Parametric trapping of electromagnetic waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Silin, V.P.; Starodub, A.N.
1977-01-01
Considered is parametric instability in an inhomogeneous plasma at which a pumping wave is transformed to an electromagnetic wave and aperiodically in-time-growing disturbances. It is shown that after achievement of some boundary pumping value by electric field intensity an absolute parametric instability evolution becomes possible. In-time growing plasma disturbances are localized near electric field extremums of a pumping wave. Such localization areas are small as compared to characteristic size of pumping inhomogeneity in a plasma. The secondary electromagnetic waves stay within the localization areas and, therefore, are not scattered by a plasma. As following from this it has been established, that due to parametric instability electromagnetic radiation trapping by a plasma occurs. Such a trapping is considerably connected with a spatial structure of a pumping field and it cannot arise within the field of a running wave in the theoretical model considered. However parametric trapping turns out to be possible even with very small reflection coefficients
On the self-trapping of an electromagnetic wave in magnetized plasma
International Nuclear Information System (INIS)
El-Ashry, M.Y.; Berezhiani, V.I.; Pichkhadze, Sh.D.
1987-06-01
The possibility of relativistic self-trapping of an electromagnetic wave in magnetized plasma is studied. It is shown that in the case of propagation of fast wave packet of electromagnetic wave in plasma, self-trapping is possible due to the effect of relativistic non-linearity, which is effective even for small amplitudes of the pumping wave. (author). 7 refs
Absorption of low-frequency electromagnetic waves by plasma in electromagnetic trap
International Nuclear Information System (INIS)
D'yakov, V.E.
1984-01-01
Absorption of electromagnetic waves in plasma of the electromagnetic trap is investigated. An integro-differential equation describing the behaviour of the electrical and magnetic fields of the wave is obtained. The wave has a component along the plasma inhomogeneity axis. Solution of this equation is found within the low frequency range corresponding to the anomalous skin-effect. The possibility of ion-acoustic waves excitation is demonstrated. Expressions are found for reflection, absorption and transformation coefficients
International Nuclear Information System (INIS)
Faith, J.; Kuo, S.P.; Huang, J.
1997-01-01
Experimental and numerical results of the interaction of electromagnetic waves with rapidly time varying spatially periodic plasmas are presented. It is shown that a number of Floquet modes, each with their own oscillation frequency, are created during the interaction. Included among these modes are downshifted waves which will not exist in the single slab case, and also waves with a larger upshifted frequency than one can obtain with a single plasma layer of the same density. In addition, the periodic structure is characterized by pass and stop bands that are different from those of a single plasma layer, and the frequencies of the downshifted modes falling in the stop band of a single plasma layer. Therefore these waves are trapped within the plasma structure until the plasma decays away. To show this phenomenon a chamber experiment is conducted, with the periodic plasma being produced by a capacitive discharge. The power spectrum recorded for waves interacting with the plasma shows vastly improved efficiency in the downshift mechanism, which the numerical calculations suggest is related to the trapping of the wave within the plasma. Reproducible results are recorded which are found to agree well with the numerical simulation. copyright 1997 The American Physical Society
Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons
El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.
2018-02-01
The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.
Directory of Open Access Journals (Sweden)
Y.-N. Nejoh
1998-01-01
Full Text Available The nonlinear dustgrain-charging and the influence of the ion density and temperature on electrostatic waves in a dusty plasma having trapped ions are investigated by numerical calculation. This work is the first approach to the effect of trapped ions in dusty plasmas. The nonlinear variation of the dust-charge is examined, and it is shown that the characteristics of the dustcharge number sensitively depend on the plasma potential, Mach number, dust mass-to-charge ratio, trapped ion density and temperature. The fast and slow wave modes are shown in this system. An increase of the ion temperature decreases the dust-charging rate and the propagation speed of ion waves. It is found that the existence of electrostatic ion waves sensitively depends on the ion to electron density ratio. New findings of the variable-charge dust grain particles, ion density and temperature in a dusty plasma with trapped ions are predicted.
Trapped Electron Instability of Electron Plasma Waves: Vlasov simulations and theory
Berger, Richard; Chapman, Thomas; Brunner, Stephan
2013-10-01
The growth of sidebands of a large-amplitude electron plasma wave is studied with Vlasov simulations for a range of amplitudes (. 001 vph = +/-ωbe , where vph =ω0 /k0 and ωbe is the bounce frequency of a deeply trapped electron. In 2D simulations, we find that the instability persists and co-exists with the filamentation instability. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD.
Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.
2012-10-01
We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.
International Nuclear Information System (INIS)
Heidari, E; Aslaninejad, M; Eshraghi, H
2010-01-01
Using a set of relativistic equations for plasmas with warm electrons and cold ions, we have investigated the effects of trapped electrons in the propagation of an electrosound wave and discussed the possibility of the formation of electromagnetic solitons in a plasma. The effective potential energy and deviations of the electron and ion number densities in this relativistic model have been found. We have obtained the governing equations for the amplitude of the HF field with relativistic corrections. In order to show the destructive impact of the trapped electrons on the solitary wave, a relativistic effective potential and the governing equation have been found. It is shown that for certain values of the parameters the condition of localization of the HF amplitude is violated. In addition, it is shown that as the flow velocity of the plasma changes, the shape of the solitary wave shows two opposing behaviours, depending on whether the solitary wave velocity is larger than the flow velocity or smaller. Also, the existence of stationary solitary waves which are prohibited for nonrelativistic plasma has been predicted. Finally, we have obtained the Korteweg-de Vries equation showing the relativistic, trapping and nonlinearity effects.
International Nuclear Information System (INIS)
Yin, L.; Albright, B. J.; Bowers, K. J.; Daughton, W.; Rose, H. A.
2008-01-01
Backward stimulated Raman and Brillouin scattering (SRS and SBS) of laser are examined in the kinetic regime using particle-in-cell simulations. The SRS reflectivity measured as a function of the laser intensity in a single hot spot from two-dimensional (2D) simulations shows a sharp onset at a threshold laser intensity and a saturated level at higher intensities, as obtained previously in Trident experiments [D. S. Montgomery et al., Phys. Plasmas 9, 2311 (2002)]. In these simulations, wavefront bowing of electron plasma waves (ion acoustic waves) due to the trapped particle nonlinear frequency shift, which increases with laser intensity, is observed in the SRS (SBS) regime for the first time. Self-focusing from trapped particle modulational instability (TPMI) [H. A. Rose, Phys. Plasmas 12, 12318 (2005)] is shown to occur in both two- and three-dimensional SRS simulations. The key physics underlying nonlinear saturation of SRS is identified as a combination of wavefront bowing, TPMI, and self-focusing of electron plasma waves. The wavefront bowing marks the beginning of SRS saturation and self-focusing alone is sufficient to terminate the SRS reflectivity, both effects resulting from cancellation of the source term for SRS and from greatly increased dissipation rate of the electron plasm waves. Ion acoustic wave bowing also contributes to the SBS saturation. Velocity diffusion by transverse modes and rapid loss of hot electrons in regions of small transverse extent formed from self-focusing lead to dissipation of the wave energy and an increase in the Landau damping rate in spite of strong electron trapping that reduces Landau damping initially. The ranges of wavelength and growth rate associated with transverse breakup of the electron-plasma wave are also examined in 2D speckle simulations as well as in 2D periodic systems from Bernstein-Greene-Kruskal equilibrium and are compared with theory predictions
Swanson, DG
1989-01-01
Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th
Trapping and dark current in plasma-based accelerators
International Nuclear Information System (INIS)
Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.
2004-01-01
The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed
Energy Technology Data Exchange (ETDEWEB)
Bacha, Mustapha [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)
2016-08-15
The combined effects of an oblique magnetic field and electron trapping on dissipative dust-acoustic waves are examined in varying charge electronegative dusty plasmas with application to the Halley Comet plasma (∼10{sup 4} km from the nucleus). A weakly nonlinear analysis is carried out to derive a modified Korteweg-de Vries-Burger-like equation. Making use of the equilibrium current balance equation, the physically admissible values of the electron trapping parameter are first constrained. We then show that the Burger dissipative term is solely due to the dust charge variation process. It is found that an increase of the magnetic field obliqueness or a decrease of its magnitude renders the shock structure more dispersive.
Dust acoustic solitary waves and double layers in a dusty plasma with two-temperature trapped ions
International Nuclear Information System (INIS)
El-Labany, S.K.; El-Taibany, W.F.; Mamun, A.A.; Moslem, Waleed M.
2004-01-01
The combined effects of trapped ion distribution, two-ion-temperature, dust charge fluctuation, and dust fluid temperature are incorporated in the study of nonlinear dust acoustic waves in an unmagnetized dusty plasma. It is found that, owing to the departure from the Boltzmann ion distribution to the trapped ion distribution, the dynamics of small but finite amplitude dust acoustic waves is governed by a modified Korteweg-de Vries equation. The latter admits a stationary dust acoustic solitary wave solution, which has stronger nonlinearity, smaller amplitude, wider width, and higher propagation velocity than that involving adiabatic ions. The effect of two-ion-temperature is found to provide the possibility for the coexistence of rarefactive and compressive dust acoustic solitary structures and double layers. Although the dust fluid temperature increases the amplitude of the small but finite amplitude solitary waves, the dust charge fluctuation does the opposite effect. The present investigation should help us to understand the salient features of the nonlinear dust acoustic waves that have been observed in a recent numerical simulation study
Electron plasma waves and plasma resonances
International Nuclear Information System (INIS)
Franklin, R N; Braithwaite, N St J
2009-01-01
In 1929 Tonks and Langmuir predicted of the existence of electron plasma waves in an infinite, uniform plasma. The more realistic laboratory environment of non-uniform and bounded plasmas frustrated early experiments. Meanwhile Landau predicted that electron plasma waves in a uniform collisionless plasma would appear to be damped. Subsequent experimental work verified this and revealed the curious phenomenon of plasma wave echoes. Electron plasma wave theory, extended to finite plasmas, has been confirmed by various experiments. Nonlinear phenomena, such as particle trapping, emerge at large amplitude. The use of electron plasma waves to determine electron density and electron temperature has not proved as convenient as other methods.
National Research Council Canada - National Science Library
Swanson, D. G
1989-01-01
... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...
Whistler wave trapping in a density crest
International Nuclear Information System (INIS)
Sugai, H.; Niki, H.; Inutake, M.; Takeda, S.
1979-11-01
The linear trapping process of whistler waves in a field-aligned density crest is investigated theoretically and experimentally below ω = ωsub(c)/2 (half gyrofrequency). The conditions of the crest trapping are derived in terms of the frequency ω/ωsub(c), the incident wave-normal angle theta sub(i), and the density ratio n sub(i)/n sub(o), where n sub(i) and n sub(o) denote the density at the incident point and that at the ridge, respectively. The oscillation length of the trapped ray path is calculated for a parabolic density profile. The experiment on antenna-excited whistler wave has been performed in a large magnetized plasma with the density crest. The phase and amplitude profile of the whistler wave is measured along and across the crest. The measurement has verified characteristic behaviors of the crest trapping. (author)
International Nuclear Information System (INIS)
Nazari-Golshan, A.; Nourazar, S. S.
2013-01-01
The time fractional modified Korteweg-de Vries (TFMKdV) equation is solved to study the nonlinear propagation of small but finite amplitude dust ion-acoustic (DIA) solitary waves in un-magnetized dusty plasma with trapped electrons. The plasma is composed of a cold ion fluid, stationary dust grains, and hot electrons obeying a trapped electron distribution. The TFMKdV equation is derived by using the semi-inverse and Agrawal's methods and then solved by the Laplace Adomian decomposition method. Our results show that the amplitude of the DIA solitary waves increases with the increase of time fractional order β, the wave velocity v 0 , and the population of the background free electrons λ. However, it is vice-versa for the deviation from isothermality parameter b, which is in agreement with the result obtained previously
Schamel, Hans; Eliasson, Bengt
2016-05-01
Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a ϕ ( x ) 1 / 2 rather than a ϕ ( x ) expansion, where ϕ ( x ) is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of ϕ ( x ) and the nonlinear dispersion relation, which describes their phase velocity.
Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.
2013-10-01
Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.
Injection into electron plasma traps
International Nuclear Information System (INIS)
Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.
2003-01-01
Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory
Waves and instabilities in plasmas
International Nuclear Information System (INIS)
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations
Magnetoresistive waves in plasmas
International Nuclear Information System (INIS)
Felber, F.S.; Hunter, R.O. Jr.; Pereira, N.R.; Tajima, T.
1982-01-01
The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed
International Nuclear Information System (INIS)
Lambert, A.J.D.
1979-01-01
A review of linear and weakly non-linear theory of electron waves, ion waves and electromagnetic waves in plasmas is presented. The author restricts the discussion to an infinitely extended, homogeneous and isotropic plasma, not affected by external fields and described by Vlasov's and Maxwell's equations. (Auth.)
International Nuclear Information System (INIS)
Shawhan, S.D.
1977-01-01
A brief history of plasma wave observations in the Earth's magnetosphere is recounted and a classification of the identified plasma wave phenomena is presented. The existence of plasma waves is discussed in terms of the characteristic frequencies of the plasma, the energetic particle populations and the proposed generation mechanisms. Examples are given for which plasmas waves have provided information about the plasma parameters and particle characteristics once a reasonable theory has been developed. Observational evidence and arguments by analogy to the observed Earth plasma wave processes are used to identify plasma waves that may be significant in other planetary magnetospheres. The similarities between the observed characteristics of the terrestrial kilometric radiation and radio bursts from Jupiter, Saturn and possibly Uranus are stressed. Important scientific problems concerning plasma wave processes in the solar system and beyond are identified and discussed. Models for solar flares, flare star radio outbursts and pulsars include elements which are also common to the models for magnetospheric radio bursts. Finally, a listing of the research and development in terms of instruments, missions, laboratory experiments, theory and computer simulations needed to make meaningful progress on the outstanding scientific problems of plasma wave research is given. (Auth.)
Waves and oscillations in plasma crystals
International Nuclear Information System (INIS)
Piel, A; Homann, A; Klindworth, M; Melzer, A; Zafiu, C; Nosenko, V; Goree, J
2003-01-01
An overview of the properties of plasma crystals and clusters is given with emphasis on oscillations of particles in the plasma trap, instabilities associated with the solid-liquid phase transition and the propagation of waves. It is demonstrated how laser manipulation can be used to stimulate particle motion and waves. From characteristic resonance frequencies and from wave dispersion the particle charge and shielding length parameters, which determine the interparticle forces, can be quantitatively measured
Lominadze, D G
2013-01-01
Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f
Plasma production from helicon waves
International Nuclear Information System (INIS)
Degeling, A.W.; Jung, C.O.; Boswell, R.W.; Ellingboe, A.R.
1996-01-01
Experimental measurements taken in a large magnetoplasma show that a simple double half-turn antenna will excite m=1 helicon waves with wavelengths from 10 endash 60 cm. Increased ionization in the center of the downstream plasma is measured when the axial wavelength of the helicon wave becomes less than the characteristic length of the system, typically 50 endash 100 cm. A sharp maximum in the plasma density downstream from the source is measured for a magnetic field of 50 G, where the helicon wave phase velocity is about 3x10 8 cms -1 . Transport of energy away from the source to the downstream region must occur to create the hot electrons needed for the increased ionization. A simple model shows that electrons in a Maxwellian distribution most likely to ionize for these experimental conditions also have a velocity of around 3x10 8 cms -1 . This strong correlation suggests that the helicon wave is trapping electrons in the Maxwellian distribution with velocities somewhat slower than the wave and accelerating them into a quasibeam with velocity somewhat faster than the wave. The nonlinear increase in central density downstream as the power is increased for helicon waves with phase velocities close to the optimum electron velocity for ionization lends support to this idea. copyright 1996 American Institute of Physics
Gurnett, Donald A.
1995-01-01
An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.
Plasma waves in an inhomogeneous cylindrical plasma
International Nuclear Information System (INIS)
Pesic, S.S.
1976-01-01
The complete dispersion equation governing small amplitude plasma waves propagating in an inhomogeneous cylindrical plasma confined by a helical magnetic field is solved numerically. The efficiency of the wave energy thermalization in the lower hybrid frequency range is studied
International Nuclear Information System (INIS)
Lominadse, D.G.
1975-01-01
The book deals with fundamental physical concepts of the theory of cyclotron waves and cyclotron instabilities conditioned by the presence in plasma of direct or alternating electric currents passing in it perpendicularily to a magnetic field. A great variety of problems is considered connected with the linear theory of cyclotron oscillations in equilibrium and electron plasma of metals and semiconductors. Parametric excitations of electron cyclotron oscillations of plasma in an alternating electric field are studied. Particular attention is paid to the investigation of plasma turbulence arising as a result of development of cyclotron instabilities. Experimental data are discussed and compared with theoretical results
Waves in Space Plasmas Program
Fredricks, R. W.; Taylor, W. W. L.
1981-01-01
The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions; ELF/VLF propagation; traveling ionospheric disturbances and gravity wave coupling; equatorial plasma bubble phenomena; plasma wave physics such as mode-coupling, dispersion, and instabilities; and plasma physics of the antenna-plasma interactions.
Waves in Space Plasmas Program
International Nuclear Information System (INIS)
Fredricks, R.W.; Taylor, W.W.L.
1981-01-01
The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions, ELF/VLF propagation, traveling ionospheric disturbances and gravity wave coupling, equatorial plasma bubble phenomena, plasma wave physics such as mode-coupling, dispersion, and instabilities, and plasma physics of the antenna-plasma interactions
International Nuclear Information System (INIS)
Mori, W.; Joshi, C.; Dawson, J.M.
1982-01-01
It was shown that the insertion of a cross magnetic field prevents the particles from getting out of phase with the electric field of the plasma wave in the beat wave accelerator scheme. Thus, using a CO 2 laser, n/sub c//n/sub e/ = (ω 0 /ω/sub p/) 2 approx. 35, and a 300 kG magnetic field, electrons can be (in principle) accelerated to 100 GeV in 2 meters. For comparison without the magnetic field, the same energies may be obtained in a n/sub c//n/sub e/ approx. 10 5 plasma over a distance of 100 meters
Undamped electrostatic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Valentini, F.; Perrone, D.; Veltri, P. [Dipartimento di Fisica and CNISM, Universita della Calabria, 87036 Rende (CS) (Italy); Califano, F.; Pegoraro, F. [Dipartimento di Fisica and CNISM, Universita di Pisa, 56127 Pisa (Italy); Morrison, P. J. [Institute for Fusion Studies and Department of Physics, University of Texas at Austin, Austin, Texas 78712-1060 (United States); O' Neil, T. M. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)
2012-09-15
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.
Undamped electrostatic plasma waves
International Nuclear Information System (INIS)
Valentini, F.; Perrone, D.; Veltri, P.; Califano, F.; Pegoraro, F.; Morrison, P. J.; O'Neil, T. M.
2012-01-01
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,ω R ) plane (ω R being the real part of the wave frequency and k the wavenumber), away from the well-known “thumb curve” for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.
Multipole traps for non-neutral plasmas
International Nuclear Information System (INIS)
Tiouririne, T.N.; Turner, L.; Lau, A.W.C.
1994-01-01
A multipolar generalization of the Penning trap is presented. The case of l=1 is that of standard Penning trap. For the case of a quadrupolar magnetic field, analytic solutions are presented for cold, confined, one-species plasmas with spheroidal or spherical boundaries; for higher l values analytic solutions are given only for spherically bounded plasmas. By virtue of the sheared flow present for solutions with l>1, the classical Brillouin ratio (stored rest energy of particles/stored magnetic energy) of unity is exceeded and attains a global limit of 2 at infinitely high l
Interaction between electromagnetic waves and plasma waves in motional plasma
International Nuclear Information System (INIS)
Chen, S. Y.; Gao, M.; Tang, C. J.; Peng, X. D.
2009-01-01
The electromagnetic wave (EM wave) behavior and the electromagnetic instability caused by the interaction between an EM wave and a plasma wave in motional plasma are studied. The dispersion relation of EM waves and the dielectric tensor of motional plasma are derived by magnetohydrodynamics, and the wave phenomenon in motional plasma is displayed. As a result, the electromagnetic instability, which is excited by the interaction between the EM waves and the plasma waves, is revealed. The mechanism of the instability is the coupling between high frequency electromagnetic field and the transverse electron oscillation derived from the deflection of longitudinal electron oscillation due to self-magnetic field. The present research is useful with regard to the new type of plasma radiation source, ion-focusing accelerator, and plasma diagnostic technique.
Plasma Wave Electronic Terahertz Technology
National Research Council Canada - National Science Library
Shur, Michael
2003-01-01
Plasma waves are oscillations of electron density in time and space. In deep submicron field effect transistors plasma wave frequencies lie in the terahertz range and can be tuned by applied gate bias...
Surge of plasma waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Benhassine, Mohammed
1985-01-01
The first part of this research thesis addresses the propagation of waves in a plasma. It presents the equation of propagation of an electromagnetic wave in a plasma without magnetic field, and analyses the propagation in an inhomogeneous medium. The second part addresses the wave-particle interaction: interaction between electrons and an electromagnetic wave, between electrons and an electrostatic wave (trapping), and between electrons and a localised electric field. The third chapter presents the analytic theory of oscillations of a cold plasma (macroscopic equations in Lagrangian coordinates, analytic solution before surge). The next chapter discusses physical interpretations before the wave surge, after the wave surge, and about energy exchange (within or outside of resonance). Numerical simulations and their results are then reported and discussed. The sixth chapter addresses the case of an electrostatic wave surge in a hot plasma. It notably addresses the following aspects: equivalence between the description of moments and the Waterbag model, interaction between non linearity and thermal effects, variation of electric field amplitude with temperature. Results of numerical simulations are presented, and the last part addresses experimental predictions for microwaves-plasma interaction and laser-matter interaction [fr
Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles
International Nuclear Information System (INIS)
Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.
2009-01-01
The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.
Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles
Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.
2009-12-01
The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.
Twisted electron-acoustic waves in plasmas
International Nuclear Information System (INIS)
Aman-ur-Rehman; Ali, S.; Khan, S. A.; Shahzad, K.
2016-01-01
In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q_e_f_f accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.
Trapped waves on the mid-latitude β-plane
Paldor, Nathan; Sigalov, Andrey
2008-08-01
A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.
Chaotic waves in Hall thruster plasma
International Nuclear Information System (INIS)
Peradzynski, Zbigniew; Barral, S.; Kurzyna, J.; Makowski, K.; Dudeck, M.
2006-01-01
The set of hyperbolic equations of the fluid model describing the acceleration of plasma in a Hall thruster is analyzed. The characteristic feature of the flow is the existence of a trapped characteristic; i.e. there exists a characteristic line, which never intersects the boundary of the flow region in the thruster. To study the propagation of short wave perturbations, the approach of geometrical optics (like WKB) can be applied. This can be done in a linear as well as in a nonlinear version. The nonlinear version describes the waves of small but finite amplitude. As a result of such an approach one obtains so called transport equation, which are governing the wave amplitude. Due to the existence of trapped characteristics this transport equation appears to have chaotic (turbulent) solutions in both, linear and nonlinear versions
Dynamic trapping of electrons in space plasmas
International Nuclear Information System (INIS)
Brenning, N.; Bohm, M.; Faelthammar, C.G.
1989-12-01
The neutralization of positive space charge is studied in a case where heavy positive ions are added to a limited region of length L in a collisionfree magnetized plasma. It is found that electrons which become accelerated towards the positive space charge can only achieve a partial neutralization: they overshoot, and the positive region becomes surrounded by negative space charges which screen the electric field from the surroundings. The process is studied both analytically and by computer simulations with consistent results: large positive potentials (U>>kT e /e) can be built up with respect to the surrounding plasma. In the process of growth, the potential maximum traps electrons in transit so that quasineutrality is maintained. The potential U is proportional to the ambient electron temperature and the square of the plasma density increase, but independent of both the ion injection rate and the length L. The process explains several features of the Porcupinge xenon beam injection experiment. It could also have importance for the electrodynamic coupling between plasmas of different densities, e.g. the injection of neutral clouds in the ionosphere of species that becomes rapidly photoionized, or penetration of dense plasma clouds from the solar wind into the magnetosphere. (31 refs.) (authors)
Trapping of gun-injected plasma by a tokamak
International Nuclear Information System (INIS)
Leonard, A.W.; Dexter, R.N.; Sprott, J.C.
1986-01-01
It is shown that a plasma produced by a Marshall gun can be injected into and trapped by a tokamak plasma. Gun injection raises the line-averaged density and peaks the density profile. Trapping of the gun-injected plasma is explainable in terms of a depolarization current mechanism
Trapping and Evolution Dynamics of Ultracold Two-Component Plasmas
International Nuclear Information System (INIS)
Choi, J.-H.; Knuffman, B.; Zhang, X. H.; Povilus, A. P.; Raithel, G.
2008-01-01
We demonstrate the trapping of a strongly magnetized, quasineutral ultracold plasma in a nested Penning trap with a background field of 2.9 T. Electrons remain trapped in this system for several milliseconds. Early in the evolution, the dynamics are driven by a breathing-mode oscillation in the ionic charge distribution, which modulates the electron trap depth. Over longer times scales, the electronic component undergoes cooling. Trap loss resulting from ExB drift is characterized
An optical trap for relativistic plasma
International Nuclear Information System (INIS)
Zhang Ping; Saleh, Ned; Chen Shouyuan; Sheng Zhengming; Umstadter, Donald
2003-01-01
The first optical trap capable of confining relativistic electrons, with kinetic energy ≤350 keV was created by the interference of spatially and temporally overlapping terawatt power, 400 fs duration laser pulses (≤2.4x10 18 W/cm 2 ) in plasma. Analysis and computer simulation predicted that the plasma density was greatly modulated, reaching a peak density up to 10 times the background density (n e /n 0 ∼10) at the interference minima. Associated with this charge displacement, a direct-current electrostatic field of strength of ∼2x10 11 eV/m was excited. These predictions were confirmed experimentally by Thomson and Raman scattering diagnostics. Also confirmed were predictions that the electron density grating acted as a multi-layer mirror to transfer energy between the crossed laser beams, resulting in the power of the weaker laser beam being nearly 50% increased. Furthermore, it was predicted that the optical trap acted to heat electrons, increasing their temperature by two orders of magnitude. The experimental results showed that the number of high energy electrons accelerated along the direction of one of the laser beams was enhanced by a factor of 3 and electron temperature was increased ∼100 keV as compared with single-beam illumination
International Nuclear Information System (INIS)
Ostrikov, K.N.; Kumar, S.; Sugai, H.
2001-01-01
Charging and trapping of macroparticles in the near-electrode region of fluorocarbon etching plasmas with negative ions is considered. The equilibrium charge and forces on particles are computed as a function of the local position in the plasma presheath and sheath. The ionic composition of the plasma corresponds to the etching experiments in 2.45 GHz surface-wave sustained and 13.56 MHz inductively coupled C 4 F 8 +Ar plasmas. It is shown that despite negligible negative ion currents collected by the particles, the negative fluorine ions affect the charging and trapping of particulates through modification of the sheath/presheath structure
The Influence of Trapped Particles on the Parametric Decay Instability of Near-Acoustic Waves
Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.
2017-10-01
We present quantitative measurements of a decay instability to lower frequencies of near-acoustic waves. These experiments are conducted on pure ion plasmas confined in a cylindrical Penning-Malmberg trap. The axisymmetric, standing plasma waves have near-acoustic dispersion, discretized by the axial wave number kz =mz(π /Lp) . The nonlinear coupling rates are measured between large amplitude mz = 2 (pump) waves and small amplitude mz = 1 (daughter) waves, which have a small frequency detuning Δω = 2ω1 -ω2 . Classical 3-wave parametric coupling rates are proportional to pump wave amplitude as Γ (δn2 /n0) , with oscillatory energy exchange for Γ Δω / 2 . Experiments on cold plasmas agree quantitatively for oscillatory energy exchange, and agree within a factor-of-two for decay instability rates. However, nascent theory suggest that this latter agreement is merely fortuitous, and that the instability mechanism is trapped particles. Experiments at higher temperatures show that trapped particles reduce the instability threshold below classical 3-wave theory predictions. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693. M. Affolter is supported by the DOE FES Postdoctoral Research Program administered by ORISE for the DOE. ORISE is managed by ORAU under DOE Contract Number DE-SC0014664.
Nonextensive statistical mechanics approach to electron trapping in degenerate plasmas
Mebrouk, Khireddine; Gougam, Leila Ait; Tribeche, Mouloud
2016-06-01
The electron trapping in a weakly nondegenerate plasma is reformulated and re-examined by incorporating the nonextensive entropy prescription. Using the q-deformed Fermi-Dirac distribution function including the quantum as well as the nonextensive statistical effects, we derive a new generalized electron density with a new contribution proportional to the electron temperature T, which may dominate the usual thermal correction (∼T2) at very low temperatures. To make the physics behind the effect of this new contribution more transparent, we analyze the modifications arising in the propagation of ion-acoustic solitary waves. Interestingly, we find that due to the nonextensive correction, our plasma model allows the possibility of existence of quantum ion-acoustic solitons with velocity higher than the Fermi ion-sound velocity. Moreover, as the nonextensive parameter q increases, the critical temperature Tc beyond which coexistence of compressive and rarefactive solitons sets in, is shifted towards higher values.
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Trapped ion mode in toroidally rotating plasmas
International Nuclear Information System (INIS)
Artun, M.; Tang, W.M.; Rewoldt, G.
1995-04-01
The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k τ ρ bi much-lt 1, where ρ bi is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented
International Nuclear Information System (INIS)
Pathak, Pallabi; Sharma, Sumita Kumari; Bailung, Heremba
2015-01-01
The evolution of super rogue wave having amplitude ∼5 times the background wave has been observed in multicomponent plasma with critical concentration of negative ions in a double plasma device. In normal electron-ion plasma the ion acoustic solitons are described by the Korteweg-de Vries (KdV) equation. At a critical concentration of negative ions, the ion acoustic modified KdV solitons are found to propagate. Multicomponent plasma also supports the propagation of a special kind of soliton namely 'Peregrine soliton' at critical concentration of negative ions. Peregrine soliton is a doubly localized solution of the nonlinear Schrodinger equation (NLSE) having amplitude 3 times the background carrier wave. In a double plasma device, ion-acoustic Peregrine soliton is excited by applying slowly varying amplitude modulated continuous sinusoidal signal to the source anode and described by the rational solution of NLSE. The ion acoustic wave is modulationally unstable in multicomponent plasma with critical concentration of negative ions and an initial modulated wave perturbation is found to undergo self-modulation to form localized structures by balancing the nonlinearity with the dispersion. In presence of higher order nonlinearity, propagation of a high amplitude (∼5 times of background carrier wave) ion acoustic Peregrine soliton has been observed experimentally. The existence of such types of higher order wave has been reported in other dispersive media. These are considered to be the prototype of super rogue wave in deep water. In this work, experimental results on the evolution of super rogue wave in a double plasma device are presented and compared with the numerical solution of NLSE. (author)
International Nuclear Information System (INIS)
Brodin, G.; Stenflo, L.
2017-01-01
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.
Energy Technology Data Exchange (ETDEWEB)
Brodin, G., E-mail: gert.brodin@physics.umu.se [Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Stenflo, L. [Department of Physics, Linköping University, SE-581 83 Linköping (Sweden)
2017-03-18
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.
Waves and Oscillations in Plasmas
Pecseli, Hans L
2012-01-01
The result of more than 15 years of lectures in plasma sciences presented at universities in Denmark, Norway, and the United States, Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences. The book covers fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping. Offering a clear separation of linear and nonlinear models, the book can be tailored for readers of varying levels of expertise.Designed to provide basic training in linear as well as nonlinear plasma dynamics, and practical in areas as d
Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam
Lotov, K.V.; Petrenko, A.V.; Amorim, L.D.; Vieira, J.; Fonseca, R.A.; Silva, L.O.; Gschwendtner, E.; Muggli, P.
2014-01-01
It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.
Antimatter Plasmas in a Multipole Trap for Antihydrogen
Andresen, G B; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y
2007-01-01
We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.
Antimatter plasmas in a multipole trap for antihydrogen.
Andresen, G; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y
2007-01-12
We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.
International Nuclear Information System (INIS)
Booker, H.G.
1984-01-01
The book aims to present current knowledge concerning the propagation of electromagnetic waves in a homogeneous magnetoplasma for which temperature effects are unimportant. It places roughly equal emphasis on the radio and the hydromagnetic parts of the electromagnetic spectrum. The dispersion properties of a magnetoplasma are treated as a function both of wave frequency (assumed real) and of ionization density. The effect of collisions is included only in so far as this can be done with simplicity. The book describes how pulses are radiated from both small and large antennas embedded in a homogeneous magnetoplasma. The power density radiated from a type of dipole antenna is studied as a function of direction of radiation in all bands of wave frequency. Input reactance is not treated, but the dependence of radiation resistance on wave frequency is described for the entire electromagnetic spectrum. Also described is the relation between beaming and guidance for Alfven waves. (Auth.)
Waves in plasmas (part 1 - wave-plasma interaction general background)
International Nuclear Information System (INIS)
Dumont, R.
2004-01-01
This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)
Alfven Waves in Gyrokinetic Plasmas
International Nuclear Information System (INIS)
Lee, W.W.; Qin, H.
2003-01-01
A brief comparison of the properties of Alfven waves that are based on the gyrokinetic description with those derived from the MHD equations is presented. The critical differences between these two approaches are the treatment of the ion polarization effects. As such, the compressional Alfven waves in a gyrokinetic plasma can be eliminated through frequency ordering, whereas geometric simplifications are needed to decouple the shear Alfven waves from the compressional Alfven waves within the context of MHD. Theoretical and numerical procedures of using gyrokinetic particle simulation for studying microturbulence and kinetic-MHD physics including finite Larmor radius effects are also presented
Trapped electron losses by interactions with coherent VLF waves
International Nuclear Information System (INIS)
Walt, M.; Inan, U.S.; Voss, H.D.
1996-01-01
VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population. copyright 1996 American Institute of Physics
Trapped electron losses by interactions with coherent VLF waves
Walt, M.; Inan, U. S.; Voss, H. D.
1996-07-01
VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population.
Plasma manipulation techniques for positron storage in a multicell trap
International Nuclear Information System (INIS)
Danielson, J. R.; Weber, T. R.; Surko, C. M.
2006-01-01
New plasma manipulation techniques are described that are central to the development of a multicell Penning trap designed to increase positron storage by orders of magnitude (e.g., to particle numbers N≥10 12 ). The experiments are done using test electron plasmas. A technique is described to move plasmas across the confining magnetic field and to deposit them at specific radial and azimuthal positions. Techniques to fill and operate two in-line plasma cells simultaneously, and the use of 1 kV confinement potentials are demonstrated. These experiments establish the capabilities to create, confine, and manipulate plasmas with the parameters required for a multicell trap; namely, particle numbers >10 10 in a single cell with plasma temperature ≤0.2 eV for plasma lengths ∼10 cm and radii ≤0.2 cm. The updated design of a multicell positron trap for 10 12 particles is described
Globally linked vortex clusters in trapped wave fields
International Nuclear Information System (INIS)
Crasovan, Lucian-Cornel; Molina-Terriza, Gabriel; Torres, Juan P.; Torner, Lluis; Perez-Garcia, Victor M.; Mihalache, Dumitru
2002-01-01
We put forward the existence of a rich variety of fully stationary vortex structures, termed H clusters, made of an increasing number of vortices nested in paraxial wave fields confined by trapping potentials. However, we show that the constituent vortices are globally linked, rather than products of independent vortices. Also, they always feature a monopolar global wave front and exist in nonlinear systems, such as the Bose-Einstein condensates. Clusters with multipolar global wave fronts are nonstationary or, at best, flipping
An Introduction to Wave-Trapping in Supergranulation
International Nuclear Information System (INIS)
Allen, W; Hill, F
2011-01-01
This paper is an introduction to modelling waves trapped in a supergranular cell. The supergranular cell is generalized to the form of a hexagon with a cylinder inscribed within its boundaries. A cylindrical wave equation is implemented and solved and we account for the edges of the hexagon through boundary conditions. Plots are created of the solution and will serve as a test as to whether the model reflects actual wave conditions inside a single supergranular cell.
Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator
Energy Technology Data Exchange (ETDEWEB)
Kirby, Neil; /SLAC
2009-10-30
Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped
Shalashov, A. G.; Gospodchikov, E. D.; Izotov, I. V.; Mansfeld, D. A.; Skalyga, V. A.; Tarvainen, O.
2018-04-01
We report the first experimental evidence of a controlled transition from the generation of periodic bursts of electromagnetic radiation into the continuous-wave regime of a cyclotron maser formed in magnetically confined nonequilibrium plasma. The kinetic cyclotron instability of the extraordinary wave of weakly inhomogeneous magnetized plasma is driven by the anisotropic electron population resulting from electron cyclotron plasma heating in a MHD-stable minimum-B open magnetic trap.
Stratified Coastal Trapped Waves and Mean Flows
National Research Council Canada - National Science Library
Thompson, LuAnne
1998-01-01
Our long term goals are to identify the roles that rectified subinertial waves and mesoscale motions play in the mean-flow transport of fluid properties in the coastal ocean and to apply these ideas...
Ionospheric plasma by VHF waves
Indian Academy of Sciences (India)
The amplitude scintillations of very high frequency electromagnetic wave ... Scintillations at low latitude are known to occur in discrete patches [5,6] and are part .... weakly ionized plasma with a density gradient and a relative drift of ions and ...
Ion Acoustic Waves in the Presence of Electron Plasma Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....
The Multipole Plasma Trap-PIC Modeling Results
Hicks, Nathaniel; Bowman, Amanda; Godden, Katarina
2017-10-01
A radio-frequency (RF) multipole structure is studied via particle-in-cell computer modeling, to assess the response of quasi-neutral plasma to the imposed RF fields. Several regimes, such as pair plasma, antimatter plasma, and conventional (ion-electron) plasma are considered. In the case of equal charge-to-mass ratio of plasma species, the effects of the multipole field are symmetric between positive and negative particles. In the case of a charge-to-mass disparity, the multipole RF parameters (frequency, voltage, structure size) may be chosen such that the light species (e.g. electrons) is strongly confined, while the heavy species (e.g. positive ions) does not respond to the RF field. In this case, the trapped negative space charge creates a potential well that then traps the positive species. 2D and 3D particle-in-cell simulations of this concept are presented, to assess plasma response and trapping dependences on multipole order, consequences of the formation of an RF plasma sheath, and the effects of an axial magnetic field. The scalings of trapped plasma parameters are explored in each of the mentioned regimes, to guide the design of prospective experiments investigating each. Supported by U.S. NSF/DOE Partnership in Basic Plasma Science and Engineering Grant PHY-1619615.
Plasma accumulation in the HF supplemented mirror trap
International Nuclear Information System (INIS)
Dougar-Jabon, V.D.; Golovaniksky, K.S.; Karyaka, V.I.
1975-01-01
The confinement of plasma bunches in the mirror trap with the combined barrier at ECR is experimentally studied. Under fulfilment of the phase autofocusing condition the reflection of electrons by the combined barrier is quasiadiabatic and plasma losses are determined by perpendicular diffusion. (Auth.)
On helicon wave induced radial plasma transport
International Nuclear Information System (INIS)
Petrzilka, V.
1993-04-01
Estimates of helicon wave induced radial plasma transport are presented. The wave induced transport grows or decreases in dependence on the sign of the azimuthal wave number; these changes in transport may play an important role in helicon wave plasma sources. (author) 5 figs., 18 refs
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Electron waves and resonances in bounded plasmas
Vandenplas, Paul E
1968-01-01
General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.
Effect of non-Maxwellian particle trapping and dust grain charging on dust acoustic solitary waves
International Nuclear Information System (INIS)
Rubab, N.; Murtaza, G.; Mushtaq, A.
2006-01-01
The role of adiabatic trapped ions on a small but finite amplitude dust acoustic wave, including the effect of adiabatic dust charge variation, is investigated in an unmagnetized three-component dusty plasma consisting of electrons, ions and massive micron sized negatively charged dust particulates. We have assumed that electrons and ions obey (r,q) velocity distribution while the dust species is treated fluid dynamically. It is found that the dynamics of dust acoustic waves is governed by a modified r dependent Korteweg-de Vries equation. Further, the spectral indices (r,q) affect the charge fluctuation as well as the trapping of electrons and ions and consequently modify the dust acoustic solitary wave
Automatic plasma control in magnetic traps
International Nuclear Information System (INIS)
Samojlenko, Y.; Chuyanov, V.
1984-01-01
Hot plasma is essentially in thermodynamic non-steady state. Automatic plasma control basically means monitoring deviations from steady state and producing a suitable magnetic or electric field which brings the plasma back to its original state. Briefly described are two systems of automatic plasma control: control with a magnetic field using a negative impedance circuit, and control using an electric field. It appears that systems of automatic plasma stabilization will be an indispensable component of the fusion reactor and its possibilities will in many ways determine the reactor economy. (Ha)
Plasma automatic control in magnetic traps
International Nuclear Information System (INIS)
Samojlenko, Yu.I.; Chuyanov, V.A.
1983-01-01
Principles of constructing the systems providing a plasma equilibrium and stability in thermonuctear devices are laid down. Operation of the servo system to maintain a plasma equilibrium is described using the tokamak plasma filament as an example. Operation of the system to suppress a flute instability is also described. This system measures electric disturbances on the plasma body surface and controls charge distribution on external electrodes. It is pointed out that systems of automatic control of plasma equilibrium and stability become an essential element of a future thermonuclear reactor and the system potentialities would much determine the reactor economic efficiency
Review of Plasma Techniques Used to Trap Antihydrogen
Fajans, Joel
2011-10-01
Recently, the ALPHA collaboration at CERN trapped antihydrogen atoms. To date, over three hundred antiatoms have been confined, some for as long as 1000s. This was the first time that antiatoms had ever been trapped. The ultimate goal of the ALPHA collaboration is to test CPT invariance by comparing the spectra of hydrogen and antihydrogen, and to measure the gravitational attraction between matter and antimatter. Such studies might resolve the baryogenesis problem: why is there very little antimatter in the Universe? The ALPHA experiment brought together techniques from many different fields of physics, but the crucial breakthroughs were in plasma physics. The essential problem is this: How does one combine two Malmberg-Penning trapped plasmas, one made from antiprotons, and the other positrons, which have opposite electrostatic potentials of nearly one volt, in such a manner that the antiprotons traverse the positrons with kinetic energies of less than 40 μeV, this latter being the depth of the superimposed neutral antihydrogen trap? The plasma techniques ALPHA developed to accomplish this include: Minimizing the effects of the neutral trap multipole fields on the positron and antiproton plasma confinement. Compressing antiprotons down to less than 0.5mm. Using autoresonance to inject antiprotons into the positrons with very little excess energy. Evaporative cooling of the electrons and antiprotons to record low temperatures. Development of charge, radial profile, temperature, and antiproton loss location diagnostics. Careful and lengthy manipulations to finesse the plasmas into the best states for optimal antihydrogen production and trapping. The plasma techniques necessary to trap antihydrogen will be reviewed in this talk. This work was supported by DOE and NSF, and is reported on behalf of the ALPHA collaboration.
Millimeter wave and terahertz wave transmission characteristics in plasma
International Nuclear Information System (INIS)
Ma Ping; Qin Long; Chen Weijun; Zhao Qing; Shi Anhua; Huang Jie
2013-01-01
An experiment was conducted on the shock tube to explore the transmission characteristics of millimeter wave and terahertz wave in high density plasmas, in order to meet the communication requirement of hypersonic vehicles during blackout. The transmission attenuation curves of millimeter wave and terahertz wave in different electron density and collision frequency were obtained. The experiment was also simulated by auxiliary differential equation finite-difference time-domain (ADE-FDTD) methods. The experimental and numerical results show that the transmission attenuation of terahertz wave in the plasma is smaller than that of millimeter wave under the same conditions. The transmission attenuation of terahertz wave in the plasma is enhanced with the increase of electron density. The terahertz wave is a promising alternative to the electromagnetic wave propagation in high density plasmas. (authors)
Trapping of gun-injected plasma by a tokamak
International Nuclear Information System (INIS)
Leonard, A.W.; Dexter, R.N.; Sprott, J.C.
1986-10-01
It is shown that a plasma produced by a Marshall gun can be injected into and trapped by a tokamak plasma. Gun injection raises the line-averaged density and peaks the density profile. Trapping of the gun-injected plasma is explainable in terms of a depolarization current mechanism. A model is developed which describes the slowing of a plasma beam crossing into the magnetic field of a tokamak. The slowing down time is shown to go as tau/sub s/ ∞ n -1 /sub b/T 3 /sub e/(α 0 /L) 2 , where n/sub b/ and T/sub e/ are the density and temperature of the plasma beam and α 0 /L is the pitch of the field lines per unit length in the direction in which the beam is traveling. Experimental tests of this model are consistent with the scaling predictions
Trapping of gun-injected plasma by a tokamak
International Nuclear Information System (INIS)
Leonard, A.W.; Dexter, R.N.; Sprott, J.C.
1987-01-01
It has been seen that a plasma produced by a Marshall gun can be injected into and trapped by a tokamak plasma. This trapping of a gun-injected plasma is explained in terms of a depolarization current mechanism. A model is developed that describes the slowing of a plasma beam crossing into the magnetic field of a tokamak. The slowing down time is shown to go as tau/sub s/proportionalT/sup 3/2//sub e/L 2 /n/sub b/α 2 0 , where n/sub b/ and T/sub e/ are the density and temperature of the plasma beam and α 0 /L is the pitch of the field lines per unit length in the direction in which the beam is traveling. Experimental tests of this model are consistent with the scaling predictions
Nonlinear waves in solar plasmas - a review
International Nuclear Information System (INIS)
Ballai, I
2006-01-01
Nonlinearity is a direct consequence of large scale dynamics in the solar plasmas. When nonlinear steepening of waves is balanced by dispersion, solitary waves are generated. In the vicinity of resonances, waves can steepen into nonlinear waves influencing the efficiency of energy deposition. Here we review recent theoretical breakthroughs that have lead to a greater understanding of many aspects of nonlinear waves arising in homogeneous and inhomogeneous solar plasmas
A multidimensional theory for electron trapping by a plasma wake generated in the bubble regime
International Nuclear Information System (INIS)
Kostyukov, I; Nerush, E; Pukhov, A; Seredov, V
2010-01-01
We present a theory for electron self-injection in nonlinear, multidimensional plasma waves excited by a short laser pulse in the bubble regime or by a short electron beam in the blowout regime. In these regimes, which are typical for electron acceleration in the last impressive experiments, the laser radiation pressure or the electron beam charge pushes out plasma electrons from some region, forming a plasma cavity or a bubble with a huge ion charge. The plasma electrons can be trapped in the bubble and accelerated by the plasma wakefields up to a very high energy. We derive the condition of the electron trapping in the bubble. The developed theory predicts the trapping cross section in terms of the bubble radius and the bubble velocity. It is found that the dynamic bubble deformations observed in the three-dimensional (3D) particle-in-cell (PIC) simulations influence the trapping process significantly. The bubble elongation reduces the gamma-factor of the bubble, thereby strongly enhancing self-injection. The obtained analytical results are in good agreement with the 3D PIC simulations.
Millimetre waves and plasma physics
International Nuclear Information System (INIS)
Brand, G.F.
1999-01-01
Full text: This talk is a review of the plasma-related presentations at the 23rd International Conference on Infrared and Millimeter Waves held at the University of Essex, Colchester, UK 7-11 September 1998. Of most relevance to fusion is the development of high-power sources for electron cyclotron resonance heating and current drive. The requirements for ITER are a total of 50 MW at 170 GHz. The state of the art is illustrated by (a) high-power gyrotrons that deliver 1 MW for 1 s at 170 GHz, and (b) a free-electron maser that has generated millimetre waves for the first time, 730 kW at 200 GHz. A number of papers describe new technologies that allow high powers to be achieved; internal mode converters to convert the whispering-gallery mode generated in the gyrotron cavity into a gaussian beam, depressed collectors to raise the efficiency from 1/3 to better than 1/2, CVD diamond output windows and coaxial gyrotrons with improved mode purity. Other papers describe transmission lines and steerable mirrors. Several papers deal with millimetre-wave plasma diagnostics for fusion such as electron cyclotron emission measurements and reflectometry. (author)
Plasma wave and second harmonic generation
International Nuclear Information System (INIS)
Sodha, M.S.; Sharma, J.K.; Tewari, D.P.; Sharma, R.P.; Kaushik, S.C.
1978-01-01
An investigation is made of a plasma wave at pump wave frequency and second harmonic generation caused by a self induced transverse inhomogeneity introduced by a Gaussian electromagnetic beam in a hot collisionless plasma. In the presence of a Gaussian beam the carriers get redistributed from the high field region to the low field region by ponderomative force and a transverse density gradient is established in the plasma. When the electric vector of the main beam is parallel to this density gradient, a plasma wave at the pump wave frequency is generated. In addition to this the transverse intensity gradient of the electromagnetic wave also contributes significantly to the plasma wave generation. The power of the plasma wave exhibits a maximum and minimum with the power of the pump wave (at z = 0). The generated plasma wave interacts with the electromagnetic wave and leads to the generation of a second harmonic. Furthermore, if the initial power of the pump wave is more than the critical power for self-focusing, the beam gets self-focused and hence the generated plasma wave and second harmonic which depend upon the background electron concentration and power of the main beam also get accordingly modified. (author)
Magnetoacoustic waves in current-carrying plasmas
International Nuclear Information System (INIS)
Brennan, M.H.
1980-04-01
The results of theoretical and experimental investigations of the characteristics of magnetoacoustic waves in non-uniform, current-carrying plasmas are reviewed. Dissipative MHD and collisionless theories are considered. Also discussed is the use of magnetoacoustic waves in plasma diagnostics and plasma heating
Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagtion
International Nuclear Information System (INIS)
Matda, Y.; Crawford, F.W.
1974-12-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described. (auth)
Trapping of pellet cloud radiation in thermonuclear plasmas
International Nuclear Information System (INIS)
Sergeev, V.Yu.; Miroshinikov, I.V.; Sudo, Shigeru; Namba, C.; Lisitsa, V.S.
2001-01-01
The experimental and theoretical data on radiation trapping in clouds of pellets injected into thermonuclear plasmas are presented. The theoretical modeling is performed in terms of equivalent Stark spectral line widths under condition of LTE (Sakha-Boltzman) in pellet cloud plasmas. It is shown that a domain of blackbody radiation could exist in hydrogen pellet clouds resulting in ''pellet disappearance'' effect which is absent in a case of impurity pellet clouds. Reasons for this difference are discussed. (author)
Paul Ion Trap as a Diagnostic for Plasma Focus
Sadat Kiai, S. M.; Adlparvar, S.; Zirak, A.; Alhooie, Samira; Elahi, M.; Sheibani, S.; Safarien, A.; Farhangi, S.; Dabirzadeh, A. A.; Khalaj, M. M.; Mahlooji, M. S.; KaKaei, S.; Talaei, A.; Kashani, A.; Tajik Ahmadi, H.; Zahedi, F.
2010-02-01
The plasma discharge contamination by high and low Z Impurities affect the rate of nuclear fusion reaction products, specially when light particles have to be confined. These impurities should be analyzed and can be fairly controlled. This paper reports on the development of a Paul ion trap with ion sources by impact electron ionization as a diagnostic for the 10 kJ Iranian sunshine plasma focus device. Preliminary results of the residual gas are analyzed and presented.
Wave-particle Interactions in Space and Laboratory Plasmas
An, Xin
This dissertation presents a study of wave-particle interactions in space and in the laboratory. To be concrete, the excitation of whistler-mode chorus waves in space and in the laboratory is studied in the first part. The relaxation of whistler anisotropy instability relevant to whistler-mode chorus waves in space is examined. Using a linear growth rate analysis and kinetic particle-in-cell simulations, the electron distributions are demonstrated to be well-constrained by the whistler anisotropy instability to a marginal-stability state, consistent with measurements by Van Allen Probes. The electron parallel beta beta ∥e separates the excited whistler waves into two groups: (i) quasi-parallel whistler waves for beta∥e > 0.02 and (ii) oblique whistler waves close to the resonance cone for beta∥e cell simulations. Motivated by the puzzles of chorus waves in space and by their recognized importance, the excitation of whistler-mode chorus waves is studied in the Large Plasma Device by the injection of a helical electron beam into a cold plasma. Incoherent broadband whistler waves similar to magnetospheric hiss are observed in the laboratory plasma. Their mode structures are identified by the phase-correlation technique. It is demonstrated that the waves are excited through a combination of Landau resonance, cyclotron resonance and anomalous cyclotron resonance. To account for the finite size effect of the electron beam, linear unstable eigenmodes of whistler waves are calculated by matching the eigenmode solution at the boundary. It is shown that the perpendicular wave number inside the beam is quantized due to the constraint imposed by the boundary condition. Darwin particle-in-cell simulations are carried out to study the simultaneous excitation of Langmuir and whistler waves in a beam-plasma system. The electron beam is first slowed down and relaxed by the rapidly growing Langmuir wave parallel to the background magnetic field. The tail of the core electrons
Calculation of stationary plasma parameters in an electromagnetic trap
International Nuclear Information System (INIS)
Karpukhin, V.I.; Lavrent'ev, O.A.; Sappa, N.N.
1978-01-01
The model of energy and particle balance is considered and the numerical calculations for stationary plasma parameters, supported by the electron injection, are obtained for a hypothetical electromagnetic trap with linear dimensions, magnetic field strength and energy contribution to plasma of the order of these parameters for the modern tokamak-type traps. The process of limitation of an effective injection current and energy contribution to plasma caused by returning of electrons to the injector due to diffusion in the velocity space is simulated. In approximation of a classical diffusion dependences are obtained of the effective energy contribution to plasma and of the parameters ntausub(E) and Tsub(i) (n is a plasma density; tausub(E)- energetic lifetime; Tsub(i) ion temperature) on electron injection current and power and on the confining magnetic field strength. It had been established that at classical character of diffusion in electromagnetic trap with above parameters one could obtain stationary plasma with ntausub(E)=10 12 cm -3 s and Tsub(i)=1keV, maintaining only by electron injection
Electrostatic and electromagnetic traps for high-temperature plasma
International Nuclear Information System (INIS)
Lavrent'ev, O.A.
Theoretical and experimental aspects of thermal isolation are considered for a high-temperature plasma in systems with electrostatic as well as electric and magnetic fields. Specific types of traps are discussed, together with diagnostic methods and fundamental experimental results. (U.S.)
Large amplitude waves and fields in plasmas
International Nuclear Information System (INIS)
Angelis, U. de; Naples Univ.
1990-02-01
In this review, based mostly on the results of the recent workshop on ''Large Amplitude Waves and Fields in Plasmas'' held at ICTP (Trieste, Italy) in May 1989 during the Spring College on Plasma Physics, I will mostly concentrate on underdense, cold, homogeneous plasmas, discussing some of the alternative (to fusion) uses of laser-plasma interaction. In Part I an outline of some basic non-linear processes is given, together with some recent experimental results. The processes are chosen because of their relevance to the applications or because new interesting developments have been reported at the ICTP workshop (or both). In Part II the excitation mechanisms and uses of large amplitude plasma waves are presented: these include phase-conjugation in plasmas, plasma based accelerators (beat-wave, plasma wake-field and laser wake-field), plasma lenses and plasma wigglers for Free Electron Lasers. (author)
Ion trapping within the dust grain plasma sheath
International Nuclear Information System (INIS)
Jovanovic, D.; Shukla, P.K.
2002-01-01
One of the most important and still unresolved problems in the physics of dusty plasmas is the determination of the dust charge. The grains are not directly accessible to measurements and it is necessary to have a reliable theoretical model of the electron and ion dynamics inside the Debye sphere for the interpretation of the relevant experimental data, which include also the effects of the surrounding electron and ion clouds. Recent computer simulations [6] and laboratory experiments [9] indicate that the plasma sheath is dominated by trapped ions, orbiting the grain on closed trajectories at distances smaller than the Debye radius, that cannot be accounted for by the classical theories. We present the first analytical, fully self-consistent, calculations of the electrostatic shielding of a charged dust grain in a collisional plasma. In the regime when the mean free path for the ion-dust collisions is larger than that for the ion-neutral collisions, we solve the kinetic equation for the ions, coupled with Boltzmann distributed electrons and Poisson's equation. The ion velocity distribution function, in the form of a spherically symmetric ion hole, is found to be anisotropic in the presence of charge-exchange collisions. The number of trapped ions and their spatial distribution are determined from the interplay between the collective plasma interaction and the collisional trapping/de-trapping. The stationary state results from the self-tuning of the trapped ion density by the feedback based on the nonlocality of the collisional integral, and on the ion mixing in the radial direction along elongated orbits. Our results confirm the existence of a strong Debye shielding of the dust charge, allowing also the over-population of the trapped ion distribution (ion hump)
Time domain phenomena of wave propagation in rapidly created plasma of periodic distribution
International Nuclear Information System (INIS)
Kuo, S P
2007-01-01
Theories, experiments and numerical simulations on the interaction of electromagnetic waves with rapidly created unmagnetized plasmas are presented. In the case that plasma is created uniformly, the frequency of a propagating electromagnetic wave is upshifted. An opposite propagation wave of the same frequency is also generated. In addition, a static current supporting a wiggler magnetic field is also produced in the plasma. When a spatially periodic structure is introduced to the rapidly created plasma, the theory and numerical simulation results show that both frequency-upshifted and downshifted waves are generated. If the plasma has a large but finite dimension in the incident wave propagation direction and is created rapidly rather than instantaneously, the frequency downshifted waves are found to be trapped by the plasma when the plasma frequency is larger than the wave frequency. The wave trapping results in accumulating the frequency-downshifted waves during the finite transient period of plasma creation. Indeed, in the experimental observations the frequency downshifted signals were detected repetitively with considerably enhanced spectral intensities, confirming the results of the numerical simulations. The missing of frequency upshifted signals in the experimental observations is explained by the modal field distributions in the periodic structure, indicating that the frequency upshifted modes experience heavier collisional damping of the plasma than the frequency downshifted modes
Trapped waves of the 27 November 1945 Makran tsunami: observations and numerical modeling
Digital Repository Service at National Institute of Oceanography (India)
Neetu, S.; Suresh, I.; Shankar, R.; Nagarajan, B.; Sharma, R.; Shenoi, S.S.C.; Unnikrishnan, A.S.; Sundar, D.
the Makran coast and at Karachi were the result of trapping of the tsunami-wave energy on the continental shelf off the Makran coast and that these coastally-trapped edge waves were trapped in the alongshore direction within a approx 300-km stretch...
Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals
Li, Qian; Hu, Lei; Mao, Qiuping; Jiang, Haiming; Hu, Zhijia; Xie, Kang; Wei, Zhang
2018-03-01
Light trapping at the Dirac point in 2D plasma photonic crystal has been obtained. The new localized mode, Dirac mode, is attributable to neither photonic bandgap nor total internal reflection. It exhibits a unique algebraic profile and possesses a high-Q factor resonator of about 105. The Dirac point could be modulated by tuning the filling factor, plasma frequency and plasma cyclotron frequency, respectively. When a magnetic field parallel to the wave vector is applied, Dirac modes for right circularly polarized and left circularly polarized waves could be obtained at different frequencies, and the Q factor could be tuned. This property will add more controllability and flexibility to the design and modulation of novel photonic devices. It is also valuable for the possibilities of Dirac modes in photonic crystal containing other kinds of metamaterials.
Advanced Accelerators: Particle, Photon and Plasma Wave Interactions
Energy Technology Data Exchange (ETDEWEB)
Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)
2017-06-29
The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.
Scattering of electromagnetic waves into plasma oscillations via plasma particles
International Nuclear Information System (INIS)
Lin, A.T.; Dawson, J.M.
1975-01-01
A plasma subjected to an intense electromagnetic wave can exhibit a large number of parametric instabilities. An interesting example which has received little attention is the decay of the electromagnetic wave into a plasma oscillation with the excess energy and momentum being carried off by electrons. This process has been simulated on a one-and-two-halves dimensional electromagnetic code. The incident electromagnetic wave had a frequency near the plasma frequency so that decay into a plasma oscillation and a backscattered electromagnetic wave was excluded. As expected, the threshold for this instability was very large , so it is unlikely that this instability is competitive in most laser plasmas. Nevertheless, the physical mechanism involved provides a means for absorption of laser light and acceleration of particles in a plasma containing large amplitude plasma oscillations
Fundamental plasma emission involving ion sound waves
International Nuclear Information System (INIS)
Cairns, I.H.
1987-01-01
The theory for fundamental plasma emission by the three-wave processes L ± S → T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived. (author)
Relativistic solitary waves modulating long laser pulses in plasmas
International Nuclear Information System (INIS)
Sanchez-Arriaga, G; Siminos, E; Lefebvre, E
2011-01-01
This paper discusses the existence of solitary electromagnetic waves trapped in a self-generated Langmuir wave and embedded in an infinitely long circularly polarized electromagnetic wave propagating through a plasma. From a mathematical point of view they are exact solutions of the one-dimensional relativistic cold fluid plasma model with nonvanishing boundary conditions. Under the assumption of travelling wave solutions with velocity V and vector potential frequency ω, the fluid model is reduced to a Hamiltonian system. The solitary waves are homoclinic (grey solitons) or heteroclinic (dark solitons) orbits to fixed points. Using a dynamical systems description of the Hamiltonian system and a spectral method, we identify a large variety of solitary waves, including asymmetric ones, discuss their disappearance for certain parameter values and classify them according to (i) grey or dark character, (ii) the number of humps of the vector potential envelope and (iii) their symmetries. The solutions come in continuous families in the parametric V-ω plane and extend up to velocities that approach the speed of light. The stability of certain types of grey solitary waves is investigated with the aid of particle-in-cell simulations that demonstrate their propagation for a few tens of the inverse of the plasma frequency.
Plasmas in compact traps: From ion sources to multidisciplinary research
Mascali, D.; Musumarra, A.; Leone, F.; Galatà, A.; Romano, F. P.; Gammino, S.
2017-09-01
In linear (minimum-B) magneto-static traps dense and hot plasmas are heated by electromagnetic radiation in the GHz domain via the Electron Cyclotron Resonance (ECR). The values of plasma density, temperature and confinement times ( n_eτ_i>10^{13} cm ^{-3} s; T_e>10 keV) are similar to the ones of thermonuclear plasmas. The research in this field -devoted to heating and confinement optimization- has been supported by numerical modeling and advanced diagnostics, for probing the plasma especially in a non-invasive way. ECR-based systems are nowadays able to produce extremely intense (tens or hundreds of mA) beams of light ions (p, d, He), and relevant currents of heavier elements (C, O, N) up to heavy ions like Xe, Pb, U. Such beams can be extracted from the trap by a proper electrostatic system. The above-mentioned properties make these plasmas very attractive for interdisciplinary researches also, such as i) nuclear decays rates measurements in stellar-like conditions, ii) energy conversion studies, being exceptional sources of short-wavelength electromagnetic radiation (EUV, X-rays, hard X-rays and gammas, useful in material science and archaeometry), iii) environments allowing precise spectroscopical measurements as benchmarks for magnetized astrophysical plasmas. The talk will give an overview about the state-of-the-art in the field of intense ion sources, and some new perspectives for interdisciplinary research, with a special attention to the developments based at INFN-LNS.
Data on rotating plasma operation in Tornado traps
International Nuclear Information System (INIS)
Lehnert, B.
1976-01-01
Rotating plasma operation in spiral coil 'Tornado' traps provides a unique combination of confinement and heating properties. Such a system consists of a closed and compact magnetic bottle to which the crossed-field technique can be applied, in absence of end insulators and their critical velocity limitation effect. This should make possible the generation and heating of fully ionized plasmas by simple means, within a large range of ion densities, temperatures, and rotational velocities. Provided that stable operation becomes possible at high temperatures, it is likely that Tornado traps can be used as strong neutron sources of moderately large dimensions and technically realizable parameter values. Some detailed data and operation ranges are given for the 'Tornado 650' device in Leningrad, and for a somewhat larger device to be operated as neutron source. (Auth.)
Data on rotating plasma operation in Tornado traps
International Nuclear Information System (INIS)
Lehnert, B.
1977-01-01
Rotating plasma operation in spiral coil 'Tornado' traps provides a unique combination of confinement and heating properties. Such a system consists of a closed and compact magnetic bottle to which the crossed-field technique can be applied, in absence of end insulators and their critical velocity limitation effect. This is expected to lead to the generation and heating of fully ionized plasmas within a large range of ion densities, temperatures, and rotational velocities. Provided that stable operation becomes possible at high temperatures and the effects due to the asymmetries of the spiral coil structure can be neglected, it is likely that Tornado traps can be used as strong neutron sources of moderately large dimensions and technically realizable parameter values. Some detailed data and operation ranges are outlined for the 'Tornado 650' device in Leningrad, and for a somewhat larger device which may be operated as a neutron source. (Auth.)
Numerical simulation of electrostatic waves in plasmas
International Nuclear Information System (INIS)
Erz, U.
1981-08-01
In this paper the propagation of electrostatic waves in plasmas and the non-linear interactions, which occur in the case of large wave amplitudes, are studied using a new numerical method for plasma simulation. This mathematical description is based on the Vlasov-model. Changes in the distribution-function are taken into account and thus plasma kinetic effects can be treated. (orig./HT) [de
International Nuclear Information System (INIS)
Niu, K.
1996-01-01
A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)
Indian Academy of Sciences (India)
ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.
Linear spin waves in a trapped Bose gas
International Nuclear Information System (INIS)
Nikuni, T.; Williams, J.E.; Clark, C.W.
2002-01-01
An ultracold Bose gas of two-level atoms can be thought of as a spin-1/2 Bose gas. It supports spin-wave collective modes due to the exchange mean field. Such collective spin oscillations have been observed in recent experiments at JILA with 87 Rb atoms confined in a harmonic trap. We present a theory of the spin-wave collective modes based on the moment method for trapped gases. In the collisionless and hydrodynamic limits, we derive analytic expressions for the frequencies and damping rates of modes with dipole and quadrupole symmetry. We find that the frequency for a given mode is given by a temperature-independent function of the peak density n, and falls off as 1/n. We also find that, to a very good approximation, excitations in the radial and axial directions are decoupled. We compare our model to the numerical integration of a one-dimensional version of the kinetic equation and find very good qualitative agreement. The damping rates, however, show the largest deviation for intermediate densities, where one expects Landau damping--which is unaccounted for in our moment approach--to play a significant role
Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P
2016-05-01
A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.
Wave-driven countercurrent plasma centrifuge
Energy Technology Data Exchange (ETDEWEB)
Fetterman, Abraham J; Fisch, Nathaniel J [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540 (United States)
2009-11-15
A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the {alpha} channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.
Wave-driven countercurrent plasma centrifuge
International Nuclear Information System (INIS)
Fetterman, Abraham J; Fisch, Nathaniel J
2009-01-01
A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.
Wave-driven Countercurrent Plasma Centrifuge
International Nuclear Information System (INIS)
Fetterman, A.J.; Fisch, N.J.
2009-01-01
A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided
Resonances and surface waves in bounded plasmas
International Nuclear Information System (INIS)
Bowers, K.J.; Qui, D.W.; Smith, H.B.; Birdsall, C.K.
1999-01-01
Surface waves provide a promising means of creating large, area plasmas. These waves can uniformly distribute the excitation energy and while presenting a small resistance and zero reactance to the driving source. Experimentally and in the simulations, the electron temperature is low (like 1--3 eV) as is the plasma potential (like 10 Te). The use of surface waves experimentally, and now industrially, to sustain large area plasma sources with device size is comparable to free space wavelength have motivated the authors to refine the theories of [1] and [2] to be fully electromagnetic. The wave dispersion predicted by the electromagnetic theory differs from the predictions of the prior theories and the results illuminate limitations of the electrostatic model. The use of surface waves have also motivated them to explore the mechanisms by which surface waves heat the plasma. In the 1d electrostatic simulations high velocity electron bunches are formed in the sheaths and are alternatively accelerated from each sheath into the bulk plasma each RF cycle. They speculate similar mechanisms provide the ionization in surface wave discharges. They also see in these simulations the plasma makes an abrupt transition from capacitively coupled to resistively coupled and the series resonance locks onto the drive frequency; these abrupt transitions resemble mode-jumping seen experimentally in large area sources. Furthermore, the density profile of the plasma tracks the drive frequency while in the resonant mode giving a new mechanism by which the plasma parameters can be controlled. They are currently investigating the effect of the driving electrode shape has on these resonances and conducting 2d simulations of a large area surface wave source to explore the ignition of surface wave devices and how the plasma fills in the device
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....
Evolution Of Nonlinear Waves in Compressing Plasma
International Nuclear Information System (INIS)
Schmit, P.F.; Dodin, I.Y.; Fisch, N.J.
2011-01-01
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size Δ during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches Δ. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Harmonic surface wave propagation in plasma
International Nuclear Information System (INIS)
Shivarova, A.; Stoychev, T.
1980-01-01
Second order harmonic surface waves generated by one fundamental high-frequency surface wave are investigated experimentally in gas discharge plasma. Two types of harmonic waves of equal frequency, associated with the linear dispersion relation and the synchronism conditions relatively propagate. The experimental conditions and the different space damping rates of the waves ensure the existence of different spatial regions (consecutively arranged along the plasma column) of a dominant propagation of each one of these two waves. Experimental data are obtained both for the wavenumbers and the space damping rates by relatively precise methods for wave investigations such as the methods of time-space diagrams and of phase shift measurements. The results are explained by the theoretical model for nonlinear mixing of dispersive waves. (author)
On the Self-Focusing of Whistler Waves in a Radial Inhomogeneous Plasma
DEFF Research Database (Denmark)
Balmashnov, A. A.
1980-01-01
The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation of the l......The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation...... of the latter wave is accompanied by a density modification, which leads to trapping of the whistler wave in a density trough in the center of the plasma column....
Laser beam trapping and propagation in cylindrical plasma columns
International Nuclear Information System (INIS)
Feit, M.D.; Fleck, J.A. Jr.
1976-01-01
An analysis of the scheme to heat magnetically confined plasma columns to kilovolt temperatures with a laser beam requires consideration of two propagation problems. The first question to be answered is whether stable beam trapping is possible. Since the laser beam creates its own density profile by heating the plasma, the propagation of the beam becomes a nonlinear phenomenon, but not necessarily a stable one. In addition, the electron density at a given time depends on the preceding history of both the medium and the laser pulse. A self-consistent time dependent treatment of the beam propagation and the medium hydrodynamics is consequently required to predict the behavior of the laser beam. Such calculations have been carried out and indicate that propagation of a laser beam in an initially uniform plasma can form a stable filament which alternately focuses and defocuses. An additional question that is discussed is whether diffractive losses associated with long propagation paths are significant
Radiation from nonlinear coupling of plasma waves
International Nuclear Information System (INIS)
Fung, S.F.
1986-01-01
The author examines the generation of electromagnetic radiation by nonlinear resonant interactions of plasma waves in a cold, uniformly magnetized plasma. In particular, he considers the up-conversion of two electrostatic wave packets colliding to produce high frequency electromagnetic radiation. Efficient conversion of electrostatic to electromagnetic wave energy occurs when the pump amplitudes approach and exceed the pump depletion threshold. Results from the inverse scattering transform analysis of the three-wave interaction equations are applied. When the wave packets are initially separated, the fully nonlinear set of coupling equations, which describe the evolution of the wave packets, can be reduced to three separate eigenvalue problems; each can be considered as a scattering problem, analogous to eh Schroedinger equation. In the scattering space, the wave packet profiles act as the scattering potentials. When the wavepacket areas approach (or exceed) π/2, the wave functions are localized (bound states) and the scattering potentials are said to contain solitons. Exchange of solitons occurs during the interaction. The transfer of solitons from the pump waves to the electromagnetic wave leads to pump depletion and the production of strong radiation. The emission of radio waves is considered by the coupling of two upper-hybrid branch wave packets, and an upper-hybrid and a lower hybrid branch wave packet
Non linear excitation of waves at the vicinity of plasma resonance
International Nuclear Information System (INIS)
Chiron, Arnaud
1992-01-01
This research thesis reports the study of the non linear evolution of ionic acoustic and plasma waves excited by resonant absorption of an electromagnetic wave, in a non collisional plasma, without external magnetic field, and with a parabolic density profile. The plasma resonance occurs about the density profile peak. The numerical resolution of the Zakharov equation system is performed to describe the coupled evolution of the plasma wave electric field envelope, and low frequency density disturbances. Experiments performed in the microwave domain show the existence of a new effect related to the modification of the electromagnetic wave propagation under the influence of plasma density disturbances created by the ponderomotive force. This effect which results in a collisional relaxation of plasma waves trapped in the cavity formed at resonance, cannot be taken into account by a numerical simulation using a capacitive pump field. Measurements showed that plasma waves were trapped and relaxing in a cavity with characteristic dimensions of some thousands of Debye lengths, and that the plasma wave in the cavity was stationary. A new turbulence regime is thus highlighted [fr
Fast wave evanescence in filamentary boundary plasmas
International Nuclear Information System (INIS)
Myra, J. R.
2014-01-01
Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed
Quasi-electrostatic waves in dusty plasma
International Nuclear Information System (INIS)
Das, A.C.; Goswami, K.S.; Misra, A.K.
1997-01-01
Low frequency quasi-electrostatic waves in cold dusty plasma are investigated taking account of liberation and absorption of electrons and ions by the dust and their momentum transfer mechanism. (author)
Elastic waves trapped by a homogeneous anisotropic semicylinder
Energy Technology Data Exchange (ETDEWEB)
Nazarov, S A [Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St.-Petersburg (Russian Federation)
2013-11-30
It is established that the problem of elastic oscillations of a homogeneous anisotropic semicylinder (console) with traction-free lateral surface (Neumann boundary condition) has no eigenvalues when the console is clamped at one end (Dirichlet boundary condition). If the end is free, under additional requirements of elastic and geometric symmetry, simple sufficient conditions are found for the existence of an eigenvalue embedded in the continuous spectrum and generating a trapped elastic wave, that is, one which decays at infinity at an exponential rate. The results are obtained by generalizing the methods developed for scalar problems, which however require substantial modification for the vector problem in elasticity theory. Examples are given and open questions are stated. Bibliography: 53 titles.
Evanescent light-wave atom mirrors, resonators, waveguides, and traps
International Nuclear Information System (INIS)
Dowling, J.P.; Gea-Banacloche, J.
1996-01-01
For many years, it has been known that light can be used to trap and manipulate small dielectric particles and atoms. In particular, the intense coherent light of lasers has been used to cool neutral atoms down to the micro-Kelvin and now even the nano-Kelvin regimes. At such low temperatures, the de Broglie wavelike character of the atoms becomes pronounced, making it necessary to treat the atoms as wave phenomena. To this end, the study of atom optics has recently developed, in which atom optical elements are fabricated in order to manipulate atoms, while utilizing and preserving the coherence and superposition properties inherent in their wavelike propagation. For example, there has been a concerted effort to study theoretically and produce experimentally the atom optic analogs of photonic optical elements, such as atom beam splitters, atom diffraction gratings, atom lenses, atom interferometers, and-last but not least-atom mirrors. It is light-induced atom mirrors, and their application to making atom resonators, waveguides, and traps, that we shall focus on in this chapter. 133 refs., 26 figs., 1 tab
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
Electromagnetic wave in a relativistic magnetized plasma
International Nuclear Information System (INIS)
Krasovitskiy, V. B.
2009-01-01
Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.
Drift waves in a weakly ionized plasma
DEFF Research Database (Denmark)
Popovic, M.; Melchior, H.
1968-01-01
A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....
Creating an anisotropic plasma resistivity with waves
International Nuclear Information System (INIS)
Fisch, N.J.; Boozer, A.H.
1980-05-01
An anisotropic plasma resistivity may be created by preferential heating of electrons traveling in one direction. This can result in a steady-state toroidal current in a tokamak even in the absence of net wave momentum. In fact, at high wave phase velocities, the current associated with the change in resistivity is greater than that associated with net momentum input. An immediate implication is that other waves, such as electron cyclotron waves, may be competitive with lower-hybrid waves as a means for generating current. An analytical expression is derived for the current generated per power dissipated which agrees remarkably well with numerical calculations
Recent results on the beat wave acceleration of externally injected electrons on a plasma
International Nuclear Information System (INIS)
Clayton, C.E.; Marsh, K.; Dyson, A.; Everett, M.; Lal, A.; Josh, C.; Williams, R.; Katsouleas, T.
1992-01-01
In the Plasma Beat Wave Accelerator (PBWA) two laser beams of slightly different frequencies resonantly beat in a plasma in such a way that their frequency and wavenumber differences correspond to the plasma wave frequency and wavenumber. The amplitude-modulated electromagnetic wave envelope of the laser pulse exerts a periodic nonlinear force on the plasma electrons, causing them to bunch. The resulting space-charge wave can have a phase velocity nearly equal to the speed of light. If an electron bunch is injected with a velocity close to this it can be trapped and accelerated. The UCLA program investigating PBWA has found that tunnel or multi-photon ionized plasmas a re homogeneous enough for coherent macroscopic acceleration. The laser pulse should be short, and the peak laser intensity should be such that Iλ 2 ∼ 2 x 10 16 W/cm 2 μm 2 in order to get substantial beat wave amplitudes. tab., 3 refs
Radiation phenomena of plasma waves, 1
International Nuclear Information System (INIS)
Ohnuma, Toshiro.
1978-06-01
The fundamental radiation theories on radiation phenomena of plasma waves are presented. As the fundamental concepts of propagating waves, phase, group and ray velocities are explained, and phase velocity surface, group velocity surface, ray velocity surface and refractive index surface are considered. These concepts are important in anisotropic plasma. Fundamental equations for electron plasma waves in a fluid model and fundamental equations for ion plasma waves can be expressed with the above mentioned concepts. Kuehl derived the formulas for general radiation fields of electromagnetic and electrostatic waves which are radiated from an arbitrary current source. Fundamental equations for kinetic model are the Vlasov equation and Maxwell equations. By investigating electromagnetic radiation in cold anisotropic plasma, Kuehl found the important behavior that the fields radiated from a source become very large in certain directions for some ranges of plasma parameters. The fact is the so-called high frequency resonance cone. A fundamental formula for quasi-static radiation from an oscillating point source in warm anisotropic plasma includes the near field of electromagnetic mode and the field of electrostatic mode, which are radiated from the source. This paper presents the formula in a generalized form. (Kato, T.)
On solitary surface waves in cold plasmas
International Nuclear Information System (INIS)
Vladimirov, S.V.; Yu, M.Y.; Stenflo, L.
1993-01-01
A new type of nonlinear electromagnetic solitary surface waves propagating along the boundary of a cold plasma is discussed. These waves are described by a novel nonlinear evolution equation, obtained when the nonlinear surface currents at the boundary are taken into consideration. (Author)
Project of experimental study on plasma waves and plasma turbulence
International Nuclear Information System (INIS)
Ferreira, J.L.
1990-09-01
The objective of this project is to perform experiments with wave phenomena on plasmas. Particular attention will be given to Langmuir and whistler waves due to its relations with several phenomena occuring on space and laboratory plasmas. The new concepts of particle acceleration with electromagnetic waves, the auroral phenomena on the polar regions and the charged particle precipitation to the atmosphere through anomalies of the earth magnetic field are examples where these waves have an important role. In this project we intend to study the propagation of these waves in a quiescent plasma machine. This machine is able to produce a plasma with density and temperature with values similar to what is met in the ionosphere. This project will be a part of the activities of the basic plasma group of the INPE's Associated Plasma Laboratory (LAP). It will have the collaboration of the departments of Aeronomy and Geophysics also from INPE, and the collaboration of the Plasma and Gas Physics Laboratory from University of Paris - South, in France. (author)
Plasma mechanizm for auroral kilometer wave radiation
International Nuclear Information System (INIS)
Vlasov, V.G.
1989-01-01
The linear mechanism of auroral kilometer radiation (AKR) on the Cherenkov resonance is developed. The point is that plasma waves swinged by the electron beam in a dimer auroral plasma cavern on the Cherenkov resonance excercise 100% transformation under conventional and inconventional AKR modes under definite conditions
Gabor Wave Packet Method to Solve Plasma Wave Equations
International Nuclear Information System (INIS)
Pletzer, A.; Phillips, C.K.; Smithe, D.N.
2003-01-01
A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach
BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas
Porkolab, Miklos
1998-11-01
The linear theory of plasma waves in homogeneous plasma is arguably the most mature and best understood branch of plasma physics. Given the recently revised version of Stix's excellent Waves in Plasmas (1992), one might ask whether another book on this subject is necessary only a few years later. The answer lies in the scope of this volume; it is somewhat more detailed in certain topics than, and complementary in many fusion research relevant areas to, Stix's book. (I am restricting these comments to the homogeneous plasma theory only, since the author promises a second volume on wave propagation in inhomogeneous plasmas.) This book is also much more of a theorist's approach to waves in plasmas, with the aim of developing the subject within the logical framework of kinetic theory. This may indeed be pleasing to the expert and to the specialist, but may be too difficult to the graduate student as an `introduction' to the subject (which the author explicitly states in the Preface). On the other hand, it may be entirely appropriate for a second course on plasma waves, after the student has mastered fluid theory and an introductory kinetic treatment of waves in a hot magnetized `Vlasov' plasma. For teaching purposes, my personal preference is to review the cold plasma wave treatment using the unified Stix formalism and notation (which the author wisely adopts in the present book, but only in Chapter 5). Such an approach allows one to deal with CMA diagrams early on, as well as to provide a framework to discuss electromagnetic wave propagation and accessibility in inhomogeneous plasmas (for which the cold plasma wave treatment is perfectly adequate). Such an approach does lack some of the rigour, however, that the author achieves with the present approach. As the author correctly shows, the fluid theory treatment of waves follows logically from kinetic theory in the cold plasma limit. I only question the pedagogical value of this approach. Otherwise, I welcome this
Nonlinear plasma wave models in 3D fluid simulations of laser-plasma interaction
Chapman, Thomas; Berger, Richard; Arrighi, Bill; Langer, Steve; Banks, Jeffrey; Brunner, Stephan
2017-10-01
Simulations of laser-plasma interaction (LPI) in inertial confinement fusion (ICF) conditions require multi-mm spatial scales due to the typical laser beam size and durations of order 100 ps in order for numerical laser reflectivities to converge. To be computationally achievable, these scales necessitate a fluid-like treatment of light and plasma waves with a spatial grid size on the order of the light wave length. Plasma waves experience many nonlinear phenomena not naturally described by a fluid treatment, such as frequency shifts induced by trapping, a nonlinear (typically suppressed) Landau damping, and mode couplings leading to instabilities that can cause the plasma wave to decay rapidly. These processes affect the onset and saturation of stimulated Raman and Brillouin scattering, and are of direct interest to the modeling and prediction of deleterious LPI in ICF. It is not currently computationally feasible to simulate these Debye length-scale phenomena in 3D across experimental scales. Analytically-derived and/or numerically benchmarked models of processes occurring at scales finer than the fluid simulation grid offer a path forward. We demonstrate the impact of a range of kinetic processes on plasma reflectivity via models included in the LPI simulation code pF3D. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...
Localization of waves in a fluctuating plasma
International Nuclear Information System (INIS)
Escande, D.F.; Souillard, B.
1984-01-01
We present the first application of localization theory to plasma physics: Density fluctuations induce exponential localization of longitudinal and transverse electron plasma waves, i.e., the eigenmodes have an amplitude decreasing exponentially for large distances without any dissipative mechanism in the plasma. This introduces a new mechanism for converting a convective instability into an absolute one. Localization should be observable in clear-cut experiments
Nonlinear wavenumber of an electron plasma wave
International Nuclear Information System (INIS)
Vidmar, P.J.; Malmberg, J.H.; Starke, T.P.
1976-01-01
The wavenumber of a large-amplitude electron plasma wave propagating on a collisionless plasma column is measured. The wavenumber is shifted from that of a small-amplitude wave of the same frequency. This nonlinear wavenumber shift, deltak/subr/, depends on position, frequency, and initial wave amplitude, Phi. The observed spatial oscillations of deltak/subr/ agree qualitatively with recent theories. Experimentally deltak/subr/proportionalk/subi/S (Phi) rootPhi where k/subi/ is the linear Landau damping coefficient, S (Phi) equivalentk/subi/(Phi)/k/subi/, and k/subi/(Phi) is the initial damping coefficient which depends on Phi
Electromagnetic radiation trapped in the magnetosphere above the plasma frequency
Gurnett, D. A.; Shaw, R. R.
1973-01-01
An electromagnetic noise band is frequently observed in the outer magnetosphere by the Imp 6 spacecraft at frequencies from about 5 to 20 kHz. This noise band generally extends throughout the region from near the plasmapause boundary to near the magnetopause boundary. The noise typically has a broadband field strength of about 5 microvolts/meter. The noise band often has a sharp lower cutoff frequency at about 5 to 10 kHz, and this cutoff has been identified as the local electron plasma frequency. Since the plasma frequency in the plasmasphere and solar wind is usually above 20 kHz, it is concluded that this noise must be trapped in the low-density region between the plasmapause and magnetopause boundaries. The noise bands often contain a harmonic frequency structure which suggests that the radiation is associated with harmonics of the electron cyclotron frequency.
Submillimeter wave propagation in tokamak plasmas
International Nuclear Information System (INIS)
Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.
1985-01-01
The propagation of submillimeter-waves (smm) in tokamak plasmas has been investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses have been carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system has been employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes have been developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements
Submillimeter wave propagation in tokamak plasmas
International Nuclear Information System (INIS)
Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.
1986-01-01
Propagation of submillimeter waves (smm) in tokamak plasma was investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses were carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system was employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes were developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements. 5 references, 2 figures
Nonlinear extraordinary wave in dense plasma
Energy Technology Data Exchange (ETDEWEB)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)
2013-10-15
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.
Electron Acoustic Waves in Pure Ion Plasmas
Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.
2009-11-01
Electron Acoustic Waves (EAW) are the low frequency branch of electrostatic plasma waves. These waves exist in neutralized plasmas, pure electron plasmas and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing mθ= 0 mz= 1 EAWs in a pure ion plasma column. At small amplitude, the EAWs have a phase velocity vph ˜1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v vph diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.
Wave propagation in plasma-filled wave-guide
International Nuclear Information System (INIS)
Leprince, Philippe
1966-01-01
This research thesis reports the study of wave propagation along a plasma column without external magnetic field. The author first present and comment various theoretical results, and dispersion curves plotted for the main modes (particularly, the bipolar mode). He tries to define fundamental magnitudes which characterise a plasma-filled wave-guide. He reports the comparison of some experimental results with the previous theoretical results. Based on the study of the bipolar mode, the author develops a method of measurement of plasma column density. In the last part, the author reports the study of the resonance of a plasma-containing cavity. Several resonances are highlighted and new dispersion curves are plotted by using a varying length cavity. He also addresses the coupling of plasma modes with guide modes, and thus indicates the shape of Brillouin diagrams for a plasma-filled wave-guide. Moreover, some phenomena highlighted during plasma column density measurements by using the cavity method could then be explained [fr
Quiescent plasma machine for beam-plasma interaction and wave studies
International Nuclear Information System (INIS)
Ferreira, J.L.
1994-01-01
A quiescent double plasma machine for beam-plasma interaction wave studies is described. A detailed description of several plasma diagnostics used for plasma and wave excitation detection is given. A beam-plasma wave dispersion relation is used to compare theoretical values with the experimentally measured Langmuir wave frequencies and wavelengths. (author). 14 refs, 10 figs
New particle accelerations by magnetized plasma shock waves
International Nuclear Information System (INIS)
Takeuchi, Satoshi
2005-01-01
Three mechanisms concerning particle accelerations are proposed to account for the high energy of cosmic rays. A model of magnetized plasma clouds is used to simulate a shock-type wave. The attainable energies of test particles colliding with the moving magnetic clouds are investigated by analytical and numerical methods for the three mechanisms. The magnetic trapping acceleration is a new type of particle trapping and acceleration in which, in principle, the test particle is accelerated indefinitely; hence, this mechanism surpasses the Fermi-type acceleration. In the single-step acceleration, the test particle obtains a significant energy gain even though it only experiences a single collision. Lastly, there is the bouncing acceleration by which the test particle is substantially accelerated due to repeated collisions
Nonlinear waves in plasma with negative ion
International Nuclear Information System (INIS)
Saito, Maki; Watanabe, Shinsuke; Tanaca, Hiroshi.
1984-01-01
The propagation of nonlinear ion wave is investigated theoretically in a plasma with electron, positive ion and negative ion. The ion wave of long wavelength is described by a modified K-dV equation instead of a K-dV equation when the nonlinear coefficient of the K-dV equation vanishes at the critical density of negative ion. In the vicinity of the critical density, the ion wave is described by a coupled K-dV and modified K-dV equation. The transition from a compressional soliton to a rarefactive soliton and vice versa are examined by the coupled equation as a function of the negative ion density. The ion wave of short wavelength is described by a nonlinear Schroedinger equation. In the plasma with a negative ion, the nonlinear coefficient of the nonlinear Schroedinger equation changes the sign and the ion wave becomes modulationally unstable. (author)
Stochastic growth of localized plasma waves
International Nuclear Information System (INIS)
Robinson, P.A.; Cairns, Iver H.
2001-01-01
Localized bursty plasma waves are detected by spacecraft in many space plasmas. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the system, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it far longer than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. These mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing and power-law distributed in strong turbulence. Recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type III solar radio sources, the Earth's foreshock, magnetosheath, and polar cap regions. It is shown that when combined with wave-wave processes, SGT also accounts for associated radio emissions
On the stochastic interaction of monochromatic Alfven waves with toroidally trapped particles
International Nuclear Information System (INIS)
Krlin, L.; Pavlo, P.; Tluchor, Z.; Gasek, Z.
1987-07-01
Monochromatic Alfven wave interaction with toroidaly trapped particles in the intrinsic stochasticity regime is discussed. Both the diffusion in velocities and in the radial position of bananas is studied. Using a suitable Hamiltonian formalism, the effect of wave parallel components E-tilde paral and B-tilde paral is investigated. The stochasticity threshold is estimated for plasma electrons and for thermonuclear alpha-particles (neglecting the effect of B-tilde paral ) by means of direct numerical integration of the corresponding canonical equations. Stochasticity causes transfer between trapped and untrapped regimes and the induced radial diffusion of bananas. The latter effect can considerably exceed neoclassical diffusion. The effect of B-tilde paral was only estimated analytically. It consisted in frequency modulation of the banana periodic motion coupled with a possible Mathieu instability. Nevertheless, for B-tilde paral corresponding to E-tilde paral , the effect seems to be weaker than the effect of E-tilde paral when the thermonuclear regime is considered. (author). 14 figs., 36 refs
Mode coupling of electron plasma waves
International Nuclear Information System (INIS)
Harte, J.A.
1975-01-01
The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta 2 /sub ko/k lambda/sub De/ less than 1 where eta 2 /sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at ω/sub ek/, the Bohn Gross frequency, and at Ω/sub k/, the ion acoustic frequency, subject to the damping rates ν/sub ek/ and ν/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, ω/sub pe/ the plasma frequency
Bounce-harmonic Landau Damping of Plasma Waves
Anderegg, Francois
2015-11-01
We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v vph / 5 . The measurements are conducted in trapped pure ion plasmas contained in Penning-Malmberg trap, with wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.
Time variations of hf induced plasma waves
International Nuclear Information System (INIS)
Showen, R.L.
1976-01-01
Intense plasma waves are generated by an HF pump wave in an ionospheric heating experiment at the Arecibo Observatory. These plasma waves can be observed as enhancements to the ion and plasma lines of the incoherent backscatter echo. The enhancements can be three or four orders of magnitude more intense than the unenhanced lines, and tend to fluctuate wildly. Both the purely growing and the decay mode parametric instabilities are present. When the pump wave is turned on abruptly the enhancements develop in time in a repeatable manner. A rather remarkable feature on time scales of seconds is an overshoot in instability power. These overshoots occur frequently but not universally and last for 1 to 6 seconds. They can have a magnitude from ten to hundreds of times the average instability level. Field aligned irregularities may be the cause of the overshoots. The overshoots appear definitely related to an unusually rapid rise in measured electron temperature that cannot be understood in terms of ohmic energy deposition. On time scales of milliseconds there is a ''mini-overshoot'' before the growth of the instability to a large value. The spectral details also change in a striking manner. The instabilities can first be detected 2 to 4 msec after the pump wave turn-on. The decay mode is present as well as a broad featureless ''noise bump'', which partially sharpens into a line as time progresses. These changes of the spectra in time seem to run counter to the currently accepted theories of plasma wave saturation
Particle acceleration by plasma waves
International Nuclear Information System (INIS)
Joshi, C.
2006-01-01
In an advanced particle accelerator particles are driven near by light velocity through ionized gas. Such plasma devices are compact, cost efficient and usable in many fields. Examples are given in detail. (GL)
Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas
International Nuclear Information System (INIS)
Wang, W.X.; Hahm, T.S.; Ethier, S.; Zakharov, L.E.
2011-01-01
Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode.
Plasma heating by kinetic Alfven wave
International Nuclear Information System (INIS)
Assis, A.S. de.
1982-01-01
The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt
Reflection and trapping of Alfvén waves in the open field lines of a neutron star
Mofiz, U A
2002-01-01
We have studied Alfvén wave propagation in the polar cap region of a neutron star at isothermal atmosphere using linear MHD equations. The study demonstrates reflection and trapping of the wave from the steep gradient region of Alfvén speed. The trapping efficiency depends sensitively on a dimensionless parameter $\\beta_{g}$ which is proportional to the mass and inversely proportional to thetemperature of the plasma. A scaling of radius, Schwarzchild radius and acceleration due to gravity of neutron stars of different masses are performed. The effective temperature of hydrostatic equilibrium is also scaled. For a neutron star with mass 1.4 solar mass and radius 10 km the temperature is to be of $10^8$ degree K. The Alfvén wave propagation near the event horizon is investigated. It is found that the wave length of Alfvén wave is shorter near the horizon while it becomes longer away from it. Pulsar wind acceleration by Alfvén wave is also examined. It is found that wave pressure force is predominant for lo...
Shock Wave Dynamics in Weakly Ionized Plasmas
Johnson, Joseph A., III
1999-01-01
An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.
Alfven wave absorption in dissipative plasma
International Nuclear Information System (INIS)
Gavrikov, M B; Taiurskii, A A
2017-01-01
We consider nonlinear absorption of Alfven waves due to dissipative effects in plasma and relaxation of temperatures of electrons and ions. This study is based on an exact solution of the equations of two-fluid electromagnetic hydrodynamics (EMHD) of plasma. It is shown that in order to study the decay of Alfven waves, it suffices to examine the behavior of their amplitudes whose evolution is described by a system of ordinary differential equations (ODEs) obtained in this paper. On finite time intervals, the system of equations on the amplitudes is studied numerically, while asymptotic integration (the Hartman-Grobman theorem) is used to examine its large-time behavior. (paper)
Solitons and nonlinear waves in space plasmas
International Nuclear Information System (INIS)
Stasiewicz, K.
2005-01-01
Recent measurements made on the ESA/NASA Cluster mission to the Earth's magnetosphere have provided first detailed measurements of magnetosonic solitons in space. The solitons represent localized enhancements of the magnetic field by a factor of 2-10, or depressions down to 10% of the ambient field. The magnetic field signatures are associated with density depressions/enhancements A two-fluid model of nonlinear electron and ion inertial waves in anisotropic plasmas explains the main properties of these structures. It is shown that warm plasmas support four types of nonlinear waves, which correspond to four linear modes: Alfvenic, magnetosonic, sound, and electron inertial waves. Each of these nonlinear modes has slow and fast versions. It is shown by direct integration that the exponential growth rate of nonlinear modes is balanced by the ion and electron dispersion leading to solutions in the form of trains of solitons or cnoidal waves. By using a novel technique of phase portraits it is shown how the dispersive properties of electron and ion inertial waves change at the transition between warm and hot plasmas, and how trains of solitons ('' mirror modes '') are produced in a hot, anisotropic plasma. The applicability of the model is illustrated with data from Cluster spacecraft. (author)
Stationary quenching wave in magnetized plasma
International Nuclear Information System (INIS)
Alikhanov, S.G.; Glushkov, I.S.
1976-01-01
The interaction of a magnetized hot plasma (ωsub(e)tau sub(e)>>1) with cold plasma or a gas leads to the appearanci of a cooling wave. The transition layer between hot and cold plasma is the main source of radiation losses which should be compensated by a heat flow from the hot region. A stationary state is considered, equations are written in the system in which temperature and magnetic field profiles are steady, and the plasma flux with magnetic field passes through the cooling wave. Calculations, have been carried out on a computer. The dependence of the magnetized plasma flux velocity Vsub(r) on the ratio p/Hsub(r) is shown, where p is the pressure, Hsub(r) is the magnetic field in the hot reqion. The dependence of the characteristic dimension of the cooling wave on the magnetic field is determined for the hot plasma region. A considerable fraction of the rediation losses is shown to fall to the region of (ωsub(e)tausub(e)< or approximately)1
The Potential for Ambient Plasma Wave Propulsion
Gilland, James H.; Williams, George J.
2016-01-01
A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at
Counterstreaming magnetized plasmas. II. Perpendicular wave propagation
International Nuclear Information System (INIS)
Tautz, R.C.; Schlickeiser, R.
2006-01-01
The properties of longitudinal and transverse oscillations in magnetized symmetric counterstreaming Maxwellian plasmas with equal thermal velocities for waves propagating perpendicular to the stream direction are investigated on the basis of Maxwell equations and the nonrelativistic Vlasov equation. With the constraint of vanishing particle flux in the stream direction, three distinct dispersion relations are known, which are the ordinary-wave mode, the Bernstein wave mode, and the extraordinary electromagnetic wave mode, where the latter two are only approximations. In this article, all three dispersion relations are evaluated for a counterstreaming Maxwellian distribution function in terms of the hypergeometric function 2 F 2 . The growth rates for the ordinary-wave mode are compared to earlier results by Bornatici and Lee [Phys. Fluids 13, 3007 (1970)], who derived approximate results, whereas in this article the exact dispersion relation is solved numerically. The original results are therefore improved and show differences of up to 21% to the results obtained in this article
Gravitational instability in isotropic MHD plasma waves
Cherkos, Alemayehu Mengesha
2018-04-01
The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.
Waves in inhomogeneous plasma of cylindrical geometry
International Nuclear Information System (INIS)
Rebut, P.H.
1966-01-01
The conductivity tensor of a hot and inhomogeneous plasma has been calculated for a cylindrical geometry using Vlasov equations. The method used consists in a perturbation method involving the first integrals of the unperturbed movement. The conductivity tensor will be particularly useful for dealing with stability problems. In the case of a cold plasma the wave equation giving the electric fields as a function of the radius is obtained. This equation shows the existence of resonant layers which lead to an absorption analogous to the Landau absorption in a hot plasma. (author) [fr
International Nuclear Information System (INIS)
Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.
2007-01-01
Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m=0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed v e and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with v e and that for v e e > or approx. 0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
Ion Acceleration in Plasmas with Alfven Waves
International Nuclear Information System (INIS)
Kolesnychenko, O.Ya.; Lutsenko, V.V.; White, R.B.
2005-01-01
Effects of elliptically polarized Alfven waves on thermal ions are investigated. Both regular oscillations and stochastic motion of the particles are observed. It is found that during regular oscillations the energy of the thermal ions can reach magnitudes well exceeding the plasma temperature, the effect being largest in low-beta plasmas (beta is the ratio of the plasma pressure to the magnetic field pressure). Conditions of a low stochasticity threshold are obtained. It is shown that stochasticity can arise even for waves propagating along the magnetic field provided that the frequency spectrum is non-monochromatic. The analysis carried out is based on equations derived by using a Lagrangian formalism. A code solving these equations is developed. Steady-state perturbations and perturbations with the amplitude slowly varying in time are considered
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DEFF Research Database (Denmark)
Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert
2017-01-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation...... is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...
Stochastic growth of localized plasma waves
International Nuclear Information System (INIS)
Robinson, P.A.; Cairns, I.H.
2000-01-01
Full text: Localized bursty plasma waves occur in many natural systems, where they are detected by spacecraft. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the wave-driver interaction, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; observed bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it for much longer times and distances than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. Growth mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing, power-law distributed in strong turbulence, and uniformly distributed in log under secular growth. After delineating stochastic growth and strong-turbulence regimes, recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type II and III solar radio sources, foreshock regions upstream of the bow shocks of Earth and planets, and Earth's magnetosheath, auroras, and polar-caps. It is shown that when combined with wave-wave processes, SGT accounts for type II and III solar radio emissions. SGT thus removes longstanding problems in understanding persistent unstable distributions, bursty fields, and radio emissions observed in space
Nonlinear modulation of ion acoustic waves in a magnetized plasma
International Nuclear Information System (INIS)
Bharuthram, R.; Shukla, P.K.
1987-01-01
The quasistatic plasma slow response to coherent ion acoustic waves in a magnetized plasma is considered. A multidimensional cubic nonlinear Schroedinger equation is derived. It is found that the ion acoustic waves remain modulationally stable against oblique perturbations
Electromagnetic Wave Attenuation in Atmospheric Pressure Plasma
International Nuclear Information System (INIS)
Zhang Shu; Hu Xiwei; Liu Minghai; Luo Fang; Feng Zelong
2007-01-01
When an electromagnetic (EM) wave propagates in an atmospheric pressure plasma (APP) layer, its attenuation depends on the APP parameters such as the layer width, the electron density and its profile and collision frequency between electrons and neutrals. This paper proposes that a combined parameter-the product of the line average electron density n-bar and width d of the APP layer (i.e., the total number of electrons in a unit volume along the wave propagation path) can play a more explicit and decisive role in the wave attenuation than any of the above individual parameters does. The attenuation of the EM wave via the product of n-bar and d with various collision frequencies between electrons and neutrals is presented
Spin waves and spin instabilities in quantum plasmas
Andreev, P. A.; Kuz'menkov, L. S.
2014-01-01
We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...
ECOLE POLYTECHNIQUE: Acceleration by plasma beat waves
International Nuclear Information System (INIS)
Anon.
1995-01-01
An experiment by a multi-disciplinary team including laser, plasma, accelerator and particle detector specialists at the École Polytechnique, Palaiseau, France, has confirmed the principle of particle acceleration by the 'beating' of laser waves. The first accelerated electrons were detected in May 1994, just after the apparatus had been completely assembled, during the subsequent set of experiments in July, and again in January. In the continual quest for new acceleration methods, such ideas had been proposed for several decades, but it was only about ten years ago that experimental verification of these effects began. In existing accelerators using radiofrequency cavities the electric field is limited to some hundred megavolts per metre, beyond which breakdowns occur. The joint use of power lasers and plasmas, however, should make it possible to generate fields very much greater than a GV/m. The light wave fulfils the same purpose as radiofrequency and the material medium required to couple the electromagnetic energy to the particle beam is provided by the plasma which - already fully ionized - is not destroyed by a breakdown. In the wave-beating method, proposed in 1979 by Dawson and Tajima, two laser waves of adjacent frequencies are transmitted and produce 'beats'. If the frequency of these is equal to the natural oscillation frequency of the plasma electrons, there is resonant energy transfer. The resultant longitudinal electric field is propagated at slightly below the speed of light and may be used to accelerate particles injected into the plasma in the right phase
Collective acceleration of protons by the plasma waves in a counterstreaming electron beam
International Nuclear Information System (INIS)
Yan, Y.T.
1987-03-01
A novel advanced accelerator is proposed. The counterstreaming electron beam accelerator relies on the same physical mechanism as that of the plasma accelerator but replaces the stationary plasma in the plasma accelerator by a magnetized relativistic electron beam, drifting antiparallel to the driving source and the driven particles, as the wave supporting medium. The plasma wave in a counterstreaming electron beam can be excited either by a density-ramped driving electron beam or by properly beating two laser beams. The fundamental advantages of the counterstreaming electron beam accelerator over the plasma accelerator are a longer and tunable plasma wavelength, a longer pump depletion length or a larger transformer ratio, and easier pulse shaping for the driving source and the driven beam. Thus the energy gain of the driven particles can be greatly enhanced whereas the trapping threshold can be dramatically reduced so as to admit the possibility for proton acceleration
Wave function of free electron in a strong laser plasma
International Nuclear Information System (INIS)
Zhu Shitong; Shen Wenda; Guo Qizhi
1993-01-01
The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed
Self-consistent electrostatic potential due to trapped plasma in the magnetosphere
International Nuclear Information System (INIS)
Miller, R.H.; Khazanov, G.V.
1993-01-01
The authors address the problem of the steady state confinement of plasma in a magnetic flux tube. They construct a steady state distribution function, under the assumption of no waves or collisions, using the kinematic constants of the motion, total energy and magnetic moment. The local particle densities are shown to be integrals over the equatorial distribution function for the particle of concern. The electric potential is determined by the imposition of quasineutrality. The authors show that their self consistent model produces potential drops which are consistent with the kinetic energy of the equatorially trapped particles. They comment on earlier work of Alfven and Faelthammar, and for a bi-Maxwellian distribution compare the results of the present model with the Alfven and Faelthammar model
Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps
International Nuclear Information System (INIS)
Lesanovsky, Igor; Klitzing, Wolf von
2007-01-01
We demonstrate a novel class of trapping potentials, time-averaged adiabatic potentials (TAAP), which allows the generation of a large variety of traps for quantum gases and matter-wave guides for atom interferometers. Examples include stacks of pancakes, rows of cigars, and multiple rings or sickles. The traps can be coupled through controllable tunneling barriers or merged altogether. We present analytical expressions for pancake-, cigar-, and ring-shaped traps. The ring geometry is of particular interest for guided matter-wave interferometry as it provides a perfectly smooth waveguide of widely tunable diameter and thus adjustable sensitivity of the interferometer. The flexibility of the TAAP would make possible the use of Bose-Einstein condensates as coherent matter waves in large-area atom interferometers
Wave propagation on a plasma media
International Nuclear Information System (INIS)
Torres-Silva, H.; Villarroel-Gonzalez, C.; Reggiani, N.; Sakanaka, P.H.
1995-01-01
Chiral-media and ferrite media have been studied over the last decade for many applications. Chiral-media have been examined as coating for reducing radar cross section, for antennas and arrays, for antenna radomes in waveguides and for microstrip substrate. Here, we examine a chiral-plasma medium, where the plasma part of the composite medium is non-reciprocal due to the external magnetic field, to find the general dispersion relation giving the ω against K behavior, vector phasor Helmholtz based equations are derived. We determine the modal eigenvalue properties in the chiral-plasma medium, which is doubly anisotropic. For the case of waves which propagate parallel to the magnetic field is a cold magnetized chiro-plasma. We compare our results with the typical results obtained for a cold plasma. Also we obtain the chiral-Faraday rotation which can be compared with the typical Faraday rotation for a pair of right-and left-handed circularly polarized waves. (author). 5 refs., 2 figs
Three-wave interactions in a warm plasma
International Nuclear Information System (INIS)
Shivamoggi, B.K.
1983-01-01
The nonlinear resonance interactions between a Langmuir wave and two transverse electromagnetic waves (T-T-L) as well as between an ion-acoustic wave and two transverse electromagnetic waves (T-T-S) in a warm plasma are studied. It is shown that an incident transverse electromagnetic wave decays into another transverse electromagnetic wave and a Langmuir wave in a T-T-L wave-wave interaction as well as into another transverse electromagnetic wave and an ion-acoustic wave in a T-T-S wave-wave interaction. The growth rates of the daughter waves in the T-T-L wave-wave interaction are shown to be smaller than those of the daughter waves in the T-T-S wave-wave interaction. (M.F.W.)
Theory of longitudinal plasma waves with allowance for ion mobility
International Nuclear Information System (INIS)
Kichigin, G.N.
2003-01-01
One studies propagation of stationary longitudinal plasma wave of high amplitude in collisionless cold plasma with regard to motion of electrons and ions in a wave. One derived dependences of amplitudes of electric field, potential, frequency and length of wave on the speed of wave propagation and on the parameter equal to the ration of ion mass to electron mass. Account of motion of ions in the wave with maximum possible amplitude resulted in nonmonotone dependence of frequency on wave speed [ru
Beat-wave generation of plasmons in semiconductor plasmas
International Nuclear Information System (INIS)
Berezhiani, V.I.; Mahajan, S.M.
1995-08-01
It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap seimconductors (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas
Beat-wave generation of plasmons in semiconductor plasmas
International Nuclear Information System (INIS)
Berezhiani, V.I.; Mahajan, S.M.
1995-08-01
It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap semiconductor (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas. (author). 7 refs
Waves in plasmas: some historical highlights
International Nuclear Information System (INIS)
Stix, T.H.
1984-08-01
To illustrate the development of some fundamental concepts in plasma waves, a number of experimental observations, going back over half a century, are reviewed. Particular attention is paid to the phenomena of dispersion, collisionfree damping, finite-Larmor-radius and cyclotron and cyclotron-harmonic effects, nonlocal response, and stochasticity. One may note not only the constructive interplay between observation and theory and experiment but also that major advances have come from each of the many disciplines that invoke plasma physics as a tool, including radio communication, astrophysics, controlled fusion, space physics, and basic research
Theory of modulational interaction of trapped ion convective cells and drift wave turbulence
International Nuclear Information System (INIS)
Shapiro, V.D.; Diamond, P.H.; Lebedev, V.; Soloviev, G.; Shevchenko, V.
1993-01-01
Theoretical and computational studies of the modulational interaction between trapped ion convective cells and short wavelength drift wave turbulence are discussed. These studies are motivated by the fact that cells and drift waves are expected to coexist in tokamaks so that: (a) cells strain and modulate drift waves, and (b) drift waves open-quote ride on close-quote a background of cells. The results of the authors' investigation indicate that: (1) (nonlinear) parametric growth rates of trapped ion convective cells can exceed linear predictions (for drift wave levels at the mixing length limit); (2) a set of coupled envelope equations, akin to the Zakharov equations from Langmuir turbulence, can be derived and used to predict the formation of a dipole pair of convective cells trapped by the drift wave envelope. This dipole pair is strongly anisotropic, due to the structure of the drift wave Reynolds stress which drives the cell flow. Numerical solutions of the envelope equations are in good agreement with theoretical predictions, and indicate the persistence of the structure in time; (3) strong modulation and trapping of drift waves with k perpendicular ρ > 1 occurs. Extensions to magnetically sheared systems and the broader implications of this work as a paradigm for the dynamics of persistent structures in shearing flows are discussed
Theory and experiments on the generation of spontaneous emission using a plasma wave undulator
International Nuclear Information System (INIS)
Williams, R.L.; Clayton, C.E.; Joshi, C.; Katsouleas, T.; Mori, W.B.; Slater, J.
1990-01-01
This paper reports that, the authors are studying the feasibility of using relativistically moving plasma waves as short wavelength undulators for possible FEL and Compton scattering applications at UCLA. The remarkable property of such waves is that the wiggler parameter a w = eA/mc 2 can be on the order 0.1 while their wavelength λ w can be submillimeter. Such waves can be excited by either an intense electron bunch going through a plasma (plasma wake field) or a short but intense laser pulse going through the plasma (laser wake field). A variation of the laser wake field scheme is the plasm beat wave excitation. Here a moderately intense laser pulse containing two frequencies excites the plasm wave resonantly. Using a laser pulse containing 10.27 μm and 9.6 μm lines of the Co 2 laser that is approximately 400 ps (FWHM) and 200 GW of power, we were able to measure a w times the length product of 0.013 cm in our experiments. If a length of 0.75 cm i assumed, this implies an a w of 0.17 for a λ w ∼156 μm. Injection of an electron beam across such a plasma wave proved not to be feasible in these experiments, because the θ-pinch plasma source contained significant trapped magnetic fields. We are currently developing a field free plasma source which will permit transverse electron injection
Direct measurement of the plasma response to electrostatic ion waves
International Nuclear Information System (INIS)
Sarfaty, M.; DeSouza-Machado, S.; Skiff, F.
1995-01-01
Plasma wave-wave and wave-particle interactions are studied in a linear magnetized plasma. The relatively quiet plasma is produced by an argon gas-discharge. The plasma density is n e ≅ 10 9 cm -3 and the electron/ion temperatures are T e ≅ 5eV and T i = 0.05eV. A grid and a four ring antenna, both mounted on a scanning carriage, are used to launch electrostatic ion waves in the plasma. Laser Induced Fluorescence measurements of both the linear and the nonlinear plasma response to the wave fields are presented. The Vlasov-Poisson equations are used to explain the measured zero, first and second order terms of the ion distribution function in the presence of wave fields. In addition to the broadening (heating) of the ion distribution as the authors increase the wave amplitudes, induced plasma flows are observed both along and across the magnetic field
Stochastic acceleration of electrons from multiple uncorrelated plasma waves
Gee, David; Michel, Pierre; Wurtele, Jonathan
2017-10-01
One-dimensional theory puts a strict limit on the maximum energy attainable by an electron trapped and accelerated by an electron plasma wave (EPW). However, experimental measurements of hot electron distributions accelerated by stimulated Raman scattering (SRS) in ICF experiments typically show a thermal distribution with temperatures of the order of the kinetic energy of the resonant EPW's (Thot mvp2 , where vp is the phase velocity of the EPW's driven by SRS) and no clear cutoff at high energies. In this project, we are investigating conditions under which electrons can be stochastically accelerated by multiple uncorrelated EPW's, such as those generated by incoherent laser speckles in large laser spots like the ones used on NIF ( mm-size), and reproduce distributions similar to those observed in experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas
Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta
2018-04-01
Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.
WHAMP - waves in homogeneous, anisotropic, multicomponent plasmas
International Nuclear Information System (INIS)
Roennmark, K.
1982-06-01
In this report, a computer program which solves the dispersion relation of waves in a magnetized plasma is described. The dielectric tensor is derived using the kinetic theory of homogeneous plasmas with Maxwellian velocity distribution. Up to six different plasma components can be included in this version of the program, and each component is specified by its density, temperature, particle mass, anisotropy and drift velocity along the magnetic field. The program is thus applicable to a very wide class of plasmas, and the method should in general be useful whenever a homogeneous magnetized plasma can be approximated by a linear combination of Maxwellian components. The general theory underlying the program is outlined. It is shown that by introducing a Pade approximant for the plasma dispersion function Z, the infinite sums of modified Bessel functions which appear in the dielectric tensor may be reduced to a summable form. The Pade approximant is derived and the accuracy of the approximation is also discussed. The subroutines making up the program are described. (Author)
Collisional damping rates for plasma waves
Energy Technology Data Exchange (ETDEWEB)
Tigik, S. F., E-mail: sabrina.tigik@ufrgs.br; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul (Brazil); Yoon, P. H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic (“Spitzer”) formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Plasma waves observed by sounding rockets
International Nuclear Information System (INIS)
Kimura, I.
1977-01-01
Observations of plasma wave phenomena have been conducted with several rockets launched at Kagoshima Space Center, Kyushu, Japan, and at Showa Base, Antarctica. This report presents some results of the observations in anticipation of having valuable comments from other plasma physicists, especially from those who are concerned with laboratory plasma. In the K-9M-41 rocket experiment, VLF plasma waves were observed. In this experiment, the electron beam of several tens of uA was emitted from a hot cathode when a positive dc bias changing from 0 to 10V at 1V interval each second was applied to a receiving dipole antenna. The discrete emissions with 'U' shaped frequency spectrum were observed for the dc bias over 3 volts. The U emissions appeared twice per spin period of the rocket. Similar rocket experiment was performed at Showa Base using a loop and dipole antenna and without hot cathode. Emissions were observed with varying conditions. At present, the authors postulate that such emissions may be produced just in the vicinity of a rocket due to a kind of wake effect. (Aoki, K.)
Electromagnetic wave propagation in relativistic magnetized plasmas
International Nuclear Information System (INIS)
Weiss, I.
1985-01-01
An improved mathematical technique and a new code for deriving the conductivity tensor for collisionless plasmas have been developed. The method is applicable to a very general case, including both hot (relativistic) and cold magnetized plasmas, with only isotropic equilibrium distributions being considered here. The usual derivation starts from the relativistic Vlasov equation and leads to an integration over an infinite sum of Bessel functions which has to be done numerically. In the new solution the integration is carried out over a product of two Bessel functions only. This reduces the computing time very significantly. An added advantage over existing codes is our capability to perform the computations for waves propagating obliquely to the magnetic field. Both improvements greatly facilitate investigations of properties of the plasma under conditions hitherto unexplored
International Nuclear Information System (INIS)
El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.
1992-09-01
Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs
Efficient trap of a coaxial gun plasma in an axisymmetric mirror with an internal hoop
International Nuclear Information System (INIS)
Asano, Shiro; Ihara, Makoto; Fukao, Masayuki
1989-01-01
A method to trap a high temperature and high density plasma from a coaxial gun in a mirror machine is described. The method is to inject plasma parallel to the axis from a coaxial gun located off the axis. The validity of the method is experimentally demonstrated with an MHD-stabilized axisymmetric mirror with an internal hoop. Density, electron and ion temperatures and their time behaviors were measured and it was made clear that a high density high temperature plasma was well trapped in the mirror by the parallel off-axis injection while the plasma was little trapped by on-axis injection. The plasma parameters obtained were also compared with those of a conventional titanium washer gun plasma. The causes to restrict the maximum ion temperature and of its quick decay are discussed. (author)
Electron Acoustic Waves in Pure Ion Plasmas
Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.
2012-10-01
Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.
2D full wave simulation on electromagnetic wave propagation in toroidal plasma
International Nuclear Information System (INIS)
Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi
2002-01-01
Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS
International Nuclear Information System (INIS)
Podder, Nirmol K.
2009-01-01
In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas
Plasma production for electron acceleration by resonant plasma wave
International Nuclear Information System (INIS)
Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G.P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.
2016-01-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Plasma production for electron acceleration by resonant plasma wave
Energy Technology Data Exchange (ETDEWEB)
Anania, M.P., E-mail: maria.pia.anania@lnf.infn.it [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome Tor Vergata - INFN, via della Ricerca Scientifica, 1, 00133 Roma (Italy); INFN, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Croia, M.; Curcio, A. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Di Giovenale, D.; Di Pirro, G.P. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Filippi, F. [University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Romeo, S. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ferrario, M. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy)
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Lage-area planar RF plasma productions by surface waves
International Nuclear Information System (INIS)
Nonaka, S.
1994-01-01
Large-area rf plasmas are confirmed to be produced by means of RF discharges inside a large-area dielectric tube. The plasma space is 73 cm x 176 cm and 2.5 cm. The plasma is thought to be produced by an odd plasma-surface wave (PSW ο ) in case of using large-area electrodes and by an even plasma-surface wave (PSW ο ) in case of without the electrodes. (author). 7 refs, 4 figs
Wave trapping by dual porous barriers near a wall in the presence of bottom undulation
Kaligatla, R. B.; Manisha; Sahoo, T.
2017-09-01
Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.
Wave Trapping by Dual Porous Barriers Near a Wall in the Presence of Bottom Undulation
Institute of Scientific and Technical Information of China (English)
R.B. Kaligatla; Manisha; T. Sahoo
2017-01-01
Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.
Nonlinear interaction of the surface waves at a plasma boundary
International Nuclear Information System (INIS)
Dolgopolov, V.V.; El-Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.
1976-01-01
Amplitudes of electromagnetic waves with combination frequencies, radiating from the plasma boundary due to nonlinear interaction of the surface waves, have been found. Previous papers on this subject did not take into account that the tangential components of the electric field of waves with combination frequencies were discontinuous at the plasma boundary. (Auth.)
Rarefaction Shock Waves in Collisionless Plasma with Electronic Beam
Gurovich, Victor Ts.; Fel, Leonid G.
2011-01-01
We show that an electronic beam passing through the collisionless plasma of the "cold" ions and the "hot" Boltzmann electrons can give rise to the propagation of the supersonic ion-acoustic rarefaction shock waves. These waves are analogous to those predicted by Zeldovich [5] in gasodynamics and complementary to the ion-acoustic compression shock waves in collisionless plasma described by Sagdeev [3].
Effects of electrostatic trapping on neoclassical transport in an impure plasma
International Nuclear Information System (INIS)
Hazeltine, R.D.; Ware, A.A.
1976-01-01
Contamination of a toroidally confined plasma by highly charged impurity ions can produce substantial variation of the electrostatic potential within a magnetic surface. The resulting electrostatic trapping and electrostatic drifts, of hydrogen ions and electrons, yields significant alterations in neoclassical transport theory. A transport theory which includes these effects is derived from the drift-kinetic equation, with an ordering scheme modeled on the parameters of recent tokamak experiments. The theory self-consistently predicts that electrostatic trapping should be fully comparable to magnetic trapping, and provides transport coefficients which, depending quadratically upon the temperature and pressure gradients, differ markedly from the standard neoclassical coefficients for a pure plasma
MoO3 trapping layers with CF4 plasma treatment in flash memory applications
International Nuclear Information System (INIS)
Kao, Chuyan Haur; Chen, Hsiang; Chen, Su-Zhien; Chen, Chian Yu; Lo, Kuang-Yu; Lin, Chun Han
2014-01-01
Highlights: • MoO 3 -based flash memories have been fabricated. • CF4 plasma treatment could enhance good memory performance. • Material analyses confirm that plasma treatment eliminated defects. • Fluorine atoms might fix the dangling bonds. - Abstract: In this research, we used MoO 3 with CF 4 plasma treatment as charge trapping layer in metal-oxide-high-k -oxide-Si-type memory. We analyzed material properties and electrical characteristics with multiple analyses. The plasma treatment could increase the trapping density, reduce the leakage current, expand band gap, and passivate the defect to enhance the memory performance. The MoO 3 charge trapping layer memory with suitable CF 4 plasma treatment is promising for future nonvolatile memory applications
International Nuclear Information System (INIS)
Williams, R.L.; Johnson, J.A. III
1993-01-01
The feasibility of using an ionizing shock wave to produce high density plasmas suitable for the propagation large amplitude relativistic plasma waves is being investigated. A 20 kv arc driven shock tube of coaxial geometry produces a hypersonic shock wave (10 p > 10 17 cm -3 ). The shock can be made to reflect off the end of the tube, collide with its wake, and thus increase the plasma density further. After reflecting, the plasma is at rest. The shock speed is measured using piezoelectric pressure probes and the ion density is measured using laser induced fluorescence (LIF) techniques on argon 488.0 nm and 422.8 nm lines. The future plans are to excite large amplitude relativistic plasma waves in this plasma by either injecting a short pulse laser (Laser Wake Field Scheme), two beating lasers (Plasma Beat Wave Scheme), or a short bunch of relativistic electrons (Plasma Wake Field Scheme). Results of recent computational and theoretical studies, as well as initial experimental measurements on the plasma using LIF, are reported. Implications for the application of high density plasmas produced in this way to such novel schemes as the plasma wave accelerator, photon accelerator, plasma wave undulator, and also plasma lens, are discussed. The effect of plasma turbulence is also discussed
Electromagnetic solitary waves in magnetized plasmas
International Nuclear Information System (INIS)
Hazeltine, R.D.; Holm, D.D.; Morrison, P.J.
1985-03-01
A Hamiltonian formulation, in terms of noncanonical Poisson bracket, is presented for a nonlinear fluid system that includes reduced magnetohydrodynamics and the Hasegawa-Mima equation as limiting cases. The single-helicity and axisymmetric versions possess three nonlinear Casimir invariants, from which a generalized potential can be constructed. Variation of the generalized potential yields a description of exact nonlinear stationary states. The new equilibria, allowing for plasma flow as well as partial electron adiabaticity, are distinct from those found in conventional magnetohydrodynamic theory. They differ from electrostatic stationary states in containing plasma current and magnetic field excitation. One class of steady-state solutions is shown to provide a simple electromagnetic generalization of drift-solitary waves
Nonlinear plasma waves excited near resonance
International Nuclear Information System (INIS)
Cohen, B.I.; Kaufman, A.N.
1977-01-01
The nonlinear resonant response of a uniform plasma to an external plane-wave field is formulated in terms of the mismatch Δ/sub n l/ between the driving frequency and the time-dependent, complex, nonlinear normal mode frequency at the driving wavenumber. This formalism is applied to computer simulations of this process, yielding a deduced nonlinear frequency shift. The time dependence of the nonlinear phenomena, at frequency Δ/sub n l/ and at the bounce frequency of the resonant particles, is analyzed. The interdependence of the nonlinear features is described by means of energy and momentum relations
Mishra, Rinku; Dey, M.
2018-04-01
An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.
Radial plasma profile and neutron yield in an adiabatic trap with fast atom injection
International Nuclear Information System (INIS)
Panov, D.A.
1988-01-01
Radial profiles of ion densities depending on two dimensionless parameters, which values are determined by the trap, plasma and injected beam parameters are found in dimensionless units for a plasma generated by fast atom injection in an adiabatic trap. The calculated profiles are used for determining the neutron yield. Simple approximated dimensional relations permitting to estimate quickly neutron yield, required injection power, flux of charge exchange atoms on the wall around the plasma in a wide energy range of injected atoms, trap field modulud, injection angle, trap radius and length are determined. The energetic efficiency of neutron production is estimated and it is shown that it grows with the injection energy. 7 refs.; 7 figs
Plasma waves in hot relativistic beam-plasma systems: Pt. 1
International Nuclear Information System (INIS)
Magneville, A.
1990-01-01
Dispersion relations of plasma waves in a beam-plasma system are computed in the general case where the plasma and beam temperatures, and the velocity of the beam, may be relativistic. The two asymptotic temperature cases, and different contributions of plasma or beam particles to wave dispersion are considered. (author)
Plasma Waves Associated with Mass-Loaded Comets
Tsurutani, Bruce; Glassmeier, Karl-Heinz
2015-01-01
Plasma waves and instabilities are integrally involved with the plasma "pickup" process and the mass loading of the solar wind (thus the formation of ion tails and the magnetic tails). Anisotropic plasmas generated by solar wind-comet interactions (the bow shock, magnetic field pileup) cause the generation of plasma waves which in turn "smooth out" these discontinuities. The plasma waves evolve and form plasma turbulence. Comets are perhaps the best "laboratories" to study waves and turbulence because over time (and distance) one can identify the waves and their evolution. We will argue that comets in some ways are better laboratories than magnetospheres, interplanetary space and fusion devices to study nonlinear waves and their evolution.
Influence of Non-Maxwellian Particles on Dust Acoustic Waves in a Dusty Magnetized Plasma
International Nuclear Information System (INIS)
Nouri Kadijani, M.; Zareamoghaddam, H.
2013-01-01
In this paper an investigation into dust acoustic solitary waves (DASWs) in the presence of superthermal electrons and ions in a magnetized plasma with cold dust grains and trapped electrons is discussed. The dynamic of both electrons and ions is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are studied by hydrodynamic equations. The basic set of fluid equations is reduced to modified Korteweg-de Vries (mKdV) equation using Reductive Perturbation Theory (RPT). Two types of solitary waves, fast and slow dust acoustic soliton (DAS) exist in this plasma. Calculations reveal that compressive solitary structures are possibly propagated in the plasma where dust grains are negatively (or positively) charged. The properties of DASs are also investigated numerically. (physics of gases, plasmas, and electric discharges)
Linear and Nonlinear Electrostatic Waves in Unmagnetized Dusty Plasmas
International Nuclear Information System (INIS)
Mamun, A. A.; Shukla, P. K.
2010-01-01
A rigorous and systematic theoretical study has been made of linear and nonlinear electrostatic waves propagating in unmagnetized dusty plasmas. The basic features of linear and nonlinear electrostatic waves (particularly, dust-ion-acoustic and dust-acoustic waves) for different space and laboratory dusty plasma conditions are described. The experimental observations of such linear and nonlinear features of dust-ion-acoustic and dust-acoustic waves are briefly discussed.
em>d-wave superfluid with gapless edges in a cold-atom trap
DEFF Research Database (Denmark)
Larsen, Anne-Louise Gadsbølle; Francis Song, H.; Le Hur, Karyn
2012-01-01
and competing phases. In particular, at low temperatures, this allows the realization of a d-wave superfluid region surrounded by purely (gapless) normal edges. Solving the Bogoliubov–de Gennes equations and comparing them with the local density approximation, we show that the proximity to the Mott insulator...... is revealed by a downturn of the Fermi liquid order parameter at the center of the trap where the d-wave gap has a maximum. The density profile evolves linearly with distance....
International Nuclear Information System (INIS)
Dolliver, D. D.; Ordonez, C. A.
1999-01-01
The use of a Malmberg-Penning type trap with nested electric potential wells to confine overlapping antiproton and positron plasmas for the purpose of producing low temperature antihydrogen is studied. Two approaches for confining antiproton and positron plasmas with a region of overlap are considered. In one approach the two components have a large temperature difference. In the other, one of the components is in a nonequilibrium 'antishielding' plasma state. A finite differences algorithm is used to solve Poisson's equation based on a simultaneous overrelaxation numerical approach. Self-consistent numerical results for required trap potentials and possible particle density profiles are presented
Wave trajectory and electron cyclotron heating in tokamak plasmas
International Nuclear Information System (INIS)
Tanaka, S.; Maekawa, T.; Terumichi, Y.; Hamada, Y.
1980-01-01
Wave trajectories in high density tokamak plasmas are studied numerically. Results show that the ordinary wave injected at an appropriate incident angle can propagate into the dense plasmas and is mode-converted to the extraordinary wave at the plasma cutoff, is further converted to the electron Bernstein wave during passing a loop or a folded curve near the upper hybrid resonance layer, and is cyclotron damped away, resulting in local electron heating before arriving at the cyclotron resonance layer. Similar trajectory and damping are obtained when a microwave in a form of extraordinary wave is injected quasi-perpendicularly in the direction of decreasing toroidal field
Resonant emission of electromagnetic waves by plasma solitons
International Nuclear Information System (INIS)
Mironov, V.A.; Sergeev, A.M.; Khimich, A.V.
1988-01-01
The ability of plasma-wave solitons to radiate electromagnetic waves at the frequency of the natural oscillations of the field is considered. It is shown that this radiation is the main energy dissipation channel for strong plasma turbulence in a magnetoactive plasma. An interpretation is proposed for the artificial radio emission produced when the ionosphere is acted upon by beams of strong electromagnetic waves. The use of this phenomenon for plasma turbulence, particularly in the outer-space plasma near the earth, is discussed
Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas
International Nuclear Information System (INIS)
Gao Xianlong; Rizzi, M.; Polini, Marco; Tosi, M. P.; Fazio, Rosario; Campo, V. L. Jr.; Capelle, K.
2007-01-01
The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern
In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap
Amole, C; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C.L.; Charlton, M.; Deller, A.; Evetts, N.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Gutierrez, A.; Hangst, J.S.; Hardy, W.N.; Hayden, M.E.; Isaac, C.A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J.T.K.; Menary, S.; Napoli, S.C.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C.; Robicheaux, F.; Sarid, E.; Silveira, D.M.; So, C.; Stracka, S.; Tharp, T.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.
2014-01-01
We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning-Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma's quadrupole mode frequency. The spatially-resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.
Concentration of frequencies of trapped waves in problems on freely floating bodies
Energy Technology Data Exchange (ETDEWEB)
Nazarov, Sergei A [Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St.-Petersburg (Russian Federation)
2012-09-30
It is shown that by choosing the shape of two identical bodies floating freely in a channel with symmetric cross-section it is possible to form any pre-assigned number of linearly independent trapped waves (localized solutions). Bibliography: 27 titles.
International Nuclear Information System (INIS)
Klimas, A.J.
1983-01-01
A bump-on-tail unstable reduced velocity distribution has been constructed from data obtained at the upstream boundary of the electron foreshock by the GSFC electron spectrometer experiment on the ISEE 1 satellite. This distribution is used as the initial plasma state for a numerical integration of the one-dimensional Vlasov-Maxwell system of equations. The integration is carried through the growth of the instability, beyond its saturation, and well into the stabilized plasma regime. A power spectrum for the electric field of the stabilized plasma is computed. The spectrum is dominated by a narrow peak at the Bohm-Gross frequency of the unstable field mode but it also contain significant power at the harmonics of the Bohm-Gross frequency. The harmonic power is in sharp peaks which are split into closely spaced doublets. The fundamental peak at the Bohm-Gross frequency is also split, in this case into a closely space triplet. The fundamental peak at the Bohm-Gross frequency is also split, in this case into a closely space triplet. The splitting is due to slow modulations of the stabilized electric field oscillations which, it is thought, are caused by wave-particle trapping. The wavelength of mth harmonic of the Bohm-Gross frequency is given by lambda/sub u//m, where lambda/sub u/ is the wavelength of the unstable mode. The mechanism for excitation of the second harmonic is shwn to be second-order wave-wave coupling which takes place during that period in the evolution of the instability which would otherwise be called the linear growth phase. It is conjectured that the higher harmonics are excited by the same mechanism. It is further argued that harmonic excitation at the boundary of the electron foreshock should be a common occurrence
S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission
Czech Academy of Sciences Publication Activity Database
Bougeret, J. L.; Goetz, K.; Kaiser, M. L.; Bale, S. D.; Kellogg, P. J.; Maksimovic, M.; Monge, N.; Monson, S. J.; Astier, P. L.; Davy, S.; Dekkali, M.; Hinze, J. J.; Manning, R. E.; Aguilar-Rodriguez, E.; Bonnin, X.; Briand, C.; Cairns, I. H.; Cattell, C. A.; Cecconi, B.; Eastwood, J.; Ergun, R. E.; Fainberg, J.; Hoang, S.; Huttunen, K. E. J.; Krucker, S.; Lecacheux, A.; MacDowall, R. J.; Macher, W.; Mangeney, A.; Meetre, C. A.; Moussas, X.; Nguyen, Q. N.; Oswald, T. H.; Pulupa, M.; Reiner, M. J.; Robinson, P. A.; Rucker, H.; Salem, c.; Santolík, Ondřej; Silvis, J. M.; Ullrich, R.; Zarka, P.; Zouganelis, I.
2008-01-01
Roč. 136, 1-4 (2008), s. 487-528 ISSN 0038-6308 Grant - others: NASA (US) NAS5-03076 Institutional research plan: CEZ:AV0Z30420517 Keywords : S/WAVES * STEREO * plasma waves * radio waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.372, year: 2008
Stoneking, Matthew
2017-10-01
The hydrogen atom provides the simplest system and in some cases the most precise one for comparing theory and experiment in atomics physics. The field of plasma physics lacks an experimental counterpart, but there are efforts underway to produce a magnetically confined positron-electron plasma that promises to represent the simplest plasma system. The mass symmetry of positron-electron plasma makes it particularly tractable from a theoretical standpoint and many theory papers have been published predicting modified wave and stability properties in these systems. Our approach is to utilize techniques from the non-neutral plasma community to trap and accumulate electrons and positrons prior to mixing in a magnetic trap with good confinement properties. Ultimately we aim to use a levitated superconducting dipole configuration fueled by positrons from a reactor-based positron source and buffer-gas trap. To date we have conducted experiments to characterize and optimize the positron beam and test strategies for injecting positrons into the field of a supported permanent magnet by use of ExB drifts and tailored static and dynamic potentials applied to boundary electrodes and to the magnet itself. Nearly 100% injection efficiency has been achieved under certain conditions and some fraction of the injected positrons are confined for as long as 400 ms. These results are promising for the next step in the project which is to use an inductively energized high Tc superconducting coil to produce the dipole field, initially in a supported configuration, but ultimately levitated using feedback stabilization. Work performed with the support of the German Research Foundation (DFG), JSPS KAKENHI, NIFS Collaboration Research Program, and the UCSD Foundation.
Relativistic electromagnetic waves in an electron-ion plasma
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Surfing with capillary waves: a survival strategy for trapped bees
Roh, Chris; Gharib, Morteza
2017-11-01
Honeybees are able to propel themselves at the water surface. A rapid vibration (30-220 Hz) of wings at the air-water interface results in a locomotion speed of 3-4 cm/s. A mechanism for generating thrust required for achieving and maintaining such speed must be different from their mechanism of flight inasmuch as they are in a different fluid environment. In this study, we present the thrust generating mechanism of the honeybee at the air-water interface. A close observation of the wing's interaction with the water surface showed that the wing does not penetrate nor detach from the water surface. Moreover, the stroke speed of the wing exceeds the minimum capillary wave speed, which signifies that the wing constantly generates the capillary wave by pulling on the surface with its wetted underside. Observation of such interaction suggests that honeybee's locomotion at the water surface resembles surfing on the self-generated capillary wave. A further evidence of described mechanism is explored by constructing a similarly sized mechanical model. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.
Energy balance of plasma with wave taking the nonpotential nature of the waves into consideration
International Nuclear Information System (INIS)
Gel'berg, M.G.; Volosevich, A.V.
1986-01-01
It is shown that in the ionospheric plasma the potential electric field of low-frequency plasma waves is shifted in phase with respect to fluctuations of current by approximately -π/2 and the rotational field is almost in phase with the current. Therefore, the energy transfer between the plasma and the wave occurs mainly with the participation of rotational field
Surface flute waves in plasmas theory and applications
Girka, Volodymyr; Thumm, Manfred
2014-01-01
The book presents results of a comprehensive study of various features of eigen electromagnetic waves propagating across the axis of plasma filled metal waveguides with cylindrical geometry. The authors collected in one book material on various features of surface flute waves, i. e. impact of waveguide design on wave dispersion, wave damping influenced by various reasons, impact of plasma density and external magnetic field inhomogeneity on the wave, and impact of waveguide corrugation and electric current on the wave. A variety of present surface waves applications and possible future applications is also included. Using the method of successive approximations it is shown how one can solve problems, which concern real experimental devices, starting from simple models. The book applies to both professionals dealing with problems of confined plasmas and to graduate and post-graduate students specializing in the field of plasma physics and related applications.
Shock wave interaction with pulsed glow discharge and afterglow plasmas
International Nuclear Information System (INIS)
Podder, N.K.; LoCascio, A.C.
2009-01-01
Acoustic shock waves are launched by the spark-discharge of a high voltage capacitor in pulsed glow discharge and afterglow plasmas. The glow discharge section of the shock tube is switched on for a period of less than one second at a time, during which a shock wave is launched starting with a large delay between the plasma switch-on and the shock-launch. In the subsequent runs this delay is decremented in equal time intervals up to the plasma switch-on time. A photo acoustic deflection method sensitive to the density gradient of the shock wave is used to study the propagating shock structure and velocity in the igniting plasma. A similar set of measurements are also performed at the plasma switch-off, in which the delay time is incremented in equal time intervals from the plasma switch-off time until the afterglow plasma fully neutralizes itself into the room-temperature gas. Thus, complete time histories of the shock wave propagation in the igniting plasma, as well as in the afterglow plasma, are produced. In the igniting plasma, the changes in the shock-front velocity and dispersion are found to be a strong non-linear function of delay until a saturation point is reached. On the other hand, in the afterglow plasma the trend has been opposite and reversing towards the room temperature values. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas
Excitation of surface waves of ultracold neutrons on absorbing trap walls as anomalous loss factor
International Nuclear Information System (INIS)
Bokun, R.Ch.
2006-01-01
One analyzed probability of excitation of surface waves of ultracold neutrons in terms of a plane model consisting of three media: vacuum, a finite depth neutron absorbing substance layer and a neutron reflecting substrate. One demonstrated the absence of the mentioned surface waves in terms of the generally accepted model of two media: vacuum contiguous to the plane surface of a substance filled half-space. One pointed out the effect of the excited surface waves of ultracold neutrons on the increase of their anomalous losses in traps [ru
Propagation of bottom-trapped waves over variable topography
Digital Repository Service at National Institute of Oceanography (India)
Shetye, S.R.
Fig. 5. Variation in the magnitude of bottom-intensification of the incident and reflected waves (a and if) with meridional wavenumber (B, in dimensionless units). The values of parameters used in the computations are defined in the caption to Fig. 4... 1 I I I 0'0 1.0 (X) =~ Fig. 8. p~°)(x, y, z, 0) on the planes (a) z = 1, and (b) y = 0. The spatial coordinates are in dimensionless units. The values of the parameters used to compute the solution are defined in the caption to Fig. 4. The zonal...
Nonlinear Alfvén Waves in a Vlasov Plasma
DEFF Research Database (Denmark)
Bell, T.F.
1965-01-01
Stationary solutions to the nonlinear Vlasov—Boltzmann equations are considered which represent one-dimensional electromagnetic waves in a hot magnetoplasma. These solutions appear in arbitrary reference frames as circularly polarized, sinusoidal waves of unlimited amplitude, i.e., as nonlinear...... Alfvén waves. Solutions are found implicitly by deriving a set of integral dispersion relations which link the wave characteristics with the particle distribution functions. A physical discussion is given of the way in which the Alfvén waves can trap particles, and it is shown that the presence...
Analysis of waves in the plasma guided by a periodical vane-type slow wave structure
International Nuclear Information System (INIS)
Wu, T.J.; Kou, C.S.
2005-01-01
In this study, the dispersion relation has been derived to characterize the propagation of the waves in the plasma guided by a periodical vane-type slow wave structure. The plasma is confined by a quartz plate. Results indicate that there are two different waves in this structure. One is the plasma mode that originates from the plasma surface wave propagating along the interface between the plasma and the quartz plate, and the other is the guide mode that originally travels along the vane-type slow wave structure. In contrast to its original slow wave characteristics, the guide mode becomes a fast wave in the low-frequency portion of the passband, and there exists a cut-off frequency for the guide mode. The vane-type guiding structure has been shown to limit the upper frequency of the passband of the plasma mode, compared with that of the plasma surface wave. In addition, the passband of the plasma mode increases with the plasma density while it becomes narrower for the guide mode. The influences of the parameters of the guiding structure and plasma density on the propagation of waves are also presented
Effect of finited pressure on plasma stability and particle motion i axial-assymetrical open traps
International Nuclear Information System (INIS)
Kotel'nikov, I.A.
1984-01-01
Hydrodynamic equilibrium confiqurations of plasma are investigated as well as the processes of cross-section transfer in axial-asymmetrical open traps. It is shown that drift surfaces are essentially deformed allowing for the final β, and, as a rule, the property of local injection is disturbed. But non-injection of particle drift surfaces with different energies and a magnetic moment in a paraxial trap turns out to be small by the perimeter of paraxiallity even at βapproximately1
Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes
International Nuclear Information System (INIS)
Leppert, H.D.; Schuelter, H.; Wiesemann, K.
1982-01-01
The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)
Spectroscopic investigation of wave driven microwave plasmas
International Nuclear Information System (INIS)
Wijtvliet, R.; Felizardo, E.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.; Nijdam, S.; Veldhuizen, E. V.; Kroesen, G.
2009-01-01
Large H atom line broadening was found throughout the volume of surface wave generated He-H 2 and H 2 microwave plasmas at low pressures. The measured Doppler temperatures corresponding to the H β , H γ , H δ , H ε , and H ζ line profiles were found to be higher than the rotational temperature of the hydrogen molecular Fulcher-α band and the Doppler temperature of the 667.1 nm singlet He line. No excessive broadening has been found. The Lorentzian and Gaussian widths as determined by fitting the spectral lines with a Voigt profile increase with the principal quantum number of the upper level. In contrast, no such dependence for the Gaussian width has been observed in an Ar-H 2 discharge. No population inversion has been observed from measurements of the relative intensities of transitions within the Balmer series.
Solitary Waves in Space Dusty Plasma with Dust of Opposite Polarity
International Nuclear Information System (INIS)
Elwakil, S.A.; Zahran, M.A.; El-Shewy, E.K.; Abdelwahed, H.G.
2009-01-01
The nonlinear propagation of small but finite amplitude dust-acoustic solitary waves (DAWs) in an unmagnetized, collisionless dusty plasma has been investigated. The fluid model is a generalize to the model of Mamun and Shukla to a more realistic space dusty plasma in different regions of space viz.., cometary tails, mesosphere, Jupiter s magnetosphere, etc., by considering a four component dusty plasma consists of charged dusty plasma of opposite polarity, isothermal electrons and vortex like ion distributions in the ambient plasma. A reductive perturbation method were employed to obtain a modified Korteweg-de Vries (mKdV) equation for the first-order potential and a stationary solution is obtained. The effect of the presence of positively charged dust fluid, the specific charge ratioμ, temperature of the positively charged dust fluid, the ratio of constant temperature of free hot ions and the constant temperature of trapped ions and ion temperature are also discussed.
Continuing studies of the plasma beat wave accelerator
International Nuclear Information System (INIS)
Joshi, C.
1990-01-01
This is a proposal for the release of third year funds for the ''Plasma Beat Wave Accelerator'' program (PBWA) at UCLA under the direction of Professor C. Joshi. This report is also a summary of progress on this project since March 1990; i.e., the date of the last report to the DOE. Once again we note that although the program is for historical reasons called the Plasma Beat Wave Accelerator Program, our group is active in all areas of applications of lasers and plasmas in future high energy accelerators. These are as follows: heat gradient plasma structures; excited by plasma beat wave technique; laser wake field technique; and plasma wake field technique. Development of a photoinjector-driven, 20 MeV linac; and theoretical studies of the plasma lens and use of plasmas at the final focus
Resonant absorption of radar waves by a magnetized collisional plasma
International Nuclear Information System (INIS)
Sun Aiping; Tong Honghui; Shen Liru; Tang Deli; Qiu Xiaoming
2001-01-01
The propagation of radar waves in a magnetized collisional plasma slab is studied numerically. It is found for uniform plasma that: first, the wave attenuation and absorbed power show a peak value, i.e., resonant absorption when the collision frequency f en = 0.1, 0.5, 1 GHz and the wave frequency nears upper hybrid frequency. Secondly, the attenuation, absorbed, and transmitted power curves become flat at f en = 5, 10 Ghz. thirdly, the attenuation and absorbed power increase with plasma density, and the attenuation and the proportion of absorbed power can reach 100 dB and 80%, respectively, at the plasma density n = 10 11 cm -3 . For nonuniform plasma, the peak value of reflected power is larger than that in uniform plasma. So, uniform magnetized plasma is of more benefit to plasma cloaking
Penetration of slow waves into an overdense plasma
International Nuclear Information System (INIS)
Motley, R.W.; Bernabei, S.; Hooke, W.M.; McWilliams, R.; Olson, L.
1978-06-01
Probe measurements are reported of the propagation of a 2.45 GHz slow wave launched into a linear, overdense test plasma by a phased double waveguide. We find that waves in the frequency interval omega/sub LH/ < omega < omega/sub pe/ penetrate to the plasma interior only if they satisfy the accessibility criterion
Emerging science and technology of antimatter plasmas and trap-based beams
International Nuclear Information System (INIS)
Surko, C.M.; Greaves, R.G.
2004-01-01
Progress in the ability to accumulate and cool positrons and antiprotons is enabling new scientific and technological opportunities. The driver for this work is plasma physics research - developing new ways to create and manipulate antimatter plasmas. An overview is presented of recent results and near-term goals and challenges. In atomic physics, new experiments on the resonant capture of positrons by molecules provide the first direct evidence that positrons bind to 'ordinary' matter (i.e., atoms and molecules). The formation of low-energy antihydrogen was observed recently by injecting low-energy antiprotons into a cold positron plasma. This opens up a range of new scientific opportunities, including precision tests of fundamental symmetries such as invariance under charge conjugation, parity, and time reversal, and study of the chemistry of matter and antimatter. The first laboratory study of electron-positron plasmas has been conducted by passing an electron beam through a positron plasma. The next major step in these studies will be the simultaneous confinement of electron and positron plasmas. Although very challenging, such experiments would permit studies of the nonlinear behavior predicted for this unique and interesting plasma system. The use of trap-based positron beams to study transport in fusion plasmas and to characterize materials is reviewed. More challenging experiments are described, such as the creation of a Bose-condensed gas of positronium atoms. Finally, the future of positron trapping and beam formation is discussed, including the development of a novel multicell trap to increase by orders of magnitude the number of positrons trapped, portable antimatter traps, and cold antimatter beams (e.g., with energy spreads ≤1 meV) for precision studies of positron-matter interactions
Studies on waves and turbulence in natural plasmas and in laboratory plasmas
International Nuclear Information System (INIS)
Ferreira, J.L.
1990-09-01
The project for studying plasma waves and plasma turbulence submitted to CAPES to be included in the CAPES/COFECUB international cooperation agreement is presented. The project will be carry out in cooperation with Paris University aiming to simulate in laboratory wave-particle interaction phenomena occuring in space plasma. (M.C.K.)
Plasma heating by non-linear wave-Plasma interaction | Echi ...
African Journals Online (AJOL)
We simulate the non-linear interaction of waves with magnetized tritium plasma with the aim of determining the parameter values that characterize the response of the plasma. The wave-plasma interaction has a non-conservative Hamiltonian description. The resulting system of Hamilton's equations is integrated numerically ...
Plasma wave observations during electron and ion gun experiments
International Nuclear Information System (INIS)
Olsen, R.C.; Lowery, D.R.; Weddle, L.E.
1988-01-01
Plasma wave instruments with high temporal and frequency resolution in the 0-6 kHz frequency range have been used to monitor electron gun-employing charge control experiments with the USAF/NASA p78-2 satellite, in order to determine whether plasma wave signatures consistent with the previous inference of electron heating were present. Strong plasma waves were noted near the electron gyrofrequency; these waves can heat ambient low energy electrons, as previously inferred. Attention is given to the two distinct classes of behavior revealed by the ion gun experiments. 16 references
International Nuclear Information System (INIS)
Dieckmann, M.E.
1999-01-01
In this work the emission of high amplitude wave packets into a plasma is examined. The plasma is modelled by an 1 1/2D electromagnetic and relativistic particle in cell code. The antenna is modelled by applying forced electrostatic field oscillations to a subset of the simulation grid cells. The emitted wave packets are followed in space and time. It is investigated how the wave packets are affected by instabilities. The detected instabilities affecting ECH waves have been identified as wave decay, nonlinear damping due to trapping and modulational instabilities. These instabilities have been discussed with hindsight to the plasma sounding experiment. A plasma sounder is an experiment emitting short wave packets into the ambient plasma and then it listens to the response. The assumption that the emitted waves are linear waves then allows to determine the plasma magnetic field strength, the electron density and possibly the electron thermal velocity from the response spectrum. The impact of the non-linear instabilities on the plasma wave response spectrum provided by a sounder have been predicted in this work and the predictions have been shown to match a wide range of experimental observations. A dependence of the instabilities on the simulation noise levels, for example the dependence of the wave interaction time in a wave decay on the noise electric field amplitudes, required it to investigate the simulation noise properties (spectral distribution) and to compare it to real plasma thermal noise. It has also been examined how a finite length antenna would filter the simulation noise. (author)
Plasma acceleration in a wave with varying frequency
International Nuclear Information System (INIS)
Petrzilka, V.A.
1978-01-01
The averaged velocity of a test particle and the averaged velocity of a plasma in an electromagnetic wave packet with varying frequency (e.g., a radiation pulse from pulsar) is derived. The total momentum left by the wave packet in regions of plasma inhomogeneity is found. In case the plasma concentration is changing due to ionization the plasma may be accelerated parallelly or antiparallelly to the direction of the wave packet propagation which is relevant for a laser induced breakdown in gas. (author)
Some remarks on coherent nonlinear coupling of waves in plasmas
International Nuclear Information System (INIS)
Wilhelmsson, H.
1976-01-01
The analysis of nonlinear processes in plasma physics has given rise to a basic set of coupled equations. These equations describe the coherent nonlinear evolution of plasma waves. In this paper various possibilities of analysing these equations are discussed and inherent difficulties in the description of nonlinear interactions between different types of waves are pointed out. Specific examples of stimulated excitation of waves are considered. These are the parametric excitation of hybrid resonances in hot magnetized multi-ion component plasma and laser-plasma interactions. (B.D.)
On lower hybrid wave scattering by plasma density fluctuations
International Nuclear Information System (INIS)
Petrzilka, V.
1988-01-01
The scattering of lower hybrid waves on plasma density fluctuations in a thin turbulent layer at the plasma periphery is studied numerically. The lower hybrid waves are supposed to be radiated by a four-waveguide grill used on the CASTOR tokamak. A great number of calculated scattered wave spectra show that the scattered spectrum shifts to larger values of the parallel-to-magnetic-field component of the wave vector (to slower waves) with increasing central plasma density and with the decreasing safety factor at the boundary. As known, this shift of the wave spectra results in a decrease in current drive efficiency. The current drive efficiency will hence decrease with growing plasma density and with decreasing safety factor. (J.U.). 2 figs., 4 refs
Resonant trapping in the transport of a matter-wave soliton through a quantum well
International Nuclear Information System (INIS)
Ernst, Thomas; Brand, Joachim
2010-01-01
We theoretically investigate the scattering of bright solitons in a Bose-Einstein condensate on narrow attractive potential wells. Reflection, transmission, and trapping of an incident soliton are predicted to occur with remarkably abrupt transitions upon varying the potential depth. Numerical simulations of the nonlinear Schroedinger equation are complemented by a variational collective coordinate approach. The mechanism for nonlinear trapping is found to rely both on resonant interaction between the soliton and bound states in the potential well and on the radiation of small-amplitude waves. These results suggest that solitons can be used to probe bound states that are not accessible through scattering with single atoms.
Quantitative study of the trapped particle bunching instability in Langmuir waves
International Nuclear Information System (INIS)
Hara, Kentaro; Boyd, Iain D.; Chapman, Thomas; Joseph, Ilon; Berger, Richard L.; Banks, Jeffrey W.; Brunner, Stephan
2015-01-01
The bunching instability of particles trapped in Langmuir waves is studied using Vlasov simulations. A measure of particle bunching is defined and used to extract the growth rate from numerical simulations, which are compared with theory [Dodin et al., Phys. Rev. Lett. 110, 215006 (2013)]. In addition, the general theory of trapped particle instability in 1D is revisited and a more accurate description of the dispersion relation is obtained. Excellent agreement between numerical and theoretical predictions of growth rates of the bunching instability is shown over a range of parameters
Quantitative study of the trapped particle bunching instability in Langmuir waves
Energy Technology Data Exchange (ETDEWEB)
Hara, Kentaro, E-mail: kenhara@umich.edu; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Chapman, Thomas; Joseph, Ilon; Berger, Richard L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Banks, Jeffrey W. [Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Brunner, Stephan [Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Ecole Polytechnique Fédérale de Lausanne, CRPP-PPB, CH-1015 Lausanne (Switzerland)
2015-02-15
The bunching instability of particles trapped in Langmuir waves is studied using Vlasov simulations. A measure of particle bunching is defined and used to extract the growth rate from numerical simulations, which are compared with theory [Dodin et al., Phys. Rev. Lett. 110, 215006 (2013)]. In addition, the general theory of trapped particle instability in 1D is revisited and a more accurate description of the dispersion relation is obtained. Excellent agreement between numerical and theoretical predictions of growth rates of the bunching instability is shown over a range of parameters.
Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas
International Nuclear Information System (INIS)
Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.
1996-01-01
A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, δf = f - f 0 , from an initial analytic distribution f 0 . High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question
Wave Model Development in Multi-Ion Plasmas
Directory of Open Access Journals (Sweden)
Sung-Hee Song
1999-06-01
Full Text Available Near-earth space is composed of plasmas which embed a number of plasma waves. Space plasmas consist of electrons and multi-ion that determine local wave propagation characteristics. In multi-ion plasmas, it is di cult to find out analytic solution from the dispersion relation in general. In this work, we have developed a model with an arbitrary magnetic field and density as well as multi-ion plasmas. This model allows us to investigate how plasma waves behave when they propagate along realistic magnetic field lines, which are assumed by IGRF(International Geomagnetic Reference Field. The results are found to be useful for the analysis of the in situ observational data in space. For instance, if waves are assumed to propagate into the polar region, from the equatorial region, our model quantitatively shows how polarization is altered along earth travel path.
Nonlinear interaction of waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Istomin, Ya.N.
1988-01-01
Nonlinear wave processes in a weakly inhomogeneous plasma are considered. A quasilinear equation is derived which takes into account the effect of the waves on resonance particles, provided that the inhomogeneity appreciably affects the nature of the resonance interaction. Three-wave interaction is investigated under the same conditions. As an example, the nonlinear interaction in a relativistic plasma moving along a strong curvilinear magnetic field is considered
Unlimited electron acceleration in laser-driven plasma waves
International Nuclear Information System (INIS)
Katsouleas, T.; Dawson, J.M.
1983-01-01
It is shown that the limitation to the energy gain of 2(ω/ω/sub p/) 2 mc 2 of an electron in the laser-plasma beat-wave accelerator can be overcome by imposing a magnetic field of appropriate strength perpendicular to the plasma wave. This accelerates particles parallel to the phase fronts of the accelerating wave which keeps them in phase with it. Arbitrarily large energy is theoretically possible
Characterization of the San Andreas Fault near Parkfield, California by fault-zone trapped waves
Li, Y.; Vidale, J.; Cochran, E.
2003-04-01
In October, 2002, coordinated by the Pre-EarthScope/SAFOD, we conducted an extensive seismic experiment at the San Andreas fault (SAF), Parkfield to record fault-zone trapped waves generated by explosions and microearthquakes using dense linear seismic arrays of 52 PASSCAL 3-channel REFTEKs deployed across and along the fault zone. We detonated 3 explosions within and out of the fault zone during the experiment, and also recorded other 13 shots of PASO experiment of UWM/RPI (Thurber and Roecker) detonated around the SAFOD drilling site at the same time. We observed prominent fault-zone trapped waves with large amplitudes and long duration following S waves at stations close to the main fault trace for sources located within and close to the fault zone. Dominant frequencies of trapped waves are 2-3 Hz for near-surface explosions and 4-5 Hz for microearthquakes. Fault-zone trapped waves are relatively weak on the north strand of SAF for same sources. In contrast, seismograms registered for both the stations and shots far away from the fault zone show a brief S wave and lack of trapped waves. These observations are consistent with previous findings of fault-zone trapped waves at the SAF [Li et al., 1990; 1997], indicating the existence of a well-developed low-velocity waveguide along the main fault strand (principal slip plan) of the SAF. The data from denser arrays and 3-D finite-difference simulations of fault-zone trapped waves allowed us to delineate the internal structure, segmentation and physical properties of the SAF with higher resolution. The trapped-wave inferred waveguide on the SAF Parkfield segment is ~150 m wide at surface and tapers to ~100 m at seismogenic depth, in which Q is 20-50 and S velocities are reduced by 30-40% from wall-rock velocities, with the greater velocity reduction at the shallow depth and to southeast of the 1966 M6 epicenter. We interpret this low-velocity waveguide on the SAF main strand as being the remnant of damage zone caused
THz detectors using surface Josephson plasma waves in layered superconductors
International Nuclear Information System (INIS)
Savel'ev, Sergey; Yampol'skii, Valery; Nori, Franco
2006-01-01
We describe a proposal for THz detectors based on the excitation of surface waves, in layered superconductors, at frequencies lower than the Josephson plasma frequency ω J . These waves propagate along the vacuum-superconductor interface and are attenuated in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). The surface Josephson plasma waves are also important for the complete suppression of the specular reflection from a sample (Wood's anomalies, used for gratings) and produce a huge enhancement of the wave absorption, which can be used for the detection of THz waves
Linear theory of plasma filled backward wave oscillator
Indian Academy of Sciences (India)
An analytical and numerical study of backward wave oscillator (BWO) in linear regime is presented to get an insight into the excitation of electromagnetic waves as a result of the interaction of the relativistic electron beam with a slow wave structure. The effect of background plasma on the BWO instability is also presented.
The energy density of a Landau damped plasma wave
Best, R. W. B.
1999-01-01
In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite
Energy Technology Data Exchange (ETDEWEB)
Drouot, T.; Gravier, E.; Reveille, T.; Collard, M. [Institut Jean Lamour, UMR 7198 CNRS - Université de Lorraine, 54 506 Vandoeuvre-lès-Nancy Cedex (France)
2015-10-15
This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
International Nuclear Information System (INIS)
Koprowski, A; Humbel, O; Plappert, M; Krenn, H
2015-01-01
We have performed an analytical study of the effects of oxygen plasma ashing processes in semiconductor device fabrication and its impact on minority carrier lifetime in high voltage semiconductor devices. Our work includes a critical background study of life time killing mechanisms by deep traps imparted into the semiconductor by barrel plasma ashing. The Elymat technique provides the opportunity to measure lifetime and diffusion length of minority carriers and surface photo voltage (SPV) measurement was used to analyse influences of process parameters such as photoresist, time budget and positioning in the process chamber. It was shown that in microwave plasma processes the diffusion length changes severely with tempering at 200 °C, whereas RF-plasma processes show a significant process time-dependence. Batch tools in general suffer from a strong first wafer effect which could be correlated with the static electrical parameters of the semiconductor devices. The trap identities were detected by using deep level transient spectroscopy and the chemical species of the traps has been proven by inductive coupled plasma mass spectrometry. The deep-bandgap trap energies are reliable fingerprints of the chosen process parameters such as process time and of resist-influences. By microwave plasma processes intrinsic Fe and FeB-complex levels were identified and a good agreement with the SPV-measurement and electrical device characteristic was shown. RF-plasma processes impart levels attributed to Pt levels and an additional level, which could be identified as a trap level probably forming a complex of Pt and H. (paper)
Electron plasma waves in CO/sub 2/ laser plasma interactions
International Nuclear Information System (INIS)
Baldis, H.A.; Villeneuve, D.M.; Walsh, C.J.
1984-01-01
During the past few years, the use of Thomson scattering in CO/sub 2/ laser produced plasmas has permitted the identification and study of electron plasma waves and ion waves, driven by various instabilities in the plasma corona, such as Stimulated Raman Scattering (SRS), two plasmon decay, and Stimulated Brillouin Scattering (SBS). Since these instabilities may coexist in the plasma, the density fluctuations associated with one wave may influence the behaviour of one or more of the other instabilities. The authors discuss the experimental evidence of such effects and, in particular, the consequences of a recent experiment in which the ion waves driven by SBS were observed to adversely affect the production of the electron plasma waves driven by SRS. In that experiment, a strong correlation was observed between the onset of SBS and the disappearance of the electron plasma waves driven by SRS at low densities (n/sub e/ n/sub e/ > 0.05 n/sub c/)
Propagation of electromagnetic waves in a weakly ionized dusty plasma
International Nuclear Information System (INIS)
Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Li, Hui; Wu, Jian; Pu, Shaozhi
2015-01-01
Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments. (paper)
Electromagnetic-wave absorption by inhomogeneous, collisional plasmas
International Nuclear Information System (INIS)
Gregoire, D.J.; Santoru, J.; Schumacher, R.W.
1990-01-01
Unmagnetized, collisional plasmas can be used as broadband EM-wave absorbers or refractors. In the absorption process, plasma electrons are first accelerated by the EM-wave fields and then collide with background-gas molecules, thereby transferring energy from the EM waves to the gas. A plasma absorber has several advantages compared to conventional materials. A plasma can be turned on and off very rapidly, thereby switching between absorbing and transparent conditions. Calculations indicate that plasma absorbers can also be tailored to provide broadband absorption (>40 dB) over multiple octaves. The authors have developed a one-dimensional model and a computer code to calculate the net power reflected from a plasma-enclosed EM-wave-reflecting target. They included three contributions to the reflected EM-wave power: reflections from the vacuum-plasma interface; reflections from the bulk plasma volume; and reflection of the attenuated EM wave that is transmitted through the plasma and reflected by the target
Plasma-ﬁlled rippled wall rectangular backward wave oscillator
Indian Academy of Sciences (India)
Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-ﬁlled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma ...
Kinetic theory of surface waves in plasma jets
International Nuclear Information System (INIS)
Shokri, B.
2002-01-01
The kinetic theory analysis of surface waves propagating along a semi-bounded plasma jet is presented. The frequency spectra and their damping rate are obtained in both the high and low frequency regions. Finally, the penetration of the static field in the plasma jet under the condition that the plasma jet velocity is smaller than the sound velocity is studied
International Nuclear Information System (INIS)
Sati, Priti; Tripathi, V. K.
2012-01-01
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.
Criteria governing electron plasma waves in a two-temperature plasma
International Nuclear Information System (INIS)
Dell, M.P.; Gledhill, I.M.A.; Hellberg, M.A.
1987-01-01
Using a technique based on the saddle-points of the dielectric function, criteria are found which govern the behaviour of electron plasma waves in plasmas with two electron populations having different temperatures. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Andreev, V. V.; Novitskii, A. A.; Umnov, A. M.; Chuprov, D. V., E-mail: chu-d@mail.ru [Peoples’ Friendship University of Russia (Russian Federation)
2016-06-15
The spatial configuration of a relativistic plasma bunch generated under the gyromagnetic autoresonance and confined in a magnetic mirror trap has been studied experimentally and numerically. The characteristics of bremsstrahlung generated by the plasma bunch from the gas and chamber walls were investigated using X-ray spectroscopy and radiometry, which made it possible to determine the localization of the bunch and analyze the dynamics of its confinement.
Helicon wave coupling to a chiral-plasma column
International Nuclear Information System (INIS)
Torres-Silva, H.; Reggiani, N.; Sakanaka, P.H.
1995-01-01
Inductive helicon wave coupling to a chiro-plasma column is studied numerically. In our theoretical model, the RF current distribution of the chiro-plasma is taken into account using the constitutive relations of a chiral-plasma. Computational results based on the data of present-day helicon devices are show. In particular, we discuss the role of magnetic-field-aligned electron landau damping for the helicon wave absorption. In many a see, the numerical findings can be understood reasonably in terms of the wavenumber spectra of the helicon wave dispersion relation for slow and fast wave of a chiral-plasma. In general however, the full electromagnetic treatment is necessary in order to describe and to understand the inductive coupling in the helicon wave regime. (author). 9 refs., 1 fig
Electro-acoustic shock waves in dusty plasmas
International Nuclear Information System (INIS)
Mamun, A.A.; Rahman, A.
2005-10-01
A rigorous theoretical investigation has been made of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] shock waves in unmagnetized dusty plasmas. The reductive perturbation method has been employed for the study of the small but finite amplitude DIA and DA shock waves. It has been reported that the dust grain charge fluctuation can be one of the candidates for the source of dissipation, and can be responsible for the formation of DIA shock waves in an unmagnetized dusty plasma with static charged dust particles. It has also been reported that the strong co-relation among dust particles can be one of the candidates for the source of dissipation, and can be responsible for the formation of DA shock waves in an unmagnetized strongly coupled dusty plasma. The basic features and the underlying physics of DIA and DA shock waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)
Deuterium trapping in liquid lithium irradiated by deuterium plasma
International Nuclear Information System (INIS)
Pisarev, A.; Moshkunov, K.; Vizgalov, I.; Gasparyan, Yu.
2013-01-01
Liquid lithium was irradiated by deuterium plasma to a low fluence of 10 22 –10 23 D/m 2 , cooled down to room temperature, and then slowly heated. The temperature and release rate were measured during heating. Two plateaus on the temperature–time dependence were observed at 180 °C and 660 °C. The first one corresponds to melting of Li and the second one – either to melting or to decomposition of solid LiD. Features of deuterium release in TDS were interpreted in terms of decomposition of lithium deuterides formed during plasma irradiation
Wave trajectory and electron cyclotron heating in toroidal plasmas
International Nuclear Information System (INIS)
Maekawa, T.; Tanaka, S.; Terumichi, Y.; Hamada, Y.
1977-12-01
Wave trajectories propagating obliquely to magnetic field in toroidal plasmas are studied theoretically. Results show that the ordinary wave at appropriate incident angle is mode-converted to the extraordinary wave at first turning point and is further converted to the electron Bernstein wave during passing a loop or a hooked nail curve near second turning point and is cyclotron-damped away, resulting in local electron heating, before arriving at cyclotron resonance layer. (auth.)
Nonlinear periodic waves in dusty plasma with variable dust charge
International Nuclear Information System (INIS)
Yadav, Lakhan Lal; Bharuthram, R.
2002-01-01
Using the reductive perturbation method, we present a theory of nonlinear periodic waves, viz. the cnoidal waves, in a dusty plasma consisting of electrons, ions, and cold dust grains with charge fluctuations, which in the limiting case reduce to dust acoustic solitons. It is found that the frequency of the dust acoustic cnoidal wave increases with its amplitude. The dust charge fluctuations are found to affect the characteristics of the cnoidal waves
Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas
Shen, Yong; Dong, J. Q.; Sun, A. P.; Qu, H. P.; Lu, G. M.; He, Z. X.; He, H. D.; Wang, L. F.
2016-04-01
The trapped electron modes (TEMs) are numerically investigated in toroidal magnetized hydrogen, deuterium and tritium plasmas, taking into account the effects of impurity ions such as carbon, oxygen, helium, tungsten and others with positive and negative density gradients with the rigorous integral eigenmode equation. The effects of impurity ions on TEMs are investigated in detail. It is shown that impurity ions have substantially-destabilizing (stabilizing) effects on TEMs in isotope plasmas for {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 (TEM turbulences in hydrogenic isotope plasmas with and without impurities are performed. The relations between the maximum growth rate of the TEMs with respect to the poloidal wave number and the ion mass number are given in the presence of the impurity ions. The results demonstrate that the maximum growth rates scale as {γ\\max}\\propto Mi-0.5 in pure hydrogenic plasmas. The scale depends on the sign of its density gradient and charge number when there is a second species of (impurity) ions. When impurity ions have density profiles peaking inwardly (i.e. {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 ), the scaling also depends on ITG parameter {ηi} . The maximum growth rates scale as {γ\\max}\\propto M\\text{eff}-0.5 for the case without ITG ({ηi}=0 ) or the ITG parameter is positive ({ηi}>0 ) but the impurity ion charge number is low (Z≤slant 5.0 ). However, when {ηi}>0 and the impurity ion charge number is moderate (Z=6.0-8.0 ), the scaling law is found as {γ\\max}\\propto M\\text{eff}-1.0 . Here, Z is impurity ion charge number, and the effective mass number, {{M}\\text{eff}}=≤ft(1-{{f}z}\\right){{M}i}+{{f}z}{{M}z} , with {{M}i} and {{M}Z} being the mass numbers of the hydrogenic and impurity ions, respectively, and {{f}z}=Z{{n}0z}/{{n}0e} being the charge concentration of impurity ions. In addition, with regard to the case of {{L}ez}<0 , the maximum growth rate scaling is {γ\\max}\\propto Mi-0.5 . The possible relations of the results
DEFF Research Database (Denmark)
Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim
2009-01-01
It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... the finite element method to model surface acoustic waves generated by high aspect ratio electrodes. A periodic model is proposed including a perfectly matched layer to simulate radiation conditions away from the sources, from which the modal distributions are found. The ratio of the mechanical energy...... confined to the electrode as compared to the total mechanical energy is calculated and is found to be increasing for increasing aspect ratio and to tend to a definite limit for the two families of surface waves. This observation is in support of the interpretation that high aspect ratio electrodes act...
Optical resonator for a standing wave dipole trap for fermionic lithium atoms
International Nuclear Information System (INIS)
Elsaesser, T.
2000-01-01
This thesis reports on the the construction of an optical resonator for a new resonator dipole trap to store the fermionic 6 Li-isotope and to investigate its scattering properties. It was demonstrated that the resonator enhances the energy density of a (1064 nm and 40 mW) laser beam by a factor of more than 100. A fused silica vacuum cell is positioned inside the resonator under Brewster's angle. The losses of the resonator depend mainly on the optical quality of the cell. The expected trap depth of the dipole trap is 200 μK and the photon scattering rate is expected to be about 0.4 s -1 . The resonator is stabilized by means of a polarization spectroscopy method. Due to high trap frequencies, which are produced by the tight enclosure of the standing wave in the resonator, the axial motion must be quantized. A simple model to describe this quantization has been developed. A magneto-optical trap, which serves as a source of cold lithium atoms, was put in operation. (orig.)
Effects of radial envelope modulations on the collisionless trapped-electron mode in tokamak plasmas
Chen, Hao-Tian; Chen, Liu
2018-05-01
Adopting the ballooning-mode representation and including the effects of radial envelope modulations, we have derived the corresponding linear eigenmode equation for the collisionless trapped-electron mode in tokamak plasmas. Numerical solutions of the eigenmode equation indicate that finite radial envelope modulations can affect the linear stability properties both quantitatively and qualitatively via the significant modifications in the corresponding eigenmode structures.
Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons
Shan, Shaukat Ali; Imtiaz, Nadia
2018-05-01
The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.
Investigations of electrostatic ion waves in a collisionless plasma
International Nuclear Information System (INIS)
Michelsen, P.
1980-06-01
The author reviews a series of publications concerning theoretical and experimental investigations of electrostatic ion waves in a collisionless plasma. The experimental work was performed in the Risoe Q-machine under various operational conditions. Besides a description of this machine and the diagnostic techniques used for the measurements, two kinds of electrostatic waves are treated, namely, ion-acoustic waves and ion-cyclotron waves. Due to the relative simplicity of the ion-acoustic waves, these were treated in detail in order to get a more general understanding of the behaviour of the propagation properties of electrostatic waves. The problem concerning the difficulties in describing waves excited at a certain position and propagating in space by a proper mathematical model was especially considered in depth. Furthermore, ion-acoustic waves were investigated which propagated in a plasma with a density gradient, and afterwards in a plasma with an ion beam. Finally, a study of the electrostatic ion-cyclotron waves was undertaken, and it was shown that these waves were unstable in a plasma traversed by an ion beam. (Auth.)
Radial diffusion of toroidally trapped particles induced by lower hybrid and fast waves
International Nuclear Information System (INIS)
Krlin, L.
1992-10-01
The interaction of RF field with toroidally trapped particles (bananas) can cause their intrinsic stochastically diffusion both in the configuration and velocity space. In RF heating and/or current drive regimes, RF field can interact with plasma particles and with thermonuclear alpha particles. The aim of this contribution is to give some analytical estimates of induced radial diffusion of alphas and of ions. (author)
Electro-acoustic solitary waves in dusty plasmas
International Nuclear Information System (INIS)
Mamun, A.A.; Sayed, F.
2005-10-01
present a rigorous theoretical investigation of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] solitary waves in dusty plasmas. We employ the reductive perturbation method for small but finite amplitude solitary waves as well as the pseudo-potential approach for arbitrary amplitude ones. We also analyze the effects of non-planar geometry and dust charge fluctuations on both DIA and DA solitary waves, the effect of finite ion-temperature on DIA solitary waves, and the effects of dust-fluid temperature and non-isothermal ion distributions on DA solitary waves. It has been reported that these effects do not only significantly modify the basic features of DIA or DA solitary waves, but also introduce some important new features. The basic features and the underlying physics of DIA and DA solitary waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)
Plasma wave amplitude measurement created by guided laser wakefield
International Nuclear Information System (INIS)
Wojda, Franck
2010-01-01
The interaction of an intense laser pulse of short duration with a plasma produces a plasma wave with large amplitude in its wake, which is associated with a longitudinal electric field. It can be used to accelerate relativistic electrons injected into the wave to energies in the GeV range over distances of the order of a few centimeters, short compared to acceleration lengths in conventional accelerators. The control of the electron beam characteristics during the acceleration process is fundamental for achieving a usable laser-plasma acceleration stage. The main result of this thesis is the creation and characterization of a plasma wave in a weakly nonlinear regime over a length of several centimeters. Capillary tubes are used to guide the laser beam over these distances, while maintaining a large enough intensity (∼ 10 17 W/cm 2 ). The guided laser beam ionizes the gas in the tube and creates the plasma wave. A diagnostic based on the modification of the laser pulse spectrum was used to determine the amplitude of the plasma wave along the tube. The amplitude of the plasma wave was studied as a function of gas filling pressure, length of the capillary and laser energy. Experimental results are compared; they are in excellent agreement with analytical results and modeling. They show that the electric field associated with the plasma wave is between 1 and 10 GV/m over a length of up to 8 cm. This work has demonstrated the ability to create a controlled plasma wave in a weakly nonlinear regime. (author)
Plasma waves in the Earth's foreshock, bow shock, and magnetosheath
International Nuclear Information System (INIS)
Onsager, T.G.
1988-01-01
The research presented in this dissertation is a detailed analysis of electrostatic waves in the Earth's foreshock, bow shock, and magnetosheath. The wave modes measured in these regions, the possible generation mechanisms, and the process which drive the plasma to its unstable state are investigated. The measurements used in this study were obtained from the plasma wave receiver, the particle instrument, and the magnetometer on board the Active Magnetospheric Particle Tracer Explorer (AMPTE) Ion Release Module (IRM). Electron beam mode waves have been identified in the Earth's foreshock. A technique is developed which allows the rest frame frequency and wave number of the electron beam mode waves to be determined from the measurements. The experimentally determined values are compared with theoretical predictions, and approximate limits are put on the beam temperatures. It is demonstrated that electrostatic waves are present in the bow shock and magnetosheath with frequencies above the maximum frequency for Doppler shifted ion acoustic waves, yet below the Langmuir frequency. Waves in this frequency range are tentatively identified as electron beam mode waves. This identification is based on the measured frequencies and electric field polarization directions. Data from 45 bow shock crossings are then used to investigate possible correlations between the electron beam mode waves and the near shock plasma parameters. The best correlations are found with Alfven Mach number and electron beta. Possible mechanism which might produce electron beams in the shock and magnetosheath are discussed in terms of the correlation study results
Studies on the parametric decay of waves in fusion plasmas
International Nuclear Information System (INIS)
Paettikangas, T.
1992-08-01
Parametric instabilities of large-amplitude electromagnetic waves are investigated in fusion applications. In laser fusion, the electromegnetic wave reflected from the overdense plasma can act as a secondary pump wave and exite parametric instabilities. In double simulated Brilloun scattering (DSBS), both the incoming and the reflected pump wave scatter from a common ion sound wave. The stationary states and the dynamics of DSBS are investigated by using a simple envelope model. The ion sound wave that is exited in DSBS is shown to have soliton-like properties. The simulated Raman scattering (SRS) of free-electron-laser radiation can be applied to current drive in tokamaks. SRS generates fast longitudinal electron plasma waves which accelerate electrons to relativistic energies. Since the energetic current-carrying electrons are almost collisionless, the current decays very slowly. The feasibility of the Raman current drive in tokamaks is investigated theoretically. The current drive efficiency and the optimum free-electron-laser parameters are determined. The energy transfer to the fast electrons from the electrostatic wave is studied with relativistic Vlasov-Maxwell simulations. The parametric decay of a wave to half-harmonics is investigated. It is shown that the growth rate of the decay vanishes in the limit of a long wavelenght of the pump wave even for general electromagnetic or electrostatic decay models. The results are applied to the decay of a fast magnetosonic waves in tokamak plasmas. (orig.)
Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF
International Nuclear Information System (INIS)
Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.
1984-10-01
The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)
Observation of Ion Acoustic Waves Excited by Drift Waves in a Weakly Magnetized Plasma
International Nuclear Information System (INIS)
Tsukabayashi, Isao; Sato, Sugiya; Nakamura, Yoshiharu
2003-01-01
Spontaneous fluctuations excited by drift waves are investigated experimentally in magnetic multi-pole plasma. The magnetic multi-pole has been widely used in DP devices and so on. It was observed that the high level of density fluctuations was generated by the drift instability near a magnetic multi-pole or a dipole magnet. The waves propagate to the middle plasma region forming the envelope train waves
MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, Roberto; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, Marc, E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-11-01
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.
MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
International Nuclear Information System (INIS)
Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc
2013-01-01
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given
International Nuclear Information System (INIS)
Bruma, C.; Cuperman, S.C.; Komoshvili, K.
2002-01-01
Turbulent transport of heat and particles is the principle obstacle confronting controlled fusion today. Thus, we investigate quantitatively the suppression of turbulence and formation of transport barriers in spherical tokamaks by sheared electric fields generated by externally driven radio-frequency (RF) waves, in the frequency range o)A n o] < o)ci (e)A and o)ci are the Alfven and ion cyclotron frequencies). This investigation consists of the solution of the full-wave equation for a spherical tokamak in the presence of externally driven fast waves and the evaluation of the power dissipation by the mode-converted Alfven waves. This in turn, provides a radial flow shear responsible for the suppression of plasma turbulence. Thus, a strongly non-linear equation for the radial sheared electric field is solved, the turbulent transport suppression rate is evaluated and compared with the ion temperature gradient (ITG) instability increment. For illustration, the case of START-like device (Sykes 2000) is treated. Thus, (i) the exact D-shape cross-section is considered; (ii) additional kinetic (including Landau damping) and particle trapping effects are added to the resistive two-fluid dielectric tensor operator; (iii) a finite extension antenna located on the low-field-side of the plasma is considered; (iv) a rigorous 2.5 finite elements numerical code (Sewell 1993) is used; and (v) the turbulence and transport barrier generated as a result of wave-plasma interaction is evaluated
Stochastic acceleration by a single wave in a magnetized plasma
International Nuclear Information System (INIS)
Smith, R.
1977-01-01
A particularly simple problem exhibiting stochasticity is the motion of a charged particle in a uniform magnetic field and a single wave. Detailed studies of this wave-particle interaction show the following features. An electrostatic wave propagating obliquely to the magnetic field causes stochastic motion if the wave amplitude exceeds a certain threshold. The overlap of cyclotron resonances then destroys a constant of the motion, allowing strong particle acceleration. A wave of large enough amplitude would thus suffer severe damping and lead to rapid heating of a particle distribution. The stochastic motion resembles a diffusion process even though the wave spectrum contains only a single wave. The motion of ions in a nonuniform magnetic field and a single electrostatic wave is treated in our study of a possible saturation mechanism of the dissipative trapped-ion instability in a tokamak. A theory involving the overlap of bounce resonances predicts the main features found in the numerical integration of the equations of motion. Ions in a layer near the trapped-circulating boundary move stochastically. This motion leads to nonlinear stabilization mechanisms which are described qualitatively
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
International Nuclear Information System (INIS)
Tataronis, J. A.
2004-01-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory
Electron self-injection and trapping into an evolving plasma bubble.
Kalmykov, S; Yi, S A; Khudik, V; Shvets, G
2009-09-25
The blowout (or bubble) regime of laser wakefield acceleration is promising for generating monochromatic high-energy electron beams out of low-density plasmas. It is shown analytically and by particle-in-cell simulations that self-injection of the background plasma electrons into the quasistatic plasma bubble can be caused by slow temporal expansion of the bubble. Sufficient criteria for the electron trapping and bubble's expansion rate are derived using a semianalytic nonstationary Hamiltonian theory. It is further shown that the combination of bubble's expansion and contraction results in monoenergetic electron beams.
Integrated transport code system for a multicomponent plasma in a gas dynamic trap
International Nuclear Information System (INIS)
Anikeev, A.V.; Karpushov, A.N.; Noak, K.; Strogalova, S.L.
2000-01-01
This report is focused on the development of the theoretical and numerical models of multicomponent high-β plasma confinement and transport in the gas-dynamic trap (GDT). In order to simulate the plasma behavior in the GDT as well as that in the GDT-based neutron source the Integrated Transport Code System is developed from existing stand-alone codes calculating the target plasma, the fast ions and the neutral gas in the GDT. The code system considers the full dependence of the transport phenomena on space, time, energy and angle variables as well as the interactions between the particle fields [ru
Phase velocity of nonlinear plasma waves in the laser beat-wave accelerator
International Nuclear Information System (INIS)
Spence, W.L.
1985-01-01
The suggested plasma-laser accelerator is an attempt to achieve a very high energy gradient by resonantly exciting a longitudinal wave traveling at close to the speed of light in cold plasma by means of the beat-wave generated by the transverse fields in two laser beams. Previous calculations to all orders in v/sub z/ have been done essentially from the laboratory frame point of view and have treated the plasma wave as having sharply defined phase velocity equal to the speed of light. However a high energy particle beam undergoing acceleration sees the plasma wave from a nearly light-like frame of reference and hence is very sensitive to small deviations in its phase velocity. Here the authors introduce a calculational scheme that includes all orders in v/sub z/ and in the plasma density, and additionally takes into account the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which they are able to in essence formally sum up all orders of forward Raman scattering. They find that the nonlinear plasma wave does not have simply a single phase velocity - it is really a superposition of many - but that the beat-wave which drives it is usefully described by a non-local effective phase velocity function
Influence of Plasma Pressure Fluctuation on RF Wave Propagation
International Nuclear Information System (INIS)
Liu Zhiwei; Bao Weimin; Li Xiaoping; Liu Donglin; Zhou Hui
2016-01-01
Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. (paper)
International Nuclear Information System (INIS)
Sugaya, Reija
1991-01-01
The velocity-space diffusion equation describing distortion of the velocity distribution function due to resonant wave-wave scattering of electromagnetic and electrostatic waves in an unmagnetized plasma is derived from the Vlasov-Maxwell equations by perturbation theory. The conservation laws for total energy and momentum densities of waves and particles are verified, and the time evolutions of the energy and momentum densities of particles are given in terms of the nonlinear wave-wave coupling coefficient in the kinetic wave equation. (author)
International Nuclear Information System (INIS)
Choi, M.; Chan, V. S.; Chu, M. S.; Lao, L. L.; Pinsker, R. I.; Turnbull, A. D.; Jeon, Y. M.; Li, G.; Ren, Q.
2007-01-01
We evaluate the accuracy of the Porcelli sawtooth model using more realistic numerical models from the ORBIT-RF and GATO codes in DIII-D fast wave heating experiments. Simulation results confirm that the fast wave-induced energetic trapped particles may stabilize the sawtooth instability. The crucial kinetic stabilizing contribution strongly depends on both the experimentally reconstructed magnetic shear at the q = 1 surface and the calculated poloidal beta of energetic trapped particles inside the q = 1 surface
High energy particle acceleration by relativistic plasma waves
International Nuclear Information System (INIS)
Amiranoff, F.; Jacquet, F.; Mora, P.; Matthieussent, G.
1991-01-01
Accelerating schemes using plasmas, lasers or electron beams are proposed and compared to electron bunches in dielectric media or laser propagation through a slow wave structure made of liquid droplets. (L.C.J.A.). 33 refs, 20 figs
Interaction of EM Waves with Atmospheric Pressure Plasmas
National Research Council Canada - National Science Library
Laroussi, Mounir
2000-01-01
.... The focus of the main activities is the generation of large volume, non-thermal, atmospheric pressure plasmas, their diagnostics, and their interactions with EM waves and with the cells of microorganism...
Propagation and scattering of waves in dusty plasmas
International Nuclear Information System (INIS)
Vladimirov, S.V.
1994-01-01
Wave propagation and scattering in dusty plasmas with variable charges on dust particles are considered. New kinetic theory including instant charge of a dust particle as a new independent variable is further developed. (author). 9 refs
Terahertz waves radiated from two noncollinear femtosecond plasma filaments
Energy Technology Data Exchange (ETDEWEB)
Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp [Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, RIKEN, Sendai, Miyagi 980-0845 (Japan); Midorikawa, Katsumi [Attosecond Science Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan)
2015-11-23
Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.
Waves generated in the plasma plume of helicon magnetic nozzle
International Nuclear Information System (INIS)
Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen
2013-01-01
Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.
Waves generated in the plasma plume of helicon magnetic nozzle
Energy Technology Data Exchange (ETDEWEB)
Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)
2013-03-15
Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.
Stationary Density Variation Produced by a Standing Plasma Wave
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field.......Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field....
Dynamical chaos of plasma ions in electrostatic waves
International Nuclear Information System (INIS)
Fasoli, A.; Kleiber, R.; Tran, M.Q.; Paris, P.J.; Skiff, F.
1992-09-01
Chaos generated by the interaction between charged particles and electrostatic plasma waves has been observed in a linear magnetized plasma. The macroscopic wave properties, the kinetic ion dielectric response and the microscopic heating mechanisms have been investigated via optical diagnostic techniques based on laser induced fluorescence. Observations of test-particle dynamical evolution indicate an exponential separation of initially close ion trajectories. (author) 5 figs., 20 refs
Four-wave mixing and phase conjugation in plasmas
International Nuclear Information System (INIS)
Federici, J.F.
1989-01-01
Nonlinear optical effects such as Stimulated Brillouin Scattering, Stimulated Raman Scattering, self-focusing, wave-mixing, parametric mixing, etc., have a long history in plasma physics. Recently, four-wave mixing in plasmas and its applications to phase conjugation has been extensively studied. Although four-wave mixing (FWM), using various nonlinear mediums, has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate FWM for wavelengths longer than 10μm. Plasmas as phase conjugate mirrors have received considerable attention since they become more efficient at longer wavelengths (far-infrared to microwave). The purpose of this thesis is to study various fundamental issues which concern the suitability of plasmas for four-wave mixing and phase conjugation. The major contributions of this thesis are the identification and study of thermal and ionization nonlinearities as potential four-wave mixing and phase conjugation mechanisms and the study of the affect of density inhomogeneities on the FWM process. Using a fluid description for the plasma, this thesis demonstrates that collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. The prospect of using a novel ionization nonlinearity in weakly ionized plasmas for wave-mixing and phase conjugation is discussed. The ionization nonlinearity arises from localized heating of the plasma by the beat-wave. Wherever, the local temperature is increased, a plasma density grating is produced due to increased electron-impact ionization. Numerical estimates of the phase conjugate reflectivity indicate reflectivities in the range of 10 -4 -10 -3 are possible in a weakly ionized steady-state gas discharge plasma
On Current Drive and Wave Induced Bootstrap Current in Toroidal Plasmas
International Nuclear Information System (INIS)
Hellsten, T.; Johnson, T.
2008-01-01
A comprehensive treatment of wave-particle interactions in toroidal plasmas including collisional relaxation, applicable to heating or anomalous wave induced transport, has been obtained by using Monte Carlo operators satisfying quasi-neutrality. This approach enables a self-consistent treatment of wave-particle interactions applicable to the banana regime in the neoclassical theory. It allows an extension into a regime with large temperature and density gradients, losses and transport of particles by wave-particle interactions making the method applicable to transport barriers. It is found that at large gradients the relationship between radial electric field, parallel velocity, temperature and density gradient in the neoclassical theory is modified such that coefficient in front of the logarithmic ion temperature gradient, which in the standard neoclassical theory is small and counteracts the electric field caused by the density gradient, now changes sign and contributes to the built up of the radial electric field. The possibility to drive current by absorbing the waves on trapped particles has been studied and how the wave-particle interactions affect the bootstrap current. Two new current drive mechanisms are studied: current drive by wave induced bootstrap current and selective detrapping into passing orbits by directed waves.
Evolution of rogue waves in dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com [Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Moslem, W. M., E-mail: wmmoslem@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); El-Labany, S. K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt)
2015-04-15
The evolution of rogue waves associated with the dynamics of positively charged dust grains that interact with streaming electrons and ions is investigated. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which proposed as an effective tool for studying the rogue waves in Jupiter. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming densities of the ions and electrons. Furthermore, the supersonic rogue waves are much taller than the subsonic rogue waves by ∼25 times.
Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers
Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing
2017-08-01
Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.
Stochastic particle acceleration by plasma waves in AGN jets
International Nuclear Information System (INIS)
Li, Hui; Colgate, S.A.; Miller, J.A.
1997-01-01
The free energy stored in the stressed magnetic fields in AGN jets could be dissipated via generating turbulent plasma waves. The authors review several key wave-particle resonant interactions and point out the importance of a broad wave spectrum. Under several idealized assumptions, they show that the transit-time damping process can accelerate electrons to TeV energies in an AGN jet environment, and present a preliminary calculation on the evolution of plasma wave, electron, and photon distributions. The authors especially emphasize several open questions on particle acceleration by waves, and argue that a plausible scenario is to energize electrons out of the thermal background via transit-time damping and further accelerate them by the parallel propagating right-handed waves
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Energy Technology Data Exchange (ETDEWEB)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Wave launching as a diagnostic tool to investigate plasma turbulence
International Nuclear Information System (INIS)
Tsui, H.Y.W.; Bengtson, R.D.; Li, G.X.; Richards, B.; Uglum, J.; Wootton, A.J.; Uckan, T.
1994-01-01
An experimental scheme to extend the investigation of plasma turbulence has been implemented. It involves driving waves into the plasma to modify the statistical properties of the fluctuations; the dynamic balance of the turbulence is perturbed via the injection of waves at selected spectral regions. A conditional sampling technique is used in conjunction with correlation analyses to study the wave launching and the wave-wave coupling processes. Experimental results from TEXT-U tokamak show that the launched waves interact with the intrinsic fluctuations both linearly and nonlinearly. The attainment of driven nonlinearity is necessary for this diagnostic scheme to work. It is also the key to an active modification and control of edge turbulence in tokamaks
Electromagnetic ion cyclotron waves in the plasma depletion layer
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Solitary ionizing surface waves on low-temperature plasmas
International Nuclear Information System (INIS)
Vladimirov, S.V.; Yu, M.Y.
1993-01-01
It is demonstrated that at the boundary of semi-infinite low-temperature plasma new types of localized ionizing surface wave structures can propagate. The solitary waves are described by an evolution equation similar to the KdV equation, but the solutions differ considerably from that of the latter
Evolution of Modulated Dispersive Electron Waves in a Plasma
DEFF Research Database (Denmark)
Sugai, H.; Lynov, Jens-Peter; Michelsen, Poul
1979-01-01
The linear propagation of amplitude-modulated electron waves was examined in a low-density Q-machine plasma. Three effects of the strong dispersion on the modulated wave have been demonstrated: (i) a wavepacket expands along its direction of propagation, followed by a shift of the frequency through...
Dispersion surfaces and ion wave instabilities in space plasmas
International Nuclear Information System (INIS)
Andre, M
1985-08-01
In this thesis, the dispersion relation of linear waves in a non-relativistic, collisionless and homogeneous plasma in a uniform magnetic field, is solved numerically. Both electrostatic and elecromagnetic waves with frequencies from below the ion gyrofrequency to above the electron gyrofrequency are studied for all angles of propagation. Modes occurring in a cold plasma as well as waves dependent on thermal effects are included. Dispersion surfaces, that is plots of frequency versus wavevector components, are presented for some models of space plasmas. Waves with frequencies of the order of the ion gyrofrequency (ion waves), are well known to exist in space plasmas. In this thesis, the generation of ion waves by ion distributions with loss-cones or temperature anisotropies, or by beams of charged particles, is investigated by numerical methods. Effects of heavy ions are considered. Dispersion surfaces and analytical arguments are used to clarify the results. It is shown that particle beams and ion loss-cone distributions can generate electrostatic ion waves, even when a significant amount of the electrons are cool. These calculations are in agreement with simultaneous observatons of waves and particles obtained by a satellite on auroral field lines. (author)
Active-passive waveguide array for wave excitation in plasmas
International Nuclear Information System (INIS)
Motley, R.W.; Hooke, W.M.
1979-11-01
A modified version of the standard waveguide grill for exciting lower hybrid plasma waves is proposed. This version should reduce both the number of RF drive components and the amplitude of the (undesirable) surface waves. Results from a simple 2-element array are presented
Plasma particle drifts due to traveling waves with cyclotron frequencies
International Nuclear Information System (INIS)
Hatakeyama, Rikizo; Sato, Naoyuki; Sato, Noriyoshi
1991-01-01
A particle orbit theory yields that traveling waves with cyclotron frequencies give rise to charged particle drifts perpendicular both to the wave propagation and external magnetic field lines. The result is applicable to particle-flux control of magnetized plasmas. (author)
Solitary electron density waves in a magnetized, plasma-loaded waveguide
International Nuclear Information System (INIS)
Lynov, J.-P.
1980-08-01
Investigations of two different types of nonlinear, solitary electron density waves in a magnetized, plasma-loaded waveguide are presented. One of the wavetypes is a localized, compressional pulse identified as a Trivelpiece-Gould soliton. The modification of this soliton by the resonant electrons is studied theoretically, by direct numerical solution of the model equation, experimentally, and by numerical simulation of the experiment. The other wave is a localized, rarefactive pulse called an electron hole. It is a positive pulse consisting of a large number of trapped electrons and is a purely kinetic phenomenon. A simple waterbag model for the electron hole is derived and compared with the results from the experiment and the numerical simulation. Finally, interactions between the solitary waves are investigated. (Auth.)
Nonlinear drift waves in a dusty plasma with sheared flows
Energy Technology Data Exchange (ETDEWEB)
Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV
2002-01-01
Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.
Nonlinear drift waves in a dusty plasma with sheared flows
International Nuclear Information System (INIS)
Vranjes, J.; Shukla, R.K.
2002-01-01
Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented
Nonlinear periodic space-charge waves in plasma
International Nuclear Information System (INIS)
Kovalev, V. A.
2009-01-01
A solution is obtained in the form of coupled nonlinear periodic space-charge waves propagating in a magnetoactive plasma. The wave spectrum in the vicinity of the critical point, where the number of harmonics increases substantially, is found to fall with harmonic number as ∝ s -1/3 . Periodic space-charge waves are invoked to explain the zebra pattern in the radio emission from solar flares.
Propagation of waves in a multicomponent plasma having charged ...
Indian Academy of Sciences (India)
Propagation of waves in a multicomponent plasma having charged dust particles has been investigated by various authors in recent times as the presence of charged dust grains give rise to a new kind of modes called dust modes and it has wide applications in magneto- sphere and space plasma [1–3]. In fact, Rao et al [4] ...
Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma
Czech Academy of Sciences Publication Activity Database
Martines, E.; Zuin, M.; Cavazzana, R.; Adámek, Jiří; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N.
2014-01-01
Roč. 21, č. 10 (2014), s. 102309-102309 ISSN 1070-664X Institutional support: RVO:61389021 Keywords : Drift waves * Magnetron sputtering plasma * Spatiotemporal synchronization Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://dx.doi.org/10.1063/1.4898693
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
International Nuclear Information System (INIS)
Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.
2011-01-01
In the cold-fluid dispersion relation ω=ω p /[1+(k perpendicular /k z ) 2 ] 1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k perpendicular /k z . As a result, for any frequency ω p , there are infinitely many degenerate waves, all having the same value of k perpendicular /k z . On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr=±(ω p 2 /ω 2 -1) 1/2 . Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.
Interaction of the electromagnetic waves and non-magnetized plasmas
International Nuclear Information System (INIS)
Sun Aiping; Qiu Xiaoming; Dong Yuying; Li Liqiong
2002-01-01
The propagation of electromagnetic waves with 0.5 - 10 GHz in a non-magnetized collisional plasma slab is studied numerically. The change in the absorbed power, reflected power and transmitted power of the electromagnetic wave with collisional frequency of electrons and neutral atoms in plasma from 0.1 - 10 GHz, is calculated, in the condition of the uniform plasma with density of 10 10 or 10 11 cm -3 and depth of 10 cm, and the non-uniform plasma with density distribution of n = n 0 exp[2(z/d-1)] and depth of 10 cm, respectively. The results show that the absorbed power in either uniform or non-uniform plasma is large when the plasma density is large and collision frequency is high, and the peak value is 90%
Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael
2011-02-01
In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
First results on dense plasma confinement at the multimirror open trap GOL-3-II
International Nuclear Information System (INIS)
Koidan, V.S.; Arzhannikov, A.V.; Astrelin, V.T.
2001-01-01
First results of experiments on plasma confinement in multimirror open trap GOL-3-II are presented. This facility is an open trap with total length of 17 m intended for confinement of a relatively dense (10 15 -10 17 cm -3 ) plasma in axially-symmetrical magnetic system. The plasma heating is provided by a high-power electron beam (1 MeV, 30 kA, 8 ms, 200 kJ). New phase of the experiments is aimed to confinement of high-β thermalized plasma. Two essential modifications of the facility have been done. First, plasma column was separated by vacuum sections from the beam accelerator and exit beam receiver. Second, the magnetic field on part of the solenoid was reconfigured into multimirror system with H max /H min ∼1.5 and 22 cm cell length. Results of the experiments at modified configuration of the device indicate that the confinement time of the plasma with n e ∼(0, 5/5)·10 15 cm -3 and T e ∼1 keV increases more than order of magnitude. (author)
About stability of levitating states of superconducting myxini of plasma traps-galateas
International Nuclear Information System (INIS)
Bishaev, A.M.; Bush, A.A.; Denis'uk, A.I.; D'yakonitsa, O.Y.; Kamentsev, K.Y.; Kozintseva, M.V.; Kolesnikova, T.G.; Shapovalov, M.M.; Voronchenko, S.A.; Gavrikov, M.B.; Savelyev, V.V.; Smirnov, P.G.
2015-01-01
To develop a plasma trap with levitating superconducting magnetic coils it is necessary to carry out the search of their stable levitating states. With this purpose, based upon the superconductor property to conserve the trapped magnetic flux, in the uniform gravitational field the analytical dependence of the potential energy of one or two superconducting rings, having trapped the given magnetic fluxes, in the field of the fixed ring with the constant current from the coordinates of the free rings and the deflection angle of their axes from the common axis of the magnetic system has been obtained in the thin ring approximation. Under magnetic fluxes of the same polarity in coils the existence of the found from the calculations equilibrium levitating states for the manufactured HTSC rings stable relative to the vertical shifts of levitating rings and to the deflection angle of their axes from the vertical has been confirmed experimentally
Ion temperature in plasmas with intrinsic Alfven waves
International Nuclear Information System (INIS)
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-01-01
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process
Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide
DEFF Research Database (Denmark)
Juul Rasmussen, Jens
1978-01-01
The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing...... the long-time slow modulation of the wave amplitude. From this equation the amplitude-dependent frequency and wavenumber shifts are calculated, and it is found that the electron waves with short wavelengths are modulationally unstable with respect to long-wavelength, low-frequency perturbations...
Wave propagation in a quasi-chemical equilibrium plasma
Fang, T.-M.; Baum, H. R.
1975-01-01
Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.
Modulation of Precipitation in the Olympic Mountains by Trapped Gravity Waves
Heymsfield, G. M.; Tian, L.; Grecu, M.; McLinden, M.; Li, L.
2017-12-01
Precipitation over the Olympic Mountains was studied intensely with multiple aircraft and ground-based measurements during the Olympic Mountains Experiment (OLYMPEX) during the fall-winter season 2015-2016 as part of validation for the Global Precipitation Mission (GPM) (Houze et al. 2017) and the Radar Definition Experiment (RADEX) supported by the Aerosol Chemistry, Ecosystem (ACE) NASA Decadal Mission. This presentation focuses on observations of a broad frontal cloud system with strong flow over the mountains on 5 December 2015. Unique observations of trapped waves were obtained with in the three Goddard Space Flight Center nadir-looking, X- through W-band, Doppler radars on the NASA high-altitude ER-2: the High-altitude Wind and Rain Airborne Profiler (HIWRAP) at Ku and Ka-band, the W-band Cloud Radar System (CRS), and the ER-2 X-band Radar (EXRAD). Analysis of the aircraft measurements showed the presence of deep, trapped gravity waves on a scale ranging from 10-25 km in the nadir-looking Doppler and reflectivity observations. These waves cause localized vertical up/down motions on the order of 1-2 ms-1 and they are superimposed on the widespread south-southwest flow over the Olympic Mountains. While much of this widespread flow over the mountains produces copious amounts of snowfall, the gravity waves play an important role in modulating this precipitation indirectly through microphysical processes in the ice region. We will describe analyses of the interactions between the air motions and precipitation structure for this case and other cases we observed similar waves. We will present preliminary results from precipitation retrievals based on optimal estimation (Grecu et al. 2011).
Variations of helicon wave induced radial plasma transport in different experimental conditions
International Nuclear Information System (INIS)
Petrzilka, V.
1993-08-01
Variations of the helicon wave induced radial plasma transport are presented in dependence on values of the plasma radius, magnetostatic field, plasma density, frequency of the helicon wave and on the ion charge. 22 refs., 14 figs
Energy Technology Data Exchange (ETDEWEB)
Dyavappa, B.M.; Datar, Durgesh; Prakash; Ananthamurthy, Sharath [Bangalore University, Department of Physics, Bangalore (India)
2017-12-15
A quadrupole Penning trap is used to confine electrons in weak magnetic fields. Perturbations due to space charge and imperfections in the trap geometry, as well as collisions with the background gas molecules, lead to loss of the electrons from the trap. We present in this work the results on measurements of the electron confinement time and its dependence on the magnetic field in a quadrupolar Penning trap. We describe a method to measure the confinement time of an electron cloud under weak magnetic fields (0.01 T - 0.1 T). This time is found to scale as τ ∝ B{sup 1.41} in variance with the theoretically expected confinement time that scales as τ ∝ B{sup 2} for trapped electrons that are lost through collisions with the neutrals present in the trap. A measurement of the expansion rate of the electron plasma in the trap through controlled variation of the trap voltage, yields expansion times that depend on the energy of escaping electrons. This is found to vary in our case in the scaling range B{sup 0.32} to B{sup 0.43}. Distorting the geometry of the trap, results in a marked change in the confinement time's dependence on the magnetic field. The results indicate that the confinement time of the electron cloud in the trap is limited by both, effects of collisions and perturbations that result in the plasma loss through expansion in the trap. (orig.)
In-tube shock wave driven by atmospheric millimeter-wave plasma
International Nuclear Information System (INIS)
Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Komurasaki, Kimiya
2009-01-01
A shock wave in a tube supported by atmospheric millimeter-wave plasma is discussed. After atmospheric breakdown, the shock wave supported by the millimeter wave propagates at a constant velocity in the tube. In this study, a driving model of the millimeter-wave shock wave is proposed. The model consists of a normal shock wave supported by a propagating heat-supply area in which an ionization front is located. The flow properties predicted by the model show good agreement with the measured properties of the shock wave generated in the tube using a 170 GHz millimeter wave beam. The shock propagation velocity U shock is identical to the propagation velocity of the ionization front U ioniz when U ioniz is supersonic. Then the pressure increment at the tube end is independent of the power density. (author)
International Nuclear Information System (INIS)
Sagdeev, R.Z.; Shapiro, V.D.; Shevchenko, V.I.
1980-01-01
An attempt is made to analyze two assumptions of the present theory of plasma turbulence, initiated by an electromagnetic wave, as applied to the problem of heating the plasma target. It has been assumed that in the long-scale region (the region of an electromagnetic wave source) and in the inertia range, separating the source region and the short-wave absorption region, there is a permanent pumping. The first assumption consists in simulating a situation in a plasma target when the Langmuir turbulence arises due to an electromagnetic wave incident on the target. The second assumption is valid only at a very high intensity of plasma waves when their energy is significantly less than the thermal energy of plasma W/nsub(c)T 0 is the frequency of an incident electromagnetic wave). At W approximately equal to nsub(c)T the plasma oscillations, arising due to modulation instability from the electromagnetic pumping wave, fall immediately into the absorption region. A phenomenological theory of such a turbulence, called ''superstrong'', is formulated on the assumption that there is a mechanism of ''mixing up'' plasmon phases as a result of their populating the long-wave density fluctuations
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.
2011-10-01
In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz /dr=±(ωp2/ω2-1)1/2. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.
LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS
Energy Technology Data Exchange (ETDEWEB)
Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Volokitin, A. S. [IZMIRAN, Troitsk, 142190, Moscow (Russian Federation); Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, 3A Av. de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France)
2015-08-20
Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.
International Nuclear Information System (INIS)
Erokhin, N.S.; Zol'nikova, N.N.; Kuznetsov, E.A.; Mikhajlovskaya, L.A.
2010-01-01
Based on numerical calculations considered the relativistic acceleration of charged particles in space plasma when surfing on the spatially localized package of electromagnetic waves. The problem is reduced to the study of unsteady, nonlinear equation for the wave phase at the carrier frequency at the location of the accelerated charge, which is solved numerically. We study the temporal dynamics of the relativistic factor, the component of momentum and velocity of the particle, its trajectory is given gyro-rotation in an external magnetic field after the departure of the effective potential well. Dependence of the dynamics of a particle interacting with the wave of the sign of the velocity of the charge along the wave front. We formulate the optimal conditions of the relativistic particle acceleration wave packet, indicate the possibility of again (after a number gyro-turnover) charge trapping wave with an additional relativistic acceleration.
Low-frequency waves in magnetized dusty plasmas revisited
International Nuclear Information System (INIS)
Salimullah, M.; Khan, M.I.; Amin, R.; Nitta, H.; Shukla, P.K.
2005-10-01
The general dispersion relation of any wave is examined for low-frequency waves in a homogeneous dusty plasma in the presence of an external magnetic field. The low-frequency parallel electromagnetic wave propagates as a dust cyclotron wave or a whistler in the frequency range below the ion cyclotron frequency. In the same frequency regime, the transverse electromagnetic magnetosonic wave is modified with a cutoff frequency at the dust-ion lower-hybrid frequency, which reduces to the usual magnetosonic wave in absence of the dust. Electrostatic dust-lower- hybrid mode is also recovered propagating nearly perpendicular to the magnetic field with finite ion temperature and cold dust particles which for strong ion-Larmor radius effect reduces to the usual dust-acoustic wave driven by the ion pressure. (author)
Parametric wave penetration through an overdense plasma layer
International Nuclear Information System (INIS)
Gradov, O.M.; Suender, D.
1981-01-01
The nonlinear penetration of an electromagnetic wave through an overdense plasma layer due to the excitation of parametric instabilities is studied. The quasistatic h.f. surface wave and the ion-acoustic wave, both parametrically growing, generate a nonlinear current which also exist beyound the linear skin length of the incident electromagnetic wave. This current leads to an exponential amplification of the electromagnetic wave amplitude in the layer. The growth rate of this process depends on the overthreshold value of the external wave intensity and the thickness of the layer. The saturation level of the transmitted wave amplitude is estimated for the case, when the instabilities are stabilized by generation of ion-acoustic harmonics. (author)
International Nuclear Information System (INIS)
Dum, C.T.
1990-01-01
The electron beam-plasma instability is analyzed in particle simulation experiments, starting with a beam of small velocity spread. The dispersion relation is solved for snapshots of the actual evolving electron distribution function, rather than for the usual models consisting of Maxwellians. As the beam broadens, the analysis shows a transition from reactive beam modes, with frequencies extending much below the plasma frequency ω e , to kinetic instability of Langmuir waves, ω∼ω e , which is in agreement with the frequencies and growth rates observed in the simulation. Beam evolution is also in agreement with quasi-linear theory, except at the end of the reactive phase when trapping of beam electrons is seen. Although the spectrum temporarily narrows at this stage, there are, in contrast to previous simulations, still many modes present. the system then can proceed to a kinetic phase in which quasi-linear theory is again applicable. This stage is identical with the evolution starting from a gentle broad beam, except that wave levels are several times higher. With higher wave levels, mode coupling effects are also more prominent, but are still unable to prevent plateau formation. In contrast to the Langmuir wave regime, the reactive broadband wave regime lasts only for a relatively short period. In the electron foreshock it could only persist if a narrow beam or a sharp cutoff feature were maintained by continued beam injection and the time-of-flight mechanism
Saturation of Langmuir waves in laser-produced plasmas
International Nuclear Information System (INIS)
Baker, K.L.
1996-04-01
This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser
Indian Academy of Sciences (India)
of charged particles in electromagnetic fields. The linear and nonlinear collective modes in electron-positron plasma have been investigated theoretically [3–6]. Recently, Oohara and Hatakeyama [7] have developed a novel method for generating a pair plasma con- sisting of only negative and positive ions with equal mass ...
International Nuclear Information System (INIS)
Dini, F.; Khorasani, S.
2007-01-01
Configuration of Tokamak plasma has a dominant effect on its parameters. In the calculation of transport, there are some transport coefficients and quantities, where the knowledge of their precise values, according to the system of equations, is essential to be realized. Tokamak has a toroidal configuration, in addition to classical effects, it is necessary to study the neoclassical effects due to the field curvature. The trapped particles in strong electromagnetic fields oscillate on banana-shaped orbits which in turn affect many other collisional transport parameters. Here, a precise estimation of trapped particles based on the standard equilibrium model for an elliptical shape of Tokamak plasma has been carried out using Lin-Liu model. It should be added that in this calculation, the profile of the averaged magnetic field on the flux surfaces has been derived using analytical integration and consideration of an elliptic shape for ellipticity function in the limit of large aspect ratio and zero shift of magnetic flux surfaces. Having the fraction of the trapped particles, by ,following the formulation and using an appropriate model in various collisional regimes, the neoclassical conductivity of plasma in Damavand Tokamak is obtained and the respective variations have been found. The presented results can exploit the computation of transport and other quantities of Damavand Tokamak
Resonant magnetohydrodynamic waves in high-beta plasmas
International Nuclear Information System (INIS)
Ruderman, M. S.
2009-01-01
When a global magnetohydrodynamic (MHD) wave propagates in a weakly dissipative inhomogeneous plasma, the resonant interaction of this wave with either local Alfven or slow MHD waves is possible. This interaction occurs at the resonant position where the phase velocity of the global wave coincides with the phase velocity of either Alfven or slow MHD waves. As a result of this interaction a dissipative layer embracing the resonant position is formed, its thickness being proportional to R -1/3 , where R>>1 is the Reynolds number. The wave motion in the resonant layer is characterized by large amplitudes and large gradients. The presence of large gradients causes strong dissipation of the global wave even in very weakly dissipative plasmas. Very often the global wave motion is characterized by the presence of both Alfven and slow resonances. In plasmas with small or moderate plasma beta β, the resonance positions corresponding to the Alfven and slow resonances are well separated, so that the wave motion in the Alfven and slow dissipative layers embracing the Alfven and slow resonant positions, respectively, can be studied separately. However, when β > or approx. R 1/3 , the two resonance positions are so close that the two dissipative layers overlap. In this case, instead of two dissipative layers, there is one mixed Alfven-slow dissipative layer. In this paper the wave motion in such a mixed dissipative layer is studied. It is shown that this motion is a linear superposition of two motions, one corresponding to the Alfven and the other to the slow dissipative layer. The jump of normal velocity across the mixed dissipative layer related to the energy dissipation rate is equal to the sum of two jumps, one that occurs across the Alfven dissipative layer and the other across the slow dissipative layer.
Guided propagation of Alfven waves in a toroidal plasma
International Nuclear Information System (INIS)
Borg, G.G.; Brennan, M.H.; Cross, R.C.; Giannone, L.; Donnelly, I.J.
1985-01-01
Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed. (author)
Guided propagation of Alfven waves in a toroidal plasma
Energy Technology Data Exchange (ETDEWEB)
Borg, G G; Brennan, M H; Cross, R C; Giannone, L.; Donnelly, I J
1985-10-01
Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed.
Self-reflection of intense electromagnetic waves in plasmas
Energy Technology Data Exchange (ETDEWEB)
Tewari, D P; Kumar, A; Sharma, J K [Indian Inst. of Tech., New Delhi. Dept. of Physics
1977-10-01
A uniform electromagnetic wave of high power density, propagating in a collisional plasma gives rise to a modification in temperature-dependent collision frequency and in turn induces a gradient in the complex refractive index of the medium. A WKB solution of the problem predicts a backward propagating wave on account of the self-induced inhomogeneity. The amplitude of the backward (i.e. reflected) wave increases with increasing power density of the wave. This is a volume nonlinear effect and is appreciable for usually employed power densities.
Energy Technology Data Exchange (ETDEWEB)
Erokhin, A. N., E-mail: nerokhin@mx.iki.rssi.ru [People’s Friendship University of Russia (Russian Federation); Zol’nikova, N. N. [Russian Academy of Sciences, Space Research Institute (Russian Federation); Erokhin, N. S. [People’s Friendship University of Russia (Russian Federation)
2016-01-15
Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g{sub y}(0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g{sub y}(0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.
International Nuclear Information System (INIS)
Erokhin, A. N.; Zol’nikova, N. N.; Erokhin, N. S.
2016-01-01
Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g y (0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g y (0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones
Stimulated brillouin scattering of electromagnetic waves in a dusty plasma
International Nuclear Information System (INIS)
Salimullah, M.; Sen, A.
1991-08-01
The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs
Parametric decay of an extraordinary electromagnetic wave in relativistic plasma
Energy Technology Data Exchange (ETDEWEB)
Dorofeenko, V. G. [Institute for Advanced Studies (Austria); Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Peoples’ Friendship University of Russia (Russian Federation)
2015-03-15
Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.
Arbitrary electron acoustic waves in degenerate dense plasmas
Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.
2017-05-01
A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.
Nonlinear nonresonant forces by radio-frequency waves in plasmas
International Nuclear Information System (INIS)
Gao Zhe; Fisch, Nathaniel J.; Qin, Hong; Myra, J. R.
2007-01-01
Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc magnetic field, the force arises from the gradient of the ponderomotive potential. Only when the dc magnetic field is straight, however, is this parallel force completely consistent with that from the single particle picture, where the ponderomotive force depends on the gradients of rf fields only. Across the dc magnetic field, besides the ponderomotive force from the particle picture, additional Reynolds stress and polarization stress contribute to the total force. For waves with frequency much lower than the cyclotron frequency, the perpendicular forces from the particle and fluid pictures can have opposite signs. In plasmas with a symmetry angle (e.g., toroidal systems), nonresonant forces cannot drive net flow or current in the flux surface, but the radial force may influence macroscopic behavior of plasma. Moreover, nonresonant forces may drive flow or current in linear plasmas or in a localized region of toroidal plasmas
Axial motion of collector plasma in a relativistic backward wave oscillator
Energy Technology Data Exchange (ETDEWEB)
Xiao, Renzhen; Chen, Changhua; Deng, Yuqun; Cao, Yibing; Sun, Jun; Li, Jiawei [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)
2016-06-15
In this paper, it is proposed that plasma formed at the collector may drift back to the cathode and cause pulse shortening of the relativistic backward wave oscillator. Theoretical analysis shows that the axial drift velocity of plasma ions can be up to 5 mm/ns due to the presence of space charge potential provided by an intense relativistic electron beam. Particle-in-cell simulations indicate that the plasma electrons are initially trapped around the collector surface. With the accumulation of the plasma ions, a large electrostatic field forms and drives the plasma electrons to overcome the space charge potential and enter the beam-wave interaction region along the magnetic field lines. As a result, the beam current modulation is disturbed and the output microwave power falls rapidly. The plasma ions move in the beam-wave interaction region with an average axial velocity of 5–8 mm/ns. After the plasma ions reach the diode region, the emitted current at the cathode rises due to the charge neutralizations by the ions. The impedance collapse leads to further decrease of the microwave power. In experiments, when the diode voltage and beam current were 850 kV and 9.2 kA, and the collector radius was 2.15 cm, the output microwave power was 2.4 GW with a pulse width of less than 20 ns. The ion drift velocity was estimated to be about 5 mm/ns. After an improved collector with 3.35 cm radius was adopted, the pulse width was prolonged to more than 30 ns.
Direct excitation of a high frequency wave by a low frequency wave in a plasma
International Nuclear Information System (INIS)
Tanaka, Takayasu
1993-01-01
A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)
Introduction to wave heating and current drive in magnetized plasmas
International Nuclear Information System (INIS)
Pinsker, R. I.
2001-01-01
The development of high-power wave heating and current drive in magnetized plasmas in the last 40 years is a major ongoing success story in plasma science. A hallmark of this area of research has been the detailed quantitative comparison of theory and experiment; the good agreement consistently found is indicative of the robustness and the predictive power of the underlying theory. This tutorial paper is a brief overview of the fundamental concepts and applications of this branch of plasma science. Most of the high-power applications have been in three frequency regimes: the ion cyclotron range of frequencies (ICRF), the lower hybrid range of frequencies (LHRF), and the electron cyclotron range of frequencies (ECRF). The basic physics of wave propagation and damping in these regimes is briefly discussed. Some of the coupling structures (antennas) used to excite the waves at the plasma boundary are described, and the high-power systems used to generate the wave energy are touched on. Representative examples of the remarkably wide range of applications of high-power wave heating and current drive in high-temperature fusion plasmas will be discussed
Plasma characterization using terahertz-wave-enhanced fluorescence
International Nuclear Information System (INIS)
Liu Jingle; Zhang, X.-C.
2010-01-01
We demonstrate that the terahertz-wave-enhanced fluorescence emission from excited atoms or molecules can be employed in the characterization of laser-induced gas plasmas. The electron relaxation time and plasma density were deduced through applying the electron impact excitation/ionization and electron-ion recombination processes to the measured time-dependent enhanced fluorescence. The electron collision dynamics of nitrogen plasma excited at different gas pressures and laser pulse energies have been systematically investigated. This plasma characterization method provides picosecond temporal resolution and enables omnidirectional optical signal collection.
Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai
2016-01-01
Energetic fluctuations with periods of 9–14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography. PMID:27075644
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.
Nonlinear instability and chaos in plasma wave-wave interactions
International Nuclear Information System (INIS)
Kueny, C.S.
1993-01-01
Conventional linear stability analysis may fail for fluid systems with an indefinite free energy functional. When such a system is linearly stable, it is said to possess negative energy modes. Instability may then occur either via dissipation of the negative energy modes. Instability may then occur either via dissipation of the negative energy modes. Instability may then occur either via dissipitation of the negative energy modes, or nonlinearly via resonant wave-wave coupling, which leads to explosive growth. In the dissipationaless case, it is conjectured that intrinsic chaotic behavior may allow initially non-resonant systems to reach resonance by diffusion in phase space. This is illustrated for a simple equilibrium involving cold counter-streaming ions. The system is described in the fluid approximation by a Hamilitonian functional and associated noncanonical Poisson bracket. By Fourier decomposition and appropriate coordinate transformations, the Hamilitonian for the perturbed energy is expressed in action-angle form. The normal modes correspond to Doppler-shifted ion-acoustic waves of positive and negative energy. Nonlinear coupling leads to decay instability via two-wave interactions, which occur generically for long enough wavelengths. Three-wave interactions which occur in isolated, but numerous, regions of parameter space can drive either decay instability or explosive instability. When the resonance for explosive growth is detuned, a stable region exists around the equilibrium point in phase space, while explosive growth occurs outside of a separatrix. These interactions may be described exactly if only one resonance is considered, while multiple nonlinear terms make the Hamiltonian nonintegradable. Simple Hamiltonians of two and three degrees of freedom are studied numerically using symplectic integration algorithms, including an explicit algorithm derived using Lie algebraic methods
Agapitov, O. V.; Mourenas, D.; Artemyev, A.; Krasnoselskikh, V.
2014-12-01
The evolution of fluxes of energetic trapped electrons as a function of geomagnetic activity is investigated using brand new statistical models of chorus waves derived from Cluster observations in the radiation belts. The new wave models provide the distributions of wave power and wave-normal angle with latitude as a function of either Dst or Kp indices. Lifetimes and energization of energetic electrons are examined, as well as the relevant uncertainties related to some of the wave models implicit assumptions.From the presented results, different implications concerning the characterization of relativistic flux enhancements and losses are provided.
Properties of waves in an ion-beam plasma system
International Nuclear Information System (INIS)
Zank, G.P.; McKenzie, J.F.
1988-01-01
A multi-fluid approach is used to describe electrostatic interactions in an ion-beam plasma system. The structure of the wave equation governing the system exhibits the anisotropic and dispersive nature of the waves, whose properties are analysed in terms of the dispersion relation. The main purpose is to classify the different waves that can arise in an ion-beam plasma system in a systematic fashion. The classification is facilitated by introducing a three-parameter CMA diagram that illustrates the topological changes in not only the wavenumber, or refractive-index, surface but also the ray-velocity surface. Furthermore, an analytic expression governing wave amplification in an ion beam plasma is incorporated within the framework of a generalized CMA diagram. Such a description provides a simple interpretation for the onset of wave amplification in terms of a topological change in the refractive-index surface. It is hoped that by collating the wave properties in a unified form, many of the complicated wave features observed in an experiment may be interpreted more easily. (author)
Convective excitation of quasistatic waves in an inhomogeneous anisothermic plasma. II
International Nuclear Information System (INIS)
Jungwirth, K.; Sizonenko, V.L.
1977-01-01
Nonlinear effects stabilizing the convective instabilities excited in an anisothermic plasma (Tsub(e)>>Tsub(i)) at the plasma boundary (a >ωsub(Bi)) saturate at first. Being excited by a small part of slow plasma electrons (vsub(z)<< vsub(Te)) only, they saturate at a relatively low level. Further, surface waves with lower frequencies and higher phase velocities (vsub(ph)=ω/ksub(z)) become dominant and a broadening of the plasma boundary occurs. For their saturation nonlinear interaction is more important than the quasilinear effects. During the time interval of several ωsub(Bi)sup(-1) the longest surface waves with ksub(y) approximately ωsub(Bi)/Vsub(s), γ approximately ω approximately ωsub(Bi) approximately ksub(y)Vsub(s) and vsub(ph) approximately vsub(Te) saturate at the absolutely highest level. The plasma boundary broadens in the meanwhile up to a approximately Vsub(s)/ωsub(Bi). The wave energy is comparable to the total energy connected with the longitudinal motion of the initially thermal electrons inside this boundary layer. The wave amplitude is large enough to trap the initially cold ions belonging to this layer and 'heat' them up to energies comparable to those of the electron component. The heating process again occurs within several ωsub(Bi)sup(-1) and the Larmor radius of the ions is then comparable to Vsub(s)/ωsub(Bi). Further evolution of the system is governed by the unstable local perturbations. (author)
Ion-acoustic cnoidal waves in a quantum plasma
International Nuclear Information System (INIS)
Mahmood, S.; Haas, F.
2014-01-01
Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H e which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented
Charged particle and photon acceleration by wakefield plasma waves in non-uniform plasmas
International Nuclear Information System (INIS)
Bulanov, S.V.; Kirsanov, V.I.; Sakharov, A.S.; Pegoraro, F.
1993-01-01
We discuss the acceleration of charged particles and the upshift of the frequency of short wave packets of laser radiation. The acceleration and the upshift are caused by wake plasma waves excited by a strong laser pulse in a non-uniform plasma. We show that unlimited acceleration of charged particles is possible for specific spatial dependencies of the plasma density. In this unlimited acceleration regime, particles have a fixed phase relationship with respect to the plasma wave, while their energy increases with time. When the wave breaking limit is approached and surpassed, the efficiency of the acceleration of the charged particles and of the frequency upshift of the photons can be increased significantly. (author) 3 refs
Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions
Energy Technology Data Exchange (ETDEWEB)
Galvao, R. A.; Ziebell, L. F. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP: 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354-Campus UFPel, CEP: 96010-900 Pelotas, Rio Grande do Sul (Brazil); Juli, M. C. de [Centro de Radio-Astronomia e Astrofisica Mackenzie-CRAAM, Universidade Presbiteriana Mackenzie, Rua da Consolacao 896, CEP: 01302-907 Sao Paulo, Sao Paulo (Brazil)
2012-12-15
We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.
Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma
Energy Technology Data Exchange (ETDEWEB)
Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N. [Consorzio RFX, Padova (Italy); Adámek, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic)
2014-10-15
A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.
Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma
International Nuclear Information System (INIS)
Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N.; Adámek, J.
2014-01-01
A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved
Oscillations in sunspot umbras due to trapped Alfven waves excited by overstability
International Nuclear Information System (INIS)
Uchida, Yutaka; Sakurai, Takashi.
1975-01-01
Oscillations observed in sunspot umbras are interpreted as a vertical motion in the atmosphere induced by a standing Alfven wave trapped in the region between the overstable layer under the photosphere and the chromosphere-corona transition layer. The Alfven wave motion is considered to be excited by the overstable convection occurring at the bottom of the abovementioned oscillating layer, and waves with special frequencies are selected as eigen-mode waves standing in the ''cavity,'' while other waves which are out of phase with themselves after reflections will disappear. It is shown by solving the eigen-value problem that the fundamental eigen frequency falls in a range around 0.04 rad s -1 (corresponding to 140-180 s) for the condition in the umbra of a typical spot, and also that the eigen frequencies do not depend greatly on the circumstantial physical or geometric parameters of the model atmosphere, such as the temperature in the layer, or the height of the transition layer, etc. The eigen frequencies, however, depend on the Alfven velocity at the base of the oscillating layer (or at the top of the overstable layer), but the latter quantity, which represents the stiffness of the magnetic tube of force against the overturning motion, takes roughly a common value for different sunspots according to SAVAGE's (1969) stability analysis of the umbral atmosphere against thermal convection, and thus gives a comparatively narrow range of resonant frequencies. In addition to the selection mechanism for oscillations of 140-180-s period, some other aspects of the oscillation, such as the relation to the running penumbral waves, are discussed. (auth.)
International Nuclear Information System (INIS)
Ferreira, J.L.; Ludwig, G.O.; Del Bosco, E.
1982-01-01
This work describes some experiments done at the Plasma Physics Laboratory at INPE. In the first part, the double plasma machine used for the study of ion acoustic wave propagation is described, and the results obtained so far are shown. The second part consists in the description of a plasma centrifuge project. It contains some basic parameters of our apparatus used for isotope separation, throuth electromagtnetic rotation of the plasma. (Author) [pt
Dynamics of small dust clouds trapped in a magnetized anodic plasma
International Nuclear Information System (INIS)
Pilch, Iris; Piel, Alexander; Trottenberg, Thomas; Koepke, Mark E.
2007-01-01
Small dust clouds, which are confined in an anodic plasma, are studied with respect to their structure and their response to modulation of the anode bias. The dust cloud is displaced from the center of the discharge by a process similar to the void mechanism in radio-frequency discharges under microgravity. The top layers of the dust cloud are in a crystalline state and the cloud performs a slow rotation about the magnetic field direction. For modulation frequencies below 15 Hz, a sloshing and stretching motion in the confining potential well is found. Spontaneously excited dust density waves are observed when the dust cloud exceeds a minimum size. The waves are characterized by sickle-shaped wave fronts. No standing waves were found. The wave dispersion shows an influence of the boundedness of the system in terms of a frequency cutoff
Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation
International Nuclear Information System (INIS)
Lee, M.C.; Kuo, S.P.
1990-01-01
Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed
Measurement of the development and evolution of shock waves in a laser-induced gas breakdown plasma
International Nuclear Information System (INIS)
Chu, T.K.; Johnson, L.C.
1975-01-01
Space- and time-resolved interferometric measurements of electron density in CO 2 -laser produced plasmas in helium or hydrogen are made near the laser focal spot. Immediately after breakdown, a rapidly growing region of approximately uniform plasma density appears at the focal spot. After a few tens of nanoseconds, shock waves are formed, propagating both transverse and parallel to the incident laser beam direction. Behind the transverse propagating shock is an on-axis density minimum, which results in laser-beam self-trapping. The shock wave propagating toward the focusing lens effectively shields the interior plasma from the incident beam because the lower plasma temperature and higher plasma density in the shock allow strong absorption of the incident beam energy. By arranging the laser radiation-plasma interaction to begin at a plasma-vacuum interface at the exit of a free-expansion jet, this backward propagating shock wave is eliminated, thus permitting efficient energy deposition in the plasma interior
Dispersion equations for field-aligned cyclotron waves in axisymmetric magnetospheric plasmas
Directory of Open Access Journals (Sweden)
N. I. Grishanov
2006-03-01
Full Text Available In this paper, we derive the dispersion equations for field-aligned cyclotron waves in two-dimensional (2-D magnetospheric plasmas with anisotropic temperature. Two magnetic field configurations are considered with dipole and circular magnetic field lines. The main contribution of the trapped particles to the transverse dielectric permittivity is estimated by solving the linearized Vlasov equation for their perturbed distribution functions, accounting for the cyclotron and bounce resonances, neglecting the drift effects, and assuming the weak connection of the left-hand and right-hand polarized waves. Both the bi-Maxwellian and bi-Lorentzian distribution functions are considered to model the ring current ions and electrons in the dipole magnetosphere. A numerical code has been developed to analyze the dispersion characteristics of electromagnetic ion-cyclotron waves in an electron-proton magnetospheric plasma with circular magnetic field lines, assuming that the steady-state distribution function of the energetic protons is bi-Maxwellian. As in the uniform magnetic field case, the growth rate of the proton-cyclotron instability (PCI in the 2-D magnetospheric plasmas is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. We demonstrate that the PCI growth rate in the 2-D axisymmetric plasmasphere can be significantly smaller than that for the straight magnetic field case with the same macroscopic bulk parameters.
Kinetic Simulations of the Self-Focusing and Dissipation of Finite-Width Electron Plasma Waves
Energy Technology Data Exchange (ETDEWEB)
Winjum, B. J. [Univ. of California, Los Angeles, CA (United States); Berger, R. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapman, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Banks, J. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunner, S. [Federal Inst. of Technology, Lausanne (Switzerland)
2013-09-01
Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Δm relative to the initial width Δ0 and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability γ_{TPMI} divided by the loss rate of field energy ν_{E} to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing γ_{TPMI}/ν_{E}~1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)].
Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs
Directory of Open Access Journals (Sweden)
Zhi-Bin Wang
2016-05-01
Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.
Full-wave solution of short impulses in inhomogeneous plasma
International Nuclear Information System (INIS)
Ferencz, Orsolya E.
2005-01-01
In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation. (author)
Transverse MHD shock waves in a partly ionized plasma
International Nuclear Information System (INIS)
Mathers, C.D.
1980-01-01
The structure of transverse MHD shock waves in a partly ionized hydrogen plasma is studied using a three-fluid model with collisional transport coefficients. The morphology of the various sublayers in the shock front is analyzed in detail and it is shown that strong shock waves have a characteristic viscous structure. Weak to moderate strength shock waves display a resistive structure in which the enhanced transverse resistivity due to ion-slip plays a significant role, leading to a pronounced peak in the ion temperature profile. Calculated shock structure profiles are also compared with experimental temperature data. Results in the form of tables and figures are presented for shock waves with fast Mach number ranging from 1-10 in hydrogen plasma with initial degree of ionization ranging from 5-100%. (author)
SOLAR WIND STRAHL BROADENING BY SELF-GENERATED PLASMA WAVES
Energy Technology Data Exchange (ETDEWEB)
Pavan, J.; Gaelzer, R. [UFPEL, Pelotas (Brazil); Vinas, A. F. [NASA GSFC, Greenbelt, MD 20771 (United States); Yoon, P. H. [IPST, UMD, College Park, MD (United States); Ziebell, L. F., E-mail: joel.pavan@ufpel.edu.br, E-mail: rudi@ufpel.edu.br, E-mail: adolfo.vinas@nasa.gov, E-mail: yoonp@umd.edu, E-mail: luiz.ziebell@ufrgs.br [UFRGS, Porto Alegre (Brazil)
2013-06-01
This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.
Theory for beam-plasma millimeter-wave radiation source experiments
International Nuclear Information System (INIS)
Rosenberg, M.; Krall, N.A.
1989-01-01
This paper reports on theoretical studies for millimeter-wave plasma source experiments. In the device, millimeter-wave radiation is generated in a plasma-filled waveguide driven by counter-streaming electron beams. The beams excite electron plasma waves which couple to produce radiation at twice the plasma frequency. Physics topics relevant to the high electron beam current regime are discussed
MHD waves, reconnection, and plasma transport at the dayside magnetopause
International Nuclear Information System (INIS)
Johnson, J.R.; Cheng, C.Z.
1996-01-01
The magnetic field of the Earth creates a huge cavity in the solar wind known as the magnetosphere. The transition region between the solar wind plasma and magnetosphere plasma is of substantial interest because many magnetospheric processes are governed by the transport of particles, momentum and energy across that boundary. At this boundary, the magnetopause, there is an abrupt decrease in plasma bulk flow, density and pressure, and large increase in temperature and magnetic field. Throughout this region the plasmas is large. Large amplitude compressional waves are nearly always found in the region just outside of the magnetopause. These waves are either intrinsic solar wind fluctuations or they may be global mirror modes which are generated in a localized region of large pressure anisotropy just outside the magnetopause. The substantial background gradients observed at the magnetopause strongly couple the compressional waves with kinetic Alfven waves near the Alfven resonance location, leading to substantial particle transport. Moreover, for a sheared background magnetic field, as is found at times of southward interplanetary magnetic field, the mode converted kinetic Alfven waves can propagate to the location where k parallel = 0 and generate islands in phase space. We present a solution of the kinetic-MHD wave equations for the magnetic field structure based on a realistic steady state profile which includes: a sheared magnetic field; magnetic curvature; and gradients in the background density, pressure and magnetic field. We incorporate wave-particle resonance interactions for electrons and ions to obtain the dissipation. The background magnetic Keld curvature and gradient give rise to drifts which alter the resonance condition for the various particle species (ω - k circ V d - k parallel v parallel ) and reduces the Landau damping of the kinetic Alfven wave, allowing it to propagate to the k parallel = 0 location
On the rogue wave propagation in ion pair superthermal plasma
Energy Technology Data Exchange (ETDEWEB)
Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A. [Physics Department, College of Sciences and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K., E-mail: emadshewy@yahoo.com; Elwakil, S. A. [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt)
2016-02-15
Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.
Subcritical collisionless shock waves. [in earth space plasma
Mellott, M. M.
1985-01-01
The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.
Measurements of beat wave accelerated electrons in a toroidal plasma
International Nuclear Information System (INIS)
Rogers, J.H.
1992-06-01
Electrons are accelerated by large amplitude electron plasma waves driven by counter-propagating microwaves with a difference frequency approximately equal to the electron plasma frequency. Energetic electrons are observed only when the phase velocity of the wave is in the range 3v e ph e (v ph was varied 2v e ph e ), where v e is the electron thermal velocity, (kT e /m e ) 1/2 . As the phase velocity increases, fewer electrons are accelerated to higher velocities. The measured current contained in these accelerated electrons has the power dependence predicted by theory, but the magnitude is lower than predicted
Langmuir wave dispersion relation in non-Maxwellian plasmas
International Nuclear Information System (INIS)
Ouazene, M.; Annou, R.
2010-01-01
The Langmuir wave dispersion relation is derived in partially ionized plasmas, where free electrons are confined to move in a nearest neighbor ions' potential well. The equilibrium velocity distribution function experiences then, a departure from Maxwell distribution function. The effect of the non-Maxwellian character of the distribution function on the Langmuir phase and group velocities as well as the phase matching conditions and the nonlinear growth rate of decay instability is investigated. The proposed Langmuir wave dispersion relation is relevant to dense and cryogenic plasmas.
Nonlinear Electron Acoustic Waves in Dissipative Plasma with Superthermal Electrons
El-Hanbaly, A. M.; El-Shewy, E. K.; Kassem, A. I.; Darweesh, H. F.
2016-01-01
The nonlinear properties of small amplitude electron-acoustic ( EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and superthermal hot electrons obeying superthermal distribution, and stationary ions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili-Burgers (KP-Brugers) equation. Some solutions of physical interest are obtained. These solutions are related to soliton, monotonic and oscillatory shock waves and their behaviour are shown graphically. The formation of these solutions depends crucially on the value of the Burgers term and the plasma parameters as well. By using the tangent hyperbolic (tanh) method, another interesting type of solution which is a combination between shock and soliton waves is obtained. The topology of phase portrait and potential diagram of the KP-Brugers equation is investigated.The advantage of using this method is that one can predict different classes of the travelling wave solutions according to different phase orbits. The obtained results may be helpful in better understanding of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.
Stable confinement of toroidal electron plasma in an internal conductor device Prototype-Ring Trap
International Nuclear Information System (INIS)
Saitoh, H.; Yoshida, Z.; Watanabe, S.
2005-01-01
A pure electron plasma has been produced in an internal conductor device Prototype-Ring Trap (Proto-RT). The temporal evolution of the electron plasma was investigated by the measurement of electrostatic fluctuations. Stable confinement was realized when the potential profile adjusted to match the magnetic surfaces. The confinement time varies as a function of the magnetic field strength and the neutral gas pressure, and is comparable to the diffusion time of electrons determined by the classical collisions with neutral gas. Although the addition of a toroidal magnetic field stabilized the electrostatic fluctuation of the plasma, the effects of the magnetic shear shortened the stable confinement time, possibly because of the obstacles of coil support structures
Negative ion surface plasma source development for plasma trap injectors in Novosibirsk
International Nuclear Information System (INIS)
Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.; Kupriyanov, A.S.
1989-01-01
Work on high-current ion sources carried out at the Novosibirsk Institute of Nuclear Physics (INP) is presented. The INP investigations on ''pure plasma'' planotron and ''pure surface'' secondary emission systems of H - generation, which preceded the surface-plasma concept developed in Novosibirsk, are described. The physical basis of the surface-plasma method of negative-ion production is considered. The versions and operating characteristics of different surface-plasma sources including the multi-ampere (approx-gt 10A) source are discussed. Research on efficient large-area (∼10 2 cm 2 ) negative ion surface-plasma emitters is described. The INP long-pulse multiaperture surface- plasma generators, with a current of about 1A, are described. 38 refs., 17 figs
Energy Technology Data Exchange (ETDEWEB)
Andreev, V. V., E-mail: temple18@mail.ru; Novitsky, A. A.; Vinnichenko, L. A.; Umnov, A. M.; Ndong, D. O. [Peoples’ Friendship University of Russia (Russian Federation)
2016-03-15
The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.
Experimental measurements of Helicon wave coupling in KSTAR plasmas
Energy Technology Data Exchange (ETDEWEB)
Kim, H. J.; Wi, H. H.; Wang, S. J.; Park, S. Y.; Jeong, J. H.; Han, J. W.; Kwak, J. G.; Oh, Y. K. [National Fusion Research Institute, Daejeon (Korea, Republic of); Chun, M. H.; Yu, I. H. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)
2016-05-15
KSTAR tokamak can be a good platform to test this current drive concept because it has adequate machine parameters. Furthermore, KSTAR will have high electron beta plasmas in near future with additional ECH power. In 2015 KSTAR experiments, low-power traveling wave antenna has been designed, fabricated and installed for helicon wave coupling tests in KSTAT plasmas. In 2016 KSTAR campaign, 200 kW klystron power will be combined using three coaxial hybrid couplers and three dummy loads. High power RF will be fed into the traveling wave antenna with two coaxial feeders through two dual disk windows and 6 inch coaxial transmission line system. Current status and plan for high power helicon wave current drive system in KSTAR will be presented. Mock-up TWA antenna installed at the KSTAR reveals high couplings in both L- and H-mode plasmas. The coupling can be easily controlled by radial outer gap without degradation of plasma confinement or local gas puffing with slight decrease of plasma confinement.
Harmonic emission due to the nonlinear coupling of a Gaussian laser and a plasma wave
Energy Technology Data Exchange (ETDEWEB)
Pathak, R; Jain, R K [Department of Mathematics, SSL Jain College, Vidisha, MP, 464001 (India); Parashar, J [Department of Physics, Samrat Ashok Technological Institute, Vidisha, MP, 464001 (India)
2010-04-15
A high-power Gaussian laser propagating through a plasma couples with a large-amplitude plasma wave and undergoes scattering to produce harmonics. The process is sensitive to the phase matching angle between the laser and plasma wave numbers and the plasma wave frequency. For larger harmonics, the phase matching angle is high. The efficiency of the process is comparatively high at higher plasma wave frequencies.
Plasma Sprayed Coatings for RF Wave Absorption
Czech Academy of Sciences Publication Activity Database
Nanobashvili, S.; Matějíček, Jiří; Žáček, František; Stöckel, Jan; Chráska, Pavel; Brožek, Vlastimil
307-311, - (2002), s. 1334-1338 ISSN 0022-3115 Grant - others: COST (XE) Euratom DV4/04(TWO) Institutional research plan: CEZ:AV0Z2043910 Keywords : boron carbide, thermal spray coatings, fusion materials, RF wave absorption Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.730, year: 2002
Linear waves in a resistive plasma with Hall current
International Nuclear Information System (INIS)
Almaguer, J.A.
1992-01-01
Dispersion relations for the case of a magnetized plasma are determined taking into account the Hall current and a constant resistivity, η, in Ohm's law. It is found that the Hall effect is relevant only for parallel (to the equilibrium magnetic field) wave numbers in the case of uniform plasmas, giving place to a dispersive behavior. In particular, the cases of η→0 and small (nonzero) resistivity are discussed
Nonlinear propagation of Alfven waves in cometary plasmas
International Nuclear Information System (INIS)
Lakhina, G.S.; Shukla, P.K.
1987-07-01
Large amplitude Alfven waves propagating along the guide magnetic field in a three-component plasma are shown to be modulationally unstable due to their nonlinear interaction with nonresonant electrostatic density fluctuations. A new class of subsonic Alfven soliton solutions are found to exist in the three-component plasma. The Alfven solitons can be relevant in explaining the properties of hydromagnetic turbulence near the comets. (author). 15 refs
Wave propagation near the lower hybrid resonance in toroidal plasmas
International Nuclear Information System (INIS)
Ohkubo, K.; Ohasa, K.; Matsuura, K.
1975-10-01
Dielectric tensor and equipotential curves (ray trajectories) of an electrostatic wave near the lower hybrid resonance are investigated for the toroidal plasma with a shear magnetic field. The ray trajectories start from the vicinity of the plasma surface, and rotate in a spiral form around the magnetic axis, and then reach the lower or upper parts of lower hybrid resonance layer. The numerical computations are performed on the parameters of JIPP T-II device with two dimensional inhomogeneity. (auth.)
Hydrogen and helium trapping in tungsten deposition layers formed by RF plasma sputtering
International Nuclear Information System (INIS)
Kazunari Katayama; Kazumi Imaoka; Takayuki Okamura; Masabumi Nishikawa
2006-01-01
Understanding of tritium behavior in plasma facing materials is an important issue for fusion reactor from viewpoints of fuel control and radiation safety. Tungsten is used as a plasma facing material in the divertor region of ITER. However, investigation of hydrogen isotope behavior in tungsten deposition layer is not sufficient so far. It is also necessary to evaluate an effect of helium on a formation of deposition layer and an accumulation of hydrogen isotopes because helium generated by fusion reaction exists in fusion plasma. In this study, tungsten deposition layers were formed by sputtering method using hydrogen and helium RF plasma. An erosion rate and a deposition rate of tungsten were estimated by weight measurement. Hydrogen and helium retention were investigated by thermal desorption method. Tungsten deposition was performed using a capacitively-coupled RF plasma device equipped with parallel-plate electrodes. A tungsten target was mounted on one electrode which is supplied with RF power at 200 W. Tungsten substrates were mounted on the other electrode which is at ground potential. The plasma discharge was continued for 120 hours where pressure of hydrogen or helium was controlled to be 10 Pa. The amounts of hydrogen and helium released from deposition layers was quantified by a gas chromatograph. The erosion rate of target tungsten under helium plasma was estimated to be 1.8 times larger than that under hydrogen plasma. The deposition rate on tungsten substrate under helium plasma was estimated to be 4.1 times larger than that under hydrogen plasma. Atomic ratio of hydrogen to tungsten in a deposition layer formed by hydrogen plasma was estimated to be 0.17 by heating to 600 o C. From a deposition layer formed by helium plasma, not only helium but also hydrogen was released by heating to 500 o C. Atomic ratios of helium and hydrogen to tungsten were estimated to be 0.080 and 0.075, respectively. The trapped hydrogen is probably impurity hydrogen
2D full-wave simulation of waves in space and tokamak plasmas
Directory of Open Access Journals (Sweden)
Kim Eun-Hwa
2017-01-01
Full Text Available Simulation results using a 2D full-wave code (FW2D for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF waves in the scape-off layer (SOL of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.
2D full-wave simulation of waves in space and tokamak plasmas
Kim, Eun-Hwa; Bertelli, Nicola; Johnson, Jay; Valeo, Ernest; Hosea, Joel
2017-10-01
Simulation results using a 2D full-wave code (FW2D) for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry) and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC) waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF) waves in the scape-off layer (SOL) of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.
International Nuclear Information System (INIS)
Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming
2013-01-01
A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a “black out” phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm× 260 mm× 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
K. Sigsbee
2004-07-01
Full Text Available We present the statistics of Langmuir wave amplitudes in the Earth's foreshock using Cluster Wideband Data (WBD Plasma Wave Receiver electric field waveforms from spacecraft 2, 3 and 4 on 26 March 2002. The largest amplitude Langmuir waves were observed by Cluster near the boundary between the foreshock and solar wind, in agreement with earlier studies. The characteristics of the waves were similar for all three spacecraft, suggesting that variations in foreshock structure must occur on scales greater than the 50-100km spacecraft separations. The electric field amplitude probability distributions constructed using waveforms from the Cluster WBD Plasma Wave Receiver generally followed the log-normal statistics predicted by stochastic growth theory for the event studied. Comparison with WBD receiver data from 17 February 2002, when spacecraft 4 was set in a special manual gain mode, suggests non-optimal auto-ranging of the instrument may have had some influence on the statistics.
Directory of Open Access Journals (Sweden)
K. Sigsbee
2004-07-01
Full Text Available We present the statistics of Langmuir wave amplitudes in the Earth's foreshock using Cluster Wideband Data (WBD Plasma Wave Receiver electric field waveforms from spacecraft 2, 3 and 4 on 26 March 2002. The largest amplitude Langmuir waves were observed by Cluster near the boundary between the foreshock and solar wind, in agreement with earlier studies. The characteristics of the waves were similar for all three spacecraft, suggesting that variations in foreshock structure must occur on scales greater than the 50-100km spacecraft separations. The electric field amplitude probability distributions constructed using waveforms from the Cluster WBD Plasma Wave Receiver generally followed the log-normal statistics predicted by stochastic growth theory for the event studied. Comparison with WBD receiver data from 17 February 2002, when spacecraft 4 was set in a special manual gain mode, suggests non-optimal auto-ranging of the instrument may have had some influence on the statistics.
The influence of multiple ion species on Alfven wave dispersion and Alfven wave plasma heating
International Nuclear Information System (INIS)
Elfimov, A.G.; Tataronis, J.A.; Hershkowitz, N.
1994-01-01
In this paper, the effects of light impurities, such as deuterium, helium, or carbon, on Alfven wave dispersion characteristics are explored. It is shown that a small population of light impurities in a hydrogen plasma modify the dispersion of the global Alfven waves and the Alfven continuum in such a way that the wave frequency depends weakly on the toroidal wave number. It is also shown that the global Alfven wave enters into the Alfven continuum. Under these conditions, it is possible to heat plasma efficiently by employing an antenna with a broad toroidal wavelength spectrum. The relationship between impurity concentration and the efficiency of Alfven wave heating is explored. Under appropriate conditions, the results indicate that in the presence of impurities, Alfven waves can heat electrons predominantly in the central part of the plasma. This effect is explored via a series of numerical calculations of the heating specifically for the Phaedrus-T Alfven wave heating experiment [Phys. Fluids B 5, 2506 (1993)
Studies on Charge Variation and Waves in Dusty Plasmas
Kausik, Siddhartha Sankar
Plasma and dust grains are both ubiquitous ingredients of the universe. The interplay between them has opened up a new and fascinating research domain, that of dusty plasmas, which contain macroscopic particles of solid matter besides the usual plasma constituents. The research in dusty plasmas received a major boost in the early eighties with Voyager spacecraft observation on the formation of Saturn rings. Dusty plasmas are defined as partially or fully-ionized gases that contain micron-sized particles of electrically charged solid material, either dielectric or conducting. The physics of dusty plasmas has recently been studied intensively because of its importance for a number of applications in space and laboratory plasmas. This thesis presents the experimental studies on charge variation and waves in dusty plasmas. The experimental observations are carried out in two different experimental devices. Three different sets of experiments are carried out in two different experimental devices. Three different sets of experiments are carried out to study the dust charge variation in a filament discharge argon plasma. The dust grains used in these experiments are grains of silver. In another get of experiment, dust acoustic waves are studied in a de glow discharge argon plasma. Alumina dust grains are sprinkled in this experiment. The diagnostic tools used in these experiments are Langmuir probe and Faraday cup. The instruments used in these experiments are electrometer, He-Ne laser and charge coupled device (CCD) camera. Langmuir probe is used to measure plasma parameters, while Faraday cup and electrometer are used to measure very low current (~pA) carried by a collimated dust beam. He-Ne laser illuminates the dust grains and CCD camera is used to capture the images of dust acoustic waves. Silver dust grains are produced in the dust chamber by gas-evaporation technique. Due to differential pressure maintained between the dust and plasma chambers, the dust grains move
Waves and instabilities in noneutral plasmas
International Nuclear Information System (INIS)
Davidson, R.C.
1989-01-01
This paper presents a survey of the equilibrium, stability and collective oscillation properties of magnetically-confined nonneutral plasmas. Emphasis is placed on summarizing several of the technical advances that have occurred in both theory and experiment since the early 1970's. 97 refs., 26 figs
Nonlinear plasma waves excitation by intense ion beams in background plasma
International Nuclear Information System (INIS)
Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.
2004-01-01
Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p =(4πe 2 n p /m) 1/2 is the electron plasma frequency, and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma
Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma
International Nuclear Information System (INIS)
Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.
2004-01-01
Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p = (4πe 2 n p /m) 1/2 is the electron plasma frequency and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma
Laser-Induced Fluorescence diagnostic of barium ion plasmas in the Paul Trap Simulator Experiment
International Nuclear Information System (INIS)
Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.
2005-01-01
The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. To investigate the ion plasma microstate in PTSX, including the ion density profile and the ion velocity distribution function, a laser-induced fluorescence diagnostic system is being developed as a nondestructive diagnostic. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. A feasibility study of the laser-induced fluorescence diagnostic using barium ions is presented with the characterization of a tunable dye laser. The installation of the barium ion source and the development of the laser-induced fluorescence diagnostic system are also discussed
Energy Technology Data Exchange (ETDEWEB)
Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)
2016-11-15
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Start-up of plasma current by electron Bernstein wave
International Nuclear Information System (INIS)
Maekawa, Takashi; Tanaka, Hitoshi; Uehide, Masaki
2009-01-01
Electron cyclotron current drive by electron Bernstein (EB) waves for the start-up and ramp-up of toroidal plasma current with no central solenoid in tokamaks is discussed. It is shown that high N// EB waves have ability to ramp-up the current against the counter voltage from self-induction, where N// is the parallel refractive index to the magnetic field, and they are especially suitable for initial current start-up phase where the bulk electron temperature is low enough to ensure high N// EB waves. (author)
Confined trapped-alpha behavior in TFTR deuterium-tritium plasmas
International Nuclear Information System (INIS)
Medley, S.S.; Budny, R.V.; Redi, M.H.; Roquemore, A.L.; White, R.B.; Petrov, M.P.; Gorelenkov, N.N.
1997-10-01
Confined trapped-alpha energy spectra and differential radial density profiles in TFTR D-T plasmas are obtained with the Pellet Charge-eXchange (PCX) diagnostic which measures high energy (E α = 0.5--3.5 MeV), trapped alphas (v parallel /v = - 0.048) at a single time slice (Δt ∼ 1 msec) with a spatial resolution of Δr ∼ 5 cm. Tritons produced in D-D plasmas and RF-driven ion tails (H, 3 He or T) were also observed and energetic tritium ion tail measurements will be discussed. PCX alpha and triton energy spectra extending up to their birth energies were measured in the core of MHD-quiescent discharges where the expected classical slowing down and pitch angle scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity. Both the shape of the measured alpha and triton energy distributions and their density ratios are in good agreement with TRANSP predictions, indicating that the PCX measurements are consistent with classical thermalization of the fusion-generated alphas and tritons. From calculations, these results set an upper limit on possible anomalous radial diffusion for trapped alphas of D α ≤ 0.01 m 2 s -1 . Outside the core, where the trapped alphas are influenced by stochastic ripple diffusion effects, the PCX measurements are consistent with the functional dependence of the Goldston-White-Boozer stochastic ripple threshold on the alpha energy and the q-profile. In the presence of strong sawtooth activity, the PCX diagnostic observes significant redistribution of the alpha signal radial profile wherein alphas are depleted in the core and redistributed to well outside the q = 1 radius, but apparently not beyond the energy-dependent stochastic ripple loss boundary
Linear wave propagation in a hot axisymmetric toroidal plasma
International Nuclear Information System (INIS)
Jaun, A.
1995-03-01
Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell's equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models' resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs
Linear wave propagation in a hot axisymmetric toroidal plasma
Energy Technology Data Exchange (ETDEWEB)
Jaun, A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1995-03-01
Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell`s equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models` resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs.
The effect of gradational velocities and anisotropy on fault-zone trapped waves
Gulley, A. K.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.
2017-08-01
Synthetic fault-zone trapped wave (FZTW) dispersion curves and amplitude responses for FL (Love) and FR (Rayleigh) type phases are analysed in transversely isotropic 1-D elastic models. We explore the effects of velocity gradients, anisotropy, source location and mechanism. These experiments suggest: (i) A smooth exponentially decaying velocity model produces a significantly different dispersion curve to that of a three-layer model, with the main difference being that Airy phases are not produced. (ii) The FZTW dispersion and amplitude information of a waveguide with transverse-isotropy depends mostly on the Shear wave velocities in the direction parallel with the fault, particularly if the fault zone to country-rock velocity contrast is small. In this low velocity contrast situation, fully isotropic approximations to a transversely isotropic velocity model can be made. (iii) Fault-aligned fractures and/or bedding in the fault zone that cause transverse-isotropy enhance the amplitude and wave-train length of the FR type FZTW. (iv) Moving the source and/or receiver away from the fault zone removes the higher frequencies first, similar to attenuation. (v) In most physically realistic cases, the radial component of the FR type FZTW is significantly smaller in amplitude than the transverse.
Shock-wave structure formation in a dusty plasma
International Nuclear Information System (INIS)
Popel', S.I.; Golub', A.P.; Loseva, T.V.; Bingkhem, R.; Benkadda, S.
2001-01-01
Nonstationary problem on evolution perturbation and its transformation into nonlinear wave structure is considered. The method developed permits finding solution to the system of nonlinear evolution equations describing dust particles with variable charge, Boltzmann electron and inertia ions. An accurate stationary solution as ion-sonic wave structures explained by anomalous dissipation due to electric discharge of dust particles was found. Evolution of two types of initial perturbations was studied, i.e.: soliton and immobile region with increased density of ions - a step. Soliton evolution in plasma with variable charge of dust particles results in the appearance on nonstationary shock-wave structure, whereas the step evolution gives rise to appearance of a shock wave similar to the stationary one along with rarefaction wave [ru
Plasma wave instabilities in nonequilibrium graphene
DEFF Research Database (Denmark)
Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka
2016-01-01
We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....
Energy Technology Data Exchange (ETDEWEB)
Robicheaux, Francis
2013-03-29
Ever since Dirac predicted the existence of antimatter in 1928, it has excited our collective imagination. Seventy-four years later, two collaborations at CERN, ATHENA and ATRAP, created the first slow antihydrogen. This was a stunning achievement, but the most important antimatter experiments require trapped, not just slow, antihydrogen. The velocity, magnetic moment, and internal energy and state of the antihydrogen depend strongly on how it is formed. To trap antihydrogen, physicists face two broad challenges: (1) Understanding the behavior of the positron and antiprotons plasmas from which the antihydrogen is synthesized; and (2) Understanding the atomic processes by which positrons and antiprotons recombine. Recombination lies on the boundary between atomic and plasma physics, and cannot be studied properly without employing tools from both fields. The proposed collaborative research campaign will address both of these challenges. The collaboration members have unique experience in the relevant fields of experimental and theoretical non-neutral plasma physics, numerical modeling, nonlinear dynamics and atomic physics. This expertise is not found elsewhere amongst antihydrogen researchers. The collaboration members have strong ties already, and seek to formalize them with this proposal. Three of the four PIs are members of the ALPHA collaboration, an international collaboration formed by most of the principal members of the ATHENA collaboration.
Electron Landau damping of ion Bernstein waves in tokamak plasmas
International Nuclear Information System (INIS)
Brambilla, M.
1998-01-01
Absorption of ion Bernstein (IB) waves by electrons is investigated. These waves are excited by linear mode conversion in tokamak plasmas during fast wave (FW) heating and current drive experiments in the ion cyclotron range of frequencies. Near mode conversion, electromagnetic corrections to the local dispersion relation largely suppress electron Landau damping of these waves, which becomes important again, however, when their wavelength is comparable to the ion Larmor radius or shorter. The small Larmor radius wave equations solved by most numerical codes do not correctly describe the onset of electron Landau damping at very short wavelengths, and these codes, therefore, predict very little damping of IB waves, in contrast to what one would expect from the local dispersion relation. We present a heuristic, but quantitatively accurate, model which allows account to be taken of electron Landau damping of IB waves in such codes, without affecting the damping of the compressional wave or the efficiency of mode conversion. The possibilities and limitations of this approach are discussed on the basis of a few examples, obtained by implementing this model in the toroidal axisymmetric full wave code TORIC. (author)
Interaction of High Intensity Electromagnetic Waves with Plasmas: Final Report
International Nuclear Information System (INIS)
Shvets, G.
2008-01-01
The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.
Determination of Jupiter's electron density profile from plasma wave observations
International Nuclear Information System (INIS)
Gurnett, D.A.; Scarf, F.L.; Kurth, W.S.; Shaw, R.R.; Poynter, R.L.
1981-01-01
This paper summarizes the electron density measurements obtained in the Jovian magnetosphere from the plasma wave instruments on the Voyager 1 and 2 spacecraft. Three basic techniques are discussed for determining the electron density: (1) local measurements from the low-frequency cutoff of continuum radiation, (2) local measurements from the frequency of upper hybrid resonance emissions, and (3) integral measurements from the dispersion of whistlers. The limitations and advantages of each technique are critically reviewed. In all cases the electron densities are unaffected by spacecraft charging or sheath effects, which makes these measurements of particular importance for verifying in situ plasma and low-energy charged particle measurments. In the outer regions of the dayside magnetosphere, beyond about 40 R/sub J/, the electron densities range from about 3 x 10 -3 to 3 x 10 -2 cm -3 . On Voyager 2, several brief excursions apparently occurred into the low-density region north of the plasma sheet with densities less than 10 -3 cm -3 . Approaching the planet the electron density gradually increases, with the plasma frequency extending above the frequency range of the plasma wave instrument (56 kHz, or about 38 electrons cm -3 ) inside of about 8 R/sub J/. Within the high-density region of the Io plasma torus, whistlers provide measurements of the north-south scale height of the plasma torus, with scale heights ranging from about 0.9 to 2.5 R/sub J/
First results from the Cluster wideband plasma wave investigation
Directory of Open Access Journals (Sweden)
D. A. Gurnett
2001-09-01
Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The
First results from the Cluster wideband plasma wave investigation
Directory of Open Access Journals (Sweden)
D. A. Gurnett
Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The
Quantum ion-acoustic solitary waves in weak relativistic plasma
Indian Academy of Sciences (India)
Abstract. Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized two- species relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive ...
A relativistic solitary wave in electron positron plasma
International Nuclear Information System (INIS)
Berezhiani, V.I.; Skarka, V.; Mahajan, S.
1993-09-01
The relativistic solitary wave propagation is studied in cold electron-positron plasma embedded in an external arbitrary strong magnetic field. The exact, analytical soliton-like solution corresponding to a localized, purely electromagnetic pulse with arbitrary big amplitude is found. (author). 7 refs, 1 fig
Studies of hydromagnetic waves and oscillations in plasmas
International Nuclear Information System (INIS)
Sawley, M.L.
1980-10-01
Small amplitude magnetoacoustic oscillations in a partially ionized, non-uniform, current carrying plasma column of finite beta are considered. The linearized magnetohydrodynamic equations are used to develop a theory describing both free and forced magnetoacoustic oscillations. The results of numerical calculations are given for the specific case of diffuse pinch equilibrium configurations. In an experimental study the amplitude of the oscillating axial magnetic flux is determined for several frequencies in the vicinity of the first magnetoacoustic resonance. Accurate determination of the plasma density profile is shown to be possible. Finite-amplitude effects on the propagation of axisymmetric hydromagnetic waves are examined. A nonlinear theory is developed which describes the second-order perturbation that accompanies the primary wave. The influence of Hall currents and the presence of neutral atoms on the second-order fields is treated. In an investigation on the propagation of torsional waves the observed second-order fields are shown to exhibit good quantitative agreement with theoretical calculations for moderate primary wave amplitudes. The re-ionization of the plasma by a torsional wave is investigated. A theoretical description is given of the nonlinear excitation of magnetoacoustic oscillations by means of an oscillating axial current
Acoustic nonlinear periodic waves in pair-ion plasmas
Mahmood, Shahzad; Kaladze, Tamaz; Ur-Rehman, Hafeez
2013-09-01
Electrostatic acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in unmagnetized pair-ion plasmas consisting of same mass and oppositely charged ion species with different temperatures. Using reductive perturbation method and appropriate boundary conditions, the Korteweg-de Vries (KdV) equation is derived. The analytical solutions of both cnoidal wave and soliton solutions are discussed in detail. The phase plane plots of cnoidal and soliton structures are shown. It is found that both compressive and rarefactive cnoidal wave and soliton structures are formed depending on the temperature ratio of positive and negative ions in pair-ion plasmas. In the special case, it is revealed that the amplitude of soliton may become larger than it is allowed by the nonlinear stationary wave theory which is equal to the quantum tunneling by particle through a potential barrier effect. The serious flaws in the earlier published results by Yadav et al., [PRE 52, 3045 (1995)] and Chawla and Misra [Phys. Plasmas 17, 102315 (2010)] of studying ion acoustic nonlinear periodic waves are also pointed out.
International Nuclear Information System (INIS)
Chang Yongbin; Dolliver, D. D.; Ordonez, C. A.
1999-01-01
In the work reported, time-dependent effects are considered which affect the prospect of getting two oppositely signed plasmas to overlap the same region while trapped within a solenoidal magnetic field. Parameters that are relevant to future experimental attempts at producing cold antihydrogen atoms using nested-well plasma traps are considered. It is found that the timescale over which an overlap remains, without changing the electrode voltages, can be much larger than the timescale over which the overlap plasma recombines. Hence, it does not appear necessary to use time-dependent electrode voltages to maintain the overlap while antihydrogen atoms are being produced
Ion Bernstein wave heating in a multi-component plasma
International Nuclear Information System (INIS)
Puri, S.
1980-10-01
Conditions for the coupling and absorption of Gross-Bernstein ion-cyclotron waves in a multi-component plasma are examined. Two cases are distinguished depending upon whether, the antenna initially launches, (i) the quasi-torsional slow electromagnetic wave with azimuthal magnetic field (TM) polarization, or (ii) the quasi-compressional fast wave with the electric field oriented azimuthally (TE). Analytic expressions for the plasma surface impedance are derived taking into account the pertinent warm plasma modifications near the vacuum-plasma interface. Antenna configurations capable of efficient coupling of the radio frequency energy to these modes are studied. A method for simulating waveguide like launching using transmission lines is pointed out. It is found that impurity concentrations exceeding a few parts in a thousand are capable of competing with the bulk ions in the energy absorption processes; this could lead to energy deposition near the plasma edge. Measures for avoiding edge heating problems by a careful choice of parameters e.g. restricting the heating frequency to the fundamental ion gyrofrequency are outlined. Equal care is to be exercised in limiting the nsub(z) spectrum to low discrete values in order to avoid the potentially dangerous problem of runaway electron heating. (orig.)
International Nuclear Information System (INIS)
Hahm, T.S.
1990-12-01
Ion temperature gradient turbulence based transport models have difficulties reconciling the recent DIII-D H-mode results where the density profile is flat, but χ e > χ i in the core region. In this work, a nonlinear theory is developed for recently discovered ion temperature gradient trapped electron modes propagating in the electron diamagnetic direction. This instability is predicted to be linearly unstable for L Ti /R approx-lt κ θ ρ s approx-lt (L Ti /R) 1/4 . They are also found to be strongly dispersive even at these long wavelengths, thereby suggesting the importance of the wave-particle-wave interactions in the nonlinear saturation phase. The fluctuation spectrum and anomalous fluxes are calculated. In accordance with the trends observed in DIII-D, the predicted electron thermal diffusivity can be larger than the ion thermal diffusivity. 17 refs., 3 figs
Alfven wave propagation in a partially ionized plasma
International Nuclear Information System (INIS)
Watts, Christopher; Hanna, Jeremy
2004-01-01
Results from a laboratory study of the dispersion relation of Alfven waves propagating through a partially ionized plasma are presented. The plasma is generated using a helicon source, creating a high density, current-free discharge, where the source can be adjusted to one of several modes with varying neutral fraction. Depending on the neutral fraction, the measured dispersion curve of shear Alfven waves can change significantly. Measurement results are compared with theoretical predictions of the effect of neutral particles on Alfven wave propagation. In fitting the theory, the neutral fraction is independently estimated using two simple particle transport models, one collisionless, the other collisional. The two models predict comparable neutral fractions, and agree well with the neutral fraction required for the Alfven dispersion theory
Plasma acceleration by magnetic nozzles and shock waves
International Nuclear Information System (INIS)
Hattori, Kunihiko; Murakami, Fumitake; Miyazaki, Hiroyuki; Imasaki, Atsushi; Yoshinuma, Mikirou; Ando, Akira; Inutake, Masaaki
2001-01-01
We have measured axial profiles of ion acoustic Mach number, M i , of a plasma flow blowing off from an MPD (magneto-plasma-dynamic) arc-jet in various magnetic configurations. It is found that the Mach number increases in a divergent nozzle up to 3, while it stays at about unity in a uniform magnetic channel. When a magnetic bump is added in the exit of the divergent magnetic nozzle, the Mach number suddenly decreases below unity, due to an occurrence of shock wave. The subsonic flow after the shock wave is re-accelerated to a supersonic flow through a magnetic Laval nozzle. This behavior is explained well by the one-dimensional isotropic flow model. The shock wave is discussed in relation to the Rankine-Hugoniot relation. (author)
Self-consistent Langmuir waves in resonantly driven thermal plasmas
Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.
2007-12-01
The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter.
Self-consistent Langmuir waves in resonantly driven thermal plasmas
International Nuclear Information System (INIS)
Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.
2007-01-01
The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter
Nonextensive dust acoustic waves in a charge varying dusty plasma
Bacha, Mustapha; Tribeche, Mouloud
2012-01-01
Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.
Nonlinear electrostatic solitary waves in electron-positron plasmas
Lazarus, I. J.; Bharuthram, R.; Moolla, S.; Singh, S. V.; Lakhina, G. S.
2016-02-01
The generation of nonlinear electrostatic solitary waves (ESWs) is explored in a magnetized four component two-temperature electron-positron plasma. Fluid theory is used to derive a set of nonlinear equations for the ESWs, which propagate obliquely to an external magnetic field. The electric field structures are examined for various plasma parameters and are shown to yield sinusoidal, sawtooth and bipolar waveforms. It is found that an increase in the densities of the electrons and positrons strengthen the nonlinearity while the periodicity and nonlinearity of the wave increases as the cool-to-hot temperature ratio increases. Our results could be useful in understanding nonlinear propagation of waves in astrophysical environments and related laboratory experiments.
Nonlinear acoustic waves in partially ionized collisional plasmas
International Nuclear Information System (INIS)
Rao, N.N.; Kaup, D.J.; Shukla, P.K.
1991-01-01
Nonlinear propagation of acoustic-type waves in a partially ionized three-component collisional plasma consisting of electrons, ions and neutral particles is investigated. For bidirectional propagation, it is shown that the small- but finite-amplitude waves are governed by the Boussinesq equation, which for unidirectional propagation near the acoustic speed reduces to the usual Korteweg-de Vries equation. For large-amplitude waves, it is demonstrated that the relevant fluid equations are integrable in a stationary frame, and the parameter values for the existence of finite-amplitude solutions are explicitly obtained. In both cases, the different temperatures of the individual species, are taken into account. The relevance of the results to the earth's ionospheric plasma in the lower altitude ranges is pointed out. (author)
International Nuclear Information System (INIS)
Saito, T.; Hamada, Y.; Yamashita, T.; Ikeda, M.; Nakamura, M.
1980-01-01
The SMM wave laser scattering apparatus has been developed for the measurement of the waves and turbulences in the plasma. This apparatus will help greatly to clarify the physics of RF heating of the tokamak plasma. The present status of main parts of the apparatus, the SMM wave laser and the Schottky barrier diode mixer for the heterodyne receiver, are described. (author)
Revisiting linear plasma waves for finite value of the plasma parameter
Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren
2010-11-01
We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.
Waves in plasmas: Highlights from the past and present
International Nuclear Information System (INIS)
Stix, T.H.
1990-03-01
To illustrate the development of some fundamental concepts in plasma waves, a number of experimental observations, going back over half a century, are reviewed. Particular attention is paid to the phenomena of dispersion, collisionfree damping, ray trajectories, amplitude transport, plasma wave echos, finite-Larmor-radius and cyclotron and cyclotron-harmonic effects, nonlocal response, and mode conversion. Also to the straight, trajectory approximation and two-level phase mixing. And to quasilinear diffusion and its relation to radiofrequency heating, current drive and induced neoclassical transport, and to stochasticity and superadiabaticity. One notes not only the constructive interplay between experiment and theory but also that major advances have come from each of the many disciplines that invoke plasma physics as a tool, including radio communication, astrophysics, controlled fusion, space physics, and basic research. 47 refs., 33 figs
Experimental high power plasma-filled backward wave oscillator results
International Nuclear Information System (INIS)
Minami, K.; Lou, W.R.; Destler, W.W.; Kehs, R.A.; Granatstein, V.L.; Carmel, Y.
1988-01-01
Previous results have indicated that a background gas can be used to increase the output microwave power of relativistic backward wave oscillators (BWOs) two or three times the vacuum case. In their experiments, two methods of plasma production are investigated in detail: the use of the electron beam to ionize a background gas, and the use of a plasma gun to inject a background plasma into the slow-wave structure of a BWO. It is found in the first case that there was a resonant increase in microwave power at a particular pressure of the background gas by a factor of ten. In the second case, power also increased compared with power production in vacuum. Detailed results are presented and the relative merits of the two approaches is discussed and compared with theoretical expectations
International Nuclear Information System (INIS)
Matsuda, Y.; Crawford, F.W.
1975-01-01
An economical low-noise plasma simulation model originated by Denavit is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation. These tests serve to establish the low-noise features of the model, and to verify the theoretical linear dispersion relation at wave energy levels as low as 10 -6 of the plasma thermal energy: Better quantitative results are obtained, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories
Solitary Langmuir waves in two-electron temperature plasma
Prudkikh, V. V.; Prudkikh
2014-06-01
Nonlinear interaction of Langmuir and ion-acoustic waves in two-electron temperature plasma is investigated. New integrable wave interaction regime was discovered, this regime corresponds to the Langmuir soliton with three-hump amplitude, propagating with a speed close to the ion-sound speed in the conditions of strong non-isothermality of electronic components. It was discovered that besides the known analytical solution in the form of one- and two-hump waves, there exists a range of solutions in the form of solitary waves, which in the form of envelope has multi-peak structure and differs from the standard profiles described by hyperbolic functions. In case of fixed plasma parameters, different group velocities correspond to the waves with different number of peaks. It is found that the Langmuir wave package contains both even and uneven numbers of oscillations. Low-frequency potential here has uneven number of peaks. Interrelation of obtained and known earlier results are also discussed.
Nonlinear particle-wave kinetics in weakly unstable plasmas
International Nuclear Information System (INIS)
Breizman, B.N.; Berk, H.L.; Pekker, M.S.
1996-01-01
With the motivation to address the behavior of the fusion produced alpha particles in a thermonuclear reactor, a theory is developed for predicting the wave saturation levels and particle transport in weakly unstable systems with a discrete number of modes in the presence of energetic particle sources and sinks. Conditions are established for either steady state or bursting nonlinear scenarios when several modes are excited for cases where there is and there is not resonance overlap. Depending on parameters, the particles can undergo benign relaxation, with only a small fraction of the available free energy released to waves and with no global transport, or the particles can experience rapid global transport caused by a substantial conversion of their free energy into wave energy. When the resonance condition of the particle-wave interaction is varied adiabatically, the particles trapped in a wave are found to form phase space holes or clumps that enhance the particle-wave energy exchange. This mechanism, which has been experimentally observed when there is frequency chirping, causes increased saturation levels of instabilities. If resonance sweeping is imposed externally, the particle free energy can even be tapped in stable systems where background dissipation suppresses linear instability. Externally applied resonance sweeping can be important for alpha particle energy channeling, as well as for understanding fishbone and some Alfven wave instability experiments. Near instability threshold, that is when the destabilizing drive just exceeds the background dissipation, a more sophisticated analysis is developed to predict the correct saturation. To leading order, this problem reduces to an integral equation for the wave amplitude with a temporally non local cubic term. This equation has a self-similar solution that blows-up in a finite time
Wang, Jer-Chyi
2016-11-23
Graphene nanodiscs (GNDs), functionalized using NH3 plasma, as charge trapping sites (CTSs) for non-volatile memory applications have been investigated in this study. The fabrication process relies on the patterning of Au nanoparticles (Au-NPs), whose thicknesses are tuned to adjust the GND density and size upon etching. A GND density as high as 8 × 1011 cm−2 and a diameter of approximately 20 nm are achieved. The functionalization of GNDs by NH3 plasma creates Nsingle bondH+ functional groups that act as CTSs, as observed by Raman and Fourier transform infrared spectroscopy. This inherently enhances the density of CTSs in the GNDs, as a result, the memory window becomes more than 2.4 V and remains stable after 104 operating cycles. The charge loss is less than 10% for a 10-year data retention testing, making this low-temperature process suitable for low-cost non-volatile memory applications on flexible substrates.
Influence of alpha-particles on parameters of plasma confined in open traps
International Nuclear Information System (INIS)
Chebotaev, P.Z.
1987-01-01
The numerical calculations of the longitudinal motion in multi-mirror reactor have shown that the energy contribution of α-particles has substantial influence on the gain factor (the given off thermonuclear energy/ the initial imparted energy) in the temperature region 5-7 keV. The numerical technique has been developed that takes into account the radial distribution of alpha particles caused by their drag on electrons. This effect is substantial for ρ α /R ≥ 1/2 (where ρ α is alpha particles gyro radius, R is plasma radius), e.g. for Gas-Dinamic trap. In a Tandem-Mirror reactor some part of fusion alpha particles have the probability to slow down to the plasma energy, that can lead to the 'poisoning' of the reactor by the thermonuclear reaction products. The fusion alpha particles can have a strong effect on accumulation of impurities with z ≤ 15 and thermal alpha particles in TMR. (orig.)
Lagrangian analysis of nonlinear wave-wave interactions in bounded plasmas
International Nuclear Information System (INIS)
Carr, A.R.
1979-01-01
In a weakly turbulent nonlinear wave-supporting medium, one of the important nonlinear processes which may occur is resonant three-wave interaction. Whitham's averaged Lagrangian method provides a general formulation of wave evolution laws which is easily adapted to nonlinear dispersive media. In this thesis, the strength of nonlinear interactions between three coherent, axisymmetric, low frequency, magnetohydrodynamic (Alfven) waves propagating in resonance along a cold cylindrical magnetized plasma column is calculated. Both a uniform and a parabolic density distribution have been considered. To account for a non-zero plasma temperature, pressure effects have been included. Distinctive features of the work are the use of cylindrical geometry, the presence of a finite rather than an infinite axial magnetic field, the treatment of a parabolic density distribution, and the inclusion of both ion and electron contributions in all expressions. Two astrophysical applications of the presented theory have been considered. In the first, the possibility of resonant three-wave coupling between geomagnetic micropulsations, which propagate as Alfven or magnetosonic waves along the Earth's magnetic field lines, has been investigated. The second case is the theory of energy transport through the solar chromosphere by upward propagating magnetohydrodynamic waves, which may then couple to heavily damped waves in the corona, causing the observed excess heating in that region
Conditions for sustaining low-pressure plasma columns by travelling electromagnetic UHF waves
International Nuclear Information System (INIS)
Benova, E.; Zhelyazkov, I.
1997-01-01
The paper considers the conditions for sustaining low-pressure plasma columns by travelling electromagnetic waves in symmetric and dipolar modes, respectively. The treatment is fully electrodynamic. It is shown that the wave energy flux along the plasma column determines the conditions for sustaining the discharge. In particular as the plasma is sustained by a symmetric wave whose flux depends mainly on the radial distribution of the wave electric field whilst for a dipolar wave sustained plasma the flux is specified by the magnitude of the axial wave field component at the plasma-dielectric interface. (orig.)
Obliquely propagating large amplitude solitary waves in charge neutral plasmas
Directory of Open Access Journals (Sweden)
F. Verheest
2007-01-01
Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.
Resonance absorption of ICRF wave in edge plasma
International Nuclear Information System (INIS)
Sugihara, Ryo; Yamanaka, Kaoru.
1987-07-01
An edge plasma is shown to significantly absorb ICRF wave when a resonant triplet, a cutoff-resonance-cutoff triplet, is constructed in the evanescent region. Two-ion-component plasmas in a torus are considered though the plasmas are modeled by a slab in which the density changes linearly along the x-axis. The resonance is a perpendicular-ion-cyclotron resonance, i.e., an Alfven resonance, and is formed when the applied frequency ω is smaller than the local cyclotron frequency, at the edge of the antenna side, of the lighter species of ions. Roughly the absorption rate A b is given by M 2 for M 2 >> S 2 and S 4 for S 2 >> M 2 where M = k y l and S ≅ k z l and l is a scale length of the order of the plasma minor radius and k y and k z are the perpendicular and the parallel components of the wave vector. It is noted that the both quantities, M and S, readily become of the order of unity. Since A b is not very sensitive to the density ratio of the two ion species, a few percent of impurities may cause a significant absorption. As the mass ratio of the two ion species comes close to unity the triplet forms readily. Therefore a D-T plasma seems to suffer more easily this kind of resonance absorption than a D-H plasma. (author)
Full wave simulation of waves in ECRIS plasmas based on the finite element method
Energy Technology Data Exchange (ETDEWEB)
Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)
2014-02-12
This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.
Directory of Open Access Journals (Sweden)
Catarina Vinagre
Full Text Available Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species' acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1 tide pools could be considered ecological traps and 2 if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools.
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
Mode Dynamics in the Bragg FEL Based on Coupling of Propagating and Trapped Waves
Ginzburg, N S; Peskov, N Yu; Rozental, R M; Sergeev, A; Zaslavsky, V Yu
2005-01-01
A novel Bragg FEL scheme is discussed in which an electron beam synchronously interacts with a propagating wave, and the latter is coupled to a quasi cut-off mode. This coupling is realized by either helical or asimuthally symmetric corrugation of the waveguide walls. The quasi cut-off mode provides feedback in the system leading to self-excitation of the whole system while the efficiency in steady-state regime of generation is almost completely determined by the propagating mode, synchronous to the beam. Analysis based on averaged time domain approach as well as on direct PIC code simulation shows that the efficiency of such a device in the single mode single frequency regime can be rather high. The main advantage of the novel Bragg resonator is provision of higher selectivity over transverse index than traditional scheme of Bragg FEL. The cold microwave testing of the Bragg structure based on coupling of propagating and trapped waves in the Ka band demonstrated a good agreement with theoretical consideratio...
Effects of Plasma Hydrogenation on Trapping Properties of Dislocations in Heteroepitaxial InP/GaAs
Ringel, S. A.; Chatterjee, B.
1994-01-01
In previous work, we have demonstrated the effectiveness of a post-growth hydrogen plasma treatment for passivating the electrical activity of dislocations in metalorganic chemical vapor deposition (MOCVD) grown InP on GaAs substrates by a more than two order of magnitude reduction in deep level concentration and an improvement in reverse bias leakage current by a factor of approx. 20. These results make plasma hydrogenation an extremely promising technique for achieving high efficiency large area and light weight heteroepitaxial InP solar cells for space applications. In this work we investigate the carrier trapping process by dislocations in heteroepitaxial InP/GaAs and the role of hydrogen passivation on this process. It is shown that the charge trapping kinetics of dislocations after hydrogen passivation are significantly altered, approaching point defect-like behavior consistent with a transformation from a high concentration of dislocation-related defect bands within the InP bandgap to a low concentration of individual deep levels after hydrogen passivation. It is further shown that the "apparent" activation energies of dislocation related deep levels, before and after passivation, reduce by approx. 70 meV as DLTS fill pulse times are increased from 1 usec. to 1 msec. A model is proposed which explains these effects based on a reduction of Coulombic interaction between individual core sites along the dislocation cores by hydrogen incorporation. Knowledge of the trapping properties in these specific structures is important to develop optimum, low loss heteroepitaxial InP cells.
Parametric Excitations of Fast Plasma Waves by Counter-propagating Laser Beams
International Nuclear Information System (INIS)
Shvets, G.; Fisch, N.J.
2001-01-01
Short- and long-wavelength plasma waves can become strongly coupled in the presence of two counter-propagating laser pump pulses detuned by twice the cold plasma frequency. What makes this four-wave interaction important is that the growth rate of the plasma waves occurs much faster than in the more obvious co-propagating geometry
International Nuclear Information System (INIS)
Smith, A.C. Jr.
1977-01-01
The results of an experimental study on the trapping and energy loss mechanisms of intense, relativistic electron rings confined in Astron-like magnetic field geometries are presented. The work is subdivided into four sections: gas trapping; average ring electron energetics; plasma trapping, and hollow-beam cusp-injection into gas and plasma. The mechanisms by which the injected beam coalesces into a current ring in the existing Cornell RECE-Berta facility are considered. To investigate the nature of ring electron energy loss mechanisms following completion of the trapping process, a diagnostic was developed utilizing multi-foil X-ray absorption spectroscopy to analyze the Bremsstrahlung generated by the electrons as they impinge upon a thin tungsten wire target suspended in the circulating current. Finally, a set of preliminary experimental results is presented in which an annular electron beam was passed through a coaxial, non-adiabatic magnetic cusp located at one end of a magnetic mirror well
Reflection and absorption of ordinary waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Croci, R.
1990-11-01
This study treats the system of Vlasov and Maxwell equations for the Fourier transform in space and time of a plasma referred to Cartesian coordinates with the coordinate z parallel to the uniform equilibrium magnetic field with the equilibrium plasma density dependent on ηx, where η is a parameter. The k y component of the wave vector is taken equal to zero, whereas k z is different from zero. When the interaction of ordinary and extraordinary waves is neglected, the Fourier transform of the electric field of the ordinary waves obeys a homogeneous integral equation with principal part integrals, which is solved in the case of weak absorption and sufficiently small η (essentially smaller than vacuum wave vector), but without limitations on the ratio of the wavelength to the Larmor radius (the usual approximation being limited to wavelengths much smaller than the Larmor radius). The reflection and transmission coefficients and the total energy absorption are given in this approximation, whereas the energy conservation theorem for the reflection and transmission coefficients in an absorption-free plasma are derived for every value of η without explicit knowledge of the solutions. Finally, a general and compact equation for the eigenvalues which does not require complex analysis and knowledge of all solutions of the dispersion relation is given. (orig.)
Dust confinement and dust acoustic waves in a magnetized plasma
Piel, A.
2005-10-01
Systematic laboratory experiments on dust acoustic waves require the confinement of dust particles. Here we report on new experiments in a magnetized plasma region in front of an additional positively biased disk electrode in a background plasma which is generated in argon at 27MHz between a disk and grid electrode. The plasma diffuses through the grid along the magnetic field. The three-dimensional dust distribution is measured with a horizontal sheet of laser light and a CCD camera, which are mounted on a vertical translation stage. Depending on magnetic field and discharge current, cigar or donut-shaped dust clouds are generated, which tend to rotate about the magnetic field direction. Measurements with emissive probes show that the axial confinement of dust particles with diameters between 0.7-2 μm is achieved by a balance of ion-drag force and electric field force. Dust levitation and radial confinement is due to a strong radial electric field. Dust acoustic waves are destabilized by the ion flow or can be stimulated by a periodic bias on the disk electrode. The observed wave dispersion is compared with fluid and kinetic models of the dust acoustic wave.
Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III
2017-12-01
Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with
Role of plasma equilibrium current in Alfven wave antenna optimization
International Nuclear Information System (INIS)
Puri, S.
1986-12-01
The modifications in the antenna loading produced by the plasma equilibrium current, the Faraday shield, and the finite electron temperature for coupling to the Alfven waves are studied using a self-consistent, three-dimensional, fully analytic periodic-loop-antenna model. The only significant changes are found to occur due to the plasma current and consist of an improved coupling (by a factor of ∝ 2.5) at low toroidal numbers (n ∝ 1-3). Despite this gain, however, the coupling to low n continues to be poor with R=0.03 Ω and Q=180 for n=2. Optimum coupling with R=0.71 Ω and Q=16.8 occurs for n=8 as was also the case in the absence of the plasma current. For the large n values, mode splitting due to the removal of the poloidal degeneracy combined with the finite electron temperatures effects lead to significant broadening of the energy absorption profile. Direct antenna coupling to the surface shear wave is small and no special provision, such as Faraday shielding, may be needed for preventing surface losses. The introduction of the Faraday screen, in fact, increases the coupling to the surface shear wave, possibly by acting as an impedance matching transformer between the antenna and the plasma. The finite electron temperature causes the predictable increase in the absorption width without influencing the antenna coupling. Thus the recommendations for antenna design for optimum coupling to the Alfven wave remain unaffected by the inclusion of the plasma current. Efficient coupling with capabilities for dynamic impedance tracking through purely electronic means may be obtained using a dense-cluster-array antenna with a toroidal configuration of n ∝ 8. (orig.)
Surface impedance of travelling--Wave antenna in magnetized plasma
International Nuclear Information System (INIS)
Denisenko, I.B.; Ostrikov, K.N.
1993-01-01
Wave properties of metal antennas immersed in a magnetoactive plasma are intensively studied nowadays with the objects of radio communications in ionosphere, plasma heating, gas discharge technique. Many papers are devoted to studies of sheath waves (SW) in magnetoplasma, which are surface by nature and propagate along the metal-low-density sheath-plasma waveguide structure. The results of these papers suggest that the existence of these waves makes significant contribution in antenna impedance. Note that the impedance measurement is one of possible ways of experimental surface waves characterization. In the present report the surface impedance of travelling SW antenna immersed in magnetoactive plasma is calculated and its dependence on the waveguide structure parameters such as plasma density, external magnetic field H 0 and electrons collisional frequency values, sheath region width, conductivity of metal surface is studied. The calculations have been carried out in a quasiplane approximation, when antenna radius greatly exceeds the SW skin depth. Note that the finite conductivity of metal is necessary to be taken into account to provide a finite surface impedance value. The surface impedance is calculated in two cases, namely when SW propagate along (Ζ parallel ) and across (Ζ perpendicular ) the external magnetic field. The relation between the values Ζ parallel and Ζ perpendicular is obtained. This relation shows that the values Ζ parallel and Ζ parallel may satisfy both inequalities Ζ parallel much-gt Ζ perpendicular and Ζ perpendicular approx-gt Ζ perpendicular dependent on the parameters of the structure. The comparison of dispersion properties of the SW propagating along Η 0 with the experimental results is carried out. The results are shown to satisfactorily correspond to the experimental results
Numerical Computation of Wave-Plasma Interactions in Multi-Dimensional Systems
International Nuclear Information System (INIS)
D. A. D'Ippolito; J. R. Myra
2005-01-01
This project studied two kinds of nonlinear interactions between ion cyclotron range of frequency waves and fusion plasmas. A wavelet technique was also developed for analyzing the complex wave fields produced by wave propagation codes
International Nuclear Information System (INIS)
Nishida, Y.; Hirose, A.
1977-01-01
The refraction and convergence of ion acoustic waves are experimentally investigated in a magnetized plasma with an electron temperature gradient. When ion acoustic waves are launched parallel to the field lines the waves converge toward the interior of the plasma column where the electron temperature is lower, in good agreement with theoretical prediction. Wave interference is also observed. (author)
The rate of plasma heating by harmonic ion cyclotron waves in tokamaks
International Nuclear Information System (INIS)
Moslehi-Fard, M.; Sobhanian, S.; Solati-Kia, F.
2002-01-01
In tokamaks, the toroidal magnetic field, B φ , is due to the current in coils around plasma, and the poloidal magnetic field B p results from the plasma itself. Usually B φ p , and the combination of these two fields forms a nested set of toroidal magnetic surfaces. The equilibrium Grad-Shafranov equation is investigated and it is shown that the particle products of fusion with different pitch angles on these surfaces have different orbital shapes. In the JET tokamak, the α particles with pitch angle θ smaller than 54.8 deg are passing, those with θ between 54.8 deg and 65.1 deg have trapping-passing orbits but for θ greater than 65.1 deg the orbit has a banana form. Other tokamaks such as Alcator and ITER are also considered. The passing, trapping-passing and banana orbits in these tokamaks are traced. The results obtained from this calculation are analyzed. The wave damping has been investigated produced from interaction with particles, particularly α particles, and the rate of heating for l = 1 to 8 harmonics is plotted. The results of calculation show that heating at the fourth harmonic reaches a maximum. For higher harmonics, the heating does not change much from the fourth harmonic. (author)
Gurnett, D. A.
2017-12-01
Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.
Varjú, Imre; Longstaff, Colin; Szabó, László; Farkas, Ádám Zoltán; Varga-Szabó, Veronika Judit; Tanka-Salamon, Anna; Machovich, Raymund; Kolev, Krasimir
2015-06-01
In response to various inflammatory stimuli, neutrophils secrete neutrophil extracellular traps (NETs), web-like meshworks of DNA, histones and granular components forming supplementary scaffolds in venous and arterial thrombi. Isolated DNA and histones are known to promote thrombus formation and render fibrin clots more resistant to mechanical forces and tissue-type plasminogen activator (tPA)-induced enzymatic digestion. The present study extends our earlier observations to a physiologically more relevant environment including plasma clots and NET-forming neutrophils. A range of techniques was employed including imaging (scanning electron microscopy (SEM), confocal laser microscopy, and photoscanning of macroscopic lysis fronts), clot permeability measurements, turbidimetric lysis and enzyme inactivation assays. Addition of DNA and histones increased the median fibre diameter of plasma clots formed with 16 nM thrombin from 108 to 121 and 119 nm, respectively, and decreased their permeability constant from 6.4 to 3.1 and 3.7×10(-9) cm(2). Histones effectively protected thrombin from antithrombin-induced inactivation, while DNA inhibited plasminogen activation on the surface of plasma clots and their plasmin-induced resolution by 20 and 40 %, respectively. DNA and histones, as well as NETs secreted by phorbol-myristate-acetate-activated neutrophils, slowed down the tPA-driven lysis of plasma clots and the latter effect could be reversed by the addition of DNase (streptodornase). SEM images taken after complete digestion of fibrin in NET-containing plasma clots evidenced retained NET scaffold that was absent in DNase-treated clots. Our results show that DNA and histones alter the fibrin architecture in plasma clots, while NETs contribute to a decreased lytic susceptibility that can be overcome by DNase.
Dubin, D. H. E.
This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.
Plasma waves generated by rippled magnetically focused electron beams surrounded by tenuous plasmas
International Nuclear Information System (INIS)
Cuperman, S.; Petran, F.
1982-01-01
This chapter investigates the electrostatic instability and the corresponding unstable wave spectrum of magnetically focused neutralized rippled electron beams under spacelike conditions. Topics considered include general equations and equilibrium, the derivation of the dispersion relation, and the solution of the dispersion relation (long wavelength perturbations, short wavelength perturbations, the rippled beam). The results indicate that in the long wavelength limit two types of instability (extending over different frequency ranges) exist. An instability of the beam-plasma type occurs due to the interaction between the beam electrons and the surrounding plasm electrons at the beam-plasma interface. A parametric type instability is produced by the coupling of a fast forward wave and a fast backward wave due to the rippling (modulation) of the beam. It is demonstrated that in the short wavelength limit, surface waves which are stable for the laminar beam may become unstable in the rippled beam case
International Nuclear Information System (INIS)
Du, X.D.; Toi, K.; Osakabe, M.
2014-10-01
A resistive interchange mode with bursting behavior and rapid frequency chirping in the range less than 10 kHz is observed for the first time in the magnetic hill region of net current-free, low beta LHD (Large Helical Device) plasmas during high power injection of perpendicular neutral beams. The mode resonates with the precession motion of helically trapped energetic beam ions, following the resonant condition. The radial mode structure is found to be very similar to that of usual pressure-driven interchange mode, of which radial displacement eigenfunction has an even function around the rational surface. This beam driven mode is excited when the beta value of helically trapped energetic ions exceed a certain threshold. The radial transport of helically trapped energetic ions induced by the mode transiently generates significant radial electric field near the plasma peripheral region. Thus generated radial electric field clearly suppresses micro turbulence and improves bulk plasma confinement, suggesting strong flow shear generation. (author)
Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice
Matlis, Eric; Corke, Thomas; Hoffman, Anthony
2017-11-01
Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.
Longitudinal traveling waves bifurcating from Vlasov plasma equilibria
International Nuclear Information System (INIS)
Holloway, J.P.
1989-01-01
The kinetic equations governing longitudinal motion along a straight magnetic field in a multi-species collisionless plasma are investigated. A necessary condition for the existence of small amplitude spatially periodic equilibria and traveling waves near a given spatially uniform background equilibrium is derived, and the wavelengths which such solutions must approach as their amplitude decreases to zero are discussed. A sufficient condition for the existence of these small amplitude waves is also established. This is accomplished by studying the nonlinear ODE for the potential which arises when the distribution functions are represented in a BGK form; the arbitrary functions of energy that describe the BGK representation are tested as an infinite dimensional set of parameters in a bifurcation theory for the ODE. The positivity and zero current condition in the wave frame of the BGK distribution functions are maintained. The undamped small amplitude nonlinear waves so constructed can be made to satisfy the Vlasov dispersion relation exactly, but in general they need only satisfy it approximately. Numerical calculations reveal that even a thermal equilibrium electron-proton plasma with equal ion and electron temperatures will support undamped traveling waves with phase speeds greater than 1.3 times the electron velocity; the dispersion relation for this case exhibits both Langmuir and ion-acoustic branches as long wavelength limits, and shows how these branches are in fact connected by short wavelength waves of intermediate frequency. In apparent contradiction to the linear theory of Landau, these exact solutions of the kinetic equations do not damp; this contradiction is explained by observing that the linear theory is, in general, fundamentally incapable of describing undamped traveling waves
Relation of wave energy and momentum with the plasma dispersion relation in an inhomogeneous plasma
International Nuclear Information System (INIS)
Berk, H.L.; Pfirsch, D.
1988-01-01
The expressions for wave energy and angular momentum commonly used in homogeneous and near-homogeneous media is generalized to inhomogeneous media governed by a nonlocal conductivity tensor. The expression for wave energy applies to linear excitations in an arbitrary three-dimensional equilibrium, while the expression for angular momentum applies to linear excitations of azimuthally symmetric equilibria. The wave energy E-script/sub wave/ is interpreted as the energy transferred from linear external sources to the plasma if there is no dissipation. With dissipation, such a simple interpretation is lacking as energy is also thermally absorbed. However, for azimuthally symmetric equilibria, the expression for the wave energy in a frame rotating with a frequency ω can be unambiguously separated from thermal energy. This expression is given by E-script/sub wave/ -ωL/sub wave/ l, where L/sub wave/ is the wave angular momentum defined in the text and l the azimuthal wavenumber and it is closely related to the real part of a dispersion relation for marginal stability. The imaginary part of the dispersion is closely related to the energy input into a system. Another useful quantity discussed is the impedance form, which can be used for three-dimensional equilibrium without an ignorable coordinate and the expression is closely related to the wave impedance used in antenna theory. Applications to stability theory are also discussed
Suitability of tunneling ionization produced plasmas for the plasma beat wave accelerator
International Nuclear Information System (INIS)
Leeman, W.P.; Clayton, C.E.; Marsh, K.A.; Dyson, A.; Joshi, C.
1991-01-01
Tunneling ionization can be thought of as the high intensity, low frequency limit of multi-photon ionization (MPI). Extremely uniform plasmas were produced by the latter process at Rutherford lab for beat wave excitation experiments using a 0.5 μm laser. Plasmas with 100% ionization were produced with densities exceeding 10 17 cm -3 . The experiment uses a CO 2 laser (I max ∼ 5 x 10 14 W/cm 2 ) which allows the formation of plasmas via the tunneling process. For the experiments the authors need plasmas with densities in the range of 5 to 10 x 10 16 cm -3 . Using Thomson scattering as a diagnostic they have explored the density and temperature regime of tunneling ionization produced plasmas. They find that plasmas with densities up to 10 16 cm -3 can indeed be produced and that these plasmas are hot. Beyond this density strong refraction of laser radiation occurs due to the radial profile of the plasma. Implications of this work to the Beat Wave Accelerator program will be discussed
Electron cyclotron waves, transport and instabilities in hot plasmas
International Nuclear Information System (INIS)
Westerhof, E.
1987-01-01
A number of topics relevant to the magnetic confinement approach to the thermonuclear fusion is addressed. The absorption and emission of electron cyclotron waves in a thermal plasma with a small population of supra-thermal, streaming electrons is examined and the properties of electron cyclotron waves in a plasma with a pure loss-cone distribution are studied. A report is given on the 1-D transport code simulations that were performed to assist the interpretation of the electron cyclotron heating experiments on the TFR tokamak. Transport code simulations of sawteeth discharges in the T-10 tokamak are discussed in order to compare the predictions of different models for the sawtooth oscillations with the experimental findings. 149 refs.; 69 figs.; 7 tabs
PLASMA-WAVE GENERATION IN A DYNAMIC SPACETIME
Energy Technology Data Exchange (ETDEWEB)
Yang, Huan [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L2Y5 (Canada); Zhang, Fan [Gravitational Wave and Cosmology Laboratory, Department of Astronomy, Beijing Normal University, Beijing 100875 (China)
2016-02-01
We propose a new electromagnetic (EM)-emission mechanism in magnetized, force-free plasma, which is driven by the evolution of the underlying dynamic spacetime. In particular, the emission power and angular distribution of the emitted fast-magnetosonic and Alfvén waves are separately determined. Previous numerical simulations of binary black hole mergers occurring within magnetized plasma have recorded copious amounts of EM radiation that, in addition to collimated jets, include an unexplained, isotropic component that becomes dominant close to the merger. This raises the possibility of multimessenger gravitational-wave and EM observations on binary black hole systems. The mechanism proposed here provides a candidate analytical characterization of the numerical results, and when combined with previously understood mechanisms such as the Blandford–Znajek process and kinetic-motion-driven radiation, it allows us to construct a classification of different EM radiation components seen in the inspiral stage of compact-binary coalescences.
Nonlinear electrostatic wave equations for magnetized plasmas - II
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....
Mathematical preliminaries for a study of waves in a plasma
International Nuclear Information System (INIS)
Trocheris, M.
1965-01-01
This report contains the detailed proofs of mathematical results which are used in a study of the linear and 'quasi-linear' approximation for 'electrostatic' waves in a uniform plasma. Certain classes of functions of a complex variable, which are analytic in a strip parallel to the real axis, are defined and studied. In particular, properties of convergence of a sequence and of continuity with respect to a parameter are established for functions remaining inside one such class. The results are used to prove an existence theorem for the simplest equation in the quasi-linear theory of plasma waves. A number of elementary lemmas are used in the text and proved in an appendix. (author) [fr
Excitation of plasma waves by electron guns at the ISEE-1 satellite
International Nuclear Information System (INIS)
Lebreton, Zh.P.; Torbert, R.; Anderson, R.; Kharvi, K.
1985-01-01
Study of the effects resulting from excitation of plasma waves by electron beams injected from JSEE-1 satellite is carried out. Cases of the satellite traversing the magnetosphere magnetosheath and solar wind are considered. 10-60 μA and 0-40 V electron beam injection from the satellite increased electrostatic waves spectral intensity. The waves below ionic plasma frequency are interpreted as ion acoustic waves. To explain the-above-electron-plasma-frequency wave oscillation a communication system between electron plasma mode and electron flux with the velocities above the mean thermal velocity of plasma cold electrons is suggested
Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas
International Nuclear Information System (INIS)
Bruma, C.; Cuperman, S.; Komoshvili, K.
1997-01-01
This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({ω Alf (r)} min Alf (r)} max ) and discrete range, DR, where global Alfven eigenmodes, GAEs (ω Alf (r)} min ) exist, are considered. (Here, ω Alf (r) ≡ ω Alf [n(r), B 0 (r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author)
Ion-Bernstein wave mode conversion in hot tokamak plasmas
International Nuclear Information System (INIS)
Jaun, A.; Hellsten, T.; Chiu, S.C.
1997-08-01
Mode conversion at the second harmonic cyclotron resonance is studied in a toroidal plasma, showing how the ion-Bernstein wave can dramatically affect the power profile and partition among the species. The results obtained with the gyrokinetic toroidal PENN code in particular suggest that off-axis electron and second harmonic core ion heating should become important when the temperatures in JET reach 10 keV. (author) 1 fig., 11 refs
Pulsed lower-hybrid wave penetration in reactor plasmas
International Nuclear Information System (INIS)
Cohen, R.H.; Bonoli, P.T.; Porkolab, M.; Rognlien, T.D.
1989-01-01
Providing lower-hybrid power in short, intense (GW) pulses allows enhanced wave penetration in reactor-grade plasmas. We examine nonlinear absorption, ray propagation, and parametric instability of the intense pulses. We find that simultaneously achieving good penetration while avoiding parametric instabilities is possible, but imposes restrictions on the peak power density, pulse duration, and/or r.f. spot shape. In particular, power launched in narrow strips, elongated along the field direction, is desired
Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.; Liu, S. F.
2014-05-01
The coupling of ion temperature gradient (ITG or ηi) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ηi (ηi≤1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient Lez=Lne/Lnz>1 (LezTEMs in large ηi (ηi≥1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.
Drift wave coherent vortex structures in inhomogeneous plasmas
International Nuclear Information System (INIS)
Su, X.N.
1992-01-01
Nonlinear drift wave vortex structures in magnetized plasmas are studied theoretically and numerically in the various physical environments. The effects of density and temperature gradients on drift wave vortex dynamics are analyzed using a fully nonlinear model with the Boltzmann density distribution. The equation, based on the full Boltzmann relation, possess no localized monopole solution in the short wavelength (∼ρ s ) region, while in the longer wavelength (∼(ρ s (r) n ) 1/2 ) region the density profile governs the existence of monopole-like solutions. In the longer wavelength regime, however, the monopoles cannot be localized sufficiently to avoid coupling to propagating drift waves due to the inhomogeneity of the plasma. Thus, the monopole vortex is a long lived coherent structure, but it is not precisely a stationary structure since the coupling results in a open-quote flapping close-quote tail. The tail causes energy of the vortex to leak out, but the effect of the temperature gradient is to reduce the leaking of this energy. Nonlinear coherent structures governing by the coupled drift wave-ion acoustic mode equations in sheared magnetic field are studied analytically and numerically. A solitary vortex equation that includes the effects of density and temperature gradients and magnetic shear is derived and analyzed. The results show that for a plasma in a sheared magnetic field, there exist the solitary vortex solutions. The new vortex structures are dipole-like in their symmetry, but not the modon type of dipoles. The numerical simulations are performed in 2-D with the coupled vorticity and parallel mass flow equations. The vortex structures in an unstable drift wave system driven by parallel shear flow are studied. The nonlinear solitary vortex solutions are given and the formation of the vortices from a turbulent state is observed from the numerical simulations
Ulysses radio and plasma wave observations in the jupiter environment.
Stone, R G; Pedersen, B M; Harvey, C C; Canu, P; Cornilleau-Wehrlin, N; Desch, M D; de Villedary, C; Fainberg, J; Farrell, W M; Goetz, K; Hess, R A; Hoang, S; Kaiser, M L; Kellogg, P J; Lecacheux, A; Lin, N; Macdowall, R J; Manning, R; Meetre, C A; Meyer-Vernet, N; Moncuquet, M; Osherovich, V; Reiner, M J; Tekle, A; Thiessen, J; Zarka, P
1992-09-11
The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of aurorallike hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the lo plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the lo torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.
FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma
Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun
2016-08-01
The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)