed reaction media

    Energy Technology Data Exchange (ETDEWEB)

    Cantu, David C.; Wang, Yang-Gang; Yoon, Yeohoon; Glezakou, Vassiliki-Alexandra; Rousseau, Roger; Weber, Robert S.

    2017-07-01

    Many reactions required for the upgrading of biomass into fuels and chemicals—hydrogenation, hydrodeoxygenation, hydrocracking—are ostensibly similar to those practiced in the upgrading of petroleum into fuels. But, repurposing hydroprocessing catalysts from refinery operations to treat bio-oil has proved to be unsatisfactory. New catalysts are needed because the composition of the biogenic reactants differs from that of petroleum-derived feedstocks (e.g. the low concentration of sulfur in cellulose-derived biomass precludes use of metal sulfide catalysts unless sulfur is added to the reaction stream). New processes are needed because bio-oils oligomerize rapidly, forming intractable coke and “gunk”, at temperatures so low that the desired upgrading reactions are impractically slow, and so low that the bio-oil upgrading must be handled as a condensed fluid. Ideally, the new catalysts and processes would exploit the properties of the multiple phases present in condensed bio-oil, notably the polarizability and structure of the fluid near a catalyst’s surface in the cybotactic region. The results of preliminary modeling of the cybotactic region of different catalyst surfaces in the hydrogenation of phenol suggest that Pd catalysts supported on hydrophilic surfaces are more active than catalysts based on lipophilic supports because the former serve to enhance the concentration of the phenol in the vicinity of the Pd. The effect stems from thermodynamics, not the rate of mass transport. This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  3. The Electronic Structure Effect in Heterogeneous Catalysis

    DEFF Research Database (Denmark)

    Nilsson, A.; Pettersson, L. G. M.; Hammer, Bjørk

    2005-01-01

    Using a combination of density functional theory calculations and X-ray emission and absorption spectroscopy for nitrogen on Cu and Ni surfaces, a detailed picture is given of the chemisorption bond. It is suggested that the adsorption bond strength and hence the activity of transition metal...... surfaces as catalysts for chemical reactions can be related to certain characteristics of the surface electronic structure....

  4. On the compensation effect in heterogeneous catalysis

    DEFF Research Database (Denmark)

    Pedersen, Thomas Bligaard; Honkala, Johanna Karoliina; Logadottir, Ashildur

    2003-01-01

    why this should be a general effect for a broad class of reactions. We will show that the compensation effect in the rate is intimately linked to the underlying linear relationships between activation energy and stability of intermediates, which have been found to hold for a number of surface...

  5. A molecular view of heterogeneous catalysis

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Nørskov, Jens Kehlet

    2008-01-01

    theoretical methods, detailed experiments on model systems, and synthesis and in situ characterization of nano-structured catalysts, we are witnessing the first examples of complete atomic-scale insight into the structure and mechanism of surface-catalyzed reactions. This insight has already proven its value...

  6. Heterogeneous catalysis: Catch me if you can!

    NARCIS (Netherlands)

    Weckhuysen, B.M.

    2009-01-01

    Chemists are like detectives: they like to know 'whodunit' during a catalytic reaction. Combining advanced electron microscopy with intelligent molecular design has now provided strong evidence for the presence of a highly active site within a complex catalytic solid.

  7. Functional porous organic polymers for heterogeneous catalysis.

    Science.gov (United States)

    Zhang, Yugen; Riduan, Siti Nurhanna

    2012-03-21

    Porous organic polymers (POPs), a class of highly crosslinked amorphous polymers possessing nano-pores, have recently emerged as a versatile platform for the deployment of catalysts. The bottom-up approach for porous organic polymer synthesis provides the opportunity for the design of polymer frameworks with various functionalities, for their use as catalysts or ligands. This tutorial review focuses on the framework structures and functionalities of catalytic POPs. Their structural design, functional framework synthesis and catalytic reactions are discussed along with some of the challenges.

  8. The impact of nanoscience on heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Alexis T.

    2003-03-03

    Most catalysts consist of nanometer-sized particles dispersed on a high-surface area support. Advances in characterization methods have led to a molecular level understanding of the relationships between nanoparticle properties and catalytic performance. Together with novel approaches to nanoparticle synthesis, this knowledge is contributing to the design and development of new catalysts.

  9. µ-reactors for Heterogeneous Catalysis

    DEFF Research Database (Denmark)

    Jensen, Robert

    catalyst surface area by reacting off an adsorbed layer of oxygen with CO. This procedure can be performed at temperatures low enough that sintering of Pt nanoparticles is not an issue. Some results from the reactors are presented. In particular an unexpected oscillation phenomenon of CO-oxidation on Pt...... nanoparticles are presented in detail. The sensitivity of the reactors are currently being investigated with CO oxidation on Pt thin films as a test reaction, and the results so far are presented. We have at this point shown that we are able to reach full conversion with a catalyst area of 38 µm2 with a turn......This thesis is the summary of my work on the µ-reactor platform. The concept of µ-reactors is presented and some of the experimental challenges are outlined. The various experimental issues regarding the platform are discussed and the actual implementation of three generations of the setup...

  10. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial Considerations Transformation du sorbitol en biocarburants par catalyse hétérogène : considérations chimiques et industrielles

    Directory of Open Access Journals (Sweden)

    Vilcocq L.

    2013-05-01

    Full Text Available Decreasing oil supplies and increasing energy demand provide incentives to find alternative fuels. First, the valorisation of edible crops for ethanol and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic biomass as a source of renewable carbon (second generation biofuels. Whereas the cellulosic ethanol production is in progress, a new way consisting of the transformation of ex-lignocellulose sugars and polyols towards light hydrocarbons by heterogeneous catalysis in aqueous phase has been recently described. This process is performed under mild conditions (T La raréfaction du pétrole et l’augmentation conjointe de la demande en carburants ont conduit à la recherche de carburants alternatifs. Dans un premier temps, la valorisation de ressources agricoles alimentaires pour la production d’éthanol et de biodiesel a permis de développer les biocarburants de première génération. Aujourd’hui les travaux de recherche s’orientent vers l’utilisation de biomasse lignocellulosique comme source de carbone renouvelable (biocarburants de deuxième génération. Alors que la filière de l’éthanol cellulosique est en plein développement, une nouvelle voie consistant à transformer des sucres et polyols d’origine lignocellulosique en alcanes légers par catalyse hétérogène bifonctionnelle en phase aqueuse a été récemment décrite. Ce procédé s’effectue à basse température et pression modérée (T < 300 °C et P < 50 bar. Il nécessite, d’une part, la formation d’hydrogène par reformage catalytique de carbohydrates en phase aqueuse et, d’autre part, la déshydratation/hydrogénation de polyols conduisant à un alcane par ruptures sélectives des liaisons C-O. Un défi lié à cette thématique réside dans le développement de systèmes catalytiques multifonctionnels stables, actifs et sélectifs dans les conditions de la réaction de transformation. L’objectif de

  11. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  12. Green chemistry by nano-catalysis

    KAUST Repository

    Polshettiwar, Vivek

    2010-01-01

    Nano-materials are important in many diverse areas, from basic research to various applications in electronics, biochemical sensors, catalysis and energy. They have emerged as sustainable alternatives to conventional materials, as robust high surface area heterogeneous catalysts and catalyst supports. The nano-sized particles increase the exposed surface area of the active component of the catalyst, thereby enhancing the contact between reactants and catalyst dramatically and mimicking the homogeneous catalysts. This review focuses on the use of nano-catalysis for green chemistry development including the strategy of using microwave heating with nano-catalysis in benign aqueous reaction media which offers an extraordinary synergistic effect with greater potential than these three components in isolation. To illustrate the proof-of-concept of this "green and sustainable" approach, representative examples are discussed in this article. © 2010 The Royal Society of Chemistry.

  13. Plasma assisted fuel reforming for on-board hydrogen rich gas production

    OpenAIRE

    Darmon, Adeline; Rollier, Jean-Damien; Duval, Emmanuelle; Gonzalez-Aguilar, Jose; Metkemeijer, Rudolf; Fulcheri, Laurent

    2006-01-01

    Texte disponible en suivant le lien ci-dessous : http://www.cder.dz/A2H2/Medias/Download/Proc%20PDF/PARALLEL%20SESSIONS/%5BS06%5D%20Production%20-%20Hydrocarbons/14-06-06/162.pdf; International audience; Plasma assisted fuel reforming technology appears particularly attractive for automotive applications, especially regarding compactness, response time and absence of catalyst element. In 2003, Renault and CEP have initiated a research programme on this subject. A test bench allowing reformer ...

  14. Kinetics and Catalysis Demonstrations.

    Science.gov (United States)

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  15. Uncertainty propagation in modeling of plasma-assisted hydrogen production from biogas

    Science.gov (United States)

    Zaherisarabi, Shadi; Venkattraman, Ayyaswamy

    2016-10-01

    With the growing concern of global warming and the resulting emphasis on decreasing greenhouse gas emissions, there is an ever-increasing need to utilize energy-production strategies that can decrease the burning of fossil fuels. In this context, hydrogen remains an attractive clean-energy fuel that can be oxidized to produce water as a by-product. In spite of being an abundant species, hydrogen is seldom found in a form that is directly usable for energy-production. While steam reforming of methane is one popular technique for hydrogen production, plasma-assisted conversion of biogas (carbon dioxide + methane) to hydrogen is an attractive alternative. Apart from producing hydrogen, the other advantage of using biogas as raw material is the fact that two potent greenhouse gases are consumed. In this regard, modeling is an important tool to understand and optimize plasma-assisted conversion of biogas. The primary goal of this work is to perform a comprehensive statistical study that quantifies the influence of uncertain rate constants thereby determining the key reaction pathways. A 0-D chemical kinetics solver in the OpenFOAM suite is used to perform a series of simulations to propagate the uncertainty in rate constants and the resulting mean and standard deviation of outcomes.

  16. Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches

    Science.gov (United States)

    Erkens, I. J. M.; Verheijen, M. A.; Knoops, H. C. M.; Keuning, W.; Roozeboom, F.; Kessels, W. M. M.

    2017-02-01

    To date, conventional thermal atomic layer deposition (ALD) has been the method of choice to deposit high-quality Pt thin films grown typically from (MeCp)PtMe3 vapor and O2 gas at 300 °C. Plasma-assisted ALD of Pt using O2 plasma can offer several advantages over thermal ALD, such as faster nucleation and deposition at lower temperatures. In this work, it is demonstrated that plasma-assisted ALD at 300 °C also allows for the deposition of highly conformal Pt films in trenches with high aspect ratio ranging from 3 to 34. Scanning electron microscopy inspection revealed that the conformality of the deposited Pt films was 100% in trenches with aspect ratio (AR) up to 34. These results were corroborated by high-precision layer thickness measurements by transmission electron microscopy for trenches with an aspect ratio of 22. The role of the surface recombination of O-radicals and the contribution of thermal ALD reactions is discussed.

  17. Surface reaction mechanisms during ozone and oxygen plasma assisted atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Rai, Vikrant R; Vandalon, Vincent; Agarwal, Sumit

    2010-09-07

    We have elucidated the reaction mechanism and the role of the reactive intermediates in the atomic layer deposition (ALD) of aluminum oxide from trimethyl aluminum in conjunction with O(3) and an O(2) plasma. In situ attenuated total reflection Fourier transform infrared spectroscopy data show that both -OH groups and carbonates are formed on the surface during the oxidation cycle. These carbonates, once formed on the surface, are stable to prolonged O(3) exposure in the same cycle. However, in the case of plasma-assisted ALD, the carbonates decompose upon prolonged O(2) plasma exposure via a series reaction kinetics of the type, A (CH(3)) --> B (carbonates) --> C (Al(2)O(3)). The ratio of -OH groups to carbonates on the surface strongly depends on the oxidizing agent, and also the duration of the oxidation cycle in plasma-assisted ALD. However, in both O(3) and O(2) plasma cycles, carbonates are a small fraction of the total number of reactive sites compared to the hydroxyl groups.

  18. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The plasma assisted method for continuous measurement of alkali concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. During the reporting period the alkali measuring device has been tested under pressurized conditions at VTT Energy, DMT, Foster-Wheeler Energia and ABB Carbon. Measurements in Delft will be performed during 1996 after installation of the hot gas filter. The original plan for measurements in Delft has been postponed due to schedule delays in Delft. The results are expected to give information about the influence of different process conditions on the generation of alkali vapours, the comparison of different methods for alkali measurement and the specific performance of our system. This will be the first test of the plasma assisted measurement method in a gasification process. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  19. Removal NO with non-thermal plasma assisted catalyst modified activated carbon from coal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.G. [Toyahashi Univ. of Technology, Toyohashi, Aichi (Japan). Dept. of Ecological Engineering; Anhui Univ. of Science and Technology, Huainan, Anhui (China). School of Chemical Engineering; Takashima, T.; Mizuno, A. [Toyahashi Univ. of Technology, Toyohashi, Aichi (Japan). Dept. of Ecological Engineering

    2010-07-01

    Non-thermal plasma can produce a significant number of free electrons, ions, reactive free radicals and a variety of free particles in excited states, containing a large number of active atomic oxygen (O) and higher activity energy so it can increase the chemical reaction rate. An effective way to generate the non-thermal plasma is through dielectric barrier discharge (DBD). There are three types of dielectric barrier discharge reactors: wire (or bar)-cylinder; wire-plate; and plate-plate structure. This paper examined the effect of gas concentration, space velocity, catalyst loading volume, and the input voltage on the removal ratio of nitric oxide (NO) in the process of non-thermal plasma assisted with modified activated carbon from coal. A form of bar-cylinder reactor was used and combined with a catalyst of modified activated carbon from coal. The catalyst was packed between the bar and the cylinder in the fixed bed reactor. It was concluded that a non-thermal plasma assisted catalyst which modifies activated carbon from coal is an effective way to remove NO, and the input voltage, gas concentration, gas space velocity and the catalyst packed weight has a certain degree of impact on the NO removal ratio. 17 refs., 7 figs.

  20. Plasma-assisted electroepitaxy as a novel method for the growth of GaN layers

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, S.V.; Staddon, C.R.; Powell, R.E.L.; Akimov, A.V.; Kent, A.J.; Foxon, C.T. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2012-03-15

    In the current study we have demonstrated the feasibility of a novel approach for the growth of GaN layers, namely plasma-assisted electroepitaxy (PAEE). In this method, we have combined the advantages of the plasma process for producing high concentrations of active N species in the Ga melt with the advantages of electroepitaxy in transferring the N species from the Ga surface to the growth interface, without spontaneous crystallisation on the surface or within the solution. We have designed and built a new growth chamber which allows us to combine the plasma-assisted molecular beam epitaxy process with a liquid phase electroepitaxy system. We have demonstrated that it is possible to grow GaN layers by PAEE at growth temperatures as low as {proportional_to}650 {sup o}C and with low nitrogen overpressures of {proportional_to}3 x 10{sup -5} Torr. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  2. Surface and nanomolecular catalysis

    CERN Document Server

    Richards, Ryan

    2006-01-01

    Using new instrumentation and experimental techniques that allow scientists to observe chemical reactions and molecular properties at the nanoscale, the authors of Surface and Nanomolecular Catalysis reveal new insights into the surface chemistry of catalysts and the reaction mechanisms that actually occur at a molecular level during catalysis. While each chapter contains the necessary background and explanations to stand alone, the diverse collection of chapters shows how developments from various fields each contributed to our current understanding of nanomolecular catalysis as a whole. The

  3. Research on Catalysis.

    Science.gov (United States)

    Bartholomew, Calvin H.; Hecker, William C.

    1984-01-01

    The objectives and philosophy of the Catalysis Laboratory at Brigham Young University are discussed. Also discusses recent and current research activities at the laboratory as well as educational opportunities, research facilities, and sources of research support. (JN)

  4. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  5. Photoluminescence studies of ZnO nanorods grown by plasma-assisted molecular beam epitaxy.

    Science.gov (United States)

    Kim, Min Su; Nam, Giwoong; Leem, Jae-Young

    2013-05-01

    Metal catalyst-free ZnO nanorods were grown on PS with buffer layers grown at 450 degrees C by plasma-assisted molecular beam epitaxy. Room temperature and temperature-dependent photoluminescence were carried out to investigate the optical properties of the ZnO nanorods with the average diameter of 120 nm and length of 300 nm. Three emission peaks, free excition, neutral-donor exciton, and free electron-to-neutral acceptor, were observed at 10 K. Huang-Rhys factor S of the ZnO nanorods was 0.978, which is much higher than that of ZnO thin films. The values of Varshni's empirical equation fitting parameters were alpha = 4 x 10(-3) eV/K, beta = 4.1 x 10(4) K, and E9(0) = 3.388 eV and the activation energy was about 96 meV.

  6. Fabrication of self-organized dots of GaN:Mn using plasma-assisted MBE

    Science.gov (United States)

    Kuroda, S.; Marcet, S.; Bellet-Amalric, E.; Halley, D.; Ferrand, D.; Cibert, J.; Mariette, H.

    2005-02-01

    The growth of self-organized dots of Mn-doped GaN on AlN by plasma-assisted molecular beam epitaxy was studied. The observations of reflection high-energy electron diffraction (RHEED) revealed that the transition of the growth mode from 2D to 3D was delayed by adding a small amount of Mn flux and it disappeared with the further increase in Mn flux. By atomic force microscope (AFM) measurement on a surface with uncapped dots, it was found that the 2D-3D transition occurs with the formation of high dots density only when a tiny amount of Mn flux was added. A possible mechanism for the suppression of the dot formation by additional Mn atoms is discussed.

  7. Low temperature metal free growth of graphene on insulating substrates by plasma assisted chemical vapor deposition

    Science.gov (United States)

    Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650 °C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  8. Growth of MoO3 films by oxygen plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Eric I.; Droubay, Timothy C.; Chambers, Scott A.

    2002-07-22

    The growth of MoO₃ films on SrLaAlO₄(0 0 1), a substrate lattice-matched to b-MoO , by oxygen plasma assisted molecular beam epitaxy was characterized using reflection high-energy electron diffraction (RHEED), X-ray photoelectron spectroscopy, Xray diffraction (XRD), and atomic force and scanning tunneling microscopies (AFM and STM).It was found that the flux of reactive oxygen species to the surface was not high enough to maintain the proper stoichiometry, even at the lowest measurable deposition rates. Therefore, the films were grown by depositing Mo in small increments and then allowing the Mo to oxidize. At 675 K, the films grew epitaxially but in a three-dimensional manner. XRD of films grown under these conditions revealed atetragonal structure that has not been previously observed in bulk MoO₃ samples.

  9. Optoelectronic and structural properties of InGaN nanostructures grown by plasma-assisted MOCVD

    Science.gov (United States)

    Seidlitz, Daniel; Senevirathna, M. K. I.; Abate, Y.; Hoffmann, A.; Dietz, N.

    2015-09-01

    This paper presents optoelectronic and structural layer properties of InN and InGaN epilayers grown on sapphire templates by Migration-Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition (MEPA-MOCVD). Real-time characterization techniques have been applied during the growth process to gain insight of the plasma-assisted decomposition of the nitrogen precursor and associated growth surface processes. Analyzed Plasma Emission Spectroscopy (PES) and UV Absorption Spectroscopy (UVAS) provide detection and concentrations of plasma generated active species (N*/NH*/NHx*). Various precursors have been used to assess the nitrogen-active fragments that are directed from the hollow cathode plasma tube to the growth surface. The in-situ diagnostics results are supplemented with ex-situ materials structures investigation results of nanoscale structures using Scanning Near-field Optical Microscopy (SNOM). The structural properties have been analyzed by Raman spectroscopy and Fourier transform infrared (FTIR) reflectance. The Optoelectronic and optical properties were extracted by modeling the FTIR reflectance (e.g. free carrier concentration, high frequency dielectric constant, mobility) and optical absorption spectroscopy. The correlation and comparison between the in-situ metrology results with the ex-situ nano-structural and optoelectronic layer properties provides insides into the growth mechanism on how plasma-activated nitrogen-fragments can be utilized as nitrogen precursor for group III-nitride growth. The here assessed growth process parameter focus on the temporal precursor exposure of the growth surface, the reactor pressure, substrate temperature and their effects of the properties of the InN and InGaN epilayers.

  10. Catalysis for alternative energy generation

    CERN Document Server

    2012-01-01

    Summarizes recent problems in using catalysts in alternative energy generation and proposes novel solutions  Reconsiders the role of catalysis in alternative energy generation  Contributors include catalysis and alternative energy experts from across the globe

  11. Asymmetric catalysis with helical polymers

    NARCIS (Netherlands)

    Megens, Rik P.; Roelfes, Gerard

    Inspired by nature, the use of helical biopolymer catalysts has emerged over the last years as a new approach to asymmetric catalysis. In this Concept article the various approaches and designs and their application in asymmetric catalysis will be discussed.

  12. Asymmetric catalysis with helical polymers

    NARCIS (Netherlands)

    Megens, Rik P.; Roelfes, Gerard

    2011-01-01

    Inspired by nature, the use of helical biopolymer catalysts has emerged over the last years as a new approach to asymmetric catalysis. In this Concept article the various approaches and designs and their application in asymmetric catalysis will be discussed.

  13. Preface: Catalysis Today

    DEFF Research Database (Denmark)

    Li, Yongdan

    2016-01-01

    This special issue of Catalysis Today with the theme “Sustain-able Energy” results from a great success of the session “Catalytic Technologies Accelerating the Establishment of Sustainable and Clean Energy”, one of the two sessions of the 1st International Symposium on Catalytic Science and Techn......This special issue of Catalysis Today with the theme “Sustain-able Energy” results from a great success of the session “Catalytic Technologies Accelerating the Establishment of Sustainable and Clean Energy”, one of the two sessions of the 1st International Symposium on Catalytic Science...... and Technology in Sustainable Energy and Environment, held in Tianjin, China during October8–10, 2014. This biennial symposium offers an international forum for discussing and sharing the cutting-edge researches and the most recent breakthroughs in energy and environmental technologies based on catalysis...

  14. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    Directory of Open Access Journals (Sweden)

    Katoh Takahisa

    2015-01-01

    Full Text Available Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of this micro-texturing. In the present paper, a new micro-texturing method is developed on the basis of the plasma assisted nitriding to transform the two-dimensionally designed micro-patterns to the three dimensional micro-textures in the martensitic stainless steels. First, original patterns are printed onto the surface of stainless steel molds by using the dispenser or the ink-jet printer. Then, the masked mold is subjected to high density plasma nitriding; the un-masked surfaces are nitrided to have higher hardness, 1400 Hv than the matrix hardness, 200 Hv of stainless steels. This nitrided mold is further treated by sand-blasting to selectively remove the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel mold is fabricated as a tool to duplicate these micro-patterns onto the plastic materials by the injection molding.

  15. Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.

    Science.gov (United States)

    Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit

    2017-09-13

    Surface phenomena during atomic layer etching (ALE) of SiO2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CFx) film deposition and Ar plasma activation of the CFx film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CFx deposition half-cycle from a C4F8/Ar plasma show that an atomically thin mixing layer is formed between the deposited CFx layer and the underlying SiO2 film. Etching during the Ar plasma cycle is activated by Ar(+) bombardment of the CFx layer, which results in the simultaneous removal of surface CFx and the underlying SiO2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CFx deposition, which combined with an ultrathin CFx layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CFx film, ∼3-4 Å of SiO2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CFx layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CFx on reactor walls leads to a gradual increase in the etch per cycle.

  16. Air plasma assisting microcontact deprinting and printing for gold thin film and PDMS patterns.

    Science.gov (United States)

    Gou, Hong-Lei; Xu, Jing-Juan; Xia, Xing-Hua; Chen, Hong-Yuan

    2010-05-01

    In this paper, we present a simple method to fabricate gold film patterns and PDMS patterns by air plasma assisting microcontact deprinting and printing transfer approaches. Chemical gold plating is employed instead of conventional metal evaporation or sputtering to obtain perfect gold film both on flat and topographic PDMS chips, and complicated SAM precoating is replaced by simple air plasma treatment to activate both the surface of gold film and PDMS. In this way, large area patterns of conductive gold film and PDMS patterns could be easily obtained on the elastomeric PDMS substrate. Both the chemical plating gold film and transferred gold film were of good electrochemical properties and similar hydrophilicity with smooth and conductive surface, which made it potentially useful in microfluidic devices and electronics. The gold transfer mechanism is discussed in detail. For typical applications, a cell patterning chip based on the gold pattern was developed to imply the interfacial property, and dielectrophoresis control of live cells was carried out with the patterned gold as interdigital electrodes to show the conductivity.

  17. Development of plasma assisted thermal vapor deposition technique for high-quality thin film

    Science.gov (United States)

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance 75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  18. Plasma-assisted molecular beam epitaxy growth of ZnSnN2

    Science.gov (United States)

    Feldberg, Nathaniel; Aldous, James; Yao, Yuan; Tanveer, Imtiaz; Keen, Benjamin; Linhart, Wojciech; Veal, Tim; Song, Young-Wook; Reeves, Roger; Durbin, Steve

    2012-02-01

    The Zn-IV-nitrides are a promising series of ``earth abundant element'' semiconductors with a predicted band gap range of 0.6 eV to 5.4 eV, which, like the (Al,Ga,In)N family, spans the entire visible solar spectrum. Considering this alternative family has a number of advantages, including the avoidance of indium, the price of which has varied almost an order of magnitude over the past decade, and surface electron accumulation which is present in the In-rich alloys. Not all members of this family have yet been synthesized, in particular ZnSnN2, the most important member for PV with its predicted band gap of approximately 2 eV. We have successfully grown a series of these films using plasma-assisted molecular beam epitaxy using elemental Zn and Sn sources. In this report, we discuss the relationship between process parameters and microstructure, as well as stoichiometry as determined by Rutherford backscattering spectrometry. Additionally, we provide preliminary estimates for its bandgap energy based on photoluminescence and optical absorption.

  19. Gliding arc plasma assisted N2O dissociation for monopropellant propulsion

    Science.gov (United States)

    Bosi, Franco J.; Dobrynin, Danil

    2017-01-01

    In this paper we address the capability of gliding arc (GA) discharges to promote plasma assisted combustion of nitrous oxide gas (N2O) for spacecraft monopropellant thruster applications. N2O is a ‘green’ propellant with interesting properties, but highly inert when used as monopropellant. Higher vibrational temperatures {{T}\\text{v}}>T , and hot spot localized dissociation, achieved within the GA reactor, are able to promote combustion of the gas. The vibrational temperature of the N2 second positive system is estimated by means of optical emission spectroscopy and reaches 5000 K, while the gas temperature reaches 1500 K the degree of N2O decomposition, estimated by FTIR measurements, ranged from 25 to 85%. A kinetic model for N2O dissociation is developed; the model shows that simply heating the gas in the same conditions is not enough to produce appreciable dissociation, providing further evidence of the catalytic action of the plasma. Results allow us to predict the propulsive efficiencies to be about 43%, with a thrust level of 37 mN; this result compares positively with the existing N2O resistojet technology.

  20. Laser diagnostics and modeling of plasma assisted CVD. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Plasma assisted chemical vapor deposition (PACVD) represents a novel approach for utilizing the nonequilibrium effects of reactive plasmas for depositing a wide range of protective hardface coatings that have both wear and erosion application. The nonequilibrium plasma is the heart of this complex system and has the function of generating the reactive molecular fragments (radicals) and atomic species at concentration levels unattainable by other competing processes. It is now widely accepted that such advanced protective hardface coatings materials will play a vital role in the energy technologies of the coming decades, with major applications in diverse areas ranging from aerospace and commercial propulsion systems (jet engines) to automotive components and internal combustion engines, (ceramic heat engines), cutting and machining tools, electronic packaging, thermal management, and possibly room-temperature superconductors. Wear and associated erosion aspects are responsible for an enormous expenditure of energy and fiscal resources in almost all DOE applications. Many of the results from this investigation arc also applicable to other materials processing reactors such as electron beam, PVD, CVD, laser ablation, microwave, high energy cathodic arc, thermal plasma (rf or dc) and combustion spray. These also include the various hybrid systems such as the rf/dc arc as used in Japan for diamond deposition and e-beam PVD deposition of advanced titanium alloy coatings as used at the Paton Institute in Kiev, Ukraine.

  1. Nitride-based laser diodes grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Skierbiszewski, C.; Turski, H.; Muziol, G.; Siekacz, M.; Sawicka, M.; Cywiński, G.; Wasilewski, Z. R.; Porowski, S.

    2014-02-01

    The progress in the growth of nitride-based laser diodes (LDs) made by plasma-assisted molecular beam epitaxy (PAMBE) is reviewed. In this work we describe the GaN and InGaN growth peculiarities, p-type doping efficiency, and the properties of InGaN quantum wells (QWs) grown by PAMBE. We demonstrate continuous wave (cw) LDs operating in the range from 410 to 482 nm. These LDs were grown on low dislocation (0 0 0 1) c-plane bulk GaN substrate, which allow one to fabricate cw LDs with a lifetime exceeding 2000 h. Also, the ultraviolet LDs at 388 nm grown on (2 0 -2 1) semipolar substrates are discussed. The use of high active nitrogen fluxes up to 2 µm/h during the InGaN growth was essential for pushing the lasing wavelengths of PAMBE LDs above 460 nm. Recent advancement of InGaN growth by PAMBE allows one to demonstrate high-quality quantum QWs and excellent morphology for thick layers. We discuss the influence of LDs design on their parameters such as lasing threshold current and laser beam quality.

  2. Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic

    Institute of Scientific and Technical Information of China (English)

    雷雯雯; 李兴存; 陈强; 王正铎

    2012-01-01

    Atomic layer deposition (ALD) technique is used in the preparation of organic/inorganic layers, which requires uniform surfaces with their thickness down to several nanometers. For film with such thickness, the growth mode defined as the arrangement of clusters on the surface during the growth is of significance. In this work, Al2O3 thin film was deposited on various interfacial species of pre-treated polyethylene terephthalate (PET, 12 μm) by plasma assisted atomic layer deposition (PA-ALD), where trimethyl aluminium was used as the Al precursor and O2 as the oxygen source. The interracial species, -NH3, -OH, and -COOH as well as SiCHO (derived from monomer of HMDSO plasma), were grafted previously by plasma and chemical treatments. The growth mode of PA-ALD Al2O3 was then investigated in detail by combining results from in-situ diagnosis of spectroscopic ellipsometry (SE) and ex-situ characterization of as-deposited layers from the morphologies scanned by atomic force microscopy (AFM). In addition, the oxygen transmission rates (OTR) of the original and treated plastic films were measured. The possible reasons for the dependence of the OTR values on the surface species were explored.

  3. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    Science.gov (United States)

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications.

  4. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Overbury, Steven {Steve} H [ORNL; Coates, Leighton [ORNL; Herwig, Kenneth W [ORNL; Kidder, Michelle [ORNL

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  5. Pollution Control by Catalysis

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus

    1998-01-01

    The report summarises the results of two years of collaboration supported by INTAS between Department of Chemistry,DTU,DK , IUSTI,Universite de Provence,FR, ICE/HT University 6of Patras,GR, and Boreskov Institute of Catalysis,RU.The project has been concerned with mechanistic studies of deNOx and...

  6. Pollution Control by Catalysis

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus

    1998-01-01

    The report summarises the results of two years of collaboration supported by INTAS between Department of Chemistry,DTU,DK , IUSTI,Universite de Provence,FR, ICE/HT University 6of Patras,GR, and Boreskov Institute of Catalysis,RU.The project has been concerned with mechanistic studies of deNOx and...

  7. Anion-π catalysis.

    Science.gov (United States)

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-05

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  8. The Technology of Non-thermal Plasma Assisted NH3-SCR Reduce Marine Diesel Emission and Aldehydes Byproducts Formation

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-12-01

    Full Text Available This study describes briefly various after-treatment technologies in marine diesel engines and application difficulties of DPF and SCR are included. An experiment has been conducted using non-thermal plasma generated by Dielectric Barrier Discharge (DBD process assisted NH3-SCR catalyst to reduce the nitrogen oxides (NOx from diesel engine exhaust. The formation mechanism of byproducts-type such as HCHO and CH3CHO in the non-thermal plasma assisted NH3-SCR hybrid system.

  9. Surface science of heterogeneous reactions.

    Science.gov (United States)

    White, J M

    1982-10-29

    Some of the present and future directions for surface science as a growing and naturally interdisciplinary subject are reviewed. Particular attention is given to surface reaction chemistry as it is related to heterogenous catalysis, a subject area where there are abundant opportunities for detailed measurements of structure and dynamics at the molecular level.

  10. Concepts of Modern Catalysis and Kinetics

    CERN Document Server

    Chorkendorff, I

    2003-01-01

    Until now, the literature has offered a rather limited approach to the use of fundamental kinetics and their application to catalytic reactions. Subsequently, this book spans the full range from fundamentals of kinetics and heterogeneous catalysis via modern experimental and theoretical results of model studies to their equivalent large-scale industrial production processes. The result is key knowledge for students at technical universities and professionals already working in industry. "...such an enterprise will be of great value to the community, to professionals as well as graduate an

  11. Water/O2-plasma-assisted treatment of PCL membranes for biosignal immobilization.

    Science.gov (United States)

    Saşmazel, Hilal Türkoğlu; Manolache, Sorin; Gümüşderelioğlu, Menemşe

    2009-01-01

    The main purpose of this study was to obtain COOH functionalities on the surface of poly-epsilon-caprolactone (PCL) membranes using low-pressure water/O(2)-plasma-assisted treatment. PCL membranes were prepared using the solvent-casting technique. Then, low-pressure water/O(2) plasma treatments were performed in a cylindrical, capacitively coupled RF-plasma-reactor in three steps: H(2)O/O(2)-plasma treatment; in situ (oxalyl chloride vapors) gas/solid reaction to convert -OH functionalities into -COCl groups; and hydrolysis for final -COOH functionalities. Optimization of plasma modification processes was done using the DoE software program. COOH and OH functionalities on modified surfaces were detected quantitatively using the fluorescent labeling technique and an UVX 300G sensor. Chemical structural information of untreated, plasma treated and oxalyl chloride functionalized PCL membranes were acquired using pyrolysis GC/MS and ESCA analysis. High-resolution AFM images revealed that nanopatterns were more affected than micropatterns by plasma treatments. AFM images recorded with amino-functionalized tips presented increased size of the features on the surface that suggests higher density of the carboxyls on the nanotopographical elements. Low-pressure water/O(2)-plasma-treated and oxalyl chloride functionalized samples were biologically activated with insulin and/or heparin biosignal molecules using a PEO (polyoxyethylene bis amine) spacer. The success of the immobilization process was checked qualitatively by ESCA analysis. In addition, fluorescent labeling techniques were used for the quantitative determination of immobilized biomolecules. Cell-culture experiments indicated that biomolecule immobilization onto PCL scaffolds was effective on L929 cell adhesion and proliferation, especially in the presence of heparin.

  12. Comparative Shock-Tube Study of Autoignition and Plasma-Assisted Ignition of C2-Hydrocarbons

    Science.gov (United States)

    Kosarev, Ilya; Kindysheva, Svetlana; Plastinin, Eugeny; Aleksandrov, Nikolay; Starikovskiy, Andrey

    2015-09-01

    The dynamics of pulsed picosecond and nanosecond discharge development in liquid water, ethanol and hexane Using a shock tube with a discharge cell, ignition delay time was measured in a lean (φ = 0.5) C2H6:O2:Ar mixture and in lean (φ = 0.5) and stoichiometric C2H4:O2:Ar mixtures with a high-voltage nanosecond discharge and without it. The measured results were compared with the measurements made previously with the same setup for C2H6-, C2H5OH- and C2H2-containing mixtures. It was shown that the effect of plasma on ignition is almost the same for C2H6, C2H4 and C2H5OH. The reduction in time is smaller for C2H2, the fuel that is well ignited even without the discharge. Autoignition delay time was independent of the stoichiometric ratio for C2H6 and C2H4, whereas this time in stoichiometric C2H2- and C2H5OH-containing mixtures was noticeably shorter than that in the lean mixtures. Ignition after the discharge was not affected by a change in the stoichiometric ratio for C2H2 and C2H4, whereas the plasma-assisted ignition delay time for C2H6 and C2H5OH decreased as the equivalence ratio changed from 1 to 0.5. Ignition delay time was calculated in C2-hydrocarbon-containing mixtures under study by simulating separately discharge and ignition processes. Good agreement was obtained between new measurements and calculated ignition delay times.

  13. Magnetic Catalysis in Graphene

    CERN Document Server

    Winterowd, Christopher; Zafeiropoulos, Savvas

    2015-01-01

    One of the most important developments in condensed matter physics in recent years has been the discovery and characterization of graphene. A two-dimensional layer of Carbon arranged in a hexagonal lattice, graphene exhibits many interesting electronic properties, most notably that the low energy excitations behave as massless Dirac fermions. These excitations interact strongly via the Coulomb interaction and thus non-perturbative methods are necessary. Using methods borrowed from lattice QCD, we study the graphene effective theory in the presence of an external magnetic field. Graphene, along with other $(2+1)$-dimensional field theories, has been predicted to undergo spontaneous breaking of flavor symmetry including the formation of a gap as a result of the external magnetic field. This phenomenon is known as magnetic catalysis. Our study investigates magnetic catalysis using a fully non-perturbative approach.

  14. Solid Base Catalysis

    CERN Document Server

    Ono, Yoshio

    2011-01-01

    The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to whic...

  15. New and future developments in catalysis activation of carbon dioxide

    CERN Document Server

    Suib, Steven L

    2013-01-01

    New and Future Developments in Catalysis is a package of books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. This volume presents a complete picture of all carbon dioxide (CO2) sources, outlines the environmental concerns regarding CO2, and critica

  16. New developments in oxidation catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Rosowski, F. [BASF SE, Ludwigshafen (Germany)

    2011-07-01

    The impact of heterogeneous catalysis on the economy can be depicted by the global revenue of the chemical industry in 2006, which accounted for 2200 billion Euros with a share of all chemical products produced applying heterogeneous catalysis of about two thirds. [1] The range of products is enormous and they contribute greatly to the quality of our lifes. The advancement in the development of basic and intermediate chemical products is crucially dependent on either the further development of existing catalyst systems or the development of new catalysts and key to success for the chemical industry. Within the context of oxidation catalysis, the following driving forces are guiding research activities: There is a continuous desire to increase the selectivity of a given process in response to both economic as well as ecological needs and taking advantage of higher efficiencies in terms of cost savings and a better utilization of raw materials. A second motivation focuses on raw material change to all abundant and competitive feedstocks requiring both new developments in catalyst design as well as process technology. A more recent motivation refers to the use of metal oxide redox systems which are key to success for the development of novel technologies allowing for the separation of carbon dioxide and the use of carbon dioxide as a feedstock molecule as well as storing renewable energy in a chemical. To date, general ab initio approaches are known for the design of novel catalytic materials only for a few chemical reactions, whereas most industrial catalytic processes have been developed by empirical methods. [2] The development of catalytic materials are either based on the targeted synthesis of catalytic lead structures as well as high throughput methods that allow for the screening of a large range of parameters. [3 - 5] The successful development of catalysts together with reactor technology has led to both significant savings in raw materials and emissions. The

  17. Catalysis and biocatalysis program

    Science.gov (United States)

    Ingham, J. D.

    1993-01-01

    This final report presents a summary of research activities and accomplishments for the Catalysis and Biocatalysis Program, which was renamed the Biological and Chemical Technologies Research (BCTR) Program, currently of the Advanced Industrial Concepts Division (AICD), Office of Industrial Technologies of the Department of Energy (DOE). The Program was formerly under the Division of Energy Conversion and Utilization Technologies (ECUT) until the DOE reorganization in April, 1990. The goals of the BCTR Program are consistent with the initial ECUT goals, but represent an increased effort toward advances in chemical and biological technology transfer. In addition, the transition reflects a need for the BCTR Program to assume a greater R&D role in chemical catalysis as well as a need to position itself for a more encompassing involvement in a broader range of biological and chemical technology research. The mission of the AICD is to create a balanced Program of high risk, long-term, directed interdisciplinary research and development that will improve energy efficiency and enhance fuel flexibility in the industrial sector. Under AICD, the DOE Catalysis and Biocatalysis Program sponsors research and development in furthering industrial biotechnology applications and promotes the integrated participation of universities, industrial companies, and government research laboratories.

  18. Catalysis on cobalt oxide-based nanocatalysts

    Science.gov (United States)

    Zhang, Shiran

    Heterogeneous catalysis, being the focus of attention in the realm of catalysis, plays a vital role in modern chemical and energy industries. A prototype of heterogeneous catalyst consists of metal nanoparticles dispersed and supported on a substrate. Transition metal oxide is one of the key components of heterogeneous catalyst and is frequently used as catalyst support for noble metal nanoparticle catalysts due to low cost. As a result of the high cost of noble metal elements, it is particularly favorable to design and develop transition metal oxide-based nanocatalysts mainly made of earthabundant elements with no or less noble metal with comparable or better catalytic performance than noble metal-based nanocatalysts in a catalytic reaction. In some cases, surface chemistry and structure of nanocatalysts are not invariable during catalysis. They evolve in terms of surface restructuring or phase change, which contributes to the complexity of catalyst surface under different catalytic conditions. Transition metal oxides, especially reducible transition metal oxides, have multiple cationic valence states and crystallographic structures. New catalytic active phases or sites could be formed upon surface restructuring under certain catalytic conditions while they may not be preserved if exposed to ambient conditions. Thus, it is essential to characterize catalyst surface under reaction conditions so that chemistry and structure of catalyst surface could be correlated with the corresponding catalytic performance. It also suggests a new route to design nanocatalysts through restructuring catalyst precursor under certain catalytic conditions tracked with in-situ analytical techniques. Catalysis occurs on catalyst surface. For noble metal nanoparticle catalysts, only atoms exposed on surface participate in catalytic processes, while atoms in bulk do not. In order to make full use of noble metal atoms, it is crucial to maximize the dispersion. A configuration of noble metal

  19. Microwave plasma assisted chemical vapor deposition of ultra-nanocrystalline diamond films

    Science.gov (United States)

    Huang, Wen-Shin

    Microwave plasma assisted ultra-nanocrystalline diamond film deposition was investigated using hydrogen deficient, carbon containing argon plasma chemistries with MSU-developed microwave plasma reactors. Ultra-nanocrystalline diamond film deposition on mechanically scratched silicon wafers was experimentally explored over the following input variables: (1) pressure: 60--240Torr, (2) total gas flow rate: 101--642 sccm, (3) input microwave power 732--1518W, (4) substrate temperature: 500°C--770°C, (5) deposition time: 2--48 hours, and (6) N2 impurities 5--2500 ppm. H2 concentrations were less than 9%, while CH 4 concentration was 0.17--1.85%. It was desired to grow films uniformly over 3″ diameter substrates and to minimize the grain size. Large, uniform, intense, and greenish-white discharges were sustained in contact with three inch silicon substrates over a 60--240 Torr pressure regime. At a given operating pressure, film uniformity was controlled by adjusting substrate holder geometry, substrate position, input microwave power, gas chemistries, and total gas flow rates. Film ultra-nanocrystallinity and smoothness required high purity deposition conditions. Uniform ultra-nanocrystalline films were synthesized in low leak-rate system with crystal sizes ranging from 3--30 nm. Films with 11--50 nm RMS roughness and respective thickness values of 1--23 mum were synthesized over 3″ wafers under a wide range of different deposition conditions. Film RMS roughness 7 nm was synthesized with thickness of 430 nm. Film uniformities of almost 100% were achieved over three inch silicon wafers. UV Raman and XRD characterization results indicated the presence of diamond in the synthesized films. Optical Emission Spectroscopy measurements showed that the discharge gas temperature was in excess of 2000 K. The synthesized films are uniformly smooth and the as grown ultra-nanocrystalline diamond can be used for a high frequency SAW device substrate material. IR measurements

  20. Numerical study of nonequilibrium plasma assisted detonation initiation in detonation tube

    Science.gov (United States)

    Zhou, Siyin; Wang, Fang; Che, Xueke; Nie, Wansheng

    2016-12-01

    Nonequilibrium plasma has shown great merits in ignition and combustion nowadays, which should be especially useful for hypersonic propulsion. A coaxial electrodes configuration was established to investigate the effect of alternating current (AC) dielectric barrier discharge nonequilibrium plasma on the detonation initiation process in a hydrogen-oxygen mixture. A discharge simulation-combustion simulation loosely coupled method was used to simulate plasma assisted detonation initiation. First, the dielectric barrier discharge in the hydrogen-oxygen mixture driven by an AC voltage was simulated, which takes 17 kinds of particles (including positively charged particles, negatively charged particles, and neutral particles) and 47 reactions into account. The temporal and spatial characteristics of the discharge products were obtained. Then, the discharge products were incorporated into the combustion model of a detonation combustor as the initial conditions for the later detonation initiation simulation. Results showed that the number density distributions of plasma species are different in space and time, and develop highly nonuniformly from high voltage electrode to grounded electrode at certain times. All the active species reach their highest concentration at approximately 0.6T (T denotes a discharge cycle). Compared with the no plasma case, the differences of flowfield shape mainly appear in the early stage of the deflagration to detonation transition process. None of the sub-processes (including the very slow combustion, deflagration, over-driven detonation, detonation decay, and propagation of a self-sustained stable detonation wave) have been removed by the plasma. After the formation of a C-J detonation wave, the whole flowfield remains unchanged. With the help of plasma, the deflagration to detonation transition (DDT) time and distance are reduced by about 11.6% and 12.9%, respectively, which should be attributed to the active particles effect of

  1. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    McSkimming, Brian M., E-mail: mcskimming@engineering.ucsb.edu; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Chaix, Catherine [RIBER S.A., 3a Rue Casimir Périer, BP 70083, 95873 Bezons Cedex (France)

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  2. Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers.

    Science.gov (United States)

    Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana

    2015-10-14

    Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred

  3. Development and comparison of the effectivity of oxidation processes initiated by radicals, created by heterogeneous catalysis and by high pressure process for the reduction of persistent organic sewage pollutants. Final report; Entwicklung und vergleichende Bewertung der Leistungsfaehigkeit von radikalisch initiierten oxidativen Verfahren auf Traegerkatalysator- und Hochdruckbasis zum Abbau persistenter organischer Wasserschadstoffe. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bach, G.; Maeurer, H.

    2002-07-01

    Persistente and highly toxic sewages with an extremely high content of substances are still a problem in the waste water management. Wet oxidation offers a possibility to reduce the pollutant content in the water. Comparative experiments of the efficiency of oxidation initiated by radicals were carried out, using as heterogeneous catalysis on strap catalyst base as cavitation. By means of the wet oxidation on strap catalyst base with H{sub 2}O{sub 2} as oxidation reagent it was possible, to decontaminate effectively as single pollutants in model sewages as complex substance mixtures in real sewages. The tested catalytic systems worked especially effectively for high pollutant concentrations. At lower concentrations of sewage pollutants the amount of H{sub 2}O{sub 2} must be increased in regard to the actual CSB. In real sewages the pollutant decrease was, related on the TOC, in the cut, at 50%, a raise of the average concentration of the oxidation agent didn't produce any further decrease of the pollutant concentration. Aromatic hydrocarbons could be reduced more effectively than aliphatic ones. The conception for a technical plant was developed including cost estimate. The reduction of pollutants by cavitation was fundamentally lower than by using the heterogeneous catalysis way. Without addition of an oxidation agent (i.e. H{sub 2}O{sub 2}) only a TOC decrease of approx. 15% was registered in real sewages. The pollutant reduction increased at higher pollutant concentration. A complete elimination of all pollutants could not be obtained in none of the examined cases neither at model nor at real sewages. Especially the long reaction times (6 to 24 h) of the cavitation process in comparison with those, necessary for the catalytic reaction (2 to 6 h) are hindering a technical realization of the cavitation process, which seems to be doubtful for this and other reasons. So the use of cavitation in industrial scale sewage cleaning plants under the parameter

  4. Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation

    DEFF Research Database (Denmark)

    Nielsen, Martin

    2015-01-01

    in hydrogen production from biomass using homogeneous catalysis. Homogeneous catalysis has the advance of generally performing transformations at much milder conditions than traditional heterogeneous catalysis, and hence it constitutes a promising tool for future applications for a sustainable energy sector......, and are fundamental for the thrive of almost all business fields. The latter include the industries of agriculture, food additives, pharmaceuticals, electronics, plastic, fragrances, and more. Today, the major source of both energy and bulk chemicals is fossil fuels, being responsible for more than 80 % of the energy...... dehydrogenation. The third chapter, Biorelevant Substrates, concentrates on the use of alcohols such as ethanol, which are biomass related. The topic is alcohol acceptorless dehydrogenation reactions for both H2 production and the concurrent synthetic application. Finally, Chap. 4, Substrates for H2 Storage...

  5. Inorganic Reaction Mechanisms Part II: Homogeneous Catalysis

    Science.gov (United States)

    Cooke, D. O.

    1976-01-01

    Suggests several mechanisms for catalysis by metal ion complexes. Discusses the principal factors of importance in these catalysis reactions and suggests reactions suitable for laboratory study. (MLH)

  6. Mechanochemistry, catalysis, and catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Butyagin, P.Yu.

    1987-07-01

    The physical basis of mechanochemistry and the reasons for the initiation and acceleration of chemical reactions upon the mechanical treatment of solids have been considered. The phenomenon of mechanical catalysis has been described in the example case of the oxidation of CO on oxide surfaces, and the nature of the active sites and the laws governing the mechanically activated chemisorption of gases on cleavage and friction surfaces of solids have been examined. The possibilities of the use of the methods of mechanochemistry in processes used to prepare catalysts have been analyzed in examples of decomposition reactions of inorganic compounds and solid-phase synthesis.

  7. Electron Transfer Chain Catalysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Electron-transfer chain (ETC) catalysis belongs to the family of chain reactions where the electron is the catalyst. The ETC mechanism could be initiated by chemical activation, electrochemistry, or photolysis. If this pathway is applied to the preparation of organometallic complexes, it utilizes the greatly enhanced reactivity of organometallic 17e and 19e radicals. The chemical propagation is followed by the cross electron-transfer while the electron-transfer step is also followed by the chemical propagation, creating a loop in which reactants are facilely transformed into products. Interestingly the overall reaction is without any net redox change.

  8. Electron Transfer Chain Catalysis

    Institute of Scientific and Technical Information of China (English)

    LIU; LingKang

    2001-01-01

    Electron-transfer chain (ETC) catalysis belongs to the family of chain reactions where the electron is the catalyst. The ETC mechanism could be initiated by chemical activation, electrochemistry, or photolysis. If this pathway is applied to the preparation of organometallic complexes, it utilizes the greatly enhanced reactivity of organometallic 17e and 19e radicals. The chemical propagation is followed by the cross electron-transfer while the electron-transfer step is also followed by the chemical propagation, creating a loop in which reactants are facilely transformed into products. Interestingly the overall reaction is without any net redox change.  ……

  9. Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Schultz-Jensen, Nadja; Jensen, J. S.

    2015-01-01

    The removal of cutin and epicuticular waxes of wheat straw by PAP (plasma assisted pretreatment) was investigated. Wax removal was observed by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) as chemical change on the surface of most intensively pretreated samples as well...... as with Scanning Electron Microscopy (SEM) imaging. Compounds resulting from wax degradation were analyzed in the washing water of PAP wheat straw. The wax removal enhanced enzymatic hydrolysis yield and, consequently, the efficiency of wheat straw conversion into ethanol. In total, PAP increased the conversion...

  10. Integration of plasma-assisted surface chemical modification, soft lithography, and protein surface activation for single-cell patterning

    Science.gov (United States)

    Cheng, Q.; Komvopoulos, K.

    2010-07-01

    Surface patterning for single-cell culture was accomplished by combining plasma-assisted surface chemical modification, soft lithography, and protein-induced surface activation. Hydrophilic patterns were produced on Parylene C films deposited on glass substrates by oxygen plasma treatment through the windows of polydimethylsiloxane shadow masks. After incubation first with Pluronic F108 solution and then serum medium overnight, surface seeding with mesenchymal stem cells in serum medium resulted in single-cell patterning. The present method provides a means of surface patterning with direct implications in single-cell culture.

  11. Ultraviolet light-emitting diodes grown by plasma-assisted molecular beam epitaxy on semipolar GaN (2021) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sawicka, M.; Grzanka, S.; Skierbiszewski, C. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland); TopGaN Sp. z o.o., Sokolowska 29/37, 01-142 Warsaw (Poland); Cheze, C. [TopGaN Sp. z o.o., Sokolowska 29/37, 01-142 Warsaw (Poland); Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Turski, H.; Muziol, G.; Krysko, M.; Grzanka, E.; Sochacki, T. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland); Hauswald, C.; Brandt, O. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Siekacz, M. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland); Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Kucharski, R. [Ammono S.A., Czerwonego Krzyza 2/31, 00-377 Warsaw (Poland); Remmele, T.; Albrecht, M. [Leibniz Institute for Crystal Growth, Max-Born Strasse 2, Berlin 12489 (Germany)

    2013-03-18

    Multi-quantum well (MQW) structures and light emitting diodes (LEDs) were grown on semipolar (2021) and polar (0001) GaN substrates by plasma-assisted molecular beam epitaxy. The In incorporation efficiency was found to be significantly lower for the semipolar plane as compared to the polar one. The semipolar MQWs exhibit a smooth surface morphology, abrupt interfaces, and a high photoluminescence intensity. The electroluminescence of semipolar (2021) and polar (0001) LEDs fabricated in the same growth run peaks at 387 and 462 nm, respectively. Semipolar LEDs with additional (Al,Ga)N cladding layers exhibit a higher optical output power but simultaneously a higher turn-on voltage.

  12. Temperature measurement of plasma-assisted flames: comparison between optical emission spectroscopy and 2-color laser induced fluorescence techniques

    KAUST Repository

    Lacoste, Deanna A.

    2015-03-30

    Accurate thermometry of highly reactive environments, such as plasma-assisted combustion, is challenging. With the help of conical laminar premixed methane-air flames, this study compares two thermometry techniques for the temperature determination in a combustion front enhanced by nanosecond repetitively pulsed (NRP) plasma discharges. Based on emission spectroscopic analysis, the results show that the rotational temperature of CH(A) gives a reasonable estimate for the adiabatic flame temperature, only for lean and stoichiometric conditions. The rotational temperature of N2(C) is found to significantly underestimate the flame temperature. The 2-color OH-PLIF technique gives correct values of the flame temperature.

  13. Catalysis and prebiotic RNA synthesis

    Science.gov (United States)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  14. Glow Discharge Plasma-Assisted Preparation of Nickel-Based Catalyst for Carbon Dioxide Reforming of Methane

    Institute of Scientific and Technical Information of China (English)

    Fang Guo; Wei Chu; Jun-qiang Xu; Lin Zhong

    2008-01-01

    A plasma-assisted method was employed to prepare Ni/γ-Al2O3 catalyst for carbon dioxide reforming of methane reaction. The novel catalyst possessed higher activity and better coke-suppression performance than those of the conventional calcination catalyst. To achieve the same CH4 conversion, the conventional catalyst needed higher reaction temperature, about 50 ℃ higher than that of the N2 plasma-treated catalyst.After the evaluation test, the deactivation rate of the novel catalyst was 1.7%, compared with 15.2% for the conventional catalyst. Different from the characterization results of the calcined catalyst, a smaller average pore diameter and a higher specific surface area were obtained for the plasma-treated catalyst.The variations of the reduction peak temperatures and areas indicated that the catalyst reducibility was promoted by plasma assistance. The dispersion of nickel was also remarkably improved, which was helpful for controlling the ensemble size of metal atoms on the catalyst surface. The modification effect of plasmaassisted preparation on the surface property of alumina supported catalyst was speculated to account for the concentration increase of absorbed CO2. An enhancement of CO2 adsorption was propitious to the inhibition of carbon formation. The coke amount deposited on plasma treated catalyst was much smaller than that on the conventional catalyst.

  15. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-08-31

    We report the growth and characterization of III-nitride ternary thin films (Al{sub x}Ga{sub 1−x}N, In{sub x}Al{sub 1−x}N and In{sub x}Ga{sub 1−x}N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxy • Growth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures.

  16. Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time

    Science.gov (United States)

    Knoops, Harm C. M.; de Peuter, K.; Kessels, W. M. M.

    2015-07-01

    The requirements on the material properties and growth control of silicon nitride (SiNx) spacer films in transistors are becoming ever more stringent as scaling of transistor structures continues. One method to deposit high-quality films with excellent control is atomic layer deposition (ALD). However, depositing SiNx by ALD has turned out to be very challenging. In this work, it is shown that the plasma gas residence time τ is a key parameter for the deposition of SiNx by plasma-assisted ALD and that this parameter can be linked to a so-called "redeposition effect". This previously ignored effect, which takes place during the plasma step, is the dissociation of reaction products in the plasma and the subsequent redeposition of reaction-product fragments on the surface. For SiNx ALD using SiH2(NHtBu)2 as precursor and N2 plasma as reactant, the gas residence time τ was found to determine both SiNx film quality and the resulting growth per cycle. It is shown that redeposition can be minimized by using a short residence time resulting in high-quality films with a high wet-etch resistance (i.e., a wet-etch rate of 0.5 nm/min in buffered HF solution). Due to the fundamental nature of the redeposition effect, it is expected to play a role in many more plasma-assisted ALD processes.

  17. CATALYSIS SCIENCE AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M. ABRAMS; R. BAKER; ET AL

    2000-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Our objectives were to develop a multidisciplinary team and capabilities to develop a fundamental understanding of homogeneous, heterogeneous, and heterogenized catalysts. With the aid of theoretical chemistry approaches we explored and characterized the chemical reactivity and physical properties of a large number of catalytic systems.

  18. Catalysis in the alkylation reaction of 1-naphthol with epichlorohydrin

    Directory of Open Access Journals (Sweden)

    SLOBODANKA JOVANOVIC

    2006-09-01

    Full Text Available Two new and improved procedures were developed for the synthesis of 1-(1-naphthyloxy-2,3-epoxypropane as an important intermediate in the production of the beta-blocker and antioxidant, 1-[(1-methylethylamino]-3-(1-naphthyloxy-2-propanol (propranolol. Both base homogeneous and heterogeneous PTC catalysis were employed. High yields and remarkable selectivity were achieved. The improved purity is particularly important, in view of the quality requirements for propranolol hydrochloride as an active pharmaceutical ingredient.

  19. Spin-modified catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, R. [Department of Physics and Astronomy and NCMN, University of Nebraska, Lincoln, Nebraska 68588 (United States); School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, Himachal Pradesh (India); Manchanda, P.; Enders, A.; Balamurugan, B.; Sellmyer, D. J.; Skomski, R., E-mail: rskomski@unl.edu [Department of Physics and Astronomy and NCMN, University of Nebraska, Lincoln, Nebraska 68588 (United States); Kashyap, A. [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, Himachal Pradesh (India); Sykes, E. C. H. [Department of Chemistry, Pearson Chemistry Laboratory, Tufts University, Medford, Massachusetts 02155 (United States)

    2015-05-07

    First-principle calculations are used to explore the use of magnetic degrees of freedom in catalysis. We use the Vienna Ab-Initio Simulation Package to investigate both L1{sub 0}-ordered FePt and CoPt bulk materials and perform supercell calculations for FePt nanoclusters containing 43 atoms. As the catalytic activity of transition-metal elements and alloys involves individual d levels, magnetic alloying strongly affects the catalytic performance, because it leads to shifts in the local densities of states and to additional peaks due to magnetic-moment formation. The peak shift persists in nanoparticles but is surface-site specific and therefore depends on cluster size. Our research indicates that small modifications in stoichiometry and cluster size are a useful tool in the search for new catalysts.

  20. Asymmetric trienamine catalysis: new opportunities in amine catalysis.

    Science.gov (United States)

    Kumar, Indresh; Ramaraju, Panduga; Mir, Nisar A

    2013-02-07

    Amine catalysis, through HOMO-activating enamine and LUMO-activating iminium-ion formation, is receiving increasing attention among other organocatalytic strategies, for the activation of unmodified carbonyl compounds. Particularly, the HOMO-raising activation concept has been applied to the greatest number of asymmetric transformations through enamine, dienamine, and SOMO-activation strategies. Recently, trienamine catalysis, an extension of amine catalysis, has emerged as a powerful tool for synthetic chemists with a novel activation strategy for polyenals/polyenones. In this review article, we discuss the initial developments of trienamine catalysis for highly asymmetric Diels-Alder reactions with different dienophiles and emerging opportunities for other types of cycloadditions and cascade reactions.

  1. Transition Metal Catalysis Using Functionalized Dendrimers.

    Science.gov (United States)

    Oosterom, G. Eric; Reek, Joost N. H.; Kamer, Paul C. J.; van Leeuwen, Piet W. N. M.

    2001-05-18

    Dendrimers are well-defined hyperbranched macromolecules with characteristic globular structures for the larger systems. These novel polymers have inspired many chemists to develop new materials and several applications have been explored, catalysis being one of them. The recent impressive strides in synthetic procedures increased the accessibility of functionalized dendrimers, resulting in a rapid development of dendrimer chemistry. The position of the catalytic site(s) as well as the spatial separation of the catalysts appears to be of crucial importance. Dendrimers that are functionalized with transition metals in the core potentially can mimic the properties of enzymes, their efficient natural counterparts, whereas the surface-functionalized systems have been proposed to fill the gap between homogeneous and heterogeneous catalysis. This might yield superior catalysts with novel properties, that is, special reactivity or stability. Both the core and periphery strategies lead to catalysts that are sufficiently larger than most substrates and products, thus separation by modern membrane separation techniques can be applied. These novel homogeneous catalysts can be used in continuous membrane reactors, which will have major advantages particularly for reactions that benefit from low substrate concentrations or suffer from side reactions of the product. Here we review the recent progress and breakthroughs made with these promising novel transition metal functionalized dendrimers that are used as catalysts, and we will discuss the architectural concepts that have been applied.

  2. Pd/C Catalysis under Microwave Dielectric Heating

    Directory of Open Access Journals (Sweden)

    Elena Cini

    2017-03-01

    Full Text Available Microwave-assisted organic synthesis (MAOS provides a novel and efficient means of achieving heat organic reactions. Nevertheless, the potential arcing phenomena via microwave (MW interaction with solid metal catalysts has limited its use by organic chemists. As arcing phenomena are now better understood, new applications of Pd/C-catalyzed reactions under MW dielectric heating are now possible. In this review, the state of the art, benefits, and challenges of coupling MW heating with heterogeneous Pd/C catalysis are discussed to inform organic chemists about their use with one of the most popular heterogeneous catalysts.

  3. DNA-based hybrid catalysis.

    Science.gov (United States)

    Rioz-Martínez, Ana; Roelfes, Gerard

    2015-04-01

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination sphere interactions provided by the DNA are key to achieve high enantioselectivities and, often, additional rate accelerations in catalysis. Nowadays, current efforts are focused on improved designs, understanding the origin of the enantioselectivity and DNA-induced rate accelerations, expanding the catalytic scope of the concept and further increasing the practicality of the method for applications in synthesis. Herein, the recent developments will be reviewed and the perspectives for the emerging field of DNA-based hybrid catalysis will be discussed.

  4. A Survey Course in Catalysis.

    Science.gov (United States)

    Skaates, J. M.

    1982-01-01

    Describes a 10-week survey course in catalysis for chemical engineering and chemistry students designed to show how modern chemistry and chemical engineering interact in the ongoing development of industrial catalysts. Includes course outline and instructional strategies. (Author/JN)

  5. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  6. Editorial: Nanoscience makes catalysis greener

    KAUST Repository

    Polshettiwar, Vivek

    2012-01-09

    Green chemistry by nanocatalysis: Catalysis is a strategic field of science because it involves new ways of meeting energy and sustainability challenges. The concept of green chemistry, which makes the science of catalysis even more creative, has become an integral part of sustainability. This special issue is at the interface of green chemistry and nanocatalysis, and features excellent background articles as well as the latest research results. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Koksaldi, Onur S.; Kaun, Stephen W.; Oshima, Yuichi; Short, Dane B.; Mishra, Umesh K.; Speck, James S.

    2017-04-01

    The Ge doping of β-Ga2O3(010) films was investigated using plasma-assisted molecular beam epitaxy as the growth method. The dependences of the amount of Ge incorporated on the substrate temperature, Ge-cell temperature, and growth regime were studied by secondary ion mass spectrometry. The electron concentration and mobility were investigated using Van der Pauw Hall patterns. Hall measurement confirmed that Ge acts as an n-dopant in β-Ga2O3(010) films. These results were compared with similar films doped by Sn. The Hall data showed an improved electron mobility for the same electron concentration when Ge is used instead of Sn as the dopant.

  8. Microstructure of non-polar GaN on LiGaO2 grown by plasma-assisted MBE.

    Science.gov (United States)

    Shih, Cheng-Hung; Huang, Teng-Hsing; Schuber, Ralf; Chen, Yen-Liang; Chang, Liuwen; Lo, Ikai; Chou, Mitch Mc; Schaadt, Daniel M

    2011-06-15

    We have investigated the structure of non-polar GaN, both on the M - and A-plane, grown on LiGaO2 by plasma-assisted molecular beam epitaxy. The epitaxial relationship and the microstructure of the GaN films are investigated by transmission electron microscopy (TEM). The already reported epi-taxial relationship and for M -plane GaN is confirmed. The main defects are threading dislocations and stacking faults in both samples. For the M -plane sample, the density of threading dislocations is around 1 × 1011 cm-2 and the stacking fault density amounts to approximately 2 × 105 cm-1. In the A-plane sample, a threading dislocation density in the same order was found, while the stacking fault density is much lower than in the M -plane sample.

  9. Epitaxial Properties of Co-Doped ZnO Thin Films Grown by Plasma Assisted Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    CAO Qiang; DENG Jiang-Xia; LIU Guo-Lei; CHEN Yan-Xue; YAN Shi-Shen

    2007-01-01

    High quality Co-doped ZnO thin films are grown on single crystalline Al2O3(0001) and ZnO(0001) substrates by oxygen plasma assisted molecular beam epitaxy at a relatively lower substrate temperature of 450 ℃. The epitaxial conditions are examined with in-situ reflection high energy electron diffraction (RHEED) and ex-situ high resolution x-ray diffraction (HRXRD). The epitaxial thin films are single crystal at film thickness smaller than 500nm and nominal concentration of Co dopant up to 20%. It is indicated that the Co cation is incorporated into the ZnO matrix as Co2+ substituting Zn2+ ions. Atomic force microscopy shows smooth surfaces with rms roughness of 1.9nm. Room-temperature magnetization measurements reveal that the Co-doped ZnO thin films are ferromagnetic with Curie temperatures TC above room temperature.

  10. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges

    Science.gov (United States)

    Tallaire, Alexandre; Achard, Jocelyn; Silva, François; Brinza, Ovidiu; Gicquel, Alix

    2013-02-01

    Diamond is a material with outstanding properties making it particularly suited for high added-value applications such as optical windows, power electronics, radiation detection, quantum information, bio-sensing and many others. Tremendous progresses in its synthesis by microwave plasma assisted chemical vapour deposition have allowed obtaining single crystal optical-grade material with thicknesses of up to a few millimetres. However the requirements in terms of size, purity and crystalline quality are getting more and more difficult to achieve with respect to the forecasted applications, thus pushing the synthesis method to its scientific and technological limits. In this paper, after a short description of the operating principles of the growth technique, the challenges of increasing crystal dimensions both laterally and vertically, decreasing and controlling point and extended defects as well as modulating crystal conductivity by an efficient doping will be detailed before offering some insights into ways to overcome them.

  11. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  12. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by Oxygen-plasma-assisted Molecular Beam Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhongqing; Kuchibhatla, Satyanarayana V N T; Saraf, Laxmikant V.; Marina, Olga A.; Wang, Chong M.; Engelhard, Mark H.; Shutthanandan, V.; Nachimuthu, Ponnusamy; Thevuthasan, Suntharampillai

    2008-03-11

    We have used oxygen-plasma-assisted molecular beam epitaxy (OPA-MBE) to grow highly oriented Ce1-xSmxO2-δ films on single crystal c-Al2O3. The samarium concentration, x, was varied in the range 1-33 atom%. It was observed that dominant (111) orientation in Ce1-xSmxO2-δ films can be maintained up to about 10 samarium atom% concentration. Films higher than 10 atom% Sm concentration started to show polycrystalline features. The highest conductivity of 0.04 S.cm-1, at 600 0C, was observed for films with ~ 5 atom% Sm concentration. A loss of orientation, triggering an enhanced grain boundary scattering, appears to be responsible for the decrease in conductivity at higher dopant concentrations.

  13. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zuo, Zheng; Liu, Jianlin, E-mail: jianlin@ece.ucr.edu [Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521 (United States)

    2015-11-23

    Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BN until it may cover entire h-BN flakes.

  14. Real time spectroscopic ellipsometry investigation of homoepitaxial GaN grown by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tong-Ho; Choi, Soojeong; Wu, Pae; Brown, April [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Losurdo, Maria; Giangregorio, Maria M.; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Moto, Akihiro [Innovation Core SEI, Inc., 3235 Kifer Road, Santa Clara, CA 95051 (United States)

    2006-06-15

    The growth of GaN by plasma assisted molecular beam epitaxy on GaN template substrates (GaN on sapphire) is investigated with in-situ multi-channel spectroscopic ellipsometry. Growth is performed under various Ga/N flux ratios at growth temperatures in the range 710-780 C. The thermal roughening of the GaN template caused by decomposition of the surface is investigated through the temporal variation of the GaN pseudodielectric function over the temperature range of 650 C to 850 C. The structural, morphological, and optical properties are also discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Characteristics and properties of metal aluminum thin films prepared by electron cyclotron resonance plasma-assisted atomic layer deposition technology

    Institute of Scientific and Technical Information of China (English)

    Xiong Yu-Qing; Li Xing-Cun; Chen Qiang; Lei Wen-Wen; Zhao Qiao; Sang Li-Jun; Liu Zhong-Wei; Wang Zheng-Duo; Yang Li-Zhen

    2012-01-01

    Metal aluminum (Al) thin films are prepared by 2450 MHz electron cyclotron resonance plasma-assisted atomic layer deposition on glass and p-Si substrates using trimethylaluminum as the precursor and hydrogen as the reductive gas.We focus our attention on the plasma source for the thin-film preparation and annealing of the as-deposited films relative to the surface square resistivity.The square resistivity of as-deposited Al films is greatly reduced after annealing and almost reaches the value of bulk metal.Through chemical and structural analysis,we conclude that the square resistivity is determined by neither the contaminant concentration nor the surface morphology,but by both the crystallinity and crystal size in this process.

  16. Surface structure and surface kinetics of InN grown by plasma-assisted atomic layer epitaxy: A HREELS study

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Ananta R., E-mail: aacharya@georgiasouthern.edu, E-mail: anantaach@gmail.com [Department of Physics, Georgia Southern University, Statesboro, Georgia 30460 (United States); Thoms, Brian D. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Nepal, Neeraj [American Association for Engineering Education, 1818 N Street NW, Washington, DC 20034 (United States); Eddy, Charles R. [Electronics Science and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2015-03-15

    The surface bonding configuration and kinetics of hydrogen desorption from InN grown by plasma-assisted atomic layer epitaxy have been investigated. High resolution electron energy loss spectra exhibited loss peaks assigned to a Fuchs–Kliewer surface phonon, N-N and N-H surface species. The surface N-N vibrations are attributed to surface defects. The observation of N-H but no In-H surface species suggested N-terminated InN. Isothermal desorption data were best fit by the first-order desorption kinetics with an activation energy of (0.88 ± 0.06) eV and pre-exponential factor of (1.5 ± 0.5) × 10{sup 5 }s{sup −1}.

  17. UVB-emitting InAlGaN multiple quantum well synthesized using plasma-assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    W. Kong

    2017-03-01

    Full Text Available A high Al-content (y > 0.4 multi-quantum-well (MQW structure with a quaternary InxAlyGa(1-x-yN active layer was synthesized using plasma-assisted molecular beam epitaxy. The MQW structure exhibits strong carrier confinement and room temperature ultraviolet-B (UVB photoluminescence an order of magnitude stronger than that of a reference InxAlyGa(1-x-yN thin film with comparable composition and thickness. The samples were characterized using spectroscopic ellipsometry, atomic force microscopy, and high-resolution X-ray diffraction. Numerical simulations suggest that the UVB emission efficiency is limited by dislocation-related non-radiative recombination centers in the MQW and at the MQW - buffer interface. Emission efficiency can be significantly improved by reducing the dislocation density from 109cm−2 to 107cm−2 and by optimizing the width and depth of the quantum wells.

  18. Room temperature Ultraviolet B emission from InAlGaN films synthesized by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W., E-mail: wei.kong@duke.edu; Jiao, W. Y.; Kim, T. H.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Roberts, A. T. [Charles Bowden Laboratory, Army Aviation and Missile RD& E Center, Redstone Arsenal, Alabama 35898 (United States); Fournelle, J. [Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706 (United States); Losurdo, M. [CNR-NANOTEC, Istituto di Nanotecnologia, via Orabona, 4-70126 Bari (Italy); Everitt, H. O. [Charles Bowden Laboratory, Army Aviation and Missile RD& E Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2015-09-28

    Thin films of the wide bandgap quaternary semiconductor In{sub x}Al{sub y}Ga{sub (1−x−y)}N with low In (x = 0.01–0.05) and high Al composition (y = 0.40–0.49) were synthesized on GaN templates by plasma-assisted molecular beam epitaxy. High-resolution X-ray diffraction was used to correlate the strain accommodation of the films to composition. Room temperature ultraviolet B (280 nm–320 nm) photoluminescence intensity increased with increasing In composition, while the Stokes shift remained relatively constant. The data suggest a competition between radiative and non-radiative recombination occurs for carriers, respectively, localized at centers produced by In incorporation and at dislocations produced by strain relaxation.

  19. Growth and Characterization of N-Polar GaN Films on Si(111) by Plasma Assisted Molecular Beam Epitaxy

    Science.gov (United States)

    Dasgupta, Sansaptak; Nidhi; Wu, Feng; Speck, James S.; Mishra, Umesh K.

    2012-11-01

    Smooth N-polar GaN films were epitaxially grown by plasma assisted molecular beam epitaxy (PAMBE) on on-axis p-Si(111). The structural quality of the as-grown GaN films was further improved by insertion of AlGaN/GaN superlattice structures, resulting in reduced threading dislocation density and also efficient stress management in the GaN film to mitigate crack formation. The structural quality of these films was comparable to N-polar GaN grown on C-SiC by MBE. Convergent beam electron diffraction (CBED) imaging and KOH etch studies were performed to confirm the N-polarity of the sample. Room temperature photoluminescence measurements revealed strong GaN band-edge emission.

  20. Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2008-01-01

    Full Text Available We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm and also using a semiconductor laser (λex=980 nm. Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm. 

  1. InGaN light emitting diodes for 415 nm-520 nm spectral range by plasma assisted MBE

    Energy Technology Data Exchange (ETDEWEB)

    Szankowska, M.L.; Smalc-Koziorowska, J.; Cywinski, G.; Grzanka, S.; Grzegory, I.; Lucznik, B. [Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warszawa (Poland); Feduniewicz-Zmuda, A. [TopGaN Ltd, ul Sokolowska 29/37, 01-142 Warszawa (Poland); Wasilewski, Z.R. [Institute for Microstructural Sciences, National Research Council, Ottawa (Canada); Porowski, S.; Skierbiszewski, C. [Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warszawa (Poland); TopGaN Ltd, ul Sokolowska 29/37, 01-142 Warszawa (Poland); Siekacz, M

    2009-06-15

    In this work we study the growth of the Light Emitting Diodes (LEDs) by Plasma Assisted MBE (PAMBE). The active LEDs region was grown to cover the spectral range spanning from 415 nm to 520 nm. We demonstrate efficient LEDs with the highest optical power output of 1.5 mW and 20 mA for 415 nm. For longer wavelengths we observe a drop of the optical power. The reduction of the quantum efficiency for green emission can be related to the presence of strong built-in piezoelectric fields or increased number of nonradiative recombination centers. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Entropy and Enzyme Catalysis.

    Science.gov (United States)

    Åqvist, Johan; Kazemi, Masoud; Isaksen, Geir Villy; Brandsdal, Bjørn Olav

    2017-02-21

    The role played by entropy for the enormous rate enhancement achieved by enzymes has been debated for many decades. There are, for example, several confirmed cases where the activation free energy is reduced by around 10 kcal/mol due to entropic effects, corresponding to a rate enhancement of ∼10(7) compared to the uncatalyzed reaction. However, despite substantial efforts from both the experimental and theoretical side, no real consensus has been reached regarding the origin of such large entropic contributions to enzyme catalysis. Another remarkable instance of entropic effects is found in enzymes that are adapted by evolution to work at low temperatures, near the freezing point of water. These cold-adapted enzymes invariably show a more negative entropy and a lower enthalpy of activation than their mesophilic orthologs, which counteracts the exponential damping of reaction rates at lower temperature. The structural origin of this universal phenomenon has, however, remained elusive. The basic problem with connecting macroscopic thermodynamic quantities, such as activation entropy and enthalpy derived from Arrhenius plots, to the 3D protein structure is that the underlying detailed (microscopic) energetics is essentially inaccessible to experiment. Moreover, attempts to calculate entropy contributions by computer simulations have mostly focused only on substrate entropies, which do not provide the full picture. We have recently devised a new approach for accessing thermodynamic activation parameters of both enzyme and solution reactions from computer simulations, which turns out to be very successful. This method is analogous to the experimental Arrhenius plots and directly evaluates the temperature dependence of calculated reaction free energy profiles. Hence, by extensive molecular dynamics simulations and calculations of up to thousands of independent free energy profiles, we are able to extract activation parameters with sufficient precision for making

  3. Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time

    Energy Technology Data Exchange (ETDEWEB)

    Knoops, Harm C. M., E-mail: h.c.m.knoops@tue.nl, E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Oxford Instruments Plasma Technology, North End, Bristol BS49 4AP (United Kingdom); Peuter, K. de; Kessels, W. M. M., E-mail: h.c.m.knoops@tue.nl, E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2015-07-06

    The requirements on the material properties and growth control of silicon nitride (SiN{sub x}) spacer films in transistors are becoming ever more stringent as scaling of transistor structures continues. One method to deposit high-quality films with excellent control is atomic layer deposition (ALD). However, depositing SiN{sub x} by ALD has turned out to be very challenging. In this work, it is shown that the plasma gas residence time τ is a key parameter for the deposition of SiN{sub x} by plasma-assisted ALD and that this parameter can be linked to a so-called “redeposition effect”. This previously ignored effect, which takes place during the plasma step, is the dissociation of reaction products in the plasma and the subsequent redeposition of reaction-product fragments on the surface. For SiN{sub x} ALD using SiH{sub 2}(NH{sup t}Bu){sub 2} as precursor and N{sub 2} plasma as reactant, the gas residence time τ was found to determine both SiN{sub x} film quality and the resulting growth per cycle. It is shown that redeposition can be minimized by using a short residence time resulting in high-quality films with a high wet-etch resistance (i.e., a wet-etch rate of 0.5 nm/min in buffered HF solution). Due to the fundamental nature of the redeposition effect, it is expected to play a role in many more plasma-assisted ALD processes.

  4. Sustainable nano-catalysis

    Science.gov (United States)

    A novel nano-catalyst system which bridges the homogenous and heterogeneous system is described that is cheaper, easily accessible (sustainable) and requires no need of catalyst filtration during the work-up. Because of its nano-size, i.e. high surface area, the contact between r...

  5. Molecular catalysis of rare-earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Roesky, Peter W. (ed.) [Karlsruhe Institute of Technology (KIT) (Germany). Inst. of Inorganic Chemistry

    2010-07-01

    This volume reviews the recent developments in the use of molecular rare-earth metal compounds in catalysis. Most of the applications deal with homogenous catalysis but in some cases, heterogeneous systems are also mentioned. The rare-earth elements, which are the lanthanides and their close relatives - scandium and yttrium - have not been in the focus of molecular chemistry for a long time and therefore have also not been considered as homogenous catalysts. Although the first organometallic compounds of the lanthanides, which are tris(cyclopentadienyl) lanthanide complexes, were already prepared in the 1950s, it was only in the late 1970s and early 1980s when a number of research groups began to focus on this class of compounds. One reason for the development was the availability of single crystal X-ray diffraction techniques, which made it possible to characterize these compounds.Moreover, new laboratory techniques to handle highly air and moisture sensitive compounds were developed at the same time. Concomitant with the accessibility of this new class of compounds, the application in homogenous catalysis was investigated. One of the first applications in this field was the use of lanthanide metallocenes for the catalytic polymerization of ethylene in the early 1980s. In the last two or three decades, a huge number of inorganic and organometallic compounds of the rare-earth elements were synthesized and some of them were also used as catalysts. Although early work in homogenous catalysis basically focused only on the hydrogenation and polymerization of olefins, the scope for catalytic application today is much broader. Thus, a large number of catalytic {sigma}-bond metathesis reactions, e.g. hydroamination, have been reported in the recent years. This book contains four chapters in which part of the recent development of the use of molecular rare-earth metal compounds in catalysis is covered. To keep the book within the given page limit, not all aspects could be

  6. Les clusters moléculaires. Applications en catalyse homogène et hétérogène Molecular Clusters. Applications in Homogeneous and Heterogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Dorbon M.

    2006-11-01

    Full Text Available Le présent article ne prétend pas être une étude bibliographique complète. II ne s'agit que d'une synthèse dont le but est l'introduction à un secteur de la chimie encore jeune et surtout très vaste et plein d'avenir. Les clusters métalliques sont des composés constitués d'atomes métalliques liés entre eux et généralement entourés de ligands ; ils présentent à la fois certaines des caractéristiques des complexes uninucléaires d'une part et des métaux massiques d'autre part. D'un point de vue fondamental, la chimie des clusters représente un domaine encore neuf et particulièrement vaste. D'un point de vue pratique, leur principal intérêt réside dans le fait que bon nombre d'entre eux ont fait preuve de propriétés catalytiques remarquables tant en mode homogène qu'en mode hétérogène. Ils doivent être pris en considération par les industriels de la chimie car certains peuvent être impliqués dans des réactions aussi importantes que la synthèse de Fischer-Tropsch, l'hydrogénation des oléfines, la réaction de gaz à l'eau et la fixation biologique de l'azote atmosphérique. This article does not pretend to be an exhaustive bibliographic survey. It is merely a synthesis intended as an introduction to a sector of chemistry which is still young and especially is very vast and promising. Metal clusters are compounds made up of metal atours bonded together and generally surrounded by ligands. They have various characteristics of both mono-nuclear complexes and bulk metals. From a fundamental point of view, the chemistry of clusters is still a new and particularly vast field. From a practical point of view, the importance of clusters lies in the fact that a good number of them have shown proof of remarkable catalytic properties, both homogeneous and heterogeneous. They must henceforth be taken into consideration by chemical engineers because some of them may be involved in such important reactions as the Fischer

  7. Mechanisms of RNA catalysis.

    Science.gov (United States)

    Lilley, David M J

    2011-10-27

    Ribozymes are RNA molecules that act as chemical catalysts. In contemporary cells, most known ribozymes carry out phosphoryl transfer reactions. The nucleolytic ribozymes comprise a class of five structurally-distinct species that bring about site-specific cleavage by nucleophilic attack of the 2'-O on the adjacent 3'-P to form a cyclic 2',3'-phosphate. In general, they will also catalyse the reverse reaction. As a class, all these ribozymes appear to use general acid-base catalysis to accelerate these reactions by about a million-fold. In the Varkud satellite ribozyme, we have shown that the cleavage reaction is catalysed by guanine and adenine nucleobases acting as general base and acid, respectively. The hairpin ribozyme most probably uses a closely similar mechanism. Guanine nucleobases appear to be a common choice of general base, but the general acid is more variable. By contrast, the larger ribozymes such as the self-splicing introns and RNase P act as metalloenzymes.

  8. Enhanced Micellar Catalysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Tucker, Mark D; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael

    2012-12-01

    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  9. Controlling the defects and transition layer in SiO2 films grown on 4H-SiC via direct plasma-assisted oxidation

    Science.gov (United States)

    Kim, Dae-Kyoung; Jeong, Kwang-Sik; Kang, Yu-Seon; Kang, Hang-Kyu; Cho, Sang W.; Kim, Sang-Ok; Suh, Dongchan; Kim, Sunjung; Cho, Mann-Ho

    2016-10-01

    The structural stability and electrical performance of SiO2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO2 film (thickness ~5 nm) and SiC, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, and electrical measurements were performed. The SiO2 films grown via direct plasma-assisted oxidation at room temperature for 300s exhibited significantly decreased concentrations of silicon oxycarbides (SiOxCy) in the transition layer compared to that of conventionally grown (i.e., thermally grown) SiO2 films. Moreover, the plasma-assisted SiO2 films exhibited enhanced electrical characteristics, such as reduced frequency dispersion, hysteresis, and interface trap density (Dit ≈ 1011 cm‑2 · eV‑1). In particular, stress induced leakage current (SILC) characteristics showed that the generation of defect states can be dramatically suppressed in metal oxide semiconductor (MOS) structures with plasma-assisted oxide layer due to the formation of stable Si-O bonds and the reduced concentrations of SiOxCy species defect states in the transition layer. That is, energetically stable interfacial states of high quality SiO2 on SiC can be obtained by the controlling the formation of SiOxCy through the highly reactive direct plasma-assisted oxidation process.

  10. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pruski, Marek [Ames Laboratory; Sadow, Aaron D. [Ames Laboratory; Slowing, Igor I. [Ames Laboratory; Marshall, Christopher L. [Argonne National Laboratory; Stair, Peter [Argonne National Laboratory; Rodriguez, Jose [Brookhaven National Laboratory; Harris, Alex [Brookhaven National Laboratory; Somorjai, Gabor A. [Lawrence Berkeley National Laboratory; Biener, Juergen [Lawrence Livermore National Laboratory; Matranga, Christopher [National Energy Technology Laboratory; Wang, Congjun [National Energy Technology Laboratory; Schaidle, Joshua A. [National Renewable Energy Laboratory; Beckham, Gregg T. [National Renewable Energy Laboratory; Ruddy, Daniel A. [National Renewable Energy Laboratory; Deutsch, Todd [National Renewable Energy Laboratory; Alia, Shaun M. [National Renewable Energy Laboratory; Narula, Chaitanya [Oak Ridge National Laboratory; Overbury, Steve [Oak Ridge National Laboratory; Toops, Todd [Oak Ridge National Laboratory; Bullock, R. Morris [Pacific Northwest National Laboratory; Peden, Charles H. F. [Pacific Northwest National Laboratory; Wang, Yong [Pacific Northwest National Laboratory; Allendorf, Mark D. [Sandia National Laboratory; Nørskov, Jens [SLAC National Accelerator Laboratory; Bligaard, Thomas [SLAC National Accelerator Laboratory

    2016-04-18

    Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE's Office of Basic Energy Sciences (BES), to applied research and development (R&D) in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE's Office of Energy Efficiency and Renewable Energy.

  11. Nonlinear effects in asymmetric catalysis.

    Science.gov (United States)

    Satyanarayana, Tummanapalli; Abraham, Susan; Kagan, Henri B

    2009-01-01

    There is a need for the preparation of enantiomerically pure compounds for various applications. An efficient approach to achieve this goal is asymmetric catalysis. The chiral catalyst is usually prepared from a chiral auxiliary, which itself is derived from a natural product or by resolution of a racemic precursor. The use of non-enantiopure chiral auxiliaries in asymmetric catalysis seems unattractive to preparative chemists, since the anticipated enantiomeric excess (ee) of the reaction product should be proportional to the ee value of the chiral auxiliary (linearity). In fact, some deviation from linearity may arise. Such nonlinear effects can be rich in mechanistic information and can be synthetically useful (asymmetric amplification). This Review documents the advances made during the last decade in the use of nonlinear effects in the area of organometallic and organic catalysis.

  12. Plasma assisted NO{sub x} reduction in existing coal combustors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yao, S.C.; Russell, T.

    1991-12-31

    The feasibility of NO{sub x} reduction using plasma injection has been investigated. Both numerical and experimental methods were used in the development of this new NO{sub x}reduction technique. The numerical analysis was used to investigate various flow mechanisms in order to provide fundamental support in the development of this new NO{sub x} control technique. The calculations using this approach can give the information of the particle trajectories and distributions which are important for the design of the in-flame plasma injection configuration. The group model also established the necessary ground for further complete modeling of the whole process including the chemical kinetics. Numerical calculations were also performed for a turbulent gas flow field with variable properties. The results provided fundamental understanding of mixing effects encountered in the experiments at Pittsburgh Energy and Technology Center. A small scale experiment facility was designed and constructed at the heterogeneous combustion laboratory at Carnegie Mellon University. A series of tests were conducted in this setup to investigate the potential of the ammonia plasma injection for NO{sub x} reduction and parametric effects of this process. The experimental results are very promising. About 86% NO{sub x} reduction was achieved using ammonia radicals produced by argon plasma within the present test range. The total percentage of NO{sub x} reduction increases when ammonia flowrate, argon flow rate and initial NO concentration increase and when plasma power and the amount of excess air in the combustor decrease. A combined transport and reaction model was postulated for understanding the mechanism of NO{sub x} reduction using the plasma injection.

  13. Photoredox Catalysis in Organic Chemistry

    Science.gov (United States)

    2016-01-01

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds. PMID:27477076

  14. Photoredox Catalysis in Organic Chemistry.

    Science.gov (United States)

    Shaw, Megan H; Twilton, Jack; MacMillan, David W C

    2016-08-19

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon-carbon and carbon-heteroatom bonds.

  15. Catalysis and sustainable (green) chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Centi, Gabriele; Perathoner, Siglinda [Dipartimento di Chimica Industriale ed Ingegneria dei Materiali, University of Messina, Salita Sperone 31, 98166 Messina (Italy)

    2003-01-15

    Catalysis is a key technology to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and a brief assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry is discussed and illustrated via an analysis of some selected and relevant examples. Emphasis is also given to the concept of catalytic technologies for scaling-down chemical processes, in order to develop sustainable production processes which reduce the impact on the environment to an acceptable level that allows self-depuration processes of the living environment.

  16. EMSL and Institute for Integrated Catalysis (IIC) Catalysis Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Charles T.; Datye, Abhaya K.; Henkelman, Graeme A.; Lobo, Raul F.; Schneider, William F.; Spicer, Leonard D.; Tysoe, Wilfred T.; Vohs, John M.; Baer, Donald R.; Hoyt, David W.; Thevuthasan, Suntharampillai; Mueller, Karl T.; Wang, Chong M.; Washton, Nancy M.; Lyubinetsky, Igor; Teller, Raymond G.; Andersen, Amity; Govind, Niranjan; Kowalski, Karol; Kabius, Bernd C.; Wang, Hongfei; Campbell, Allison A.; Shelton, William A.; Bylaska, Eric J.; Peden, Charles HF; Wang, Yong; King, David L.; Henderson, Michael A.; Rousseau, Roger J.; Szanyi, Janos; Dohnalek, Zdenek; Mei, Donghai; Garrett, Bruce C.; Ray, Douglas; Futrell, Jean H.; Laskin, Julia; DuBois, Daniel L.; Kuprat, Laura R.; Plata, Charity

    2011-05-24

    Within the context of significantly accelerating scientific progress in research areas that address important societal problems, a workshop was held in November 2010 at EMSL to identify specific and topically important areas of research and capability needs in catalysis-related science.

  17. EMSL and Institute for Integrated Catalysis (IIC) Catalysis Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Charles T.; Datye, Abhaya K.; Henkelman, Graeme A.; Lobo, Raul F.; Schneider, William F.; Spicer, Leonard D.; Tysoe, Wilfred T.; Vohs, John M.; Baer, Donald R.; Hoyt, David W.; Thevuthasan, Suntharampillai; Mueller, Karl T.; Wang, Chong M.; Washton, Nancy M.; Lyubinetsky, Igor; Teller, Raymond G.; Andersen, Amity; Govind, Niranjan; Kowalski, Karol; Kabius, Bernd C.; Wang, Hongfei; Campbell, Allison A.; Shelton, William A.; Bylaska, Eric J.; Peden, Charles HF; Wang, Yong; King, David L.; Henderson, Michael A.; Rousseau, Roger J.; Szanyi, Janos; Dohnalek, Zdenek; Mei, Donghai; Garrett, Bruce C.; Ray, Douglas; Futrell, Jean H.; Laskin, Julia; DuBois, Daniel L.; Kuprat, Laura R.; Plata, Charity

    2011-05-24

    Within the context of significantly accelerating scientific progress in research areas that address important societal problems, a workshop was held in November 2010 at EMSL to identify specific and topically important areas of research and capability needs in catalysis-related science.

  18. Multiscale Structure-Performance Relationships in Supported Palladium Catalysis for Multiphase Hydrogenations

    NARCIS (Netherlands)

    Bakker, J.J.W.

    2012-01-01

    The performance of heterogeneous catalysts in multiphase reactions in general is governed by different types of extrinsic and intrinsic structural effects on all length scales, i.e., on the macro- (m to cm), meso- (mm to µm), and microlevel (nm). This PhD research, with a catalysis-engineering appro

  19. Catalysis in flow microreactors with wall coatings of acidic polymer brushes and dendrimer-encapsulated nanoparticles

    NARCIS (Netherlands)

    Ricciardi, R.

    2015-01-01

    Continuous-flow microreactors are an invaluable tool to carry out organic reactions owing to their numerous advantages with respect to batch scale synthesis. In particular, supported catalysts enable heterogeneous catalysis to be conducted in an efficient way. In this thesis, the development and

  20. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.

    2006-01-01

    amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...

  1. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    Science.gov (United States)

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  2. Gas phase metal cluster model systems for heterogeneous catalysis.

    Science.gov (United States)

    Lang, Sandra M; Bernhardt, Thorsten M

    2012-07-14

    Since the advent of intense cluster sources, physical and chemical properties of isolated metal clusters are an active field of research. In particular, gas phase metal clusters represent ideal model systems to gain molecular level insight into the energetics and kinetics of metal-mediated catalytic reactions. Here we summarize experimental reactivity studies as well as investigations of thermal catalytic reaction cycles on small gas phase metal clusters, mostly in relation to the surprising catalytic activity of nanoscale gold particles. A particular emphasis is put on the importance of conceptual insights gained through the study of gas phase model systems. Based on these concepts future perspectives are formulated in terms of variation and optimization of catalytic materials e.g. by utilization of bimetals and metal oxides. Furthermore, the future potential of bio-inspired catalytic material systems are highlighted and technical developments are discussed.

  3. Heterogeneous catalysis of mixed oxides perovskite and heteropoly catalysts

    CERN Document Server

    Misono, M

    2014-01-01

    Mixed oxides are the most widely used catalyst materials for industrial catalytic processes. The principal objective of this book is to describe systematically the mixed oxide catalysts, from their fundamentals through their practical applications.  After describing concisely general items concerning mixed oxide and mixed oxide catalysts, two important mixed oxide catalyst materials, namely, heteropolyacids and perovskites, are taken as typical examples and discussed in detail. These two materials have several advantages: 1. They are, respectively, typical examples of salts of oxoacids an

  4. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Naldoni Alberto

    2016-06-01

    Full Text Available Photocatalysis uses semiconductors to convert sunlight into chemical energy. Recent reports have shown that plasmonic nanostructures can be used to extend semiconductor light absorption or to drive direct photocatalysis with visible light at their surface. In this review, we discuss the fundamental decay pathway of localized surface plasmons in the context of driving solar-powered chemical reactions. We also review different nanophotonic approaches demonstrated for increasing solar-to-hydrogen conversion in photoelectrochemical water splitting, including experimental observations of enhanced reaction selectivity for reactions occurring at the metalsemiconductor interface. The enhanced reaction selectivity is highly dependent on the morphology, electronic properties, and spatial arrangement of composite nanostructures and their elements. In addition, we report on the particular features of photocatalytic reactions evolving at plasmonic metal surfaces and discuss the possibility of manipulating the reaction selectivity through the activation of targeted molecular bonds. Finally, using solar-to-hydrogen conversion techniques as an example, we quantify the efficacy metrics achievable in plasmon-driven photoelectrochemical systems and highlight some of the new directions that could lead to the practical implementation of solar-powered plasmon-based catalytic devices.

  5. Detecting and utilizing minority phases in heterogeneous catalysis

    Science.gov (United States)

    Hartfelder, Urs; Singh, Jagdeep; Haase, Johannes; Nachtegaal, Maarten; Grolimund, Daniel; van Bokhoven, Jeroen A.

    2016-11-01

    Highly active phases in carbon monoxide oxidation are known, however they are transient in nature. Here, we determined for the first time the structure of such a highly active phase on platinum nanoparticles in an actual reactor. Unlike generally assumed, the surface of this phase is virtually free of adsorbates and co-exists with carbon-monoxide covered and surface oxidized platinum. Understanding the relation between gas composition and catalyst structure at all times and locations within a reactor enabled the rational design of a reactor concept, which maximizes the amount of the highly active phase and minimizes the amount of platinum needed.

  6. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis

    Science.gov (United States)

    Naldoni, Alberto; Riboni, Francesca; Guler, Urcan; Boltasseva, Alexandra; Shalaev, Vladimir M.; Kildishev, Alexander V.

    2016-06-01

    Photocatalysis uses semiconductors to convert sunlight into chemical energy. Recent reports have shown that plasmonic nanostructures can be used to extend semiconductor light absorption or to drive direct photocatalysis with visible light at their surface. In this review, we discuss the fundamental decay pathway of localized surface plasmons in the context of driving solar-powered chemical reactions. We also review different nanophotonic approaches demonstrated for increasing solar-to-hydrogen conversion in photoelectrochemical water splitting, including experimental observations of enhanced reaction selectivity for reactions occurring at the metalsemiconductor interface. The enhanced reaction selectivity is highly dependent on the morphology, electronic properties, and spatial arrangement of composite nanostructures and their elements. In addition, we report on the particular features of photocatalytic reactions evolving at plasmonic metal surfaces and discuss the possibility of manipulating the reaction selectivity through the activation of targeted molecular bonds. Finally, using solar-to-hydrogen conversion techniques as an example, we quantify the efficacy metrics achievable in plasmon-driven photoelectrochemical systems and highlight some of the new directions that could lead to the practical implementation of solar-powered plasmon-based catalytic devices.

  7. Lean premixed combustion stabilized by radiation feedback and heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Dibble, R.W.; Jyh-Yuan Chen; Sawyer, R.F. [Univ. of California, Berkeley, CA (United States)

    1995-10-01

    Gas-turbine based systems are becoming the preferred approach to electric power generation from gaseous and liquid fossil-fuels and from biomass. As coal gasification becomes, gas turbines will also become important in the generation of electricity from coal. In smaller, distributed installations, gas turbines will also become important in the generation of electricity from coal. In smaller, distributed installations, gas turbines offer the prospect of cogeneration of electricity and heat, with increased efficiency and reduced pollutant emissions. One of the most important problems facing combustion-based power generation is the control of air pollutants, primarily nitrogen oxides (NO{sub x}, consisting of NO and NO{sub 2}) and carbon monoxide (CO). Nitric oxide (NO) is formed during gas-phase combustion and is the precursor of nitrogen dioxide (NO{sub 2}), the principal component of photochemical smog. Recent research into the mechanisms and control of NO{sub x} formation has been spurred by increasingly stringent emission standards. The principal objective of this research project is the development of effective models for the simulation of catalytic combustion applications.

  8. Porous-Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis

    KAUST Repository

    Haikal, Rana R.

    2016-07-18

    A number of permanently porous polymers containing Ru(bpy)n photosensitizer or a cobaloxime complex, as a proton-reduction catalyst, were constructed via one-pot Sonogashira-Hagihara (SH) cross-coupling reactions. This process required minimal workup to access porous platforms with control over the apparent surface area, pore volume, and chemical functionality from suitable molecular building blocks (MBBs) containing the Ru or Co complexes, as rigid and multi-topic nodes. The cobaloxime molecular building block, generated through in situ metalation, afforded a microporous solid that demonstrated noticeable catalytic activity towards hydrogen-evolution reaction (HER) with remarkable recyclability. We further demonstrated, in two cases, the ability to affect the excited state lifetime of the covalently-immobilized Ru(bpy)3 complex attained through deliberate utilization of the organic linkers of variable dimensions. Overall, this approach facilitates construction of tunable porous solids, with hybrid composition and pronounced chemical and physical stability, based on the well-known Ru(bpy)nor the cobaloxime complexes.

  9. A Unified Model Explaining Heterogeneous Ziegler-Natta Catalysis

    KAUST Repository

    Credendino, Raffaele

    2015-08-12

    We propose a model for MgCl2 supported Ziegler-Natta catalysts capable to reconcile the discrepancies emerged in the last 20 years, when experimental data were tried to be rationalized by molecular models. We show that step defects on the neglected but thermodynamically more stable (104) facet of MgCl2 can lead to sites for strong TiCl4 adsorption. The corresponding Ti-active site is stereoeselective, and its stereoselectivity can be enhanced by coordination of Al-alkyls or Lewis bases in the close proximity. The surface energy of the step defected (104) MgCl2 facet is clearly lower than that of the well accepted (110) facet.

  10. Organosilicon platforms: bridging homogeneous, heterogeneous, and bioinspired catalysis.

    Science.gov (United States)

    Kung, Mayfair C; Riofski, Mark V; Missaghi, Michael N; Kung, Harold H

    2014-03-28

    Organosilicon compounds, in the form of cubic metallasiloxanes, cage-like silsesquioxanes, macromolecular nanocages, and flexible structures such as dendrimers and linear metallsiloxanes, have found useful applications as catalysts, ligands for metal complexes, and catalyst supports. Illustrative examples of these are presented. The well-defined structures of these compounds make them particularly suitable as molecular analogues of zeolites or silica-supported catalysts. A unique feature of many of these compounds is the presence of flexible siloxane bonds, which accommodate large fluctuations in the framework geometry, reminiscent of the adaptability of enzymes to conformational changes, and distinguish siloxane containing materials from carbon based synthetic materials. New preparative pathways and the use of the versatile silyl ester as a protection group have greatly expanded synthetic possibilities, pointing to the possibility of assembling these structures to form multifunctional catalytic structures. Some nanocage structures, with functionalities organized in close proximity, exhibit nanoconfinement effects.

  11. Catalysis with hierarchical zeolites

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten

    2011-01-01

    Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...

  12. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    S. S. Kushvaha

    2014-02-01

    Full Text Available We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001 substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 108 cm−2 at 750 °C than that of the low temperature grown sample (1.1 × 109 cm−2 at 730 °C. A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  13. Study of nanosecond discharges in different H2 air mixtures at atmospheric pressure for plasma-assisted applications

    Science.gov (United States)

    Bourdon, Anne; Kobayashi, Sumire; Bonaventura, Zdenek; Tholin, Fabien; Popov, Nikolay

    2016-09-01

    This paper presents 2D simulations of nanosecond pulsed discharges between two point electrodes in different H2/air mixtures and in air at atmospheric pressure. A fluid model is coupled with detailed kinetic schemes for air and different H2/air mixtures to simulate the discharge dynamics. First, as the positive and negative ionization waves propagate in the interelectrode gap, it has been observed that in H2/air mixtures with equivalence ratios between 0.3 and 2, major positive ions produced by the nanosecond discharge are N2+,O2+and HN2+.The discharge dynamics is shown to vary only slightly for equivalence ratios of the H2/air mixture between 0.3 and 2. Then, as the discharge transits to a nanosecond spark discharge, we have studied the different chemical reactions that lead to fast gas heating and to the production of radicals, as O,H and OH. Both thermal and chemical effects of the nanosecond spark discharge are of interest for plasma assisted combustion applications. This work has been supported by the project DRACO (Grant No. ANR-13-IS09-0004) and the french russian LIA Kappa.

  14. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric

    Science.gov (United States)

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-06-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.

  15. InN nanorods prepared with CrN nanoislands by plasma-assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Young Sheng-Joue

    2011-01-01

    Full Text Available Abstract The authors report the influence of CrN nanoisland inserted on growth of baseball-bat InN nanorods by plasma-assisted molecular beam epitaxy under In-rich conditions. By inserting CrN nanoislands between AlN nucleation layer and the Si (111 substrate, it was found that we could reduce strain form Si by inserting CrN nanoisland, FWHM of the x-ray rocking curve measured from InN nanorods from 3,299 reduced to 2,115 arcsec. It is due to the larger strain from lattice miss-match of the film-like InN structure; however, the strain from lattice miss-match was obvious reduced owing to CrN nanoisland inserted. The TEM images confirmed the CrN structures and In droplets dissociation from InN, by these results, we can speculate the growth mechanism of baseball-bat-like InN nanorods.

  16. Removal of carbon films by oxidation in narrow gaps: Thermo-oxidation and plasma-assisted studies

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro, I., E-mail: itanarro@iem.cfmac.csic.e [Instituto de Estructura de la Materia, CSIC, C/Serrano 123, 28006 Madrid (Spain); Ferreira, J.A. [Laboratorio Nacional de Fusion, As. Euratom/Ciemat, Avda. Complutense 22, 28040 Madrid (Spain); Herrero, V.J. [Instituto de Estructura de la Materia, CSIC, C/Serrano 123, 28006 Madrid (Spain); Tabares, F.L. [Laboratorio Nacional de Fusion, As. Euratom/Ciemat, Avda. Complutense 22, 28040 Madrid (Spain); Gomez-Aleixandre, C. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)

    2009-06-15

    The removal of hard amorphous hydrogenated carbon (a-C:H) films from narrow gaps simulating the macro-brush structures present in controlled fusion devices has been investigated. Films with a thickness of 50-150 nm were generated through plasma-assisted chemical vapor deposition (PACVD) in glow discharges of CH{sub 4}/He on Si and stainless steel plates. The deposited plates were then arranged to form sandwich structures building narrow gaps and were subjected to erosion by exposure to O{sub 2}/He plasmas and to thermal oxidation by O{sub 2} and by a NO{sub 2}/N{sub 2} (1:1) mixture. In the plasma etching experiments, the deposited layers were only partially removed by the plasma at the side wall gap surfaces, but were efficiently removed at the bottom of the gap. In the thermo-oxidation experiments, the deposited films were effectively and homogeneously removed with oxygen at 670 K and with the NO{sub 2}/N{sub 2} mixture at T > 570 K.

  17. Hybrid ZnO/GaN distributed Bragg reflectors grown by plasma-assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    David Adolph

    2016-08-01

    Full Text Available We demonstrate crack-free ZnO/GaN distributed Bragg reflectors (DBRs grown by hybrid plasma-assisted molecular beam epitaxy using the same growth chamber for continuous growth of both ZnO and GaN without exposure to air. This is the first time these ZnO/GaN DBRs have been demonstrated. The Bragg reflectors consisted up to 20 periods as shown with cross-sectional transmission electron microscopy. The maximum achieved reflectance was 77% with a 32 nm wide stopband centered at 500 nm. Growth along both (0001 and (000 1 ̄ directions was investigated. Low-temperature growth as well as two-step low/high-temperature deposition was carried out where the latter method improved the DBR reflectance. Samples grown along the (0001 direction yielded a better surface morphology as revealed by scanning electron microscopy and atomic force microscopy. Reciprocal space maps showed that ZnO(000 1 ̄ /GaN reflectors are relaxed whereas the ZnO(0001/GaN DBRs are strained. The ability to n-type dope ZnO and GaN makes the ZnO(0001/GaN DBRs interesting for various optoelectronic cavity structures.

  18. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kushvaha, S. S., E-mail: kushvahas@nplindia.org; Pal, P.; Shukla, A. K.; Joshi, Amish G.; Gupta, Govind; Kumar, M.; Singh, S.; Gupta, Bipin K.; Haranath, D. [CSIR- National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, India 110012 (India)

    2014-02-15

    We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001) substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 10{sup 8} cm{sup −2} at 750 °C) than that of the low temperature grown sample (1.1 × 10{sup 9} cm{sup −2} at 730 °C). A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  19. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin, E-mail: jianlin@ece.ucr.edu [Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521 (United States); Zheng, Jian-Guo [Irvine Materials Research Institute, University of California, Irvine, California 92697-2800 (United States)

    2016-07-25

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layers were achieved. Based on an h-BN (5–6 nm)/G (26–27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ∼2.5–3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.

  20. Effects of AIN nucleation layer thickness on crystal quality of AIN grown by plasma-assisted molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Ren Fan; Hao Zhi-Biao; Hu Jian-Nan; Zhang Chen; Luo Yi

    2010-01-01

    In this paper,the effects of thickness of AIN nucleation layer grown at high temperature on AIN epi-layer crystalline quality are investigated.Crack-free AIN samples with various nucleation thicknesses are grown on sapphire substrates by plasma-assisted molecular beam epitaxy.The AIN crystalline quality is analysed by transmission electron microscope and x-ray diffraction(XRD)rocking curves in both(002)and(102)planes.The surface profiles of nucleation layer with different thicknesses after in-situ annealing are also analysed by atomic force microscope.A critical nucleation thickness for realising high quality AIN films is found.When the nucleation thickness is above a certain value,the(102)XRD full width at half maximum(FWHM)of AIN bulk increases with nucleation thickness increasing,whereas the(002)XRD FWHM shows an opposite trend.These phenomena can be attributed to the characteristics of nucleation islands and the evolution of crystal grains during AIN main layer growth.

  1. Additive Effects on Asymmetric Catalysis.

    Science.gov (United States)

    Hong, Liang; Sun, Wangsheng; Yang, Dongxu; Li, Guofeng; Wang, Rui

    2016-03-23

    This review highlights a number of additives that can be used to make asymmetric reactions perfect. Without changing other reaction conditions, simply adding additives can lead to improved asymmetric catalysis, such as reduced reaction time, improved yield, or/and increased selectivity.

  2. Binding Energy and Enzymatic Catalysis.

    Science.gov (United States)

    Hansen, David E.; Raines, Ronald T.

    1990-01-01

    Discussed is the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis. The principle that all of the catalytic factors discussed are realized by the use of this binding energy is reviewed. (CW)

  3. Engineering the Activity and Lifetime of Heterogeneous Catalysts for Carbon Nanotube Growth via Substrate Ion Beam Bombardment (Postprint)

    Science.gov (United States)

    2014-07-31

    11,25 and chirality.19,20 CNTs are grown via heterogeneous catalysis using a thin film of catalyst on a wide variety of catalyst supports. Films of...another method in catalysis science to engineer supports to enhance both catalytic activity and lifetime with general implications for heterogeneous ...AFRL-RX-WP-JA-2014-0159 ENGINEERING THE ACTIVITY AND LIFETIME OF HETEROGENEOUS CATALYSTS FOR CARBON NANOTUBE GROWTH VIA SUBSTRATE ION BEAM

  4. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis.

    Science.gov (United States)

    Tao, Franklin Feng; Crozier, Peter A

    2016-03-23

    Heterogeneous catalysis is a chemical process performed at a solid-gas or solid-liquid interface. Direct participation of catalyst atoms in this chemical process determines the significance of the surface structure of a catalyst in a fundamental understanding of such a chemical process at a molecular level. High-pressure scanning tunneling microscopy (HP-STM) and environmental transmission electron microscopy (ETEM) have been used to observe catalyst structure in the last few decades. In this review, instrumentation for the two in situ/operando techniques and scientific findings on catalyst structures under reaction conditions and during catalysis are discussed with the following objectives: (1) to present the fundamental aspects of in situ/operando studies of catalysts; (2) to interpret the observed restructurings of catalyst and evolution of catalyst structures; (3) to explore how HP-STM and ETEM can be synergistically used to reveal structural details under reaction conditions and during catalysis; and (4) to discuss the future challenges and prospects of atomic-scale observation of catalysts in understanding of heterogeneous catalysis. This Review focuses on the development of HP-STM and ETEM, the in situ/operando characterizations of catalyst structures with them, and the integration of the two structural analytical techniques for fundamentally understanding catalysis.

  5. GaN nanocolumns grown on Si(111) by plasma-assisted MBE: Correlation of structural and optical properties with growth parameters.

    OpenAIRE

    Fernandez-Garrido, S.; Grandal, J.; Lefebvre, Pierre; Sanchez-Garcia, M. A.; Calleja, E.

    2010-01-01

    International audience; The morphology and low-temperature photoluminescence spectra of GaN samples grown by plasma-assisted molecular beam epitaxy on Si(111) were systematically studied as a function of impinging Ga/N flux ratio and growth temperature (730-850ºC). Two different growth regimes were identified: compact and nanocolumnar. A growth diagram was established as a function of growth parameters, exhibiting the transition between growth regimes, and showing under which growth condition...

  6. Charge Transfer and Catalysis at the Metal Support Interface

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lawrence Robert [Univ. of California, Berkeley, CA (United States)

    2012-07-31

    Kinetic, electronic, and spectroscopic characterization of model Pt–support systems are used to demonstrate the relationship between charge transfer and catalytic activity and selectivity. The results show that charge flow controls the activity and selectivity of supported metal catalysts. This dissertation builds on extensive existing knowledge of metal–support interactions in heterogeneous catalysis. The results show the prominent role of charge transfer at catalytic interfaces to determine catalytic activity and selectivity. Further, this research demonstrates the possibility of selectively driving catalytic chemistry by controlling charge flow and presents solid-state devices and doped supports as novel methods for obtaining electronic control over catalytic reaction kinetics.

  7. Removal of carbon and nanoparticles from lithographic materials by plasma assisted cleaning by metastable atom neutralization (PACMAN)

    Science.gov (United States)

    Lytle, W. M.; Lofgren, R. E.; Surla, V.; Neumann, M. J.; Ruzic, D. N.

    2010-04-01

    System cleanliness is a major issue facing the lithographic community as the prospects of integrating EUV lithography into integrated circuit manufacturing progress. Mask cleanliness, especially of particles in the sub-micron range, remains an issue for the implementation of EUV lithography since traditional mask cleaning processes are limited in their ability to remove nanometer scale contaminants. The result is lower wafer throughput due to errors in pattern transfer to the wafer from the particulate defects on the mask. Additionally, carbon contamination and growth on the collector optics due to energetic photon interactions degrade the mirror and shortens its functional life. Plasma cleaning of surfaces has been used for a variety of applications in the past, and now is being extended to cleaning surfaces for EUV, specifically the mask and collector optics, through a process developed in the Center for Plasma-Material Interactions (CPMI) called Plasma Assisted Cleaning by Metastable Atom Neutralization (PACMAN). This process uses energetic neutral atoms (metastables) in addition to a high-density plasma (Te ~ 3 eV and ne ~ 1017 m-3) to remove particles. The PACMAN process is a completely dry process and is carried out in a vacuum which makes it compatible with other EUV related processing steps. Experiments carried out on cleaning polystyrene latex (PSL) nanoparticles (30 nm to 500 nm) on silicon wafers, chrome coated mask blanks, and EUV mask blanks result in 100 % particle removal with a helium plasma and helium metastables. Removal rates greater than 20 nm/min have been achieved for PSL material. Similar removal rates have been achieved for the PACMAN cleaning of carbon from silicon wafers (simulating collector optic material) with 100% removal with helium plasma and helium metastables. The PACMAN cleaning technique has not caused any damage to the substrate type being cleaned either through roughening or surface sputtering. Current results of cleaning

  8. Insights into enzymatic thiamin catalysis

    OpenAIRE

    Wikner, Christer

    1997-01-01

    Thiamin diphosphate, the biologically active form of vitamin B,, functions as a cofactor in various enzymes in the cell. The protein enhances the reactivity of the cofactor by binding it in a very specific manner. In this work, based upon information from the crystal structure, the mechanism of the thiamin dependent enzyme transketolase from yeast has been investigated by various methods. In enzymatic thiamin catalysis, the protein has three major tasks in the formation of a...

  9. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  10. Selective catalysis utilizing bifunctionalized MCM-41 mesoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Strosahl, Kasey Jean [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Selective catalysis is a field that has been under intense investigation for the last 100 years. The most widely used method involves catalysts with stereochemical selectivity. In this type of catalysis, the catalyst controls which reactants will be transformed into the desired product. The secret to employing this type of catalysis, though, is to design the proper catalyst, which can be difficult. One may spend as much time developing the catalyst as spent separating the various products achieved. Another method of selective catalysis is now being explored. The method involves utilizing a multifunctional mesoporous silica catalyst with a gate-keeping capability. Properly functionalized mesoporous materials with well-defined pore morphology and surface properties can provide an ideal three-dimensional environment for anchoring various homogeneous catalysts. These materials can circumvent the multi-sited two-dimensional nature most heterogeneous systems have without adversely impacting the reactant diffusivity. These single-site nanostructured catalysts with ordered geometrical structure are advantageous in achieving high selectivity and reactivity. Mesoporous materials can be prepared to include pores lined homogeneously with tethered catalysts via co-condensation. Additionally, these materials can be reacted with another (RO)3Si~Z group by using the traditional grafting method; this group is anchored predominantly at the entrances to the pores rather than inside the pores. Thus, if these ~Z groups are chosen properly, they can select certain molecules to enter the pores and be converted to products (Scheme 1). In such multifunctional catalysts, the selectivity depends on the discrimination of the gatekeeper. Gate-keeping MCM-41 materials are at the forefront of catalytic substances.

  11. Plasma Assisted Combustion

    Science.gov (United States)

    2007-02-28

    pressure hydrogen is given in Fig. 2.14. The regions typical for “common” glow discharges (negative glow, Faraday dark space, and positive column) are...Hollenstein Ch. Plasma Phys. Control. Fusion, 42 (2000) 93. [107] M.A. Heald and C.B. Wahrton, Plasma diagnostics with microwaves, John Wi- ley &Sons, New York...Nitrous Oxide J. Chem. Soc. Faraday Trans. 69 352 [194] Albers E A, Hoyermann K, Schacke H, Schmatjko K J, Wagner H Gg, Wolfrum J 1975 Absolute Rate

  12. Cosmic strings and baryon decay catalysis

    Science.gov (United States)

    Gregory, Ruth; Perkins, W. B.; Davis, A.-C.; Brandenberger, R. H.

    1989-01-01

    Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. The catalysis processes are reviewed both in the free quark and skyrmion pictures and the implications for baryogenesis are discussed. A computation of the cross section for monopole catalyzed skyrmion decay is presented using classical physics. Also discussed are some effects which can screen catalysis processes.

  13. Cosmic strings and baryon decay catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, R.; Perkins, W.B.; Davis, A.C.; Brandenberger, R.H. (Fermi National Accelerator Lab., Batavia, IL (USA); Cambridge Univ. (UK); Brown Univ., Providence, RI (USA). Dept. of Physics)

    1989-09-01

    Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. We review the catalysis processes both in the free quark and skyrmion pictures and discuss the implications for baryogenesis. We present a computation of the cross section for monopole catalyzed skyrmion decay using classical physics. We also discuss some effects which can screen catalysis processes. 32 refs., 1 fig.

  14. Cosmic strings and baryon decay catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, R.; Perkins, W.B.; Davis, A.C.; Brandenberger, R.H. (Fermi National Accelerator Lab., Batavia, IL (USA); Cambridge Univ. (UK); Brown Univ., Providence, RI (USA). Dept. of Physics)

    1989-09-01

    Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. We review the catalysis processes both in the free quark and skyrmion pictures and discuss the implications for baryogenesis. We present a computation of the cross section for monopole catalyzed skyrmion decay using classical physics. We also discuss some effects which can screen catalysis processes. 32 refs., 1 fig.

  15. Nanoconfinement Effects in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Harold H. [Northwestern Univ., Evanston, IL (United States)

    2016-09-19

    In this investigation, the unique properties that stem from the constrained environment and enforced proximity of functional groups at the active site were demonstrated for a number of systems. The first system is a nanocage structure with silicon-based, atom-thick shells and molecular-size cavities. The shell imparts the expected size exclusion for access to the interior cavity, and the confined space together with the hydrophobic shell strongly influences the stability of charged groups. One consequence is that the interior amine groups in a siloxane nanocage exhibit a shift in their protonation ability that is equivalent to about 4 pH units. In another nanocage structure designed to possess a core-shell structure in which the core periphery is decorated with carboxylic acid groups and the shell interior is populated with silanol groups, the restricted motion of the core results in limiting the stoichiometry of reaction between carboxylic acid and a Co2CO8 complex, which leads to formation and stabilization of Co(I) ions in the nanocage. The second designed catalytic structure is a supported, isolated, Lewis acid Sn-oxide unit derived from a (POSS)-Sn-(POSS) molecular complex (POSS = incompletely condensed silsesquioxane). The Sn center in the (POSS)-Sn-(POSS) complex is present in a tetrahedral coordination, as confirmed by single crystal x-ray crystallography and Sn NMR, and its Lewis acid character is demonstrated with its binding to amines. The retention of the tetrahedral coordination of Sn after heterogenization and mild oxidative treatment is confirmed by characterization using EXAFS, NMR, UV-vis, and DRIFT, and its Lewis acid character is confirmed by stoichiometric binding with pyridine. This Sn-catalyst is active in hydride transfer reactions as a typical solid Lewis acid. In addition, the Sn centers can also create Brønsted acidity with alcohol by binding the alcohol strongly as alkoxide and transferring the hydroxyl H to the

  16. Cooperative catalysis designing efficient catalysts for synthesis

    CERN Document Server

    Peters, René

    2015-01-01

    Written by experts in the field, this is a much-needed overview of the rapidly emerging field of cooperative catalysis. The authors focus on the design and development of novel high-performance catalysts for applications in organic synthesis (particularly asymmetric synthesis), covering a broad range of topics, from the latest progress in Lewis acid / Br?nsted base catalysis to e.g. metal-assisted organocatalysis, cooperative metal/enzyme catalysis, and cooperative catalysis in polymerization reactions and on solid surfaces. The chapters are classified according to the type of cooperating acti

  17. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  18. Biphasic catalysis using amphiphilic polyphenols-chelated noble metals as highly active and selective catalysts

    Science.gov (United States)

    Mao, Hui; Yu, Hong; Chen, Jing; Liao, Xuepin

    2013-07-01

    In the field of catalysis, it is highly desired to develop novel catalysts that combine the advantages of both homogeneous and heterogeneous catalysts. Here we disclose that the use of plant pholyphenol as amphiphilic large molecule ligand/stabilizer allows for the preparation of noble metal complex and noble metal nanoparticle catalysts. These catalysts are found to be highly selective and active in aqueous-organic biphasic catalysis of cinnamaldehyde and quinoline, and can be reused at least 3 times without significant loss of activity. Moreover, the catalytic activity and reusability of the catalysts can be rationally controlled by simply adjusting the content of polyphenols in the catalysts. Our strategy may be extended to design a wide range of aqueous-organic biphasic catalysis system.

  19. Nitrogen-doping of bulk and nanotubular TiO{sub 2} photocatalysts by plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi, E-mail: Y.Zhang2@tue.nl [Eindhoven University of Technology, Inorganic Materials Chemistry Group, Department of Chemical Engineering and Chemistry, P.O. Box 513, 5600 MB, Eindhoven (Netherlands); Creatore, Mariadriana, E-mail: M.Creatore@tue.nl [Eindhoven University of Technology, Plasma and Materials Processing Group, Department of Applied Physics, P.O. Box 513, 5600 MB, Eindhoven (Netherlands); Ma, Quan-Bao, E-mail: Q.Ma1@tue.nl [Eindhoven University of Technology, Inorganic Materials Chemistry Group, Department of Chemical Engineering and Chemistry, P.O. Box 513, 5600 MB, Eindhoven (Netherlands); El Boukili, Aishah, E-mail: AishaBoukili@hotmail.com [Eindhoven University of Technology, Inorganic Materials Chemistry Group, Department of Chemical Engineering and Chemistry, P.O. Box 513, 5600 MB, Eindhoven (Netherlands); Gao, Lu, E-mail: L.Gao@tue.nl [Eindhoven University of Technology, Inorganic Materials Chemistry Group, Department of Chemical Engineering and Chemistry, P.O. Box 513, 5600 MB, Eindhoven (Netherlands); Verheijen, Marcel A., E-mail: M.A.Verheijen@tue.nl [Eindhoven University of Technology, Plasma and Materials Processing Group, Department of Applied Physics, P.O. Box 513, 5600 MB, Eindhoven (Netherlands); Verhoeven, M.W.G.M., E-mail: M.W.G.M.Verhoeven@tue.nl [Eindhoven University of Technology, Inorganic Materials Chemistry Group, Department of Chemical Engineering and Chemistry, P.O. Box 513, 5600 MB, Eindhoven (Netherlands); Hensen, Emiel J.M., E-mail: e.j.m.hensen@tue.nl [Eindhoven University of Technology, Inorganic Materials Chemistry Group, Department of Chemical Engineering and Chemistry, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2015-03-01

    Highlights: • PA-ALD TiO{sub 2-x}N{sub x} layers on Si wafer, calcined Ti foil and nanotubular TiO{sub 2} array. • Controllable N content and chemical state in TiO{sub 2-x}N{sub x} by tuning PA-ALD parameters. • Interstitial N increases photocurrent, substitutional N decreases photocurrent. • Unchanged photocurrent of PA-ALD TiO{sub 2-x}N{sub x} layer on nanotubular TiO{sub 2} array. • Unchanged photocurrent due to the constant N content in TiO{sub 2-x}N{sub x} layer. - Abstract: Plasma-assisted atomic layer deposition (PA-ALD) was adopted to deposit TiO{sub 2-x}N{sub x} ultrathin layers on Si wafers, calcined Ti foils and nanotubular TiO{sub 2} arrays. A range of N content and chemical bond configurations were obtained by varying the background gas (O{sub 2} or N{sub 2}) during the Ti precursor exposure, while the N{sub 2}/H{sub 2}-fed inductively coupled plasma exposure time was varied between 2 and 20 s. On calcined Ti foils, a positive effect from N doping on photocurrent density was observed when O{sub 2} was the background gas with a short plasma exposure time (5 and 10 s). This correlates with the presence of interstitial N states in the TiO{sub 2} with a binding energy of 400 eV (N{sub interst}) as measured by X-ray photoelectron spectroscopy. A longer plasma time or the use of N{sub 2} as background gas results in formation of N state with a binding energy of 396 eV (N{sub subst}) and very low photocurrents. These N{sub subst} are linked to the presence of Ti{sup 3+}, which act as detrimental recombination center for photo-generated electron-hole pairs. On contrary, PA-ALD treated nanotubular TiO{sub 2} arrays show no variation of photocurrent density (with respect to the pristine nanotubes) upon different plasma exposure times and when the O{sub 2} recipe was adopted. This is attributed to constant N content in the PA-ALD TiO{sub 2-x}N{sub x}, regardless of the adopted recipe.

  20. Indenylmetal Catalysis in Organic Synthesis.

    Science.gov (United States)

    Trost, Barry M; Ryan, Michael C

    2017-03-06

    Synthetic organic chemists have a long-standing appreciation for transition metal cyclopentadienyl complexes, of which many have been used as catalysts for organic transformations. Much less well known are the contributions of the benzo-fused relative of the cyclopentadienyl ligand, the indenyl ligand, whose unique properties have in many cases imparted differential reactivity in catalytic processes toward the synthesis of small molecules. In this Review, we present examples of indenylmetal complexes in catalysis and compare their reactivity to their cyclopentadienyl analogues, wherever possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Asymmetric catalysis : ligand design and microwave acceleration

    OpenAIRE

    Bremberg, Ulf

    2000-01-01

    This thesis deals partly with the design and synthesis ofligands for use in asymmetric catalysis, and partly with theapplication of microwave heating on metal-based asymmetriccatalytic reactions. Enantiomerically pure pyridyl alcohols and bipyridylalcohols were synthesized from the chiral pool for future usein asymmetric catalysis. Lithiated pyridines were reacted withseveral chiral electrophiles, yielding diastereomeric mixturesthat could be separated without the use of resolutiontechniques....

  2. Plasma-assisted MBE growth of ZnO on GaAs substrate with a ZnSe buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Kuaile; Ye, Lijia; Shen, A. [Department of Electrical Engineering, City College of New York, New York, NY (United States); Tamargo, M.C. [Department of Chemistry, City College of New York, New York, NY (United States)

    2012-08-15

    ZnO thin films were grown by plasma-assisted MBE on GaAs substrates with ZnSe buffer layers. GaAs with different orientations: (001), (111) A, and (111) B were investigated. X-ray diffraction measurements showed that ZnO grown on (111) B GaAs substrates have the best structural quality. All the samples showed good optical qualities as indicated by room temperature photoluminescence measurements. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Analysis of Mg content of Zn1-xMgxO film grown on sapphire substrates by plasma-assisted molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    YAN Fengping; JIAN Shuisheng; K. Ogata; K. Koike; S. Sasa; M. Inoue; M. Yano

    2004-01-01

    The Mg content of Zn1-xMgxO film grown on A-sapphire substrates by plasma-assisted molecular beam epitaxy is measured by inductively coupled plasma (ICP)and electronic probe microanalysis (EPMA). A theoretical model for analyzing the difference in the Mg content between Zn-rich and Zn-deficient conditions in the growth process is established, and the mathematical relation between Mg content and the temperature of the Mg cell is formulated under Zn-rich condition. The formula derived is proven to be correct by experiments.

  4. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  5. Nanocrystal bilayer for tandem catalysis.

    Science.gov (United States)

    Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu; Huo, Ziyang; Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Somorjai, Gabor A; Yang, Peidong

    2011-05-01

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO(2)-Pt and Pt-SiO(2), can be used to catalyse two distinct sequential reactions. The CeO(2)-Pt interface catalysed methanol decomposition to produce CO and H(2), which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO(2) interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts.

  6. Growth and characterization of large, high quality single crystal diamond substrates via microwave plasma assisted chemical vapor deposition

    Science.gov (United States)

    Nad, Shreya

    Single crystal diamond (SCD) substrates can be utilized in a wide range of applications. Important issues in the chemical vapor deposition (CVD) of such substrates include: shrinking of the SCD substrate area, stress and cracking, high defect density and hence low electronic quality and low optical quality due to high nitrogen impurities. The primary objective of this thesis is to begin to address these issues and to find possible solutions for enhancing the substrate dimensions and simultaneously improving the quality of the grown substrates. The deposition of SCD substrates is carried out in a microwave cavity plasma reactor via the microwave plasma assisted chemical vapor deposition technique. The operation of the reactor was first optimized to determine the safe and efficient operating regime. By adjusting the matching of the reactor cavity with the help of four internal tuning length variables, the system was further matched to operate at a maximum overall microwave coupling efficiency of ˜ 98%. Even with adjustments in the substrate holder position, the reactor remains well matched with a coupling efficiency of ˜ 95% indicating good experimental performance over a wide range of operating conditions. SCD substrates were synthesized at a high pressure of 240 Torr and with a high absorbed power density of 500 W/cm3. To counter the issue of shrinking substrate size during growth, the effect of different substrate holder designs was studied. An increase in the substrate dimensions (1.23 -- 2.5 times) after growth was achieved when the sides of the seeds were shielded from the intense microwave electromagnetic fields in a pocket holder design. Using such pocket holders, high growth rates of 16 -- 32 mum/hr were obtained for growth times of 8 -- 72 hours. The polycrystalline diamond rim deposition was minimized/eliminated from these growth runs, hence successfully enlarging the substrate size. Several synthesized CVD SCD substrates were laser cut and separated

  7. An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis

    Science.gov (United States)

    Chen, Guoxing; Britun, Nikolay; Godfroid, Thomas; Georgieva, Violeta; Snyders, Rony; Delplancke-Ogletree, Marie-Paule

    2017-03-01

    An overview of the recent progress on plasma-assisted CO2 conversion in microwave discharges is given. Special attention is devoted to the results obtained using plasma catalysis, which are compared to the plasma-only CO2 decomposition cases. The effects of plasma operating conditions, catalyst preparation methods, nature of plasma activation gas, gas mixture, as well as the NiO content on the TiO2 surface on CO2 conversion and its energy efficiency are discussed. A significant improvement in CO2 conversion is obtained with a NiO/TiO2 catalyst activated in Ar plasma, when the NiO content is about 10 wt.%. The catalyst characterization data show that Ar plasma treatment results in a higher density of oxygen vacancies and a comparatively more uniform distribution of NiO on the TiO2 surface, which strongly influence CO2 conversion and its energy efficiency. The dissociative electron attachment of CO2 at the catalyst surface enhanced by the oxygen vacancies and by plasma electrons may also explain the increase in conversion and energy efficiencies. A mechanism for the plasma-catalytic CO2 conversion at the surface of an Ar plasma-threated catalyst is proposed.

  8. Electroless copper on refractory and noble metal substrates with an ultra-thin plasma-assisted atomic layer deposited palladium layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Soon [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Kim, Hyung-Il [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Cho, Joong-Hee [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Seo, Hyung-Kee [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Dar, M.A. [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Shin, Hyung-Shik [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Ten Eyck, Gregory A. [Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lu, Toh-Ming [Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Senkevich, Jay J. [Brewer Science Inc., Rolla, MO 65401 (United States)]. E-mail: jsenkevich@brewerscience.com

    2006-02-25

    Electroless Cu was investigated on refractory metal, W and TaN {sub X}, and Ir noble metal substrates with a plasma-assisted atomic layer deposited palladium layer for the potential back-end-of-the-line (BEOL) metallization of advanced integrated devices. The sodium and potassium-free Cu electroless bath consisted of: ethylenediamine tetraacetic acid (EDTA) as a chelating agent, glyoxylic acid as a reducing agent, and additional chemicals such as polyethylene glycol, 2,2'-dipyridine and RE-610 as surfactant, stabilizer and wetting agent respectively. The growth and chemical characterization of the Cu films was carried out with a field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS). Group VIII metals such as Pt, Pd, etc., are stable in the electroless bath and catalytic towards the oxidation of glyoxylic acid and therefore work well for the electroless deposition of Cu. From RBS analysis, the amount of carbon and oxygen in Cu films were less than 1-3%. The Cu films were electroless deposited at 45-50 deg. C on patterned tantalum nitride with plasma-assisted atomic layer deposited (PA-ALD) Pd as a catalytic layer. Electroless Cu trench fill was successful with ultrasonic vibration, RE-610, and lowering the temperature to 45-50 deg. C on TaN {sub X} with the PA-ALD Pd catalytic layer.

  9. Palladium catalysis for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L. D.; Datye, Abhaya

    2001-03-01

    Palladium (Pd) is an attractive catalyst for a range of new combustion applications comprising primary new technologies for future industrial energy needs, including gas turbine catalytic combustion, auto exhaust catalysts, heating and fuel cells. Pd poses particular challenges because it changes both chemical state and morphology as a function of temperature and reactant environment and those changes result in positive and negative changes in activity. Interactions with the support, additives, water, and contaminants as well as carbon formation have also been observed to affect Pd catalyst performance. This report describes the results of a 3.5 year project that resolves some of the conflicting reports in the literature about the performance of Pd-based catalysis.

  10. Nanocrystal assembly for tandem catalysis

    Science.gov (United States)

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  11. Inverse Magnetic/Shear Catalysis

    CERN Document Server

    McInnes, Brett

    2015-01-01

    It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce ``inverse magnetic catalysis'', signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magne...

  12. Asymmetric catalysis with short-chain peptides.

    Science.gov (United States)

    Lewandowski, Bartosz; Wennemers, Helma

    2014-10-01

    Within this review article we describe recent developments in asymmetric catalysis with peptides. Numerous peptides have been established in the past two decades that catalyze a wide variety of transformations with high stereoselectivities and yields, as well as broad substrate scope. We highlight here catalytically active peptides, which have addressed challenges that had thus far remained elusive in asymmetric catalysis: enantioselective synthesis of atropoisomers and quaternary stereogenic centers, regioselective transformations of polyfunctional substrates, chemoselective transformations, catalysis in-flow and reactions in aqueous environments.

  13. Looking Back on 35 Years of Industrial Catalysis.

    Science.gov (United States)

    Blaser, Hans-Ulrich

    2015-08-19

    This article is an account of my 35 years in the Basel Chemical Industry, starting in 1976 as a young research chemist in the Central Research Laboratories of Ciba-Geigy until my retirement as Chief Scientific Officer of Solvias in 2011. In the first section, important aspects of industrial research are commented from my personal point of view with particular emphasis on the importance of team work and the situation of catalysis in the (Swiss) fine chemicals industry. In the next sections, the three most important areas of catalytic research are described where my colleagues and I could not only solve specific Ciba-Geigy / Novartis / Solvias problems, but also developed industrially relevant, generally applicable catalytic methodologies and contributed to the understanding of these complex catalytic transformations: i) Catalytic C-C and C-N coupling catalysis where we developed highly efficient catalysts for the Heck, Suzuki, Buchwald-Hartwig reactions; ii) Hydrogenations using modified heterogeneous catalysts, especially the chemoselective reduction of functionalized nitro arenes and the enantioselective hydrogenation of substituted ketones using Pt catalysts modified with chinchona alkaloids where mechanistic studies led to a working understanding of this fascinating reaction; iii) Enantioselective homogeneous hydrogenation and chiral ligands. The process development for the production of (S)-metolachlor, an important herbicide via an iridium-Josiphos catalyzed C=N hydrogenation is described in some detail, followed by a brief description how the Solvias Ligand Portfolio was developed.

  14. Micelle Catalysis of an Aromatic Substitution Reaction

    Science.gov (United States)

    Corsaro, Gerald; Smith J. K.

    1976-01-01

    Describes an experiment in which the iodonation of aniline reaction is shown to undergo catalysis in solution of sodium lauryl sulfate which forms micelles with negatively charged pseudo surfaces. (MLH)

  15. Bioorthogonal catalysis: Rise of the nanobots

    Science.gov (United States)

    Unciti-Broceta, Asier

    2015-07-01

    Bioorthogonal catalysis provides new ways of mediating artificial transformations in living environs. Now, researchers have developed a nanodevice whose catalytic activity can be regulated by host-guest chemistry.

  16. Special section on Nano-Catalysis

    CSIR Research Space (South Africa)

    Makgwane, PR

    2013-01-01

    Full Text Available This special issue on nano-catalysis was devoted to the development and application of nanosized structured catalysts materials in various fields such as chemical transformation, environmental cleaning and energy generation supply as a concept tool...

  17. Loop residues and catalysis in OMP synthase

    DEFF Research Database (Denmark)

    Wang, Gary P.; Hansen, Michael Riis; Grubmeyer, Charles

    2012-01-01

    (preceding paper in this issue, DOI 10.1021/bi300083p)]. The full expression of KIEs by H105A and E107A may result from a less secure closure of the catalytic loop. The lower level of expression of the KIE by K103A suggests that in these mutant proteins the major barrier to catalysis is successful closure...... of the catalytic loop, which when closed, produces rapid and reversible catalysis....

  18. Phosphine catalysis of allenes with electrophiles.

    Science.gov (United States)

    Wang, Zhiming; Xu, Xingzhu; Kwon, Ohyun

    2014-05-07

    Nucleophilic phosphine catalysis of allenes with electrophiles is one of the most powerful and straightforward synthetic strategies for the generation of highly functionalized carbocycle or heterocycle structural motifs, which are present in a wide range of bioactive natural products and medicinally important substances. The reaction topologies can be controlled through a judicious choice of the phosphine catalyst and the structural variations of starting materials. This Tutorial Review presents selected examples of nucleophilic phosphine catalysis using allenes and electrophiles.

  19. Recent advances in homogeneous nickel catalysis.

    Science.gov (United States)

    Tasker, Sarah Z; Standley, Eric A; Jamison, Timothy F

    2014-05-15

    Tremendous advances have been made in nickel catalysis over the past decade. Several key properties of nickel, such as facile oxidative addition and ready access to multiple oxidation states, have allowed the development of a broad range of innovative reactions. In recent years, these properties have been increasingly understood and used to perform transformations long considered exceptionally challenging. Here we discuss some of the most recent and significant developments in homogeneous nickel catalysis, with an emphasis on both synthetic outcome and mechanism.

  20. Catalysis of Protein Disulfide Bond Isomerization in a Homogeneous Substrate†

    Science.gov (United States)

    Kersteen, Elizabeth A.; Barrows, Seth R.; Raines, Ronald T.

    2008-01-01

    Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a _-hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N-and C-terminus contain a fluorescence donor (tryptophan) and acceptor (N_-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E°_ = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys—Gly—His—Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/KM = 1.7 _ 105 M–1M s–1, which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude that

  1. Catalysis of protein disulfide bond isomerization in a homogeneous substrate.

    Science.gov (United States)

    Kersteen, Elizabeth A; Barrows, Seth R; Raines, Ronald T

    2005-09-13

    Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a beta hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N and C terminus contain a fluorescence donor (tryptophan) and acceptor (N(epsilon)-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E(o') = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys-Gly-His-Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/K(M) = 1.7 x 10(5) M(-1) s(-1), which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude

  2. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    In this PhD-study the different areas of chemical engineering, heterogeneous catalysis, supercritical fluids, and phase equilibrium thermodynamics have been brought together for selected reactions. To exploit the beneficial properties of supercritical fluids in heterogeneous catalysis, experimental...... studies of catalytic chemical reactions in dense and supercritical carbon dioxide have been complemented by the theoretical calculations of phase equilibria using advanced thermodynamic models. In the recent years, the use of compressed carbon dioxide as innovative, non-toxic and non-flammable, cheap......, and widely available reaction medium for many practical and industrial applications has drastically increased. Particularly attractive are heterogeneously catalysed chemical reactions. The beneficial use of CO2 is attributed to its unique properties at dense and supercritical states (at temperatures...

  3. Center for Catalysis at Iowa State University

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, George A.

    2006-10-17

    The overall objective of this proposal is to enable Iowa State University to establish a Center that enjoys world-class stature and eventually enhances the economy through the transfer of innovation from the laboratory to the marketplace. The funds have been used to support experimental proposals from interdisciplinary research teams in areas related to catalysis and green chemistry. Specific focus areas included: • Catalytic conversion of renewable natural resources to industrial materials • Development of new catalysts for the oxidation or reduction of commodity chemicals • Use of enzymes and microorganisms in biocatalysis • Development of new, environmentally friendly reactions of industrial importance These focus areas intersect with barriers from the MYTP draft document. Specifically, section 2.4.3.1 Processing and Conversion has a list of bulleted items under Improved Chemical Conversions that includes new hydrogenation catalysts, milder oxidation catalysts, new catalysts for dehydration and selective bond cleavage catalysts. Specifically, the four sections are: 1. Catalyst development (7.4.12.A) 2. Conversion of glycerol (7.4.12.B) 3. Conversion of biodiesel (7.4.12.C) 4. Glucose from starch (7.4.12.D) All funded projects are part of a soybean or corn biorefinery. Two funded projects that have made significant progress toward goals of the MYTP draft document are: Catalysts to convert feedstocks with high fatty acid content to biodiesel (Kraus, Lin, Verkade) and Conversion of Glycerol into 1,3-Propanediol (Lin, Kraus). Currently, biodiesel is prepared using homogeneous base catalysis. However, as producers look for feedstocks other than soybean oil, such as waste restaurant oils and rendered animal fats, they have observed a large amount of free fatty acids contained in the feedstocks. Free fatty acids cannot be converted into biodiesel using homogeneous base-mediated processes. The CCAT catalyst system offers an integrated and cooperative catalytic

  4. Heterogeneous Catalysts

    NARCIS (Netherlands)

    Dakka, J.; Sheldon, R.A.; Sanderson, W.A.

    1997-01-01

    Abstract of GB 2309655 (A) Heterogeneous catalysts comprising one or more metal compounds selected from the group consisting of tin, molybdenum, tungsten, zirconium and selenium compounds deposited on the surface of a silicalite are provided. Preferably Sn(IV) and/or Mo(VI) are employed. The cat

  5. Compositionally graded InGaN layers grown on vicinal N-face GaN substrates by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Hestroffer, Karine; Lund, Cory; Koksaldi, Onur; Li, Haoran; Schmidt, Gordon; Trippel, Max; Veit, Peter; Bertram, Frank; Lu, Ning; Wang, Qingxiao; Christen, Jürgen; Kim, Moon J.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    This work reports on compositionally graded (0 0 0 1 bar) N-polar InxGa1-xN layers. The InGaN grades with different final In compositions xf up to 0.25 were grown by plasma-assisted molecular beam epitaxy on vicinal GaN base layers with a miscut angle of 4° towards the m-direction. When increasing xf the surface morphology evolved from an interlacing finger structure, attributed to the Ehrlich-Schwöbel effect, towards fully strain-relaxed columnar features. Regardless of the crystal morphology and the strain state each graded sample exhibited a bright photoluminescence signal at room temperature spanning the whole visible range. Cross-sectional nanoscale cathodoluminescence evidenced a red-shift of the luminesced signal from 420 to 580 nm along the grade and also showed strong lateral emission inhomogeneities.

  6. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe [Department of Physics, Faculty of Arts and Sciences, Marmara University, Goztepe, 34722 Istanbul (Turkey); Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, 06800 Ankara, Turkey and National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, 06800 Ankara (Turkey)

    2016-01-15

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties, the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.

  7. Plasma assisted metal-organic chemical vapor deposition of hard chromium nitride thin film coatings using chromium(III) acetylacetonate as the precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Arup; Kuppusami, P.; Lawrence, Falix; Raghunathan, V.S.; Antony Premkumar, P.; Nagaraja, K.S

    2004-06-15

    A new technique has been developed for depositing hard nanocrystalline chromium nitride (CrN) thin films on metallic and ceramic substrates using plasma assisted metal-organic chemical vapor deposition (PAMOCVD) technique. In this low temperature and environment-friendly process, a volatile mixture of chromium(III) acetylacetonate and either ammonium iodide or ammonium bifluoride were used as precursors. Nitrogen and hydrogen have been used as the gas precursors. By optimizing the processing conditions, a maximum deposition rate of {approx}0.9 {mu}m/h was obtained. A comprehensive characterization of the CrN films was carried out using X-ray diffraction (XRD), microhardness, and microscopy. The microstructure of the CrN films deposited on well-polished stainless steel (SS) showed globular particles, while a relatively smooth surface morphology was observed for coatings deposited on polished yittria-stabilized zirconia (YSZ)

  8. Self-assembled flower-like nanostructures of InN and GaN grown by plasma-assisted molecular beam epitaxy

    Indian Academy of Sciences (India)

    Mahesh Kumar; T N Bhat; M K Rajpalke; B Roul; P Misra; L M Kukreja; Neeraj Sinha; A T Kalghatgi; S B Krupanidhi

    2010-06-01

    Nanosized hexagonal InN flower-like structures were fabricated by droplet epitaxy on GaN/Si(111) and GaN flower-like nanostructure fabricated directly on Si(111) substrate using radio frequency plasma-assisted molecular beam epitaxy. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to study the crystallinity and morphology of the nanostructures. Moreover, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to investigate the chemical compositions and optical properties of nano-flowers, respectively. Activation energy of free exciton transitions in GaN nano-flowers was derived to be ∼ 28.5 meV from the temperature dependent PL studies. The formation process of nanoflowers is investigated and a qualitative mechanism is proposed.

  9. Formation behavior of Be{sub x}Zn{sub 1-x}O alloys grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingming; Zhu, Yuan; Su, Longxing; Zhang, Quanlin; Chen, Anqi; Ji, Xu; Xiang, Rong; Gui, Xuchun; Wu, Tianzhun [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Pan, Bicai [Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tang, Zikang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2013-05-20

    We report the phase formation behavior of Be{sub x}Zn{sub 1-x}O alloys grown by plasma-assisted molecular beam epitaxy. We find the alloy with low- and high-Be contents could be obtained by alloying BeO into ZnO films. X-ray diffraction measurements shows the c lattice constant value shrinks, and room temperature absorption shows the energy band-gap widens after Be incorporated. However, the alloy with intermediate Be composition are unstable and segregated into low- and high-Be contents BeZnO alloys. We demonstrate the phase segregation of Be{sub x}Zn{sub 1-x}O alloys with intermediate Be composition resulted from large internal strain induced by large lattice mismatch between BeO and ZnO.

  10. Stress-induced VO{sub 2} films with M2 monoclinic phase stable at room temperature grown by inductively coupled plasma-assisted reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio; Watanabe, Tomo [School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Sakai, Joe [GREMAN, UMR 7347 CNRS, Universite Francois Rabelais de Tours, Parc de Grandmont 37200 Tours (France)

    2012-04-01

    We report on growth of VO{sub 2} films with M2 monoclinic phase stable at room temperature under atmospheric pressure. The films were grown on quartz glass and Si substrates by using an inductively coupled plasma-assisted reactive sputtering method. XRD-sin{sup 2}{Psi} measurements revealed that the films with M2 phase are under compressive stress in contrast to tensile stress of films with M1 phase. Scanning electron microscopy observations revealed characteristic crystal grain aspects with formation of periodical twin structure of M2 phase. Structural phase transition from M2 to tetragonal phases, accompanied by a resistance change, was confirmed to occur as the temperature rises. Growth of VO{sub 2} films composed of M2 phase crystalline is of strong interest for clarifying nature of Mott transition of strongly correlated materials.

  11. Specific acid catalysis and Lewis acid catalysis of Diels–Alder reactions in aqueous media

    NARCIS (Netherlands)

    Mubofu, Egid B.; Engberts, Jan B.F.N.

    2004-01-01

    A comparative study of specific acid catalysis and Lewis acid catalysis of Diels–Alder reactions between dienophiles (1, 4 and 6) and cyclopentadiene (2) in water and mixed aqueous media is reported. The reactions were performed in water with copper(II) nitrate as the Lewis acid catalyst whereas

  12. Specific acid catalysis and Lewis acid catalysis of Diels-Alder reactions in aqueous media

    NARCIS (Netherlands)

    Mubofu, E.B.; Engberts, J.B.F.N.

    A comparative study of specific acid catalysis and Lewis acid catalysis of Diells-Alder reactions between dienophiles (1, 4 and 6) and cyclopentadiene (2) in water and mixed aqueous media is reported. The reactions were performed in water with copper(II) nitrate as the Lewis acid catalyst whereas

  13. Acceptorless Dehydrogenation of N-Heterocycles by Merging Visible-Light Photoredox Catalysis and Cobalt Catalysis.

    Science.gov (United States)

    He, Ke-Han; Tan, Fang-Fang; Zhou, Chao-Zheng; Zhou, Gui-Jiang; Yang, Xiao-Long; Li, Yang

    2017-03-06

    Herein, the first acceptorless dehydrogenation of tetrahydroquinolines (THQs), indolines, and other related N-heterocycles, by merging visible-light photoredox catalysis and cobalt catalysis at ambient temperature, is described. The potential applications to organic transformations and hydrogen-storage materials are demonstrated. Primary mechanistic investigations indicate that the catalytic cycle occurs predominantly by an oxidative quenching pathway.

  14. Specific acid catalysis and Lewis acid catalysis of Diels-Alder reactions in aqueous media

    NARCIS (Netherlands)

    Mubofu, E.B.; Engberts, J.B.F.N.

    2004-01-01

    A comparative study of specific acid catalysis and Lewis acid catalysis of Diells-Alder reactions between dienophiles (1, 4 and 6) and cyclopentadiene (2) in water and mixed aqueous media is reported. The reactions were performed in water with copper(II) nitrate as the Lewis acid catalyst whereas hy

  15. Specific acid catalysis and Lewis acid catalysis of Diels–Alder reactions in aqueous media

    NARCIS (Netherlands)

    Mubofu, Egid B.; Engberts, Jan B.F.N.

    2004-01-01

    A comparative study of specific acid catalysis and Lewis acid catalysis of Diels–Alder reactions between dienophiles (1, 4 and 6) and cyclopentadiene (2) in water and mixed aqueous media is reported. The reactions were performed in water with copper(II) nitrate as the Lewis acid catalyst whereas hyd

  16. Catalysis as a foundational pillar of green chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, Paul T. [White House Office of Science and Technology Policy, Department of Chemistry, University of Nottingham Nottingham, (United Kingdom); Kirchhoff, Mary M. [U.S. Environmental Protection Agency and Trinity College, Washington, DC (United States); Williamson, Tracy C. [U.S. Environmental Protection Agency, Washington, DC (United States)

    2001-11-30

    are serving as a strong incentive to industry to adopt greener technologies. Developing green chemistry methodologies is a challenge that may be viewed through the framework of the Twelve Principles of Green Chemistry . These principles identify catalysis as one of the most important tools for implementing green chemistry. Catalysis offers numerous green chemistry benefits including lower energy requirements, catalytic versus stoichiometric amounts of materials, increased selectivity, and decreased use of processing and separation agents, and allows for the use of less toxic materials. Heterogeneous catalysis, in particular, addresses the goals of green chemistry by providing the ease of separation of product and catalyst, thereby eliminating the need for separation through distillation or extraction. In addition, environmentally benign catalysts such as clays and zeolites, may replace more hazardous catalysts currently in use. This paper highlights a variety of ways in which catalysis may be used as a pollution prevention tool in green chemistry reactions. The benefits to human health, environment, and the economic goals realized through the use of catalysis in manufacturing and processing are illustrated by focusing on the catalyst design and catalyst applications.

  17. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  18. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  19. Asymmetric catalysis based on tropos ligands.

    Science.gov (United States)

    Aikawa, Kohsuke; Mikami, Koichi

    2012-11-21

    All enantiopure atropisomeric (atropos) ligands essentially require enantiomeric resolution or synthetic transformation from a chiral pool. In sharp contrast, the use of tropos (chirally flexible) ligands, which are highly modular, versatile, and easy to synthesize without enantiomeric resolution, has recently been the topic of much interest in asymmetric catalysis. Racemic catalysts bearing tropos ligands can be applied to asymmetric catalysis through enantiomeric discrimination by the addition of a chiral source, which preferentially transforms one catalyst enantiomer into a highly activated catalyst enantiomer. Additionally, racemic catalysts bearing tropos ligands can also be utilized as atropos enantiopure catalysts obtained via the control of chirality by a chiral source followed by the memory of chirality. In this feature article, our results on the asymmetric catalysis via the combination of various central metals and tropos ligands are summarized.

  20. Geometrically induced magnetic catalysis and critical dimensions

    CERN Document Server

    Flachi, Antonino; Vitagliano, Vincenzo

    2015-01-01

    We discuss the combined effect of magnetic fields and geometry in interacting fermionic systems. At leading order in the heat-kernel expansion, the infrared singularity (that in flat space leads to the magnetic catalysis) is regulated by the chiral gap effect and the catalysis is deactivated by effect of the curvature. We discover that an infrared singularity may reappear from higher-order terms in the heat kernel expansion leading to a novel form of geometrically induced magnetic catalysis (absent in flat space). The dynamical mass squared is then modified not only due to the chiral gap effect by an amount proportional to the curvature, but also by a magnetic shift $\\propto (4-D)eB$ where $D$ represents the number of space-time dimensions. We argue that $D=4$ is a critical dimension across which the behaviour of the magnetic shift changes qualitatively.

  1. Progress towards bioorthogonal catalysis with organometallic compounds.

    Science.gov (United States)

    Völker, Timo; Dempwolff, Felix; Graumann, Peter L; Meggers, Eric

    2014-09-22

    The catalysis of bioorthogonal transformations inside living organisms is a formidable challenge--yet bears great potential for future applications in chemical biology and medicinal chemistry. We herein disclose highly active organometallic ruthenium complexes for bioorthogonal catalysis under biologically relevant conditions and inside living cells. The catalysts uncage allyl carbamate protected amines with unprecedented high turnover numbers of up to 270 cycles in the presence of water, air, and millimolar concentrations of thiols. By live-cell imaging of HeLa cells and with the aid of a caged fluorescent probe we could reveal a rapid development of intense fluorescence within the cellular cytoplasm and therefore support the proposed bioorthogonality of the catalysts. In addition, to illustrate the manifold applications of bioorthogonal catalysis, we developed a method for catalytic in-cell activation of a caged anticancer drug, which efficiently induced apoptosis in HeLa cells.

  2. Catalysis Science Initiative: Catalyst Design by Discovery Informatics

    Energy Technology Data Exchange (ETDEWEB)

    Delgass, William Nicholas [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States) Department of Chemistry; Caruthers, James [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Ribeiro, Fabio [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Thomson, Kendall [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Schneider, William [Univ. of Notre Dame, IN (United States)

    2016-07-08

    Catalysts selectively enhance the rates of chemical reactions toward desired products. Such reactions provide great benefit to society in major commercial sectors such as energy production, protecting the environment, and polymer products and thereby contribute heavily to the country’s gross national product. Our premise is that the level of fundamental understanding of catalytic events at the atomic and molecular scale has reached the point that more predictive methods can be developed to shorten the cycle time to new processes. The field of catalysis can be divided into two regimes: heterogeneous and homogeneous. For the heterogeneous catalysis regime, we have used the water-gas shift (WGS) reaction (CO + H2O + CO2 + H2O) over supported metals as a test bed. Detailed analysis and strong coupling of theory with experiment have led to the following conclusions: • The sequence of elementary steps goes through a COOH intermediate • The CO binding energy is a strong function of coverage of CO adsorbed on the surface in many systems • In the case of Au catalysts, the CO adsorption is generally too weak on surface with close atomic packing, but the enhanced binding at corner atoms (which are missing bonding partners) of cubo-octahedral nanoparticles increases the energy to a near optimal value and produces very active catalysts. • Reaction on the metal alone cannot account for the experimental results. The reaction is dual functional with water activation occurring at the metal-support interface. It is clear from our work that the theory component is essential, not only for prediction of new systems, but also for reconciling data and testing hypotheses regarding potential descriptors. Particularly important is the finding that the interface between nano-sized metal particles and the oxides that are used to support them represent a new state of matter in the sense that the interfacial bonding perturbs the chemical state of both metals atoms and the support

  3. Treatment of Organic Pollutants by Heterogeneous Photocatalysis

    Science.gov (United States)

    Feroz, S.; Jesil, A.

    2012-08-01

    An experimental investigation was carried out in the area of heterogeneous catalysis using TiO2 as a catalyst for the removal of the model organic compounds (benzoic acid and phenol) in three different photocatalytic reactors. Natural and artificial UV source of radiation were used and the performance of the reactors were studied in the present investigation. The extent of degradation/removal of the organic compounds was found by varying the initial concentration, flow rate, pipe diameter, TiO2 concentration and exposure time.

  4. On the role of interfacial hydrogen bonds in "on-water" catalysis

    CERN Document Server

    Karhan, Kristof; Kühne, Thomas D

    2014-01-01

    Numerous experiments have demonstrated that many classes of organic reactions exhibit increased reaction rates when performed in heterogeneous water emulsions. Despite enormous practical importance of the observed "on-water" catalytic effect and several mechanistic studies, its microscopic origins remains unclear. In this work, the second generation Car-Parrinello molecular dynamics method is extended to self-consistent charge density-functional based tight-binding in order to study "on-water" catalysis of the Diels-Alder reaction between dimethyl azodicarboxylate and quadricyclane. We find that the stabilization of the transition state by dangling hydrogen bonds exposed at the aqueous interfaces plays a significantly smaller role in "on-water" catalysis than has been suggested previously.

  5. Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization.

    Science.gov (United States)

    Kaushik, Madhu; Basu, Kaustuv; Benoit, Charles; Cirtiu, Ciprian M; Vali, Hojatollah; Moores, Audrey

    2015-05-20

    Cellulose nanocrystals (CNCs), derived from cellulose, provide us with an opportunity to devise more sustainable solutions to current technological challenges. Enantioselective catalysis, especially heterogeneous, is the preferred method for the synthesis of pure chiral molecules in the fine chemical industries. Cellulose has been long sought as a chiral inducer in enantioselective catalysis. We report herein an unprecedentedly high enantiomeric excess (ee) for Pd patches deposited onto CNCs used as catalysts for the hydrogenation of prochiral ketones in water at room temperature and 4 bar H2. Our system, where CNCs acted as support and sole chiral source, achieved an ee of 65% with 100% conversions. Cryo-electron microscopy, high-resolution transmission electron microscopy, and tomography were used for the first time to study the 3D structure of a metal functionalized CNC hybrid. It established the presence of sub-nanometer-thick Pd patches at the surface of CNCs and provided insight into the chiral induction mechanism.

  6. Experimental and numerical techniques to assess catalysis

    Science.gov (United States)

    Herdrich, G.; Fertig, M.; Petkow, D.; Steinbeck, A.; Fasoulas, S.

    2012-01-01

    Catalytic heating can be a significant portion of the thermal load experienced by a body during re-entry. Under the auspices of the NATO Research and Technology Organisation Applied Vehicle Technologies Panel Task Group AVT-136 an assessment of the current state-of-the-art in the experimental characterization and numerical simulation of catalysis on high-temperature material surfaces has been conducted. This paper gives an extraction of the final report for this effort, showing the facilities and capabilities worldwide to assess catalysis data. A corresponding summary for the modeling activities is referenced in this article.

  7. RNA catalysis and the origins of life

    Science.gov (United States)

    Orgel, Leslie E.

    1986-01-01

    The role of RNA catalysis in the origins of life is considered in connection with the discovery of riboszymes, which are RNA molecules that catalyze sequence-specific hydrolysis and transesterification reactions of RNA substrates. Due to this discovery, theories positing protein-free replication as preceding the appearance of the genetic code are more plausible. The scope of RNA catalysis in biology and chemistry is discussed, and it is noted that the development of methods to select (or predict) RNA sequences with preassigned catalytic functions would be a major contribution to the study of life's origins.

  8. Catalysis by nonmetals rules for catalyst selection

    CERN Document Server

    Krylov, Oleg V

    1970-01-01

    Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-ba

  9. Bioinspired catalysis metal-sulfur complexes

    CERN Document Server

    Weigand, Wolfgang

    2014-01-01

    The growing interest in green chemistry calls for new, efficient and cheap catalysts. Living organisms contain a wide range of remarkably powerful enzymes, which can be imitated by chemists in the search for new catalysts. In bioinspired catalysis, chemists use the basic principles of biological enzymes when creating new catalyst analogues. In this book, an international group of experts cover the topic from theoretical aspects to applications by including a wide variety of examples of different systems. This valuable overview of bioinspired metal-sulfur catalysis is a must-have for all sci

  10. Keynotes in energy-related catalysis

    CERN Document Server

    Kaliaguine, S

    2011-01-01

    Catalysis by solid acids, which includes (modified) zeolites, is of special relevance to energy applications. Acid catalysis is highly important in modern petroleum refining operations - large-scale processes such as fluid catalytic cracking, catalytic reforming, alkylation and olefin oligomerization rely on the transformation of hydrocarbons by acid catalysts. (Modified) zeolites are therefore essential for the improvement of existing processes and for technical innovations in the conversion of crude. There can be little doubt that zeolite-based catalysts will play a major role in the futu

  11. New perspectives on thiamine catalysis: from enzymic to biomimetic catalysis.

    Science.gov (United States)

    Stamatis, A; Malandrinos, G; Louloudi, M; Hadjiliadis, N

    2007-01-01

    This paper is a brief review of the detailed mechanism of action of thiamine enzymes, based on metal complexes of bivalent transition and post-transition metals of model compounds, thiamine derivatives, synthesized and characterized with spectroscopic techniques and X-ray crystal structure determinations. It is proposed that the enzymatic reaction is initiated with a V conformation of thiamine pyrophosphate, imposed by the enzymic environment. Thiamine pyrophosphate is linked with the proteinic substrate through its pyrophosphate oxygens. In the course of the reaction, the formation of the "active aldehyde" intermediate imposes the S conformation to thiamine, while a bivalent metal ion may be linked through the N1' site of the molecule, at this stage. Finally, the immobilization of thiamine and derivatives on silica has a dramatic effect on the decarboxylation of pyruvic acid, reducing the time of its conversion to acetaldehyde from 330 minutes for the homogeneous system to less than 5 minutes in the heterogenous system.

  12. Direct sp(3)C-H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis.

    Science.gov (United States)

    Feng, Zhu-Jia; Xuan, Jun; Xia, Xu-Dong; Ding, Wei; Guo, Wei; Chen, Jia-Rong; Zou, You-Quan; Lu, Liang-Qiu; Xiao, Wen-Jing

    2014-04-07

    Sequence catalysis merging photoredox catalysis (PC) and nucleophilic catalysis (NC) has been realized for the direct sp(3) C-H acroleination of N-aryl-tetrahydroisoquinoline (THIQ). The reaction was performed under very mild conditions and afforded products in 50-91% yields. A catalytic asymmetric variant was proved to be successful with moderate enantioselectivities (up to 83 : 17 er).

  13. Indole cyanation via C-H bond activation under catalysis of Ru(Ⅲ)-exchanged NaY zeolite (RuY) as a recyclable catalyst

    Institute of Scientific and Technical Information of China (English)

    Alireza Khorshidi

    2012-01-01

    Selective 3-cyanation of indoles was achieved under heterogeneous catalysis of Ru(Ⅲ)-exchanged NaY zeolite (RuY) as a recyclable catalyst,in combination with K4[Fe(CN)6] as a nontoxic,slow cyanide releasing agent.Under the aforementioned conditions,good yields of the desired products were obtained.

  14. Homogeneous Catalysis by Transition Metal Compounds.

    Science.gov (United States)

    Mawby, Roger

    1988-01-01

    Examines four processes involving homogeneous catalysis which highlight the contrast between the simplicity of the overall reaction and the complexity of the catalytic cycle. Describes how catalysts provide circuitous routes in which all energy barriers are relatively low rather than lowering the activation energy for a single step reaction.…

  15. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling but util...

  16. Hydroxide catalysis bonding of silicon carbide

    NARCIS (Netherlands)

    Veggel, A.A. van; Ende, D.A. van den; Bogenstahl, J.; Rowan, S.; Cunningham, W.; Gubbels, G.H.M.; Nijmeijer, H.

    2008-01-01

    For bonding silicon carbide optics, which require extreme stability, hydroxide catalysis bonding is considered [Rowan, S., Hough, J. and Elliffe, E., Silicon carbide bonding. UK Patent 040 7953.9, 2004. Please contact Mr. D. Whiteford for further information: D.Whiteford@admin.gla.ac.uk]. This techn

  17. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  18. New Perspectives on Thiamine Catalysis: From Enzymic to Biomimetic Catalysis

    Directory of Open Access Journals (Sweden)

    A. Stamatis

    2007-01-01

    Full Text Available This paper is a brief review of the detailed mechanism of action of thiamine enzymes, based on metal complexes of bivalent transition and post-transition metals of model compounds, thiamine derivatives, synthesized and characterized with spectroscopic techniques and X-ray crystal structure determinations. It is proposed that the enzymatic reaction is initiated with a V conformation of thiamine pyrophosphate, imposed by the enzymic environment. Thiamine pyrophosphate is linked with the proteinic substrate through its pyrophosphate oxygens. In the course of the reaction, the formation of the “active aldehyde” intermediate imposes the S conformation to thiamine, while a bivalent metal ion may be linked through the N1' site of the molecule, at this stage. Finally, the immobilization of thiamine and derivatives on silica has a dramatic effect on the decarboxylation of pyruvic acid, reducing the time of its conversion to acetaldehyde from 330 minutes for the homogeneous system to less than 5 minutes in the heterogenous system.

  19. Non-hydrolytic sol-gel routes to heterogeneous catalysts

    OpenAIRE

    Debecker, Damien P.; Mutin, P. Hubert

    2012-01-01

    Oxides and mixed oxides have a tremendous importance in the field of heterogeneous catalysis, serving either as catalysts or as supports for active species. The performance of a catalyst depends directly on its composition, texture, structure and surface properties, which have to be precisely controlled and adapted to each application. In this context, the sol-gel process is a unique tool for the preparation and understanding of catalytic materials, owing to its exceptional versatility. In th...

  20. Indium incorporation in semipolar (20 2 ̅ 1) and nonpolar (10 1 ̅ 0) InGaN grown by plasma assisted molecular beam epitaxy

    Science.gov (United States)

    Sawicka, M.; Feduniewicz-Żmuda, A.; Kryśko, M.; Turski, H.; Muziol, G.; Siekacz, M.; Wolny, P.; Skierbiszewski, C.

    2017-02-01

    Semipolar (20 2 ̅ 1) , nonpolar m-plane (10 1 ̅ 0) and polar c-plane (0001) GaN and InGaN layers were grown by plasma-assisted molecular beam epitaxy. The surface of semipolar and nonpolar GaN grown under Ga-rich conditions is very smooth. The indium incorporation efficiency in InGaN layers grown under In-rich growth conditions is studied on three surface orientations (i) as a function of temperature from 570 to 650 °C and (ii) for varied active nitrogen flux from 0.41 to 2.03 μm/h. The In content follows the relation (10 1 ̅ 0) experiments. Indium composition in InGaN layers can be increased (i) by the decrease of the growth temperature and (ii) increase of the applied nitrogen flux for all studied surface orientations. Additionally, surface morphology of semipolar, nonpolar and c-polar InGaN layers grown at 650, 640 and 620 °C is compared. No increase in surface roughness for semipolar and nonpolar InGaN was observed in contrast to c-plane counterparts.

  1. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions.

    Science.gov (United States)

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-01

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η(coup)) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  2. Competition between (001) and (111) MgO thin film growth on Al-doped ZnO by oxygen plasma assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bo; Yang, Qiguang; Walker, Brandon; Gonder, Casey A.; Romain, Gari C.; Mundle, Rajeh; Bahoura, Messaoud; Pradhan, A. K. [Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504 (United States)

    2013-06-07

    We report on the study of epitaxial MgO thin films on (0001) Al-doped ZnO (Al: ZnO) underlayers, grown by oxygen plasma assisted pulsed laser deposition technique. A systematic investigation of the MgO thin films was performed by X-ray diffraction and atomic force microscopy, along with the current-voltage characteristics. A distinguished behavior was observed that the preferred MgO orientation changes from (111) to (001) in the films as the growth temperature increases. Two completely different in-plane epitaxial relationships were also determined from X-ray diffraction as: [110]MgO//[1120]Al: ZnO and [110]MgO//[1100]Al: ZnO for (001) MgO with 60 Degree-Sign rotated triplet domains, and [110]MgO//[1120]Al: ZnO for (111) MgO with 180 Degree-Sign rotated twin. The pronounced temperature dependence indicates a reconciliation of the nucleation driving forces among surface, interfacial, and strain energy for heteroepitaxy of cubic MgO on hexagonal Al: ZnO. The related interfacial atomic registry is considered to be important to the formation of unusual (001) MgO on hexagonal crystals. In addition, the electrical characterization revealed a dramatic reduction of the leakage current in (001) MgO thin films, whereas the small grain size of (111) MgO is identified by atomic force microscopy as a main cause of large leakage current.

  3. Schottky barrier height of Ni to β-(AlxGa1‑x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1‑x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance–voltage measurements revealed a very low (current–voltage (I–V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1‑x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I–V measurements could be similar for β-(AlxGa1‑x)2O3 films with different compositions.

  4. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    Science.gov (United States)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  5. Self-excitation of microwave oscillations in plasma-assisted slow-wave oscillators by an electron beam with a movable focus.

    Science.gov (United States)

    Bliokh, Yu P; Nusinovich, G S; Shkvarunets, A G; Carmel, Y

    2004-10-01

    Plasma-assisted slow-wave oscillators (pasotrons) operate without external magnetic fields, which makes these devices quite compact and lightweight. Beam focusing in pasotrons is provided by ions, which appear in the device due to the impact ionization of a neutral gas by beam electrons. Typically, the ionization time is on the order of the rise time of the beam current. This means that, during the rise of the current, beam focusing by ions becomes stronger. Correspondingly, a beam of electrons, which was initially diverging radially due to the self-electric field, starts to be focused by ions, and this focus moves towards the gun as the ion density increases. This feature makes the self-excitation of electromagnetic (em) oscillations in pasotrons quite different from practically all other microwave sources where em oscillations are excited by a stationary electron beam. The process of self-excitation of em oscillations has been studied both theoretically and experimentally. It is shown that in pasotrons, during the beam current rise the amount of current entering the interaction space and the beam coupling to the em field vary. As a result, the self-excitation can proceed faster than in conventional microwave sources with similar operating parameters such as the operating frequency, cavity quality-factor and the beam current and voltage.

  6. Effects of growth temperature on high-quality In0.2Ga0.8N layers by plasma-assisted molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Zhang Dongyan; Zheng Xinhe; Li Xuefei; Wu Yuanyuan; Wang Jianfeng; Yang Hui

    2012-01-01

    High-quality In0.2Ga0.8N epilayers were grown on a GaN template at temperatures of 520 and 580 ℃ via plasma-assisted molecular beam epitaxy.The X-ray rocking curve full widths at half maximum (FWHM) of (10.2)reflections is 936 arcsec for the 50-nm-thick InGaN layers at the lower temperature.When the growth temperature increases to 580 ℃,the FWHM of (00.2) reflections for these samples is very narrow and keeps similar,while significant improvement of(10.2) reflections with an FWHM value of 612 arcsec has been observed.This improved quality in InGaN layers grown at 580 ℃ is also reflected by the much larger size of the crystalline column from the AFM results,stronger emission intensity as well as a decreased FWHM of room temperature PL from 136 to 93.9 meV.

  7. Specific features of NH{sub 3} and plasma-assisted MBE in the fabrication of III-N HEMT heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, A. N. [NTO ZAO (Russian Federation); Krasovitsky, D. M. [Svetlana-Rost ZAO (Russian Federation); Petrov, S. I., E-mail: petrov@semiteq.ru [NTO ZAO (Russian Federation); Chaly, V. P.; Mamaev, V. V. [Svetlana-Rost ZAO (Russian Federation); Sidorov, V. G. [St. Petersburg State Polytechnic University (Russian Federation)

    2015-01-15

    The specific features of how nitride HEMT heterostructures are produced by NH{sub 3} and plasma-assisted (PA) molecular-beam epitaxy (MBE) are considered. It is shown that the use of high-temperature AlN/AlGaN buffer layers grown with ammonia at extremely high temperatures (up to 1150°C) can drastically improve the structural perfection of the active GaN layers and reduce the dislocation density in these layers to values of 9 × 10{sup 8}−1 × 10{sup 9} cm{sup −2}. The use of buffer layers of this kind makes it possible to obtain high-quality GaN/AlGaN heterostructures by both methods. At the same time, in contrast to ammonia MBE which is difficult to apply at T < 500°C (because of the low efficiency of ammonia decomposition), PA MBE is rather effective at low temperatures, e.g., for the growth of InAlN layers lattice-matched with GaN. The results obtained in the MBE growth of AlN/AlGaN/GaN/InAlN heterostructures by both PA-MBE and NH{sub 3}-MBE with an extremely high ammonia flux are demonstrated.

  8. Microwave plasma-assisted ALD of Al2O3 thin films: a study on the substrate temperature dependence of various parameters of interest

    Science.gov (United States)

    Thomas, Subin; Nalini, Savitha; Kumar, K. Rajeev

    2017-03-01

    This study utilizes microwave plasma-assisted atomic layer deposition (MPALD) in remote mode to deposit Al2O3 thin films with increased growth per cycle (GPC). Optical emission spectroscopy (OES) was used to identify the plasma configuration in the ALD chamber. MPALD-Al2O3 thin films were deposited at temperatures ranging from room temperature to 200 °C and the electrical parameters were investigated with Al/Al2O3/p-Si metal oxide semiconductor (MOS) structures. A GPC of 0.24 nm was observed for the films deposited at room temperature. The fixed oxide charge densities ( N fix) in all films were of the order of 1012 cm-2. The interface state density ( D it) exhibited a distinct minimum for the films deposited at 100 °C. The dependence of built-in voltage, N fix, and D it on Al2O3 deposition temperature was investigated. This can be used as a measure of the electrical applicability of these thin films.

  9. Plasma-Assisted Atomic Layer Deposition of High-Density Ni Nanoparticles for Amorphous In-Ga-Zn-O Thin Film Transistor Memory

    Science.gov (United States)

    Qian, Shi-Bing; Wang, Yong-Ping; Shao, Yan; Liu, Wen-Jun; Ding, Shi-Jin

    2017-02-01

    For the first time, the growth of Ni nanoparticles (NPs) was explored by plasma-assisted atomic layer deposition (ALD) technique using NiCp2 and NH3 precursors. Influences of substrate temperature and deposition cycles on ALD Ni NPs were studied by field emission scanning electron microscope and X-ray photoelectron spectroscopy. By optimizing the process parameters, high-density and uniform Ni NPs were achieved in the case of 280 °C substrate temperature and 50 deposition cycles, exhibiting a density of 1.5 × 1012 cm-2 and a small size of 3 4 nm. Further, the above Ni NPs were used as charge storage medium of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) memory, demonstrating a high storage capacity for electrons. In particular, the nonvolatile memory exhibited an excellent programming characteristic, e.g., a large threshold voltage shift of 8.03 V was obtained after being programmed at 17 V for 5 ms.

  10. Large-area growth of multi-layer hexagonal boron nitride on polished cobalt foils by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Xu, Zhongguang; Tian, Hao; Khanaki, Alireza; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin

    2017-01-01

    Two-dimensional (2D) hexagonal boron nitride (h-BN), which has a similar honeycomb lattice structure to graphene, is promising as a dielectric material for a wide variety of potential applications based on 2D materials. Synthesis of high-quality, large-size and single-crystalline h-BN domains is of vital importance for fundamental research as well as practical applications. In this work, we report the growth of h-BN films on mechanically polished cobalt (Co) foils using plasma-assisted molecular beam epitaxy. Under appropriate growth conditions, the coverage of h-BN layers can be readily controlled by growth time. A large-area, multi-layer h-BN film with a thickness of 5~6 nm is confirmed by Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. In addition, the size of h-BN single domains is 20~100 μm. Dielectric property of as-grown h-BN film is evaluated by characterization of Co(foil)/h-BN/Co(contact) capacitor devices. Breakdown electric field is in the range of 3.0~3.3 MV/cm, which indicates that the epitaxial h-BN film has good insulating characteristics. In addition, the effect of substrate morphology on h-BN growth is discussed regarding different domain density, lateral size, and thickness of the h-BN films grown on unpolished and polished Co foils. PMID:28230178

  11. Understanding the role of nitrogen in plasma-assisted surface modification of magnetic recording media with and without ultrathin carbon overcoats.

    Science.gov (United States)

    Dwivedi, Neeraj; Yeo, Reuben J; Satyanarayana, Nalam; Kundu, Shreya; Tripathy, S; Bhatia, C S

    2015-01-14

    A novel scheme of pre-surface modification of media using mixed argon-nitrogen plasma is proposed to improve the protection performance of 1.5 nm carbon overcoats (COC) on media produced by a facile pulsed DC sputtering technique. We observe stable and lower friction, higher wear resistance, higher oxidation resistance, and lower surface polarity for the media sample modified in 70%Ar + 30%N2 plasma and possessing 1.5 nm COC as compared to samples prepared using gaseous compositions of 100%Ar and 50%Ar + 50%N2 with 1.5 nm COC. Raman and X-ray photoelectron spectroscopy results suggest that the surface modification process does not affect the microstructure of the grown COC. Instead, the improved tribological, corrosion-resistant and oxidation-resistant characteristics after 70%Ar + 30%N2 plasma-assisted modification can be attributed to, firstly, the enrichment in surface and interfacial bonding, leading to interfacial strength, and secondly, more effective removal of ambient oxygen from the media surface, leading to stronger adhesion of the COC with media, reduction of media corrosion and oxidation, and surface polarity. Moreover, the tribological, corrosion and surface properties of mixed Ar + N2 plasma treated media with 1.5 nm COCs are found to be comparable or better than ~2.7 nm thick conventional COC in commercial media.

  12. Techno-Economic Feasibility Study of Renewable Power Systems for a Small-Scale Plasma-Assisted Nitric Acid Plant in Africa

    Directory of Open Access Journals (Sweden)

    Aikaterini Anastasopoulou

    2016-12-01

    Full Text Available The expected world population growth by 2050 is likely to pose great challenges in the global food demand and, in turn, in the fertilizer consumption. The Food and Agricultural Organization of the United Nations has forecasted that 46% of this projected growth will be attributed to Africa. This, in turn, raises further concerns about the sustainability of Africa’s contemporary fertilizer production, considering also its high dependence on fertilizer imports. Based on these facts, a novel “green” route for the synthesis of fertilizers has been considered in the context of the African agriculture by means of plasma technology. More precisely, a techno-economic feasibility study has been conducted for a small-scale plasma-assisted nitric acid plant located in Kenya and South Africa with respect to the electricity provision by renewable energy sources. In this study, standalone solar and wind power systems, as well as a hybrid system, have been assessed for two different electricity loads against certain economic criteria. The relevant simulations have been carried out in HOMER software and the optimized configurations of each examined renewable power system are presented in this study.

  13. On the optical and microstrain analysis of graded InGaN/GaN MQWs based on plasma assisted molecular beam epitaxy

    KAUST Repository

    Mishra, Pawan

    2016-05-23

    In this paper, c-plane stepped- and graded- InGaN/GaN multiple quantum wells (MQWs) are grown using plasma assisted molecular beam epitaxy (PAMBE) by in situ surface stoichiometry monitoring (i-SSM). Such a technique considerably reduces the strain build-up due to indium clustering within and across graded-MQWs; especially for QW closer to the top which results in mitigation of the quantum-confined Stark effect (QCSE). This is validated by a reduced power dependent photoluminescence blueshift of 10 meV in graded-MQWs as compared to a blueshift of 17 meV for stepped-MQWs. We further analyze microstrain within the MQWs, using Raman spectroscopy and geometrical phase analysis (GPA) on high-angle annular dark-field (HAADF)-scanning transmission electron microscope (STEM) images of stepped- and graded-MQWs, highlighting the reduction of ~1% strain in graded-MQWs over stepped-MQWs. Our analysis provides direct evidence of the advantage of graded-MQWs for the commercially viable c-plane light-emitting and laser diodes. © 2016 Optical Society of America.

  14. Effects of RF plasma parameters on the growth of InGaN/GaN heterostructures using plasma-assisted molecular beam epitaxy

    CERN Document Server

    Shim Kyu Ha; Kim, K H; Hong, S U; Cho, K I; Lee, H G; Kim, J

    1999-01-01

    The effects of rf plasma power on the structural/optical properties of GaN-based nitride epilayers grown by plasma-assisted molecular beam epitaxy have been investigated. Atomic force microscopy and high-resolution x-ray diffraction analyses revealed that the sharp interface of In sub 0 sub . sub 2 Ga sub 0 sub . sub 8 N/GaN heterostructures could be obtained by suppressing the surface roughening at high rf power. photoluminescence data suggest that the formation of damaged subsurface due to energetic particles was alleviated in the InGaN growth in comparison with the GaN growth. In our experimental set-up, the rf power of 400 W appeared to properly suppress the 3D island formation without causing defects at the subsurface of In sub 0 sub . sub 2 Ga sub 0 sub . sub 8 N. The phenomena associated with the indium incorporation could be explained by an inequality with two kinetic processes of the surface diffusion and the plasma stimulated desorption.

  15. Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    Science.gov (United States)

    Altuntas, Halit; Bayrak, Turkan; Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-01

    In this study, aluminum nitride (AlN) thin films were deposited at 200 °C, on p-type silicon substrates utilizing a capacitively coupled hollow-cathode plasma source integrated atomic layer deposition (ALD) reactor. The structural properties of AlN were characterized by grazing incidence x-ray diffraction, by which we confirmed the hexagonal wurtzite single-phase crystalline structure. The films exhibited an optical band edge around ˜5.7 eV. The refractive index and extinction coefficient of the AlN films were measured via a spectroscopic ellipsometer. In addition, to investigate the electrical conduction mechanisms and dielectric properties, Al/AlN/p-Si metal-insulator-semiconductor capacitor structures were fabricated, and current density-voltage and frequency dependent (7 kHz-5 MHz) dielectric constant measurements (within the strong accumulation region) were performed. A peak of dielectric loss was observed at a frequency of 3 MHz and the Cole-Davidson empirical formula was used to determine the relaxation time. It was concluded that the native point defects such as nitrogen vacancies and DX centers formed with the involvement of Si atoms into the AlN layers might have influenced the electrical conduction and dielectric relaxation properties of the plasma-assisted ALD grown AlN films.

  16. GaN/AlGaN nanocavities with AlN/GaN Bragg reflectors grown in AlGaN nanocolumns by plasma assisted MBE

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, J.; Calleja, E.; Fernandez-Garrido, S. [ISOM and Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s n, 28040 Madrid (Spain); Trampert, A.; Jahn, U.; Ploog, K.H. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Povoloskyi, M.; Carlo, A. Di [Dept. di Ingegneria Elettronica, Universita di Roma ' ' Tor Vegata' ' , 00133 Roma (Italy)

    2005-02-01

    The successful growth of AlGaN nanocolumns by plasma assisted MBE, with different Al compositions, opened the way for achieving nano-heterostructures including GaN Quantum Discs (QDss). The luminescence emission from the QDss embedded in the AlGaN nanocolumns was tuned by changing their thickness and/or the Al composition of the barriers. Such a nano-heterostructure was then enclosed between two AlN/GaN Distributed Bragg Reflectors (DBR), with nominal reflectivities of 90 and 50%. The choice of the AlN/GaN bilayers for the DBRs allowed to reach these reflectivity values with a significantly lower number of periods, as compared to the AlGaN/GaN stacks. The resulting nanocavity has been characterized by cathodoluminescence (CL), and Scanning and Transmission Electron Microscopy (SEM, TEM). CL measurements show that the emission from the nanocavity is quite close to the targeted value. TEM data points to the need of optimized conditions to grow AlN columnar layers in order to avoid the lateral overgrowth in the columnar nanostructure. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Effects of Rapid Thermal Annealing on Optical Properties of GaInNAs/GaAs Single Quantum Well Grown by Plasma-Assisted Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of Rapid Thermal Annealing (RTA) on the optical properties of GaInNAs/GaAs Single Quantum Well (SQW) grown by plasma-assisted molecular beam epitaxy are investigated. Ion removal magnets were applied to reduce the ion damage during the growth process and the optical properties of GaInNAs/GaAs SQW are remarkably improved.RTA was carried out at 650℃ and its effect was studied by the comparising the roomtemperature PhotoLuminescence (PL) spectra for the non ion-removed (grown without magnets) sample with for the ion-removed (grown with magnets) one. The more significant improvement of PL characteristics for non ion-removed GaInNAs/GaAs SQW after annealing (compared with those for ion-removed) indicates that the nonradiative centers removed by RTA at 650℃ are mainly originated from ion damage. After annealing the PL blue shift for non ionremoved GaInNAs/GaAs SQW is much larger than those for InGaAs/GaAs and ion-removed GaInNAs/GaAs SQW. It is found that the larger PL blue shift of GaInNAs/GaAs SQW is due to the defect-assisted In-Ga interdiffusion rather than defect-assisted N-As interdiffusion.

  18. Innovative Catalysis in Organic Synthesis Oxidation, Hydrogenation, and C-X Bond Forming Reactions

    CERN Document Server

    Andersson, Pher G

    2012-01-01

    Authored by a European team of leaders in the field, this book compiles innovative approaches for C-X bond forming processes frequently applied in organic synthesis. It covers all key types of catalysis, including homogeneous, heterogeneous, and organocatalysis, as well as mechanistic and computational studies. Special attention is focused on the improvement of efficiency and sustainability of important catalytic processes, such as selective oxidations, hydrogenation and cross-coupling reactions.The result is a valuable resource for both advanced researchers in academia and industry, as well a

  19. Bimetallic redox synergy in oxidative palladium catalysis.

    Science.gov (United States)

    Powers, David C; Ritter, Tobias

    2012-06-19

    Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd

  20. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.; Marshall, Christopher L.; Stair, Peter; Rodriguez, Jose; Harris, Alex; Somorjai, Gabor A.; Biener, Juergen; Matranga, Christopher; Wang, Congjun; Schaidle, Joshua A.; Beckham, Gregg T.; Ruddy, Daniel A.; Deutsch, Todd; Alia, Shaun M.; Narula, Chaitanya; Overbury, Steve; Toops, Todd; Bullock, R. Morris; Peden, Charles H. F.; Wang, Yong; Allendorf, Mark D.; Nørskov, Jens; Bligaard, Thomas

    2016-05-06

    Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D) in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.

  1. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pruski, Marek; Sadow, Aaron; Slowing, Igor; Marshall, Christopher L.; Stair, Peter C.; Rodriguez, Jose A.; Harris, Alex; Somorjai, Gabor A.; Biener, Juergen; Matranga, Christopher; Wang, Congjian; Schaidle, Josh; Beckham, Gregg T.; Ruddy, Daniel A.; Deutsch, Todd; Alia, Shaun; Narula, Chaitanya; Overbury, Steven H.; Toops, Todd J.; Bullock, R. Morris; Peden, Charles HF; Wang, Yong; Allendorf, Mark D.; Norskov, Jens K.; Bligaard, Thomas

    2016-04-21

    Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D) in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.

  2. Residual waters treatment by heterogeneous photocatalysis: a study of experimental parameters applied to the photoelectrocatalysis

    Directory of Open Access Journals (Sweden)

    Henrique de Santana

    2006-02-01

    Full Text Available In this paper, the use of electrochemically-assisted heterogeneous photo-catalysis will be discussed. Several operational parameters will also be discussed, in order to achieve optimum efficiency of this photo-degradation system, such as: the influence of variables as support electrolyte, applied potential, dye initial concentration, pH and choice of a UV source on dye degradation.

  3. Heterogeneously Catalyzed Valorization of Monoterpenes to High Value-Added Chemicals

    OpenAIRE

    Golets, Mikhail

    2014-01-01

    A potential industrial process is profitable only if it is successfully implemented by the continuously developing chemical industry. Throughout last decades heterogeneous catalysis has opened doors to the creation of various know-how products which previously were considered unfeasible. Moreover, the use of heterogeneous catalysts allows improving existing processes to shift towards more ecological and cost efficient practices. In particular, polymer or fuel compounds could be eco-friendly p...

  4. Transition metal catalysis in confined spaces.

    Science.gov (United States)

    Leenders, Stefan H A M; Gramage-Doria, Rafael; de Bruin, Bas; Reek, Joost N H

    2015-01-21

    Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container.

  5. Inverse magnetic catalysis in dense holographic matter

    CERN Document Server

    Preis, Florian; Schmitt, Andreas

    2010-01-01

    We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition ...

  6. ELECTROCHEMICAL PROMOTED CATALYSIS: TOWARDS PRACTICAL UTILIZATION

    Directory of Open Access Journals (Sweden)

    DIMITRIOS TSIPLAKIDES

    2008-07-01

    Full Text Available Electrochemical promotion (EP of catalysis has already been recognized as “a valuable development in catalytic research” (J. Pritchard, 1990 and as “one of the most remarkable advances in electrochemistry since 1950” (J. O’M. Bockris, 1996. Laboratory studies have clearly elucidated the phenomenology of electrochemical promotion and have proven that EP is a general phenomenon at the interface of catalysis and electrochemistry. The major progress toward practical utilization of EP is surveyed in this paper. The focus is given on the electropromotion of industrial ammonia synthesis catalyst, the bipolar EP and the development of a novel monolithic electropromoted reactor (MEPR in conjunction with the electropromotion of thin sputtered metal films. Future perspectives of electrochemical promotion applications in the field of hydrogen technologies are discussed.

  7. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    Science.gov (United States)

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value.

  8. Nanoscale Advances in Catalysis and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  9. Catalysis in micellar and macromoleular systems

    CERN Document Server

    Fendler, Janos

    1975-01-01

    Catalysis in Micellar and Macromolecular Systems provides a comprehensive monograph on the catalyses elicited by aqueous and nonaqueous micelles, synthetic and naturally occurring polymers, and phase-transfer catalysts. It delineates the principles involved in designing appropriate catalytic systems throughout. Additionally, an attempt has been made to tabulate the available data exhaustively. The book discusses the preparation and purification of surfactants; the physical and chemical properties of surfactants and micelles; solubilization in aqueous micellar systems; and the principles of

  10. Spatially Assisted Schwinger Mechanism and Magnetic Catalysis

    CERN Document Server

    Copinger, Patrick

    2016-01-01

    Using the worldline formalism we compute an effective action for fermions under a temporally modulated electric field and a spatially modulated magnetic field. It is known that the former leads to an enhanced Schwinger Mechanism, while we find that the latter can also result in enhanced particle production and even cause a reorganization of the vacuum to acquire a larger dynamical mass in equilibrium which spatially assists the Magnetic Catalysis.

  11. Spatially Assisted Schwinger Mechanism and Magnetic Catalysis

    Science.gov (United States)

    Copinger, Patrick; Fukushima, Kenji

    2016-08-01

    Using the worldline formalism we compute an effective action for fermions under a temporally modulated electric field and a spatially modulated magnetic field. It is known that the former leads to an enhanced Schwinger mechanism, while we find that the latter can also result in enhanced particle production and even cause a reorganization of the vacuum to acquire a larger dynamical mass in equilibrium which spatially assists the magnetic catalysis.

  12. Spatially Assisted Schwinger Mechanism and Magnetic Catalysis.

    Science.gov (United States)

    Copinger, Patrick; Fukushima, Kenji

    2016-08-19

    Using the worldline formalism we compute an effective action for fermions under a temporally modulated electric field and a spatially modulated magnetic field. It is known that the former leads to an enhanced Schwinger mechanism, while we find that the latter can also result in enhanced particle production and even cause a reorganization of the vacuum to acquire a larger dynamical mass in equilibrium which spatially assists the magnetic catalysis.

  13. USD Catalysis Group for Alternative Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoefelmeyer, James D.; Koodali, Ranjit; Sereda, Grigoriy; Engebretson, Dan; Fong, Hao; Puszynski, Jan; Shende, Rajesh; Ahrenkiel, Phil

    2012-03-13

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  14. Folded biomimetic oligomers for enantioselective catalysis

    OpenAIRE

    Maayan, Galia; Michael D. Ward; Kirshenbaum, Kent

    2009-01-01

    Many naturally occurring biopolymers (i.e., proteins, RNA, DNA) owe their unique properties to their well-defined three-dimensional structures. These attributes have inspired the design and synthesis of folded architectures with functions ranging from molecular recognition to asymmetric catalysis. Among these are synthetic oligomeric peptide (“foldamer”) mimics, which can display conformational ordering at short chain lengths. Foldamers, however, have not been explored as platforms for asymme...

  15. Predictive Modeling in Actinide Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  16. Controlled release of moxifloxacin from intraocular lenses modified by Ar plasma-assisted grafting with AMPS or SBMA: An in vitro study.

    Science.gov (United States)

    Pimenta, A F R; Vieira, A P; Colaço, R; Saramago, B; Gil, M H; Coimbra, P; Alves, P; Bozukova, D; Correia, T R; Correia, I J; Guiomar, A J; Serro, A P

    2017-08-01

    Intraocular lenses (IOLs) present an alternative for extended, local drug delivery in the prevention of post-operative acute endophthalmitis. In the present work, we modified the surface of a hydrophilic acrylic material, used for manufacturing of IOLs, through plasma-assisted grafting copolymerization of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), with the aim of achieving a controlled and effective drug release. The material was loaded with moxifloxacin (MFX), a commonly used antibiotic for endophthalmitis prevention. The characterization of the modified material showed that relevant properties, like swelling capacity, wettability, refractive index and transmittance, were not affected by the surface modification. Concerning the drug release profiles, the most promising result was obtained when AMPS grafting was done in the presence of MFX. This modification led to a higher amount of drug being released for a longer period of time, which is a requirement for the prevention of endophthalmitis. The material was found to be non-cytotoxic for rabbit corneal endothelial cells. In a second step, prototype IOLs were modified with AMPS and loaded with MFX as previously and, after sterilization and storage (30days), they were tested under dynamic conditions, in a microfluidic cell with volume and renovation rate similar to the eye aqueous humour. MFX solutions collected in this assay were tested against Staphylococcus aureus and Staphylococcus epidermidis and the released antibiotic proved to be effective against both bacteria until the 12th day of release. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy

    KAUST Repository

    Tangi, Malleswararao

    2016-07-26

    The dislocation free Inx Al 1-xN nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C–610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of Inx Al 1-xN NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04–0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A1(LO) phonons and single mode behavior for E2 H phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E2 H phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A1(LO) and E2 H phonons in Inx Al 1-xN NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important Inx Al 1-xN nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  18. Nitridation effects of Si(1 1 1) substrate surface on InN nanorods grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tan, Jin, E-mail: jintan_cug@163.com [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Li, Bin; Song, Hao; Wu, Zhengbo; Chen, Xin [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-02-05

    Graphical abstract: The morphology evolution of InN nanorods in samples (g)–(i). The alignment of InN nanorods is improved and the deviation angle distribution narrows down with increase in nitriding time. It suggests that extending the nitriding time can enhance the vertical orientation of InN nanorods. - Highlights: • InN nanorods were grown on surface nitrided Si(1 1 1) substrate using PAMBE system. • Nitridation of substrate surface has a strong effect on morphology of InN nanorods. • InN nanorods cannot be formed with 1 min nitridation of Si(1 1 1) substrate. • Increasing nitriding time will increase optimum growth temperature of InN nanorods. • Increasing nitriding time can enhance vertical orientation of InN nanorods. - Abstract: The InN nanorods were grown on Si(1 1 1) substrate by plasma-assisted molecular beam epitaxy (PAMBE) system, with a substrate nitridation process. The effect of nitriding time of Si(1 1 1) substrate on morphology, orientation and growth temperature of InN nanorods was characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The deviation angle of InN nanorods was measured to evaluate the alignment of arrays. The results showed that InN nanorods could not be formed with 1 min nitridation of Si(1 1 1) substrate, but they could be obtained again when the nitriding time was increased to more than 10 min. In order to get aligned InN nanorods, the growth temperature needed to increase with longer nitriding time. The vertical orientation of InN nanorods could be enhanced with increase in nitriding time. The influence of the substrate nitridation on the photoluminescence (PL) spectra of InN nanorods has been investigated.

  19. Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    M. Agrawal

    2017-01-01

    Full Text Available The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V∼1and GaN is grown under N-rich growth regime (III/V<1. The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1 and metal rich growth regime (III/V≥1, respectively. AlGaN/GaN high electron mobility transistor (HEMT heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm−2.

  20. Low-loss interference filter arrays made by plasma-assisted reactive magnetron sputtering (PARMS) for high-performance multispectral imaging

    Science.gov (United States)

    Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas

    2016-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.

  1. Effect of oxygen-to-metal flux ratio on incorporation of metal species into quaternary BeMgZnO grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Toporkov, M.; Ullah, M. B.; Demchenko, D. O.; Avrutin, V.; Morkoç, H.; Özgür, Ü.

    2017-06-01

    Owing to its large bandgap covering the UV region of the optical spectrum, the quaternary BeMgZnO is of interest, particularly the collective effect Be and Mg fluxes on the solid composition. Incorporation of Be, Mg, and Zn in the wurtzite BeMgZnO quaternary alloy was found to depend strongly on the reactive-oxygen to metal flux ratio during growth by plasma-assisted molecular beam epitaxy under metal-rich conditions. For a given set of metal fluxes, reducing the VI/II (oxygen to metal flux) ratio from 1.0 to 0.6 increased the bandgap from 4.0 eV to 4.5 eV and decreased the c lattice parameter from 5.08 Å to 5.02 Å. The corresponding change in composition from Be0.07Mg0.21Zn0.72O to Be0.10Mg0.34Zn0.56O was consistent with a systematic reduction in the Zn incorporation coefficient from 0.23 to 0.12, while those of Be and Mg remained at ∼1. This behavior was explained by the substantially lower formation enthalpies of wurtzite BeO and MgO, -5.98 eV and -5.64 eV, respectively, compared to that of ZnO, -3.26 eV, determined using first principles calculations, as well as the high equilibrium vapor pressure of Zn, which results in re-evaporation of excessive Zn from the growing surface, details of which are the topic of this manuscript.

  2. In Situ Oxidation of GaN Layer and Its Effect on Structural Properties of Ga2O3 Films Grown by Plasma-Assisted Molecular Beam Epitaxy

    Science.gov (United States)

    Ngo, Trong Si; Le, Duc Duy; Tran, Duy Khanh; Song, Jung-Hoon; Hong, Soon-Ku

    2017-06-01

    Plasma-assisted molecular beam epitaxy (PAMBE) was used to grow Ga2O3 films on oxidized GaN layers on nitrided sapphire substrates. The GaN layer was grown by PAMBE, and the in situ oxidation of the GaN layer was achieved through exposure to oxygen plasma, which resulted in the formation of monoclinic β-Ga2O3. Crystalline monoclinic β-Ga2O3 films were grown on the GaN layers, with and without oxidation. The orientation relationships were [11\\overline{2} 0] Al2O3//[1\\overline{1} 00] AlN//[1\\overline{1} 00] GaN//[102] β-Ga2O3 and [1\\overline{1} 00] Al2O3//[11\\overline{2} 0] AlN//[11\\overline{2} 0] GaN//[010] β-Ga2O3. The grown β-Ga2O3 films were not single-crystalline but showed rotational domains along the growth direction with three variations, which resulted in six-fold rotational symmetry instead of two-fold rotational symmetry. The surface roughness of the grown β-Ga2O3 film was closely reflected to that of as-grown GaN and oxidized GaN. By analyzing the x-ray omega rocking curves for the on-axis (\\overline{2} 01) and off-axis (002) reflections, it was concluded that rotational domains dominantly affected the crystal quality of the β-Ga2O3 films.

  3. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    Science.gov (United States)

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane.

  4. Continuous-variable entanglement via multiphoton catalysis

    Science.gov (United States)

    Hu, Liyun; Liao, Zeyang; Zubairy, M. Suhail

    2017-01-01

    We theoretically investigate the performance of multiphoton catalysis applied on the two-mode squeezed state by examining the entropy of entanglement, logarithmic negativity, Eistein-Podolsky-Rosen (EPR), and Hillery-Zubairy (HZ) correlations, and the fidelity of teleportation. It is found that the entanglement increases with the number of catalysis operations if the squeezing parameter is low initially. Our comparisons show that the HZ correlation presents a better performance than the EPR correlation for detecting the entanglement, and the improvement of HZ correlation definitely results in the improvement of entropy of entanglement rather than negativity; the region of enhanced EPR correlation is a subregion of all other entanglement properties. In addition, we consider the performances of the fidelity by comparing such operations applied before or after the amplitude damping channel. It is shown that the catalysis operation of m =n =1 before the channel presents the best performance in the initial-low squeezing regime. This may provide a useful insight for a long-distance quantum communication.

  5. Computational approaches to homogeneous gold catalysis.

    Science.gov (United States)

    Faza, Olalla Nieto; López, Carlos Silva

    2015-01-01

    Homogenous gold catalysis has been exploding for the last decade at an outstanding pace. The best described reactivity of Au(I) and Au(III) species is based on gold's properties as a soft Lewis acid, but new reactivity patterns have recently emerged which further expand the range of transformations achievable using gold catalysis, with examples of dual gold activation, hydrogenation reactions, or Au(I)/Au(III) catalytic cycles.In this scenario, to develop fully all these new possibilities, the use of computational tools to understand at an atomistic level of detail the complete role of gold as a catalyst is unavoidable. In this work we aim to provide a comprehensive review of the available benchmark works on methodological options to study homogenous gold catalysis in the hope that this effort can help guide the choice of method in future mechanistic studies involving gold complexes. This is relevant because a representative number of current mechanistic studies still use methods which have been reported as inappropriate and dangerously inaccurate for this chemistry.Together with this, we describe a number of recent mechanistic studies where computational chemistry has provided relevant insights into non-conventional reaction paths, unexpected selectivities or novel reactivity, which illustrate the complexity behind gold-mediated organic chemistry.

  6. Heterogeneity and Microeconometrics Modelling

    DEFF Research Database (Denmark)

    Browning, Martin; Carro, Jesus

    Presented at the 2005 Econometric Society World Congress Plenary Session on "Modelling Heterogeneity". We survey the treatment of heterogeneity in applied microeconometrics analyses. There are three themes. First, there is usually much more heterogeneity than empirical researchers allow for. Seco...

  7. Ferroelectrics: A pathway to switchable surface chemistry and catalysis

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab; Altman, Eric I.

    2016-08-01

    It has been known for more than six decades that ferroelectricity can affect a material's surface physics and chemistry thereby potentially enhancing its catalytic properties. Ferroelectrics are a class of materials with a switchable electrical polarization that can affect surface stoichiometry and electronic structure and thus adsorption energies and modes; e.g., molecular versus dissociative. Therefore, ferroelectrics may be utilized to achieve switchable surface chemistry whereby surface properties are not fixed but can be dynamically controlled by, for example, applying an external electric field or modulating the temperature. Several important examples of applications of ferroelectric and polar materials in photocatalysis and heterogeneous catalysis are discussed. In photocatalysis, the polarization direction can control band bending at water/ferroelectric and ferroelectric/semiconductor interfaces, thereby facilitating charge separation and transfer to the electrolyte and enhancing photocatalytic activity. For gas-surface interactions, available results suggest that using ferroelectrics to support catalytically active transition metals and oxides is another way to enhance catalytic activity. Finally, the possibility of incorporating ferroelectric switching into the catalytic cycle itself is described. In this scenario, a dynamic collaboration of two polarization states can be used to drive reactions that have been historically challenging to achieve on surfaces with fixed chemical properties (e.g., direct NOx decomposition and the selective partial oxidation of methane). These predictions show that dynamic modulation of the polarization can help overcome some of the fundamental limitations on catalytic activity imposed by the Sabatier principle.

  8. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2015-09-01

    Full Text Available Heterogeneous semiconductor photoredox catalysis (SCPC, particularly with TiO2, is evolving to provide radically new synthetic applications. In this review we describe how photoactivated SCPCs can either (i interact with a precursor that donates an electron to the semiconductor thus generating a radical cation; or (ii interact with an acceptor precursor that picks up an electron with production of a radical anion. The radical cations of appropriate donors convert to neutral radicals usually by loss of a proton. The most efficient donors for synthetic purposes contain adjacent functional groups such that the neutral radicals are resonance stabilized. Thus, ET from allylic alkenes and enol ethers generated allyl type radicals that reacted with 1,2-diazine or imine co-reactants to yield functionalized hydrazones or benzylanilines. SCPC with tertiary amines enabled electron-deficient alkenes to be alkylated and furoquinolinones to be accessed. Primary amines on their own led to self-reactions involving C–N coupling and, with terminal diamines, cyclic amines were produced. Carboxylic acids were particularly fruitful affording C-centered radicals that alkylated alkenes and took part in tandem addition cyclizations producing chromenopyrroles; decarboxylative homo-dimerizations were also observed. Acceptors initially yielding radical anions included nitroaromatics and aromatic iodides. The latter led to hydrodehalogenations and cyclizations with suitable precursors. Reductive SCPC also enabled electron-deficient alkenes and aromatic aldehydes to be hydrogenated without the need for hydrogen gas.

  9. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis.

    Science.gov (United States)

    Manley, David W; Walton, John C

    2015-01-01

    Heterogeneous semiconductor photoredox catalysis (SCPC), particularly with TiO2, is evolving to provide radically new synthetic applications. In this review we describe how photoactivated SCPCs can either (i) interact with a precursor that donates an electron to the semiconductor thus generating a radical cation; or (ii) interact with an acceptor precursor that picks up an electron with production of a radical anion. The radical cations of appropriate donors convert to neutral radicals usually by loss of a proton. The most efficient donors for synthetic purposes contain adjacent functional groups such that the neutral radicals are resonance stabilized. Thus, ET from allylic alkenes and enol ethers generated allyl type radicals that reacted with 1,2-diazine or imine co-reactants to yield functionalized hydrazones or benzylanilines. SCPC with tertiary amines enabled electron-deficient alkenes to be alkylated and furoquinolinones to be accessed. Primary amines on their own led to self-reactions involving C-N coupling and, with terminal diamines, cyclic amines were produced. Carboxylic acids were particularly fruitful affording C-centered radicals that alkylated alkenes and took part in tandem addition cyclizations producing chromenopyrroles; decarboxylative homo-dimerizations were also observed. Acceptors initially yielding radical anions included nitroaromatics and aromatic iodides. The latter led to hydrodehalogenations and cyclizations with suitable precursors. Reductive SCPC also enabled electron-deficient alkenes and aromatic aldehydes to be hydrogenated without the need for hydrogen gas.

  10. E factors, green chemistry and catalysis: an odyssey.

    Science.gov (United States)

    Sheldon, Roger A

    2008-08-07

    The development of green chemistry is traced from the introduction of the concepts of atom economy (atom utilisation) and E factors in the early 1990s. The important role of catalysis in reducing or eliminating waste is emphasised and illustrated with examples from heterogeneous catalytic oxidations with hydrogen peroxide, homogeneous catalytic oxidations and carbonylations and organocatalytic oxidations with stable N-oxy radicals. Catalytic reactions in non-conventional media, e.g. aqueous biphasic, supercritical carbon dioxide and ionic liquids, are presented. Biotransformations involving non-natural reactions of enzymes, e.g. ester ammoniolysis, and the rational design of semi-synthetic enzymes, such as vanadate phytase, are discussed. The optimisation of enzyme properties using in vitro evolution and improvement of their operational stability by immobilisation as cross-linked enzyme aggregates (CLEA) are presented. The ultimate in green chemistry is the integration of catalytic steps into a one-pot, catalytic cascade process. An example of a chemoenzymatic synthesis of an enantiomerically pure amino acid in water and a trienzymatic cascade process using a triple-decker oxynitrilase/nitrilase/amidase CLEA are discussed. Finally, catalytic conversions of renewable raw materials are examined and the biocatalytic aerobic oxidation of starch to carboxy starch is presented as an example of green chemistry in optima forma i.e. a biocompatible product from a renewable raw material using a biocatalytic air oxidation.

  11. Photon-Ion Catalysis Synergy Material and Its Application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The co-operation action mechanism and model of photon-ion catalysis synergy material composed of thallium and valency-variable rare earth elements and semiconductor oxide were proposed. The radiation catalysis reactions of water and oxygen assisted by the synergy material that could largely increase electron, free radical and negative ion products were discussed. The applications of photon-ion catalysis synergy material in areas of air cleaning material, antibacterial material, healthy material and energy resource material were suggested.

  12. A new era of catalysis: efficiency, value, and sustainability.

    Science.gov (United States)

    Cheng, Soofin; Lin, Shawn D

    2014-06-01

    Value proposition: Global warming and climate change urge the chemical industry to develop new processes, in which sustainability is a necessity and requirement. Catalysis is recognized to be one of the key technologies in enabling sustainability. This special issue, assembled by guest editors Soofing Chen and Shawn D. Lin, highlights some of the best work presented at "The 6th Asia-Pacific Congress on Catalysis (APCAT-6)", with as major theme "New Era of Catalysis: Efficiency, Value, and Sustainability".

  13. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    Science.gov (United States)

    Pagura, V. P.; Gómez Dumm, D.; Noguera, S.; Scoccola, N. N.

    2017-02-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature, our results show that nonlocal models naturally lead to the inverse magnetic catalysis effect.

  14. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    CERN Document Server

    Pagura, V P; Noguera, S; Scoccola, N N

    2016-01-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature our results show that nonlocal models naturally lead to the Inverse Magnetic Catalysis effect.

  15. The Plasma Assisted Modified Betatron.

    Science.gov (United States)

    1984-12-27

    instability. This is a particular concern because it is now established that two other similar devices, HIPAC 16 and SPAC 1117 were disrupted by the ion... HIPAC or SPAC II. In the modified betatron, even if parameters are right for it, there is still a good chance that it will be stabilized by the

  16. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  17. Supramolecular control of selectivity in transition metal catalysis: Substrate preorganization & cofactor-steered catalysis

    NARCIS (Netherlands)

    Dydio, P.F.

    2013-01-01

    The selectivity displayed by transition metal catalysts is one of the key elements in catalysis, and various tools to control this by ligand modification have been reported. Some selectivity issues are, however, difficult to solve using the traditional methods. Therefore we have an interest in the

  18. Substrate impact on the low-temperature growth of GaN thin films by plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kizir, Seda; Haider, Ali; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, Ankara 06800, Turkey and Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, Ankara 06800 (Turkey)

    2016-07-15

    Gallium nitride (GaN) thin films were grown on Si (100), Si (111), and c-plane sapphire substrates at 200 °C via hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD) using GaEt{sub 3} and N{sub 2}/H{sub 2} plasma as group-III and V precursors, respectively. The main aim of the study was to investigate the impact of substrate on the material properties of low-temperature ALD-grown GaN layers. Structural, chemical, and optical characterizations were carried out in order to evaluate and compare film quality of GaN on different substrates. X-ray reflectivity measurements showed film density values of 5.70, 5.74, and 5.54 g/cm{sup 3} for GaN grown on Si (100), Si (111), and sapphire, respectively. Grazing incidence x-ray diffraction measurements exhibited hexagonal wurtzite structure in all HCPA-ALD grown GaN samples. However, dominant diffraction peak for GaN films grown on Si and sapphire substrates were detected differently as (002) and (103), respectively. X-ray diffraction gonio scans measured from GaN grown on c-plane sapphire primarily showed (002) orientation. All samples exhibited similar refractive index values (∼2.17 at 632 nm) with 2–3 at. % of oxygen impurity existing within the bulk of the films. The grain size was calculated as ∼9–10 nm for GaN grown on Si (100) and Si (111) samples while it was ∼5 nm for GaN/sapphire sample. Root-mean-square surface roughness values found as 0.68, 0.76, and 1.83 nm for GaN deposited on Si (100), Si (111), and sapphire, respectively. Another significant difference observed between the samples was the film growth per cycle: GaN/sapphire sample showed a considerable higher thickness value when compared with GaN/Si samples, which might be attributed to a possibly more-efficient nitridation and faster nucleation of sapphire surface.

  19. Structural characteristics of copper/hydrogenated amorphous carbon composite films prepared by microwave plasma-assisted deposition processes from methane-argon and acetylene-argon gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Thiery, F.; Pauleau, Y.; Grob, J.J.; Babonneau, D

    2004-11-01

    Copper/hydrogenated amorphous carbon (Cu/a-C:H) composite films have been deposited on silicon substrates by a hybrid technique combining microwave plasma-assisted chemical vapor deposition and sputter-deposition from methane-argon and acetylene-argon gas mixtures. The major objective of this work was to investigate the effect of the carbon gas precursor on the structural characteristics of Cu/a-C:H composite films deposited at ambient temperature. The major characteristics of CH{sub 4}-argon and C{sub 2}H{sub 2}-argon plasmas were analyzed by Langmuir probe measurements. The composition of films was determined by Rutherford backscattering spectroscopy, energy recoil detection analyses and nuclear reaction analyses. The carbon content in the films was observed to vary in the range 20-77 at.% and 7.5-99 at.% as the CH{sub 4} and C{sub 2}H{sub 2} concentrations in the gas phase increased from 10 to 100%, respectively. The atom number ratio H/C in the films was scattered approximately 0.4 whatever the carbon gas precursor used. The crystallographic structure and the size of copper crystallites incorporated in the a-C were determined by X-ray diffraction techniques. The copper crystallite size decreased from 20 nm in pure copper films to less than 5 nm in Cu/a-C:H films containing more than 40 at.% of carbon. Grazing incidence small angle X-ray scattering measurements were performed to investigate the size distribution and distance of copper crystallites as functions of the deposition parameters. The structural characteristics of copper crystallites were dependent on the hydrocarbon gas precursor used. The crystallite size and the width of the size distribution were homogeneous in films deposited from CH{sub 4}. Copper crystallites with an anisotropic shape were found in films deposited from C{sub 2}H{sub 2}. The major radicals formed in the plasma and condensed on the surface of growing films, namely CH and C{sub 2}H radicals for films produced from CH{sub 4} and C

  20. Synthesis of vanadium pentoxide (V{sub 2}O{sub 5}) nanobelts with high coverage using plasma assisted PVD approach

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rabindar K., E-mail: rkrksharma6@gmail.com; Kumar, Prabhat; Reddy, G.B.

    2015-07-25

    Highlights: • This report shows the growth of α-V{sub 2}O{sub 5} on Si [1 0 0] substrate using a facile PVD route. • The presence of O{sub 2}-plasma at 500 °C is most essential for the growth of NBs with excellent coverage. • The properties of V{sub 2}O{sub 5} films are systematically studied as function of growth temperature. • The three step growth mechanism of V{sub 2}O{sub 5} NBs is discussed in this paper briefly. - Abstract: Cost-saving, easy-handling, and eco-affable plasma assisted sublimation process (PASP) is proposed to synthesize vanadium pentoxide (V{sub 2}O{sub 5}) nanobelts (NBs) with excellent coverage on Si [1 0 0] wafer using oxygen plasma without using surfactants/catalysts. Pure orthorhombic V{sub 2}O{sub 5} NBs having average length of few hundred of microns with quite uniform width nearly of 100 nm are formed at 500 °C. No film is deposited on Si in presence of oxygen gas without exciting plasma at 500 °C. HRTEM analysis with SAED pattern confirm that all V{sub 2}O{sub 5} NBs are single crystalline in nature with the fringe width of 0.33 nm corresponding to [0 1 0] crystal plane. The XPS analysis shows the compositional purity and sub-stoichiometric nature of V{sub 2}O{sub 5} NBs. The sub-stoichiometric nature of NBs is manifested through an appearance of low intensity peak corresponding to low oxidation state of V (i.e. V{sup 4+}) at the binding energy of 514.8 eV. The micro-Raman and FTIR analysis of NBs are carried out to study the different vibrational modes exhibited by V and O atoms coordinated in distinct fashions. The nanobelts exhibit room temperature PL emission in UV–visible realm with a broad hump in the range of 450–750 nm, which confirms the presence of oxygen defects in NBs and strongly supports the XPS results as well. The possible growth mechanism of α-V{sub 2}O{sub 5} NBs is proposed in this paper briefly.