KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Testing THEMIS wave measurements against the cold plasma theory
Taubenschuss, Ulrich; Santolik, Ondrej; Le Contel, Olivier; Bonnell, John
2016-04-01
The THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission records a multitude of electromagnetic waves inside Earth's magnetosphere and provides data in the form of high-resolution electric and magnetic waveforms. We use multi-component measurements of whistler mode waves and test them against the theory of wave propagation in a cold plasma. The measured ratio cB/E (c is speed of light in vacuum, B is magnetic wave amplitude, E is electric wave amplitude) is compared to the same quantity calculated from cold plasma theory over linearized Faraday's law. The aim of this study is to get estimates for measurement uncertainties, especially with regard to the electric field and the cold plasma density, as well as evaluating the validity of cold plasma theory inside Earth's radiation belts.
Linear theory of plasma filled backward wave oscillator
Indian Academy of Sciences (India)
Preeti Vyas; Arti Gokhale; Y Choyal; K P Maheshwari
2001-05-01
An analytical and numerical study of backward wave oscillator (BWO) in linear regime is presented to get an insight into the excitation of electromagnetic waves as a result of the interaction of the relativistic electron beam with a slow wave structure. The effect of background plasma on the BWO instability is also presented.
Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.
Schroeder, C B; Esarey, E
2010-05-01
A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.
Swanson, DG
1989-01-01
Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th
A New Look at the Landau's Theory of Spreading and Damping of Waves in Collisionless Plasmas
Soshnikov, V N
2008-01-01
The theory of plasma waves and Landau damping in Maxwellian plasmas, Landau's ``rule of pass around poles'' include doubtful statements, particularly related to an artificial ``constructing'' of the dispersion equation, what should allow the possibility of its solution otherwise not existing at all, and the possibility of analytical continuations of corresponding very specific ruptured functions in the one-dimensional Laplace transformation, used by Landau, what is the base of his theory. We represent, as an accessible variant, a more general alternative theory based on a two-dimensional Laplace transformation, leading to an asymptotical in time and space solution as a complicated superposition of coupled damping and {\\em non-damping \\/} plane waves and oscillations with different dispersion laws for every constituent mode. This theory naturally and very simply explains paradoxes of the phenomenon of plasma echo. We propose for discussion a new ideology of plasma waves (both electron and ion-acoustic waves) q...
Sound waves in strongly coupled non-conformal gauge theory plasma
Benincasa, Paolo; Buchel, Alex; Starinets, Andrei O.
2006-01-01
Using gauge theory/gravity duality we study sound wave propagation in strongly coupled non-conformal gauge theory plasma. We compute the speed of sound and the bulk viscosity of N=2 supersymmetric SU(N) Yang-Mills plasma at a temperature much larger than the mass scale of the theory in the limit of large N and large 't Hooft coupling. The speed of sound is computed both from the equation of state and the hydrodynamic pole in the stress-energy tensor two-point correlation function. Both computations lead to the same result. Bulk viscosity is determined by computing the attenuation constant of the sound wave mode.
Lominadze, D G
2013-01-01
Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f
Directory of Open Access Journals (Sweden)
D. L. Hysell
Full Text Available Large-scale (l ~ 1 km waves in the daytime and night-time equatorial electrojet are studied using coherent scatter radar data from Jicamarca. Images of plasma irregularities within the main beam of the radar are formed using interferometry with multiple baselines. These images are analyzed according to nonlocal gradient drift instability theory and are also compared to nonlinear computer simulations carried out recently by Ronchi et al. (1991 and Hu and Bhattacharjee (1999. In the daytime, the large-scale waves assume a non-steady dynamical equilibrium state characterized by the straining and destruction of the waves by shear and diffusion followed by spontaneous regeneration as predicted by Ronchi et al. (1991. At night, when steep plasma density gradients emerge, slowly propagating large-scale vertically extended waves predominate. Eikonal analysis suggests that these waves are trapped (absolutely unstable or are nearly trapped (convectively unstable and are able to tunnel between altitude regions which are locally unstable. Intermediate-scale waves are mainly transient (convectively stable but can become absolutely unstable in narrow altitude bands determined by the background density profile. These characteristics are mainly consistent with the simulations presented by Hu and Bhattacharjee (1999. A new class of large-scale primary waves is found to occur along bands that sweep westward and downward from high altitudes through the E-region at twilight.
Key words. Ionosphere (equatorial ionosphere; ionospheric irregularities; plasma waves and instabilities
Theory of wave propagation along waveguide filled with plasma in finite magnetic field
Institute of Scientific and Technical Information of China (English)
刘盛纲; J.K.Lee; 祝大军
1996-01-01
Rigorous analytical theory of wave propagation along a cylindrical waveguide filled with plasmas in a dielectric tube immersed in finite magnetic field is presented.The field components’ expressions,eigenvalues,dispersion equations and complex wave power transmission equations have been obtained rigorously and discussed in detail.It is shown analytically that there is no disruption of the wave propagationin the ECR (ω=ωa) case,although the electrical permittivities approach to infinite in the case,and it hasbeen found that a real resonance takes place in this case while ω=(ωa2+ωpc2)1/2,in which the wave propagationof any mode is broken.The effective collisions are taken into consideration in the theory.Based on the above theory,the analytical theory of corrugated plasma waveguide immersed in finite axial magnetic field is also presented.The Floquet’s expansion of field components,the dispersion equations,and the coupling coefficients of the corrugated plasma waveguide have been derived rigorously a
Sound waves in strongly coupled non-conformal gauge theory plasma
Benincasa, P; Starinets, A O; Benincasa, Paolo; Buchel, Alex; Starinets, Andrei O.
2005-01-01
Using gauge theory/gravity duality we study sound wave propagation in strongly coupled non-conformal gauge theory plasma. We compute the speed of sound and the bulk viscosity of N=2^* supersymmetric SU(N_c) Yang-Mills plasma at a temperature much larger than the mass scale of the theory in the limit of large N_c and large 't Hooft coupling. The speed of sound is computed both from the equation of state and the hydrodynamic pole in the stress-energy tensor two-point correlation function. Both computations lead to the same result. Bulk viscosity is determined by computing the attenuation constant of the sound wave mode.
Sound waves in strongly coupled non-conformal gauge theory plasma
Energy Technology Data Exchange (ETDEWEB)
Benincasa, Paolo [Department of Applied Mathematics, University of Western Ontario, London, ON N6A 5B7 (Canada); Buchel, Alex [Department of Applied Mathematics, University of Western Ontario, London, ON N6A 5B7 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9 (Canada); Starinets, Andrei O. [Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9 (Canada)]. E-mail: starina@perimeterinstitute.ca
2006-01-16
Using gauge theory/gravity duality we study sound wave propagation in strongly coupled non-conformal gauge theory plasma. We compute the speed of sound and the bulk viscosity of N=2* supersymmetric SU(N{sub c}) Yang-Mills plasma at a temperature much larger than the mass scale of the theory in the limit of large N{sub c} and large 't Hooft coupling. The speed of sound is computed both from the equation of state and the hydrodynamic pole in the stress-energy tensor two-point correlation function. Both computations lead to the same result. Bulk viscosity is determined by computing the attenuation constant of the sound wave mode.
Sound waves in strongly coupled non-conformal gauge theory plasma
Benincasa, Paolo
2005-01-01
Gauge/string correspondence provides an efficient method to investigate gauge theories. In this talk we discuss the results of the paper (to appear) by P. Benincasa, A. Buchel and A. O. Starinets, where the propagation of sound waves is studied in a strongly coupled non-conformal gauge theory plasma. In particular, a prediction for the speed of sound as well as for the bulk viscosity is made for the N=2* gauge theory in the high temperature limit. As expected, the results achieved show a devi...
Kinetic theory for radiation interacting with sound waves in ultrarelativistic pair plasmas
Marklund, M; Stenflo, L
2006-01-01
A kinetic theory for radiation interacting with sound waves in an ultrarelativistic electron-positron plasma is developed. It is shown that the effect of a spatial spectral broadening of the electromagnetic pulse is to introduce a reduction of the growth rates for the decay and modulational instabilities. Such spectral broadening could be due to a finite pulse coherence length, or through the use of random phase filters, and would stabilize the propagation of electromagnetic pulses.
Sound waves in strongly coupled non-conformal gauge theory plasma
Benincasa, P
2005-01-01
Gauge/string correspondence provides an efficient method to investigate gauge theories. In this talk we discuss the results of the paper (to appear) by P. Benincasa, A. Buchel and A. O. Starinets, where the propagation of sound waves is studied in a strongly coupled non-conformal gauge theory plasma. In particular, a prediction for the speed of sound as well as for the bulk viscosity is made for the N=2* gauge theory in the high temperature limit. As expected, the results achieved show a deviation from the speed of sound and the bulk viscosity for a conformal theory. It is pointed out that such results depend on the particular gauge theory considered.
Arshad, Kashif; Poedts, Stefaan; Lazar, Marian
2017-04-01
Nowadays electromagnetic (EM) fields have various applications in fundamental research, communication, and home appliances. Even though, there are still some subtle features of electromagnetic field known to us a century ago, yet to be utilized. It is because of the technical complexities to sense three dimensional electromagnetic field. An important characteristic of electromagnetic field is its orbital angular momentum (OAM). The angular momentum consists of two distinct parts; intrinsic part associated with the wave polarization or spin, and the extrinsic part associated with the orbital angular momentum (OAM). The orbital angular momentum (OAM) is inherited by helically phased light or helical (twisted) electric field. The investigations of Allen on lasers carrying orbital angular momentum (OAM), has initiated a new scientific and technological advancement in various growing fields, such as microscopy and imaging, atomic and nano-particle manipulation, ultra-fast optical communications, quantum computing, ionospheric radar facility to observe 3D plasma dynamics in ionosphere, photonic crystal fibre, OAM entanglement of two photons, twisted gravitational waves, ultra-intense twisted laser pulses and astrophysics. Recently, the plasma modes are also investigated with orbital angular momentum. The production of electron vortex beams and its applications are indicated by Verbeeck et al. The magnetic tornadoes (rotating magnetic field structures) exhibit three types of morphology i.e., spiral, ring and split. Leyser pumped helical radio beam carrying OAM into the Ionospheric plasma under High Frequency Active Auroral Research Program (HAARP) and characteristic ring shaped morphology is obtained by the optical emission spectrum of pumped plasma turbulence. The scattering phenomenon like (stimulated Raman and Brillouin backscattering) is observed to be responsible for the interaction between electrostatic and electromagnetic waves through orbital angular momentum. The
Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.
1990-01-01
The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.
Kinetic theory of the interaction of gravitational waves with a plasma
Energy Technology Data Exchange (ETDEWEB)
Galtsov, D.V.; Melkumova, E.Iu.
1983-01-01
The interaction of weak gravitational waves (GWs) with a plasma is described in terms of kinetic equations and is reduced to the mutual excitation and a energy exchange between the GW, plasmons, and charged particles of the plasma. The approach used is based on elementary quantum considerations, which makes it possible to obtain a closed system of balance equations for the distribution functions of plasma particles, plasmons, and gravitons. The calculation of probabilities included in the balance equations is based on the correspondence principle, which makes it necessary to consider only those processes which accompany gravitational-wave emission. Particular consideration is given to the gravitational susceptibility of the plasma, gravitational-wave generation during the merging of plasma waves, and the 'super-light-speed' Cerenkov emission of gravitational waves from a plasma filament.
Relativistic spherical plasma waves
Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.
2012-02-01
Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.
Magnetoresistive waves in plasmas
Felber, F. S.; Hunter, R. O., Jr.; Pereira, N. R.; Tajima, T.
1982-10-01
The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed.
Waves and instabilities in plasmas
Chen Liu
1987-01-01
The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.
Directory of Open Access Journals (Sweden)
D. Y. Klimushkin
Full Text Available The structure of monochromatic MHD-waves with large azimuthal wave number m≫1 in a two-dimensional model of the magnetosphere has been investigated. A joint action of the field line curvature, finite plasma pressure, and transversal equilibrium current leads to the phenomenon that waves, standing along the field lines, are travelling across the magnetic shells. The wave propagation region, the transparency region, is bounded by the poloidal magnetic surface on one side and by the resonance surface on the other. In their meaning these surfaces correspond to the usual and singular turning points in the WKB-approximation, respectively. The wave is excited near the poloidal surface and propagates toward the resonance surface where it is totally absorbed due to the ionospheric dissipation. There are two transparency regions in a finite-beta magnetosphere, one of them corresponds to the Alfvén mode and the other to the slow magnetosound mode.
Key words. Magnetosphere · Azimuthally small-scale waves · MHD waves
Relativistic spherical plasma waves
Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P
2011-01-01
Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.
Theory and Observations of Plasma Waves Excited Space Shuttle OMS Burns in the Ionosphere
Bernhardt, P. A.; Pfaff, R. F.; Schuck, P. W.; Hunton, D. E.; Hairston, M. R.
2010-12-01
Measurements of artificial plasma turbulence were obtained during two Shuttle Exhaust Ionospheric Turbulence Experiments (SEITE) conducted during the flights of the Space Shuttle (STS-127 and STS-129). Based on computer modeling at the NRL PPD and Laboratory for Computational Physics & Fluid Dynamics (LCP), two dedicated burns of the Space Shuttle Orbital Maneuver Subsystem (OMS) engines were scheduled to produce 200 to 240 kg exhaust clouds that passed over the Air Force Research Laboratory (AFRL) Communications, Navigation, and Outage Forecast System (C/NOFS) satellite. This operation required the coordination by the DoD Space Test Program (STP), the NASA Flight Dynamics Officer (FDO), the C/NOFS payload operations, and the C/NOFS instrument principal investigators. The first SEITE mission used exhaust from a 12 Second OMS burn to deposit 1 Giga-Joules of energy into the upper atmosphere at a range of 230 km from C/NOFS. The burn was timed so C/NOFS could fly though the center of the exhaust cloud at a range of 87 km above the orbit of the Space Shuttle. The first SEITE experiment is important because is provided plume detection by ionospheric plasma and electric field probes for direct sampling of irregularities that can scatter radar signals. Three types of waves were detected by C/NOFS during and after the first SEITE burn. With the ignition and termination of the pair of OMS engines, whistler mode signals were recorded at C/NOFS. Six seconds after ignition, a large amplitude electromagnetic pulse reached the satellite. This has been identified as a fast magnetosonic wave propagating across magnetic field lines to reach the electric field (VEFI) sensors on the satellite. Thirty seconds after the burn, the exhaust cloud reach C/NOFS and engulfed the satellite providing very strong electric field turbulence along with enhancements in electron and ion densities. Kinetic modeling has been used to track the electric field turbulence to an unstable velocity
Gurnett, Donald A.
1995-01-01
An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.
Liu, Chang
2015-01-01
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the ?first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
Fundamental plasma emission involving ion sound waves
Cairns, Iver H.
1987-01-01
The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.
Undamped electrostatic plasma waves
Valentini, F; Califano, F; Pegoraro, F; Veltri, P; Morrison, P J; O'Neil, T M
2015-01-01
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named {\\it corner modes}. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the $(k,\\omega_{_R})$ plane ($\\omega_{_R}$ being the real part of the wave frequency and $k$ the wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existenc...
Effect of wave localization on plasma instabilities
Energy Technology Data Exchange (ETDEWEB)
Levedahl, W.K.
1987-01-01
The Anderson model of wave localization in random media is invoked to study the effect of solar-wind density turbulence on plasma processes associated with the solar type-III radio burst. ISEE-3 satellite data indicate that a possible model for the type-III process is the parametric decay of Langmuir waves excited by solar-flare electron streams into daughter electromagnetic and ion-acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir-wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Riegel criteria for wave localization in the solar wind with observed density fluctuations {approximately}1%. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action-principle approach is used to develop a theory of nonlinear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability.
Model of the Dynamics of Plasma-Wave Channels in Magnetized Plasmas
Shirokov, E. A.; Chugunov, Yu. V.
2016-06-01
We analyze the dynamics of the plasma-wave channels excited in magnetized plasmas in the whistler frequency range. A linear theory of excitation of a plasma waveguide by an external source is developed using the quasistatic approximation. Self-consistent spatio-temporal distributions of the electric field of quasipotential waves and plasma density, which are solutions of the nonlinear nonstationary problem of the ionizing self-channeling of waves in plasmas are found on the basis of the linear theory.
Tiec, Alexandre Le
2016-01-01
The existence of gravitational radiation is a natural prediction of any relativistic description of the gravitational interaction. In this chapter, we focus on gravitational waves, as predicted by Einstein's general theory of relativity. First, we introduce those mathematical concepts that are necessary to properly formulate the physical theory, such as the notions of manifold, vector, tensor, metric, connection and curvature. Second, we motivate, formulate and then discuss Einstein's equation, which relates the geometry of spacetime to its matter content. Gravitational waves are later introduced as solutions of the linearized Einstein equation around flat spacetime. These waves are shown to propagate at the speed of light and to possess two polarization states. Gravitational waves can interact with matter, allowing for their direct detection by means of laser interferometers. Finally, Einstein's quadrupole formulas are derived and used to show that nonspherical compact objects moving at relativistic speeds a...
1982-12-31
expan- sion of a warm plasma; launching and propagation and decay of very large amplitude waves (8GK, solitons, etc.); thermal barriers (really...25.373.1981. ION-10N TWO-STREAM IN THERMAL BARRIERS : Vincent-lhonal,U.C.Berkeley. We present stu- dies or the eleclroTatic ion-ion two-stream instability as
Theory and simulation of laser plasma coupling
Energy Technology Data Exchange (ETDEWEB)
Kruer, W.L.
1979-08-09
The theory and simulation of these coupling processes are considered. Particular emphasis is given to their nonlinear evolution. First a brief introduction to computer simulation of plasmas using particle codes is given. Then the absorption of light via the generation of plasma waves is considered, followed by a discussion of stimulated scattering of intense light. Finally these calculations are compared with experimental results.
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Nonlinear plasma wave in magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)
2013-08-15
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.
Effective action approach to wave propagation in scalar QED plasmas
Shi, Yuan; Qin, Hong
2016-01-01
A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we study a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well-known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasma...
DEFF Research Database (Denmark)
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
1993-01-01
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.
Generalized Langmuir Waves in Magnetized Kinetic Plasmas
Willes, A. J.; Cairns, Iver H.
2000-01-01
The properties of unmagnetized Langmuir waves and cold plasma magnetoionic waves (x, o, z and whistler) are well known. However, the connections between these modes in a magnetized kinetic plasma have not been explored in detail. Here, wave properties are investigated by numerically solving the dispersion equation derived from the Vlasov equations both with and without a beam instability present. For omega(sub p)>Omega(sub e), it is shown that the generalized Langmuir mode at oblique propagation angles has magnetic z-mode characteristics at low wave numbers and thermal Langmuir mode characteristics at high wave numbers. For omega(sub p)Langmuir mode instead connects to the whistler mode at low wave numbers. The transition from the Langmuir/z mode to the Langmuir/whistler mode near omega(sub p) = Omega(sub e) is rapid. In addition, the effects on wave dispersion and polarization after adding a beam are investigated. Applications of this theory to magnetized Langmuir waves in Earth's foreshock and the solar wind, to waves observed near the plasma frequency in the auroral regions, and to solar type III bursts are discussed.
Energy Technology Data Exchange (ETDEWEB)
Brodin, G., E-mail: gert.brodin@physics.umu.se [Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Stenflo, L. [Department of Physics, Linköping University, SE-581 83 Linköping (Sweden)
2017-03-18
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.
Shock Wave Dynamics in Weakly Ionized Plasmas
Johnson, Joseph A., III
1999-01-01
An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.
Kinetic Theory of the Inner Magnetospheric Plasma
Khazanov, George V
2011-01-01
This book provides a broad introduction to the kinetic theory of space plasma physics with the major focus on the inner magnetospheric plasma. It is designed to provide a comprehensive description of the different kinds of transport equations for both plasma particles and waves with an emphasis on the applicability and limitations of each set of equations. The major topics are: Kinetic Theory of Superthermal Electrons, Kinetic Foundation of the Hydrodynamic Description of Space Plasmas (including wave-particle interaction processes), and Kinetic Theory of the Terrestrial Ring Current. Distinguishable features of this book are the analytical solutions of simplified transport equations. Approximate analytic solutions of transport phenomena are very useful because they help us gain physical insight into how the system responds to varying sources of mass, momentum and energy and also to various external boundary conditions. They also provide us a convenient method to test the validity of complicated numerical mod...
Nonlinear Plasma Wave in Magnetized Plasmas
Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke
2013-01-01
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].
Michelson, J
2004-01-01
The Matrix Theory that has been proposed for various pp wave backgrounds is discussed. Particular emphasis is on the existence of novel nontrivial supersymmetric solutions of the Matrix Theory. These correspond to branes of various shapes (ellipsoidal, paraboloidal, and possibly hyperboloidal) that are unexpected from previous studies of branes in pp wave geometries.
Cyclotron waves in a non-neutral plasma column
Energy Technology Data Exchange (ETDEWEB)
Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)
2013-04-15
A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.
The energy density of a Landau damped plasma wave
Best, R. W. B.
1999-01-01
In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite
Brodin, G.; Stenflo, L.
2017-03-01
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large.
Ion Acoustic Waves in the Presence of Electron Plasma Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....
Electron waves and resonances in bounded plasmas
Vandenplas, Paul E
1968-01-01
General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.
Tunable Plasma-Wave Laser Amplifier
Bromage, J.; Haberberger, D.; Davies, A.; Bucht, S.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.
2016-10-01
Raman amplification is a process by which a long energetic pump pulse transfers its energy to a counter-propagating short seed pulse through a resonant electron plasma wave. Since its conception, theory and simulations have shown exciting results with up to tens of percent of energy transfer from the pump to the seed pulse. However, experiments have yet to surpass transfer efficiencies of a few percent. A review of past literature shows that largely chirped pump pulses and finite temperature wave breaking could have been the two most detrimental effects. A Raman amplification platform is being developed at the Laboratory for Laser Energetics where a combination of a high-intensity tunable seed laser with sophisticated plasma diagnostics (dynamic Thomson scattering) will make it possible to find the optimal parameter space for high-energy transfer. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Decay of Langmuir wave in dense plasmas and warm dense matter
Son, S; Moon, Sung Joon
2010-01-01
The decays of the Langmuir waves in dense plasmas are computed using the dielectric function theory widely used in the solid state physics. Four cases are considered: a classical plasma, a Maxwellian plasma, a degenerate quantum plasma, and a partially degenerate plasma. The result is considerably different from the conventional Landau damping theory.
Second harmonic plasma emission involving ion sound waves
Cairns, Iver H.
1987-01-01
The theory for second harmonic plasma emission by the weak turbulence (or random phase) processes L + L + or - S to T, proceeding in two three-wave steps, L + or - S to L prime and L + L prime to T, where L, S and T denote Langmuir, ion sound and electromagnetic waves, respectively, is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes, and constraints on the characteristics of the source plasma, are derived. Limits on the brightness temperature of the radiation and the levels of the L prime and S waves are determined. Expressions for the growth rates and path-integrated wave temperatures are derived for simple models of the wave spectra and source plasma.
Institute of Scientific and Technical Information of China (English)
GUO Bin
2009-01-01
Based on the electromagnetic theory and by using an analytical technique-the transfer matrix method,the obliquely incident electromagnetic waves propagating in one-dimension plasma photonic crystals is studied.The dispersion relations for both the P-polarization waves and S-polarization waves,depending on the plasma density,plasma thickness and period,are discussed.
Theory of gas discharge plasma
Smirnov, Boris M
2015-01-01
This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.
Indian Academy of Sciences (India)
Samiran Ghosh; Nikhil Chakrabarti; Manoranjan Khan; M R Gupta
2013-02-01
The conditions for the existence of low-frequency electrostatic drift wave in pair-ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.
Collisional damping rates for plasma waves
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2016-06-01
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Quantum kinetic theories in degenerate plasmas
Brodin, Gert; Ekman, Robin; Zamanian, Jens
2017-01-01
In this review we give an overview of the recent work on quantum kinetic theories of plasmas. We focus, in particular, on the case where the electrons are fully degenerate. For such systems, perturbation methods using the distribution function can be problematic. Instead we present a model that considers the dynamics of the Fermi surface. The advantage of this model is that, even though the value of the distribution function can be greatly perturbed outside the equilibrium Fermi surface, deformation of the Fermi surface is small up to very large amplitudes. Next, we investigate the short-scale dynamics for which the Wigner-Moyal equation replaces the Vlasov equation. In particular, we study wave-particle interaction, and deduce that new types of wave damping can occur due to the simultaneous absorption (or emission) of multiple wave quanta. Finally, we consider exchange effects within a quantum kinetic formalism to find a model that is more accurate than those using exchange potentials from density functional theory. We deduce the exchange corrections to the dispersion relations for Langmuir and ion-acoustic waves. In comparison to results based on exchange potentials deduced from density functional theory we find that the latter models are reasonably accurate for Langmuir waves, but rather inaccurate for ion acoustic waves.
Dichromatic Langmuir waves in degenerate quantum plasma
Dubinov, A. E.; Kitayev, I. N.
2015-06-01
Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.
Electron Acoustic Waves in Pure Ion Plasmas
Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.
2012-10-01
Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.
Low-Frequency Waves in Space Plasmas
Keiling, Andreas; Lee, Dong-Hun; Nakariakov, Valery
2016-02-01
Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.
1980-09-30
William Nevins L439 LLL (422-7032) Lecturers , UCB; Physicists -LLL Dr. William Fawley Guest, UCB; Physicist LLL L321 LLL (422-9272) Yu-Jiuan Chen, Douglas... MHD - Particle Codes." Three abstracts of papers prepared for the APS Division of Plasma Physics Meeting, November 10-14, 1980, at San Diego, follow
Effect of wave localization on plasma instabilities. Ph. D. Thesis
Energy Technology Data Exchange (ETDEWEB)
Levedahl, W.K.
1987-10-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
Plasma Waves as a Benchmark Problem
Kilian, Patrick; Schreiner, Cedric; Spanier, Felix
2016-01-01
A large number of wave modes exist in a magnetized plasma. Their properties are determined by the interaction of particles and waves. In a simulation code, the correct treatment of field quantities and particle behavior is essential to correctly reproduce the wave properties. Consequently, plasma waves provide test problems that cover a large fraction of the simulation code. The large number of possible wave modes and the freedom to choose parameters make the selection of test problems time consuming and comparison between different codes difficult. This paper therefore aims to provide a selection of test problems, based on different wave modes and with well defined parameter values, that is accessible to a large number of simulation codes to allow for easy benchmarking and cross validation. Example results are provided for a number of plasma models. For all plasma models and wave modes that are used in the test problems, a mathematical description is provided to clarify notation and avoid possible misunderst...
Electromagnetic waves in a strong Schwarzschild plasma
Energy Technology Data Exchange (ETDEWEB)
Daniel, J.; Tajima, T.
1996-11-01
The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.
Fusion Plasma Theory project summaries
Energy Technology Data Exchange (ETDEWEB)
1993-10-01
This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.
Solitary Waves in Relativistic Electromagnetic Plasma
Institute of Scientific and Technical Information of China (English)
XIE Bai-Song; HUA Cun-Cai
2005-01-01
Solitary waves in relativistic electromagnetic plasmas are obtained numerically. The longitudinal momentum of electrons has been taken into account in the problem. It is found that in the moving frame with electromagnetic field propagating the solitary waves can exist in both cases, where the vector potential frequency is larger or smaller than the plasma characteristic frequency.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Energy Technology Data Exchange (ETDEWEB)
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
Alfven Wave Tomography for Cold MHD Plasmas
Energy Technology Data Exchange (ETDEWEB)
I.Y. Dodin; N.J. Fisch
2001-09-07
Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.
Magnetohydrodynamic waves in fusion and astrophysical plasmas.
Goedbloed, J. P.
Macroscopic plasma dynamics in both controlled thermonuclear confinement machines and in the atmospheres of X-ray emitting stars is described by the equations of magnetohydrodynamics. This provides a vast area of overlapping research activities which is presently actively pursued. In this lecture the author concentrates on some important differences in the dynamics of the two confined plasma systems related to the very different geometries that are encountered and, thus, the role of the different boundary conditions that have to be posed. As a result, the basic MHD waves in a tokamak are quite different from those found in a solar magnetic flux tube. The result is that, whereas the three well-known MHD waves can be traced stepwise in the curved geometry of a tokamak, their separate existence is eliminated right from the start in a line-tied coronal loop because line-tying in general conflicts with the phase relationships between the vector components of the three velocity fields. The consequences are far-reaching, viz. completely different resonant frequencies and continuous spectra, absence of rational magnetic surfaces, and irrelevance of local marginal stability theory for coronal magnetic loops.
Kinetic simulations of ladder climbing by electron plasma waves
Hara, Kentaro; Barth, Ido; Kaminski, Erez; Dodin, I. Y.; Fisch, N. J.
2017-05-01
The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma parameters, which can be driven by external fields. Depending on whether the wave spectrum is discrete (bounded plasma) or continuous (boundless plasma), this phenomenon is called ladder climbing (LC) or autoresonant acceleration of plasmons. It was first proposed by Barth et al. [Phys. Rev. Lett. 115, 075001 (2015), 10.1103/PhysRevLett.115.075001] based on a linear fluid model. In this paper, LC of electron plasma waves is investigated using fully nonlinear Vlasov-Poisson simulations of collisionless bounded plasma. It is shown that, in agreement with the basic theory, plasmons survive substantial transformations of the spectrum and are destroyed only when their wave numbers become large enough to trigger Landau damping. Since nonlinear effects decrease the damping rate, LC is even more efficient when practiced on structures like quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on Langmuir waves per se.
Wave-driven Countercurrent Plasma Centrifuge
Energy Technology Data Exchange (ETDEWEB)
A.J. Fetterman and N.J. Fisch
2009-03-20
A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.
Estimation of Plasma Density by Surface Plasmons for Surface-Wave Plasmas
Institute of Scientific and Technical Information of China (English)
CHEN Zhao-Quan; LIU Ming-Hai; LAN Chao-Hui; CHEN Wei; LUO Zhi-Qing; HU Xi-Wei
2008-01-01
@@ An estimation method of plasma density based on surface plasmons theory for surface-wave plasmas is proposed. The number of standing-wave is obtained directly from the discharge image, and the propagation constant is calculated with the trim size of the apparatus in this method, then plasma density can be determined with the value of 9.1 × 1017 m-3. Plasma density is measured using a Langmuir probe, the value is 8.1 × 1017 m-3 which is very close to the predicted value of surface plasmons theory. Numerical simulation is used to check the number of standing-wave by the finite-difference time-domain (FDTD) method also. All results are compatible both of theoretical analysis and experimental measurement.
High latitude electromagnetic plasma wave emissions
Gurnett, D. A.
1983-01-01
The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.
Collisionless damping of electron waves in non-Maxwellian plasma
Soshnikov, V. N.
2007-01-01
In this paper we have criticized the so-called Landau damping theory. We have analyzed solutions of the standard dispersion equations for longitudinal (electric) and transversal (electromagnetic and electron) waves in half-infinite slab of the uniform collisionless plasmas with non-Maxwellian and Maxwellian-like electron energy distribution functions. One considered the most typical cases of both the delta-function type distribution function (the plasma stream with monochromatic electrons) an...
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Kinetic Alfven wave turbulence in space plasmas
Energy Technology Data Exchange (ETDEWEB)
Sharma, R.P. [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India); Kumar, Sachin, E-mail: dynamicalfven@gmail.co [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India)
2010-07-26
This work presents the derivation of nonlinear coupled equations for the evolution of solar wind turbulence. These equations are governing the coupled dynamics of kinetic Alfven wave and ion acoustic wave. Numerical simulation of these equations is also presented. The ponderomotive nonlinearity is incorporated in the wave dynamics. Filamentation of kinetic Alfven wave and the turbulent spectra are presented in intermediate-{beta} plasmas at heliocentric distances (0.3 AU{<=}r<1.0 AU). The growing filaments and steeper turbulent spectra (of power law k{sup -S}, 5/3{<=}S{<=}3) can be responsible for plasma heating and particle acceleration in solar wind.
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.......Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...
Final Report on The Theory of Fusion Plasmas
Energy Technology Data Exchange (ETDEWEB)
Steven C. Cowley
2008-06-17
Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research -- some were funded under the grant.
Dust acoustic waves in strongly coupled dissipative plasmas
Xie, B. S.; Yu, M. Y.
2000-12-01
The theory of dust acoustic waves is revisited in the frame of the generalized viscoelastic hydrodynamic theory for highly correlated dusts. Physical processes relevant to many experiments on dusts in plasmas, such as ionization and recombination, dust-charge variation, elastic electron and ion collisions with neutral and charged dust particles, as well as relaxation due to strong dust coupling, are taken into account. These processes can be on similar time scales and are thus important for the conservation of particles and momenta in a self-consistent description of the system. It is shown that the dispersion properties of the dust acoustic waves are determined by a sensitive balance of the effects of strong dust coupling and collisional relaxation. The predictions of the present theory applicable to typical parameters in laboratory strongly coupled dusty plasmas are given and compared with the experiment results. Some possible implications and discrepanies between theory and experiment are also discussed.
Scattering of radio frequency waves by turbulence in fusion plasmas
Ram, Abhay K.
2016-10-01
In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments and incoherent fluctuations due to turbulence are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on RF waves has not been quantified experimentally, there are telltale signs, arising from differences between results from simulations and from experiments, that fluctuations can modify the spectrum of RF waves. Any effect on RF waves in the scrape-off layer can have important experimental consequences. For example, electron cyclotron waves are expected to stabilize the deleterious neoclassical tearing mode (NTM) in ITER. Spectral and polarization changes due to scattering will modify the spatial location and profile of the current driven by the RF waves, thereby affecting the control of NTMs. Pioneering theoretical studies and complementary computer simulations have been pursued to elucidate the impact of fluctuations on RF waves. From the full complement of Maxwell's equations for cold, magnetized plasmas, it is shown that the Poynting flux in the wake of filaments develops spatial structure due to diffraction and shadowing. The uniformity of power flow into the plasma is affected by side-scattering, modifications to the wave spectrum, and coupling to plasma waves other than the incident RF wave. The Snell's law and the Fresnel equations have been reformulated within the context of magnetized plasmas. They are distinctly different from their counterparts in scalar dielectric media, and reveal new and important physical insight into the scattering of RF waves. The Snell's law and Fresnel equations are the basis for the Kirchhoff approximation necessary to determine properties of the scattered waves. Furthermore, this theory is also relevant for studying back
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
Drift waves in a weakly ionized plasma
DEFF Research Database (Denmark)
Popovic, M.; Melchior, H.
1968-01-01
A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....
Energy Technology Data Exchange (ETDEWEB)
Dumont, R
2004-07-01
This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)
Energy Technology Data Exchange (ETDEWEB)
Gutierrez T, C.R
1991-01-15
In an unidimensional model is shown in the cases of a semi limited plasma and a layer of plasma the excitement mechanism of electrostatic fields for a radiofrequency wave (RF) polarized lineally. This phenomenon depends strongly on the combined action of the Miller force and that of impulsion. It is shown that the action of these forces is carried out in different characteristic times when the front of wave crosses through the plasma. The cases of a semi limited plasma and of a layer of plasma without and with current are analyzed. It is shown that near the frontiers of the plasma where the field is sufficiently big arise oscillations of the width of the field that are slowly muffled in the space in an exponential way. In the cases of a plasma layer its are shown that the processes that arise near the frontier x = L are similar to the processes that arise near the frontier x = 0. The existence of current in the plasma layer leads to the blockade of the excited perturbations in the frontier x = L. (Author)
Chaotic ion motion in magnetosonic plasma waves
Varvoglis, H.
1984-01-01
The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...
Twisted electron-acoustic waves in plasmas
Aman-ur-Rehman, Ali, S.; Khan, S. A.; Shahzad, K.
2016-08-01
In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number qeff accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.
Directory of Open Access Journals (Sweden)
K. Sigsbee
2004-07-01
Full Text Available We present the statistics of Langmuir wave amplitudes in the Earth's foreshock using Cluster Wideband Data (WBD Plasma Wave Receiver electric field waveforms from spacecraft 2, 3 and 4 on 26 March 2002. The largest amplitude Langmuir waves were observed by Cluster near the boundary between the foreshock and solar wind, in agreement with earlier studies. The characteristics of the waves were similar for all three spacecraft, suggesting that variations in foreshock structure must occur on scales greater than the 50-100km spacecraft separations. The electric field amplitude probability distributions constructed using waveforms from the Cluster WBD Plasma Wave Receiver generally followed the log-normal statistics predicted by stochastic growth theory for the event studied. Comparison with WBD receiver data from 17 February 2002, when spacecraft 4 was set in a special manual gain mode, suggests non-optimal auto-ranging of the instrument may have had some influence on the statistics.
Colliding solitary waves in quark gluon plasmas
Rafiei, Azam; Javidan, Kurosh
2016-09-01
We study the head-on collision of propagating waves due to perturbations in quark gluon plasmas. We use the Massachusetts Institute of Technology bag model, hydrodynamics equation, and suitable equation of state for describing the time evolution of such localized waves. A nonlinear differential equation is derived for the propagation of small amplitude localized waves using the reductive perturbation method. We show that these waves are unstable and amplitude of the left-moving (right-moving) wave increases (decreases) after the collision, and so they reach the borders of a quark gluon plasma fireball with different amplitudes. Indeed we show that such arrangements are created because of the geometrical symmetries of the medium.
Characteristics of Plasma Shock Waves Generated in the Pulsed Laser Ablation Process
Institute of Scientific and Technical Information of China (English)
李智华; 张端明; 郁伯铭; 关丽
2002-01-01
We modify the Sedov theory to describe plasma shock waves generated in a pulsed laser ablating process. We also study the propagation characteristics of plasma shock waves during the preparation process of functional thin films deposited by a pulsed laser. In particular, we discuss in detail the temporal behaviour of energy causing the difference of the propagation characteristics between the plasma shock wave and the ideal shock wave in the point explosion model. Under the same experimental conditions, the theoretical results calculated with our modified Sedov theory are in good agreement with the existing experimental data.
Dust Acoustic Wave Excitation in a Plasma with Warm Dust
Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.
2008-11-01
Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).
Energy Technology Data Exchange (ETDEWEB)
Light, Max Eugene [Los Alamos National Laboratory
2017-04-13
This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density n_{e}(r), which will modify the wave propagation in the direction of the gradient rn_{e}(r).
Microscopic distorted wave theory of inelastic scattering
Picklesimer, A.; Tandy, P. C.; Thaler, R. M.
1982-03-01
An exact microscopic distorted wave theory of inelastic scattering is formulated which contains the physical picture usually associated with distorted wave approximations without the usual redundancy. This formulation encompasses the inelastic scattering of two fragments, elementary or composite (both with or without the full complexity of interfragment Pauli symmetries). The fact that these considerations need not be based upon elementary potential interactions is an indication of the generality of the approach and supports its applicability to inelastic meson scattering. The theory also maintains a description of inelastic scattering which is a natural extension of the description of elastic scattering and it provides a general basis for obtaining truncation models with an explicit distorted wave structure. The distorted wave impulse approximation is presented as an example of a particular truncation/approximation encompassed by this theory and the nature of the distorted waves is explicated. NUCLEAR REACTIONS Distorted wave theory, inelastic scattering, multiple scattering, spectator expansion, Pauli exclusion principle, composite particles, unitarity structure.
Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The poloidal rotation of the magnetized edge plasma in tokamak driven by theponderomotive force which is generated by injecting lower hybrid wave(LHW) electric field hasbeen studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla’sgrill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneouscold plasma have been derived. It is shown that a strong wave electric field will be generated inthe plasma edge by injecting LH wave of the power in MW magnitude, and this electric field willinduce a poloidal rotation with a sheared poloidal velocity.PACS: 52.55.Fa
Collapse of nonlinear electron plasma waves in a plasma layer
Grimalsky, V.; Koshevaya, S.; Rapoport, Yu; Kotsarenko, A.
2016-10-01
The excitation of nonlinear electron plasma waves in the plasma layer is investigated theoretically. This excitation is realized by means of initial oscillatory perturbations of the volume electron concentration or by initial oscillatory distributions of the longitudinal electron velocity. The amplitudes of the initial perturbations are small and the manifestation of the volume nonlinearity is absent. When the amplitudes of the initial perturbations exceed some thresholds, the values of the electron concentration near the plasma boundary increase catastrophically. The maxima of the electron concentration reach extremely high magnitudes, and sharp peaks in the electron concentration occur, which are localized both in the longitudinal and transverse directions. This effect is interpreted as wave collapse near the plasma boundary.
Water Waves The Mathematical Theory with Applications
Stoker, J J
2011-01-01
Offers an integrated account of the mathematical hypothesis of wave motion in liquids with a free surface, subjected to gravitational and other forces. Uses both potential and linear wave equation theories, together with applications such as the Laplace and Fourier transform methods, conformal mapping and complex variable techniques in general or integral equations, methods employing a Green's function. Coverage includes fundamental hydrodynamics, waves on sloping beaches, problems involving waves in shallow water, the motion of ships and much more.
Inductance of rf-wave-heated plasmas.
Farshi, E; Todo, Y
2003-03-14
The inductance of rf-wave-heated plasmas is derived. This inductance represents the inductance of fast electrons located in a plateau during their acceleration due to electric field or deceleration due to collisions and electric field. This inductance has been calculated for small electric fields from the two-dimensional Fokker-Planck equation as the flux crossing the surface of critical energy mv(2)(ph)/2 in the velocity space. The new expression may be important for radio-frequency current drive ramp-up, current drive efficiency, current profile control, and so on in tokamaks. This inductance may be incorporated into transport codes that study plasma heating by rf waves.
Revisiting linear plasma waves for finite value of the plasma parameter
Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren
2010-11-01
We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.
Nonextensive dust acoustic waves in a charge varying dusty plasma
Bacha, Mustapha; Tribeche, Mouloud
2012-01-01
Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.
Theory of a beam-driven plasma antenna
Timofeev, I. V.; Volchok, E. P.; Annenkov, V. V.
2016-08-01
In this paper, we propose a theory describing generation of electromagnetic waves in a thin beam-plasma system with a characteristic transverse size comparable with the radiation wavelength. In fact, a thin plasma column with a longitudinal density modulation works like a plasma antenna in which an electron beam can excite a superluminal wave of electric current. It has previously been shown that, if the period of this modulation coincides with the wavelength of the most unstable beam-driven mode, radiation at a frequency slightly below the plasma frequency is emitted transversely to the plasma column and generated in thin boundary layers. For the plasma thickness comparable with the skin-depth, generation of the terahertz radiation can reach high efficiency ( ˜10 % ) in such a scheme, but the absolute power of this radiation cannot be increased by increasing the transverse plasma size. In this paper, we study whether the power of such an antenna can be increased in the regime of oblique emission when the magnetized plasma is transparent to the radiated electromagnetic waves and the whole plasma volume may be involved in their generation.
Collisional Drift Waves in Stellarator Plasmas
Energy Technology Data Exchange (ETDEWEB)
J.L.V. Lewandowski
2003-10-07
A computational study of resistive drift waves in the edge plasma of a stellarator with an helical magnetic axis is presented. Three coupled field equations, describing the collisional drift wave dynamics in the linear approximation, are solved as an initial-value problem along the magnetic field line. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.
On the freak waves in mesospheric plasma
El-Labany, S. K.; El-Shewy, E. K.; El-Bedwehy, N. A.; El-Razek, H. N. Abd; El-Rahman, A. A.
2017-03-01
The nonlinear properties of dusty ionic freak waves have been studied in homogeneous, unmagnetized dusty plasma system containing ions, isothermal electrons, negative and positive grains. By using the derivative expansion method and assuming strongly dispersive medium, the basic model equations are reduced to a nonlinear form of Schrodinger equation (NLSE). One of the solutions of the NLSE in the unstable region is the rational one which is responsible for the creation of the freak profiles. The reliance of freak waves profile on dusty grains charge and carrier wave number are discussed.
Plasma shock waves excited by THz radiation
Rudin, S.; Rupper, G.; Shur, M.
2016-10-01
The shock plasma waves in Si MOS, InGaAs and GaN HEMTs are launched at a relatively small THz power that is nearly independent of the THz input frequency for short channel (22 nm) devices and increases with frequency for longer (100 nm to 1 mm devices). Increasing the gate-to-channel separation leads to a gradual transition of the nonlinear waves from the shock waves to solitons. The mathematics of this transition is described by the Korteweg-de Vries equation that has the single propagating soliton solution.
Spheroidal Wave Functions in Electromagnetic Theory
Li, Le-Wei; Kang, Xiao-Kang; Leong, Mook-Seng
2001-11-01
The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.
The Potential for Ambient Plasma Wave Propulsion
Gilland, James H.; Williams, George J.
2016-01-01
A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at
Theory of inertial waves in rotating fluids
Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir
2017-04-01
The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E
Ladder Climbing and Autoresonant Acceleration of Plasma Waves
Barth, Ido; Fisch, Nathaniel J
2015-01-01
Classical plasma waves are predicted to exhibit quantumlike ladder climbing, which is achieved by chirped modulations of the background density. An equivalence with the quantum particle in a box is identified and used to calculate the efficiency and the rate of this effect. In the limit of densely spaced spectrum, ladder climbing transforms into continuous autoresonance; plasmons may then be manipulated by chirped background modulations much like electrons are autoresonantly manipulated by chirped fields. Such ladder climbing and autoresonance effects are also predicted for other classical waves by means of a unifying Lagrangian theory.
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
Noncommutative Field Theory on Homogeneous Gravitational Waves
Halliday, S; Halliday, Sam; Szabo, Richard J.
2006-01-01
We describe an algebraic approach to the time-dependent noncommutative geometry of a six-dimensional Cahen-Wallach pp-wave string background supported by a constant Neveu-Schwarz flux, and develop a general formalism to construct and analyse quantum field theories defined thereon. Various star-products are derived in closed explicit form and the Hopf algebra of twisted isometries of the plane wave is constructed. Scalar field theories are defined using explicit forms of derivative operators, traces and noncommutative frame fields for the geometry, and various physical features are described. Noncommutative worldvolume field theories of D-branes in the pp-wave background are also constructed.
Magneto-Hydro-Dynamic Waves In The Collisionless Space Plasma
Dzhalilov, N. S.; Kuznetsov, V. D.; Staude, J.
2007-12-01
The instability of magneto-hydro-dynamic (MHD) waves in an anisotropic, collisionless, rarefied hot plasma is studied. Anisotropy properties of such a plasma are caused by a strong magnetic field, when the thermal gas pressures across and along the field become unequal. Moreover, there appears an anisotropy of the thermal fluxes. The study of the anisotropy features of the plasma are motivated by observed solar coronal data. The 16 moments equations derived from the Boltzmann-Vlasov kinetic equation are used. These equations strongly differ from the usual isotropic MHD case. For linear disturbances the wave equations in homogenous anisotropic plasma are deduced. The general dispersion relation for the incompressible wave modes is derived, solved and analyzed. It is shown that a wide wave spectrum with stable and unstable behavior is possible, in contrast to the usual isotropic MHD case. The dependence of the instability on magnetic field, pressure anisotropy, and heat fluxes is investigated. The general instability condition is obtained. The results can be applied to the theory of solar and stellar coronal heating, to wind models and in other modeling, where the collisionless approximation is valid.
A Schamel equation for ion acoustic waves in superthermal plasmas
Energy Technology Data Exchange (ETDEWEB)
Williams, G., E-mail: gwilliams06@qub.ac.uk; Kourakis, I. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen' s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Verheest, F. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, M. A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Anowar, M. G. M. [Department of Physics, Begum Rokeya University, Rangpur, Rangpur-5400 (Bangladesh)
2014-09-15
An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.
Transition operators in electromagnetic-wave diffraction theory - General theory
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Microscopic distorted wave theory of inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Picklesimer, A.; Tandy, P.C.; Thaler, R.M.
1982-03-01
An exact microscopic distorted wave theory of inelastic scattering is formulated which contains the physical picture usually associated with distorted wave approximations without the usual redundancy. This formulation encompasses the inelastic scattering of two fragments, elementary or composit (both with or without the full complexity of interfragment Pauli symmetries). The fact that these considerations need not be based upon elementary potential interactions is an indication of the generality of the approach and supports its applicability to inelastic meson scattering. This theory also maintains a description of inelastic scattering which is a natural extension of the description of elastic scattering and it provides a general basis for obtaining truncation models with an explicit distorted wave structure. This distorted wave impulse approximation is presented as an example of a particular truncation/approximation encompassed by this theory and the nature of the distorted waves is explicated.
Spin waves theory and applications
Stancil, Daniel D
2009-01-01
Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magneto static properties of the material, they are called magneto static waves (sometimes 'magnons' or 'magnetic polarons'). This book discusses magnetic properties of materials, and magnetic moments of atoms and ions
The Nonlinear Langmuir Waves in a Multi-ion-Component Plasma
Institute of Scientific and Technical Information of China (English)
CHEN Yin-Hua; LU Wei; WANG Wen-Hao
2001-01-01
We investigated the nonlinear Langmuir waves in a multi-ion-component low-temperature plasma. Beginning with the fluid theory of plasma, and taking fully nonlinear response of the low-frequency ion motion into account, we derived a set of equations governing the nonlinear coupling of the amplitude of the Langmuir wave and the Iow-frequency perturbation density. Using the Sagdeev potential method, we analyzed the characteristics of solitary wave. In the limit of small amplitude, the envelope soliton was found. Our investigation demonstrates that the properties of soliton in a multi-ion-component plasma are different from those of soliton in an electron-ion plasma.
WIND observations of plasma waves inside the magnetic cloud boundary layers
Institute of Scientific and Technical Information of China (English)
WEI Fengsi; ZHONG Dingkun; FENG Xueshang; YANG Fang; LIU Rui
2005-01-01
Based on the WIND observational data for the plasma waves from thermal noise receptor (TNR) working on the frequency 4―256 kHz and the solar wind and the magnetic fields, we analyze the plasma wave activities in the 60 magnetic cloud's boundary layers (BLs) and find that there are often various plasma wave activities in the BLs, which are different from those in the adjacent solar wind (SW) and the magnetic clouds (MC). The basic characteristics are that: (1) the enhancement of the Langmuir wave near the electronic plasma frequency (fpe) is a dominant wave activity, which occupies 75% investigated samples; (2) the events enhanced both in the langmuir and ion acustic (f < fpe) waves are about 60% of investigated samples; (3) broadband, continuous enhancement events in the plasma wave activities were observed in the whole frequency band of TNR, and about 30% of the 60 samples, however, were not observed in the SW and the MC investigated events; (4) although the ratio of the temperatures between the electon and proton, Te/Tp≤1, the ion caustic wave enhancement activities are still often observed in the BLs, which makes it difficult to ex-plain them by the traditional plasma theory. New results reported in this paper further show that the magnetic cloud's BL is an important dynamic structure, which could provide useful diagnosis for understanding the cloud's BL physics and could expand a space developing space plasma wave theory.
Electron Bernstein Wave Emission from RFP Plasmas
Nornberg, M. D.; Thomas, M.; Anderson, J.; Forest, C. B.
1998-11-01
Electron cyclotron emission (ECE) has proven to be a powerfull diagnostic tool in tokamak plasmas for determining the time evolution of the electron temperature profile. The standard technique of observing O-mode or X-mode electromagnetic waves normal to the magnetic field is not applicable to reversed field pinch (RFP) plasmas since the plasma frequency is much larger than the electron cyclotron frequency. We are investigating the use of electron Bernstein waves (presumed to be in thermal equilibrium with the electrons) through the aip.org/journal_cgi/ getpdf?KEY=PRLTAO&cvips=PRLTAO000078000018003467000001>O-X-B mode conversion process. At oblique incidence, the evanescent layer separating the plamsa cutoff from the cyclotron cutoff vanishes, allowing conversion of the Bernstein mode waves to the extraordinary mode and finally to the ordinary mode. The O-mode radiation is received by a phased array antenna consisting of two waveguides on the edge of the plasma, and the spectrum of emitted radiation is measured using a radiometer spanning 4-8 GHz. In addition to providing information about the electron temperature profile, the spectrum can provide a novel method of measuring the central magnetic field strength for current profile reconstructions.
Effective-action approach to wave propagation in scalar QED plasmas
Shi, Yuan; Fisch, Nathaniel J.; Qin, Hong
2016-07-01
A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we give two examples: a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasmas are cold. These waves account for cyclotron absorption features observed in spectra of x-ray pulsars. Moreover, cutoff frequencies of the two nondegenerate electromagnetic waves are red-shifted by different amounts. These corrections need to be taken into account in order to correctly interpret diagnostic results in laser plasma experiments.
Plasma Limiter Based on Surface Wave Plasma Excited by Microwave
Institute of Scientific and Technical Information of China (English)
YANG Geng; TAN Jichun; SHEN Benjian
2008-01-01
A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres-sure, ionization degree and density of seed electrons under low pressure (0.01 ～1 Torr) and high pressure (10 ～1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 1016 m-3, and ionization degree of 10-4, has a breakdown time of approximate 19.6 ns.
Global Theory to Understand Toroidal Drift Waves in Steep Gradient
Xie, Hua-Sheng
2016-01-01
Toroidal drift waves with unconventional mode structures and non-ground eigenstates, which differ from typical ballooning structure mode, are found to be important recently by large scale global gyrokinetic simulations and especially become dominant at strong gradient edge plasmas [cf., Xie and Xiao, Phys. Plasmas, 22, 090703 (2015)]. The global stability and mode structures of drift wave in this steep edge density and temperature gradients are examined by both direct numerical solutions of a model two-dimensional eigen equation and analytical theory employing WKB-ballooning approach. Theory agrees with numerical solutions quite well. Our results indicate that (i) non-ground eigenstates and unconventional mode structures generally exist and can be roughly described by two parameters `quantum number' $l$ and ballooning angle $\\vartheta_k$, (ii) local model can overestimate the growth rate largely, say, $>50\\%$, and (iii) the narrow steep equilibrium profile leads to twisting (triangle-like) radial mode structu...
Resonant Alfven waves in partially ionized plasmas of the solar atmosphere
Soler, R; Goossens, M
2011-01-01
Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. In magnetic waveguides resonant absorption due to plasma inhomogeneity naturally transfers wave energy from large-scale motions to small-scale motions. In the cooler parts of the solar atmosphere as, e.g., the chromosphere, effects due to partial ionization may be relevant for wave dynamics and heating. Aims. We study resonant Alfven waves in partially ionized plasmas. Methods. We use the multifluid equations in the cold plasma approximation. We investigate propagating resonant MHD waves in partially ionized flux tubes. We use approximate analytical theory based on normal modes in the thin tube and thin boundary approximations along with numerical eigenvalue computations. Results. We find that the jumps of the wave perturbations across the resonant layer are the same as in fully ionized plasmas. The damping length due to resonant absorption is inversely proportional to the frequency, while that due to ion-neutral collisions is in...
Geotail MCA Plasma Wave Investigation Data Analysis
Anderson, Roger R.
1997-01-01
The primary goals of the International Solar Terrestrial Physics/Global Geospace Science (ISTP/GGS) program are identifying, studying, and understanding the source, movement, and dissipation of plasma mass, momentum, and energy between the Sun and the Earth. The GEOTAIL spacecraft was built by the Japanese Institute of Space and Astronautical Science and has provided extensive measurements of entry, storage, acceleration, and transport in the geomagnetic tail and throughout the Earth's outer magnetosphere. GEOTAIL was launched on July 24, 1992, and began its scientific mission with eighteen extensions into the deep-tail region with apogees ranging from around 60 R(sub e) to more than 208 R(sub e) in the period up to late 1994. Due to the nature of the GEOTAIL trajectory which kept the spacecraft passing into the deep tail, GEOTAIL also made 'magnetopause skimming passes' which allowed measurements in the outer magnetosphere, magnetopause, magnetosheath, bow shock, and upstream solar wind regions as well as in the lobe, magnetosheath, boundary layers, and central plasma sheet regions of the tail. In late 1994, after spending nearly 30 months primarily traversing the deep tail region, GEOTAIL began its near-Earth phase. Perigee was reduced to 10 R(sub e) and apogee first to 50 R(sub e) and finally to 30 R(sub e) in early 1995. This orbit provides many more opportunities for GEOTAIL to explore the upstream solar wind, bow shock, magnetosheath, magnetopause, and outer magnetosphere as well as the near-Earth tail regions. The WIND spacecraft was launched on November 1, 1994 and the POLAR spacecraft was launched on February 24, 1996. These successful launches have dramatically increased the opportunities for GEOTAIL and the GGS spacecraft to be used to conduct the global research for which the ISTP program was designed. The measurement and study of plasma waves have made and will continue to make important contributions to reaching the ISTP/GGS goals and solving the
Pilot-wave theory and quantum fields
Struyve, Ward
2010-10-01
Pilot-wave theories provide possible solutions to the measurement problem. In such theories, quantum systems are not only described by the state vector but also by some additional variables. These additional variables, also called beables, can be particle positions, field configurations, strings, etc. In this paper we focus our attention on pilot-wave theories in which the additional variables are field configurations. The first such theory was proposed by Bohm for the free electromagnetic field. Since Bohm, similar pilot-wave theories have been proposed for other quantum fields. The purpose of this paper is to present an overview and further development of these proposals. We discuss various bosonic quantum field theories such as the Schrödinger field, the free electromagnetic field, scalar quantum electrodynamics and the Abelian Higgs model. In particular, we compare the pilot-wave theories proposed by Bohm and by Valentini for the electromagnetic field, finding that they are equivalent. We further discuss the proposals for fermionic fields by Holland and Valentini. In the case of Holland's model we indicate that further work is required in order to show that the model is capable of reproducing the standard quantum predictions. We also consider a similar model, which does not seem to reproduce the standard quantum predictions. In the case of Valentini's model we point out a problem that seems hard to overcome.
Waves in relativistic electron beam in low-density plasma
Sheinman, I.; Sheinman (Chernenco, J.
2016-11-01
Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.
Plasma production for electron acceleration by resonant plasma wave
Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Plasma production for electron acceleration by resonant plasma wave
Energy Technology Data Exchange (ETDEWEB)
Anania, M.P., E-mail: maria.pia.anania@lnf.infn.it [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome Tor Vergata - INFN, via della Ricerca Scientifica, 1, 00133 Roma (Italy); INFN, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Croia, M.; Curcio, A. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Di Giovenale, D.; Di Pirro, G.P. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Filippi, F. [University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Romeo, S. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ferrario, M. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy)
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Sabeen, A.; Masood, W.; Qureshi, M. N. S.; Shah, H. A.
2017-07-01
In this paper, linear and nonlinear coupling of kinetic Alfven and acoustic waves has been studied in a dusty plasma in the presence of trapping and self-gravitation effects. In this regard, we have derived the linear dispersion relations for positively and negatively coupled dust kinetic Alfven-acoustic waves. Stability analysis of the coupled dust kinetic Alfven-acoustic wave has also been presented. The formation of solitary structures has been investigated following the Sagdeev potential approach by using the two-potential theory. Numerical results show that the solitary structures can be obtained only for sub-Alfvenic regimes in the scenario of space plasmas.
Wave operator theory of quantum dynamics
Durand, Philippe; Paidarová, Ivana
1998-09-01
An energy-dependent wave operator theory of quantum dynamics is derived for time-independent and time-dependent Hamiltonians. Relationships between Green's functions, wave operators, and effective Hamiltonians are investigated. Analytical properties of these quantities are especially relevant for studying resonances. A derivation of the relationship between the Green's functions and the (t,t') method of Peskin and Moiseyev [J. Chem. Phys. 99, 4590 (1993)] is presented. The observable quantities can be derived from the wave operators determined with the use of efficient iterative procedures. As in the theory of Bloch operators for bound states, the theory is based on a partition of the full Hilbert space into three subspaces: the model space, an intermediate space, and the outer space. On the basis of this partition an alternative definition of active spaces currently considered in large scale calculations is suggested. A numerical illustration is presented for several model systems and for the Stark effect in the hydrogen atom.
DISPERSION RELATION OF A MAGNETIZED PLASMA-FILLED BACKWARD WAVE OSCILLATOR
Institute of Scientific and Technical Information of China (English)
GAO HONG; LIU SHENG-GANG
2000-01-01
A linear theory and a more general dispersion relation of electromagnetic radiation from a magnetized plasma-filled backward wave oscillator with sinusoidally corrugated slow-wave structure driven by a solid intense relativistic electron beam have been given. The comparisons show good agreement with the previous works when B0 → ∞ and ωb = 0 from this dispersion relation.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Gravitational waves in a free isotropic plasma. II
Energy Technology Data Exchange (ETDEWEB)
Galtsov, D.V.; Grats, IU.V.; Melkumova, E.IU.
1985-07-01
The generation of gravitational waves in an isotropic homogeneous plasma is investigated theoretically, within the frame work of a recently developed formalism. The effectiveness of different mechanisms generating gravitational waves is considered. Attention is given to thermal gravitational radiation by a two-component plasma; the transformation of longitudinal plasma waves into gravitons due to current fluctuations; and the generation of gravitational waves due to Langmuir turbulence. It is shown that collective plasma effects play a critical role in the generation of gravitational waves.
Drake, D J; Howes, G G; Kletzing, C A; Skiff, F; Carter, T A; Auerbach, D W
2013-01-01
Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfven waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfven waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfven wave generated nonlinearly by a collision between counterpropagating Alfven waves.
Resonance broadening modification of weak plasma turbulence theory
Energy Technology Data Exchange (ETDEWEB)
Hanssen, A. (Max-Planck-Inst. fuer Aeronomie, Katlenburg-Lindau (West Germany))
1991-02-01
The author examines the effects on energy spectra of weak Langmuir turbulence when he includes a nonlinear damping due to the perturbation of electron orbits. The physical mechanism under consideration is usually known as a resonance broadening effect. The calculations show that the inclusion of this additional damping reduces the number of cascades predicted from weak turbulence theory for waves detectable with the EISCAT UHF (933 MHz) radar in Tromso, Norway, during RF modification of the ionospheric plasma.
The dust acoustic waves in three dimensional scalable complex plasma
Zhukhovitskii, D I
2015-01-01
Dust acoustic waves in the bulk of a dust cloud in complex plasma of low pressure gas discharge under microgravity conditions are considered. The dust component of complex plasma is assumed a scalable system that conforms to the ionization equation of state (IEOS) developed in our previous study. We find singular points of this IEOS that determine the behavior of the sound velocity in different regions of the cloud. The fluid approach is utilized to deduce the wave equation that includes the neutral drag term. It is shown that the sound velocity is fully defined by the particle compressibility, which is calculated on the basis of the scalable IEOS. The sound velocities and damping rates calculated for different 3D complex plasmas both in ac and dc discharges demonstrate a good correlation with experimental data that are within the limits of validity of the theory. The theory provides interpretation for the observed independence of the sound velocity on the coordinate and for a weak dependence on the particle ...
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Extending geometrical optics: A Lagrangian theory for vector waves
Ruiz, D. E.
2016-10-01
Even diffraction aside, the commonly known equations of geometrical optics (GO) are not entirely accurate. GO considers wave rays as classical particles, which are completely described by their coordinates and momenta, but rays have another degree of freedom, namely, polarization. As a result, wave rays can behave as particles with spin. A well-known example of polarization dynamics is wave-mode conversion, which can be interpreted as rotation of the (classical) ``wave spin.'' However, there are other less-known manifestations of the wave spin, such as polarization precession and polarization-driven bending of ray trajectories. This talk presents recent advances in extending and reformulating GO as a first-principle Lagrangian theory, whose effective-gauge Hamiltonian governs both mentioned polarization phenomena simultaneously. Examples and numerical results are presented. When applied to classical waves, the theory correctly predicts the polarization-driven divergence of left- and right- polarized electromagnetic waves in isotropic media, such as dielectrics and nonmagnetized plasmas. In the case of particles with spin, the formalism also yields a point-particle Lagrangian model for the Dirac electron, i.e. the relativistic spin-1/2 electron, which includes both the Stern-Gerlach spin potential and the Bargmann-Michel-Telegdi spin precession. Additionally, the same theory contributes, perhaps unexpectedly, to the understanding of ponderomotive effects in both wave and particle dynamics; e.g., the formalism allows to obtain the ponderomotive Hamiltonian for a Dirac electron interacting with an arbitrarily large electromagnetic laser field with spin effects included. Supported by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, by the U.S. DOE through Contract No. DE-AC02-09CH11466, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.
Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma
Energy Technology Data Exchange (ETDEWEB)
Jian Liu and Hong Qin
2011-11-07
The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.
Spin waves and spin instabilities in quantum plasmas
Andreev, P A
2014-01-01
We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Instabilities appearing due to interaction of magnetic moments of neutrons with plasma are described.
Kappa distributions: theory and applications in space plasmas
Pierrard, V
2010-01-01
Particle velocity distribution functions (VDF) in space plasmas often show non Maxwellian suprathermal tails decreasing as a power law of the velocity. Such distributions are well fitted by the so-called Kappa distribution. The presence of such distributions in different space plasmas suggests a universal mechanism for the creation of such suprathermal tails. Different theories have been proposed and are recalled in this review paper. The suprathermal particles have important consequences concerning the acceleration and the temperature that are well evidenced by the kinetic approach where no closure requires the distributions to be nearly Maxwellians. Moreover, the presence of the suprathermal particles take an important role in the wave-particle interactions.
Plasma acceleration by the interaction of parallel propagating Alfv\\'en waves
Mottez, Fabrice
2014-01-01
It is shown that two circularly polarised Alfv\\'en waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic waves. The simulations are done with monochromatic waves and with wave packets. The simulations show parallel electromagnetic fields consistent with the theory, and they show that the particle acceleration result in plasma cavities and, if the waves amplitudes are high enough, in ion beams. These acceleration processes could be relevant in space plasmas. For instance, they could be at work in the auroral zone and in the radiation belts of the Earth magnetosphere. In particular, they may explain the origin of the deep plasma...
Plasma Waves and Jets from Moving Conductors
Gralla, Samuel E
2016-01-01
We consider force-free plasma waves launched by the motion of conducting material through a magnetic field. We develop a spacetime-covariant formalism for perturbations of a uniform magnetic field and show how the transverse motion of a conducting fluid acts as a source. We show that fast-mode waves are sourced by the compressibility of the fluid, with incompressible fluids launching a pure-Alfven outflow. Remarkably, this outflow can be written down in closed form, at the nonlinear level, for an arbitrary incompressible flow. The instantaneous flow velocity is imprinted on the magnetic field and transmitted away at the speed of light, carrying detailed information about the conducting source at the time of emission. These results can be applied to transients in pulsar outflows and to jets from neutron stars orbiting in the magnetosphere of another compact object. We discuss jets from moving conductors in some detail.
Radiation Heat Waves in Gold Plasma
Institute of Scientific and Technical Information of China (English)
YANG Jia-Min; XU Yan; DING Yao-Nan; LAI Dong-Xian; DING Yong-Kun; JIANG Shao-En; ZHENG Zhi-Jian; MIAO Wen-Yong
2003-01-01
Eight beams 0.35/um laser with pulse duration of about 1.0ns and energy of 260 J per beam was injected into a cylindrical cavity to generate intense x-ray radiation on the "Shengguang I" high power laser facility. Gold foils with a thickness in the range of 0.09-0.52/j,m were attached on the diagnostic hole of the cavity and ablated by the intense x-ray radiation. The propagating radiation heat wave in the high-Z gold plasma was observed clearly. For comparison, we also simulated the experimental results.
A theory for scattering by density fluctuations based on three-wave interaction
Harker, K. J.; Crawford, F. W.
1973-01-01
The theory of scattering by charged particle fluctuations of a plasma is developed for the case of zero magnetic field. The source current is derived on the basis of: (1) a three wave interaction between the incident and scattered electromagnetic waves and one electrostatic plasma wave (either Langmuir or ion acoustic), and (2) a synchronous interaction between the same two electromagnetic waves and the discrete components of the charged particle fluctuations. Previous work is generalized by no longer making the assumption that the frequency of the electromagnetic waves in large compared to the plasma frequency. The general result is then applied to incoherent scatter, and to scatter by strongly driven plasma waves. An expansion is carried out for each of those cases to determine the lower order corrections to the usual high frequency scattering formulas.
Indian Academy of Sciences (India)
M Singh; P N Deka
2006-03-01
A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.
String Theory on Parallelizable PP-Waves
Energy Technology Data Exchange (ETDEWEB)
Sadri, Darius J
2003-05-05
The most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories are considered. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Such plane-waves can be classified according to the number of preserved supersymmetries. In type IIA, these include backgrounds preserving 16, 18, 20, 22 and 24 supercharges, while in the IIB case they preserve 16, 20, 24 or 28 supercharges. An intriguing property of parallelizable pp-wave backgrounds is that the bosonic part of these solutions are invariant under T-duality, while the number of supercharges might change under T-duality. Due to their {alpha}{prime} exactness, they provide interesting backgrounds for studying string theory. Quantization of string modes, their compactification and behavior under T-duality are studied. In addition, we consider BPS Dp-branes, and show that these Dp-branes can be classified in terms of the locations of their world volumes with respect to the background H-field.
String Theory on Parallelizable PP-waves
Sadri, D; Sadri, Darius; Sheikh-Jabbari, Mohammad M.
2003-01-01
The most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories are considered. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Such plane-waves can be classified according to the number of preserved supersymmetries. In type IIA, these include backgrounds preserving 16, 18, 20, 22 and 24 supercharges, while in the IIB case they preserve 16, 20, 24 or 28 supercharges. An intriguing property of parallelizable pp-wave backgrounds is that the bosonic part of these solutions are invariant under T-duality, while the number of supercharges might change under T-duality. Due to their $\\alpha^\\prime$ exactness, they provide interesting backgrounds for studying string theory. Quantization of string modes, their compactification and behaviour under T-duality are studied. In addition, we consider...
The theory of elastic waves and waveguides
Miklowitz, J
1984-01-01
The primary objective of this book is to give the reader a basic understanding of waves and their propagation in a linear elastic continuum. The studies of elastodynamic theory and its application to fundamental value problems should prepare the reader to tackle many physical problems of general interest in engineering and geophysics, and of particular interest in mechanics and seismology.
On Plasma Theory and Simulation.
2014-09-26
SHEATH REGION INCLUDING ION REFLECTION Lou Ann Schwager (Prof. C. K. Birdsall, Dr. I. Roth ) A low temperature plasma interacts with a collector plate...Hitchcock. Katz. Lankford. Nelson. Barnes. Borovsky. Forslund. Kwan. Sadowski Lindemuth. Mason . Mostrom. Nielson, Oliphant. Sgro. Thode Department of
Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma
Institute of Scientific and Technical Information of China (English)
DUAN Yi-Shi; XIE Bai-Song; TIAN Miao; YIN Xin-Tao; ZHANG Xin-Hui
2008-01-01
Stable propagating waves and wake fields in relativistic electromagnetic plasma are investigated. The incident electromagnetic field has a finite initial constant amplitude meanwhile the longitudinal momentum of electrons is taken into account in the problem. It is found that in the moving frame with transverse wave group velocity the stable propagating transverse electromagnetic waves and longitudinal plasma wake fields can exist in the appropriate regime of plasma.
Parametric decay of plasma waves near the upper-hybrid resonance
Dodin, I. Y.; Arefiev, A. V.
2017-03-01
An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Theory predictions are in reasonable agreement with the results of the particle-in-cell simulations presented in a separate publication.
Leonhard Euler's Wave Theory of Light
DEFF Research Database (Denmark)
Pedersen, Kurt Møller
2008-01-01
Euler's wave theory of light developed from a mere description of this notion based on an analogy between sound and light to a more and more mathematical elaboration on that notion. He was very successful in predicting the shape of achromatic lenses based on a new dispersion law that we now know...... is wrong. Most of his mathematical arguments were, however, guesswork without any solid physical reasoning. Guesswork is not always a bad thing in physics if it leads to new experiments or makes the theory coherent with other theories. And Euler tried to find such experiments. He saw the construction...
Colliding Plane Waves in String Theory
Chen, B; Furuta, K; Lin, F L; Chen, Bin; Chu, Chong-Sun; Furuta, Ko; Lin, Feng-Li
2004-01-01
We construct colliding plane wave solutions in higher dimensional gravity theory with dilaton and higher form flux, which appears naturally in the low energy theory of string theory. Especially, the role of the junction condition in constructing the solutions is emphasized. Our results not only include the previously known CPW solutions, but also provide a wide class of new solutions that is not known in the literature before. We find that late time curvature singularity is always developed for the solutions we obtained in this paper. This supports the generalized version of Tipler's theorem in higher dimensional supergravity.
Breaking of Large Amplitude Electron Plasma Wave in a Maxwellian Plasma
Mukherjee, Arghya
2016-01-01
The determination of maximum possible amplitude of a coherent longitudinal plasma oscillation/wave is a topic of fundamental importance in non-linear plasma physics. The amplitudes of these large amplitude plasma waves is limited by a phenomena called wave breaking which may be induced by several non-linear processes. It was shown by Coffey [T. P. Coffey, Phys. Fluids 14, 1402 (1971)] using a "water-bag" distribution for electrons that, in a warm plasma the maximum electric field amplitude and density amplitude implicitly depend on the electron temperature, known as Coffey's limit. In this paper, the breaking of large amplitude freely running electron plasma wave in a homogeneous warm plasma where electron's velocity distribution is Maxwellian has been studied numerically using 1D Particle in Cell (PIC) simulation method. It is found that Coffey's propagating wave solutions, which was derived using a "water-bag" distribution for electrons, also represent propagating waves in a Maxwellian plasma. Coffey's wave...
Partial Differential Equations and Solitary Waves Theory
Wazwaz, Abdul-Majid
2009-01-01
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...
Physics of Collisionless Shocks Space Plasma Shock Waves
Balogh, André
2013-01-01
The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...
Electron trajectories and growth rates of the plasma wave pumped free-electron laser
Jafari, S.; Jafarinia, F.; Nilkar, M.; Amiri, M.
2014-12-01
A theory for a plasma wave wiggler has been described which employs the plasma whistler wave for producing laser radiation in a free-electron laser (FEL). While electromagnetically pumped FELs have been proven to be an effective means generating short wavelengths, practical difficulties occur in the design of these wigglers. For this reason, it is found that a plasma wave wiggler can be employed in concept with an electromagnetic wave wiggler due to both higher tunability and holding the focus of pump wave and e-beam over a significant distance to achieve a suitable amplification. Plasma in the presence of static magnetic field supports a plasma whistler wave. The plasma wiggler period can be tuned by varying the plasma density and/or ambient magnetic field. Electron trajectories have been analyzed using single particle dynamics and regimes of orbital stability have been demonstrated. A polynomial dispersion relation for electromagnetic and space-charge waves has then been derived, analytically. Numerical studies of the dispersion relation reveal that the growth rates are sensitive functions of the cyclotron frequency. It has been shown that by increasing the axial magnetic field strength (or cyclotron frequency), the growth rate for groups I and III orbits increases, while a growth decrement has been obtained for groups II and IV orbits.
Relativistic electromagnetic waves in an electron-ion plasma
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Magnetoacoustic waves in a partially ionized two-fluid plasma
Soler, Roberto; Ballester, Jose Luis
2013-01-01
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by the ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma $\\beta$, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional da...
Stability theory of Knudsen plasma diodes
Energy Technology Data Exchange (ETDEWEB)
Kuznetsov, V. I., E-mail: victor.kuznetsov@mail.ioffe.ru; Ender, A. Ya. [Ioffe Institute, Russian Academy of Sciences (Russian Federation)
2015-11-15
A stability theory is developed for a plasma diode in which an electron beam supplied from the emitter propagates without collisions in the self-consistent electric field against the immobile ion background. An integral equation for the amplitude of the perturbed field is deduced using the Q,G method for the regime without electron reflection from a potential barrier. Analytic solutions to this equation are obtained for a number of important particular cases, and the plasma dispersion properties are examined.
Theoretical analysis of a relativistic travelling wave tube filled with plasma
Institute of Scientific and Technical Information of China (English)
Xie Hong-Quan; Liu Pu-Kun
2007-01-01
A cold and uniform plasma-filled travelling wave tube with sinusoidally corrugated slow wave structure is driven by a finite thick annular intense relal:ivistic electron beam with the entire system immersed in a strong longitudinal magnetic field.By means of the linear field theory,the dispersion relation for the relativistic travelling wave tube (RTWT) is derived.By numerical computation,the dispersion characteristics of the RTWT are analysed in difierent cases of various geometric parameters of the slow wave structure and plasma densities.Also the gain versus frequency for three difierent plasma densities and the peak gain of the tube versus plasma density are analysed.Some useful results are obtained on the basis of the discussion.
Space and Astrophysical Plasmas : Ionospheric plasma by VHF waves
Indian Academy of Sciences (India)
R P Patel; Abhay Kumar Singh; R P Singh
2000-11-01
The amplitude scintillations of very high frequency electromagnetic wave transmitted from geo-stationary satellite at 244.168 MHz have been recorded at Varanasi (geom. lat. 14° 55'N) during 1991 to 1999. The data are analyzed to determine the statistical features of overhead ionospheric plasma irregularities which are mostly of small duration < 30 minutes and are predominant during pre-midnight period. The increase of solar activity generally increases the depth of scintillation. The auto-correlation functions and power spectra of scintillations predict that the scale length of these irregularities varies from 200–500 m having velocity of movement between 75 m/sec to 200 m/sec. These results agree well with the results obtained by other workers.
Global theory to understand toroidal drift waves in steep gradient
Xie, Hua-sheng; Li, Bo
2016-08-01
Toroidal drift waves with unconventional mode structures and non-ground eigenstates, which differ from a typical ballooning structure mode, are found to be important recently by large scale global gyrokinetic simulations and especially become dominant at strong gradient edge plasmas [cf. H. S. Xie and Y. Xiao, Phys. Plasmas 22, 090703 (2015)]. The global stability and mode structures of drift wave in this steep edge density and temperature gradients are examined by both direct numerical solutions of a model two-dimensional eigen equation and analytical theory employing WKB-ballooning approach. Theory agrees with numerical solutions quite well. Our results indicate that (i) non-ground eigenstates and unconventional mode structures generally exist and can be roughly described by two parameters "quantum number" l and ballooning angle ϑk , (ii) local model can overestimate the growth rate largely, say, >50 % , and (iii) the narrow steep equilibrium profile leads to twisting (triangle-like) radial mode structures. With velocity space integral, semi-local theory predicts that the critical jump gradient of the most unstable ion temperature gradient mode from ground state l = 0 to non-ground state l = 1 is LT-1R ˜50 . These features can have important consequences to turbulent transport.
Asymptotic theory for spiral wave reflections
Langham, Jacob; Barkley, Dwight
2014-01-01
Resonantly forced spiral waves in excitable media drift in straight-line paths, their rotation centers behaving as point-like objects moving along trajectories with a constant velocity. Interaction with medium boundaries alters this velocity and may often result in a reflection of the drift trajectory. Such reflections have diverse characteristics and are known to be highly non-specular in general. In this context we apply the theory of response functions, which via numerically computable integrals, reduces the reaction-diffusion equations governing the whole excitable medium to the dynamics of just the rotation center and rotation phase of a spiral wave. Spiral reflection trajectories are computed by this method for both small and large-core spiral waves. Such calculations provide insight into the process of reflection as well as explanations for differences in trajectories across parameters, including the effects of incidence angle and forcing amplitude. Qualitative aspects of these results are preserved fa...
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
Effects of Schwarzschild Geometry on Isothermal Plasma Wave Dispersion
Sharif, M
2007-01-01
The behavior of isothermal plasma waves has been analyzed near the Schwarzschild horizon. We consider a non-rotating background with non-magnetized and magnetized plasmas. The general relativistic magnetohydrodynamical equations for the Schwarzschild planar analogue spacetime with an isothermal state of the plasma are formulated. The perturbed form of these equations is linearized and Fourier analyzed by introducing simple harmonic waves. The determinant of these equations in each case leads to a complex dispersion relation, which gives complex values of the wave number. This has been used to discuss the nature of the waves and their characteristics near the horizon.
A theory of fluctuations in plasmas
Felderhof, B.U.
1964-01-01
A theory of thermal fluctuations in plasmas is developed based on a probability ensemble for one-particle distribution functions ƒ(r, ν). The probability for a specific ƒ(r, ν) is obtained from the canonical ensemble with the aid of the continuum approximation. Subsequently the probability distribut
Wave rectification in plasma sheaths surrounding electric field antennas
Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Ergun, R. E.; Mozer, F. S.
1994-01-01
Combined measurements of Langmuir or broadband whistler wave intensity and lower-frequency electric field waveforms, all at 10-microsecond time resolution, were made on several recent sounding rockets in the auroral ionosphere. It is found that Langmuir and whistler waves are partically rectified in the plasma sheaths surrounding the payload and the spheres used as antennas. This sheath rectification occurs whenever the high frequency (HF) potential across the sheath becomes of the same order as the electron temperature or higher, for wave frequencies near or above the ion plasma frequency. This rectification can introduce false low-frequency waves into measurements of electric field spectra when strong high-frequency waves are present. Second harmonic signals are also generated, although at much lower levels. The effect occurs in many different plasma conditions, primarily producing false waves at frequencies that are low enough for the antenna coupling to the plasma to be resistive.
Enhancement of wave growth for warm plasmas with a high-energy tail distribution
Thorne, Richard M.; Summers, Danny
1991-01-01
The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.
Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas
Kaur, Maninder; Nandan Gupta, Devki
2016-11-01
The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.
Effects of Schwarzschild Geometry on Isothermal Plasma Wave Dispersion
Sharif, M.; Sheikh, Umber
2007-01-01
The behavior of isothermal plasma waves has been analyzed near the Schwarzschild horizon. We consider a non-rotating background with non-magnetized and magnetized plasmas. The general relativistic magnetohydrodynamical equations for the Schwarzschild planar analogue spacetime with an isothermal state of the plasma are formulated. The perturbed form of these equations is linearized and Fourier analyzed by introducing simple harmonic waves. The determinant of these equations in each case leads ...
Does the Decay Wave Propagate Forwards in Dusty Plasmas?
Institute of Scientific and Technical Information of China (English)
谢柏松
2002-01-01
The decay interaction of the ion acoustic wave in a dusty plasma with variable-charge dust grains is studied.Even if strong charging relaxation for dust grains and the short wavelength regime for ion waves are included, it is found that the decay wave must be backward propagating.
Evidence for Langmuir wave collapse in the interplanetary plasma
Kellogg, Paul J.; Goetz, K.; Howard, R. L.; Monson, S. J.
1992-01-01
With the Fast Envelope Sampler part of the URAP experiment on Ulysses, there is observed much rapidly varying structure in plasma waves in the solar wind. Extremely narrow (1 ms) structures observed together with electrostatic Langmuir waves, as well as some broader Langmuir wave packets are discussed.
Surface wave and linear operating mode of a plasma antenna
Energy Technology Data Exchange (ETDEWEB)
Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2015-10-15
The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Geometric perturbation theory and plasma physics
Energy Technology Data Exchange (ETDEWEB)
Omohundro, S.M.
1985-04-04
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.
Multidimensional wave field signal theory: Mathematical foundations
Directory of Open Access Journals (Sweden)
Natalie Baddour
2011-06-01
Full Text Available Many important physical phenomena are described by wave or diffusion-wave type equations. Since these equations are linear, it would be useful to be able to use tools from the theory of linear signals and systems in solving related forward or inverse problems. In particular, the transform domain signal description from linear system theory has shown concrete promise for the solution of problems that are governed by a multidimensional wave field. The aim is to develop a unified framework for the description of wavefields via multidimensional signals. However, certain preliminary mathematical results are crucial for the development of this framework. This first paper on this topic thus introduces the mathematical foundations and proves some important mathematical results. The foundation of the framework starts with the inhomogeneous Helmholtz or pseudo-Helmholtz equation, which is the mathematical basis of a large class of wavefields. Application of the appropriate multi-dimensional Fourier transform leads to a transfer function description. To return to the physical spatial domain, certain mathematical results are necessary and these are presented and proved here as six fundamental theorems. These theorems are crucial for the evaluation of a certain class of improper integrals which arise in the evaluation of inverse multi-dimensional Fourier and Hankel transforms, upon which the framework is based. Subsequently, applications of these theorems are demonstrated, in particular for the derivation of Green's functions in different coordinate systems.
Theory of travelling wave antenna for ICRH and fast wave current drive in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Vdovin, V.L. [NFI RNC Kurchatov Institute, Moscow (Russian Federation)
1993-12-31
Tokamaks` FWCD antennae require many loops with significant difficulties of location of large coaxes in a region of first wall and their matching with a generator due to mutual coupling between loops (LMC) (mainly through the plasma). It is natural to convert LMC from a defect into advantage by feeding a periodical structure at the edge loop creating the travelling wave. In this work we will give the self consistent theory of poloidal loop antennae with a Faraday screen (FS) loaded at the edges by lumped capacitances. (author) 2 refs.
Superconformal partial waves in Grassmannian field theories
Doobary, Reza
2015-01-01
We derive superconformal partial waves for all scalar four-point functions on a super Grassmannian space Gr(m|n,2m|2n) for all m,n. This family of four-point functions includes those of all (arbitrary weight) half BPS operators in both N=4 SYM (m=n=2) and in N=2 superconformal field theories in four dimensions (m=2,n=1) on analytic superspace. It also includes four-point functions of all (arbitrary dimension) scalar fields in non-supersymmetric conformal field theories (m=2,n=0) on Minkowski space, as well as those of a certain class of representations of the compact SU(2n) coset spaces. As an application we then specialise to N=4 SYM and use these results to perform a detailed superconformal partial wave analysis of the four- point functions of arbitrary weight half BPS operators. We discuss the non-trivial separation of protected and unprotected sectors for the , and cases in an SU(N) gauge theory at finite N. The correlator predicts a non-trivial protected twist four sector for which we can completely ...
A numerical simulation of surface wave excitation in a rectangular planar-type plasma source
Institute of Scientific and Technical Information of China (English)
Chen Zhao-Quan; Liu Ming-Hai; Lan Chao-Hui; Chen Wei; Tang Liang; Luo Zhi-Qing; Yan Bao-Rong; Lu Jian-Hong; Hu Xi-Wei
2009-01-01
The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory.The distribution of surface-wave electric field at the interface of the plasma-dielectric slab is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD) with different slotantenna structures.And the experimental image of discharge with a novel slot antenna array and the simulation of the electric field with this slot antenna array are both displayed.Combined with the distribution of surface wave excitation and experimental results,the numerical simulation performed by using 3D-FDTD is shown to be a useful tool in the computer-aided antenna design for large area planar-type surface-wave plasma sources.
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting; Chen, Wei; Yan, Xu; Huang, Qing-Qing
2017-09-01
The expression of complex dielectric permittivity for non-magnetized fully ionized dusty plasma is obtained based on the kinetic equation in the Fokker-Planck-Landau collision model and the charging equation of the statistical theory. The influences of density, average size of dust grains, and balanced charging of the charge number of dust particles on the attenuation properties of electromagnetic waves in fully ionized dusty plasma are investigated by calculating the attenuation constant. In addition, the attenuation characteristics of weakly ionized and fully ionized dusty plasmas are compared. Results enriched the physical mechanisms of microwave attenuation for fully ionized dusty plasma and provide a theoretical basis for future studies.
Clack, C
2009-01-01
The nonlinear theory of driven magnetohydrodynamics (MHD) waves in strongly anisotropic and dispersive plasmas, developed for slow resonance by Clack and Ballai [Phys. Plasmas, 15, 2310 (2008)] and Alfv\\'en resonance by Clack \\emph{et al.} [A&A,494, 317 (2009)], is used to study the weakly nonlinear interaction of fast magnetoacoustic (FMA) waves in a one-dimensional planar plasma. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the inhomogeneous slab interacting with the localized slow or Alfv\\'{e}n dissipative layer and are partly reflected, dissipated and transmitted by this region. The nonlinearity parameter defined by Clack and Ballai (2008) is assumed to be small and a regular perturbation method is used to obtain analytical solutions in the slow dissipative layer. The effect of dispersion in the slow dissipative layer is to further decrease the coefficient of ener...
Dust-Acoustic Waves in Strongly Coupled Dusty Plasmas Containing Variable-Charge Impurities
Institute of Scientific and Technical Information of China (English)
XIE Bai-Song; HE Kai-Fen; M. Y. Yu
2000-01-01
A relatively self-consistent theory of dust-acoustic waves in the strongly coupled dusty plasmas containing variable charge impurities is given. Relevant physical processes such as dust elastic relaxation and dust charge relaxation are taken into account. It is shown that the negative dispersion of dust-acoustic waves due to the strong correlation of dusts is enhanced in the presence of dust-neutral collisions.
Wave spectra of 2D dusty plasma solids and liquids
Hou, Lu-Jing; Piel, Alexander; Murillo, Michael S
2009-01-01
Brownian dynamics simulations were carried out to study wave spectra of two-dimensional dusty plasma liquids and solids for a wide range of wavelengths. The existence of a longitudinal dust thermal mode was confirmed in simulations, and a cutoff wavenumber in the transverse mode was measured. Dispersion relations, resulting from simulations, were compared with those from analytical theories, such as the random-phase approximation (RPA), quasi-localized charged approximation (QLCA), and harmonic approximation (HA). An overall good agreement between the QLCA and simulations was found for wide ranges of states and wavelengths after taking into account the direct thermal effect in the QLCA, while for the RPA and HA good agreement with simulations were found in the high and low temperature limits, respectively.
Theory and Simulations of Solar System Plasmas
Goldstein, Melvyn L.
2011-01-01
"Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.
Observation of an Alfv\\'en Wave Parametric Instability in a Laboratory Plasma
Dorfman, S
2016-01-01
A shear Alfv\\'en wave parametric instability is observed for the first time in the laboratory. When a single finite $\\omega/\\Omega_i$ kinetic Alfv\\'en wave (KAW) is launched in the Large Plasma Device above a threshold amplitude, three daughter modes are produced. These daughter modes have frequencies and parallel wave numbers that are consistent with copropagating KAW sidebands and a low frequency nonresonant mode. The observed process is parametric in nature, with the frequency of the daughter modes varying as a function of pump wave amplitude. The daughter modes are spatially localized on a gradient of the pump wave magnetic field amplitude in the plane perpendicular to the background field, suggesting that perpendicular nonlinear forces (and therefore $k_{\\perp}$ of the pump wave) play an important role in the instability process. Despite this, modulational instability theory with $k_{\\perp}=0$ has several features in common with the observed nonresonant mode and Alfv\\'en wave sidebands.
A mode filter for plasma waves in the Hall-MHD approximation
Directory of Open Access Journals (Sweden)
C. Vocks
Full Text Available A filter method is presented which allows a qualitative and quantitative identification of wave modes observed with plasma experiments on satellites. Hitherto existing mode filters are based on the MHD theory and thus they are restricted to low frequencies well below the ion cyclotron frequency. The present method is generalized to cover wave modes up to the characteristic ion frequencies. The spectral density matrix determined by the observations is decomposed using the eigenvectors of the linearized Hall-MHD equations. As the wave modes are dispersive in this formalism, a precise determination of the k->-vectors requires the use of multi-point measurements. Therefore the method is particularly relevant to multi-satellite missions. The method is tested using simulated plasma data. The Hall-MHD filter is able to identify the modes excited in the model plasma and to assign the correct energetic contributions. By comparison with the former method it is shown that the simple MHD filter leads to large errors if the frequency is not well below the ion cyclotron frequency. Further the range of validity of the linear theory is examined rising the simulated wave amplitudes.
Key words. Magnetospheric physics (MHD waves and instabilities; plasma waves and instabilities
Density-Wave Spiral Theories in the 1960s. I
Pasha, I I
2004-01-01
With the arrival of computers, plasma physics and several fresh investigators by the early 1960s, understanding the spiral structure of galaxies entered a new stage of unusually vigorous activity broadly grouped under the umbrella marked "density-wave theory". Paper I starts with acknowledging B. Lindblad, rightly regarded the main father of this whole subject, and then describes the early contributions by Lynden-Bell, Toomre, Hunter and Kalnajs, who had formulated and applied such notions as the stability of flat galaxies, the regenerative spiral phenomenon, the shearing density waves and the global spiral modes. But the foremost enthusiast and proponent of the density-wave picture was undoubtedly C.C. Lin whose 1964 and 1966 papers with Shu, written in support of his working hypothesis of the quasi-stationary wave-mode spiral structure, had a big and immediate impact upon astronomers, at least as a welcome sign that genuine understanding of the spiral phenomenon seemed in some sense to be just around the co...
Excitation of surface plasma waves over corrugated slow-wave structure
Indian Academy of Sciences (India)
Ashim P Jain; Jetendra Parashar
2005-08-01
A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between dielectric and slow-wave structure. These slow SPW can couple the microwave energy to the plasma and can sustain the discharge. The efficiency of the power coupling is few per cent and is sensitive to separation between dielectric and slow-wave structure.
Freak waves in negative-ion plasmas: an experiment revisited
Kourakis, Ioannis; Elkamash, Ibrahem; Reville, Brian
2016-10-01
Extreme events in the form of rogue waves (freak waves) occur widely in the open sea. These are space- and time-localised excitations, which appear unexpectedly and are characterised by a significant amplitude. Beyond ocean dynamics, the mechanisms underlying rogue wave formation are now being investigated in various physical contexts, including materials science, nonlinear optics and plasma physics, to mention but a few. We have undertaken an investigation, from first principles, of the occurrence of rogue waves associated with the propagation of electrostatic wavepackets in plasmas. Motivated by recent experimental considerations involving freak waves in negative-ion plasmas (NIP), we have addresed the occurrence of freak waves in NIP from first principles. An extended range of plasma parameter values was identified, where freak wave formation is possible, in terms of relevant plasma parameters. Our results extend -and partly contradict- the underlying assumptions in the interpretation of the aforementioned experiment, where a critical plasma configuration was considered and a Gardner equation approach was adopted. This work was supported from CPP/QUB funding. One of us (I. Elkamash) acknowledges financial support by an Egyptian Government fellowship.
A laboratory search for plasma erosion by Alfven waves
Vincena, S.; Gekelman, W.; Pribyl, P.
2007-12-01
Obliquely propagating shear Alfven waves with transverse wavelengths on the order of the electron inertial length or even the ion gyro-radius are commonly observed in the earth's low-altitude auroral zones. These regions are also replete with observations of electron beams and transversely heated ions. A kinetic treatment of shear Alfven wave-particle interaction reveals how these waves can be responsible for some of the observed particle acceleration. The auroral plasma environment is further enriched by the presence of field-aligned depletions in plasma density, and it has been suggested* that the Alfven waves may, in fact, be the cause of the erosion of ionospheric density. In this laboratory experiment, shear waves will be launched using a variety of proven antennas, and also allowed to grow spontaneously as Drift-Alfven modes in seeded density depletions**. Detailed measurements of the wave magnetic fields in the perpendicular density gradient regions will be presented which demonstrate the generation of short perpendicular wave scales due to the perpendicular gradient in parallel wave phase speed. Miniature in-situ particle diagnostics will also be used to look for electron and ion acceleration. The waves will also be launched into an increasing region of background magnetic field in an attempt to model the ratios of Alfven speed to electron thermal speed, and density gradient scale length to electron inertial length appropriate to the earth's auroral zone. Preliminary results will be presented on the efficacy of shear Alfven waves to self-generate plasma density depletions, or deepen ambient density inhomogeneities. The experiments are conducted at UCLA's Basic Plasma Science Facility in the Large Plasma Device. *Chaston, et al., "Ionospheric erosion by Alfven Waves," JGR, V 111, A03206, 2006. **Penano, et al., "Drift-Alfven fluctuations associated with a narrow pressure striation," Phys. Plasmas, V 7, Issue 1, pp. 144-157 (2000).
Observational Confirmations of Spiral Density Wave Theory
Kennefick, Julia D.; Kennefick, Daniel; Shameer Abdeen, Mohamed; Berrier, Joel; Davis, Benjamin; Fusco, Michael; Pour Imani, Hamed; Shields, Doug; DMS, SINGS
2017-01-01
Using two techniques to reliably and accurately measure the pitch angles of spiral arms in late-type galaxies, we have compared pitch angles to directly measured black hole masses in local galaxies and demonstrated a strong correlation between them. Using the relation thus established we have developed a pitch angle distribution function of a statistically complete volume limited sample of nearby galaxies and developed a central black hole mass function for nearby spiral galaxies.We have further shown that density wave theory leads us to a three-way correlation between bulge mass, pitch angle, and disk gas density, and have used data from the Galaxy Disk Mass Survey to confirm this possible fundamental plane. Density wave theory also predicts that the pitch angle of spiral arms should change with observed waveband as each waveband is sampling a different stage in stellar population formation and evolution. We present evidence that this is indeed the case using a sample of galaxies from the Spitzer Infrared Nearby Galaxy Survey. Furthermore, the evolved spiral arms cross at the galaxy co-rotation radius. This gives a new method for determining the co-rotation radius of spiral galaxies that is found to agree with those found using previous methods.
Mathematical problems in wave propagation theory
1970-01-01
The papers comprising this collection are directly or indirectly related to an important branch of mathematical physics - the mathematical theory of wave propagation and diffraction. The paper by V. M. Babich is concerned with the application of the parabolic-equation method (of Academician V. A. Fok and M. A, Leontovich) to the problem of the asymptotic behavior of eigenfunc tions concentrated in a neighborhood of a closed geodesie in a Riemannian space. The techniques used in this paper have been föund useful in solving certain problems in the theory of open resonators. The topic of G. P. Astrakhantsev's paper is similar to that of the paper by V. M. Babich. Here also the parabolic-equation method is used to find the asymptotic solution of the elasticity equations which describes Love waves concentrated in a neighborhood of some surface ray. The paper of T. F. Pankratova is concerned with finding the asymptotic behavior of th~ eigenfunc tions of the Laplace operator from the exact solution for the surf...
Recent progresses in relativistic beam-plasma instability theory
Directory of Open Access Journals (Sweden)
A. Bret
2010-11-01
Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.
Acceleration of injected electrons by the plasma beat wave accelerator
Joshi, C.; Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Katsouleas, T.; Mori, W. B.
1992-07-01
In this paper we describe the recent work at UCLA on the acceleration of externally injected electrons by a relativistic plasma wave. A two frequency laser was used to excite a plasma wave over a narrow range of static gas pressures close to resonance. Electrons with energies up to our detection limit of 9.1 MeV were observed when 2.1 MeV electrons were injected in the plasma wave. No accelerated electrons above the detection threshold were observed when the laser was operated on a single frequency or when no electrons were injected. Experimental results are compared with theoretical predictions, and future prospects for the plasma beat wave accelerator are discussed.
Relativistic effects on the modulational instability of electron plasma waves in quantum plasma
Indian Academy of Sciences (India)
Basudev Ghosh; Swarniv Chandra; Sailendra Nath Paul
2012-05-01
Relativistic effects on the linear and nonlinear properties of electron plasma waves are investigated using the one-dimensional quantum hydrodynamic (QHD) model for a twocomponent electron–ion dense quantum plasma. Using standard perturbation technique, a nonlinear Schrödinger equation (NLSE) containing both relativistic and quantum effects has been derived. This equation has been used to discuss the modulational instability of the wave. Through numerical calculations it is shown that relativistic effects signiﬁcantly change the linear dispersion character of the wave. Unlike quantum effects, relativistic effects are shown to reduce the instability growth rate of electron plasma waves.
Twisted Backgrounds, PP-Waves and Nonlocal Field Theories
Alishahiha, M; Alishahiha, Mohsen; Ganor, Ori J.
2003-01-01
We study partially supersymmetric plane-wave like deformations of string theories and M-theory on brane backgrounds. These deformations are dual to nonlocal field theories. We calculate various expectation values of configurations of closed as well as open Wilson loops and Wilson surfaces in those theories. We also discuss the manifestation of the nonlocality structure in the supergravity backgrounds. A plane-wave like deformation of little string theory has also been studied.
Kinetic theory of nonideal gases and nonideal plasmas
Klimontovich, Yu L
2013-01-01
Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a shor
Excitation of Chirping Whistler Waves in a Laboratory Plasma
Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Gekelman, W. N.; Pribyl, P.
2015-12-01
Whistler mode chorus emissions with a characteristic frequency chirp are an important magnetospheric wave, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified. The research was funded by NSF/DOE Plasma Partnership program by grant DE-SC0010578. Work was done at the Basic Plasma Science Facility (BAPSF) also funded by NSF/DOE.
The shear viscosity of gauge theory plasma with chemical potentials
Benincasa, P; Naryshkin, R; Benincasa, Paolo; Buchel, Alex; Naryshkin, Roman
2007-01-01
We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.
The shear viscosity of gauge theory plasma with chemical potentials
Benincasa, Paolo; Buchel, Alex; Naryshkin, Roman
2007-02-01
We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.
Nonlinear wave evolution in VLASOV plasma: a lie-transform analysis
Energy Technology Data Exchange (ETDEWEB)
Cary, J.R.
1979-08-01
Nonlinear wave evolution in Vlasov plasma is analyzed using the Lie transform, a powerful mathematical tool which is applicable to Hamiltonian systems. The first part of this thesis is an exposition of the Lie transform. Dewar's general Lie transform theory is explained and is used to construct Deprit's Lie transform perturbation technique. The basic theory is illustrated by simple examples.
Terahertz radiation emission from plasma beat-wave interactions with a relativistic electron beam
Gupta, D. N.; Kulagin, V. V.; Suk, H.
2017-10-01
We present a mechanism to generate terahertz radiation from laser-driven plasma beat-wave interacting with an electron beam. The theory of the energy transfer between the plasma beat-wave and terahertz radiation is elaborated through nonlinear coupling in the presence of a negative-energy relativistic electron beam. An expression of terahertz radiation field is obtained to find out the efficiency of the process. Our results show that the efficiency of terahertz radiation emission is strongly sensitive to the electron beam energy. Emitted field strength of the terahertz radiation is calculated as a function of electron beam velocity.
Alfven waves in a partially ionized two-fluid plasma
Soler, R; Ballester, J L; Terradas, J
2013-01-01
Alfv\\'en waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfv\\'en waves is affected by the interaction between ionized and neutral species. Here we study Alfv\\'en waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cut-off values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mo...
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Energy Technology Data Exchange (ETDEWEB)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Surface Waves in the paritally ionized solar plasma slab
Pandey, B P
2013-01-01
The properties of surface waves in the partially ionized, incompressible magnetized plasma slab are investigated in the present work. The waves are affected by the non ideal MHD effects which causes the finite drift of the magnetic field in the medium. When the finite drift of the magnetic field is ignored, the characteristics of the wave propagation in the partially ionized plasma fluid is similar to the ideal MHD except now the propagation properties depend on the fractional ionization of the medium. In the presence of Hall diffusion, the propagation of the sausage and kink surface waves depends on the level of fractional ionization of the medium. When both the Hall and Pedersen diffusion are present in the medium, the waves undergoes damping. For typical solar parameters, waves may damp over few minutes.
Electromagnetic ion cyclotron waves in the plasma depletion layer
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Energy Technology Data Exchange (ETDEWEB)
Tsuda, M.; Ono, K.; Tsuchihashi, M.; Hanazaki, M.; Komemura, T. [Mitsubishi Electric Corp., Tokyo (Japan)
1998-11-01
A new-type microwave plasma source has been developed for materials processing. The plasma reactor employed a launcher of azimuthally symmetric surface waves at a frequency of 2.45 GHz and also magnetic multicusp fields around the reactor chamber walls. This configuration yielded high-density (Ne {>=} 10{sup 11}cm{sup -3}) plasmas sustained by surface waves even at low gas pressures below 10 m Torr, following easy plasma ignition by electron cyclotron resonance (ECR) discharges. Electrical and optical diagnostics were made to obtain the plasma properties in Ar. It was shown that a transition from ECR excited to surface-wave excited plasmas occurs under conditions where the plasma electron density exceeds a critical value of Ne-1 times 10{sup 11}cm{sup -3}. 21 refs., 14 figs.
Polar Plasma Wave Investigation Data Analysis in the Extended Mission
Gurnett, Donald A.
2004-01-01
The low latitude boundary layer (LLBL) is a region where solar wind momentum and energy is transferred to the magnetosphere. Enhanced "broadband" electric plasma waves from less than 5 Hz to 10(exp 5) Hz and magnetic waves from less than 5 Hz to the electron cyclotron frequency are characteristic of the LLBL. Analyses of Polar plasma waves show that these "broadband" waves are actually discrete electrostatic and electromagnetic modes as well as solitary bipolar pulses (electron holes). It is noted that all wave modes can be generated by approx. 100 eV to approx. 10 keV auroral electrons and protons. We will review wave-particle interactions, with focus on cross-diffusion rates and the contributions of such interactions toward the formation of the boundary layer. In summary, we will present a scenario where the global solar wind-magnetosphere interaction is responsible for the auroral zone particle beams, and hence for the generation of plasma waves and the formation of the boundary layer. It is speculated that all planetary magnetospheres will have boundary layers and they will be characterized by similar currents and plasma wave modes.
Six Decades of Spiral Density Wave Theory
Shu, Frank H.
2016-09-01
The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular
Surface waves on a quantum plasma half-space
Lázár, M; Smolyakov, A
2007-01-01
Surface modes are coupled electromagnetic/electrostatic excitations of free electrons near the vacuum-plasma interface and can be excited on a sufficiently dense plasma half-space. They propagate along the surface plane and decay in either sides of the boundary. In such dense plasma models, which are of interest in electronic signal transmission or in some astrophysical applications, the dynamics of the electrons is certainly affected by the quantum effects. Thus, the dispersion relation for the surface wave on a quantum electron plasma half-space is derived by employing the quantum hydrodynamical (QHD) and Maxwell-Poison equations. The QHD include quantum forces involving the Fermi electron temperature and the quantum Bohm potential. It is found that, at room temperature, the quantum effects are mainly relevant for the electrostatic surface plasma waves in a dense gold metallic plasma.
AN INVESTIGATION OF ELECTROMAGNETIC WAVE PROPAGATION IN PLASMA BY SHOCK TUBE
Institute of Scientific and Technical Information of China (English)
ZHU Naiyi; LI Xuefen; HUANG Lishun; YU Xilong; YANG Qiansuo
2004-01-01
This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters ne, v, ω, L, ωb. The φ800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 ～ 35) GHz (ω = 2π f, wave length λ = 15 cm ～ 8 mm). The electron density in the plasma is ne = (3 × 1010 ～ 1× 1014) cm-3. The collision frequency v = (1× 10s ～ 6 × 1010)Hz. The thickness of the plasma layer L = (2 ～ 80) cm. The electron circular frequency ωb = eBo/me, magnetic flux density B0 = (0 ～ 0.84)T. The experimental results show that when the plasma layer is thick (such as L/λ≥ 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters ne, v, ω, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and λ are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range,but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters ne, v, ω, L. In fact, if ω＜ωp, v2 ＜＜ω2, the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if ω＞ωp, v2 ＜＜ω2 (just v ≈ f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power
The theory of toroidally confined plasmas
White, Roscoe B
2014-01-01
This graduate level textbook develops the theory of magnetically confined plasma, with the aim of bringing the reader to the level of current research in the field of thermonuclear fusion. It begins with the basic concepts of magnetic field description, plasma equilibria and stability, and goes on to derive the equations for guiding center particle motion in an equilibrium field. Topics include linear and nonlinear ideal and resistive modes and particle transport. It is of use to workers in the field of fusion both for its wide-ranging account of tokamak physics and as a kind of handbook or formulary. This edition has been extended in a number of ways. The material on mode-particle interactions has been reformulated and much new information added, including methodology for Monte Carlo implementation of mode destabilization. These results give explicit means of carrying out mode destabilization analysis, in particular for the dangerous fishbone mode. A new chapter on cyclotron motion in toroidal geometry has ...
Numerical study of ion acoustic shock waves in dense quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Hanif, M.; Mirza, Arshad M. [Theoretical Plasma Physics Group, Department of Physics, Quaid-e-Azam University, Islamabad 45320 (Pakistan); Ali, S.; Mukhtar, Q., E-mail: qaisarm@ncp.edu.pk [National Center for Physics, Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)
2014-03-15
Two fluid quantum hydrodynamic equations are solved numerically to investigate the propagation characteristics of ion acoustic shock waves in an unmagnetized dense quantum plasma, whose constituents are the electrons and ions. For this purpose, we employ the standard finite difference Lax Wendroff and relaxation methods, to examine the quantum effects on the profiles of shock potential, the electron/ion number densities, and velocity even for quantum parameter at H = 2. The effects of the latter vanish in a weakly non-linear limit while obeying the KdV theory. It is shown that the evolution of the wave depends sensitively on the plasma density and the quantum parameter. Numerical results reveal that the kinks or oscillations are pronounced for large values of quantum parameter, especially at H = 2. Our results should be important to understand the shock wave excitations in dense quantum plasmas, white dwarfs, neutron stars, etc.
Nonlinear kinetic Alfvén waves with non-Maxwellian electron population in space plasmas
Masood, W.; Qureshi, M. N. S.; Yoon, P. H.; Shah, H. A.
2015-01-01
The present work discusses the effects of non-Maxwellian electron distributions on kinetic Alfvén waves in low-beta plasmas. Making use of the two-potential theory and employing the Sagdeev potential approach, the existence of solitary kinetic Alfvén waves having arbitrary amplitude is investigated. It is found that the use of non-Maxwellian population of electrons in the study of kinetic Alfvén waves leads to solutions corresponding to solitary structures that do not exist for Maxwellian electrons. The present investigation solves the riddle of plasma density fluctuations associated with strong electromagnetic perturbations observed by the Freja satellite. The present findings can also be applied to regions of space where various satellite missions have observed the presence of suprathermal populations of plasma species and where the low β assumption is valid.
Surface plasma waves over bismuth–vacuum interface
Indian Academy of Sciences (India)
Ashim P Jain; J Parashar
2003-09-01
A surface plasma wave (SPW) over bismuth–vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW cutoff=$_{p}/\\sqrt{2(_{L}+)}$ lies in the far infrared region and can be accessed using free electron laser. The damping rate of waves at low temperatures is low. The surface plasma wave may be excited by an electron beam of current ∼ 100 mA propagating parallel to the interface in its close proximity.
Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide
DEFF Research Database (Denmark)
Juul Rasmussen, Jens
1978-01-01
The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing...... the long-time slow modulation of the wave amplitude. From this equation the amplitude-dependent frequency and wavenumber shifts are calculated, and it is found that the electron waves with short wavelengths are modulationally unstable with respect to long-wavelength, low-frequency perturbations...
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Effect of electron inertia on dispersive properties of Alfvén waves in cold plasmas
Jana, Sayanee; Ghosh, Samiran; Chakrabarti, Nikhil
2017-10-01
The effect of electron inertia on Alfvén wave propagation is investigated in the framework of the two-fluid theory in a compressible magnetized plasma. The linear analysis of the governing equations manifests the dispersion relation of the circularly polarized Alfvén waves where the electron inertia is found to act as a source of dispersion. In the finite amplitude limit, the nonlinear Alfvén wave may be described by the Derivative Nonlinear Schrödinger equation (DNLSE) modified by third order dispersion arising due to finite electron inertia. The derived equation seems to be novel with respect to what exists in the literature of Alfvén wave dynamics. We have shown that this electron inertia modified DNLSE is completely integrable and an analytical solution is demonstrated with vanishing boundary conditions. The results are expected to be of special importance in the context of space and laboratory plasmas.
Electrostatic solitary waves in dusty pair-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Misra, A. P. [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan-731 235, West Bengal (India); Adhikary, N. C. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati-781035, Assam (India)
2013-10-15
The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the “fast” and “slow” waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass (m) and temperature (T) ratios of negative to positive ions, as well as the effects of immobile charged dusts (δ). For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons, are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves (SWs) with only the negative potential. The results may be useful for the excitation of SWs in laboratory dusty pair-ion plasmas, electron-free industrial plasmas as well as for observation in space plasmas where electron density is negligibly small compared to that of negative ions.
Cho, Guangsup; Uhm, Han Sup
2016-10-01
The time-dependent solution of diffusion equation by the Fourier integration provides the axial diffusion velocity of a plasma packet, which is a key element of the plasma propagation in a plasma jet operated by the several tens of kHz. The plasma diffusion velocity is higher than the order of un ˜ 10 m/s at a high electric-field region of plasma generation and it is about the order of un ˜ 10 m/s at the plasma column of a low field region in a jet-nozzle inside. Meanwhile, the diffusion velocity is slower than the order of un ˜ 10 m/s in the open-air space where the plasma density flattens due to its radial expansion. Using these diffusion velocity data, the group-velocity of plasma diffusion wave-packet is given by ug ˜ cs2/un, a combination of the diffusion velocity un and the acoustic velocity cs. The experimental results of the plasma propagation can be verified with the plasma propagation in a form of the wave-packet whose propagation velocity is 104 m/s in a tube inside and is as fast as 105 m/s in the open-air space, thereby reconfirming that the theory of a plasma diffusion-wave is the origin of the plasma propagation in a plasma jet.
Instability wave control in turbulent jet by plasma actuators
Kopiev, V. F.; Akishev, Y. S.; Belyaev, I. V.; Berezhetskaya, N. K.; Bityurin, V. A.; Faranosov, G. A.; Grushin, M. E.; Klimov, A. I.; Kopiev, V. A.; Kossyi, I. A.; Moralev, I. A.; Ostrikov, N. N.; Taktakishvili, M. I.; Trushkin, N. I.; Zaytsev, M. Yu
2014-12-01
Instability waves in the shear layer of turbulent jets are known to be a significant source of jet noise, which makes their suppression important for the aviation industry. In this study we apply plasma actuators in order to control instability waves in the shear layer of a turbulent air jet at atmospheric pressure. Three types of plasma actuators are studied: high-frequency dielectric barrier discharge, slipping surface discharge, and surface barrier corona discharge. Particle image velocimetry measurements of the shear layer demonstrate that the plasma actuators have control authority over instability waves and effectively suppress the instability waves artificially generated in the shear layer. It makes these actuators promising for application in active control systems for jet noise mitigation.
Energy Technology Data Exchange (ETDEWEB)
Vezard, D.
1994-12-20
This thesis presents a study concerning cyclotronic waves in a plasma. It starts with an illustration of the elementary interaction between electromagnetic waves and matter.It shows that electrons from tokamak absorbs waves at cyclotronic frequency. Cyclotronic waves are studied by solving the dispersion relation in plasma; it concerns polarisation, absorption, dispersion, extinction. Then, classical theories are reminded in order to speak about decoupled electrons and their interactions. Absorption and emission properties of cyclotronic waves by electrons from a queue are described. After that, cyclotronic waves propagation is studied taking into account resonance. The last part of this thesis is dedicated to the electronic distribution function that is made by a wave spectra at a inferior hybrid frequency. (TEC). 129 refs., 75 figs.
Eulerian simulations of collisional effects on electrostatic plasma waves
Pezzi, Oreste; Perrone, Denise; Veltri, Pierluigi
2013-01-01
The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attach, both from the theoretical and the numerical point of view, and which requires in general to approximate the original collisional Landau integral by simplified differential operators in reduced dimensionality. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear form. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator...
Surface waves in the magnetized, collisional dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Pandey, B. P. [Department of Physics, Astronomy and Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney NSW 2109 (Australia); Vladimirov, S. V. [School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan); Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 (Russian Federation); Ishihara, O. [Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan)
2013-10-15
The properties of the low frequency surface waves in inhomogeneous, magnetized collisional complex dusty plasma are investigated in this work. The inhomogeneity is modelled by the two distinct regions of the dusty medium with different dust densities. The external magnetic field is assumed to be oriented along the interface dividing the two medium. It is shown that the collisional momentum exchange that is responsible for the relative drift between the plasma particles affects the propagation of the surface waves in the complex plasma via the Hall drift of the magnetic fluctuations. The propagation properties of the sausage and kink waves depend not only on the grain charge and size distribution but also on the ambient plasma thermal conditions.
Low-Frequency Waves in Cold Three-Component Plasmas
Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong
2016-09-01
The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS
Unexpected wave group behaviour challenges use of Stokes theory for ocean waves
Banner, Michael; Fedele, Francesco; Allis, Michael; Benetazzo, Alvise; Dias, Frederic; Peirson, William
2013-01-01
A key result of Stokes' water wave theory is that deep-water gravity waves of larger amplitude travel faster than those of lower amplitude at fixed wavelength. Recent observations, however, suggest that maximally-steep breaking wave crests actually travel significantly slower than expected, calling into question the predictions of Stokes' theory and its impact on diverse areas of ocean-wave physics ranging from rogue wave generation to the role of wave breaking in climate modelling. Here we report our discovery of a generic wave-crest slowdown mechanism that occurs within unsteady, propagating wave groups, which modifies the phasing of individual wave crests. Our numerical and observational studies show that just prior to reaching its maximum height, each wave crest slows down significantly. It either breaks at this reduced speed, or accelerates forward unbroken. Implications for oceanic and other natural wave systems are described.
Vlasov simulations of electron-ion collision effects on damping of electron plasma waves
Energy Technology Data Exchange (ETDEWEB)
Banks, J. W., E-mail: banksj3@rpi.edu [Rensselaer Polytechnic Institute, Department of Mathematical Sciences, Troy, New York 12180 (United States); Brunner, S.; Tran, T. M. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne (Switzerland); Berger, R. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)
2016-03-15
Collisional effects can play an essential role in the dynamics of plasma waves by setting a minimum damping rate and by interfering with wave-particle resonances. Kinetic simulations of the effects of electron-ion pitch angle scattering on Electron Plasma Waves (EPWs) are presented here. In particular, the effects of such collisions on the frequency and damping of small-amplitude EPWs for a range of collision rates and wave phase velocities are computed and compared with theory. Both the Vlasov simulations and linear kinetic theory find the direct contribution of electron-ion collisions to wave damping significantly reduced from that obtained through linearized fluid theory. To our knowledge, this simple result has not been published before. Simulations have been carried out using a grid-based (Vlasov) approach, based on a high-order conservative finite difference method for discretizing the Fokker-Planck equation describing the evolution of the electron distribution function. Details of the implementation of the collision operator within this framework are presented. Such a grid-based approach, which is not subject to numerical noise, is of particular interest for the accurate measurements of the wave damping rates.
Advanced Accelerators: Particle, Photon and Plasma Wave Interactions
Energy Technology Data Exchange (ETDEWEB)
Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)
2017-06-29
The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.
Dispersive shock waves and modulation theory
El, G. A.; Hoefer, M. A.
2016-10-01
There is growing physical and mathematical interest in the hydrodynamics of dissipationless/dispersive media. Since G.B. Whitham's seminal publication fifty years ago that ushered in the mathematical study of dispersive hydrodynamics, there has been a significant body of work in this area. However, there has been no comprehensive survey of the field of dispersive hydrodynamics. Utilizing Whitham's averaging theory as the primary mathematical tool, we review the rich mathematical developments over the past fifty years with an emphasis on physical applications. The fundamental, large scale, coherent excitation in dispersive hydrodynamic systems is an expanding, oscillatory dispersive shock wave or DSW. Both the macroscopic and microscopic properties of DSWs are analyzed in detail within the context of the universal, integrable, and foundational models for uni-directional (Korteweg-de Vries equation) and bi-directional (Nonlinear Schrödinger equation) dispersive hydrodynamics. A DSW fitting procedure that does not rely upon integrable structure yet reveals important macroscopic DSW properties is described. DSW theory is then applied to a number of physical applications: superfluids, nonlinear optics, geophysics, and fluid dynamics. Finally, we survey some of the more recent developments including non-classical DSWs, DSW interactions, DSWs in perturbed and inhomogeneous environments, and two-dimensional, oblique DSWs.
Andreev, Pavel A
2014-01-01
We discuss complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider contribution of the annihilation interaction in the quantum hydrodynamic equations and in spectrum of waves in magnetized electron-positron plasmas. We consider propagation of waves parallel and perpendicular to an external magnetic field. We also consider oblique propagation of longitudinal waves. We derive set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory for the linear wave behavior in absence of external fields. We calculate contribution of the Darwin...
Damping of Slow Magnetoacoustic Waves in an Inhomogeneous Coronal Plasma
Indian Academy of Sciences (India)
Nagendra Kumar; Pradeep Kumar; Shiv Singh; Anil Kumar
2008-03-01
We study the propagation and dissipation of slow magnetoacoustic waves in an inhomogeneous viscous coronal loop plasma permeated by uniform magnetic field. Only viscosity and thermal conductivity are taken into account as dissipative processes in the coronal loop. The damping length of slow-mode waves exhibit varying behaviour depending upon the physical parameters of the loop in an active region AR8270 observed by TRACE. The wave energy flux associated with slow magnetoacoustic waves turns out to be of the order of 106 erg cm-2 s-1 which is high enough to replace the energy lost through optically thin coronal emission and the thermal conduction belowto the transition region. It is also found that only those slow-mode waves which have periods more than 240 s provide the required heating rate to balance the energy losses in the solar corona. Our calculated wave periods for slow-mode waves nearly match with the oscillation periods of loop observed by TRACE.
Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view
Laval, Guy; Pesme, Denis; Adam, Jean-Claude
2016-11-01
The first researches on nuclear fusion for energy applications marked the entrance of hot plasmas into the laboratory. It became necessary to understand the behavior of such plasmas and to learn how to manipulate them. Theoreticians and experimentalists, building on the foundations of empirical laws, had to construct this new plasma physics from first principles and to explain the results of more and more complicated experiments. Along this line, two important topics emerged: wave-particle and wave-wave interactions. Here, their history is recalled as it has been lived by a French team from the end of the sixties to the beginning of the twenty-first century.
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn [Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070 (China)
2015-09-15
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.
Saturation of Langmuir waves in laser-produced plasmas
Energy Technology Data Exchange (ETDEWEB)
Baker, K.L.
1996-04-01
This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.
Secondary Fast Magnetoacoustic Waves Trapped in Randomly Structured Plasmas
Yuan, Ding; Li, Bo; Walsh, Robert W.
2016-09-01
Fast magnetoacoustic waves are an important tool for inferring parameters of the solar atmosphere. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas that mimic the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the speed of the fast wave, we quantify the properties of secondary waves by examining the dependence of the average temporal period (\\bar{p}) on the initial pulse width (w 0) and studying the density contrast ({δ }ρ ) and correlation length (L c ) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, {δ }ρ does not alter \\bar{p} significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when {δ }ρ is small but have a smoothing effect when {δ }ρ is sufficiently large. We found that \\bar{p} scales linearly with L c and that the scaling factor is larger for a narrower pulse. However, in terms of the absolute values of \\bar{p}, broader pulses generate secondary waves with longer periods, and this effect is stronger in random plasmas with shorter correlation lengths. Secondary waves carry the signatures of both the leading wave pulse and the background plasma. Our study may find applications in magnetohydrodynamic seismology by exploiting the secondary waves detected in the dimming regions after coronal mass ejections or extreme ultraviolet waves.
Investigation on laser accelerators. Plasma beat wave accelerators
Energy Technology Data Exchange (ETDEWEB)
Miura, Akihiko; Miyamoto, Yasuaki; Hagiwara, Masayoshi; Suzuki, Mitsutoshi; Sudo, Osamu [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works
1998-04-01
Laser accelerator technology has characteristics of high energy, compact, short pulse and high luminescence{center_dot}low emittance. This means potential many applications in wide ranges of fields as well as high energy and nuclear physics. High power short laser pulses are injected to a plasma in the typical example of laser accelerators. Large electric fields are induced in the plasma. Electrons in the plasma are accelerated with the ponderomotive force of the electric field. The principles of interaction on beat wave, wakefield accelerators, inverse free electron laser and inverse Cherenkov radiation are briefly introduced. The overview of plasma beat wave accelerator study is briefly described on the programs at Chalk River Laboratories(Canada), UCLA(USA), Osaka Univ. (Japan) and Ecole Polytechnique (France). Issues of the plasma beat wave accelerator are discussed from the viewpoint of application. Existing laser technologies of CO{sub 2}, YAG and YFL are available for the present day accelerator technology. An acceleration length of beat wave interaction is limited due to its phase condition. Ideas on multi-staged acceleration using the phasing plasma fiber are introduced. (Y. Tanaka)
Ion-acoustic cnoidal waves in a quantum plasma
Mahmood, Shahzad
2016-01-01
Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter $H_{e}$ which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.
Theory of the Jitter radiation in a magnetized plasma accompanying temperature gradient
Hattori, Makoto
2016-01-01
The linear stability of a magnetized plasma accompanying temperature gradient was reexamined by using plasma kinetic theory. The anisotropic velocity distribution function was decomposed into two components. One is proportional to the temperature gradient parallel to and the other is proportional to the temperature gradient perpendicular to the back ground magnetic field. Since the amplitude of the anisotropic velocity distribution function is proportional to the heat conductivity and the heat conductivities perpendicular to the magnetic field is strongly reduced, the first component of the anisotropic velocity distribution function is predominant. The anisotropic velocity distribution function induced by the temperature gradient along the back ground magnetic field drives plasma kinetic instability and the circular polarized magnetic plasma waves are excited. The instability is almost identical to Weibel instability in weakly magnetized plasma. However, depending on whether wave vectors of modes are parallel...
Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons
Urrutia, J. M.; Stenzel, R. L.
2016-05-01
Electromagnetic waves in the low frequency whistler mode regime are investigated experimentally and by digital data superposition. The radiation from a novel circular antenna array is shown to produce highly collimated helicon beams in a uniform unbounded plasma. The differences to Bessel beams in free space are remarked upon. Low divergence beams arise from the parallel group velocity of whistlers with phase velocity either along the guide field or at the Gendrin angle. Waves with angular momentum are produced by phasing the array in the circular direction. The differences in the field topologies for positive and negative modes numbers are shown. It is also shown that in uniform plasmas, the radial amplitude profile of the waves depends on the antenna field topology. Thus, there are no helicon "eigenmodes" with radial Bessel function profiles in uniform plasmas. It is pointed out that phase measurements in helicon devices indicate radial wave propagation which is inconsistent with helicon eigenmode theory based on paraxial wave propagation. Trivelpiece-Gould modes also exist in uniform unbounded plasmas.
Excitation of Chirping Whistler Waves in a Laboratory Plasma.
Van Compernolle, B; An, X; Bortnik, J; Thorne, R M; Pribyl, P; Gekelman, W
2015-06-19
Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density, and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified.
Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma
Martines, E; Cavazzana, R; Adámek, J; Antoni, V; Serianni, G; Spolaore, M; Vianello, N
2014-01-01
A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.
Some notes on ideology of waves in plasmas
Soshnikov, V N
2002-01-01
Our last three papers provide an occasion to make some brief notes on ideology of waves in plasmas and to rehabilitate Vlasov prescription to calculate relevant logarithmically divergent integrals in the principal value sense. In this approach asymptotical solutions of plasma oscillations are selected according to self-consistent boundary physical conditions. Landau damping is absent in this case by definition. Boundary electrical field together with conditions of absence of unphysical backward and kinematical waves define single-valued dependence of boundary distribution function on electron velocity \\vec{v} in the case of transversal waves and on the surface break of the normal electrical field in the case of longitudinal oscillations. We have proposed physically more justified modified iteration procedure of collisional damping calculation and demonstrated some results of damping decrements calculations in a low-collision electron-ion plasma. Dispersion smearing of both longitudinal and transversal high-fr...
Xu, Junqi; Kousaka, Hiroyuki; Umehara, Noritsugu; Diao, Dongfeng
2006-01-01
Surface wave-sustained plasma (SWP) is one of the low-pressure, high- density plasma. Applying this technique, diamond-like carbon (DLC) films with excellent characteristics can be prepared by physical vapor deposition (PVD) method. However, the films' application is restricted in some degree, because it is difficult to control the film properties. In this paper, SWP was excited along a conductive rod at a frequency of 2.45 GHz without magnetic fields around the chamber wall. The fundamental theories of plasma diagnostic were presented and plasma properties were studied with a Langmuir probe under the conditions of depositing DLC films by PVD method with a graphite target. Plasma density, electron temperature, plasma potential and target current were measured at difference technique parameters such as gas pressure, microwave power, and so on. As a result, it was proved that plasma properties are greatly affected by microwave power, target voltage and argon gas pressure in chamber. The gas mass flow rate had almost no effect on plasma characters. At the same time, the results indicated that electron density is up to 10 11-10 12cm -3 even at the low pressure of 1 Pa.
Vlasov Simulations of Electron-Ion Collision Effects on Damping of Electron Plasma Waves
Banks, J W; Berger, R L; Tran, T M
2016-01-01
Collisional effects can play an essential role in the dynamics of plasma waves by setting a minimum damping rate and by interfering with wave-particle resonances. Kinetic simulations of the effects of electron-ion pitch angle scattering on Electron Plasma Waves (EPWs) are presented here. In particular, the effects of such collisions on the frequency and damping of small-amplitude EPWs for a range of collision rates and wave phase velocities are computed and compared with theory. Both the Vlasov simulations and linear kinetic theory find the direct contribution of electron-ion collisions to wave damping is about a factor of two smaller than is obtained from linearized fluid theory. To our knowledge, this simple result has not been published before. Simulations have been carried out using a grid-based (Vlasov) approach, based on a high-order conservative finite difference method for discretizing the Fokker-Planck equation describing the evolution of the electron distribution function. Details of the implementat...
Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs
Directory of Open Access Journals (Sweden)
Zhi-Bin Wang
2016-05-01
Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.
Solar Wind Strahl Broadening by Self-Generated Plasma Waves
Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.
2013-01-01
This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.
Accumulative coupling between magnetized tenuous plasma and gravitational waves
Zhang, Fan
2016-07-01
We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) traveling through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW comoves with the GW and absorbs its energy to grow over time, creating an essentially force-free counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is comparable to the vacuum case, but the associated current may offer a more sensitive alternative to photodetection when designing experiments for detecting/constraining high-frequency gravitational waves. Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical gravitational waves that are generated directly by the latter as a second-order phenomenon.
Accumulative coupling between magnetized tenuous plasma and gravitational waves
Zhang, Fan
2016-01-01
We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) travelling through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW co-moves with the GW and absorbs its energy to grow over time, creating an essentially force-free counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is comparable to the vacuum case, but the associated current may offer a more sensitive alternative to photodetection when designing experiments for detecting/constraining high frequency gravitational waves. Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical gravitational waves, that are generated directly by the latter as a second order phenomenon.
Electromagnetic waves in a magnetized plasma near the critical surface
Energy Technology Data Exchange (ETDEWEB)
Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)
2004-06-30
Electromagnetic waves in a plasma in a magnetic field give rise to enhanced refraction, produce a change in polarization, and cause electromagnetic energy to flow from one wave mode to another when propagating near the critical surface (CS), the one where the electron Langmuir frequency is equal to the wave frequency. A simple unified model of all phenomena taking place near the CS is proposed. These phenomena are due to electromagnetic waves linearly interacting with electron Langmuir oscillations which are localized at the CS in a cold plasma. This interaction manifests itself most strikingly in electron Langmuir oscillation energy escaping directly into a vacuum in the form of electromagnetic radiation. (reviews of topical problems)
Full-wave solution of short impulses in inhomogeneous plasma
Indian Academy of Sciences (India)
Orsolya E Ferencz
2005-02-01
In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened in [1]. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation.
Directory of Open Access Journals (Sweden)
S. S. Ghosh
2004-01-01
Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.
Theoretical and Experimental Study of Scattering of a Plane Wave by an Inhomogeneous Plasma Sphere
Institute of Scientific and Technical Information of China (English)
SONG Fa-Lun; CAO Jin-Xiang; WANG Ge; WANG Yan; ZHU Ying; ZHU Jian; WANG Liang; NIU Tian-Ye
2006-01-01
@@ Scattering of electromagnetic waves by an inhomogeneous plasma sphere has been studied theoretically and experimentally. The offset angles of electromagnetic waves caused by the plasma sphere have been observed experimentally. The effects of the electromagnetic wave frequency and plasma density on the offset angle are discussed. The plasma density is estimated with the offset angle.
Energy Technology Data Exchange (ETDEWEB)
Yang Min; Li Xiaoping; Xie Kai; Liu Donglin [School of Electronical and Mechanical Engineering, Xidian University, Xi' an Shaanxi 710071 (China); Liu Yanming [School of Telecommunications Engineering, Xidian University, Xi' an Shaanxi 710071 (China)
2013-01-15
A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.
Dey, Indranuj; Bhattacharjee, Sudeep
2011-02-01
The question of electromagnetic wave penetration and screening by a bounded supercritical (ωp>ω with ωp and ω being the electron-plasma and wave frequencies, respectively) plasma confined in a minimum B multicusp field, for waves launched in the k ⊥Bo mode, is addressed through experiments and numerical simulations. The scale length of radial plasma nonuniformity (|ne/(∂ne/∂r)|) and magnetostatic field (Bo) inhomogeneity (|Bo/(∂Bo/∂r)|) are much smaller than the free space (λo) and guided wavelengths (λg). Contrary to predictions of plane wave dispersion theory and the Clemow-Mullaly-Allis (CMA) diagram, for a bounded plasma a finite propagation occurs through the central plasma regions where αp2=ωp2/ω2≥1 and βc2=ωce2/ω2≪1(˜10-4), with ωce being the electron cyclotron frequency. Wave screening, as predicted by the plane wave model, does not remain valid due to phase mixing and superposition of reflected waves from the conducting boundary, leading to the formation of electromagnetic standing wave modes. The waves are found to satisfy a modified upper hybrid resonance (UHR) relation in the minimum B field and are damped at the local electron cyclotron resonance (ECR) location.
Effect of orbital angular momentum on electron acoustic waves in double-Kappa plasma
Rehman, Aman-ur; Shan, S. Ali; Hamza, M. Yousaf; Lee, J. K.
2017-02-01
Kinetic theory of electron acoustic waves (EAWs) in the presence of wave angular momentum has been derived to study the effect of wave angular momentum on the propagation of EAWs in a non-Maxwellian plasma. Both types of electrons (hot and cool) are modeled as Kappa-distributed velocity distribution functions. The theory is also applied to Saturn's magnetosphere where these kinds of distribution functions are commonly found. It is seen that the presence of wave angular momentum in the model has a significant effect on the existence of the regions where EAWs are weakly damped. The effect of wave angular momentum on EAWs is studied by defining a parameter η = k/(lqθ), which is the ratio of the planar wave number to the azimuthal wave number. The wave is purely planar if η→∞. The weakly damped region of EAWs depends strongly on this parameter in addition to other parameters such as hot electron spectral index κh, cool electron spectral index κc, the fraction of hot electrons, and hot to cool electrons temperature ratio. The results also show the effect of η on the propagation of EAWs in various regions of Saturn's magnetosphere.
Laser-driven plasma waves in capillary tubes.
Wojda, F; Cassou, K; Genoud, G; Burza, M; Glinec, Y; Lundh, O; Persson, A; Vieux, G; Brunetti, E; Shanks, R P; Jaroszynski, D; Andreev, N E; Wahlström, C-G; Cros, B
2009-12-01
The excitation of plasma waves over a length of up to 8 cm is demonstrated using laser guiding of intense laser pulses through hydrogen-filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift-measured as a function of filling pressure, capillary tube length, and incident laser energy-is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range of 1-10 GV/m.
On the rogue wave propagation in ion pair superthermal plasma
Energy Technology Data Exchange (ETDEWEB)
Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A. [Physics Department, College of Sciences and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K., E-mail: emadshewy@yahoo.com; Elwakil, S. A. [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt)
2016-02-15
Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.
Refraction of VHF radio waves in artificial plasma formations
Kashirin, A. I.; Kliueva, N. M.; Mikhailik, P. P.; Chkalov, V. G.
1991-09-01
The defocusing refraction of VHF waves during the radio occultation of artificial plasma clouds in the ionosphere is calculated in the framework of the geometrical-optics approximation. The possibility of determining the main cloud parameters from characteristic power variations of the received radio waves in the case of a monotonic change in the sighting parameter during the experiment is demonstrated. Results of a rocket experiment implementing this method are presented.
Phase conjugation by four-wave mixing in inhomogeneous plasmas
Williams, Edward A.; Lininger, Diana M.; Goldman, Martin V.
1989-01-01
The effects of density, temperature, and velocity gradients on four-wave mixing (FWM) in a plasma are investigated. A fluid model is used in which the stimulated Brillouin terms are included, but pump depletion is neglected. The steady state phase conjugate reflectivity and signal transmission coefficients are calculated and discussed for both degenerate and resonant FWM. The substantial effects of inhomogeneity on the use of FWM as a plasma diagnostic are discussed.
Electron plasma wave filamentation in the kinetic regime
Lushnikov, Pavel; Rose, Harvey; Silantyev, Denis
2016-10-01
We consider nonlinear electron plasma wave (EPW) dynamics in the kinetic wavenumber regime, 0.25 Bernstein-Greene-Kruskal (BGK) mode. Transverse perturbations of any of these initial conditions grow with time eventually producing strongly nonlinear filamentation followed by plasma turbulence. We compared these simulations with the theoretical results on growth rates of the transverse instability BGK mode showing the satisfactory agreement. Supported by the New Mexico Consortium and NSF DMS-1412140.
The shear viscosity of gauge theory plasma with chemical potentials
Energy Technology Data Exchange (ETDEWEB)
Benincasa, Paolo [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Buchel, Alex [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada) and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9 (Canada)]. E-mail: abuchel@perimeterinstitute.ca; Naryshkin, Roman [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Physics Department, Taras Shevchenko Kiev National University, Prosp. Glushkova 6, Kiev 03022 (Ukraine)
2007-02-08
We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.
Harmonics Effect on Ion-Bulk Waves in CH Plasmas
Feng, Q S; Liu, Z J; Cao, L H; Xiao, C Z; Wang, Q; He, X T
2016-01-01
The harmonics effect on ion-bulk (IBk) waves has been researched by Vlasov simulation. The condition of excitation of a large-amplitude IBk waves is given to explain the phenomenon of strong short-wavelength electrostatic activity in solar wind. When $k$ is much lower than $k_{lor}/2$ ($k_{lor}$ is the wave number at loss-of-resonance point), the IBk waves will not be excited to a large amplitude, because a large part of energy will be spread to harmonics. The nature of nonlinear IBk waves in the condition of $k
Energy Technology Data Exchange (ETDEWEB)
Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)
2016-11-15
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.
2016-11-01
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Energy Technology Data Exchange (ETDEWEB)
Guede, Jose Ricardo Abalde
1995-11-01
The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the
Damping solitary wave under the second and third boundary condition of a viscous plasma
Li, G.; Ren, Y.-Q.
2016-08-01
In this paper, the solitary waves of a viscous plasma confined in a cylindrical pipe is investigated under two types of boundary condition. By using the reductive perturbation theory, a quasi-KdV equation is derived and a damping solitary wave is obtained. It is found that the damping rate increases with the viscosity coefficient of the plasma ν ' increasing and the radius of the cylindrical pipe R decreasing for second and third boundary condition. The magnitude of the damping rate is also dominated by boundary condition type. From the fact that the amplitude reduces rapidly when R approaches zero or ν ' approaches infinite, we confirm the existence of a damping solitary wave.
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
Energy Technology Data Exchange (ETDEWEB)
Anderson, M. W.; O' Neil, T. M.; Dubin, D. H. E.; Gould, R. W. [Physics Department, University of California at San Diego, La Jolla, California 92093 (United States)
2011-10-15
In the cold-fluid dispersion relation {omega}={omega}{sub p}/[1+(k{sub perpendicular}/k{sub z}){sup 2}]{sup 1/2} for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k{sub perpendicular}/k{sub z}. As a result, for any frequency {omega}<{omega}{sub p}, there are infinitely many degenerate waves, all having the same value of k{sub perpendicular}/k{sub z}. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr={+-}({omega}{sub p}{sup 2}/{omega}{sup 2}-1){sup 1/2}. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.
Nonlocal wave turbulence in non-Abelian plasmas
Mehtar-Tani, Yacine
2016-01-01
We investigate driven wave turbulence in non-Abelian plasmas, in the framework of kinetic theory where both elastic and inelastic processes are considered in the small angle approximation. The gluon spectrum, that forms in the presence of a steady source, is shown to be controlled by nonlocal interactions in momentum space, in contrast to the universal Kolmogorov-Zakharov spectra. Assuming strongly nonlocal interactions, we show that inelastic processes are dominant in the IR and cause a thermal bath to form below the forcing scale, as a result of a detailed balance between radiation and absorption of soft gluons by the hard ones. Above the forcing scale, the inelastic collision term reduces to an inhomogeneous diffusion-like equation yielding a spectrum that spreads to the UV as $t^{1/2}$, similarly to elastic processes. Due to nonlocal interactions the non-universal turbulent spectrum is not steady and flattens when time goes on toward the thermal distribution. This analysis is complemented by numerical sim...
The incomplete plasma dispersion function: properties and application to waves in bounded plasmas
Baalrud, Scott D.
2013-01-01
The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near...
A General Linear Wave Theory for Water Waves Propagating over Uneven Porous Bottoms
Institute of Scientific and Technical Information of China (English)
锁要红; 黄虎
2004-01-01
Starting from the widespread phenomena of porous bottoms in the near shore region, considering fully the diversity of bottom topography and wave number variation, and including the effect of evanescent modes, a general linear wave theory for water waves propagating over uneven porous bottoms in the near shore region is established by use of Green's second identity. This theory can be reduced to a number of the most typical mild-slope equations currently in use and provide a reliable research basis for follow-up development of nonlinear water wave theory involving porous bottoms.
Evolution of Modulated Dispersive Electron Waves in a Plasma
DEFF Research Database (Denmark)
Sugai, H.; Lynov, Jens-Peter; Michelsen, Poul
1979-01-01
The linear propagation of amplitude-modulated electron waves was examined in a low-density Q-machine plasma. Three effects of the strong dispersion on the modulated wave have been demonstrated: (i) a wavepacket expands along its direction of propagation, followed by a shift of the frequency through...... the wavepacket, (ii) the number of oscillations in the temporally observed packet is not identical with that in the spatially observed packet and (iii) continuously modulated waves exhibit recurrence of modulation. The experimental results agree with both a simple analysis based on the Schrodinger equation...
Plasma wave instabilities in nonequilibrium graphene
DEFF Research Database (Denmark)
Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka
2016-01-01
We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....
RF wave propagation and scattering in turbulent tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Horton, W., E-mail: wendell.horton@gmail.com; Michoski, C. [Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78654 (United States); Peysson, Y.; Decker, J. [CEA, IRFM, 13108, Saint-Paul, Durance Cedex (France)
2015-12-10
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
Independent waves in complex source point theory.
Seshadri, S R
2007-11-01
The full-wave generalization of the scalar Gaussian paraxial beam is determined by an analytical continuation of the field of a point source for the Helmholtz equation. The regions of validity of the analytically continued fields are investigated for the outgoing and the incoming waves. The two independent wave functions valid for the two half-spaces separating the secondary source plane are deduced.
Chatterjee, Debjani; Misra, A P
2015-12-01
The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' q-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Saberian and Esfandyari-Kalejahi, Phys. Rev. E 87, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schrödinger (NLS) equation with a nonlocal nonlinear term ∝P∫|ϕ(ξ',τ)|(2)dξ'ϕ/(ξ-ξ') [where P denotes the Cauchy principal value, ϕ is the small-amplitude electrostatic (complex) potential, and ξ and τ are the stretched coordinates in MST], which appears due to the wave-particle resonance. It is found that a subregion 1/3Landau damping) due to the nonlocal nonlinearity in the NLS equation. Furthermore, the effect of the nonlinear Landau damping is to slow down the amplitude of the wave envelope, and the corresponding decay rate can be faster the larger is the number of superthermal particles in pair plasmas.
Dust-acoustic solitary waves in a magnetized dusty plasma with nonthermal electrons and trapped ions
Misra, A P
2014-01-01
The nonlinear theory of electrostatic dust-acoustic (DA) waves in a magnetized dusty plasma consisting of negatively charged mobile dusts, nonthermal fast electrons and trapped ions with vortex-like distribution is revisited. Previous theory in the literature [Phys. Plasmas {\\bf 20}, 104505 (2013)] is rectified and put forward to include the effects of the external magnetic field, the adiabatic pressure of charged dusts as well as the obliqueness of propagation to the magnetic field. Using the reductive perturbation technique, a Korteweg-de Vries (KdV)-like equation is derived which governs the dynamics of the small-amplitude solitary waves in a magnetized dusty nonthermal plasma. It is found that due to the dust thermal pressure, there exists a critical value $(\\beta_c)$ of the nothermal parameter $\\beta (>1)$, denoting the percentage of energetic electrons, below which the DA solitary waves cease to propagate. The soliton solution (travelling wave) of the KdV-like equation is obtained, and is shown to be on...
Cassani, W E R
2001-01-01
As a substitute for the current hypothesis of space-time continuity, we show the nature and the characteristics of a Schild's discrete space-time. With the wave perturbations of its metrical structure we formulate the working hypothesis that all subatomic particles are elementary sources of spherical waves constituting on the whole the mass fields, the electromagnetic and the nuclear field we attribute to the particles. The explicative effectiveness of the new wave unification between quantum mechanics and general relativity is shown by a wave interpretation of three experimental phenomena that lie different physics: astrophysics, optics and quantum physics. A further use of wave Compton effect leads us to discover a mechanism of wave resonance which is able to verify the possible existence of a source of elementary waves that shows a wave model of electron and all the particles. The wave nature of masses and the generalized effect of a Relative Symmetry Principle leads us to consider the inertia as a local c...
Interaction of High Intensity Electromagnetic Waves with Plasmas
Energy Technology Data Exchange (ETDEWEB)
G. Shvets
2008-10-03
The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.
An introduction to the theory of plasma turbulence
Tsytovich, V N
1972-01-01
An Introduction to the Theory of Plasma Turbulence is a collection of lectures given by the author at Culham laboratory. The book deals with developments on the theory of plasma turbulence. The author describes plasma properties in the turbulent regions as mostly non-linear in nature, and notes that these properties can be regarded as a universal spectrum independent of any type of instability. The text then discusses the general problems of the theory of plasma turbulence. The author also shows that elementary excitation of """"dressed"""" particles have a finite lifetime associated with non
Plasma-ﬁlled rippled wall rectangular backward wave oscillator driven by sheet electron beam
Indian Academy of Sciences (India)
A Hadap; J Mondal; K C Mittal; K P Maheshwari
2011-03-01
Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-ﬁlled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma on the TM01 cold wave structure mode and on the generated frequency, the parameters used are: relativistic factor = 1.5 (i.e. / = 0.741), average waveguide height 0 = 1.445 cm, axial corrugation period 0 = 1.67 cm, and corrugation amplitude = 0.225 cm. The plasma density is varied from zero to 2 × 1012 cm-3. The presence of plasma tends to raise the TM01 mode cut-off frequency (14 GH at 2 × 1012 cm-3 plasma density) relative to the vacuum cut-off frequency (5 GH) which also causes a decrease in the group velocity everywhere, resulting in a ﬂattening of the dispersion relation. With the introduction of plasma, an enhancement in absolute instability was observed.
Wave mode coupling due to plasma wakes in two-dimensional plasma crystals: In-depth view
Couëdel, L; Ivlev, A V; Nosenko, V; Thomas, H M; Morfill, G E
2011-01-01
Experiments with two-dimensional (2D) plasma crystals are usually carried out in rf plasma sheaths, where the interparticle interactions are modified due to the presence of plasma wakes. The wake-mediated interactions result in the coupling between wave modes in 2D crystals, which can trigger the mode-coupling instability and cause melting. The theory predicts a number of distinct fingerprints to be observed upon the instability onset, such as the emergence of a new hybrid mode, a critical angular dependence, a mixed polarization, and distinct thresholds. In this paper we summarize these key features and provide their detailed discussion, analyze the critical dependence on experimental parameters, and highlight the outstanding issues.
Pilot-wave approaches to quantum field theory
Struyve, Ward
2011-01-01
The purpose of this paper is to present an overview of recent work on pilot-wave approaches to quantum field theory. In such approaches, systems are not only described by their wave function, as in standard quantum theory, but also by some additional variables. In the non-relativistic pilot-wave theory of de Broglie and Bohm those variables are particle positions. In the context of quantum field theory, there are two natural choices, namely particle positions and fields. The incorporation of those variables makes it possible to provide an objective description of nature in which rather ambiguous notions such as `measurement' and `observer' play no fundamental role. As such, the theory is free of the conceptual difficulties, such as the measurement problem, that plague standard quantum theory.
First results from the Cluster wideband plasma wave investigation
Directory of Open Access Journals (Sweden)
D. A. Gurnett
Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The
Electrostatic solitary waves in dusty pair-ion plasmas
Misra, A P
2013-01-01
The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the "fast" and "slow" waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass $(m)$ and temperature $(T)$ ratios of negative to positive ions, as well as the effects of immobile charged dusts $(\\delta)$. For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique (RPT) is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves ...
Surface Wave Propagation in non--ideal plasmas
Pandey, B P
2015-01-01
The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the nonideal magnetohydrodynamic effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few percent) due to the compressibility of the medium in both ideal as well as Hall diffusion dominated regimes. However, unlike ideal regime, only waves below certain cut off frequency can propagate in the medium in Hall dominated regime. This cut off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut off is introduce...
Resonant-Cavity Driven Alfvén Waves in a Helium-Hydrogen Plasma
Clark, Mary; Dorfman, Seth; Vincena, Steve; Zhu, Ziyan; Carter, Troy
2016-10-01
Alfvén waves exist in many regimes. In fusion experiments, they can disrupt fusion processes by scattering particles, and in space, they are proposed to heat the solar corona. In these environments, multiple ion species usually occur. It is therefore relevant to study Alfvén waves carried by multiple ion species in a laboratory device. Here a resonant cavity launches them in UCLA's Large Plasma Device (LaPD) in a helium/hydrogen plasma. In a two-ion species plasma, Alfvén waves propagate in two bands: below the heavy ion cyclotron frequency and between a hybrid frequency and the light ion cyclotron frequency. We observe two Alfvén waves at different frequencies (in different bands) emerge when the resonant cavity is excited at one frequency: one at the driving frequency and one at a lower frequency. The two frequencies and wavelengths agree with the dispersion relation. The resonant cavity theory predicts that the wavelengths should be 4 times the cavity's length; only the high frequency lies close to this prediction. This work was funded by UCLA's Norton Rodman Award, and was performed at the Basic Plasma Science Facility, funded by DoE and NSF.
Stability of current-driven electrostatic waves in a magnetized and collisional negative ion plasma
Energy Technology Data Exchange (ETDEWEB)
Venugopal, Chandu; Varghese, Anu; S, Jyothi [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 560, Kerala (India); Issac, Molly [Department of Physics, All Saints' College, Thiruvananthapuram 695 007, Kerala (India); Renuka, G [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala (India)], E-mail: cvgmgphys@yahoo.co.in
2008-10-15
The stability of electrostatic waves, propagating nearly parallel to a uniform external magnetic field, is studied in a fully ionized, collisional plasma of positive and negative ions and a field-aligned current of drifting electrons. Expressions have been derived for the dispersion relation and growth rate using fluid theory and retaining the collisional and conductivity terms for the electrons. The plasma can, in general, support two modes, which have frequencies that are a composite of the ion acoustic and ion gyro frequencies. The growth rate of the modes increases with increasing drift velocities of the electrons and decreases with increasing negative ion densities.
Energy Technology Data Exchange (ETDEWEB)
Eriksson, A.I.; Bostroem, R.
1995-04-01
Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs.
Modulated envelope localized wavepackets associated with electrostatic plasma waves
Kourakis, I; Kourakis, Ioannis; Shukla, Padma Kant
2004-01-01
The nonlinear amplitude modulation of known electrostatic plasma modes is examined in a generic manner, by applying a collisionless fluid model. Both cold (zero-temperature) and warm fluid descriptions are discussed and the results are compared. The moderately nonlinear oscillation regime is investigated by applying a multiple scale technique. The calculation leads to a Nonlinear Schrodinger-type Equation (NLSE), which describes the evolution of the slowly varying wave amplitude in time and space. The NLSE admits localized envelope (solitary wave) solutions of bright- (pulses) or dark- (holes, voids) type, whose characteristics (maximum amplitude, width) depend on intrinsic plasma parameters. Effects like amplitude perturbation obliqueness, finite temperature and defect (dust) concetration are explicitly considered. The relevance with similar highly localized modulated wave structures observed during recent satellite missions is discussed.
Solitary and freak waves in superthermal plasma with ion jet
Abdelsalam, U. M.; Abdelsalam
2013-06-01
The nonlinear solitary and freak waves in a plasma composed of positive and negative ions, superthermal electrons, ion beam, and stationary dust particles have been investigated. The reductive perturbation method is used to obtain the Korteweg-de Vries (KdV) equation describing the system. The latter admits solitary wave solution, while the dynamics of the modulationally unstable wavepackets described by the KdV equation gives rise to the formation of freak/rogue excitation described by the nonlinear Schrödinger equation. In order to show that the characteristics of solitary and freak waves are influenced by plasma parameters, relevant numerical analysis of appropriate nonlinear solutions are presented. The results from this work predict nonlinear excitations that may associate with ion jet and superthermal electrons in Herbig-Haro objects.
Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet
Laroussi, Mounir; Razavi, Hamid
2015-09-01
Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.
Coherent structures and transport in drift wave plasma turbulence
DEFF Research Database (Denmark)
Korsholm, Søren Bang
for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa- Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa......-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron......Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important...
Excitation and diagnosis of cascading Langmuir waves in ionospheric plasmas at Gakona, Alaska
Energy Technology Data Exchange (ETDEWEB)
Burton, L M; Cohen, J A; Pradipta, R; Labno, A; Lee, M C; Batishchev, O; Rokusek, D L [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Kuo, S P [Polytechnic University, Brooklyn, NY 11201 (United States); Watkins, B J; Oyama, S [University of Alaska Fairbanks, Fairbanks, AK 99775 (United States)], E-mail: mclee@mit.edu
2008-12-15
Ionospheric plasma heating experiments were conducted at Gakona, Alaska to investigate cascading spectra of Langmuir wave turbulence, excited by parametric instabilities diagnosed by Modular UHF Ionospheric Radar (MUIR). This work is aimed at testing the recent theory of Kuo and Lee (2005 J. Geophys. Res. 110 A01309) that addresses how the cascade of Langmuir waves can distribute spatially via the resonant and non-resonant decay processes. The non-resonant cascade proceeds at the location where parametric decay instability (PDI) or oscillating two-stream instability (OTSI) is excited and severely hampered by the frequency mismatch effect. By contrast, the resonant cascade, which takes place at lower matching heights, has to overcome the propagation loss of the Langmuir pump waves in each cascade step. Our experimental results have corroborated these predictions about the generation of cascading Langmuir waves by the HAARP heater.
Singh, S. V.; Devanandhan, S.; Lakhina, G. S.; Bharuthram, R.
2016-08-01
A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increases by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of "burst a" event by Viking satellite on the auroral field lines.
Beta Value Coupled Wave Theory for Nonslanted Reflection Gratings
Directory of Open Access Journals (Sweden)
Cristian Neipp
2014-01-01
Full Text Available We present a modified coupled wave theory to describe the properties of nonslanted reflection volume diffraction gratings. The method is based on the beta value coupled wave theory, which will be corrected by using appropriate boundary conditions. The use of this correction allows predicting the efficiency of the reflected order for nonslanted reflection gratings embedded in two media with different refractive indices. The results obtained by using this method will be compared to those obtained using a matrix method, which gives exact solutions in terms of Mathieu functions, and also to Kogelnik’s coupled wave theory. As will be demonstrated, the technique presented in this paper means a significant improvement over Kogelnik’s coupled wave theory.
Helicon waves in uniform plasmas. II. High m numbers
Energy Technology Data Exchange (ETDEWEB)
Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)
2015-09-15
Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B{sub 0}. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel [“Helicon modes in uniform plasmas. I. Low m modes,” Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name “helicon” to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B{sub 0}. The field lines near the axis of helicons are perpendicular to B{sub 0} and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B{sub 0}. The radiation efficiency of multipole antennas has been found to decrease with m.
Bernstein wave aided laser third harmonic generation in a plasma
Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok
2016-09-01
The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.
Nonlinear Alfvén wave dynamics in plasmas
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Anwesa; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Schamel, Hans [Theoretical Physics, University of Bayreuth, D-95440 Bayreuth (Germany)
2015-07-15
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Nonlinear Alfvén wave dynamics in plasmas
Sarkar, Anwesa; Chakrabarti, Nikhil; Schamel, Hans
2015-07-01
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Koons, H. C.; Roeder, J. L.; Bauer, O. H.; Haerendel, G.; Treumann, R.
1987-01-01
Nonlinear wave decay processes have been detected in the solar wind by the plasma wave experiment aboard the Active Magnetospheric Particle Tracer Explorers (AMPTE) IRM spacecraft. The main process is the generation of ultralow-frequency ion acoustic waves from the decay of Langmuir waves near the electron plasma frequency. Frequently, this is accompanied by an enhancement of emissions near twice the plasma frequency. This enhancement is most likely due to the generation of electromagnetic waves from the coalescence of two Langmuir waves. These processes occur within the electron foreshock in front of the earth's bow shock.
Nonlocal theory of longitudinal waves in thermoelastic bars
Directory of Open Access Journals (Sweden)
Esin Inan
1991-05-01
Full Text Available The longitudinal waves in thermoelastic bars are investigated in the context of nonlocal theory. Using integral forms of constitutive equations, balance of momenta and energy, field equations are obtained. Then the frequency equation is found in generalized form. To obtain tangible results, an approximate procedure is applied and numerical results are given for short waves.
Making Waves: The Theory and Practice of Black Feminism.
Taylor, Ula Y.
1998-01-01
Identifies crucial elements of black feminist theory as they surface in the scholarship and activism of black women at the end of the second wave of feminism in the 1970s and the beginnings of the third wave of feminism in the 1980s and 1990s. Socially constructed categories of race and power are emphasized. (SLD)
Theory of Spin Waves in Strongly Anisotropic Magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Cooke, J. F.
1976-01-01
A new infinite-order perturbation approach to the theory of spin waves in strongly anisotropic magnets is introduced. The system is transformed into one with effective two-ion anisotropy and considerably reduced ground-state corrections. A general expression for the spin-wave energy, valid to any...
Potential role of kinetic Alfvén waves and whistler waves in solar wind plasmas
Nandal, P.; Yadav, N.; Sharma, R. P.; Goldstein, M. L.
2016-07-01
Spacecraft observations indicate the signatures of highly oblique kinetic Alfvén waves (KAWs) and whistler waves in the solar wind plasma. In the present work, we explore the possible role of KAWs and whistler waves in the observed solar wind magnetic turbulent spectrum. The nonlinear spatial evolution of KAW is studied including the effects of the ponderomotive force which results in intense localized structures due to the background density modification. Weak quasi-transverse whistler wave propagating through these localized structures also gets localized in the form of small-scale localized structures. We present numerically calculated magnetic power spectra for both KAW as well as for whistler wave. Our obtained results demonstrate the important role that KAWs and whistler waves play in the energy cascading from larger to smaller scales. The relevance of these results to recent spacecraft observations is also pointed out.
Toward the Theory of Turbulence in Magnetized Plasmas
Energy Technology Data Exchange (ETDEWEB)
Boldyrev, Stanislav [University of Wisconsin - Madison
2013-07-26
The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.
Analysis of plasma waves observed in the inner Saturn magnetosphere
Directory of Open Access Journals (Sweden)
J. D. Menietti
2008-09-01
Full Text Available Plasma waves observed in the Saturn magnetosphere provide an indication of the plasma population present in the rotationally dominated inner magnetosphere. Electrostatic cyclotron emissions often with harmonics and whistler mode emission are a common feature of Saturn's inner magnetosphere. The electron observations for a region near 5 R_{S} outside and near a plasma injection region indicate a cooler low-energy (<100 eV, nearly isotropic plasma, and a much warmer (E>1000 eV more pancake or butterfly distribution. We model the electron plasma distributions to conduct a linear dispersion analysis of the wave modes. The results suggest that the electrostatic electron cyclotron emissions can be generated by phase space density gradients associated with a loss cone that may be up to 20° wide. This loss cone is sometimes, but not always, observed because the field of view of the electron detectors does not include the magnetic field line at the time of the observations. The whistler mode emission can be generated by the pancake-like distribution and temperature anisotropy (T_{⊥}/T_{||}>1 of the warmer plasma population.
Obliquely propagating large amplitude solitary waves in charge neutral plasmas
Directory of Open Access Journals (Sweden)
F. Verheest
2007-01-01
Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.
Exact collisional moments for plasma fluid theories
Pfefferlé, D.; Hirvijoki, E.; Lingam, M.
2017-04-01
The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rates.
Sources of Gravitational Waves: Theory and Observations
Buonanno, Alessandra
2014-01-01
Gravitational-wave astronomy will soon become a new tool for observing the Universe. Detecting and interpreting gravitational waves will require deep theoretical insights into astronomical sources. The past three decades have seen remarkable progress in analytical and numerical computations of the source dynamics, development of search algorithms and analysis of data from detectors with unprecedented sensitivity. This Chapter is devoted to examine the advances and future challenges in understanding the dynamics of binary and isolated compact-object systems, expected cosmological sources, their amplitudes and rates, and highlights of results from gravitational-wave observations. All of this is a testament to the readiness of the community to open a new window for observing the cosmos, a century after gravitational waves were first predicted by Albert Einstein.
Oblique solitary waves in a five component plasma
Energy Technology Data Exchange (ETDEWEB)
Sijo, S.; Manesh, M.; Sreekala, G.; Venugopal, C., E-mail: cvgmgphys@yahoo.co.in [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, 686 560 Kerala (India); Neethu, T. W. [Department of Physics, CMS College, Mahatma Gandhi University, Kottayam, 686 001 Kerala (India); Renuka, G. [Kerala State Council for Science, Technology and Environment, Thiruvananthapuram, 695 004 Kerala (India)
2015-12-15
We investigate the influence of a second electron component on oblique dust ion acoustic solitary waves in a five component plasma consisting of positively and negatively charged dust, hydrogen ions, and hotter and colder electrons. Of these, the heavier dust and colder photo-electrons are of cometary origin while the other two are of solar origin; electron components are described by kappa distributions. The K-dV equation is derived, and different attributes of the soliton such as amplitude and width are plotted for parameters relevant to comet Halley. We find that the second electron component has a profound influence on the solitary wave, decreasing both its amplitude and width. The normalized hydrogen density strongly influences the solitary wave by decreasing its width; the amplitude of the solitary wave, however, increases with increasing solar electron temperatures.
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
Quantum ion-acoustic solitary waves in weak relativistic plasma
Indian Academy of Sciences (India)
Biswajit Sahu
2011-06-01
Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized twospecies relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects signiﬁcantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter on the nature of solitary wave solutions is studied in some detail.
Full wave simulation of waves in ECRIS plasmas based on the finite element method
Energy Technology Data Exchange (ETDEWEB)
Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)
2014-02-12
This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor
Energy Technology Data Exchange (ETDEWEB)
Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M
2005-07-21
A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.
Excitation and evolution of finite-amplitude plasma wave
Energy Technology Data Exchange (ETDEWEB)
Hou, Y. W.; Wu, Y. C., E-mail: yican.wu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Chen, M. X. [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); Yu, M. Y., E-mail: myyu@zju.edu.cn [Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44780 Bochum (Germany); Wu, B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)
2015-12-15
The evolution of a small spatially periodic perturbation in the electron velocity distribution function in collisionless plasma is reconsidered by numerically solving the Vlasov and Poisson equations. The short as well as long time behaviors of the excited oscillations and damping/modulation are followed. In the small but finite-amplitude excited plasma wave, resonant electrons become trapped in the wave potential wells and their motion affects the low-velocity electrons participating in the plasma oscillations, leading to modulation of the latter at an effective trapping frequency. It is found that the phase space of the resonant and low-velocity electrons becomes chaotic, but then self-organization takes place but remains fine-scale chaotic. It is also found that as long as particles are trapped, there is only modulation and no monotonic damping of the excited plasma wave. The modulation period/amplitude increases/decreases as the magnitude of the initial disturbance is reduced. For the initial and boundary conditions used here, linear Landau damping corresponds to the asymptotic limit of the modulation period becoming infinite, or no trapping of the resonant electrons.
Directory of Open Access Journals (Sweden)
Proshyn Denys
2015-12-01
Full Text Available David Rapoport’s Wave theory of terrorism is one of the most oftencited theories in the literature on terrorist violence. Rapoport is praised for having provided researchers with a universal instrument which allows them to explain the origin and transformation of various historical types of terrorism by applying to them the concept of global waves of terrorist violence driven by universal political impulses. This article, testing the Wave theory against the recent phenomenon of homegrown jihadism in Europe, uncovers this theory’s fundamental weaknesses and questions its real academic and practical value.
Supersymmetry and Branes in M-theory Plane-waves
Kim, N; Kim, Nakwoo; Yee, Jung-Tay
2003-01-01
We study brane embeddings in M-theory plane-waves and their supersymmetry. The relation with branes in AdS backgrounds via the Penrose limit is also explored. Longitudinal planar branes are originated from AdS branes while giant gravitons of AdS spaces become spherical branes which are realized as fuzzy spheres in the massive matrix theory.
Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory
Energy Technology Data Exchange (ETDEWEB)
Schlickeiser, R., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Yoon, P. H., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of)
2015-07-15
Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts of the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.
THEORY?OF?WATER?WAVES?IN?AN?ELASTIC?VESSEL
Institute of Scientific and Technical Information of China (English)
D.Y.Hsieh
2000-01-01
Recent experiments related to the Dragon Wash phenomena showed that axisymmetric capillary waves appear first from excitation, and circumferential apillary waves appear after increase of the excitation strength. Based on this new finding, a theory of parametric resonance is developed in detail to explain the onset of the prominent circumferential capillary waves. Numerical computation is also carried out and the results agree generally with the experiments. Analysis and numerical computation are also presented to explain the generation of axisymmetric low-frequency gravity waves by the high-frequency external excitation.
The incomplete plasma dispersion function: properties and application to waves in bounded plasmas
Baalrud, Scott D
2013-01-01
The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near boundary sheaths or double layers, where the passing interval can be modeled as Maxwellian with a lower temperature than the trapped interval. The depleted Maxwellian is used as an example to demonstrate the utility of using the incomplete plasma dispersion function for calculating modifications to wave dispersion relations.
The Nonlinear Landau Damping Rate of a Driven Plasma Wave
Energy Technology Data Exchange (ETDEWEB)
Benisti, D; Strozzi, D J; Gremillet, L; Morice, O
2009-08-04
In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
Wave propagation in a moving cold magnetized plasma
Hebenstreit, H.
1980-03-01
Polarization relations and dispersion equations are derived for media that are electrically anisotropic in the comoving frame. Three-dimensional calculations for media at rest recover the known dispersion equations, i.e., Astrom's dispersion equation for magnetized cold plasmas and Fresnel's wave normal equation for uniaxial crystals. An analogous four-dimensional calculation yields the generalization to moving media. The dispersion equations so obtained for moving gyrotropic media are then discussed qualitatively for various special media and special directions of wave propagation. Finally, the polarization relations are specialized to media gyrotropic in the comoving frame.
Optical Multi-hysteresises and "Rogue Waves" in Nonlinear Plasma
Kaplan, A E
2010-01-01
An overdense plasma layer irradiated by an intense light can exhibit dramatic nonlinear-optical effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and transition, and emergence of gigantic "rogue waves". Those are trapped quasi-soliton field spikes inside the layer, sustained by an incident radiation with a tiny fraction of their peak intensity once they have been excited by orders of magnitude larger pumping. The phenomenon persists even in the layers with "soft" boundaries, as well as in a semi-infinite plasma with low absorption.
Energy Technology Data Exchange (ETDEWEB)
Mayout, Saliha; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Sciences- Physics, University of Bab-Ezzouar, U.S.T.H.B, B.P. 32, El Alia, Algiers 16111 (Algeria); Sahu, Biswajit [Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126 (India)
2015-12-15
A theoretical study on the nonlinear propagation of nonplanar (cylindrical and spherical) dust ion-acoustic solitary waves (DIASW) is carried out in a dusty plasma, whose constituents are inertial ions, superthermal electrons, and charge fluctuating stationary dust particles. Using the reductive perturbation theory, a modified Korteweg-de Vries equation is derived. It is shown that the propagation characteristics of the cylindrical and spherical DIA solitary waves significantly differ from those of their one-dimensional counterpart.
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.
2011-10-01
In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.
Chatterjee, D
2015-01-01
The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' $q$-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Phys. Rev. E {\\bf87}, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schr{\\"o}dinger (NLS) equation with a nonlocal nonlinear term $\\propto {\\cal{P}}\\int|\\phi(\\xi',\\tau)|^2d\\xi'\\phi/(\\xi-\\xi') $ [where ${\\cal P}$ denotes the Cauchy principal value, $\\phi$ is the small-amplitude electrostatic (complex) potential, and $\\xi$ and $\\tau$ are the stretched coordinates in MST] which appears due to the wave-particle resonance. It is found that a subregion $1/3wave frequency can turn over with the gro...
Iwai, Akinori; Nakamura, Yoshihiro; Sakai, Osamu
2016-09-01
We clarify the relation between second harmonic wave (SH wave) and plasma generation in various experimental conditions by detecting properties of propagating electromagnetic waves (EM waves). Plasma has a nonlinear reaction against EM wave, generating harmonic waves which depends on electron density ne. In the case with increased ne, EM wave comes to be prevented from going into plasma with negative permittivity ɛp. Double-split-ring resonators (DSRRs), one of metamaterials, make permeability μD negative. We have shown that EM wave being volume wave can propagate into the combination of overdense plasma and DSRRs because of real negative value refractive index N. In our previous paper, we have confirmed enhanced SH wave (4.9 GHz) generation in the composite with 2.45-GHz input. In this report, we show the dependence of the SH wave emission with plasma generation on plasma parameters and gas conditions of plasma. Furthermore, we show the phase change with N variation of the composite space in the case with various input power as the proof of the negative index state.
Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions
Gong, Jingyu; Du, Jiulin
2012-01-01
The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.
Nonlinear electrostatic wave equations for magnetized plasmas - II
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....
Material measurement method based on femtosecond laser plasma shock wave
Zhong, Dong; Li, Zhongming
2017-03-01
The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.
Drift waves and chaos in a LAPTAG plasma physics experiment
Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam
2016-02-01
In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.
Ionization wave propagation on a micro cavity plasma array
Wollny, Alexander; Gebhardt, Markus; Brinkmann, Ralf Peter; Boettner, Henrik; Winter, Joerg; der Gathen, Volker Schulz-von; Mussenbrock, Thomas
2011-01-01
Microcavity plasma arrays are regular arrays of inverse pyramidal cavities created on positive doped silicon wafers. Each cavity acts as a microscopic dielectric barrier discharge. Operated at atmospheric pressure in argon and excited with high voltage at about 10 kHz frequency each cavity develops a localized microplasma. Experiments show a strong interaction of the individual cavities, leading to the propagation of wave-like emission structures along the array surface. This paper studies the ignition process of a micro cavity plasma array by means of a numerical simulation and confirms the experimental results. The propagation of an ionization wave is observed. Its propagation speed of 1 km/s matches experimental findings.
Plasma scattering of electromagnetic radiation theory and measurement techniques
Froula, Dustin H; Luhmann, Neville C Jr; Sheffield, John
2011-01-01
This work presents one of the most powerful methods of plasma diagnosis in exquisite detail to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of the
Transmission Properties of Radar Wave through Reentry Plasma Sheath
Institute of Scientific and Technical Information of China (English)
GAO Zheng-ping; MA Zhao-guo; LIU Jing; LI Zhong-ping; ZHANG Da-hai
2007-01-01
In this paper, by taking into account the coupling of the ionization of ablation gas and atmosphere, an electrons density distribution model is built. Using this model, the transmission properties of different polarization radar wave through sheath are evaluated on the basis of the transmission matrix theory. Then, we discuss the effects of the electrons density, the added magnetic field, and the radar wave frequency on the transmission properties. As a result of this investigation,greater transmission power could be gained in order to efficiently shorten communication blackout,by reducing the electrons density or choosing proper added magnetic field and the frequency of the radar wave according to the different polarization form of the radar wave.
Structures of Strong Shock Waves in Dense Plasmas
Institute of Scientific and Technical Information of China (English)
JIANG Zhong-He; HE Yong; HU Xi-Wei; LV Jian-Hong; HU Ye-Min
2007-01-01
@@ Structures of strong shock waves in dense plasmas are investigated via the steady-state Navier-Stokes equations and Poisson equation. The structures from fluid simulation agree with the ones from kinetic simulation. The effects of the transport coefficients on the structures are analysed. The enhancements of the electronic heat conduction and ionic viscosity both will broaden the width of the shock fronts, and decrease the electric fields in the fronts.
Dynamic motions of ion acoustic waves in plasmas with superthermal electrons
Energy Technology Data Exchange (ETDEWEB)
Saha, Asit, E-mail: asit_saha123@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology (India); Chatterjee, Prasanta [Department of Mathematics, Siksha Bhavana, Visva Bharati University (India); Wong, C.S. [Plasma Technology Research Centre, Department of Physics, University of Malaya, Kuala Lampur (Malaysia)
2015-12-15
The dynamic motions of ion acoustic waves an unmagnetized plasma with superthermal (q-non extensive) electrons are investigated employing the bifurcation theory of planar dynamical systems through direct approach. Using traveling wave transformation and initial conditions, basic equations are transformed to a planar dynamical system. Using numerical computations, all possible phase portraits of the dynamical system are presented. Corresponding to homoclinic and periodic orbits of the phase portraits, two new analytical forms of solitary and periodic wave solutions are derived depending on the non extensive parameter q and speed v of the traveling wave. Considering an external periodic perturbation, the quasiperiodic and chaotic motions of ion acoustic waves are presented. Depending upon different ranges of non extensive parameter q, the effect of q is shown on quasiperiodic and chaotic motions of ion acoustic waves with fixed value of v. It is seen that the unperturbed dynamical system has the solitary and periodic wave solutions, but the perturbed dynamical system has the quasiperiodic and chaotic motions with same values of parameters q and v. (author)
Secondary fast magnetoacoustic waves trapped in randomly structured plasmas
Yuan, Ding; Walsh, Robert W
2016-01-01
Fast magnetoacoustic wave is an important tool for inferring solar atmospheric parameters. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas mimicking the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the fast wave speed, we quantify the properties of secondary waves by examining the dependence of the average temporal period ($\\bar{p}$) on the initial pulse width ($w_0$) as well as the density contrast ($\\delta_\\rho$) and correlation length ($L_c$) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, $\\delta_\\rho$ does not alter $\\bar{p}$ significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when $\\delta_\\rho$ is small but have a smoothing effect when $\\delta_\\rho$ is suffic...
Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu
1988-12-01
An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.
Dust ion-acoustic shock waves due to dust charge fluctuation in a superthermal dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Alinejad, H., E-mail: alinejad@nit.ac.ir [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of); Research Institute for Fundamental Sciences (RIFS), University of Tabriz, 51664, Tabriz (Iran, Islamic Republic of); Tribeche, M. [Plasma Physics Group, Faculty of Sciences – Physics, University of Bab-Ezzouar (Algeria); Mohammadi, M.A. [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, 51664, Tabriz (Iran, Islamic Republic of); Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of)
2011-11-14
The nonlinear propagation of dust ion-acoustic (DIA) shock waves is studied in a charge varying dusty plasma with electrons having kappa velocity distribution. We use hot ions with equilibrium streaming speed and a fast superthermal electron charging current derived from orbit limited motion (OLM) theory. It is found that the presence of superthermal electrons does not only significantly modify the basic properties of shock waves, but also causes the existence of shock profile with only positive potential in such plasma with parameter ranges corresponding to Saturn's rings. It is also shown that the strength and steepness of the shock waves decrease with increase of the size of dust grains and ion temperature. -- Highlights: ► The presence of superthermal electrons causes the existence of shock waves with only positive potential. ► The strength and steepness of the shock waves decrease with increase of the size of dust grains and ion temperature. ► As the electrons evolve toward their thermodynamic equilibrium, the shock structures are found with smaller amplitude.
Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave
Energy Technology Data Exchange (ETDEWEB)
Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)
2012-08-15
Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.
FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma
Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun
2016-08-01
The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)
Nonlinear wave structures in collisional plasma of auroral E-region ionosphere
Directory of Open Access Journals (Sweden)
A. V. Volosevich
Full Text Available Studies of the auroral plasma with small-scale inhomogenieties producing the VHF-radar reflections (radar aurora when observed in conditions of the saturated Farley-Buneman instability within the auroral E region, show strong nonlinear interactions and density fluctuations of 5–15%. Such nonlinearity and high fluctation amplitudes are inconsistent with the limitations of the weak turbulence theory, and thus a theory for arbitrary amplitudes is needed. To this end, a nonlinear theory is described for electrostatic MHD moving plasma structures of arbitrary amplitude for conditions throughout the altitude range of the collisional auroral E region. The equations are derived, from electron and ion motion self-consistent with the electric field, for the general case of the one-dimensional problem. They take into account nonlinearity, electron and ion inertia, diffusion, deviation from quasi-neutrality, and dynamical ion viscosity. The importance of the ion viscosity for dispersion is stressed, while deviation from the quasi-neutrality can be important only at rather low plasma densities, not typical for the auroral E region. In a small amplitude limit these equations have classical nonlinear solutions of the type of "electrostatic shock wave" or of knoidal waves. In a particular case these knoidal waves degrade to a dissipative soliton. A two-dimensional case of a quasi-neutral plasma is considered in the plane perpendicular to the magnetic field by way of the Poisson brackets, but neglecting the nonlinearity and ion inertia. It is shown that in these conditions an effective saturation can be achieved at the stationary turbulence level of order of 10%.
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Characteristics of Wave-Particle Interaction in a Hydrogen Plasma
Institute of Scientific and Technical Information of China (English)
HE Hui-Yong; CHEN Liang-Xu; LI Jiang-Fan
2008-01-01
We study the characteristics of cyclotron wave-particle interaction in a typical hydrogen plasma. The numerical calculations of minimum resonant energy Emin, resonant wave frequency w, and pitch angle diffusion coefficient Dαα for interactions between R-mode/L-mode and electrons/protons are presented. It is found that Emin decreases with ω for R-mode/electron, L-mode/proton and L-mode/electron interactions, but increase with w for R-mode/proton interaction. It is shown that both R-mode and L-mode waves can efficiently scatter energetic (10 keV～100 keV) electrons and protons and cause precipitation loss at L=4, indicating that perhaps waveparticle interaction is a serious candidate for the ring current decay.
Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma
El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.
2015-08-01
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.
On Plasma Rotation Induced by Traveling Fast Alfvin Waves
Energy Technology Data Exchange (ETDEWEB)
F.W. Perkins; R.B. White; and V.S. Chan
2001-08-09
Absorption of fast Alfven waves by the minority fundamental ion-cyclotron resonance, coupled with finite banana width physics, generates torque distributions and ultimately rotational shear layers in the bulk plasma, even when the toroidal wavenumber k(subscript ''phi'') = n/R of the fast wave vanishes (n=0) and cyclotron absorption introduces no angular momentum nor canonical angular momentum [F.W. Perkins, R.B. White, P.T. Bonoli, and V.S. Chan, Phys. Plasmas 8 (2001) 2181]. The present work extends these results to travelling waves with non-zero n where heating directly introduces angular momentum. Since tokamak fast-wave antennas have approximately one wavelength per toroidal field coil, the toroidal mode number n lies in the range n = 10-20, independent of machine size. A zero-dimensional analysis shows that the rotation rate arising from direct torque is comparable to that of the rotational shear layer and has the same scaling. Nondimensional rotation profiles for n = (-10, 10) show modest changes from the n = 0 case in the expected direction. For a balanced antenna spectrum, the nondimensional rotational profile (averaged over n = -10, 10) lies quite close to the n = 0 profile.
High harmonic fast waves in high beta plasmas
Energy Technology Data Exchange (ETDEWEB)
Ono, Masayuki
1995-04-01
High harmonic fast magnetosonic wave in high beta/high dielectric plasmas is investigated. including the finite-Larmor-radius effects. In this regime, due to the combination of group velocity slow down and the high beta enhancement, the electron absorption via electron Landau and electron magnetic pumping becomes significant enough that one can expect a strong ({approximately} 100%) single pass absorption. By controlling the wave spectrum, the prospect of some localized electron heating and current drive appears to be feasible in high beta low-aspect-ratio tokamak regimes. Inclusion of finite-Larmor-radius terms shows an accessibility limit in the high ion beta regime ({beta}{sub i} = 50% for a deuterium plasma) due to mode-conversion into an ion Bernstein-wave-like mode while no beta limit is expected for electrons. With increasing ion beta, the ion damping can increase significantly particularly near the beta limits. The presence of energetic ion component expected during intense NBI and {alpha}-heating does not appear to modify the accessibility condition nor cause excessive wave absorption.
Theory of nonlocal heat transport in fully ionized plasma
Energy Technology Data Exchange (ETDEWEB)
Maximov, A.V. (Tesla Labs., Inc., La Jolla, CA (United States)); Silin, V.P. (P.N. Lebedev Inst., Russian Academy of Sciences, Moscow (Russia))
1993-01-25
A new analytic solution of the electron kinetic equation describing the interacting of the electromagnetic heating field with plasma is obtained in the region of plasma parameters where the Spitzer-Harm classical theory is invalid. A novel expression for the nonlocal electron thermal conductivity is derived. (orig.).
Low frequency waves in streaming quantum dusty plasmas
Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.
2017-09-01
The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.
Dynamic Thomson Scattering from Nonlinear Electron Plasma Waves in a Raman Plasma Amplifier
Davies, A.; Katz, J.; Bucht, S.; Haberberger, D.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.
2016-10-01
Electron plasma waves (EPW's) can be used to transfer significant energy from a long-pulse laser to a short-pulse seed laser through the Raman scattering instability. Successful implementation of Raman amplification could open an avenue to producing high-intensity pulses beyond the capabilities of current laser technology ( 1022 W / cm 2). This three-wave interaction takes advantage of the plasma's ability to sustain large-amplitude plasma waves. Having complete knowledge of the EPW amplitude is essential to establishing optimal parameters for high-efficiency Raman amplification. A dynamic Thomson-scattering diagnostic is being developed to spatially and temporally resolve the amplitude of the driven and thermal EPW's. By imaging the scattered probe light onto a novel pulse-front tilt compensated streaked optical spectrometer, the diffraction efficiency of this plasma wave can be measured as a function of space and time. These data will be used in conjunction with particle-in-cell simulations to determine the EPW's spatial and temporal profile. This will allow the effect of the EPW profile on Raman scattering to be experimentally determined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.
2016-11-01
Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of)
2016-07-15
The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find that the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.
Effective potential kinetic theory for strongly coupled plasmas
Baalrud, Scott D.; Daligault, Jérôme
2016-11-01
The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.
Scalar Gravitational Waves in the Effective Theory of Gravity
Mottola, Emil
2016-01-01
As a low energy effective field theory, classical General Relativity receives an infrared relevant modification from the conformal trace anomaly of the energy-momentum tensor of massless, or nearly massless, quantum fields. The local form of the effective action associated with the trace anomaly is expressed in terms of a dynamical scalar field that couples to the conformal factor of the spacetime metric, allowing it to propagate over macroscopic distances. Linearized around flat spacetime, this semi-classical EFT admits scalar gravitational wave solutions in addition to the transversely polarized tensor waves of the classical Einstein theory. The amplitude, Hamiltonian, energy flux, and quantization of the scalar wave modes are discussed. Astrophysical sources for scalar gravitational waves are considered, with the excited gluonic condensates in the interiors of neutron stars in merger events with other compact objects likely to provide the strongest burst signals.
Adiabatic theory of solitons fed by dispersive waves
Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
2016-09-01
We consider scattering of low-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analog of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from quantum mechanics, we give a quantitative account of the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in the spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.
The Gaussian radial basis function method for plasma kinetic theory
Hirvijoki, E.; Candy, J.; Belli, E.; Embréus, O.
2015-10-01
Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker-Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker-Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas.
Phase mixing of Alfvén waves propagating in non-reflective magnetic plasma configurations
Ruderman, Michael S.; Petrukhin, Nikolai S.
2017-04-01
The ability of phase mixing to provide efficient damping of Alfvén waves even in weakly dissipative plasmas made it a popular mechanism for explaining the solar coronal heating. Initially it was studied in the equilibrium configurations with the straight magnetic field lines and the Alfvén speed only varying in the direction perpendicular to the magnetic field. Later the analysis of the Alfvén wave phase mixing was extended in various directions. In particular it was studied in two-dimensional planar magnetic plasma equilibria. Analytical investigation was carried out under the assumption that the wavelength is much smaller than the characteristic scale of the background quantity variation. This assumption enabled using the Wentzel, Kramers, and Brillouin (WKB) method. When it is not satisfied the study was only carried out numerically. In general, even the wave propagation in a one-dimensional inhomogeneous equilibrium can be only studied numerically. However there is one important exception, so-called non-reflective equilibria. In these equilibria the wave equation with the variable phase speed reduces to the Klein-Gordon equation with constant coefficients. In this paper we apply the theory of non-reflective wave propagation to studying the Alfvén wave phase mixing in two-dimensional planar magnetic plasma equilibria. Using curvilinear coordinates we reduce the equation describing the Alfvén wave phase mixing to the equation that becomes a one-dimensional wave equation in the absence of dissipation. This equation is further reduced to the equation which is the one-dimensional Klein-Gordon equation in the absence of dissipation. Then we show that this equation has constant coefficients when a particular relation between the plasma density and magnetic field magnitude is satisfied. Using the derived Klein-Gordon-type equation we study the phase mixing in various non-reflective equilibria. We emphasise that our analysis is valid even when the wavelength is
Scattering of Electromagnetic Waves by Drift Vortex in Plasma
Institute of Scientific and Technical Information of China (English)
WANG Dong; CHEN Yinhua; WANG Ge
2008-01-01
In a quasi-two-dimensional model, the scattering of incident ordinary electromag-netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia << 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approxi-mation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then ki<< 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.
Use of distorted waves in the theory of inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Picklesimer, A.; Tandy, P.C.; Thaler, R.M.
1982-03-01
A distorted wave description of inelastic scattering of nucleons from nuclei is formulated so that the microscopic content of the various ingredients can be made explicit. Special care is taken to ensure that physical processes are not overcounted as a consequence of the use of distorted waves in both the initial and final channels. Two attitudes to applications of the theory are taken. In the first, it is assumed that phenomenological distorted waves are employed and attention is focused upon the microscopic transition potential and the final distorted wave. Theoretically based recommendations for practical calculations of both these quantities are given. Secondly, we present a completely microscopic treatment wherein the truncations of the microscopic distorting potentials and the transition potential, at the single scattering level, are consistent with the underlying theoretical framework which links them. Our approach is designed to embody the distorted wave impulse approximation as a suitable lowest order result. Again, recommendations for practical calculations are given.
HYDRODYNAMICS THEORY AND CALCULATION IN WATER WAVE PUMP DESIGN
Institute of Scientific and Technical Information of China (English)
LIU Ying-xue; TAO Yi; LIU Gao-lian
2005-01-01
This paper introduces the hydrodynamics theory related to water wave pump.Water wave pump is a new type pump, which uses the particular quality of water wave and re-divides the inflow energy to increase the pressure of one part of the inflow water with the rest water flowing away freely.The research and development of such a pump is of importance and significant value and profitable social interest in that it can fully utilize the residual energy of natural source in industrial and civil water circle systems.Through hydrodynamics research and calculation, a series of valid design parameters were obtained and the predicted results achieved.
Xaplanteris, C. L.; Xaplanteris, S. C.
2016-05-01
In the present manuscript enough observations and interpretations of three issues of Plasma Physics are presented. The first issue is linked to the common experimental confirmation of plasma waves which appear to be repeated in a standard way while there are also cases where plasma waves change to an unstable state or even to chaotic state. The second issue is associated with a mathematical analysis of the movement of a charged particle using the perturbation theory; which could be used as a guide for new researchers on similar issues. Finally, the suitability and applicability of the perturbation theory or the chaotic theory is presented. Although this study could be conducted on many plasma phenomena (e.g. plasma diffusion) or plasma quantities (e.g. plasma conductivity), here it was decided this study to be conducted on plasma waves and particularly on drift waves. This was because of the significance of waves on the plasmatic state and especially their negative impact on the thermonuclear fusion, but also due to the long-time experience of the plasma laboratory of Demokritos on drift waves.
Third Wave Feminism's Unhappy Marriage of Poststructuralism and Intersectionality Theory
Directory of Open Access Journals (Sweden)
Susan Archer Mann
2013-06-01
Full Text Available This article first traces the history of unhappy marriages of disparate theoretical perspectives in US feminism. In recent decades, US third-wave authors have arranged their own unhappy marriage in that their major publications reflect an attempt to wed poststructuralism with intersectionality theory. Although the standpoint epistemology of intersectionality theory shares some common ground with the epistemology of poststructuralism, their epistemological assumptions conflict on a number of important dimensions. This contested terrain has generated serious debates within the third wave and between second- and thirdwave feminists. The form, content, and political implications of their "unhappy marriage" are the subject of this article.
Coupled wave versus modal theory in uniform dielectric gratings
Russell, P. St. J.
1983-11-01
The philosophical bases of coupled wave and modal theories are explored and compared. For the particular case of the diffraction of light by thick, uniform dielectric gratings, they are investigated in detail. It is shown that Moharam and Gaylord's recent accurate method for solving the coupled wave equations (JOSA 71 (1981) 811) is exactly equivalent to the modal (or Floquet-Bloch) approach, and hence that their results can be interpreted in an alternative manner using the many valuable intuitional insights offered by Floquet-Bloch theory.
On the Self-Focusing of Whistler Waves in a Radial Inhomogeneous Plasma
DEFF Research Database (Denmark)
Balmashnov, A. A.
1980-01-01
The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation...... of the latter wave is accompanied by a density modification, which leads to trapping of the whistler wave in a density trough in the center of the plasma column....
Lee, Myoung-Jae; Jung, Young-Dae
2017-02-01
High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.
Wave theories of non-laminar charged particle beams: from quantum to thermal regime
Fedele, Renato; Jovanovic, Dusan; De Nicola, Sergio; Ronsivalle, Concetta
2013-01-01
The standard classical description of non-laminar charge particle beams in paraxial approximation is extended to the context of two wave theories. The first theory is the so-called Thermal Wave Model (TWM) that interprets the paraxial thermal spreading of the beam particles as the analog of the quantum diffraction. The other theory, hereafter called Quantum Wave Model (QWM), that takes into account the individual quantum nature of the single beam particle (uncertainty principle and spin) and provides the collective description of the beam transport in the presence of the quantum paraxial diffraction. QWM can be applied to beams that are sufficiently cold to allow the particles to manifest their individual quantum nature but sufficiently warm to make overlapping-less the single-particle wave functions. In both theories, the propagation of the beam transport in plasmas or in vacuo is provided by fully similar set of nonlinear and nonlocal governing equations, where in the case of TWM the Compton wavelength (fun...
Nonlinear processes in the strong wave-plasma interaction
Pegoraro, Francesco; Califano, Francesco; Attico, Nicola; Bulanov, Sergei
2000-10-01
Nonlinear interactions in hot laboratory and/or astrophysical plasmas are a very efficient mechanism able to transfer the energy from the large to the small spatial scales of the system. As a result, kinetic processes are excited and play a key role in the plasma dynamics since the typical fluid dissipative length scales (where the nonlinear cascade is stopped) are (much) smaller then the kinetic length scales. Then, the key point is the role of the kinetic effects in the global plasma dynamics, i.e. whether the kinetic effects remains confined to the small scales of the system or whether there is a significant feedback on the large scales. Here we will address this problem by discussing the nonlinear kinetic evolution of the electromagnetic beam plasma instability where phase space vortices, as well as large scale vortex like magnetic structures in the physical space, are generated by wave - particle interactions. The role and influence of kinetic effects on the large scale plasma dynamics will be also discussed by addressing the problem of collisionless magnetic reconection.
Verma, Prabal Singh; Sengupta, Sudip; Kaw, Predhiman
2012-07-01
A one-dimensional particle in cell simulation of large amplitude plasma oscillations is carried out to explore the physics beyond wave breaking in a cold homogeneous unmagnetized plasma. It is shown that after wave breaking, all energy of the plasma oscillation does not end up as random kinetic energy of particles, but some fraction, which is decided by Coffey's wave breaking limit in warm plasma, always remains with two oppositely propagating coherent Bernstein-Greene-Kruskal like modes with supporting trapped particle distributions. The randomized energy distribution of untrapped particles is found to be characteristically non-Maxwellian with a preponderance of energetic particles.
Nonlinear phenomena in RF wave propagation in magnetized plasma: A review
Energy Technology Data Exchange (ETDEWEB)
Porkolab, Miklos
2015-12-10
Nonlinear phenomena in RF wave propagation has been observed from the earliest days in basic laboratory experiments going back to the 1960s [1], followed by observations of parametric instability (PDI) phenomena in large scale RF heating experiments in magnetized fusion plasmas in the 1970s and beyond [2]. Although not discussed here, the importance of PDI phenomena has also been central to understanding anomalous absorption in laser-fusion experiments (ICF) [3]. In this review I shall discuss the fundamentals of nonlinear interactions among waves and particles, and in particular, their role in PDIs. This phenomenon is distinct from quasi-linear phenomena that are often invoked in calculating absorption of RF power in wave heating experiments in the core of magnetically confined plasmas [4]. Indeed, PDIs are most likely to occur in the edge of magnetized fusion plasmas where the electron temperature is modest and hence the oscillating quiver velocity of charged particles can be comparable to their thermal speeds. Specifically, I will review important aspects of PDI theory and give examples from past experiments in the ECH/EBW, lower hybrid (LHCD) and ICRF/IBW frequency regimes. Importantly, PDI is likely to play a fundamental role in determining the so-called “density limit” in lower hybrid experiments that has persisted over the decades and still central to understanding present day experiments [5-7].
Hydrodynamization and transient modes of expanding plasma in kinetic theory
Heller, Michal P; Spalinski, Michal
2016-01-01
We study the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation. Our studies uncover qualitative similarities to the results on hydrodynamization in strongly coupled gauge theories. In particular, we demonstrate that the gradient expansion in this model has vanishing radius of convergence. The asymptotic character of the hydrodynamic gradient expansion is crucial for the recently discovered applicability of hydrodynamics at large gradients. Furthermore, the analysis of the resurgent properties of the series provides, quite remarkably, indication for the existence of a novel transient, damped oscillatory mode of expanding plasmas in kinetic theory.
Landau damping effects on dust-acoustic solitary waves in a dusty negative-ion plasma
Barman, A
2014-01-01
The nonlinear theory of dust-acoustic waves (DAWs) with Landau damping is studied in an unmagnetized dusty negative-ion plasma in the extreme conditions when the free electrons are absent. The cold massive charged dusts are described by fluid equations, whereas the two-species of ions (positive and negative) are described by the kinetic Vlasov equations. A Korteweg de-Vries (KdV) equation with Landau damping, governing the dynamics of weakly nonlinear and weakly dispersive DAWs, is derived following Ott and Sudan [Phys. Fluids {\\bf 12}, 2388 (1969)]. It is shown that for some typical laboratory and space plasmas, the Landau damping (and the nonlinear) effects are more pronounced than the finite Debye length (dispersive) effects for which the KdV soliton theory is not applicable to DAWs in dusty pair-ion plasmas. The properties of the linear phase velocity, solitary wave amplitudes (in presence and absence of the Landau damping) as well as the Landau damping rate are studied with the effects of the positive io...
Landau damping effects on dust-acoustic solitary waves in a dusty negative-ion plasma
Energy Technology Data Exchange (ETDEWEB)
Barman, Arnab; Misra, A. P., E-mail: apmisra@visva-bharati.ac.in, E-mail: apmisra@gmail.com [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, West Bengal (India)
2014-07-15
The nonlinear theory of dust-acoustic waves (DAWs) with Landau damping is studied in an unmagnetized dusty negative-ion plasma in the extreme conditions when the free electrons are absent. The cold massive charged dusts are described by fluid equations, whereas the two-species of ions (positive and negative) are described by the kinetic Vlasov equations. A Korteweg-de Vries (KdV) equation with Landau damping, governing the dynamics of weakly nonlinear and weakly dispersive DAWs, is derived following Ott and Sudan [Phys. Fluids 12, 2388 (1969)]. It is shown that for some typical laboratory and space plasmas, the Landau damping (and the nonlinear) effects are more pronounced than the finite Debye length (dispersive) effects for which the KdV soliton theory is not applicable to DAWs in dusty pair-ion plasmas. The properties of the linear phase velocity, solitary wave amplitudes (in presence and absence of the Landau damping) as well as the Landau damping rate are studied with the effects of the positive ion to dust density ratio (μ{sub pd}) as well as the ratios of positive to negative ion temperatures (σ) and masses (m)
Rica, Sergio
2016-01-01
The recent observation of gravitational waves, stimulates the question of the longtime evolution of the space-time fluctuations. Gravitational waves interact themselves through the nonlinear character of Einstein's equations of general relativity. This nonlinear wave interaction allows the spectral energy transfer from mode to mode. According to the wave turbulence theory, the weakly nonlinear interaction of gravitational waves leads to the existence of an irreversible kinetic regime that dominates the longtime evolution. The resulting kinetic equation suggests the existence of an equilibrium wave spectrum and the existence of a non-equilibrium Kolmogorov-Zakharov spectrum for spatio-temporal fluctuations. Evidence of these solutions extracted in the fluctuating signal of the recent observations will be discussed in the paper. Probably, the present results would be pertinent in the new age of development of gravitational astronomy, as well as, in new tests of General Relativity.
Study of nonlinear waves in astrophysical quantum plasmas
Energy Technology Data Exchange (ETDEWEB)
Hossen, M.R.; Mamun, A.A., E-mail: rasel.plasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2015-10-01
The nonlinear propagation of the electron acoustic solitary waves (EASWs) in an unmagnetized, collisionless degenerate quantum plasma system has been investigated theoretically. Our considered model consisting of two distinct groups of electrons (one of inertial non-relativistic cold electrons and other of inertialess ultrarelativistic hot electrons) and positively charged static ions. The Korteweg-de Vries (K-dV) equation has been derived by employing the reductive perturbation method and numerically examined to identify the basic features (speed, amplitude, width, etc.) of EASWs. It is shown that only rarefactive solitary waves can propagate in such a quantum plasma system. It is found that the effect of degenerate pressure and number density of hot and cold electron fluids, and positively charged static ions, significantly modify the basic features of EASWs. It is also noted that the inertial cold electron fluid is the source of dispersion for EA waves and is responsible for the formation of solitary structures. The applications of this investigation in astrophysical compact objects (viz. non-rotating white dwarfs, neutron stars, etc.) are briefly discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)
2015-06-15
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.
Andreev, Pavel A.
2015-06-01
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.
Coherent structures and transport in drift wave plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Bang Korsholm, S.
2011-12-15
Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)
Radio and Plasma Waves Synergistic Science Opportunities with EJSM
Cecconi, Baptiste; André, Nicolas; Bougeret, Jean-Louis
2010-05-01
The radio and plasma wave (RPW) diagnostics provide a unique access to critical parameters of space plasma, in particular in planetary and satellite environments. Concerning giant planets, this has been demonstrated by major results obtained by the radio investigation on the Galileo and Cassini spacecraft, but also during the Ulysses, Voyager, and Pioneer flybys of Jupiter. Several other missions, past or in flight, demonstrate the uniqueness and relevance of RPW diagnostics to basic problems of astrophysics. The EJSM mission consists of two platforms operating in the Jupiter environment: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO will execute a choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. The EJSM mission architecture hence offers unique opportunities for synergistic and complementary observations that significantly enhance the overall science return of the mission. In this paper, we will first review new and unique science aspects of the Jupiter system that may benefit from different capabilities of RPW investigations onboard JGO and/or JEO: spectral and polarization information, mapping of radio sources, measurements of in situ plasma waves, currents, thermal noise, dust and nano-particle detection and characterization. We will then illustrate unique synergistic and complementary science opportunities offered by RPW investigations onboard JGO and/or JEO, both in terms of Satellite science and in terms of Magnetospheric Science.
Freak waves in a plasma having Cairns particles
El-Tantawy, S. A.; El-Awady, E. I.; Schlickeiser, R.
2015-12-01
The probability of the existence of the ion-acoustic rogue waves in a plasma composed of warm ions and non-Maxwellian (nonthermal or Kappa) electrons is investigated in the framework of the modified Korteweg-de Vries (mKdV) equation. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived. After numerical analysis, it is found that the present plasma system populated with nonthermal (Cairns) electrons leads to generation of compressive and rarefactive pulses, in contrast to the case of Kappa distribution. Thus, only for the nonthermal populated electrons, there is a critical value of the nonthermal parameter at which the coefficient of the nonlinear term of the KdV equation vanishes. In this case, we derived the modified KdV (mKdV) equation to describe the evolution of the system. To investigate the rogue waves propagation in our system, the mKdV equation should transfer to the nonlinear Schrödinger equation (NLSE). Our results provide a better understanding of observations in space plasmas which indicate the existence of nonthermal particles.
Theory of convective saturation of Langmuir waves during ionospheric modification of a barium cloud
Goldman, M. V.; Newman, D. L.; Drake, R. Paul; Afeyan, Bedros B.
1997-12-01
In recent experiments (Djuth, F. T., Sulzer, M. P., Elder, J. H. and Groves, K. M. (1995) Journal of Geophysical Research, 100, 17,347), a parametric decay instability was excited by an ordinary-wave HF pump during an ionospheric chemical release from a rocket over Arecibo, PR, which created an artificial `barium ionosphere,' with peak plasma frequency above the pump frequency, and a density gradient with a (short) 5 km scale length. Simultaneous incoherent scattering measurements revealed a strong initial asymmetry in the amplitudes of almost vertically upgoing versus downgoing measured plasma waves. We can account for this asymmetry in terms of linear convective saturation of parametrically unstable plasma waves propagating over a range of altitudes along geometric optics ray paths. Qualitative features of the frequency spectrum of the measured downgoing wave are in agreement with this model, although the theoretically predicted spectrum is narrower than observed. The observed altitude localization of the enhanced spectrum to a few range cells is consistent with the theory.
High Temperature Plasmas Theory and Mathematical Tools for Laser and Fusion Plasmas
Spatschek, Karl-Heinz
2012-01-01
Filling the gap for a treatment of the subject as an advanced course in theoretical physics with a huge potential for future applications, this monograph discusses aspects of these applications and provides theoretical methods and tools for their investigation. Throughout this coherent and up-to-date work the main emphasis is on classical plasmas at high-temperatures, drawing on the experienced author's specialist background. As such, it covers the key areas of magnetic fusion plasma, laser-plasma-interaction and astrophysical plasmas, while also including nonlinear waves and phenomena.
On the damping of right hand circularly polarized waves in spin quantum plasmas
Iqbal, Z.; Hussain, A.; Murtaza, G.; Ali, M.
2014-12-01
General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k ∥ v ≫ ( ω + ω c e ) , ( ω + ω c g ) and (ii) k ∥ v ≪ ( ω + ω c e ) , ( ω + ω c g ) . Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effects can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.
On the damping of right hand circularly polarized waves in spin quantum plasmas
Energy Technology Data Exchange (ETDEWEB)
Iqbal, Z. [Department of Physics, GC University Lahore, Lahore 54000 (Pakistan); Hussain, A., E-mail: ah-gcu@yahoo.com [Department of Physics, GC University Lahore, Lahore 54000 (Pakistan); Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320 (Pakistan); Murtaza, G. [Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320 (Pakistan); Ali, M. [Department of Physics, School of Natural Sciences, National University of Science and Technology Islamabad, Islamabad 44000 (Pakistan)
2014-12-15
General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k{sub ∥}v≫(ω+ω{sub ce}),(ω+ω{sub cg}) and (ii) k{sub ∥}v≪(ω+ω{sub ce}),(ω+ω{sub cg}). Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effects can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.
Cross-polarization scattering from low-frequency waves in a tandem mirror plasma
Energy Technology Data Exchange (ETDEWEB)
Kogi, Yuichiro; Mase, Atsushi; Bruskin, L.G.; Oyama, Naoyuki; Tokuzawa, Tokihiko; Itakura, Akiyosi; Hojo, Hitoshi; Tamano, Teruo [Tsukuba Univ., Ibaraki (Japan). Plasma Research Center
1997-05-01
Cross-polarization scattering (CPS) diagnostic was applied to the central-cell plasma of the GAMMA 10 tandem mirror in order to study electromagnetic plasma waves with frequencies of less than 200 kHz. In the CPS process, an incident ordinary (extraordinary) wave is converted to an extraordinary (ordinary) wave by magnetic fluctuations in a plasma. The converted wave propagates through the cutoff layer and reaches the opposite diagnostic port. The experimental data suggest that the power spectral density of the CPS signal satisfies the Bragg condition, while the reflectometer detects the waves near the cutoff layer where the wave number cannot be resolved. (author)
Energy Technology Data Exchange (ETDEWEB)
Sodha, M.S.; Govind; Sharma, R.P. (Indian Inst. of Tech., New Delhi. Centre of Energy Studies)
1981-05-01
An investigation of the plasma wave and third harmonic generation by a Gaussian electromagnetic (em) beam, propagating in extraordinary mode in a collisionless hot magnetoplasma has been made. On account of the (VXB) force, a plasma wave at twice the pump wave frequency gets excited. The interaction of the plasma wave with the pump wave leads to third harmonic generation. By taking into account the self-focusing of the pump wave on account of non-uniform intensity distribution along the wave front, a modification is effected in the power of the plasma wave and the third harmonic em wave. The dependence of these phenomena on the strength of the static magnetic field has also been studied.
Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas
Arshad, Kashif; Lazar, M.; Mahmood, Shahzad; Aman-ur-Rehman, Poedts, S.
2017-03-01
The kinetic theory of electrostatic twisted waves' instability in a dusty plasma is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons, ions, and dust particles. The kappa distributed electrons are considered to have a drift velocity. The perturbed distribution function and helical electric field are decomposed by Laguerre-Gaussian mode functions defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to investigate the growth rates of the electrostatic twisted waves in a non-thermal dusty plasma. The growth rates of the dust ion acoustic twisted mode (DIATM) and dust acoustic twisted mode (DATM) are obtained analytically and also pictorial presented numerically. The instability condition for the DIATM and DATM is also discussed with different plasma parameters. The growth rates of DIATM and DATM are larger when the drifted electrons are non-Maxwellian distributed and smaller for the Maxwellian distributed drifted electrons in the presence of the helical electric field.
Cassini Radio and Plasma Wave Observations at Saturn
Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Ceccni, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.
2005-01-01
Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.
Hartley, D. P.; Kletzing, C. A.; Kurth, W. S.; Bounds, S. R.; Averkamp, T. F.; Hospodarsky, G. B.; Wygant, J. R.; Bonnell, J. W.; Santolík, O.; Watt, C. E. J.
2016-05-01
Cold plasma theory and parallel wave propagation are often assumed when approximating the whistler mode magnetic field wave power from electric field observations. The current study is the first to include the wave normal angle from the Electric and Magnetic Field Instrument Suite and Integrated Science package on board the Van Allen Probes in the conversion factor, thus allowing for the accuracy of these assumptions to be quantified. Results indicate that removing the assumption of parallel propagation does not significantly affect calculated plasmaspheric hiss wave powers. Hence, the assumption of parallel propagation is valid. For chorus waves, inclusion of the wave normal angle in the conversion factor leads to significant alterations in the distribution of wave power ratios (observed/ calculated); the percentage of overestimates decreases, the percentage of underestimates increases, and the spread of values is significantly reduced. Calculated plasmaspheric hiss wave powers are, on average, a good estimate of those observed, whereas calculated chorus wave powers are persistently and systematically underestimated. Investigation of wave power ratios (observed/calculated), as a function of frequency and plasma density, reveals a structure consistent with signal attenuation via the formation of a plasma sheath around the Electric Field and Waves spherical double probes instrument. A simple, density-dependent model is developed in order to quantify this effect of variable impedance between the electric field antenna and the plasma interface. This sheath impedance model is then demonstrated to be successful in significantly improving agreement between calculated and observed power spectra and wave powers.
Nonextensivity effect on radio-wave transmission in plasma sheath
Mousavi, A.; Esfandiari-Kalejahi, A.; Akbari-Moghanjoughi, M.
2016-04-01
In this paper, new theoretical findings on the application of magnetic field in effective transmission of electromagnetic (EM) waves through a plasma sheath around a hypersonic vehicle are reported. The results are obtained by assuming the plasma sheath to consist of nonextensive electrons and thermal ions. The expressions for the electric field and effective collision frequency are derived analytically in the framework of nonextensive statistics. Examination of the reflection, transmission, and absorption coefficients regarding the strength of the ambient magnetic field shows the significance of q-nonextensive parameter effect on these entities. For small values of the magnetic field, the transmission coefficient increases to unity only in the range of - 1 hypersonic flights.
Indian Academy of Sciences (India)
P K Karmakar
2007-04-01
Application of inertia-induced acoustic excitation theory offers a new resonant excitation source channel of acoustic turbulence in the transonic domain of plasma flow. In bi-ion plasmas like colloidal plasma, two well-defined transonic points exist corresponding to the parent ion and the dust grain-associated acoustic modes. As usual, the modified ion acoustic mode (also known as dust ion-acoustic (DIA) wave) dynamics associated with parent ion inertia is excitable for both nanoscale- and micronscale-sized dust grains. It is found that the so-called (ion) acoustic mode (also known as dust-acoustic (DA) wave) associated with nanoscale dust grain inertia is indeed resonantly excitable through the active role of weak but finite parent ion inertia. It is interestingly conjectured that the same excitation physics, as in the case of normal plasma sound mode, operates through the active inertial role of plasma thermal species. Details of the nonlinear acoustic mode analyses of current interest in transonic domains of such impure plasmas in hydrodynamic flow are presented.
Polarizer design for millimeter-wave plasma diagnostics.
Leipold, F; Salewski, M; Jacobsen, A S; Jessen, M; Korsholm, S B; Michelsen, P K; Nielsen, S K; Stejner, M
2013-08-01
Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted by birefringent windows, the microwave receivers can be designed to be more compact at lower cost. Sapphire windows (a-cut) as well as grooved high density polyethylene windows can serve this purpose. The sapphire window can be designed such that the calculated transmission of the wave energy is better than 99%, and that of the high density polyethylene can be better than 97%.
‘Magneto-elastic’ waves in an anisotropic magnetised plasma
Del Sarto, D.; Pegoraro, F.; Tenerani, A.
2017-04-01
The linear waves that propagate in a two fluid magnetised plasma allowing for a non-gyrotropic perturbed ion pressure tensor are investigated. For perpendicular propagation and perturbed fluid velocity a low frequency (magnetosonic) and a high frequency (ion Bernstein) branch are identified and discussed. For both branches a comparison is made with the results of a truncated Vlasov treatment. For the low frequency branch we show that a consistent expansion procedure allows us to recover the correct expression of the finite Larmor radius corrections to the magnetosonic dispersion relation.
"Magneto-elastic" waves in an anisotropic magnetised plasma
Del Sarto, Daniele; Tenerani, Anna
2015-01-01
The linear waves that propagate in a two fluid magnetised plasma allowing for a non-gyrotropic perturbed ion pressure tensor are investigated. For perpendicular propagation and perturbed fluid velocity a low frequency (magnetosonic) and a high frequency (ion Bernstein) branch are identified and discussed. For both branches a comparison is made with the results of a kinetic Vlasov treatment. For the low frequency branch we show that a consistent expansion procedure allows us to recover the correct expression of the FLR corrections to the magnetosonic dispersion relation in agreement with Mikhailovskii and Smoliakov, Soviet Phys., JETP, 11, 1469 (1985).
Wave Localization and Density Bunching in Pair Ion Plasmas
Mahajan, Swadesh M
2008-01-01
By investigating the nonlinear propagation of high intensity electromagnetic (EM) waves in a pair ion plasma, whose symmetry is broken via contamination by a small fraction of high mass immobile ions, it is shown that this new and interesting state of (laboratory created) matter is capable of supporting structures that strongly localize and bunch the EM radiation with density excess in the region of localization. Testing of this prediction in controlled laboratory experiments can lend credence, inter alia, to conjectures on structure formation (via the same mechanism) in the MEV era of the early universe.
Broadband notch filter design for millimeter-wave plasma diagnostics
DEFF Research Database (Denmark)
Furtula, Vedran; Michelsen, Poul; Leipold, Frank;
2010-01-01
Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼ 900 MHz, and a typical insertion loss below 2 dB in the passband...... of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode...
Robinson, P. A.; Cairns, I. H.; Gurnett, D. A.
1993-01-01
Detailed comparisons are made between the Langmuir-wave properties predicted by the recently developed stochastic-growth theory of type III sources and those observed by the plasma wave experiment on ISEE 3, after correcting for the main instrumental and selection effects. Analysis of the observed field-strength distribution confirms the theoretically predicted form and implies that wave growth fluctuates both spatially and temporally in sign and magnitude, leading to an extremely clumpy distribution of fields. A cutoff in the field-strength distribution is seen at a few mV/m, corresponding to saturation via nonlinear effects. Analysis of the size distribution of Langmuir clumps yields results in accord with those obtained in earlier work and with the size distribution of ambient density fluctuations in the solar wind. This confirms that the inhomogeneities in the Langmuir growth rate are determined by the density fluctuations and that these fluctuations persist during type III events.
The Ballistic Pressure Wave Theory of Handgun Bullet Incapacitation
Courtney, Michael
2008-01-01
This paper presents a summary of seven distinct chains of evidence, which, taken together, provide compelling support for the theory that a ballistic pressure wave radiating outward from the penetrating projectile can contribute to wounding and incapacitating effects of handgun bullets. These chains of evidence include the fluid percussion model of traumatic brain injury, observations of remote ballistic pressure wave injury in animal models, observations of rapid incapacitation highly correlated with pressure magnitude in animal models, epidemiological data from human shootings showing that the probability of incapacitation increases with peak pressure magnitude, case studies in humans showing remote pressure wave damage in the brain and spinal cord, and observations of blast waves causing remote brain injury.
Nonlinear instability and chaos in plasma wave-wave interactions. II. Numerical methods and results
Energy Technology Data Exchange (ETDEWEB)
Kueny, C.S.; Morrison, P.J.
1995-05-01
In Part I of this work and Physics of Plasmas, June 1995, the behavior of linearly stable, integrable systems of waves in a simple plasma model was described using a Hamiltonian formulation. It was shown that explosive instability arises from nonlinear coupling between modes of positive and negative energy, with well-defined threshold amplitudes depending on the physical parameters. In this concluding paper, the nonintegrable case is treated numerically. Several sets of waves are considered, comprising systems of two and three degrees of freedom. The time evolution is modelled with an explicit symplectic integration algorithm derived using Lie algebraic methods. When initial wave amplitudes are large enough to support two-wave decay interactions, strongly chaotic motion destroys the separatrix bounding the stable region for explosive triplets. Phase space orbits then experience diffusive growth to amplitudes that are sufficient for explosive instability, thus effectively reducing the threshold amplitude. For initial amplitudes too small to drive decay instability, small perturbations might still grow to arbitrary size via Arnold diffusion. Numerical experiments do not show diffusion in this case, although the actual diffusion rate is probably underestimated due to the simplicity of the model.
Mechanism of laser-induced plasma shock wave evolution in air
Institute of Scientific and Technical Information of China (English)
Zhao Rui; Liang Zhong-Cheng; Han Bing; Zhang Hong-Chao; Xu Rong-Qing; Lu Jian; Ni Xiao-Wu
2009-01-01
A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track the plasma shock wave evolution process. The theoretical model and the experimental signals are found to be in good agreement with each other. It is shown that the laser-induced plasma shock wave undergoes formation, increase and decay processes; the increase and the decay processes of the laser-induced plasma shock wave result from the overlapping of the compression wave and the rarefaction wave, respectively. In addition, the laser-induced plasma shock wave speed and pressure distributions, both a function of distance, are presented.
An overview of gravitational waves theory, sources and detection
Auger, Gerard
2017-01-01
This book describes detection techniques used to search for and analyze gravitational waves (GW). It covers the whole domain of GW science, starting from the theory and ending with the experimental techniques (both present and future) used to detect them. The theoretical sections of the book address the theory of general relativity and of GW, followed by the theory of GW detection. The various sources of GW are described as well as the methods used to analyse them and to extract their physical parameters. It includes an analysis of the consequences of GW observations in terms of astrophysics as well as a description of the different detectors that exist and that are planned for the future. With the recent announcement of GW detection and the first results from LISA Pathfinder, this book will allow non-specialists to understand the present status of the field and the future of gravitational wave science
Use of distorted waves in the theory of inelastic scattering
Picklesimer, A.; Tandy, P. C.; Thaler, R. M.
1982-03-01
A distorted wave description of inelastic scattering of nucleons from nuclei is formulated so that the microscopic content of the various ingredients can be made explicit. Special care is taken to ensure that physical processes are not overcounted as a consequence of the use of distorted waves in both the initial and final channels. Two attitudes to applications of the theory are taken. In the first, it is assumed that phenomenological distorted waves are employed and attention is focused upon the microscopic transition potential and the final distorted wave. Theoretically based recommendations for practical calculations of both these quantities are given. Secondly, we present a completely microscopic treatment wherein the truncations of the microscopic distorting potentials and the transition potential, at the single scattering level, are consistent with the underlying theoretical framework which links them. Our approach is designed to embody the distorted wave impulse approximation as a suitable lowest order result. Again, recommendations for practical calculations are given. NUCLEAR REACTIONS Inelastic scattering, distorted wave Born approximation, distorted wave impulse approximation, multiple scattering.
The Gaussian radial basis function method for plasma kinetic theory
Energy Technology Data Exchange (ETDEWEB)
Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)
2015-10-30
Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.
Effective Potential Theory: A Practical Way to Extend Plasma Transport Theory to Strong Coupling
Baalrud, Scott D; Daligault, Jerome
2014-01-01
The effective potential theory is a physically motivated method for extending traditional plasma transport theories to stronger coupling. It is practical in the sense that it is easily incorporated within the framework of the Chapman-Enskog or Grad methods that are commonly applied in plasma physics and it is computationally efficient to evaluate. The extension is to treat binary scatterers as interacting through the potential of mean force, rather than the bare Coulomb or Debye-screened Coulomb potential. This allows for aspects of many-body correlations to be included in the transport coefficients. Recent work has shown that this method accurately extends plasma theory to orders of magnitude stronger coupling when applied to the classical one-component plasma model. The present work shows that similar accuracy is realized for the Yukawa one-component plasma model and it provides a comparison with other approaches.
Vladimirov, S V
2015-01-01
The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The results are discussed in the context of dusty plasma experiments.
Theory of magnetic reconnection in solar and astrophysical plasmas.
Pontin, David I
2012-07-13
Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this paper, we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex three-dimensional magnetic fields and describe the fundamental differences between reconnection in two and three dimensions. We go on to outline recent developments in modelling of reconnection with kinetic theory, as well as in the magnetohydrodynamic framework where a number of new three-dimensional reconnection regimes have been identified. We discuss evidence from observations and simulations of Solar System plasmas that support this theory and summarize some prominent locations in which this new reconnection theory is relevant in astrophysical plasmas.
Non-perturbative String Theory from Water Waves
Energy Technology Data Exchange (ETDEWEB)
Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.; Pennington, Jeffrey S.; /SLAC
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.
Visualizing a Dusty Plasma Shock Wave via Interacting Multiple-Model Mode Probabilities
Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Céline; Samsonov, Dmitry
2011-01-01
Particles in a dusty plasma crystal disturbed by a shock wave are tracked using a three-mode interacting multiple model approach. Color-coded mode probabilities are used to visualize the shock wave propagation through the crystal.
Applications of Symmetry Methods to the Theory of Plasma Physics
Giampaolo Cicogna; Francesco Ceccherini; Francesco Pegoraro
2006-01-01
The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-...
Theoretical study of nonlinear waves and shock-like phenomena in hot plasmas
Fried, B. D.; Banos, A., Jr.; Kennel, C. F.
1973-01-01
Summaries are presented of research in basic plasma physics. Nonlinear waves and shock-like phenomena were studied which are pertinent to space physics applications, and include specific problems of magnetospheric and solar wind plasma physics.
Introduction to Plasma Physics
Gurnett, Donald A.; Bhattacharjee, Amitava
2017-03-01
Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.
Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas
Lee, Myoung-Jae; Jung, Young-Dae
2017-02-01
The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
Energy Technology Data Exchange (ETDEWEB)
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-03-15
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Formation of plasma around a small meteoroid: 1. Kinetic theory
Dimant, Y S
2016-01-01
Every second millions of small meteoroids enter the Earth's atmosphere producing dense plasmas. Radars easily detect these plasmas and researchers use this data to characterize both the meteoroids and the atmosphere. This paper develops a first-principle kinetic theory describing the behavior of particles, ablated from a fast-moving meteoroid, that colliside with the atmospheric molecules. This theory produces analytic expressions describing the spatial structure and velocity distributions of ions and neutrals near the ablating meteoroid. This analytical model will serve as a basis for a more accurate quantitative interpretation of radar measurements and should help calculate meteoroid and atmosphere parameters from radar head-echo observations.
Hydrodynamic theory for ion structure and stopping power in quantum plasmas.
Shukla, P K; Akbari-Moghanjoughi, M
2013-04-01
We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion
Hydrodynamic theory for ion structure and stopping power in quantum plasmas
Shukla, P. K.; Akbari-Moghanjoughi, M.
2013-04-01
We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion
Quasi-periodic behavior of ion acoustic solitary waves in electron-ion quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Sahu, Biswajit [Department of Mathematics, West Bengal State University Barasat, Kolkata-700126 (India); Poria, Swarup [Department of Applied Mathematics, University of Calcutta Kolkata-700009 (India); Narayan Ghosh, Uday [Department of Mathematics, Siksha Bhavana, Visva Bharati University Santiniketan (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata-700108 (India)
2012-05-15
The ion acoustic solitary waves are investigated in an unmagnetized electron-ion quantum plasmas. The one dimensional quantum hydrodynamic model is used to study small as well as arbitrary amplitude ion acoustic waves in quantum plasmas. It is shown that ion temperature plays a critical role in the dynamics of quantum electron ion plasma, especially for arbitrary amplitude nonlinear waves. In the small amplitude region Korteweg-de Vries equation describes the solitonic nature of the waves. However, for arbitrary amplitude waves, in the fully nonlinear regime, the system exhibits possible existence of quasi-periodic behavior for small values of ion temperature.
Propagation of Surface Wave Along a Thin Plasma Column and Its Radiation Pattern
Institute of Scientific and Technical Information of China (English)
WANG Zhijiang; ZHAO Guowei; XU Yuemin; LIANG Zhiwei; XU Jie
2007-01-01
Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various plasma parameters. The radiation patterns are shown. Results show that the radiation patterns are controllable by flexibly changing the plasma length and other parameters in comparison to the metal monopole antenna. It is meaningful and instructional for the optimization of the plasma antenna design.
A First-Principle Kinetic Theory of Meteor Plasma Formation
Dimant, Yakov; Oppenheim, Meers
2015-11-01
Every second millions of tiny meteoroids hit the Earth from space, vast majority too small to observe visually. However, radars detect the plasma they generate and use the collected data to characterize the incoming meteoroids and the atmosphere in which they disintegrate. This diagnostics requires a detailed quantitative understanding of formation of the meteor plasma. Fast-descending meteoroids become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently and start ablating. The ablated material then collides into atmospheric molecules and forms plasma around the meteoroid. Reflection of radar pulses from this plasma produces a localized signal called a head echo. Using first principles, we have developed a consistent collisional kinetic theory of the near-meteoroid plasma. This theory shows that the meteoroid plasma develops over a length-scale close to the ion mean free path with a non-Maxwellian velocity distribution. The spatial distribution of the plasma density shows significant deviations from a Gaussian law usually employed in head-echo modeling. This analytical model will serve as a basis for more accurate quantitative interpretation of the head echo radar measurements. Work supported by NSF Grant 1244842.
Third-order theory for multi-directional irregular waves
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2012-01-01
at the free surface are also provided, and the formulation incorporates the effect of an ambient current with the option of specifying zero net volume flux. Harmonic resonance may occur at third order for certain combinations of frequencies and wavenumber vectors, and in this situation the perturbation theory...... breaks down due to singularities in the transfer functions. We analyse harmonic resonance for the case of a monochromatic short-crested wave interacting with a plane wave having a different frequency, and make long-term simulations with a high-order Boussinesq formulation in order to study the evolution...
Hamiltonian theory of nonlinear waves in planetary rings
Stewart, G. R.
1987-01-01
The derivation of a Hamiltonian field theory for nonlinear density waves in Saturn's rings is discussed. Starting with a Hamiltonian for a discrete system of gravitating streamlines, an averaged Hamiltonian is obtained by successive applications of Lie transforms. The transformation may be carried out to any desired order in q, where q is the nonlinearity parameter defined in the work of Shu, et al (1985) and Borderies et al (1985). Subsequent application of the Wentzel-Kramer-Brillouin Method approximation yields an asymptotic field Hamiltonian. Both the nonlinear dispersion relation and the wave action transport equation are easily derived from the corresponding Lagrangian by the standard variational principle.
Transport phenomena in a plasma quasilinear theory
Directory of Open Access Journals (Sweden)
Enos D'Ambrogio
1991-05-01
Full Text Available Making use of a recently developed quasi-linear formulation of 1D Vlasov equation, we derive the balance relations for the space-averaged distribution function and spectral power density. The validity-range in the short-time behaviour as well as in the time asymptotic limit is discussed. The formalism is perturbative but non-markovian in character, as it formally generalizes, and in the appropriate limit reproduces, Pocobelli's kinetic theory.
Modified Enskog Kinetic Theory for Strongly Coupled Plasmas
Baalrud, Scott D
2015-01-01
Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S.~D.~Baalrud and J.~Daligault, Phys.~Rev.~Lett.~{\\bf 110}, 235001 (2013)] to include an exclusion radius surrounding individual charged particles that is associated with Coulomb repulsion. This is obtained by analogy with the finite size of hard spheres in Enskog's theory. Predictions for the self-diffusion and shear viscosity coefficients of the one-component plasma are tested against molecular dynamics simulations. The theory is found to accurately capture the kinetic contributions to the transport coefficients, but not the potential contributions that arise at very strong coupling ($\\Gamma \\gtrsim 30$). Considerations related to a first-principles generalization of Enskog's kinetic equation to continuous potentials are also discussed.
Modified Enskog kinetic theory for strongly coupled plasmas.
Baalrud, Scott D; Daligault, Jérôme
2015-06-01
Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S. D. Baalrud and J. Daligault, Phys. Rev. Lett. 110, 235001 (2013)] to include an exclusion radius surrounding individual charged particles that is associated with Coulomb repulsion. This is obtained by analogy with the finite size of hard spheres in Enskog's theory. Predictions for the self-diffusion and shear viscosity coefficients of the one-component plasma are tested against molecular dynamics simulations. The theory is found to accurately capture the kinetic contributions to the transport coefficients, but not the potential contributions that arise at very strong coupling (Γ≳30). Considerations related to a first-principles generalization of Enskog's kinetic equation to continuous potentials are also discussed.
Benson, Robert F.; Fung, Shing F.
2008-01-01
Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).
Null Aether Theory: $pp$-Wave and AdS Wave Solutions
Gurses, Metin
2016-01-01
General quantum gravity arguments predict that Lorentz symmetry might not hold exactly in nature. This has motivated much interest in Lorentz breaking gravity theories recently. Among such models are vector-tensor theories with preferred direction established at every point of spacetime by a fixed-norm vector field. The dynamical vector field defined in this way is referred to as the aether. In this work, we study plane wave metrics in such a theory. For this purpose, we assume that the aether field is a null vector field satisfying certain conditions--we refer to the theory constructed in this way as Null Aether Theory (NAT). Assuming the Kerr-Schild form for such metrics we show that the theory admits exact plane wave solutions in any dimension $D\\geq3$. The field equations are reduced to two, in general coupled, differential equations when the background metric assumes the maximally symmetric form. Specifically, when the background metric is flat, i.e. for the $pp$-wave spacetimes, these equations decouple...
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)
2017-02-12
High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.
Surface-wave capillary plasmas in helium: modeling and experiment
Santos, M.; Alves, L. L.; Noel, C.; Belmonte, T.
2012-10-01
In this paper we use both simulations and experiments to study helium discharges (99.999% purity) sustained by surface-waves (2.45 GHz frequency), in capillary tubes (3 mm radius) at atmospheric pressure. Simulations use a self-consistent homogeneous and stationary collisional-radiative model that solves the rate balance equations for the different species present in the plasma (electrons, the He^+ and He2^+ ions, the He(nexcimers) and the gas thermal balance equation, coupled to the two-term electron Boltzmann equation (including direct and stepwise collisions as well as electron-electron collisions). Experiments use optical emission spectroscopy diagnostics to measure the electron density (Hβ Stark broadening), the gas temperature (ro-vibrational transitions of OH, present at trace concentrations), and the populations of different excited states. Model predictions at 1.7x10^13 cm-3 electron density (within the range estimated experimentally) are in good agreement with measurements (deviations < 10%) of (i) the excitation spectrum and the excitation temperatures (2795 ± 115 K, obtained from the Boltzmann-plot of the excited state populations, with energies lying between 22.7 and 24.2 eV), (ii) the power coupled to the plasma (˜ 180 ± 10 W), and (iii) the gas temperature (˜ 1700 ± 100 K). We discuss the extreme dependence of model results (particularly the gas temperature) on the power coupled to the plasma.
Institute of Scientific and Technical Information of China (English)
S. PRASAD; Vivek SINGH; A. K. SINGH
2012-01-01
An analytical study is presented on the modal dispersion characteristics, group velocity, and effective group, as well as the phase index of a ternary one dimensional plasma photonic crystal for an obliquely incident electromagnetic wave considering the effect of collisions in plasma layers. The dispersion relation is derived by using the transfer matrix method and the boundary conditions based on electromagnetic theory. The dispersion curves are plotted for both the normal photonic band gap structure and the absorption photonic band gap structure. It is found that the increase in the angle of incidence shifts the photonic band gap toward higher frequencies. Also, the cutoff frequency is independent of collisions.
The mathematical theory of reduced MHD models for fusion plasmas
Guillard, Hervé
2015-01-01
The derivation of reduced MHD models for fusion plasma is here formulated as a special instance of the general theory of singular limit of hyperbolic system of PDEs with large operator. This formulation allows to use the general results of this theory and to prove rigorously that reduced MHD models are valid approximations of the full MHD equations. In particular, it is proven that the solutions of the full MHD system converge to the solutions of an appropriate reduced model.
Parameteric studies of nonlinear oblique magnetosonic waves in two-ion-species plasmas
Toida, Mieko; Kondo, Yuichi
2011-06-01
The study of the effects of ion composition on perpendicular magnetosonic waves in two-ion-species plasmas [M. Toida, H. Higashino, and Y. Ohsawa, J. Phys. Soc. Jpn. 76, 104052 (2007)] is extended to include oblique waves. First, the conditions necessary for KdV equations for low- and high-frequency modes to be valid are analytically obtained. The upper limit of the amplitude of the low-frequency-mode pulse is expressed as a function of the propagation angle θ, density ratio, and cyclotron frequency ratio of the two ion species. Next, with electromagnetic particle simulations, the nonlinear evolution of a long-wavelength low-frequency-mode disturbance is examined for various θs in two plasmas with different ion densities and cyclotron frequency ratios, and the theory for the low-frequency-mode pulse is confirmed. It is also shown that if the pulse amplitude exceeds the theoretical value of the upper limit of the amplitude, then shorter-wavelength low- and high-frequency-mode waves are generated.
Small amplitude electron acoustic solitary waves in a magnetized superthermal plasma
Devanandhan, S.; Singh, S. V.; Lakhina, G. S.; Bharuthram, R.
2015-05-01
The propagation of electron acoustic solitary waves in a magnetized plasma consisting of fluid cold electrons, electron beam and superthermal hot electrons (obeying kappa velocity distribution function) and ion is investigated in a small amplitude limit using reductive perturbation theory. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation governing the dynamics of electron acoustic solitary waves is derived. The solution of the KdV-ZK equation predicts the existence of negative potential solitary structures. The new results are: (1) increase of either the beam speed or temperature of beam electrons tends to reduce both the amplitude and width of the electron acoustic solitons, (2) the inclusion of beam speed and temperature pushes the allowed Mach number regime upwards and (3) the soliton width maximizes at certain angle of propagation (αm) and then decreases for α >αm . In addition, increasing the superthermality of the hot electrons also results in reduction of soliton amplitude and width. For auroral plasma parameters observed by Viking, the obliquely propagating electron-acoustic solitary waves have electric field amplitudes in the range (7.8-45) mV/m and pulse widths (0.29-0.44) ms. The Fourier transform of these electron acoustic solitons would result in a broadband frequency spectra with peaks near 2.3-3.5 kHz, thus providing a possible explanation of the broadband electrostatic noise observed during the Burst a.
Generation and detection of whistler wave induced space plasma turbulence at Gakona, Alaska
Rooker, L. A.; Lee, M. C.; Pradipta, R.; Watkins, B. J.
2013-07-01
We report on high-frequency wave injection experiments using the beat wave technique to study the generation of very-low-frequency (VLF) whistler waves in the ionosphere above Gakona, Alaska. This work is aimed at investigating whistler wave interactions with ionospheric plasmas and radiation belts. The beat wave technique involves injecting two X-mode waves at a difference frequency in the VLF range using the High-frequency Active Auroral Research Program (HAARP) heating facility. A sequence of beat wave-generated whistler waves at 2, 6.5, 7.5, 8.5, 9.5, 11.5, 15.5, 22.5, 28.5 and 40.5 kHz were detected in our 2011 experiments. We present Modular Ultra-high-frequency Ionospheric Radar (MUIR) (446 MHz) measurements of ion lines as the primary diagnosis of ionospheric plasma effects caused by beat wave-generated whistler waves. A magnetometer and digisonde were used to monitor the background ionospheric plasma conditions throughout the experiments. Our theoretical and data analyses show that VLF whistler waves can effectively interact with ionospheric plasmas via two different four-wave interaction processes leading to energization of electrons and ions. These preliminary results support our Arecibo experiments to study NAU-launched 40.75 kHz whistler wave interactions with space plasmas.
Zhao, Qing; Bo, Yong; Lei, Mingda; Liu, Shuzhang; Liu, Ying; Liu, Jianwei; Zhao, Yizhe
2016-11-01
Numerical study of electromagnetic (EM) wave transmission through the magnetized plasma layer is presented in this paper. The plasma parameters are derived from computational fluid dynamics simulation of the flow field around a blunt body flying at supersonic speed and serve as the background plasma condition in the numerical modeling for EM wave transmission. The EM wave is generated by our newly designed coaxial feed GPS patch antenna. The external magnetic field is applied and assumed to vary linearly as a function of wall distance. The effects of the external applied magnetic field and the plasma parameters on wave transmission are studied, and the results show that EM wave propagation in the non-uniformly magnetized plasma is a matter of impedance matching, and the EM wave transmission can be adjusted only when the proper strength of the magnetic field is applied.
Moradi, Afshin
2016-04-01
In a recent article [Niknam et al., Phys. Plasmas 20, 122106 (2013)], Niknam et al. investigated the propagation of TM surface waves on a semi-bounded quantum magnetized collisional plasma in the Faraday configuration (in this case, the magnetic field is parallel to the both of the plasma surface and direction of propagation). Here, we present a fresh look at the problem and show that TM surface waves cannot propagate on surface of the present system. We find in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the main result of the work by Niknam et al. is incorrect.
A unified intrinsic functional expansion theory for solitary waves
Institute of Scientific and Technical Information of China (English)
Theodore Yaotsu Wu; John Kao; Jin E. Zhang
2005-01-01
A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120° down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokes's formula, F2μπ = tanμπ, relating the wave speed (the Froude number F) and the logarithmic decrement μ of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokes's basic term (singular inμ), such that 2Mμ is just somewhat beyond unity, i.e. 2Mμ (~-) 1. This fundamental criterion is fully validated by solutions for waves Dedicated to Zhemin Zheng for celebration of his Eightieth Anniversary It gives us a great pleasure to dedicate this study to Prof. Zhemin Zheng and join our distinguished colleagues and friends for the jubilant celebration of his Eightieth Anniversary. Warmest tribute is due from us, as from many others unlimited by borders and boundaries, for his contributions of great significance to science, engineering science and engineering, his tremendous influence as a source of inspiration and unerring guide to countless workers in the field, his admirable leadership in fostering the Institute of Mechanics of world renown, as well as for his untiring endeavor in promoting international interaction and cooperation between academies of various nations
Oscillating two-stream instability of laser wakefield-driven plasma wave
Indian Academy of Sciences (India)
Nafis Ahmad; V K Tripathi; Moiz Ahmad; M Rafat
2016-01-01
The laser wakefield-driven plasma wave in a low-density plasma is seen to be susceptible to the oscillating two-stream instability (OTSI). The plasma wave couples to two short wavelength plasma wave sidebands. The pump plasma wave and sidebands exert a ponderomotive force on the electrons driving a low-frequency quasimode. The electron density perturbation associated with this mode couples with the pump-driven electron oscillatory velocity to produce nonlinear currents driving the sidebands. At large pump amplitude, the instability grows faster than the ion plasma frequency and ions do not play a significant role. The growth rate of the quasimode, at large pump amplitude scales faster than linear. The growth rate is maximum for an optimum wave number of the quasimode and also increases with pump amplitude. Nonlocal effects, however reduce the growth rate by about half.
Theory and Numerics of Gravitational Waves from Preheating after Inflation
Dufaux, Jean Francois; Felder, Gary N; Kofman, Lev; Uzan, Jean-Philippe
2007-01-01
Preheating after inflation involves large, time-dependent field inhomogeneities, which act as a classical source of gravitational radiation. The resulting spectrum might be probed by direct detection experiments if inflation occurs at a low enough energy scale. In this paper, we develop a theory and algorithm to calculate, analytically and numerically, the spectrum of energy density in gravitational waves produced from an inhomogeneous background of stochastic scalar fields in an expanding universe. We derive some generic analytical results for the emission of gravity waves by stochastic media of random fields, which can test the validity/accuracy of numerical calculations. We contrast our method with other numerical methods in the literature, and then we apply it to preheating after chaotic inflation. In this case, we are able to check analytically our numerical results, which differ significantly from previous works. We discuss how the gravity wave spectrum builds up with time and find that the amplitude an...
Pilot-Wave Quantum Theory with a Single Bohm's Trajectory
Avanzini, Francesco; Fresch, Barbara; Moro, Giorgio J.
2016-05-01
The representation of a quantum system as the spatial configuration of its constituents evolving in time as a trajectory under the action of the wave-function, is the main objective of the de Broglie-Bohm theory (or pilot wave theory). However, its standard formulation is referred to the statistical ensemble of its possible trajectories. The statistical ensemble is introduced in order to establish the exact correspondence (the Born's rule) between the probability density on the spatial configurations and the quantum distribution, that is the squared modulus of the wave-function. In this work we explore the possibility of using the pilot wave theory at the level of a single Bohm's trajectory, that is a single realization of the time dependent configuration which should be representative of a single realization of the quantum system. The pilot wave theory allows a formally self-consistent representation of quantum systems as a single Bohm's trajectory, but in this case there is no room for the Born's rule at least in its standard form. We will show that a correspondence exists between the statistical distribution of configurations along the single Bohm's trajectory and the quantum distribution for a subsystem interacting with the environment in a multicomponent system. To this aim, we present the numerical results of the single Bohm's trajectory description of the model system of six confined planar rotors with random interactions. We find a rather close correspondence between the coordinate distribution of one rotor, the others representing the environment, along its trajectory and the time averaged marginal quantum distribution for the same rotor. This might be considered as the counterpart of the standard Born's rule when the pilot wave theory is applied at the level of single Bohm's trajectory. Furthermore a strongly fluctuating behavior with a fast loss of correlation is found for the evolution of each rotor coordinate. This suggests that a Markov process might
Gravitational wave polarization modes in $f(R)$ theories
Rizwana, Kausar H; Philippe, Jetzer
2016-01-01
Many studies have been carried out in the literature to evaluate the number of polarization modes of gravitational waves in modified theories, in particular in $f(R)$ theories. In the latter ones, besides the usual two transverse-traceless tensor modes present in general relativity, there are two additional scalar ones: a massive longitudinal mode and a massless transverse mode (the so-called breathing mode). This last mode has often been overlooked in the literature, due to the assumption that the application of the Lorenz gauge implies transverse-traceless wave solutions. We however show that this is in general not possible and, in particular, that the traceless condition cannot be imposed due to the fact that we no longer have a Minkowski background metric. Our findings are in agreement with the results found using the Newman-Penrose formalism, and thus clarify the inconsistencies found so far in the literature.
A general theory of wave interactions in layered flows
Guha, Anirban
2016-01-01
Using kinematics, we propose a theory of non-modal interactions between the interfaces of a 2D, inviscid, multi-layered fluid system. Specifically, a $3$-interface problem with kinematic and geometric symmetry is explored. Repetitive, extremely short bursts of very high wave growth/decay-rates are observed in the parameter ranges where normal-mode theory predicts stability. The underlying dynamical system predicts chaotic outcomes for some initial conditions. For realistic multi-layered flows, such instabilities of finite amplitude may alter the mean flow to a noisy, unpredictable state.
Kinetic treatment of nonlinear ion-acoustic waves in multi-ion plasma
Ahmad, Zulfiqar; Ahmad, Mushtaq; Qamar, A.
2017-09-01
By applying the kinetic theory of the Valsove-Poisson model and the reductive perturbation technique, a Korteweg-de Vries (KdV) equation is derived for small but finite amplitude ion acoustic waves in multi-ion plasma composed of positive and negative ions along with the fraction of electrons. A correspondent equation is also derived from the basic set of fluid equations of adiabatic ions and isothermal electrons. Both kinetic and fluid KdV equations are stationary solved with different nature of coefficients. Their differences are discussed both analytically and numerically. The criteria of the fluid approach as a limiting case of kinetic theory are also discussed. The presence of negative ion makes some modification in the solitary structure that has also been discussed with its implication at the laboratory level.
Interpreting Ulysses data using inverse scattering theory: Oblique Alfv\\'en waves
Wheeler, Harry R; Hamilton, R L
2015-01-01
Solitary wave structures observed by the Ulysses spacecraft in the solar wind were analyzed using both inverse scattering theory as well as direct numerical integration of the derivative nonlinear Schr\\"odinger (DNLS) equation. Several of these structures were found to be consistent with soliton solutions of the DNLS equation. Such solitary structures have been commonly observed in the space plasma environment and may, in fact, be long-lived solitons. While the generation of these solitons may be due to an instability mechanism, e.g., the mirror instability, they may be observable far from the source region due to their coherent nature.
Space and Astrophysical Plasmas : Sun–Earth connection: Boundary layer waves and auroras
Indian Academy of Sciences (India)
G S Lakhina; B T Tsurutani; J K Arballo; C Galvan
2000-11-01
Boundary layers are the sites where energy and momentum are exchanged between two distinct plasmas. Boundary layers occurring in space plasmas can support a wide spectrum of plasma waves spanning a frequency range of a few mHz to 100 kHz and beyond. The main characteristics of the broadband plasma waves (with frequencies > 1 Hz) observed in the magnetopause, polar cap, and plasma sheet boundary layers are described. The rapid pitch angle scattering of energetic particles via cyclotron resonant interactions with the waves can provide sufﬁcient precipitated energy ﬂux to the ionosphere to create the diffused auroral oval. The broadband plasma waves may also play an important role in the processes of local heating/acceleration of the boundary layer plasma.
Indian Academy of Sciences (India)
M D Sharma
2007-08-01
Anisotropic wave propagation is studied in a fluid-saturated porous medium, using two different approaches. One is the dynamic approach of Biot’s theories. The other approach known as homogenisation theory, is based on the averaging process to derive macroscopic equations from the microscopic equations of motion. The medium considered is a general anisotropic poroelastic (APE) solid with a viscous fluid saturating its pores of anisotropic permeability. The wave propagation phenomenon in a saturated porous medium is explained through two relations. One defines modified Christoffel equations for the propagation of plane harmonic waves in the medium. The other defines a matrix to relate the relative displacement of fluid particles to the displacement of solid particles. The modified Christoffel equations are solved further to get a quartic equation whose roots represent complex velocities of the four attenuating quasi-waves in the medium. These complex velocities define the phase velocities of propagation and quality factors for attenuation of all the quasi-waves propagating along a given phase direction in three-dimensional space. The derivations in the mathematical models from different theories are compared in order to work out the equivalence between them. The variations of phase velocities and attenuation factors with the direction of phase propagation are computed, for a realistic numerical model. Differences between the velocities and attenuations of quasi-waves from the two approaches are exhibited numerically.
The ''phase velocity'' of nonlinear plasma waves in the laser beat-wave accelerator
Energy Technology Data Exchange (ETDEWEB)
Spence, W.L.
1985-04-01
A calculational scheme for beat-wave accelerators is introduced that includes all orders in velocity and in plasma density, and additionally accounts for the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which it is possible to sum up all orders of forward Raman scattering. It is found that the nonlinear plasma wave does not have simply a single phase velocity, but that the beat-wave which drives it is usefully described by a non-local ''effective phase velocity'' function. A time-space domain approach is followed. (LEW)
Gravitational Waves Astronomy: a cornerstone for gravitational theories
Corda, Christian
2010-01-01
Realizing a gravitational wave (GW) astronomy in next years is a great challenge for the scientific community. By giving a significant amount of new information, GWs will be a cornerstone for a better understanding of gravitational physics. In this paper we re-discuss that the GW astronomy will permit to solve a captivating issue of gravitation. In fact, it will be the definitive test for Einstein's general relativity (GR), or, alternatively, a strong endorsement for extended theories of gravity (ETG).
Two-Flux Colliding Plane Waves in String Theory
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
We construct the two-flux colliding plane wave solutions in higher-dimensional gravity theory with dilaton,and two complementary fluxes. Two kinds of solutions have been obtained: Bell-Szekeres (BS) type and homogeneous type. After imposing the junction condition, we find that only the BS type solution is physically well-defined. Furthermore, we show that the future curvature singularity is always developed for our solutions.
Study on thermal wave based on the thermal mass theory
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.
Mathematical analogies in physics. Thin-layer wave theory
Directory of Open Access Journals (Sweden)
José M. Carcione
2014-03-01
Full Text Available Field theory applies to elastodynamics, electromagnetism, quantum mechanics, gravitation and other similar fields of physics, where the basic equations describing the phenomenon are based on constitutive relations and balance equations. For instance, in elastodynamics, these are the stress-strain relations and the equations of momentum conservation (Euler-Newton law. In these cases, the same mathematical theory can be used, by establishing appropriate mathematical equivalences (or analogies between material properties and field variables. For instance, the wave equation and the related mathematical developments can be used to describe anelastic and electromagnetic wave propagation, and are extensively used in quantum mechanics. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of a thin layer embedded between dissimilar media, considering the presence of anisotropy and attenuation/viscosity in the viscoelastic case, conductivity in the electromagnetic case and a potential barrier in quantum physics (the tunnel effect. The analogy is mainly illustrated with geophysical examples of propagation of S (shear, P (compressional, TM (transverse-magnetic and TE (transverse-electric waves. The tunnel effect is obtained as a special case of viscoelastic waves at normal incidence.
Spectral Theory for Dissipation Mechanism of Wind Waves
Polnikov, Vladislav G
2010-01-01
A systematic and full description of the theory for a dissipation mechanism of wind wave energy in a spectral representation is given. As a basis of the theory, the fundamental is stated that the most general dissipation mechanism for wind waves is provided by the viscosity due to interaction between wave motions and turbulence of the water upper layer. The latter, in turn, is supposed to be induced by the whole aggregate of dissipation processes taking place at the air-sea interface. In the frame of phenomenological constructions of nonlinear closure for Reynolds stresses, it is shown that the dissipation function is generally a power series with respect to wave spectrum, starting from a quadratic term. Attracting previous results of the author, a simplified parameterization of the general theoretical result is done. Physical meaning for parameters of the dissipation function and its compliance with the new experimental facts established in this field for the last 5-10 years is discussed. Summarized theoreti...
Study on thermal wave based on the thermal mass theory
Institute of Scientific and Technical Information of China (English)
HU RuiFeng; CAO BingYang
2009-01-01
The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon pre-dicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.
Burnett-Cattaneo continuum theory for shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2011-02-01
We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution.
Plasma depletion layer: the role of the slow mode waves
Directory of Open Access Journals (Sweden)
Y. L. Wang
2004-12-01
Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding values in the upstream magnetosheath. The depletion layer usually occurs during northward (IMF conditions with low magnetic shear across the magnetopause. We have previously validated the Raeder global model by comparing the computed formation of a magnetosheath density depletion with in-situ observations. We also have performed a detailed force analysis and found the varying roles that different MHD forces play along the path of a plasma parcel flowing around the magnetopause. That study resulted in a new description of the behavior of magnetosheath magnetic flux tubes which better explains the plasma depletion along a flux tube. The slow mode waves have been observed in the magnetosheath and have been used to explain the formation of the PDL in some of the important PDL models. In this study, we extend our former work by investigating the possible role of the slow mode waves for the formation of the PDL, using global MHD model simulations. We propose a new technique to test where a possible slow mode front may occur in the magnetosheath by comparing the slow mode group velocity with the local flow velocity. We find that the slow mode fronts can exist in certain regions in the magnetosheath under certain solar wind conditions. The existence and location of such fronts clearly depend on the IMF. We do not see from our global simulation results either the sharpening of the slow mode front into a slow mode shock or noticeable changes of the flow and field in the magnetosheath across the slow mode front, which implies that the slow mode front is not likely responsible for the formation of the PDL, at least for the stable solar wind conditions used in these simulations. Also, we do not see the two-layered slow mode structures shown in some observations and proposed in certain PDL
Farhad Kiyaei, Forough; Dorranian, Davoud
2017-01-01
Effects of the obliqueness and the strength of external magnetic field on the ion acoustic (IA) cnoidal wave in a nonextensive plasma are investigated. The reductive perturbation method is employed to derive the corresponding KdV equation for the IA wave. Sagdeev potential is extracted, and the condition of generation of IA waves in the form of cnoidal waves or solitons is discussed in detail. In this work, the domain of allowable values of nonextensivity parameter q for generation of the IA cnoidal wave in the plasma medium is considered. The results show that only the compressive IA wave may generate and propagate in the plasma medium. Increasing the strength of external magnetic field will increase the frequency of the wave and decrease its amplitude, while increasing the angle of propagation will decrease the frequency of the wave and increase its amplitude.
Institute of Scientific and Technical Information of China (English)
Song Falun; Cao Jinxiang; Wang Ge
2005-01-01
The purpose of the present work is to present a full-wave analysis of scattering from the weakly ionized plasma in the plane geometry. We have yielded an approximate solution in an analytic form to the electromagnetic wave scattering from the weakly ionizsd plasma. In the normal and oblique incidence, the analytic solution works well, as compared with the exact solution and the solution based on the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation to the uniform density profile.
Whistler Wave generation by an electron beam in a LAPTAG Plasma Physics experiment
Bridges, Gabriel; Pribyl, Patrick; Gekelman, Walter; Thomas, Sam; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Baker, Bob; Marmie, Ken; Wolman, Ben; Buckley-Bonnano, Samuel
2015-11-01
A multi-grid pulsed electron beam (Ebeam = 1-4.8 KV, area =1.32 cm2, τ >5 μs) is inserted into a background plasma (He, n = 5X1010 cm3, B0z = 80 G, L = 1.5 m, dia = 40 cm). The pulsed electron beam power supply, can generate up to 4800 Volts at 10 Amps and was constructed by the LAPTAG high school students. The beam can be oriented at any angle with respect to the background magnetic field. The pulsed beam generates whistler waves by Cherenkov radiation. The waves are detected with 3 axis magnetic pickup probes which can be moved in planes transverse or parallel to the background magnetic field under computer control. The whistler wave pattern is used to determine the wavenumber k and Fourier analysis of the signal determines ω. The wave dispersion relation is compared to theory. Work done at BaPSF at UCLA and supported by NSF and DOE.
Dust-acoustic solitary waves and shocks in strongly coupled quantum plasmas
Wang, Y
2014-01-01
We investigate the propagation characteristics of electrostatic dust-acoustic (DA) solitary waves and shocks in a strongly coupled dusty plasma consisting of intertialess electrons and ions, and strongly coupled inertial charged dust particles. A generalized viscoelastic hydrodynamic model with the effects of electrostatic dust pressure associated with the strong coupling of dust particles, and a quantum hydrodynamic model with the effects of quantum forces associated with the Bohm potential and the exchange-correlation potential for electrons and ions are considered. Both the linear and weakly nonlinear theory of DA waves are studied by the derivation and analysis of dispersion relations as well as Korteweg-de Vries (KdV) and KdV-Burgers (KdVB)-like equations. It is shown that in the kinetic regime ($\\omega\\tau_m\\gg1$, where $\\omega$ is the wave frequency and $\\tau_m$ is the viscoelastic relaxtation time), the amplitude of the DA solitary waves decays slowly with time with the effect of a small amount of dus...
Zolghadr, S. H.; Jafari, S.; Raghavi, A.
2016-05-01
Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FEL has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.
Modulation theory, dispersive shock waves and Gerald Beresford Whitham
Minzoni, A. A.; Smyth, Noel F.
2016-10-01
Gerald Beresford (GB) Whitham, FRS, (13th December, 1927-26th January, 2014) was one of the leading applied mathematicians of the twentieth century whose work over forty years had a profound, formative impact on research on wave motion across a broad range of areas. Many of the ideas and techniques he developed have now become the standard tools used to analyse and understand wave motion, as the papers of this special issue of Physica D testify. Many of the techniques pioneered by GB Whitham have spread beyond wave propagation into other applied mathematics areas, such as reaction-diffusion, and even into theoretical physics and pure mathematics, in which Whitham modulation theory is an active area of research. GB Whitham's classic textbook Linear and Nonlinear Waves, published in 1974, is still the standard reference for the applied mathematics of wave motion. In honour of his scientific achievements, GB Whitham was elected a Fellow of the American Academy of Arts and Sciences in 1959 and a Fellow of the Royal Society in 1965. He was awarded the Norbert Wiener Prize for Applied Mathematics in 1980.
The theory of interaction between wave and basic flow
Institute of Scientific and Technical Information of China (English)
Ran Ling-Kun; John P.Boyd
2008-01-01
This paper investigates the interaction between transient wave and non-stationary and non-conservative basic flow.An interaction equation is derived from the zonally symmetric and non-hydrostatic primitive equations in Cartesian coordinates by using the Momentum-Casimir method. In the derivation, it is assumed that the transient disturbances satisfy the linear perturbation equations and the basic states are non-conservative and slowly vary in time and space.The diabatic heating composed of basic-state heating and perturbation heating is also introduced. Since the theory of wave-flow interaction is constructed in non-hydrostatic and ageostrophic dynamical framework, it is applicable to diagnosing the interaction between the meso-scale convective system in front and the background flow.It follows from the local interaction equation that the local tendency of pseudomomentum wave-activity density depends on the combination of the perturbation flux divergence second-order in disturbance amplitude, the local change of basic-state pseudomomentum density, the basic-state flux divergence and the forcing effect of diabatic heating. Furthermore, the tendency of pseudomomentum wave-activity density is opposite to that of basic-state pseudomomentum density.The globally integrated basic-state pseudomomentum equation and wave-activity equation reveal that the global development of basic-state pseudomomentum is only dominated by the basic-state diabatic heating while it is the forcing effect of total diabatic heating from which the global evolution of pseudomomentum wave activity results.Therefore, the interaction between the transient wave and the non-stationary and non-conservative basic flow is realized in virtue of the basic-state diabatic heating.
Tsurutani, Bruce T.
1995-01-01
As the lead-off presentation for the topic of nonlinear waves and their evolution, we will illustrate some prominent examples of waves in space plasmas. We will describe recent observations detected within planetary foreshocks, near comets and in interplanetary space. It is believed that the nonlinear LF plasma wave features discussed here are part of and may be basic to the development of plasma turbulence. In this sense, this is one area of space plasma physics that is fundamental, with applications to fusion physics and astrophysics as well. It is hoped that the reader(s) will be stimulated to study nonlinear wave development themselves, if he/she is not already involved.
Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows
Energy Technology Data Exchange (ETDEWEB)
Saleem, H. [Department of Space Science, Institute of Space Technology, 1-Islamabad Highway, Islamabad (Pakistan); Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); Ali, S. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Haque, Q. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)
2015-08-15
The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.
Generation of fast electrons by breaking of a laser-induced plasma wave
Trines, Rmgm; Goloviznin, V. V.; Kamp, L. P. J.; Schep, T. J.
2001-01-01
A one-dimensional model for fast electron generation by an intense, nonevolving laser pulse propagating through an underdense plasma has been developed. Plasma wave breaking is considered to be the dominant mechanism behind this process, and wave breaking both in front of and behind the laser pulse
CO2 Laser Beat-Wave Experiment in an Unmagnetized Plasma
Liu, Fei; Hwang, David; Horton, Robert; Hong, Sean; Evans, Russell
2012-10-01
The ability to remotely generate plasma current in dense plasmas is a basic yet important investigation in experimental plasma physics and fusion energy research. It is even more advantageous if the wave penetration is independent of the electron acceleration process. Plasma current can be generated through beat-wave mixing process by launching two intense electromagnetic waves (φ>>φpe) into plasma. The beat wave formation process can be efficient if the difference frequency of the two pump waves is matched to a local resonant frequency of the medium, i.e. in this case the local plasma frequency. Beat wave can accelerate plasma electrons via quasi-linear Landau process, which has been demonstrated in a low-density plasma using microwaves.footnotetextRogers, J. H. and Hwang, D. Q., Phys. Rev. Lett. v68 p3877 (1992). The CO2 lasers provide the high tunability for the wave-particle interaction experiment at a variety of plasma densities with plasma frequency in THz range. Two sections of Lumonics TEA CO2 lasers have been modified to serve as the two pump wave sources with peak power over 100MW. The development of the tunable CO2 lasers, a high-density plasma target source and diagnostics system will be presented. The initial results of unbalanced beat-wave experiment using one high-power pulsed and one low-power CW CO2 lasers will be presented and discussed using the independent plasma source to control the φpe of the interaction region. This work is supported by U.S. DOE under Contract No. DE-FG02-10ER55083.
Low-Frequency Electrostatic Ion Surface Waves in Magnetized Electron-Positron Plasmas
Cho, Sang-Hoon; Lee, Hee J.
The dispersion relations of a surface ion wave propagating on the interface between a warm electron-positron plasma and vacuum when a static magnetic field is directed either normal to the interface (x-wave) or parallel to the wave vector (z-wave) are solved analytically, and the influence of the magnetic field on the ion surface wave is investigated in detail using some numerical work. It is shown that ion surface waves do not exist if the magnetic field is large enough to make the ion gyrofrequency greater than the ion plasma frequency. The attenuation constant of x-waves is more attenuated than that of z-waves and the x-wave is more attenuated as the parameter normalized ion gyrofrequency ζ increases toward 1, but this tendency is reversed for the z-wave. The z-wave does not exist for k2λD2< (ζ/(1-ζ))(p + 1) while the x-wave exists over the whole range of k, where the fractional number p is the ratio between the unperturbed positron and the electron number density. Additionally, we compare the ion surface wave properties of electron-positron plasma with conventional electron-ion plasma.
New aspects of plasma sheet dynamics - MHD and kinetic theory
Directory of Open Access Journals (Sweden)
H. Wiechen
Full Text Available Magnetic reconnection is a process of fundamental importance for the dynamics of the Earth's plasma sheet. In this context, the development of thin current sheets in the near-Earth plasma sheet is a topic of special interest because they could be a possible cause of microscopic fluctuations acting as collective non-idealness from a macroscopic point of view. Simulations of the near-Earth plasma sheet including boundary perturbations due to localized inflow through the northern (or southern plasma sheet boundary show developing thin current sheets in the near-Earth plasma sheet about 810 R_{E} tailwards of the Earth. This location is largely independent from the localization of the perturbation. The second part of the paper deals with the problem of the macroscopic non-ideal consequences of microscopic fluctuations. A new model is presented that allows the quantitative calculation of macroscopic non-idealness without considering details of microscopic instabilities or turbulence. This model is only based on the assumption of a strongly fluctuating, mixing dynamics on microscopic scales in phase space. The result of this approach is an expression for anomalous non-idealness formally similar to the Krook resistivity but now describing the macroscopic consequences of collective microscopic fluctuations, not of collisions.
Key words. Magnetospheric physics (plasma sheet · Space plasma physics (kinetic and MHD theory; magnetic reconnection
BOOK REVIEW: Gravitational Waves, Volume 1: Theory and Experiments
Poisson, Eric
2008-10-01
discussion is helpful, as it clarifies some of the puzzling aspects of general covariance. Next the treatment becomes more sophisticated: the waves are allowed to propagate in an arbitrary background spacetime, and the energy momentum carried by the wave is identified by the second-order perturbation of the Einstein tensor. In chapter 2 the waves are given a field-theoretic foundation that is less familiar (but refreshing) to a relativist, but would appeal to a practitioner of effective field theories. In an interesting section of chapter 2, the author gives a mass to the (classical) graviton and explores the physical consequences of this proposal. In chapter 3 the author returns to the standard linearized theory and develops the multipolar expansion of the gravitational-wave field in the context of slowly-moving sources; at leading order he obtains the famous quadrupole formula. His treatment is very detailed, and it includes a complete account of symmetric-tracefree tensors and tensorial spherical harmonics. It is, however, necessarily limited to sources with negligible internal gravity. Unfortunately (and this is a familiar complaint of relativists) the author omits to warn the reader of this important limitation. In fact, the chapter opens with a statement of the virial theorem of Newtonian gravity, which may well mislead the reader to believe that the linearized theory can be applied to a system bound by gravitational forces. This misconception is confirmed when, in chapter 4, the author applies the quadrupole formula to gravitationally-bound systems such as an inspiraling compact binary, a rigidly rotating body, and a mass falling toward a black hole. This said, the presentation of these main sources of gravitational waves is otherwise irreproachable, and a wealth of useful information is presented in a clear and lucid manner. For example, the discussion of inspiraling compact binaries includes a derivation of the orbital evolution of circular and eccentric orbits
Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Joshi, C.
1993-01-01
High-gradient acceleration of externally injected 2.1-MeV electrons by a laser beat wave driven relativistic plasma wave has been demonstrated for the first time. Electrons with energies up to the detection limit of 9.1 MeV were detected when such a plasma wave was resonantly excited using a two-frequency laser. This implies a gradient of 0.7 GeV/m, corresponding to a plasma-wave amplitude of more than 8%. The electron signal was below detection threshold without injection or when the laser was operated on a single frequency.
Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.
A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.
Impact of the Collisional Plasma on the Propagation of Millimeter Waves
Institute of Scientific and Technical Information of China (English)
袁忠才; 时家明; 汪家春; 许波
2004-01-01
The plasma generated in the low-altitude atmosphere is of high collision frequencies.In this paper, the transmission coefficients of millimeter(MM) waves normally incident upon the plasma with high collision frequencies are calculated and analyzed. The experimental results of reflection and attenuation are presented for the eight-millimeter waves propagating through the plasma. Both the calculated experimental results indicate that the MM-waves concerned are attenuated significantly and reflected weakly, when propagating through the plasma of high collision frequencies.
Enhanced acceleration of injected electrons in a laser-beat-wave-induced plasma channel.
Tochitsky, S Ya; Narang, R; Filip, C V; Musumeci, P; Clayton, C E; Yoder, R B; Marsh, K A; Rosenzweig, J B; Pellegrini, C; Joshi, C
2004-03-05
Enhanced energy gain of externally injected electrons by a approximately 3 cm long, high-gradient relativistic plasma wave (RPW) is demonstrated. Using a CO2 laser beat wave of duration longer than the ion motion time across the laser spot size, a laser self-guiding process is initiated in a plasma channel. Guiding compensates for ionization-induced defocusing (IID) creating a longer plasma, which extends the interaction length between electrons and the RPW. In contrast to a maximum energy gain of 10 MeV when IID is dominant, the electrons gain up to 38 MeV energy in a laser-beat-wave-induced plasma channel.
The effect of lower hybrid waves on JET plasma rotation
Nave, M. F. F.; Kirov, K.; Bernardo, J.; Brix, M.; Ferreira, J.; Giroud, C.; Hawkes, N.; Hellsten, T.; Jonsson, T.; Mailloux, J.; Ongena, J.; Parra, F.; Contributors, JET
2017-03-01
This paper reports on observations of rotation in JET plasmas with lower hybrid current drive. Lower hybrid (LH) has a clear impact on rotation. The changes in core rotation can be either in the co- or counter-current directions. Experimental features that could determine the direction of rotation were investigated. Changes from co- to counter-rotation as the q-profile evolves from above unity to below unity suggests that magnetic shear could be important. However, LH can drive either co- or counter-rotation in discharges with similar magnetic shear and at the same plasma current. It is not clear if a slightly lower density is significant. A power scan at fixed density, shows a lower hybrid power threshold around 3 MW. For smaller LH powers, counter rotation increases with power, while for larger powers a trend towards co-rotation is found. The estimated counter-torque from the LH waves, would not explain the observed angular frequencies, neither would it explain the observation of co-rotation.
Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas
Energy Technology Data Exchange (ETDEWEB)
Ramshaw, J.D.; Chang, C.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)
1995-12-31
Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain driving forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.
Institute of Scientific and Technical Information of China (English)
郭斌; 王晓钢
2005-01-01
We have studied the absorption, reflection, and transmission of electromagnetic waves in an unmagnetized uniform plasma layer covering a metal surface in atmosphere conditions.Instead of the absorption of the electromagnetic wave propagating only once in previous work on the plasma layer, a general formula of total power absorption by the plasma layer with an infinite time of reflections between the atmosphere-plasma interface and the metal surface has been derived for the first time. Effects of plasma parameters, especially the dependence of the fraction of positive ions, negative ions and electrons in plasmas on the power absorption processes are discussed. The results show that the existence of negative ions significantly reduces the power absorption of the electromagnetic wave. Absorptions of electromagnetic waves are calculated.
Magnetic Yang-Mills Theory of the Gluon Plasma
Baker, M
2009-01-01
We propose magnetic SU(N) pure gauge theory as an effective field theory describing the long distance nonperturbative magnetic response of the deconfined phase of Yang-Mills theory. The magnetic non-Abelian Lagrangian, unlike that of electrodynamics where there is exact electromagnetic duality, is not known explicitly, but here we regard the magnetic SU(N) Yang-Mills Lagrangian as the leading term in the long distance effective gauge theory of the plasma phase. In this treatment, which is applicable for a range of temperatures in the interval T_c < T < 3 T_c accessible in heavy ion experiments, formation of the magnetic energy profile around a spatial Wilson loop in the deconfined phase parallels the formation of an electric flux tube in the confined phase. We use the effective theory to calculate spatial Wilson loops and the magnetic charge density induced in the plasma by the corresponding color electric current loops. These calculations suggest that the deconfined phase of Yang-Mills theory has the p...
Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.
2008-01-01
Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.
Modulational instability of ion-acoustic waves in a warm plasma
Institute of Scientific and Technical Information of China (English)
薛具奎; 段文山; 郎和
2002-01-01
Using the standard reductive perturbation technique, a nonlinear Schrodinger equation is derived to study themodulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma. It is found thatthe inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the solitonstructures. The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties areinvestigated in detail.
Applications of Symmetry Methods to the Theory of Plasma Physics
Directory of Open Access Journals (Sweden)
Giampaolo Cicogna
2006-02-01
Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.
Nonlinear acoustic waves in a collisional self-gravitating dusty plasma
Institute of Scientific and Technical Information of China (English)
Guo Zhi-Rong; Yang Zeng-Qiang; Yin Bao-Xiang; Sun Mao-Zhu
2010-01-01
Using the reductive perturbation method,we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma.The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation,and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.
Quantum Measurement Theory in Gravitational-Wave Detectors
Danilishin, Stefan L
2012-01-01
The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kilometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned int...
Quantum Measurement Theory in Gravitational-Wave Detectors
Directory of Open Access Journals (Sweden)
Stefan L. Danilishin
2012-04-01
Full Text Available The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
Quantum Measurement Theory in Gravitational-Wave Detectors.
Danilishin, Stefan L; Khalili, Farid Ya
2012-01-01
The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.
2012-12-01
High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.
PREFACE: Theory of Fusion Plasmas, 13th Joint Varenna-Lausanne International Workshop (2012)
Garbet, Xavier; Sauter, Olivier
2012-12-01
The 2012 joint Varenna-Lausanne international workshop on the theory of fusion plasmas has been very fruitful. A broad variety of topics were addressed, as usual covering turbulence, MHD, edge physic, RF wave heating and a taste of astrophysics. Moreover the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, in particular in the context of ITER construction. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may quote for instance the choice of plasma facing components or the design of control systems. Another characteristic of the meeting is the interplay between various domains of plasma physics. For instance MHD modes are now currently investigated with gyrokinetic codes, kinetic effects are more and more included in MHD stability analysis, and turbulence is now accounted for in wave propagation problems. This is the proof of cross-fertilization and it is certainly a healthy sign in our community. Finally introducing some novelty in the programme does not prevent us from respecting the traditions of the meeting. As usual a good deal of the presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne conference, which was respected again this year. The quality and size of the scientific production is illustrated by the 26 papers which appear in the present volume of Journal of Physics: Conference Series, all refereed. We would also like to mention another set of 20 papers to be published in Plasma Physics and Controlled Fusion. We hope the readers will enjoy this special issue of JPCS and the one to come in PPCF. Xavier Garbet and Olivier Sauter October 26, 2012
On the rogue waves propagation in non-Maxwellian complex space plasmas
El-Tantawy, S. A.; El-Awady, E. I.; Tribeche, M.
2015-11-01
The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.
On the rogue waves propagation in non-Maxwellian complex space plasmas
Energy Technology Data Exchange (ETDEWEB)
El-Tantawy, S. A., E-mail: samireltantawy@yahoo.com; El-Awady, E. I., E-mail: eielawady@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Tribeche, M., E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Physics, University of Bab-Ezzouar, USTHB, BP 32, El Alia, Algiers 16111 (Algeria)
2015-11-15
The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.
Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube
Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.
2003-01-01
A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.
De Broglie-Bohm Pilot-Wave Theory: Many Worlds in Denial?
Valentini, Antony
2008-01-01
We reply to claims (by Deutsch, Zeh, Brown and Wallace) that the pilot-wave theory of de Broglie and Bohm is really a many-worlds theory with a superfluous configuration appended to one of the worlds. Assuming that pilot-wave theory does contain an ontological pilot wave (a complex-valued field in configuration space), we show that such claims arise from not interpreting pilot-wave theory on its own terms. Specifically, the theory has its own ('subquantum') theory of measurement, and in gener...
Energy Technology Data Exchange (ETDEWEB)
Liu, DongLin, E-mail: donglinliu@stu.xidian.edu.cn; Li, XiaoPing; Xie, Kai; Liu, ZhiWei [School of Aerospace Science and Technology, Xidian University, Xi' an 710071 (China)
2015-10-15
A high-speed vehicle flying through the atmosphere between 100 and 20 km may suffer from a “communication blackout.” In this paper, a low frequency system with an on-board loop antenna to receive signals is presented as a potential blackout mitigation method. Because the plasma sheath is in the near-field region of the loop antenna, the traditional scattering matrix method that is developed for the far-field region may overestimate the electromagnetic (EM) wave's attenuation. To estimate the EM wave's attenuation in the near-field region, EM interference (EMI) shielding theory is introduced. Experiments are conducted, and the results verify the EMI shielding theory's effectiveness. Simulations are also conducted with different plasma parameters, and the results obtained show that the EM wave's attenuation in the near-field region is far below than that in the far-field region. The EM wave's attenuation increases with the increase in electron density and decreases with the increase in collision frequency. The higher the frequency, the larger is the EM wave's attenuation. During the entire re-entry phase of a RAM-C module, the EM wave's attenuations are below 10 dB for EM waves with a frequency of 1 MHz and below 1 dB for EM waves with a frequency of 100 kHz. Therefore, the low frequency systems (e.g., Loran-C) may provide a way to transmit some key information to high-speed vehicles even during the communication “blackout” period.
Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode
Directory of Open Access Journals (Sweden)
A. Parvazian
2008-03-01
Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.
New numerical tools to study waves and instabilities of flowing plasmas
Beliën, A.J.C.; Botchev, M.A.; Goedbloed, J.P.; Holst, van der B.; Keppens, R.
2002-01-01
Studying plasma waves and instabilities is an indispensable part of present thermonuclear fusion and astrophysical magnetohydrodynamics (MHD). Up till recently, spectral analysis was mostly restricted to static plasmas. However, the assumption of a static plasma is unrealistic not only for astrophys
Tiny graviton matrix theory: DLCQ of IIB plane-wave string theory, a conjecture
Energy Technology Data Exchange (ETDEWEB)
Sheikh-Jabbari, Mohammad M. [Department of Physics, Stanford University, 382 via Pueblo Mall, Stanford CA 94305-4060 (United States)]. E-mail: jabbari@itp.stanford.edu
2004-09-01
We conjecture that the discrete light-cone quantization (DLCQ) of strings on the maximally supersymmetric type IIB plane-wave background in the sector with J units of light-cone momentum is a supersymmetric 0+1 dimensional U(J) gauge theory (quantum mechanics) with PSU(2|2) x PSU(2|2) x U(1) superalgebra. The conjectured hamiltonian for the plane-wave matrix (string) theory, the tiny graviton matrix theory, is the quantized (regularized) three brane action on the same background. We present some pieces of evidence for this conjecture through analysis of the hamiltonian , its vacua, spectrum and coupling constant. Moreover, we discuss an extension of our conjecture to the DLCQ of type IIB strings on AdS{sub 5} x S{sup 5} geometry. (author)
Electrostatic Waves in Dense Dusty Plasmas with High Fugacity
Rao, N. N.
Propagation of electrostatic dust modes has been reviewed in the light of the concept of dust fugacity defined by f≡4πnd0λD2R, where nd0 and R are the dust number density and the grain size (radius) while the plasma Debye length (λD) is given through λD-2=λDe-2+λDi-2. Dusty plasmas are defined to be tenuous, dilute or dense when f≪1, ˜1, or ≫1, respectively. Attention is focused on “Dust-Acoustic Waves” (DAWs) and “Dust-Coulomb Waves” (DCWs) which exist in the tenuous (f≪1) and the dense (f≫1) regimes, respectively. A simple physical picture of the DCWs has been proposed in terms of an effective pressure called “Coulomb Pressure defined by PC≡nd0qd02/R, where qd0 is the grain charge. In the lowest order, the DCW phase speed is given by ω/k=PC/ρdδ, where ρd≡nd0md is the dust mass density and δ≡ω2/ω1 is the ratio of charging frequencies. Thus, DCWs which are driven by the Coulomb pressure can be considered as the electrostatic analogue of hydromagnetic (Alfvén or magnetoacoustic) modes which are driven by magnetic field pressure. In the dilute regime, the two waves loose their identities and merge into a single mode, which may be called “Dust Charge-Density Wave” (DCDW). When the grains are closest, DCW dispersion relation is identical with that of “Dust-Lattice Waves” (DLWs). Dense dusty plasmas are governed by a new scale-length defined by λR≡1/4πnd0Rδ, which characterizes the effective shielding length due to grain collective interactions. The scale-length λR plays a fundamental role in dense dusty plasmas, which is very similar to that of the Debye length λD in the tenuous regime. The two scale-lengths are related to the fugacity through fδ≡λD2/λR2. The frequency spectrum as well as the damping rates for various dust modes have been analytically obtained, and compared with the numerical solutions of the kinetic (Vlasov) dispersion relation.