Theoretical study of nonlinear waves and shock-like phenomena in hot plasmas
Fried, B. D.; Banos, A., Jr.; Kennel, C. F.
1973-01-01
Summaries are presented of research in basic plasma physics. Nonlinear waves and shock-like phenomena were studied which are pertinent to space physics applications, and include specific problems of magnetospheric and solar wind plasma physics.
Towne, Dudley H
1988-01-01
This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.
Crawford, F. W.
1975-01-01
A ten year summary was given of university research on the nature and characteristics of space related plasma resonance phenomena, whistler propagation in laboratory plasmas, and theoretical and experimental studies of plasma wave propagation. Data are also given on long delayed echoes, low frequency instabilities, ionospheric heating, and backscatter, and pulse propagation. A list is included of all conference papers, publications, and reports resulting from the study.
Nonlinear phenomena in RF wave propagation in magnetized plasma: A review
Energy Technology Data Exchange (ETDEWEB)
Porkolab, Miklos
2015-12-10
Nonlinear phenomena in RF wave propagation has been observed from the earliest days in basic laboratory experiments going back to the 1960s [1], followed by observations of parametric instability (PDI) phenomena in large scale RF heating experiments in magnetized fusion plasmas in the 1970s and beyond [2]. Although not discussed here, the importance of PDI phenomena has also been central to understanding anomalous absorption in laser-fusion experiments (ICF) [3]. In this review I shall discuss the fundamentals of nonlinear interactions among waves and particles, and in particular, their role in PDIs. This phenomenon is distinct from quasi-linear phenomena that are often invoked in calculating absorption of RF power in wave heating experiments in the core of magnetically confined plasmas [4]. Indeed, PDIs are most likely to occur in the edge of magnetized fusion plasmas where the electron temperature is modest and hence the oscillating quiver velocity of charged particles can be comparable to their thermal speeds. Specifically, I will review important aspects of PDI theory and give examples from past experiments in the ECH/EBW, lower hybrid (LHCD) and ICRF/IBW frequency regimes. Importantly, PDI is likely to play a fundamental role in determining the so-called “density limit” in lower hybrid experiments that has persisted over the decades and still central to understanding present day experiments [5-7].
Swanson, DG
1989-01-01
Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th
Camporeale, E.; Pezzi, O.; Valentini, F.
2015-12-01
The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric
Löhner-Böttcher, Johannes
2016-03-01
Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the
Shock wave reflection phenomena
Ben-dor, Gabi
2007-01-01
This book provides a comprehensive state-of-the-knowledge description of the shock wave reflection phenomena from a phenomenological point of view. The first part is a thorough introduction to oblique shock wave reflections, presenting the two major well-known reflection wave configurations, namely, regular (RR) and Mach (MR) reflections, the corresponding two- and three-shock theories, their analytical and graphical solution and the proposed transition boundaries between these two reflection-wave configurations. The second, third and fourth parts describe the reflection phenomena in steady, pseudo-steady and unsteady flows, respectively. Here, the possible specific types of reflection wave configurations are described, criteria for their formation and termination are presented and their governing equations are solved analytically and graphically and compared with experimental results. The resolution of the well-known von Neumann paradox and a detailed description of two new reflection-wave configurations - t...
Energy Technology Data Exchange (ETDEWEB)
Savel' ev, Sergey; Yampol' skii, V A; Rakhmanov, A L; Nori, Franco [Advanced Science Institute, Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198 (Japan)
2010-02-15
The recent growing interest in terahertz (THz) and sub-THz science and technology is due to its many important applications in physics, astronomy, chemistry, biology and medicine, including THz imaging, spectroscopy, tomography, medical diagnosis, health monitoring, environmental control, as well as chemical and biological identification. We review the problem of linear and nonlinear THz and sub-THz Josephson plasma waves in layered superconductors and their excitations produced by moving Josephson vortices. We start by discussing the coupled sine-Gordon equations for the gauge-invariant phase difference of the order parameter in the junctions, taking into account the effect of breaking the charge neutrality, and deriving the spectrum of Josephson plasma waves. We also review surface and waveguide Josephson plasma waves. The spectrum of these waves is presented, and their excitation is discussed. We review the propagation of weakly nonlinear Josephson plasma waves below the plasma frequency, {omega}{sub J}, which is very unusual for plasma-like excitations. In close analogy to nonlinear optics, these waves exhibit numerous remarkable features, including a self-focusing effect and the pumping of weaker waves by a stronger one. In addition, an unusual stop-light phenomenon, when {partial_derivative}{omega}/{partial_derivative}k {approx} 0, caused by both nonlinearity and dissipation, can be observed in the Josephson plasma waves. At frequencies above {omega}{sub J}, the current-phase nonlinearity can be used for transforming continuous sub-THz radiation into short, strongly amplified, pulses. We also present quantum effects in layered superconductors, specifically, the problem of quantum tunneling of fluxons through stacks of Josephson junctions. Moreover, the nonlocal sine-Gordon equation for Josephson vortices is reviewed. We discuss the Cherenkov and transition radiations of the Josephson plasma waves produced by moving Josephson vortices, either in a single
Plasma and wave phenomena induced by neutral gas releases in the solar wind
Directory of Open Access Journals (Sweden)
H. Laakso
Full Text Available We investigate plasma and wave disturbances generated by nitrogen (N2 gas releases from the cooling system of an IR-camera on board the Vega 1 and Vega 2 spacecraft, during their flybys of comet Halley in March 1986. N2 molecules are ionized by solar UV radiation at a rate of ~ 7 · 10^{-7} s^{-1} and give rise to a plasma cloud expanding around the spacecraft. Strong disturbances due to the interaction of the solar wind with the N^{+}_{2} ion cloud are observed with a plasma and wave experiment (APV-V instrument. Three gas releases are accompanied by increases in cold electron density and simultaneous decreases of the spacecraft potential; this study shows that the spacecraft potential can be monitored with a reference sensor mounted on a short boom. The comparison between the model and observations suggests that the gas expands as an exhaust plume, and approximately only 1% of the ions can escape the beam within the first meters. The releases are also associated with significant increases in wave electric field emission (8 Hz–300 kHz; this phenomenon lasts for more than one hour after the end of the release, which is most likely due to the temporary contamination of the spacecraft surface by nitrogen gas. DC electric fields associated with the events are complex but interesting. No magnetic field perturbations are detected, suggesting that no significant diamagnetic effect (i.e. magnetic cavity is associated with these events.
Key words. Ionosphere (planetary ionosphere – Space plasma physics (active perturbation experiments; instruments and techniques
High Temperature Phenomena in Shock Waves
2012-01-01
The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...
Relativistic spherical plasma waves
Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P
2011-01-01
Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.
Gurnett, Donald A.
1995-01-01
An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.
Nonmodal phenomena in differentially rotating dusty plasmas
Poedts, Stefaan; Rogava, Andria D.
2000-10-01
In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .
Directory of Open Access Journals (Sweden)
A. Keiling
2006-10-01
Full Text Available Recent Cluster studies reported properties of multiple energy-dispersed ion structures in the plasma sheet boundary layer (PSBL that showed substructure with several well separated ion beamlets, covering energies from 3 keV up to 100 keV (Keiling et al., 2004a, b. Here we report observations from two PSBL crossings, which show a number of identified one-to-one correlations between this beamlet substructure and several plasma-field characteristics: (a bimodal ion conics (<1 keV, (b field-aligned electron flow (<1 keV, (c perpendicular electric field spikes (~20 mV/m, (d broadband electrostatic ELF wave packets (<12.5 Hz, and (e enhanced broadband electromagnetic waves (<4 kHz. The one-to-one correlations strongly suggest that these phenomena were energetically driven by the ion beamlets, also noting that the energy flux of the ion beamlets was 1–2 orders of magnitude larger than, for example, the energy flux of the ion outflow. In addition, several more loosely associated correspondences were observed within the extended region containing the beamlets: (f electrostatic waves (BEN (up to 4 kHz, (g traveling and standing ULF Alfvén waves, (h field-aligned currents (FAC, and (i auroral emissions on conjugate magnetic field lines. Possible generation scenarios for these phenomena are discussed. In conclusion, it is argued that the free energy of magnetotail ion beamlets drove a variety of phenomena and that the spatial fine structure of the beamlets dictated the locations of where some of these phenomena occurred. This emphasizes the notion that PSBL ion beams are important for magnetosphere-ionosphere coupling. However, it is also shown that the dissipation of electromagnetic energy flux (at altitudes below Cluster of the simultaneously occurring Alfvén waves and FAC was larger (FAC being the largest than the dissipation of beam kinetic energy flux, and thus these two energy carriers contributed more to the energy transport on PSBL field lines
Relativistic spherical plasma waves
Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.
2012-02-01
Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.
Magnetoresistive waves in plasmas
Felber, F. S.; Hunter, R. O., Jr.; Pereira, N. R.; Tajima, T.
1982-10-01
The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed.
Pfaff, R. F.
2009-01-01
On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.
Electromagnetic waves in a strong Schwarzschild plasma
Energy Technology Data Exchange (ETDEWEB)
Daniel, J.; Tajima, T.
1996-11-01
The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.
Extreme wave phenomena in down-stream running modulated waves
Andonowati, A.; Karjanto, N.; van Groesen, Embrecht W.C.
Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation
Extreme wave phenomena in down-stream running modulated waves
Andonowati,; Karjanto, N.; Groesen, van E.
2006-01-01
Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation le
Shock Wave Diffraction Phenomena around Slotted Splitters
Directory of Open Access Journals (Sweden)
Francesca Gnani
2015-01-01
Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.
Lominadze, D G
2013-01-01
Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f
Simpson, J. J.; Taflove, A.
2006-12-01
We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations for sub-30 kHz electromagnetic (EM) propagation in the Earth-ionosphere waveguide. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain calculation of EM propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. This is unlike previous FDTD models which assumed azimuthal symmetry about a vertical current source excitation representing a lightning channel. Our model is therefore unique in that it includes fully 3-D anisotropic plasma phenomena in the ionosphere as influenced by the full-vector geomagnetic field. In this study, we show results for EM propagation from lightning strikes using a spherical-coordinate (latitude- longitude) grid having a 1 x 1 x 1 km resolution. Our new model provides additional capabilities to simulate EM wave phenomena arising from whistlers and other lightning-related events, as well as for better understanding anomalous ionospheric phenomena reported to have occurred prior to and during major earthquakes.
Role of magnetospheric plasma physics for understanding cosmic phenomena
Das, Indra M. L.
Cosmic phenomena occur in the remote regions of space where in situ observations are not possible. For a proper understanding of these phenomena, laboratory experiments are essential, but in situ observations of magnetospheric plasma provide an even better background to test various hypothesis of cosmic interest. This is because the ionospheric-magnetospheric plasma and the solar wind are the only cosmic plasmas accessible to extensive in situ observations and experiments.
High-speed imaging of dynamic shock wave reflection phenomena
CSIR Research Space (South Africa)
Naidoo, K
2010-09-01
Full Text Available Dynamic shock wave reflection generated by a rapidly pitching wedge in a steady supersonic free stream has been studied with numerical simulation previously. An experimental facility was developed for the investigation of these dynamic phenomena...
Undamped electrostatic plasma waves
Valentini, F; Califano, F; Pegoraro, F; Veltri, P; Morrison, P J; O'Neil, T M
2015-01-01
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named {\\it corner modes}. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the $(k,\\omega_{_R})$ plane ($\\omega_{_R}$ being the real part of the wave frequency and $k$ the wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existenc...
Whistler-mode phenomena in electron MHD plasmas
Stenzel, R. L.
2003-12-01
While the linear properties of plane whistler waves are well known, many new phenomena of bounded wavepackets and nonlinear effects are worth to describe. The present talk will review laboratory observations of whistler filaments, whistler vortices, whistler wings, whistler-sound modes in high-beta plasmas, nonlinear whistlers forming magnetic null points, and magnetic reconnection in EMHD plasmas. The time-varying magnetic field of a spatially bounded whistler wave packet consists of 3-D vortices. Each vortex can be decomposed into linked toroidal and poloidal field components. The self-helicity is positive for propagation along the field, negative for opposite propagation. Helicity injection from a suitable source produces unidirectional propagation. Magnetic helicity changes sign, i.e., is not conserved, when the propagation direction along B changes, for example due to reflection or propagation through a magnetic null point. In ideal EMHD the electric and magnetic forces on the electrons are equal, -n e E +J x B=0, i.e., the electron fluid is not compressed. Force-free vortices do not interact during collisions. Vortices are excited with pulsed magnetic antennas or pulsed electrodes. Both transient currents and fields can form vortices that propagate in the whistler mode. Moving dc magnets or dc current systems can also induce whistler modes in a magnetized plasma. These form a Cherenkov-like radiation pattern, a ``whistler wing.'' Nonlinear phenomena arise from wave-induced modifications of the electron temperature, density and magnetic field. In collisional plasmas electrons are heated by strong whistlers. Modifications of the classical conductivity leads to current filamentation. On a slower time scale density modifications arise from ambipolar fields associated with electron heating. In a filamentation instability a strong whistler wave is ducted along a narrow field-aligned density depression. The ion density is also modified by the ac electric field of
Wright, K. H., Jr.; Stone, N. H.; Samir, U.
1983-01-01
In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.
Integrated Physics Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Energy Technology Data Exchange (ETDEWEB)
Batchelor, Donald B [ORNL; D' Azevedo, Eduardo [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Houlberg, Wayne A [ORNL; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Schissel, D. [General Atomics; Schnack, D. [University of Wisconsin; Wright, J. C. [Massachusetts Institute of Technology (MIT)
2007-06-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP).
Integrated physics advances in simulation of wave interactions with extended MHD phenomena
Energy Technology Data Exchange (ETDEWEB)
Batchelor, D B [ORNL (United States); D' Azevedo, E [ORNL (United States); Bateman, G [Lehigh (United States)] (and others)
2007-07-15
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP)
Dusty plasma liquid: structure and transfer phenomena
Energy Technology Data Exchange (ETDEWEB)
Fortov, Vladimir E; Vaulina, Olga S; Petrov, Oleg F [Institute for High Energy Densities, Russian Academy of Sciences, Izhorskaya 13/19, Moscow (Russian Federation)
2005-12-15
Results are given of the experimental investigation of three-particle correlation for liquid plasma-dust structures formed in the electrode layer of a capacitive rf discharge. The obtained three-particle correlation functions for experimental and numerical data are analysed and compared with the superposition approximation. The forming of clusters of macroparticles in plasma-dust systems being analysed is revealed. The experiments in heat transfer were performed in plasma of a capacitive radio-frequency (rf) discharge in argon (P {approx} 20 Pa) with particles 4 {mu}m in mean diameter. The results are given of an experimental investigation of processes of heat transfer for fluid dust structures in rf-discharge. The analysis of steady-state, and unsteady-state heat transfer are used to obtain the thermal conductivity and diffusivity constants.
Quantum Phenomena in High Energy Density Plasmas
Energy Technology Data Exchange (ETDEWEB)
Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)
2017-05-10
The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV
Laser Interaction and Related Plasma Phenomena
Directory of Open Access Journals (Sweden)
Frederick Osman
2005-01-01
Full Text Available Computations are to be performed using the laser driven inertial fusion energy option based on volume ignition with the natural adiabatic self-similarity compression and expansion hydrodynamics [1]. The numerical work includes the establishing of a multi-branch reaction code to be used for simultaneous fusion reactions of D-D, D-T D-He3 and mutual nuclear reaction products. This will permit the studies of neutron lean reactions as well as tritium-rich cases. The D-T reactions will stress the recent new results on one step laser fusion [2] as an alternative to the two-step fast ignitor scheme whose difficulties with new physics phenomena at petawatt laser interaction are more and more evident [3].
Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey
2012-01-01
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.
Introduction to wave scattering, localization, and mesoscopic phenomena
Sheng, Ping
1995-01-01
This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)
Breaking of Large Amplitude Electron Plasma Wave in a Maxwellian Plasma
Mukherjee, Arghya
2016-01-01
The determination of maximum possible amplitude of a coherent longitudinal plasma oscillation/wave is a topic of fundamental importance in non-linear plasma physics. The amplitudes of these large amplitude plasma waves is limited by a phenomena called wave breaking which may be induced by several non-linear processes. It was shown by Coffey [T. P. Coffey, Phys. Fluids 14, 1402 (1971)] using a "water-bag" distribution for electrons that, in a warm plasma the maximum electric field amplitude and density amplitude implicitly depend on the electron temperature, known as Coffey's limit. In this paper, the breaking of large amplitude freely running electron plasma wave in a homogeneous warm plasma where electron's velocity distribution is Maxwellian has been studied numerically using 1D Particle in Cell (PIC) simulation method. It is found that Coffey's propagating wave solutions, which was derived using a "water-bag" distribution for electrons, also represent propagating waves in a Maxwellian plasma. Coffey's wave...
Multipoint observations of plasma phenomena made in space by Cluster
Goldstein, M. L.; Escoubet, P.; Hwang, K.-Joo; Wendel, D. E.; Viñas, A.-F.; Fung, S. F.; Perri, S.; Servidio, S.; Pickett, J. S.; Parks, G. K.; Sahraoui, F.; Gurgiolo, C.; Matthaeus, W.; Weygand, J. M.
2015-06-01
Plasmas are ubiquitous in nature, surround our local geospace environment, and permeate the universe. Plasma phenomena in space give rise to energetic particles, the aurora, solar flares and coronal mass ejections, as well as many energetic phenomena in interstellar space. Although plasmas can be studied in laboratory settings, it is often difficult, if not impossible, to replicate the conditions (density, temperature, magnetic and electric fields, etc.) of space. Single-point space missions too numerous to list have described many properties of near-Earth and heliospheric plasmas as measured both in situ and remotely (see http://www.nasa.gov/missions/#.U1mcVmeweRY for a list of NASA-related missions). However, a full description of our plasma environment requires three-dimensional spatial measurements. Cluster is the first, and until data begin flowing from the Magnetospheric Multiscale Mission (MMS), the only mission designed to describe the three-dimensional spatial structure of plasma phenomena in geospace. In this paper, we concentrate on some of the many plasma phenomena that have been studied using data from Cluster. To date, there have been more than 2000 refereed papers published using Cluster data but in this paper we will, of necessity, refer to only a small fraction of the published work. We have focused on a few basic plasma phenomena, but, for example, have not dealt with most of the vast body of work describing dynamical phenomena in Earth's magnetosphere, including the dynamics of current sheets in Earth's magnetotail and the morphology of the dayside high latitude cusp. Several review articles and special publications are available that describe aspects of that research in detail and interested readers are referred to them (see for example, Escoubet et al. 2005 Multiscale Coupling of Sun-Earth Processes, p. 459, Keith et al. 2005 Sur. Geophys. 26, 307-339, Paschmann et al. 2005 Outer Magnetospheric Boundaries: Cluster Results, Space Sciences Series
Research into surface wave phenomena in sedimentary basins
Wojcik, G. L.; Isenberg, J.; Ma, F.; Richardson, E.
1981-12-01
This study is a continuation of an engineering seismology research effort prompted by the sensitivity of guidance sets in Minuteman Wing V to distant earthquakes. An earlier report considers the probable cause of anomalous patterns of seismic alarms triggered by two North American earthquakes. This report extends the previous study by examining the propagation of surface waves from the 1975 Pocatello Valley, Idaho earthquake sequence across Wyoming to Wing V. In addition, the more general question of surface wave phenomena in sedimentary basins is addressed, particularly the effect of laterally inhomogeneous (dipping) basin-bedrock interfaces. Findings indicate that fundamental and first overtone surface waves are significantly modified by the travel path. In contrast, higher modes are relatively unchanged by the travel path, and affect Wing V in much the same way as body waves considered in the previous study.
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Nonlinear plasma wave in magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)
2013-08-15
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.
Iizuka, S.
1998-02-01
Parallel Velocity Shear Instability (Invited) * Low-Frequency Instabilities under a Cross-Field Electric Field in a K+-C60- Plasma * 3.3 Vortex Formation * Vortex Dynamics in Low Frequency Electrostatic Turbulence * Development of Spiral-Vortex Structures of the Plasma During Rotation in a Neutral Gas * Vortex Formation of Particles in Magnetized Dusty Plasmas (Invited) * CHAPTER 4: SOLITONS, SHOCKS, WAVES AND INSTABILITIES, AND RELATED NONLINEAR PHENOMENA * 4.1 Solitons and Shocks * Refraction and Reflection of Ion Acoustic Solitons by Space Charge Sheath * 2D and 3D Solitons in Plasma: Structure, Stability, Dynamics * Solitary Waves in an Ion-Beam Multi-Component Plasma System * Shock Formation in a Q-Machine Plasma with Negative Ions * 4.2 Waves and Instabilities * Single-Ended Q-Machine as a Source of Oscillations (Invited) * Numerical and Experimental Investigations of Period Doubling of the Potential Relaxation Instability in an Electron-Rich Q-Machine Plasma * Large Amplitude Electrostatic Ion Waves in an e- - e+ - p Plasma * Measurements of Alfvén Waves around the CRIT Releases-Implications for Current Limitation in Alfvén Wings * 4.3 Nonlinear Phenomena * Self-Organization Phenomena in a Q-Machine Plasma * Nonlinearity Related to Self-Organization in a Thermionic Vacuum Arc Discharge * Spontaneous Formation of Ordered Spatio-Temporal Structures in Laboratory and Nature * Nonlinear Evolution and Stabilization of Linearly Unstable Waves in an Electron-Beam Plasma * Disruption of an Electron Hole Due to its Interaction with Ion Acoustic Waves in a Plasma * Expanding Plasma Clouds with Dust Particles (Invited) * LIST OF PARTICIPANTS * AUTHOR INDEX
Acoustic black hole evaporation as plasma diffusion phenomena
de Andrade, Garcia
2008-01-01
Acoustic analogues of Kerr black hole in plasmas are considered, by taking for granted the existence of acoustic ion waves in plasmas. An effective black holes (BH) in curved Riemannian spacetime in a random walk plasmas is endowed with a naked singularity, when plasmas are in the lowest diffusion mode. The plasma particle diffusion is encoded in the effective metric. The diffusive solution has a horizon when the plasma flow reaches the sound velocity in the medium and a shock wave is obtained inside the slab. The sonic black hole curved Riemannian metric is also found in terms of particle number density in plasmas. The sonic BH singularity is found at the center of the plasma diffusive slab from the study of the Ricci curvature scalar for constant diffusion coefficient. It is suggested and shown that the Hawking temperature is proportional to the plasma Kelvin temperature through diffusion coefficient dependence to this temperature. Therefore Unruh sonic or dumb BH is shown to have a relation between Hawking...
Waves and instabilities in plasmas
Chen Liu
1987-01-01
The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.
Energy Technology Data Exchange (ETDEWEB)
Brodin, G., E-mail: gert.brodin@physics.umu.se [Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Stenflo, L. [Department of Physics, Linköping University, SE-581 83 Linköping (Sweden)
2017-03-18
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.
Modelling of density limit phenomena in toroidal helical plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, S.-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Giannone, L. [Max Planck Institut fuer Plasmaphysik, EURATOM-IPP Association, Garching (Germany)
2000-03-01
The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the W7-AS stellarator. (author)
Modelling of density limit phenomena in toroidal helical plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Giannone, Louis [EURATOM-IPP Association, Max Planck Institut fuer Plasmaphysik, Garching (Germany)
2001-11-01
The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the Wendelstein 7-AS (W7-AS) stellarator. (author)
Some Nonlinear Phenomena in a Preformed Underdense Plasma
Institute of Scientific and Technical Information of China (English)
曹莉华; 刘智勇; 常文蔚; 岳宗五
2001-01-01
The propagation of a laser pulse with a peak intensity 1019 W/cm2 through the preformed underdense plasmawith the density 0.014nc are studied by using two-dimensional particle-in-cell simulations. The longitudinal electron heating is identified and verified, and its major property agrees with the theoretical prediction. The electron distributions in phase space, patterns of the electric fields, profiles of the ion or electron density and other plasma nonlinear phenomena are presented and discussed.
Influence of various physics phenomena on fast-wave current drive in advanced tokamaks
Energy Technology Data Exchange (ETDEWEB)
Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.; Goldfinger, R.C.; Stallings, D.C. [Oak Ridge National Lab., TN (United States)
1992-12-31
The need for some type of noninductive current drive in advanced tokamaks has been recognized for some time. In reactor-grade plasmas, as envisioned in the International Thermonuclear Experimental Reactor (ITER), high density and temperature may limit the penetration of lower hybrid (LH) waves to only the outer layers of the plasma. Fast waves in the ion cyclotron range of frequencies (ICRF), however, can easily penetrate to the center of such high-density plasmas. With sufficient directivity in the launched wave spectrum, currents can be driven by combined damping of the fast waves on resonant electrons through electron Landau damping (ELD) and transit-time magnetic pumping (TTMP). Experiments to study the feasibility of fast-wave current drive (FWCD) have only recently begun, but theoretical predictions look promising. In this paper we analyze the influence of the relevant physics phenomena, which are not necessarily independent, on current drive performance. Such phenomena include diffraction and other nongeometrical optics processes, k{sub ||} modification, single-pass absorption, and antenna characteristics, such as poloidal extent and poloidal location. To do this, we apply a two-and-one-half dimensional (2 1/2-D), full-wave code (PICES) for modeling ion cyclotron resonance heating (ICRH) and current drive based on the poloidal mode expansion method and the reduced-order expansion. By 2 1/2-D, we mean that 3-D wave fields are calculated in axisymmetric geometry (2-D solution domain - r, {theta}), while the correct toroidal dependence of the antenna source currents is obtained from a 2-D (r, {phi}) recessed antenna code. The model includes the poloidal and toroidal structure of the antennas, the modification of the k{sub ||} spectrum due to the poloidal magnetic field, and a nonperturbative solution for E{sub ||}. A semianalytical model for current drive, including trapped electron effects, is employed. (author) 10 refs., 4 figs.
Nonlinear Plasma Wave in Magnetized Plasmas
Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke
2013-01-01
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].
EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space
Koepke, Mark
2008-07-01
The premise of investigating basic plasma phenomena relevant to space is that an alliance exists between both basic plasma physicists, using theory, computer modelling and laboratory experiments, and space science experimenters, using different instruments, either flown on different spacecraft in various orbits or stationed on the ground. The intent of this special issue on interrelated phenomena in laboratory and space plasmas is to promote the interpretation of scientific results in a broader context by sharing data, methods, knowledge, perspectives, and reasoning within this alliance. The desired outcomes are practical theories, predictive models, and credible interpretations based on the findings and expertise available. Laboratory-experiment papers that explicitly address a specific space mission or a specific manifestation of a space-plasma phenomenon, space-observation papers that explicitly address a specific laboratory experiment or a specific laboratory result, and theory or modelling papers that explicitly address a connection between both laboratory and space investigations were encouraged. Attention was given to the utility of the references for readers who seek further background, examples, and details. With the advent of instrumented spacecraft, the observation of waves (fluctuations), wind (flows), and weather (dynamics) in space plasmas was approached within the framework provided by theory with intuition provided by the laboratory experiments. Ideas on parallel electric field, magnetic topology, inhomogeneity, and anisotropy have been refined substantially by laboratory experiments. Satellite and rocket observations, theory and simulations, and laboratory experiments have contributed to the revelation of a complex set of processes affecting the accelerations of electrons and ions in the geospace plasma. The processes range from meso-scale of several thousands of kilometers to micro-scale of a few meters to kilometers. Papers included in this
Frequency upshift via flash ionization phenomena using semiconductor plasma
Directory of Open Access Journals (Sweden)
Nishida A.
2013-11-01
Full Text Available We have demonstrated frequency upshift in the terahertz region by flash ionization. The magnitude of upshift frequency is tuned by the laser intensity. A proof of principle experiment has been performed with a plasma creation time scale much shorter than the period of the electromagnetic wave and a plasma length longer than its wavelength. Frequency upshifted from 0.35 to 3.5 THz by irradiating a ZnSe crystal with a ultra-short laser pulse has been observed.
Brodin, G.; Stenflo, L.
2017-03-01
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large.
Electromagnetic waves in a magnetized plasma near the critical surface
Energy Technology Data Exchange (ETDEWEB)
Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)
2004-06-30
Electromagnetic waves in a plasma in a magnetic field give rise to enhanced refraction, produce a change in polarization, and cause electromagnetic energy to flow from one wave mode to another when propagating near the critical surface (CS), the one where the electron Langmuir frequency is equal to the wave frequency. A simple unified model of all phenomena taking place near the CS is proposed. These phenomena are due to electromagnetic waves linearly interacting with electron Langmuir oscillations which are localized at the CS in a cold plasma. This interaction manifests itself most strikingly in electron Langmuir oscillation energy escaping directly into a vacuum in the form of electromagnetic radiation. (reviews of topical problems)
Ion Acoustic Waves in the Presence of Electron Plasma Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Investigation of water wave breaking phenomena: experiment and theory
Chybicki, W.; Staroszczyk, R.
2009-09-01
approximation of fourth order in kh (where k is the wave number and h is water depth). A direct method of variational calculus was followed, in which the action integral is minimized. A dispersion relation resulting from the equation of motion, as well as so-called shoaling coefficients, were compared with theoretical results known from the literature on the subject. An assumed form of the horizontal displacement distribution was expressed in terms of three parameters. These parameters were selected in such a way that the obtained dispersion relation, the shoaling coefficient, and - in the case of a constant water depth - also the amplitudes of the second and third harmonics, become close to the results obtained from the Stokes theory. The proposed model has proved to be capable of a better description of non-linear wave effects than the corresponding approximation of the same order derived by using the Eulerian description. Based on the theoretical formulation, a finite-element model has been developed for numerical simulations of the wave phenomena considered. The results of calculations have been compared with experimental data, showing a very good agreement for long waves. For shorter waves, L/h < 4 (L is the wave length), some discrepancies occur, which are due to the fact that a non-linear correction term in the dispersion relation is insufficiently large, so that for large-amplitude waves their experimentally measured speeds are greater than those calculated. The proposed model has also been used to determine the velocities of water particles on the free surface, and the comparisons between the experimental and numerical results are presented in the paper. In addition, also two basic wave-breaking criteria, namely the dynamical and the kinematical Stokes stability condition, have been investigated. The analysis has shown that crucial is the dynamical condition, since the kinematical condition has never been reached in our investigations.
Electron waves and resonances in bounded plasmas
Vandenplas, Paul E
1968-01-01
General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.
HIDENEK: An implicit particle simulation of kinetic-MHD phenomena in three-dimensional plasmas
Tanaka, Motohiko
1993-05-01
An advanced 'kinetic-MHD' simulation method and its applications to plasma physics are given in this lecture. This method is quite stable for studying strong nonlinear, kinetic processes associated with large space-scale, low-frequency electromagnetic phenomena of plasmas. A full set of the Maxwell equations, and the Newton-Lorentz equations of motion for particle ions and guiding-center electrons are adopted. In order to retain only the low-frquency waves and instabilities, implicit particle-field equations are derived. The present implicit-particle method is proved to reproduce the MHD eigenmodes such as Alfven, magnetosonic and kinetic Alfven waves in a thermally near-equilibrium plasma. In the second part of the lecture, several physics applications are shown. These include not only the growth of the instabilities of beam ions against the background plasmas and helical link of the current, but they also demonstrate nonlinear results such as pitch-angle scattering of the ions. Recent progress in the simulation of the Kelvin-Helmholtz instability is also presented with a special emphasis on the mixing of the plasma particles.
2nd Workshop on Laser Interaction and Related Plasma Phenomena
Hora, Heinrich
1972-01-01
Paul Harteck Rensselaer Polytechnic Institute Troy, New York When the Maser and the Laser Were discovered, people were speculating if this was the beginning of a new page, or even a new chapter, in the Book of Physics. The Second Workshop on "Laser Interaction and Related Plasma Phenomena" held in Hartford made it clear that the perspective had changed, that people now question if the consequences of these discoveries constitute a new chapter, or possibly a new era in Physics. While the papers presented were all stimulating and of out standing quality, of special interest were the experiments which demonstrated that triggering of thermonuclear fusion by Laser techniques is indeed in the realm of the possible. Along these lines, I enjoy recalling an anecdote concerning the late F. G. Houtermans. I think that all who knew him will agree that he was an unusual genius and at the same time a very amusing colleague.
Optimised prefactored compact schemes for linear wave propagation phenomena
Rona, A.; Spisso, I.; Hall, E.; Bernardini, M.; Pirozzoli, S.
2017-01-01
A family of space- and time-optimised prefactored compact schemes are developed that minimise the computational cost for given levels of numerical error in wave propagation phenomena, with special reference to aerodynamic sound. This work extends the approach of Pirozzoli [1] to the MacCormack type prefactored compact high-order schemes developed by Hixon [2], in which their shorter Padé stencil from the prefactorisation leads to a simpler enforcement of numerical boundary conditions. An explicit low-storage multi-step Runge-Kutta integration advances the states in time. Theoretical predictions for spatial and temporal error bounds are derived for the cost-optimised schemes and compared against benchmark schemes of current use in computational aeroacoustic applications in terms of computational cost for a given relative numerical error value. One- and two-dimensional test cases are presented to examine the effectiveness of the cost-optimised schemes for practical flow computations. An effectiveness up to about 50% higher than the standard schemes is verified for the linear one-dimensional advection solver, which is a popular baseline solver kernel for computational physics problems. A substantial error reduction for a given cost is also obtained in the more complex case of a two-dimensional acoustic pulse propagation, provided the optimised schemes are made to operate close to their nominal design points.
Indian Academy of Sciences (India)
Samiran Ghosh; Nikhil Chakrabarti; Manoranjan Khan; M R Gupta
2013-02-01
The conditions for the existence of low-frequency electrostatic drift wave in pair-ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.
Carpenter, D. L.; Fraser-Smith, A. C.; Unwin, R. S.; Hones, E. W., Jr.; Heacock, R. R.
1971-01-01
Correlation of several magnetoionospheric wave and particle phenomena previously linked observationally to magnetospheric substorms and inferred to involve convection electric fields with whistler measurements of convection activity during two relatively isolated substorms. The events occurred at about 0600 UT on July 15, 1965, and about 0500 UT on Oct. 13, 1965. The correlated phenomena include cross-L inward plasma drifts near midnight within the plasmaphere, diffuse auroral radar echoes observed near the dusk meridian, IPDP micropulsations (intervals of pulsations of diminishing period) in the premidnight sector, apparent contractions and expansions of the plasma sheet at about 20 earth radii in the magnetotail, and Pc 1/Pi 1 micropulsation events near or before midnight. Two new vlf phenomena occurred during the October 13 event - a noise band within the plasmasphere associated with a convecting whistler path, and ?hisslers,' falling-tone auroral-hiss forms repeated at intervals of about 2 sec.
Plasma phenomena observed in the MAP-WINE campaign
Friedrich, M.
The wealth of plasma data gathered in the MAP-WINE campaign allows insight into the generation and morphology of electron densities on a large scale, and the nature of the ions on a small scale. The associated measurements of winds and charged particles help to understand the morphology of the mid-latitude ionisation which turns out to correlate poorly with geomagnetic activity, but at least slightly with the prevailing winds. A somewhat clearer connection seems to exist between stratospheric warmings and radio wave absorption minima. On the local scale the interpretation of the rocket measurements of positive ions was helped by simultaneous observations of temperatures and atomic oxygen. The relevance of the description ``winter anomaly'' for high latitude electron density profiles will be examined.
Pattern phenomena in an rf discharge dusty plasma system
Institute of Scientific and Technical Information of China (English)
HUANG Feng; YE Maofu; WANG Long
2006-01-01
Various dust patterns are observed in an rf discharge dusty plasma system.According to the dust growth process from small to large in size, the formation of different dust patterns can be divided into two stages: the small-particle stage (or dust cloud stage),and the large-particle stage (or dust crystal stage). The evolution relations between different dust patterns with gas pressure changing are investigated. Dust voids, dust acoustic waves and strong turbulence modes are presented at the small-particle stage. The self-organized dust lattices and dust clusters are investigated at the large-particle stage.The static structure of a dust lattice is characterized by means of the pair correlation function. Dust clusters formed by particles with different numbers and the regular evolution of the clusters with gas pressure are also investigated. The packing sequences of dust clusters are verified through two-dimensional confined molecular dynamics simulations.
Dichromatic Langmuir waves in degenerate quantum plasma
Dubinov, A. E.; Kitayev, I. N.
2015-06-01
Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Low-Frequency Waves in Space Plasmas
Keiling, Andreas; Lee, Dong-Hun; Nakariakov, Valery
2016-02-01
Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.
Yang, Lei; Zeng, Guangshang; Tang, Haibin; Huang, Yuping; Liu, Xiangyang
2016-07-01
Wall-plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall-plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall-plasma interaction results based on this modified model were found to be more realistic than for the unmodified model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.
Energy Technology Data Exchange (ETDEWEB)
Yang, Lei [Beijing Research Institute of Precise Mechatronic Controls, Beijing 100076 (China); School of Astronautics, Beihang University, Beijing 100191 (China); Zeng, Guangshang; Huang, Yuping [Beijing Research Institute of Precise Mechatronic Controls, Beijing 100076 (China); Tang, Haibin [School of Astronautics, Beihang University, Beijing 100191 (China); Liu, Xiangyang [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)
2016-07-15
Wall–plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall–plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall–plasma interaction results based on this modified model were found to be more realistic than for the unmodified model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.
Plasma Waves as a Benchmark Problem
Kilian, Patrick; Schreiner, Cedric; Spanier, Felix
2016-01-01
A large number of wave modes exist in a magnetized plasma. Their properties are determined by the interaction of particles and waves. In a simulation code, the correct treatment of field quantities and particle behavior is essential to correctly reproduce the wave properties. Consequently, plasma waves provide test problems that cover a large fraction of the simulation code. The large number of possible wave modes and the freedom to choose parameters make the selection of test problems time consuming and comparison between different codes difficult. This paper therefore aims to provide a selection of test problems, based on different wave modes and with well defined parameter values, that is accessible to a large number of simulation codes to allow for easy benchmarking and cross validation. Example results are provided for a number of plasma models. For all plasma models and wave modes that are used in the test problems, a mathematical description is provided to clarify notation and avoid possible misunderst...
Energy Technology Data Exchange (ETDEWEB)
Sodha, M.S.; Govind; Sharma, R.P. (Indian Inst. of Tech., New Delhi. Centre of Energy Studies)
1981-05-01
An investigation of the plasma wave and third harmonic generation by a Gaussian electromagnetic (em) beam, propagating in extraordinary mode in a collisionless hot magnetoplasma has been made. On account of the (VXB) force, a plasma wave at twice the pump wave frequency gets excited. The interaction of the plasma wave with the pump wave leads to third harmonic generation. By taking into account the self-focusing of the pump wave on account of non-uniform intensity distribution along the wave front, a modification is effected in the power of the plasma wave and the third harmonic em wave. The dependence of these phenomena on the strength of the static magnetic field has also been studied.
Fundamental plasma emission involving ion sound waves
Cairns, Iver H.
1987-01-01
The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.
Energy Technology Data Exchange (ETDEWEB)
Yang Min; Li Xiaoping; Xie Kai; Liu Donglin [School of Electronical and Mechanical Engineering, Xidian University, Xi' an Shaanxi 710071 (China); Liu Yanming [School of Telecommunications Engineering, Xidian University, Xi' an Shaanxi 710071 (China)
2013-01-15
A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.
Solitary Waves in Relativistic Electromagnetic Plasma
Institute of Scientific and Technical Information of China (English)
XIE Bai-Song; HUA Cun-Cai
2005-01-01
Solitary waves in relativistic electromagnetic plasmas are obtained numerically. The longitudinal momentum of electrons has been taken into account in the problem. It is found that in the moving frame with electromagnetic field propagating the solitary waves can exist in both cases, where the vector potential frequency is larger or smaller than the plasma characteristic frequency.
Wave propagation phenomena in metamaterials for retrieving of effective parameters
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Ha, S.
2011-01-01
In the talk we give an overview of the developed restoration procedures and discuss their pros and cons in connection of assigning effective parameters (EP) to metamaterials (MMs). There are plenty of notorious physical phenomena preserving the unambiguous retrieving of EP, like strong coupling...
Alfven Wave Tomography for Cold MHD Plasmas
Energy Technology Data Exchange (ETDEWEB)
I.Y. Dodin; N.J. Fisch
2001-09-07
Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.
Wave-driven Countercurrent Plasma Centrifuge
Energy Technology Data Exchange (ETDEWEB)
A.J. Fetterman and N.J. Fisch
2009-03-20
A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.
Effect of wave localization on plasma instabilities
Energy Technology Data Exchange (ETDEWEB)
Levedahl, W.K.
1987-01-01
The Anderson model of wave localization in random media is invoked to study the effect of solar-wind density turbulence on plasma processes associated with the solar type-III radio burst. ISEE-3 satellite data indicate that a possible model for the type-III process is the parametric decay of Langmuir waves excited by solar-flare electron streams into daughter electromagnetic and ion-acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir-wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Riegel criteria for wave localization in the solar wind with observed density fluctuations {approximately}1%. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action-principle approach is used to develop a theory of nonlinear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability.
Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?
Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L
2012-01-01
We present results from our ongoing investigation of student understanding of periodic waves and interference phenomena at the introductory physics level. We have found that many students experience significant difficulties when they attempt to express a distance of interest in terms of the wavelength of a periodic wave. We argue that for these…
Benson, Robert F.; Fung, Shing F.
2008-01-01
Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Kinetic Alfven wave turbulence in space plasmas
Energy Technology Data Exchange (ETDEWEB)
Sharma, R.P. [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India); Kumar, Sachin, E-mail: dynamicalfven@gmail.co [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India)
2010-07-26
This work presents the derivation of nonlinear coupled equations for the evolution of solar wind turbulence. These equations are governing the coupled dynamics of kinetic Alfven wave and ion acoustic wave. Numerical simulation of these equations is also presented. The ponderomotive nonlinearity is incorporated in the wave dynamics. Filamentation of kinetic Alfven wave and the turbulent spectra are presented in intermediate-{beta} plasmas at heliocentric distances (0.3 AU{<=}r<1.0 AU). The growing filaments and steeper turbulent spectra (of power law k{sup -S}, 5/3{<=}S{<=}3) can be responsible for plasma heating and particle acceleration in solar wind.
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.......Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...
Interaction of High Intensity Electromagnetic Waves with Plasmas
Energy Technology Data Exchange (ETDEWEB)
G. Shvets
2008-10-03
The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
Drift waves in a weakly ionized plasma
DEFF Research Database (Denmark)
Popovic, M.; Melchior, H.
1968-01-01
A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....
Energy Technology Data Exchange (ETDEWEB)
Dumont, R
2004-07-01
This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)
Transport phenomena in a plasma of confining gluons
Directory of Open Access Journals (Sweden)
Ryblewski Radoslaw
2016-01-01
Full Text Available The plasma of confining gluons resulting from the Gribov quantization is considered. In the fluid dynamical framework the non-equilibrium properties of the system are studied. In the linear response approximation the formulas for the bulk, ζ, and shear, η, viscosities of the plasma are calculated analytically. Surprisingly, the approximate scaling of the ζ/η ratio reveals the strong-coupling properties of the system under consideration.
Chaotic ion motion in magnetosonic plasma waves
Varvoglis, H.
1984-01-01
The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.
Institute of Scientific and Technical Information of China (English)
Tsuyoshi Yasunobu; Ken Matsuoka; Hideo Kashimura; Shigeru Matsuo; Toshiaki Setoguchi
2006-01-01
When the high-pressure gas is exhausted to the vacuum chamber from the supersonic nozzle, the overexpanded supersonic jet is formed at specific condition. In two-dimensional supersonic jet, furthermore, it is known that the hysteresis phenomena for the reflection type of shock wave in the flow field is occurred under the quasi-steady flow and for instance, the transitional pressure ratio between the regular reflection (RR) and Mach reflection (MR) is affected by this phenomenon. Many papers have described the hysteresis phenomena for underexpanded supersonic jet, but this phenomenon under the overexpanded axisymmetric jet has not been detailed in the past papers. The purpose of this study is to clear the hysteresis phenomena for the reflection type of shock wave at the overexpanded axisymmetric jet using the TVD method and to discuss the characteristic of hysteresis phenomena.
Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Energy Technology Data Exchange (ETDEWEB)
Batchelor, Donald B [ORNL; D' Azevedo, Eduardo [ORNL; Bateman, Glenn [ORNL; Bernholdt, David E [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, Randall B [ORNL; Breslau, Joshua [ORNL; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Klasky, Scott A [ORNL; Kruger, Scott E [ORNL; Ku, Long-Poe [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, David P [ORNL; Schnack, Dalton D [ORNL
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in Simulation of Wave Interaction with Extended MHD Phenomena
Energy Technology Data Exchange (ETDEWEB)
Batchelor, Donald B [ORNL; Abla, Gheni [ORNL; D' Azevedo, Ed F [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, Joshua [ORNL; Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in simulation of wave interactions with extended MHD phenomena
Energy Technology Data Exchange (ETDEWEB)
Batchelor, D; D' Azevedo, E; Bernholdt, D E; Berry, L; Elwasif, W; Jaeger, E [Oak Ridge National Laboratory (United States); Abla, G; Choi, M [General Atomics (United States); Bateman, G [Lehigh University (United States); Bonoli, P [Plasma Science and Fusion Center, Massachusetts Institute of Technology (United States); Bramley, R; Foley, S [Indiana University (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory (United States); Harvey, R [CompX International (United States); Jenkins, T [University of Wisconsin (United States); Keyes, D, E-mail: batchelordb@ornl.go [Columbia University (United States)
2009-07-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...
Generalized Langmuir Waves in Magnetized Kinetic Plasmas
Willes, A. J.; Cairns, Iver H.
2000-01-01
The properties of unmagnetized Langmuir waves and cold plasma magnetoionic waves (x, o, z and whistler) are well known. However, the connections between these modes in a magnetized kinetic plasma have not been explored in detail. Here, wave properties are investigated by numerically solving the dispersion equation derived from the Vlasov equations both with and without a beam instability present. For omega(sub p)>Omega(sub e), it is shown that the generalized Langmuir mode at oblique propagation angles has magnetic z-mode characteristics at low wave numbers and thermal Langmuir mode characteristics at high wave numbers. For omega(sub p)Langmuir mode instead connects to the whistler mode at low wave numbers. The transition from the Langmuir/z mode to the Langmuir/whistler mode near omega(sub p) = Omega(sub e) is rapid. In addition, the effects on wave dispersion and polarization after adding a beam are investigated. Applications of this theory to magnetized Langmuir waves in Earth's foreshock and the solar wind, to waves observed near the plasma frequency in the auroral regions, and to solar type III bursts are discussed.
Twisted electron-acoustic waves in plasmas
Aman-ur-Rehman, Ali, S.; Khan, S. A.; Shahzad, K.
2016-08-01
In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number qeff accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.
Colliding solitary waves in quark gluon plasmas
Rafiei, Azam; Javidan, Kurosh
2016-09-01
We study the head-on collision of propagating waves due to perturbations in quark gluon plasmas. We use the Massachusetts Institute of Technology bag model, hydrodynamics equation, and suitable equation of state for describing the time evolution of such localized waves. A nonlinear differential equation is derived for the propagation of small amplitude localized waves using the reductive perturbation method. We show that these waves are unstable and amplitude of the left-moving (right-moving) wave increases (decreases) after the collision, and so they reach the borders of a quark gluon plasma fireball with different amplitudes. Indeed we show that such arrangements are created because of the geometrical symmetries of the medium.
Comprehensive Study of Plasma-Wall Sheath Transport Phenomena
2016-10-26
temperature is always well below that expected for significant thermionic emission from LaB6, and the heat flux from the plasma is also low given the order...measurements from HET materials is their low electrical conductivity. In a typical electron emission study, a primary electron beam is focused onto to...Transition Controlled by Secondary Electron Emission at Low Gas Pressure,” 67th Annual Gaseous Electronics Conference, Raleigh, NC, November 2-7, 2014
Study of negative ion transport phenomena in a plasma source
Energy Technology Data Exchange (ETDEWEB)
Riz, D.; Pamela, J. [Departement de Recherches sur la Fusion Controlee C. E., Cadarache, 13108 St-Paul-lez-Durance Cedex (France)
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H{sup {minus}}/H{sup +}) and charge exchanges (H{sup {minus}}/H{sup 0}). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter. {copyright} {ital 1996 American Institute of Physics.}
Study of negative ion transport phenomena in a plasma source
Riz, D.; Paméla, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.
Signatures of wave packet revival phenomena in the expectation values of observables
Sudheesh, C; Balakrishnan, V
2004-01-01
Wave packet revivals and fractional revivals are striking quantum interference phenomena that can occur under suitable conditions in a system with a nonlinear spectrum. In the framework of a specific model (the propagation of an initially coherent wave packet in a Kerr-like medium), it is shown that distinctive signatures of these revivals and fractional revivals are displayed by the time evolution of the expectationWave packet revivals and fractional revivals are striking quantum interference phenomena that can occur under suitable conditions in a system with a nonlinear spectrum. In the framework of a specific model (the propagation of an initially coherent wave packet in a Kerr-like medium), it is shown that distinctive signatures of these revivals and fractional revivals are displayed by the time evolution of the expectation values of physical observables and their powers, i.e., by experimentally measurable quantities. Moreover, different fractional revivals can be selectively identified by examining appr...
First results from the Cluster wideband plasma wave investigation
Directory of Open Access Journals (Sweden)
D. A. Gurnett
Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...
Model analysis of edge relaxation phenomena in Tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Matsukawa, Shogo [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Itoh, Sanae I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
2000-09-01
From the view point of the oscillatory characteristics, the heat transport in the plasma edge region is investigated based on a transition transport model with hysteresis nature. A hysteresis type flux-force relation is incorporated into the model by introducing a transition model of the heat diffusivity. For a given influx from the upstream side, the one dimensional heat transport equitation is solved numerically. The time evolution of the heat flux oscillation due to the hysteresis nature and the parameter dependences of its amplitude and frequency are examined. The non-monotonous relation between the frequency of the flux oscillation and the influx is obtained. The critical behavior of the transition between transport mechanisms, i.e., the hysteresis type and the discontinuous one, is expressed as power law relations of them. The self-organized criticality like behavior, i.e., power spectrum obeying power law, is found in a limiting case of the model. (author)
Collapse of nonlinear electron plasma waves in a plasma layer
Grimalsky, V.; Koshevaya, S.; Rapoport, Yu; Kotsarenko, A.
2016-10-01
The excitation of nonlinear electron plasma waves in the plasma layer is investigated theoretically. This excitation is realized by means of initial oscillatory perturbations of the volume electron concentration or by initial oscillatory distributions of the longitudinal electron velocity. The amplitudes of the initial perturbations are small and the manifestation of the volume nonlinearity is absent. When the amplitudes of the initial perturbations exceed some thresholds, the values of the electron concentration near the plasma boundary increase catastrophically. The maxima of the electron concentration reach extremely high magnitudes, and sharp peaks in the electron concentration occur, which are localized both in the longitudinal and transverse directions. This effect is interpreted as wave collapse near the plasma boundary.
Shock Wave Dynamics in Weakly Ionized Plasmas
Johnson, Joseph A., III
1999-01-01
An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.
Tsai, Ya-Yi; Tsai, Jun-Yi; I, Lin
2016-06-01
Rogue waves--rare uncertainly emerging localized events with large amplitudes--have been experimentally observed in many nonlinear wave phenomena, such as water waves, optical waves, second sound in superfluid He II (ref. ) and ion acoustic waves in plasmas. Past studies have mainly focused on one-dimensional (1D) wave behaviour through modulation instabilities, and to a lesser extent on higher-dimensional behaviour. The question whether rogue waves also exist in nonlinear 3D acoustic-type plasma waves, the kinetic origin of their formation and their correlation with surrounding 3D waveforms are unexplored fundamental issues. Here we report the direct experimental observation of dust acoustic rogue waves in dusty plasmas and construct a picture of 3D particle focusing by the surrounding tilted and ruptured wave crests, associated with the higher probability of low-amplitude holes for rogue-wave generation.
Inductance of rf-wave-heated plasmas.
Farshi, E; Todo, Y
2003-03-14
The inductance of rf-wave-heated plasmas is derived. This inductance represents the inductance of fast electrons located in a plateau during their acceleration due to electric field or deceleration due to collisions and electric field. This inductance has been calculated for small electric fields from the two-dimensional Fokker-Planck equation as the flux crossing the surface of critical energy mv(2)(ph)/2 in the velocity space. The new expression may be important for radio-frequency current drive ramp-up, current drive efficiency, current profile control, and so on in tokamaks. This inductance may be incorporated into transport codes that study plasma heating by rf waves.
Collisional Drift Waves in Stellarator Plasmas
Energy Technology Data Exchange (ETDEWEB)
J.L.V. Lewandowski
2003-10-07
A computational study of resistive drift waves in the edge plasma of a stellarator with an helical magnetic axis is presented. Three coupled field equations, describing the collisional drift wave dynamics in the linear approximation, are solved as an initial-value problem along the magnetic field line. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.
On the freak waves in mesospheric plasma
El-Labany, S. K.; El-Shewy, E. K.; El-Bedwehy, N. A.; El-Razek, H. N. Abd; El-Rahman, A. A.
2017-03-01
The nonlinear properties of dusty ionic freak waves have been studied in homogeneous, unmagnetized dusty plasma system containing ions, isothermal electrons, negative and positive grains. By using the derivative expansion method and assuming strongly dispersive medium, the basic model equations are reduced to a nonlinear form of Schrodinger equation (NLSE). One of the solutions of the NLSE in the unstable region is the rational one which is responsible for the creation of the freak profiles. The reliance of freak waves profile on dusty grains charge and carrier wave number are discussed.
Plasma shock waves excited by THz radiation
Rudin, S.; Rupper, G.; Shur, M.
2016-10-01
The shock plasma waves in Si MOS, InGaAs and GaN HEMTs are launched at a relatively small THz power that is nearly independent of the THz input frequency for short channel (22 nm) devices and increases with frequency for longer (100 nm to 1 mm devices). Increasing the gate-to-channel separation leads to a gradual transition of the nonlinear waves from the shock waves to solitons. The mathematics of this transition is described by the Korteweg-de Vries equation that has the single propagating soliton solution.
The Potential for Ambient Plasma Wave Propulsion
Gilland, James H.; Williams, George J.
2016-01-01
A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
Cassini radio and plasma wave investigation: Data compression and scientific applications
Woolliscroft, L. J. C.; Farrell, W. M.; Alleyne, H. St. C.; Gurnett, D. A.; Kirchner, D. L.; Kurth, W. S.; Thompson, J. A.
1993-01-01
The Radio and Plasma Wave Science (RPWS) experiment being built for the Cassini spacecraft will study a wide range of plasma and radio wave phenomena in the magnetosphere of Saturn and will also make valuable measurements during the cruise phase and at other encounters. A feature of data from wave receivers is the capability of producing vastly more data than the spacecraft telemetry link is capable of transmitting back to the Earth. Thus, techniques of on-board data compression and data reduction are important. The RPWS instrument has one processor dedicated to data compression tasks.
Cassini radio and plasma wave investigation - Data compression and scientific applications
Woolliscroft, L. J. C.; Farrell, W. M.; Alleyne, H. St. C.; Gurnett, D. A.; Kirchner, D. L.; Kurth, W. S.; Thompson, J. A.
1993-01-01
The Radio and Plasma Wave Science (RPWS) experiment being built for the Cassini spacecraft will study a wide range of plasma and radio wave phenomena in the magnetosphere of Saturn and will also make valuable measurements during the cruise phase and at other encounters. A feature of data from wave receivers is the capability of producing vastly more data than the spacecraft telemetry link is capable of transmitting back to the Earth. Thus, techniques of on-board data compression and data reduction are important. The RPWS instrument has one processor dedicated to data compression tasks.
Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts
Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei
2016-05-01
Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)
Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts
Institute of Scientific and Technical Information of China (English)
ZHAI Guofu; BO Kai; CHEN Mo; ZHOU Xue; QIAO Xinlei
2016-01-01
Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit.We characterized the arc plasma jet flow appearance at different currents by using high-speed photography,and two polished contacts were used to search for the relationship between roughness and plasma jet flow.Then,to make the nature of arc plasma jet flow phenomena clear,a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated.The simulated DC arc plasma was presented with the temperature distribution and the current density distribution.Furthermore,the calculated arc flow vclocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress.The combined action of volume force and contact surface was the main reason of the arc jet flow.
Density bump formation in a collisionless electrostatic shock wave in a laser-ablated plasma
Garasev, M A; Kocharovsky, V V; Malkov, Yu A; Murzanev, A A; Nechaev, A A; Stepanov, A N
2016-01-01
The emergence of a density bump at the front of a collisionless electrostatic shock wave have been observed experimentally during the ablation of an aluminium foil by a femtosecond laser pulse. We have performed numerical simulations of the dynamics of this phenomena developing alongside the generation of a package of ion-acoustic waves, exposed to a continual flow of energetic electrons, in a collisionless plasma. We present the physical interpretation of the observed effects and show that the bump consists of transit particles, namely, the accelerated ions from the dense plasma layer, and the ions from the diluted background plasma, formed by a nanosecond laser prepulse during the ablation.
Electron Bernstein Wave Emission from RFP Plasmas
Nornberg, M. D.; Thomas, M.; Anderson, J.; Forest, C. B.
1998-11-01
Electron cyclotron emission (ECE) has proven to be a powerfull diagnostic tool in tokamak plasmas for determining the time evolution of the electron temperature profile. The standard technique of observing O-mode or X-mode electromagnetic waves normal to the magnetic field is not applicable to reversed field pinch (RFP) plasmas since the plasma frequency is much larger than the electron cyclotron frequency. We are investigating the use of electron Bernstein waves (presumed to be in thermal equilibrium with the electrons) through the aip.org/journal_cgi/ getpdf?KEY=PRLTAO&cvips=PRLTAO000078000018003467000001>O-X-B mode conversion process. At oblique incidence, the evanescent layer separating the plamsa cutoff from the cyclotron cutoff vanishes, allowing conversion of the Bernstein mode waves to the extraordinary mode and finally to the ordinary mode. The O-mode radiation is received by a phased array antenna consisting of two waveguides on the edge of the plasma, and the spectrum of emitted radiation is measured using a radiometer spanning 4-8 GHz. In addition to providing information about the electron temperature profile, the spectrum can provide a novel method of measuring the central magnetic field strength for current profile reconstructions.
Nonlinear phenomena arising from radio wave heating of the lower ionosphere
Tomko, A. A.
1981-08-01
This document describes a theoretical and experimental study of the interaction of high power, high frequency radio waves with the lower ionosphere. The theoretical calculations presented here show that the electron temperature of the ionospheric plasma can be greatly enhanced when the plasma is irradiated by a powerful groundbased HF transmitter with an effective radiated power of the order of 100 MW. If this plasma heating is maintained for times exceeding a few seconds, the composition of the plasma can also be altered. These temperature and composition modifications cause significant changes in the plasma conductivity and wave absorption in the medium. Two experiments were conducted in order to test for the predicted absorption and conductivity modifications: a vertical incidence plus absorption experiment and a nonlinear demodulation experiment. Data from the absorption experiment clearly show a large (9 dB) increase in wave absorption at 2.4 MHz due to a high power (60 MW ERP) HF heating of the ionosphere. The nonlinear demodulation experiment generated strong VLF radiation when the ionosphere was irradiated by a powerful modulated HF wave. These VLF signals are believed to be due to HF heating induced conductivity modulation of the dynamo current system.
Plasma Limiter Based on Surface Wave Plasma Excited by Microwave
Institute of Scientific and Technical Information of China (English)
YANG Geng; TAN Jichun; SHEN Benjian
2008-01-01
A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres-sure, ionization degree and density of seed electrons under low pressure (0.01 ～1 Torr) and high pressure (10 ～1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 1016 m-3, and ionization degree of 10-4, has a breakdown time of approximate 19.6 ns.
Modeling of evaporation and oxidation phenomena in plasma spraying of metal powders
Zhang, Hanwei
Plasma spraying of metals in air is usually accompanied by evaporation and oxidation of the sprayed material. Optimization of the spraying process must ensure that the particles are fully molten during their short residence time in the plasma jet and prior to hitting the substrate, but not overheated to minimize evaporation losses. In atmospheric plasma spraying (ASP), it is also clearly desirable to be able to control the extent of oxide formation. The objective of this work to develop an overall mathematical model of the oxidization and volatilization phenomena involved in the plasma-spraying of metallic particles in air atmosphere. Four models were developed to simulate the following aspects of the atmospheric plasma spraying (APS) process: (a) the particle trajectories and the velocity and temperature profiles in an Ar-H 2 plasma jet, (b) the heat and mass transfer between particles and plasma jet, (c) the interaction between the evaporation and oxidation phenomena, and (d) the oxidation of liquid metal droplets. The resulting overall model was generated by adapting the computational fluid dynamics code FIDAP and was validated by experimental measurements carried out at the collaborating plasma laboratory of the University of Limoges. The thesis also examined the environmental implications of the oxidization and volatilization phenomena in the plasma spraying of metals. The modeling results showed that the combination of the standard k-s model of turbulence and the Boussinesq eddy-viscosity model provided a more accurate prediction of plasma gas behavior. The estimated NOx generation levels from APS were lower than the U.S.E.P.A. emission standard. Either enhanced evaporation or oxidation can occur on the surface of the metal particles and the relative extent is determined by the process parameters. Comparatively, the particle size has the greatest impact on both evaporation and oxidation. The extent of particle oxidation depends principally on gas
Tunable Plasma-Wave Laser Amplifier
Bromage, J.; Haberberger, D.; Davies, A.; Bucht, S.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.
2016-10-01
Raman amplification is a process by which a long energetic pump pulse transfers its energy to a counter-propagating short seed pulse through a resonant electron plasma wave. Since its conception, theory and simulations have shown exciting results with up to tens of percent of energy transfer from the pump to the seed pulse. However, experiments have yet to surpass transfer efficiencies of a few percent. A review of past literature shows that largely chirped pump pulses and finite temperature wave breaking could have been the two most detrimental effects. A Raman amplification platform is being developed at the Laboratory for Laser Energetics where a combination of a high-intensity tunable seed laser with sophisticated plasma diagnostics (dynamic Thomson scattering) will make it possible to find the optimal parameter space for high-energy transfer. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Geotail MCA Plasma Wave Investigation Data Analysis
Anderson, Roger R.
1997-01-01
The primary goals of the International Solar Terrestrial Physics/Global Geospace Science (ISTP/GGS) program are identifying, studying, and understanding the source, movement, and dissipation of plasma mass, momentum, and energy between the Sun and the Earth. The GEOTAIL spacecraft was built by the Japanese Institute of Space and Astronautical Science and has provided extensive measurements of entry, storage, acceleration, and transport in the geomagnetic tail and throughout the Earth's outer magnetosphere. GEOTAIL was launched on July 24, 1992, and began its scientific mission with eighteen extensions into the deep-tail region with apogees ranging from around 60 R(sub e) to more than 208 R(sub e) in the period up to late 1994. Due to the nature of the GEOTAIL trajectory which kept the spacecraft passing into the deep tail, GEOTAIL also made 'magnetopause skimming passes' which allowed measurements in the outer magnetosphere, magnetopause, magnetosheath, bow shock, and upstream solar wind regions as well as in the lobe, magnetosheath, boundary layers, and central plasma sheet regions of the tail. In late 1994, after spending nearly 30 months primarily traversing the deep tail region, GEOTAIL began its near-Earth phase. Perigee was reduced to 10 R(sub e) and apogee first to 50 R(sub e) and finally to 30 R(sub e) in early 1995. This orbit provides many more opportunities for GEOTAIL to explore the upstream solar wind, bow shock, magnetosheath, magnetopause, and outer magnetosphere as well as the near-Earth tail regions. The WIND spacecraft was launched on November 1, 1994 and the POLAR spacecraft was launched on February 24, 1996. These successful launches have dramatically increased the opportunities for GEOTAIL and the GGS spacecraft to be used to conduct the global research for which the ISTP program was designed. The measurement and study of plasma waves have made and will continue to make important contributions to reaching the ISTP/GGS goals and solving the
Collisional damping rates for plasma waves
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2016-06-01
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Indian Academy of Sciences (India)
MANJIT KAUR; SAYAK BOSE; P K CHATTOPADHYAY; J GHOSH; Y C SAXENA
2016-12-01
A typical device for carrying out sophisticated and complex dusty plasma experiments is designed, fabricated and made operational at the Institute for Plasma Research, India. The device is named as complex plasma experimental device (CPED). The main aim of this multipurpose machine is to study the formation and behaviour of dust vortices in the absence of external magnetic field under the effect of various plasma parameters. Further, the device is equipped with advanced imaging diagnostics for studying many other interesting phenomena such as dust oscillations, three-dimensional crystalline structures, dust rotation, etc. The device is quite flexible to accommodate many innovative experiments. Detailed design of the device, its diagnostics capabilities and theadvanced image analysis techniques are presented in this paper.
Waves in relativistic electron beam in low-density plasma
Sheinman, I.; Sheinman (Chernenco, J.
2016-11-01
Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.
Cerebral functional connectivity and Mayer waves in mice: Phenomena and separability.
Bumstead, Jonathan R; Bauer, Adam Q; Wright, Patrick W; Culver, Joseph P
2017-02-01
Resting-state functional connectivity is a growing neuroimaging approach that analyses the spatiotemporal structure of spontaneous brain activity, often using low-frequency (waves. Despite how close in frequency these phenomena exist, there is little research on how vasomotion and Mayer waves are related to or affect resting-state functional connectivity. In this study, we analyze spontaneous hemodynamic fluctuations over the mouse cortex using optical intrinsic signal imaging. We found spontaneous occurrence of oscillatory hemodynamics ∼0.2 Hz consistent with the properties of Mayer waves reported in the literature. Across a group of mice (n = 19), there was a large variability in the magnitude of Mayer waves. However, regardless of the magnitude of Mayer waves, functional connectivity patterns could be recovered from hemodynamic signals when filtered to the lower frequency band, 0.01-0.08 Hz. Our results demonstrate that both Mayer waves and resting-state functional connectivity patterns can co-exist simultaneously, and that they can be separated by applying bandpass filters.
Latyshev, A V
2015-01-01
The analysis of nonlinear interaction of transversal electromagnetic field with collisionless plasma is carried out. Formulas for calculation electric current in collisionless plasma with arbitrary degree of degeneration of electronic gas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis.
Nonlinear propagation of weakly relativistic ion-acoustic waves in electron–positron–ion plasma
Indian Academy of Sciences (India)
M G HAFEZ; M R TALUKDER; M HOSSAIN ALI
2016-11-01
This work presents theoretical and numerical discussion on the dynamics of ion-acoustic solitary wave for weakly relativistic regime in unmagnetized plasma comprising non-extensive electrons, Boltzmann positrons and relativistic ions. In order to analyse the nonlinear propagation phenomena, the Korteweg–de Vries(KdV) equation is derived using the well-known reductive perturbation method. The integration of the derived equation is carried out using the ansatz method and the generalized Riccati equation mapping method. The influenceof plasma parameters on the amplitude and width of the soliton and the electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves are described. The obtained results of the nonlinear low-frequencywaves in such plasmas may be helpful to understand various phenomena in astrophysical compact object and space physics.
Electron Acoustic Waves in Pure Ion Plasmas
Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.
2012-10-01
Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.
Plasma production for electron acceleration by resonant plasma wave
Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Plasma production for electron acceleration by resonant plasma wave
Energy Technology Data Exchange (ETDEWEB)
Anania, M.P., E-mail: maria.pia.anania@lnf.infn.it [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome Tor Vergata - INFN, via della Ricerca Scientifica, 1, 00133 Roma (Italy); INFN, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Croia, M.; Curcio, A. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Di Giovenale, D.; Di Pirro, G.P. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Filippi, F. [University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Romeo, S. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ferrario, M. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy)
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Gulaboski, Rubin
2001-01-01
Theoretical models of four electrode reactions coupled with adsorption phenomena under conditions of square-wave voltammetry are developed: simple surface redox reaction, surface catalytic reaction, cathodic stripping reaction of I order, and cathodic stripping reaction of II order.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Gravitational waves in a free isotropic plasma. II
Energy Technology Data Exchange (ETDEWEB)
Galtsov, D.V.; Grats, IU.V.; Melkumova, E.IU.
1985-07-01
The generation of gravitational waves in an isotropic homogeneous plasma is investigated theoretically, within the frame work of a recently developed formalism. The effectiveness of different mechanisms generating gravitational waves is considered. Attention is given to thermal gravitational radiation by a two-component plasma; the transformation of longitudinal plasma waves into gravitons due to current fluctuations; and the generation of gravitational waves due to Langmuir turbulence. It is shown that collective plasma effects play a critical role in the generation of gravitational waves.
Model of the Dynamics of Plasma-Wave Channels in Magnetized Plasmas
Shirokov, E. A.; Chugunov, Yu. V.
2016-06-01
We analyze the dynamics of the plasma-wave channels excited in magnetized plasmas in the whistler frequency range. A linear theory of excitation of a plasma waveguide by an external source is developed using the quasistatic approximation. Self-consistent spatio-temporal distributions of the electric field of quasipotential waves and plasma density, which are solutions of the nonlinear nonstationary problem of the ionizing self-channeling of waves in plasmas are found on the basis of the linear theory.
Effective action approach to wave propagation in scalar QED plasmas
Shi, Yuan; Qin, Hong
2016-01-01
A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we study a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well-known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasma...
Vollmann, Jacqueline; Profunser, Dieter M; Bryner, Jürg; Dual, Jürg
2006-12-22
A two-dimensional numerical simulation model for the elastodynamic wave propagation in two linear elastic, isotropic, joint half-spaces is presented. The border between the two half-spaced is graded in a way, that the values of the elastic properties and the densities vary smoothly (sinusoidally) from the values of one continuum to the values of the other continuum within a transition zone of a defined thickness. It is demonstrated, that a graded layer leads to a frequency and wavelength dependent refraction and reflection behavior of elastodynamic waves. Numerical results show that wavelengths which are long compared with the transition layer thickness are dominantly reflected whereas short waves are dominantly transmitted, a phenomena which does not occur in the case of an infinitely thin transition layer. Furthermore the frequency dependent reflection and transmission behavior of elastodynamic waves is verified experimentally. There the interface between two vapor deposited films is graded due to intermetallic diffusion effects. These graded microstructures are analyzed with a short-pulse-laser-acoustic set-up. The corresponding frequencies of the elastodynamic waves which are filtered with these functionally graded microstructures are in the range of 0.5 THz.
Numerical simulation of shock wave phenomena in hydrodynamic model of semiconductor devices
Institute of Scientific and Technical Information of China (English)
XU Ning; YANG Geng
2007-01-01
We propose a finite element method to investigate the phenomena of shock wave and to simulate the hydrodynamic model in semiconductor devices. An introduction of this model is discussed first. Then some scaling factors and a relationship between the changing variables are discussed. And then, we use a finite element method (P1-iso-P2 element) to discrete the equations. Some boundary conditions are also discussed. Finally,a sub-micron n+-n-n+ silicon diode and Si MESFET device are simulated and the results are analyzed. Numerical results show that electronic fluids are transonic under some conditions.
Spin waves and spin instabilities in quantum plasmas
Andreev, P A
2014-01-01
We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Instabilities appearing due to interaction of magnetic moments of neutrons with plasma are described.
Plasma Waves and Jets from Moving Conductors
Gralla, Samuel E
2016-01-01
We consider force-free plasma waves launched by the motion of conducting material through a magnetic field. We develop a spacetime-covariant formalism for perturbations of a uniform magnetic field and show how the transverse motion of a conducting fluid acts as a source. We show that fast-mode waves are sourced by the compressibility of the fluid, with incompressible fluids launching a pure-Alfven outflow. Remarkably, this outflow can be written down in closed form, at the nonlinear level, for an arbitrary incompressible flow. The instantaneous flow velocity is imprinted on the magnetic field and transmitted away at the speed of light, carrying detailed information about the conducting source at the time of emission. These results can be applied to transients in pulsar outflows and to jets from neutron stars orbiting in the magnetosphere of another compact object. We discuss jets from moving conductors in some detail.
Radiation Heat Waves in Gold Plasma
Institute of Scientific and Technical Information of China (English)
YANG Jia-Min; XU Yan; DING Yao-Nan; LAI Dong-Xian; DING Yong-Kun; JIANG Shao-En; ZHENG Zhi-Jian; MIAO Wen-Yong
2003-01-01
Eight beams 0.35/um laser with pulse duration of about 1.0ns and energy of 260 J per beam was injected into a cylindrical cavity to generate intense x-ray radiation on the "Shengguang I" high power laser facility. Gold foils with a thickness in the range of 0.09-0.52/j,m were attached on the diagnostic hole of the cavity and ablated by the intense x-ray radiation. The propagating radiation heat wave in the high-Z gold plasma was observed clearly. For comparison, we also simulated the experimental results.
Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.
Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit
2017-09-13
Surface phenomena during atomic layer etching (ALE) of SiO2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CFx) film deposition and Ar plasma activation of the CFx film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CFx deposition half-cycle from a C4F8/Ar plasma show that an atomically thin mixing layer is formed between the deposited CFx layer and the underlying SiO2 film. Etching during the Ar plasma cycle is activated by Ar(+) bombardment of the CFx layer, which results in the simultaneous removal of surface CFx and the underlying SiO2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CFx deposition, which combined with an ultrathin CFx layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CFx film, ∼3-4 Å of SiO2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CFx layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CFx on reactor walls leads to a gradual increase in the etch per cycle.
Indian Academy of Sciences (India)
M Singh; P N Deka
2006-03-01
A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.
Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma
Institute of Scientific and Technical Information of China (English)
DUAN Yi-Shi; XIE Bai-Song; TIAN Miao; YIN Xin-Tao; ZHANG Xin-Hui
2008-01-01
Stable propagating waves and wake fields in relativistic electromagnetic plasma are investigated. The incident electromagnetic field has a finite initial constant amplitude meanwhile the longitudinal momentum of electrons is taken into account in the problem. It is found that in the moving frame with transverse wave group velocity the stable propagating transverse electromagnetic waves and longitudinal plasma wake fields can exist in the appropriate regime of plasma.
X-ray spectroscopic study of charge exchange phenomena in plasma-wall interaction
Directory of Open Access Journals (Sweden)
Renner O.
2013-11-01
Full Text Available Jets of energetic ions launched at laser-burnt-through foils represent an efficient tool for investigation of plasma interaction with solid surfaces (plasma-wall interaction, PWI and for description of transient phenomena occurring close to the walls. Highly charged ions approaching the secondary target interpenetrate the near surface layer, collide with the counter-propagating matter and capture a large number of electrons. This results in a creation of atoms in highly excited Rydberg states or hollow ions with multiple inner vacancies; plasma jet and target ions may also undergo charge exchange (CE processes. We report PWI experiments with Al/Si(PMMA and Al/C targets irradiated at normal or oblique laser incidence. The distinct dip structures observed in red wings of Al Lyγ self-emission is interpreted in terms of CE between C6+ and Al12+ in the near-wall zone. The spectroscopic identification of CE phenomena is supported by results of analytical and numerical calculations.
Magnetohydrodynamic waves in fusion and astrophysical plasmas.
Goedbloed, J. P.
Macroscopic plasma dynamics in both controlled thermonuclear confinement machines and in the atmospheres of X-ray emitting stars is described by the equations of magnetohydrodynamics. This provides a vast area of overlapping research activities which is presently actively pursued. In this lecture the author concentrates on some important differences in the dynamics of the two confined plasma systems related to the very different geometries that are encountered and, thus, the role of the different boundary conditions that have to be posed. As a result, the basic MHD waves in a tokamak are quite different from those found in a solar magnetic flux tube. The result is that, whereas the three well-known MHD waves can be traced stepwise in the curved geometry of a tokamak, their separate existence is eliminated right from the start in a line-tied coronal loop because line-tying in general conflicts with the phase relationships between the vector components of the three velocity fields. The consequences are far-reaching, viz. completely different resonant frequencies and continuous spectra, absence of rational magnetic surfaces, and irrelevance of local marginal stability theory for coronal magnetic loops.
10.1142/9781911299660_fmatter years Laser Interaction and Related Plasma Phenomena (lirpp Vol. 13)
Hora, Heinrich
2016-10-01
When these proceedings of 13th international conference LASER INTERACTION AND RELATED PLASMA PHENOMENA (LIRPP) will be circulated in 1998, it is just 30 years that this conference series began. Professor Miley asked me to present some thoughts at this occasion since I am involved from the beginning to 1991 a director and then as emeritus director. The conferences were in the following years 1969, 1971, 1973, 1976, 1979, 1982, 1985, 1987, 1989, 1991, 1993, 1995 and 1997 and reference to each of the conferences is simply given by the year in brackets...
Relativistic electromagnetic waves in an electron-ion plasma
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Magnetoacoustic waves in a partially ionized two-fluid plasma
Soler, Roberto; Ballester, Jose Luis
2013-01-01
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by the ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma $\\beta$, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional da...
From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma
Liao, Jinfeng
2016-01-01
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma
Liao, Jinfeng
2017-01-01
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
Model tests on anomalous low friction and pendulum-type wave phenomena
Institute of Scientific and Technical Information of China (English)
Hao Wu; Qin Fang; Yusheng Lu; Yadong Zhang; Jinchun Liu
2009-01-01
The anomalous low friction (ALF) and pendulum-type wave (μwave) phenomena were two typical,nonlinear,geo-mechanical,and dynamic responses in deep-block rock mass discovered from in situ observations,which occurred from the movement of the geo-blocks under the impact of external pulses,such as deep confined explosion,earthquake,and rock bursts.With the aim to confirm the existence of the above two phenomena and study the variation laws of them experimentally,laboratory tests on the granite and cement mortar continuum and blocks models were conducted on the self-independently developed multipurpose testing system,respectively.The ALF phenomenon was realized under two loading schemes,the blocks model and working block were acted upon by the joint action of vertical impact and horizontal static force as well as the joint action of both vertical and horizontal impacts with different time intervals.It revealed that the discrete time delays corresponding to the local maximums and minimums of the horizontal displacement amplitudes and residual horizontal displacements of the working block satisfied the canonical sequences with the multiple of √2,most of which satisfied the quantitative expression (√2)~i △/V_p.Besides,the one-dimensional impact experiments were carried out on the blocks granite model,continuum,and blocks cement mortar models,respectively.Based on the comparison and analysis of the propagation properties (amplitudes and the Fourier spectrums of acceleration time histories of blocks) of the 1D stress wave in the above models,it is indicated that the fractures in rock mass have tremendous effect on the attenuation of acceleration amplitudes and high-frequency waves.By comparison of the model test data with the in situ measurement conclusions,the existence of the μ wave was confirmed experimentally in the cement mortar blocks model with larger dimensions,and the frequencies corresponding to the local maximums of spectral density curves of three
Plasma Wall Interaction Phenomena on Tungsten Armour Materials for Fusion Applications
Energy Technology Data Exchange (ETDEWEB)
Uytdenhouwen, I. [SCK.CEN - The Belgian Nuclear Research Centre, Institute for Nuclear Materials Science, Boeretang 200, 2400 Mol (Belgium); Forschungszentrum Juelich GmbH, EURATOM-association, D-52425 Juelich (Germany); Department of Applied Physics, Ghent University, Rozier 44, 9000 Ghent (Belgium); Massaut, V. [Department of Applied Physics, Ghent University, Rozier 44, 9000 Ghent (Belgium); Linke, J. [Forschungszentrum Juelich GmbH, EURATOM-association, D-52425 Juelich (Germany); Van Oost, G. [Department of Applied Physics, Ghent University, Rozier 44, 9000 Ghent (Belgium)
2008-07-01
One of the most attractive future complements to present energy sources is nuclear fusion. A large progress was made throughout the last decade from both the physical as the technological area leading to the construction of the ITER machine. One of the key issues that recently received a large interest at international level is focused on the Plasma Wall Interaction (PWI). One of the promising Plasma Facing Materials (PFM) are Tungsten (W) and Tungsten alloys. However, despite the worldwide use and industrial availability of W, the database of physical and mechanical properties is very limited. Especially after fusion relevant neutron irradiation and PWI phenomena, most of the properties are still unknown. The plasma fuel consists out of deuterium (D) and tritium (T). Tritium is radio-active and therefore an issue from the safety point of view. During steady-state plasma operation of future fusion power plants, the PFM need to extract a power density of {approx}10-20 MW/m{sup 2}. On top of this heat, transient events will deposit an additional non-negligible amount of energy (Disruptions, Vertical Displacement Events, Edge Localized Modes) during short durations. These severe heat loads cause cracking and even melting of the surface resulting in a reduced lifetime and the creation of dust. A contribution to the understanding of cracking phenomena under the severe thermal loads is described as well as the properties degradation under neutron irradiation. Several W grades were irradiated in the BR2 reactor (SCK.CEN) and the thermal loads were simulated with the electron-beam facility JUDITH (FZJ). Since knowledge should be gained about the Tritium retention in the PFM for safety and licensing reasons, a unique test facility at SCK.CEN is being set-up. The plasmatron VISION-I will simulate steady state plasmas for Tritium retention studies. The formation of surface cracks and dust, the initial porosity, neutron induced traps, re-deposited material - change the Tritium
Wave phenomena at the Moon: interaction of solar wind with magnetic anomalies
Sadovski, Andrei; Skalsky, Alexander
2016-07-01
On the first sight the lunar plasma environment seems to be very simple matter but the interaction in Moon-plasma system shows that the physical processes are complex and varied. Moreover interactions have a kinetic nature and the kinetic theory is necessary for their studying. The solar wind interaction with Moon surface has received many attention last years. The regions of enhanced crustal magnetic field (magnetic anomalies), where a magnetic field may reach till several hundred nT were found. The observations of Kaguya and Chandrayaan revealed that significant deflected proton fluxes exist over magnetic anomalies at the lunar surface. Such proton fluxes allow to imply that the magnetic anomalies may act as magnetosphere-like obstacles (mini-magnetospheres), modifying the upstream plasma. The observations of energetic neutral atoms also confirm the existence of the enhanced fluxes of deflected particles. Variety of electric fluctuations was observed during the passage of Wind spacecraft across the lunar wake: langmuir waves, electrostatic modes above electron cyclotron frequency, whistlers. The investigations by Kuncic and Cairns (2004) revealed emissions on plasma frequency and its first harmonic. Electron reflection at quasi-shock at leading edge of magnetic anomaly could drive the electric field oscillations. The generation mechanism is similar to that known for foreshock of planetary bow shock.In KAGUYA and Lunar Prospector missions the monochromatic whistlers near the Moon were observed as narrow band magnetic fluctuations with frequencies close to 1 Hz, and are mostly left-hand polarized in the spacecraft frame. We review different mechanisms for wave generation in plasma environment near such mini-magnetosphere regions.
Space and Astrophysical Plasmas : Ionospheric plasma by VHF waves
Indian Academy of Sciences (India)
R P Patel; Abhay Kumar Singh; R P Singh
2000-11-01
The amplitude scintillations of very high frequency electromagnetic wave transmitted from geo-stationary satellite at 244.168 MHz have been recorded at Varanasi (geom. lat. 14° 55'N) during 1991 to 1999. The data are analyzed to determine the statistical features of overhead ionospheric plasma irregularities which are mostly of small duration < 30 minutes and are predominant during pre-midnight period. The increase of solar activity generally increases the depth of scintillation. The auto-correlation functions and power spectra of scintillations predict that the scale length of these irregularities varies from 200–500 m having velocity of movement between 75 m/sec to 200 m/sec. These results agree well with the results obtained by other workers.
High latitude electromagnetic plasma wave emissions
Gurnett, D. A.
1983-01-01
The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.
Linear and nonlinear heavy ion-acoustic waves in a strongly coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Ema, S. A., E-mail: ema.plasma@gmail.com; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh); Hossen, M. R. [Deparment of Natural Sciences, Daffodil International University, Sukrabad, Dhaka-1207 (Bangladesh)
2015-09-15
A theoretical study on the propagation of linear and nonlinear heavy ion-acoustic (HIA) waves in an unmagnetized, collisionless, strongly coupled plasma system has been carried out. The plasma system is assumed to contain adiabatic positively charged inertial heavy ion fluids, nonextensive distributed electrons, and Maxwellian light ions. The normal mode analysis is used to study the linear behaviour. On the other hand, the well-known reductive perturbation technique is used to derive the nonlinear dynamical equations, namely, Burgers equation and Korteweg-de Vries (K-dV) equation. They are also numerically analyzed in order to investigate the basic features of shock and solitary waves. The adiabatic effects on the HIA shock and solitary waves propagating in such a strongly coupled plasma are taken into account. It has been observed that the roles of the adiabatic positively charged heavy ions, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features (viz., polarity, amplitude, width, etc.) of the HIA solitary/shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the linear as well as nonlinear phenomena associated with the HIA waves both in space and laboratory plasmas.
A Black-Hole Primer: Particles, Waves, Critical Phenomena and Superradiant Instabilities
Berti, Emanuele
2014-01-01
These notes were prepared for a lecture on black holes delivered at the DPG Physics School "General Relativity @ 99" (Physikzentrum Bad Honnef, Germany, September 2014). The common thread of the lecture is the relation between geodesic stability and black-hole perturbations in the geometric optics limit. Chapter 1 establishes notation and discusses a common misconception on Michell's "Newtonian black holes". Chapters 2 and 3 deal with particle dynamics and wave dynamics in black-hole spacetimes, respectively. All calculations should be simple enough that they can be done with pen and paper. Chapter 4 builds on this introduction to discuss two exciting topics in current research: critical phenomena in black-hole mergers and the black-hole bomb instability.
Effects of Schwarzschild Geometry on Isothermal Plasma Wave Dispersion
Sharif, M
2007-01-01
The behavior of isothermal plasma waves has been analyzed near the Schwarzschild horizon. We consider a non-rotating background with non-magnetized and magnetized plasmas. The general relativistic magnetohydrodynamical equations for the Schwarzschild planar analogue spacetime with an isothermal state of the plasma are formulated. The perturbed form of these equations is linearized and Fourier analyzed by introducing simple harmonic waves. The determinant of these equations in each case leads to a complex dispersion relation, which gives complex values of the wave number. This has been used to discuss the nature of the waves and their characteristics near the horizon.
Wave rectification in plasma sheaths surrounding electric field antennas
Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Ergun, R. E.; Mozer, F. S.
1994-01-01
Combined measurements of Langmuir or broadband whistler wave intensity and lower-frequency electric field waveforms, all at 10-microsecond time resolution, were made on several recent sounding rockets in the auroral ionosphere. It is found that Langmuir and whistler waves are partically rectified in the plasma sheaths surrounding the payload and the spheres used as antennas. This sheath rectification occurs whenever the high frequency (HF) potential across the sheath becomes of the same order as the electron temperature or higher, for wave frequencies near or above the ion plasma frequency. This rectification can introduce false low-frequency waves into measurements of electric field spectra when strong high-frequency waves are present. Second harmonic signals are also generated, although at much lower levels. The effect occurs in many different plasma conditions, primarily producing false waves at frequencies that are low enough for the antenna coupling to the plasma to be resistive.
Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas
Kaur, Maninder; Nandan Gupta, Devki
2016-11-01
The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.
Effects of Schwarzschild Geometry on Isothermal Plasma Wave Dispersion
Sharif, M.; Sheikh, Umber
2007-01-01
The behavior of isothermal plasma waves has been analyzed near the Schwarzschild horizon. We consider a non-rotating background with non-magnetized and magnetized plasmas. The general relativistic magnetohydrodynamical equations for the Schwarzschild planar analogue spacetime with an isothermal state of the plasma are formulated. The perturbed form of these equations is linearized and Fourier analyzed by introducing simple harmonic waves. The determinant of these equations in each case leads ...
Second harmonic plasma emission involving ion sound waves
Cairns, Iver H.
1987-01-01
The theory for second harmonic plasma emission by the weak turbulence (or random phase) processes L + L + or - S to T, proceeding in two three-wave steps, L + or - S to L prime and L + L prime to T, where L, S and T denote Langmuir, ion sound and electromagnetic waves, respectively, is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes, and constraints on the characteristics of the source plasma, are derived. Limits on the brightness temperature of the radiation and the levels of the L prime and S waves are determined. Expressions for the growth rates and path-integrated wave temperatures are derived for simple models of the wave spectra and source plasma.
Cyclotron waves in a non-neutral plasma column
Energy Technology Data Exchange (ETDEWEB)
Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)
2013-04-15
A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.
The energy density of a Landau damped plasma wave
Best, R. W. B.
1999-01-01
In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite
Does the Decay Wave Propagate Forwards in Dusty Plasmas?
Institute of Scientific and Technical Information of China (English)
谢柏松
2002-01-01
The decay interaction of the ion acoustic wave in a dusty plasma with variable-charge dust grains is studied.Even if strong charging relaxation for dust grains and the short wavelength regime for ion waves are included, it is found that the decay wave must be backward propagating.
Evidence for Langmuir wave collapse in the interplanetary plasma
Kellogg, Paul J.; Goetz, K.; Howard, R. L.; Monson, S. J.
1992-01-01
With the Fast Envelope Sampler part of the URAP experiment on Ulysses, there is observed much rapidly varying structure in plasma waves in the solar wind. Extremely narrow (1 ms) structures observed together with electrostatic Langmuir waves, as well as some broader Langmuir wave packets are discussed.
Linear theory of plasma filled backward wave oscillator
Indian Academy of Sciences (India)
Preeti Vyas; Arti Gokhale; Y Choyal; K P Maheshwari
2001-05-01
An analytical and numerical study of backward wave oscillator (BWO) in linear regime is presented to get an insight into the excitation of electromagnetic waves as a result of the interaction of the relativistic electron beam with a slow wave structure. The effect of background plasma on the BWO instability is also presented.
Surface wave and linear operating mode of a plasma antenna
Energy Technology Data Exchange (ETDEWEB)
Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2015-10-15
The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.
Absorption Phenomena and a Probable Blast Wave in the 13 July 2004 Eruptive Event
Grechnev, V V; Slemzin, V A; Chertok, I M; Kuzmenko, I V; Shibasaki, K; 10.1007/s11207-008-9178-8
2008-01-01
We present a case study of the 13 July 2004 solar event, in which disturbances caused by eruption of a filament from an active region embraced a quarter of the visible solar surface. Remarkable are absorption phenomena observed in the SOHO/EIT 304 A channel; they were also visible in the EIT 195 A channel, in the H-alpha line, and even in total radio flux records. Coronal and Moreton waves were also observed. Multi-spectral data allowed reconstructing an overall picture of the event. An explosive filament eruption and related impulsive flare produced a CME and blast shock, both of which decelerated and propagated independently. Coronal and Moreton waves were kinematically close and both decelerated in accordance with an expected motion of the coronal blast shock. The CME did not resemble a classical three-component structure, probably, because some part of the ejected mass fell back onto the Sun. Quantitative evaluations from different observations provide close estimates of the falling mass, ~3 10^15 g, whic...
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Acoustic measurement method in investigation of optical phenomena in a modulated CO II laser plasma
Wojaczek, Dorota A.; Plinski, Edward F.; Rosinski, Lukasz; Trawinski, Robert
2007-02-01
The paper describes the results of investigations of optical phenomena on an RF excited slab-waveguide CO II laser. The experiments are performed in two optical arrangements: two-mirror resonator and three-mirror one. The main purpose of the experiments is to check possibilities to observe the optical phenomena using a microphone. The laser plasma is modulated with a self-mixing signal in the three-mirror resonator. The response of the microphone is observed and analyzed. Detection of the laser signature phenomenon with the microphone is experimentally considered. The experiments are done at cw regime of the laser. The investigations are performed at pulse operation of the laser, as well. The response of the microphone is analyzed. It is checked how the laser pulse is reconstructed at a profile of the microphone signal. The output laser pulse with a mapped laser signature in the laser pulse profile is compared to the microphone signal shape. The presence of the laser signature at the acoustic signal is investigated.
On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas
Directory of Open Access Journals (Sweden)
L.-N. Hau
2007-09-01
Full Text Available Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.
Testing THEMIS wave measurements against the cold plasma theory
Taubenschuss, Ulrich; Santolik, Ondrej; Le Contel, Olivier; Bonnell, John
2016-04-01
The THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission records a multitude of electromagnetic waves inside Earth's magnetosphere and provides data in the form of high-resolution electric and magnetic waveforms. We use multi-component measurements of whistler mode waves and test them against the theory of wave propagation in a cold plasma. The measured ratio cB/E (c is speed of light in vacuum, B is magnetic wave amplitude, E is electric wave amplitude) is compared to the same quantity calculated from cold plasma theory over linearized Faraday's law. The aim of this study is to get estimates for measurement uncertainties, especially with regard to the electric field and the cold plasma density, as well as evaluating the validity of cold plasma theory inside Earth's radiation belts.
Excitation of surface plasma waves over corrugated slow-wave structure
Indian Academy of Sciences (India)
Ashim P Jain; Jetendra Parashar
2005-08-01
A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between dielectric and slow-wave structure. These slow SPW can couple the microwave energy to the plasma and can sustain the discharge. The efficiency of the power coupling is few per cent and is sensitive to separation between dielectric and slow-wave structure.
Freak waves in negative-ion plasmas: an experiment revisited
Kourakis, Ioannis; Elkamash, Ibrahem; Reville, Brian
2016-10-01
Extreme events in the form of rogue waves (freak waves) occur widely in the open sea. These are space- and time-localised excitations, which appear unexpectedly and are characterised by a significant amplitude. Beyond ocean dynamics, the mechanisms underlying rogue wave formation are now being investigated in various physical contexts, including materials science, nonlinear optics and plasma physics, to mention but a few. We have undertaken an investigation, from first principles, of the occurrence of rogue waves associated with the propagation of electrostatic wavepackets in plasmas. Motivated by recent experimental considerations involving freak waves in negative-ion plasmas (NIP), we have addresed the occurrence of freak waves in NIP from first principles. An extended range of plasma parameter values was identified, where freak wave formation is possible, in terms of relevant plasma parameters. Our results extend -and partly contradict- the underlying assumptions in the interpretation of the aforementioned experiment, where a critical plasma configuration was considered and a Gardner equation approach was adopted. This work was supported from CPP/QUB funding. One of us (I. Elkamash) acknowledges financial support by an Egyptian Government fellowship.
Influence of collisions on parametric instabilities induced by lower hybrid waves in tokamak plasmas
Castaldo, C.; Di Siena, A.; Fedele, R.; Napoli, F.; Amicucci, L.; Cesario, R.; Schettini, G.
2016-01-01
Parametric instabilities induced at the plasma edge by lower hybrid wave power externally coupled to tokamak plasmas have, via broadening of the antenna spectrum, strong influence on the power deposition and current drive in the core. For modeling the parametric instabilities at the tokamak plasma edge in lower hybrid current drive experiments, the effect of the collisions has been neglected so far. In the present work, a specific collisional parametric dispersion relation, useful to analyze these nonlinear phenomena near the lower hybrid antenna mouth, is derived for the first time, based on a kinetic model. Numerical solutions show that in such cold plasma regions the collisions prevent the onset of the parametric instabilities. This result is important for present lower hybrid current drive experiments, as well as in fusion reactor scenarios.
A laboratory search for plasma erosion by Alfven waves
Vincena, S.; Gekelman, W.; Pribyl, P.
2007-12-01
Obliquely propagating shear Alfven waves with transverse wavelengths on the order of the electron inertial length or even the ion gyro-radius are commonly observed in the earth's low-altitude auroral zones. These regions are also replete with observations of electron beams and transversely heated ions. A kinetic treatment of shear Alfven wave-particle interaction reveals how these waves can be responsible for some of the observed particle acceleration. The auroral plasma environment is further enriched by the presence of field-aligned depletions in plasma density, and it has been suggested* that the Alfven waves may, in fact, be the cause of the erosion of ionospheric density. In this laboratory experiment, shear waves will be launched using a variety of proven antennas, and also allowed to grow spontaneously as Drift-Alfven modes in seeded density depletions**. Detailed measurements of the wave magnetic fields in the perpendicular density gradient regions will be presented which demonstrate the generation of short perpendicular wave scales due to the perpendicular gradient in parallel wave phase speed. Miniature in-situ particle diagnostics will also be used to look for electron and ion acceleration. The waves will also be launched into an increasing region of background magnetic field in an attempt to model the ratios of Alfven speed to electron thermal speed, and density gradient scale length to electron inertial length appropriate to the earth's auroral zone. Preliminary results will be presented on the efficacy of shear Alfven waves to self-generate plasma density depletions, or deepen ambient density inhomogeneities. The experiments are conducted at UCLA's Basic Plasma Science Facility in the Large Plasma Device. *Chaston, et al., "Ionospheric erosion by Alfven Waves," JGR, V 111, A03206, 2006. **Penano, et al., "Drift-Alfven fluctuations associated with a narrow pressure striation," Phys. Plasmas, V 7, Issue 1, pp. 144-157 (2000).
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Energy Technology Data Exchange (ETDEWEB)
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
Jacobs, Verne L.
2017-06-01
This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced
Effect of wave localization on plasma instabilities. Ph. D. Thesis
Energy Technology Data Exchange (ETDEWEB)
Levedahl, W.K.
1987-10-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
Nonlinear Langmuir Wave Modulation in Weakly Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans
1978-01-01
influence on the modulation stability of plane Langmuir waves. As in the unmagnetized case, kinetic results were found to deviate considerably from those obtained by using a fluid description for the ion dynamics. With particular attention to ionospheric phenomena, the effect is included of the spatially...... varying electron heating in the amplitude modulated Langmuir wave. For modulations travelling almost perpendicular to the magnetic field, this effect has a profound influence on a modulational instability...
Acceleration of injected electrons by the plasma beat wave accelerator
Joshi, C.; Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Katsouleas, T.; Mori, W. B.
1992-07-01
In this paper we describe the recent work at UCLA on the acceleration of externally injected electrons by a relativistic plasma wave. A two frequency laser was used to excite a plasma wave over a narrow range of static gas pressures close to resonance. Electrons with energies up to our detection limit of 9.1 MeV were observed when 2.1 MeV electrons were injected in the plasma wave. No accelerated electrons above the detection threshold were observed when the laser was operated on a single frequency or when no electrons were injected. Experimental results are compared with theoretical predictions, and future prospects for the plasma beat wave accelerator are discussed.
Relativistic effects on the modulational instability of electron plasma waves in quantum plasma
Indian Academy of Sciences (India)
Basudev Ghosh; Swarniv Chandra; Sailendra Nath Paul
2012-05-01
Relativistic effects on the linear and nonlinear properties of electron plasma waves are investigated using the one-dimensional quantum hydrodynamic (QHD) model for a twocomponent electron–ion dense quantum plasma. Using standard perturbation technique, a nonlinear Schrödinger equation (NLSE) containing both relativistic and quantum effects has been derived. This equation has been used to discuss the modulational instability of the wave. Through numerical calculations it is shown that relativistic effects signiﬁcantly change the linear dispersion character of the wave. Unlike quantum effects, relativistic effects are shown to reduce the instability growth rate of electron plasma waves.
Excitation of Chirping Whistler Waves in a Laboratory Plasma
Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Gekelman, W. N.; Pribyl, P.
2015-12-01
Whistler mode chorus emissions with a characteristic frequency chirp are an important magnetospheric wave, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified. The research was funded by NSF/DOE Plasma Partnership program by grant DE-SC0010578. Work was done at the Basic Plasma Science Facility (BAPSF) also funded by NSF/DOE.
Kinetic simulations of ladder climbing by electron plasma waves
Hara, Kentaro; Barth, Ido; Kaminski, Erez; Dodin, I. Y.; Fisch, N. J.
2017-05-01
The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma parameters, which can be driven by external fields. Depending on whether the wave spectrum is discrete (bounded plasma) or continuous (boundless plasma), this phenomenon is called ladder climbing (LC) or autoresonant acceleration of plasmons. It was first proposed by Barth et al. [Phys. Rev. Lett. 115, 075001 (2015), 10.1103/PhysRevLett.115.075001] based on a linear fluid model. In this paper, LC of electron plasma waves is investigated using fully nonlinear Vlasov-Poisson simulations of collisionless bounded plasma. It is shown that, in agreement with the basic theory, plasmons survive substantial transformations of the spectrum and are destroyed only when their wave numbers become large enough to trigger Landau damping. Since nonlinear effects decrease the damping rate, LC is even more efficient when practiced on structures like quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on Langmuir waves per se.
Alfven waves in a partially ionized two-fluid plasma
Soler, R; Ballester, J L; Terradas, J
2013-01-01
Alfv\\'en waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfv\\'en waves is affected by the interaction between ionized and neutral species. Here we study Alfv\\'en waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cut-off values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mo...
Galiev, Sh. U.
2003-08-01
A non-linear theory of transresonant wave phenomena based on consideration of perturbed wave equations is presented. In particular, the waves in a surface layer of a porous compressible viscoelastoplastic material are considered. For such layers the 3-D equations of deformable media are reduced to 1-D or 2-D perturbed wave equations. A set of approximate, closed-form, general solutions of these equations are presented, which take into account non-linear, dissipative, dispersive, topographic and boundary effects. Then resonant, site and liquefaction effects are analysed. Resonance is considered as a global parameter. Transresonant evolution of the equations is studied. Within the resonant band, utt~a20∇2u and the perturbed wave equations transform into non-linear diffusion equations, either to a basic highly non-linear ordinary differential equation or to the basic algebraic equation for travelling waves. Resonances can destroy predictability and wave reversibility. Surface topography (valleys, islands, etc.) is considered as a series of earthquake-induced resonators. A non-linear transresonant evolution of smooth seismic waves into shock-, jet- and mushroom-like waves and vortices is studied. The amplitude of the resonant waves may be of the order of the square or cube root of the exciting amplitude. Therefore, seismic waves with a moderate amplitude can be amplified very strongly in natural resonators, whereas strong seismic waves can be attenuated. Reports of the 1835 February 20 Chilean earthquake given by Charles Darwin are qualitatively examined using the non-linear theory. The theory qualitatively describes the `shivering' of islands and ridges, volcano spouts and generation of tsunami-like waves and supports Darwin's opinion that these events were part of a single phenomenon. Same-day earthquake/eruption events and catastrophic amplification of seismic waves near the edge of sediment layers are discussed. At the same time the theory can account for recent
Scattering of radio frequency waves by turbulence in fusion plasmas
Ram, Abhay K.
2016-10-01
In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments and incoherent fluctuations due to turbulence are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on RF waves has not been quantified experimentally, there are telltale signs, arising from differences between results from simulations and from experiments, that fluctuations can modify the spectrum of RF waves. Any effect on RF waves in the scrape-off layer can have important experimental consequences. For example, electron cyclotron waves are expected to stabilize the deleterious neoclassical tearing mode (NTM) in ITER. Spectral and polarization changes due to scattering will modify the spatial location and profile of the current driven by the RF waves, thereby affecting the control of NTMs. Pioneering theoretical studies and complementary computer simulations have been pursued to elucidate the impact of fluctuations on RF waves. From the full complement of Maxwell's equations for cold, magnetized plasmas, it is shown that the Poynting flux in the wake of filaments develops spatial structure due to diffraction and shadowing. The uniformity of power flow into the plasma is affected by side-scattering, modifications to the wave spectrum, and coupling to plasma waves other than the incident RF wave. The Snell's law and the Fresnel equations have been reformulated within the context of magnetized plasmas. They are distinctly different from their counterparts in scalar dielectric media, and reveal new and important physical insight into the scattering of RF waves. The Snell's law and Fresnel equations are the basis for the Kirchhoff approximation necessary to determine properties of the scattered waves. Furthermore, this theory is also relevant for studying back
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Energy Technology Data Exchange (ETDEWEB)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Surface Waves in the paritally ionized solar plasma slab
Pandey, B P
2013-01-01
The properties of surface waves in the partially ionized, incompressible magnetized plasma slab are investigated in the present work. The waves are affected by the non ideal MHD effects which causes the finite drift of the magnetic field in the medium. When the finite drift of the magnetic field is ignored, the characteristics of the wave propagation in the partially ionized plasma fluid is similar to the ideal MHD except now the propagation properties depend on the fractional ionization of the medium. In the presence of Hall diffusion, the propagation of the sausage and kink surface waves depends on the level of fractional ionization of the medium. When both the Hall and Pedersen diffusion are present in the medium, the waves undergoes damping. For typical solar parameters, waves may damp over few minutes.
Electromagnetic ion cyclotron waves in the plasma depletion layer
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Energy Technology Data Exchange (ETDEWEB)
Tsuda, M.; Ono, K.; Tsuchihashi, M.; Hanazaki, M.; Komemura, T. [Mitsubishi Electric Corp., Tokyo (Japan)
1998-11-01
A new-type microwave plasma source has been developed for materials processing. The plasma reactor employed a launcher of azimuthally symmetric surface waves at a frequency of 2.45 GHz and also magnetic multicusp fields around the reactor chamber walls. This configuration yielded high-density (Ne {>=} 10{sup 11}cm{sup -3}) plasmas sustained by surface waves even at low gas pressures below 10 m Torr, following easy plasma ignition by electron cyclotron resonance (ECR) discharges. Electrical and optical diagnostics were made to obtain the plasma properties in Ar. It was shown that a transition from ECR excited to surface-wave excited plasmas occurs under conditions where the plasma electron density exceeds a critical value of Ne-1 times 10{sup 11}cm{sup -3}. 21 refs., 14 figs.
Polar Plasma Wave Investigation Data Analysis in the Extended Mission
Gurnett, Donald A.
2004-01-01
The low latitude boundary layer (LLBL) is a region where solar wind momentum and energy is transferred to the magnetosphere. Enhanced "broadband" electric plasma waves from less than 5 Hz to 10(exp 5) Hz and magnetic waves from less than 5 Hz to the electron cyclotron frequency are characteristic of the LLBL. Analyses of Polar plasma waves show that these "broadband" waves are actually discrete electrostatic and electromagnetic modes as well as solitary bipolar pulses (electron holes). It is noted that all wave modes can be generated by approx. 100 eV to approx. 10 keV auroral electrons and protons. We will review wave-particle interactions, with focus on cross-diffusion rates and the contributions of such interactions toward the formation of the boundary layer. In summary, we will present a scenario where the global solar wind-magnetosphere interaction is responsible for the auroral zone particle beams, and hence for the generation of plasma waves and the formation of the boundary layer. It is speculated that all planetary magnetospheres will have boundary layers and they will be characterized by similar currents and plasma wave modes.
Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.
2016-08-01
The characteristics of the nonlinear oblique propagation of ion acoustic solitary waves in unmagnetized plasmas consisting of Boltzmann positrons, trapped electrons and ions are investigated. The modified Kadomtsev-Petviashivili ( m K P ) equation is derived employing the reductive perturbation technique. The parametric effects on phase velocity, Sagdeev potential, amplitude and width of solitons, and electrostatic ion acoustic solitary structures are graphically presented with the relevant physical explanations. This study may be useful for the better understanding of physical phenomena concerned in plasmas in which the effects of trapped electrons control the dynamics of wave.
Surface waves on a quantum plasma half-space
Lázár, M; Smolyakov, A
2007-01-01
Surface modes are coupled electromagnetic/electrostatic excitations of free electrons near the vacuum-plasma interface and can be excited on a sufficiently dense plasma half-space. They propagate along the surface plane and decay in either sides of the boundary. In such dense plasma models, which are of interest in electronic signal transmission or in some astrophysical applications, the dynamics of the electrons is certainly affected by the quantum effects. Thus, the dispersion relation for the surface wave on a quantum electron plasma half-space is derived by employing the quantum hydrodynamical (QHD) and Maxwell-Poison equations. The QHD include quantum forces involving the Fermi electron temperature and the quantum Bohm potential. It is found that, at room temperature, the quantum effects are mainly relevant for the electrostatic surface plasma waves in a dense gold metallic plasma.
Analysis of non-equilibrium phenomena in inductively coupled plasma generators
Zhang, W.; Lani, A.; Panesi, M.
2016-07-01
This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.
Interaction of linear and nonlinear ion-sound waves with inclusions of dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Grimalsky, V V [National Institute for Astrophysics, Optics, and Electronics (INAOE), Z.P. 72000, Puebla (Mexico); Koshevaya, S V [Autonomous University of Morelos (UAEM), FCQeI, CIICAp, Z.P. 62210, Cuernavaca, Mor. (Mexico); Enriquez, R Perez- [UNAM, Center of Geoscience, Juriquilla 1-742, Z.P. 76230, Que. (Mexico); Kotsarenko, A N [UNAM, Center of Geoscience, Juriquilla 1-742, Z.P. 76230, Que. (Mexico)
2006-09-15
Diverse phenomena exist in the ionosphere caused by the presence of dusty plasma objects. These have a bearing on problems of space communication and possibly on the Earth's weather, among others. Therefore, it is very important to study them so that many questions on the subject can be answered. In this paper, the interaction of plasma waves with these objects is studied and some instrumentation to measure such interactions is proposed. In particular, the interaction of ion-sound waves (ISW) by non-soliton and soliton pulses propagating in dusty plasma is investigated. It is shown that inclusions of dusty components of the ionosphere plasma behave as resonators for non-soliton pulses, so that ISW are excited. Korteveg-de Vries (KdV) solitons practically do not resonate with the inclusions of dusty plasma. Instead, the presence of dusty plasma inclusions can lead to the presence of transverse instabilities and the eventual destruction of the KdV solitons.
Surface plasma waves over bismuth–vacuum interface
Indian Academy of Sciences (India)
Ashim P Jain; J Parashar
2003-09-01
A surface plasma wave (SPW) over bismuth–vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW cutoff=$_{p}/\\sqrt{2(_{L}+)}$ lies in the far infrared region and can be accessed using free electron laser. The damping rate of waves at low temperatures is low. The surface plasma wave may be excited by an electron beam of current ∼ 100 mA propagating parallel to the interface in its close proximity.
Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide
DEFF Research Database (Denmark)
Juul Rasmussen, Jens
1978-01-01
The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing...... the long-time slow modulation of the wave amplitude. From this equation the amplitude-dependent frequency and wavenumber shifts are calculated, and it is found that the electron waves with short wavelengths are modulationally unstable with respect to long-wavelength, low-frequency perturbations...
Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design
Directory of Open Access Journals (Sweden)
Darold G. Martin
2013-06-01
Full Text Available The present paper shows the application of a three-dimensional coupled electrical, thermal, mechanical finite element macro-scale modeling framework of Spark Plasma Sintering (SPS to an actual problem of SPS tooling overheating, encountered during SPS experimentation. The overheating phenomenon is analyzed by varying the geometry of the tooling that exhibits the problem, namely by modeling various tooling configurations involving sequences of disk-shape spacers with step-wise increasing radii. The analysis is conducted by means of finite element simulations, intended to obtain temperature spatial distributions in the graphite press-forms, including punches, dies, and spacers; to identify the temperature peaks and their respective timing, and to propose a more suitable SPS tooling configuration with the avoidance of the overheating as a final aim. Electric currents-based Joule heating, heat transfer, mechanical conditions, and densification are imbedded in the model, utilizing the finite-element software COMSOL™, which possesses a distinguishing ability of coupling multiple physics. Thereby the implementation of a finite element method applicable to a broad range of SPS procedures is carried out, together with the more specific optimization of the SPS tooling design when dealing with excessive heating phenomena.
Collisionless and Kinetic Phenomena of Interpenetrating Plasma Streams via Neutron Self-Emission
Ross, J. S.; Higginson, D. P.; Hatarik, R.; Link, A.; Park, H.-S.; Ryutov, D. D.; Weber, S. V.; Wilks, S. C.; Fiuza, F.; Li, C. K.; Sio, H.; Zylstra, A. B.
2016-10-01
Recent NIF experiments focus on the generation and diagnosis of collisionless shocks relevant to astrophysical phenomena such as supernova remnants and gamma ray bursts. In the experiments, two opposing CD laser-generated plasmas flow into each other at high velocity ( 1000 km/s). As the ion-ion collisional mean-free-path is near to or greater than the system size, the flows interpenetrate and neutrons are generated via beam-beam deuteron interactions. We model this system using the hybrid particle-in-cell code LSP with electric and magnetic fields suppressed to capture the full temporal and spatial size of the experiment. These simulations show good agreement with the yield, spectrum and spatial/temporal profiles of the neutrons observed in the experiment. When one CD foil is replaced with CH an asymmetry develops in the neutron spectrum that is caused by the Doppler shift related to the flow velocity. Additionally, in this case the neutron yield is found to be lower in the simulations than is observed experimentally, which indicates that the deuterons thermalize more efficiently in the experiment. This suggests that another mechanism is responsible for this yield enhancement other than small angle scattering since it is included in the simulations. Possible mechanisms such as scattering across Weibel-mediated magnetic filaments and large-angle Coulomb scattering will be evaluated and discussed. Prepared by LLNL under Contract DE-AC52-07NA27344.
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Electrostatic solitary waves in dusty pair-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Misra, A. P. [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan-731 235, West Bengal (India); Adhikary, N. C. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati-781035, Assam (India)
2013-10-15
The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the “fast” and “slow” waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass (m) and temperature (T) ratios of negative to positive ions, as well as the effects of immobile charged dusts (δ). For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons, are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves (SWs) with only the negative potential. The results may be useful for the excitation of SWs in laboratory dusty pair-ion plasmas, electron-free industrial plasmas as well as for observation in space plasmas where electron density is negligibly small compared to that of negative ions.
Instability wave control in turbulent jet by plasma actuators
Kopiev, V. F.; Akishev, Y. S.; Belyaev, I. V.; Berezhetskaya, N. K.; Bityurin, V. A.; Faranosov, G. A.; Grushin, M. E.; Klimov, A. I.; Kopiev, V. A.; Kossyi, I. A.; Moralev, I. A.; Ostrikov, N. N.; Taktakishvili, M. I.; Trushkin, N. I.; Zaytsev, M. Yu
2014-12-01
Instability waves in the shear layer of turbulent jets are known to be a significant source of jet noise, which makes their suppression important for the aviation industry. In this study we apply plasma actuators in order to control instability waves in the shear layer of a turbulent air jet at atmospheric pressure. Three types of plasma actuators are studied: high-frequency dielectric barrier discharge, slipping surface discharge, and surface barrier corona discharge. Particle image velocimetry measurements of the shear layer demonstrate that the plasma actuators have control authority over instability waves and effectively suppress the instability waves artificially generated in the shear layer. It makes these actuators promising for application in active control systems for jet noise mitigation.
Eulerian simulations of collisional effects on electrostatic plasma waves
Pezzi, Oreste; Perrone, Denise; Veltri, Pierluigi
2013-01-01
The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attach, both from the theoretical and the numerical point of view, and which requires in general to approximate the original collisional Landau integral by simplified differential operators in reduced dimensionality. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear form. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator...
Surface waves in the magnetized, collisional dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Pandey, B. P. [Department of Physics, Astronomy and Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney NSW 2109 (Australia); Vladimirov, S. V. [School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan); Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 (Russian Federation); Ishihara, O. [Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan)
2013-10-15
The properties of the low frequency surface waves in inhomogeneous, magnetized collisional complex dusty plasma are investigated in this work. The inhomogeneity is modelled by the two distinct regions of the dusty medium with different dust densities. The external magnetic field is assumed to be oriented along the interface dividing the two medium. It is shown that the collisional momentum exchange that is responsible for the relative drift between the plasma particles affects the propagation of the surface waves in the complex plasma via the Hall drift of the magnetic fluctuations. The propagation properties of the sausage and kink waves depend not only on the grain charge and size distribution but also on the ambient plasma thermal conditions.
Low-Frequency Waves in Cold Three-Component Plasmas
Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong
2016-09-01
The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS
Advanced Accelerators: Particle, Photon and Plasma Wave Interactions
Energy Technology Data Exchange (ETDEWEB)
Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)
2017-06-29
The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.
Damping of Slow Magnetoacoustic Waves in an Inhomogeneous Coronal Plasma
Indian Academy of Sciences (India)
Nagendra Kumar; Pradeep Kumar; Shiv Singh; Anil Kumar
2008-03-01
We study the propagation and dissipation of slow magnetoacoustic waves in an inhomogeneous viscous coronal loop plasma permeated by uniform magnetic field. Only viscosity and thermal conductivity are taken into account as dissipative processes in the coronal loop. The damping length of slow-mode waves exhibit varying behaviour depending upon the physical parameters of the loop in an active region AR8270 observed by TRACE. The wave energy flux associated with slow magnetoacoustic waves turns out to be of the order of 106 erg cm-2 s-1 which is high enough to replace the energy lost through optically thin coronal emission and the thermal conduction belowto the transition region. It is also found that only those slow-mode waves which have periods more than 240 s provide the required heating rate to balance the energy losses in the solar corona. Our calculated wave periods for slow-mode waves nearly match with the oscillation periods of loop observed by TRACE.
Energy Technology Data Exchange (ETDEWEB)
Eriksson, A.I.; Bostroem, R.
1995-04-01
Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs.
Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view
Laval, Guy; Pesme, Denis; Adam, Jean-Claude
2016-11-01
The first researches on nuclear fusion for energy applications marked the entrance of hot plasmas into the laboratory. It became necessary to understand the behavior of such plasmas and to learn how to manipulate them. Theoreticians and experimentalists, building on the foundations of empirical laws, had to construct this new plasma physics from first principles and to explain the results of more and more complicated experiments. Along this line, two important topics emerged: wave-particle and wave-wave interactions. Here, their history is recalled as it has been lived by a French team from the end of the sixties to the beginning of the twenty-first century.
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn [Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070 (China)
2015-09-15
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.
Saturation of Langmuir waves in laser-produced plasmas
Energy Technology Data Exchange (ETDEWEB)
Baker, K.L.
1996-04-01
This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.
Effect of Bohm quantum potential in the propagation of ion-acoustic waves in degenerate plasmas
Hasan, M. M.; Hossen, M. A.; Rafat, A.; Mamun, A. A.
2016-10-01
A theoretical investigation has been carried out on the propagation of the ion-acoustic (IA) waves in a relativistic degenerate plasma containing relativistic degenerate electron and positron fluids in the presence of inertial non-relativistic light ion fluid. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and mixed mK-dV (mmK-dV) equations are derived by adopting the reductive perturbation method. In order to analyze the basic features (phase speed, amplitude, width, etc.) of the IA solitary waves (SWs), the SWs solutions of the K-dV, mK-dV, and mmK-dV are numerically analyzed. It is found that the degenerate pressure, inclusion of the new phenomena like the Fermi temperatures and quantum mechanical effects (arising due to the quantum diffraction) of both electrons and positrons, number densities, etc., of the plasma species remarkably change the basic characteristics of the IA SWs which are found to be formed either with positive or negative potential. The implication of our results in explaining different nonlinear phenomena in astrophysical compact objects, e.g., white dwarfs, neutron stars, etc., and laboratory plasmas like intense laser-solid matter interaction experiments, etc., are mentioned.
Secondary Fast Magnetoacoustic Waves Trapped in Randomly Structured Plasmas
Yuan, Ding; Li, Bo; Walsh, Robert W.
2016-09-01
Fast magnetoacoustic waves are an important tool for inferring parameters of the solar atmosphere. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas that mimic the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the speed of the fast wave, we quantify the properties of secondary waves by examining the dependence of the average temporal period (\\bar{p}) on the initial pulse width (w 0) and studying the density contrast ({δ }ρ ) and correlation length (L c ) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, {δ }ρ does not alter \\bar{p} significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when {δ }ρ is small but have a smoothing effect when {δ }ρ is sufficiently large. We found that \\bar{p} scales linearly with L c and that the scaling factor is larger for a narrower pulse. However, in terms of the absolute values of \\bar{p}, broader pulses generate secondary waves with longer periods, and this effect is stronger in random plasmas with shorter correlation lengths. Secondary waves carry the signatures of both the leading wave pulse and the background plasma. Our study may find applications in magnetohydrodynamic seismology by exploiting the secondary waves detected in the dimming regions after coronal mass ejections or extreme ultraviolet waves.
Analytical Formulation of Equatorial Standing Wave Phenomena: Application to QBO and ENSO
Pukite, P. R.
2016-12-01
Key equatorial climate phenomena such as QBO and ENSO have never been adequately explained as deterministic processes. This in spite of recent research showing growing evidence of predictable behavior. This study applies the fundamental Laplace tidal equations with simplifying assumptions along the equator — i.e. no Coriolis force and a small angle approximation. To connect the analytical Sturm-Liouville results to observations, a first-order forcing consistent with a seasonally aliased Draconic or nodal lunar period (27.21d aliased into 2.36y) is applied. This has a plausible rationale as it ties a latitudinal forcing cycle via a cross-product to the longitudinal terms in the Laplace formulation. The fitted results match the features of QBO both qualitatively and quantitatively; adding second-order terms due to other seasonally aliased lunar periods provides finer detail while remaining consistent with the physical model. Further, running symbolic regression machine learning experiments on the data provided a validation to the approach, as it discovered the same analytical form and fitted values as the first principles Laplace model. These results conflict with Lindzen's QBO model, in that his original formulation fell short of making the lunar connection, even though Lindzen himself asserted "it is unlikely that lunar periods could be produced by anything other than the lunar tidal potential".By applying a similar analytical approach to ENSO, we find that the tidal equations need to be replaced with a Mathieu-equation formulation consistent with describing a sloshing process in the thermocline depth. Adapting the hydrodynamic math of sloshing, we find a biennial modulation coupled with angular momentum forcing variations matching the Chandler wobble gives an impressive match over the measured ENSO range of 1880 until the present. Lunar tidal periods and an additional triaxial nutation of 14 year period provide additional fidelity. The caveat is a phase
Investigation on laser accelerators. Plasma beat wave accelerators
Energy Technology Data Exchange (ETDEWEB)
Miura, Akihiko; Miyamoto, Yasuaki; Hagiwara, Masayoshi; Suzuki, Mitsutoshi; Sudo, Osamu [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works
1998-04-01
Laser accelerator technology has characteristics of high energy, compact, short pulse and high luminescence{center_dot}low emittance. This means potential many applications in wide ranges of fields as well as high energy and nuclear physics. High power short laser pulses are injected to a plasma in the typical example of laser accelerators. Large electric fields are induced in the plasma. Electrons in the plasma are accelerated with the ponderomotive force of the electric field. The principles of interaction on beat wave, wakefield accelerators, inverse free electron laser and inverse Cherenkov radiation are briefly introduced. The overview of plasma beat wave accelerator study is briefly described on the programs at Chalk River Laboratories(Canada), UCLA(USA), Osaka Univ. (Japan) and Ecole Polytechnique (France). Issues of the plasma beat wave accelerator are discussed from the viewpoint of application. Existing laser technologies of CO{sub 2}, YAG and YFL are available for the present day accelerator technology. An acceleration length of beat wave interaction is limited due to its phase condition. Ideas on multi-staged acceleration using the phasing plasma fiber are introduced. (Y. Tanaka)
Wave-Breaking Phenomena and Existence of Peakons for a Generalized Compressible Elastic-Rod Equation
Directory of Open Access Journals (Sweden)
Xiaolian Ai
2014-01-01
Full Text Available Consideration in this paper is the Cauchy problem of a generalized hyperelastic-rod wave equation. We first derive a wave-breaking mechanism for strong solutions, which occurs in finite time for certain initial profiles. In addition, we determine the existence of some new peaked solitary wave solutions.
Ion-acoustic cnoidal waves in a quantum plasma
Mahmood, Shahzad
2016-01-01
Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter $H_{e}$ which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.
Excitation of Chirping Whistler Waves in a Laboratory Plasma.
Van Compernolle, B; An, X; Bortnik, J; Thorne, R M; Pribyl, P; Gekelman, W
2015-06-19
Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density, and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified.
Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma
Martines, E; Cavazzana, R; Adámek, J; Antoni, V; Serianni, G; Spolaore, M; Vianello, N
2014-01-01
A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.
Some notes on ideology of waves in plasmas
Soshnikov, V N
2002-01-01
Our last three papers provide an occasion to make some brief notes on ideology of waves in plasmas and to rehabilitate Vlasov prescription to calculate relevant logarithmically divergent integrals in the principal value sense. In this approach asymptotical solutions of plasma oscillations are selected according to self-consistent boundary physical conditions. Landau damping is absent in this case by definition. Boundary electrical field together with conditions of absence of unphysical backward and kinematical waves define single-valued dependence of boundary distribution function on electron velocity \\vec{v} in the case of transversal waves and on the surface break of the normal electrical field in the case of longitudinal oscillations. We have proposed physically more justified modified iteration procedure of collisional damping calculation and demonstrated some results of damping decrements calculations in a low-collision electron-ion plasma. Dispersion smearing of both longitudinal and transversal high-fr...
The wave breaking phenomena as a tool for environmental friendly shore protection.
Kabdaşli, M S; Türker, U
2002-01-01
An experimental study was carried out to evaluate the rate of energy dissipation during wave breaking and the dependence of dissipation on the breaker type. The splash mechanism that occurs just after the breaking is also examined based on knowledge of external and macroscopic properties of breakers only. During the experiments, it is observed that most of the energy is dissipated while the water jet formed during wave breaking hits the water surface. It has been found that the percentage of wave energy dissipated in plunging type waves is larger than in spilling type waves.
Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs
Directory of Open Access Journals (Sweden)
Zhi-Bin Wang
2016-05-01
Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.
Solar Wind Strahl Broadening by Self-Generated Plasma Waves
Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.
2013-01-01
This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.
Accumulative coupling between magnetized tenuous plasma and gravitational waves
Zhang, Fan
2016-07-01
We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) traveling through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW comoves with the GW and absorbs its energy to grow over time, creating an essentially force-free counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is comparable to the vacuum case, but the associated current may offer a more sensitive alternative to photodetection when designing experiments for detecting/constraining high-frequency gravitational waves. Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical gravitational waves that are generated directly by the latter as a second-order phenomenon.
Accumulative coupling between magnetized tenuous plasma and gravitational waves
Zhang, Fan
2016-01-01
We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) travelling through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW co-moves with the GW and absorbs its energy to grow over time, creating an essentially force-free counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is comparable to the vacuum case, but the associated current may offer a more sensitive alternative to photodetection when designing experiments for detecting/constraining high frequency gravitational waves. Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical gravitational waves, that are generated directly by the latter as a second order phenomenon.
Full-wave solution of short impulses in inhomogeneous plasma
Indian Academy of Sciences (India)
Orsolya E Ferencz
2005-02-01
In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened in [1]. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation.
Theoretical and Experimental Study of Scattering of a Plane Wave by an Inhomogeneous Plasma Sphere
Institute of Scientific and Technical Information of China (English)
SONG Fa-Lun; CAO Jin-Xiang; WANG Ge; WANG Yan; ZHU Ying; ZHU Jian; WANG Liang; NIU Tian-Ye
2006-01-01
@@ Scattering of electromagnetic waves by an inhomogeneous plasma sphere has been studied theoretically and experimentally. The offset angles of electromagnetic waves caused by the plasma sphere have been observed experimentally. The effects of the electromagnetic wave frequency and plasma density on the offset angle are discussed. The plasma density is estimated with the offset angle.
Laser-driven plasma waves in capillary tubes.
Wojda, F; Cassou, K; Genoud, G; Burza, M; Glinec, Y; Lundh, O; Persson, A; Vieux, G; Brunetti, E; Shanks, R P; Jaroszynski, D; Andreev, N E; Wahlström, C-G; Cros, B
2009-12-01
The excitation of plasma waves over a length of up to 8 cm is demonstrated using laser guiding of intense laser pulses through hydrogen-filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift-measured as a function of filling pressure, capillary tube length, and incident laser energy-is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range of 1-10 GV/m.
On the rogue wave propagation in ion pair superthermal plasma
Energy Technology Data Exchange (ETDEWEB)
Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A. [Physics Department, College of Sciences and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K., E-mail: emadshewy@yahoo.com; Elwakil, S. A. [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt)
2016-02-15
Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.
Refraction of VHF radio waves in artificial plasma formations
Kashirin, A. I.; Kliueva, N. M.; Mikhailik, P. P.; Chkalov, V. G.
1991-09-01
The defocusing refraction of VHF waves during the radio occultation of artificial plasma clouds in the ionosphere is calculated in the framework of the geometrical-optics approximation. The possibility of determining the main cloud parameters from characteristic power variations of the received radio waves in the case of a monotonic change in the sighting parameter during the experiment is demonstrated. Results of a rocket experiment implementing this method are presented.
Merkel, A; Tournat, V; Gusev, V
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.
Collisionless damping of electron waves in non-Maxwellian plasma
Soshnikov, V. N.
2007-01-01
In this paper we have criticized the so-called Landau damping theory. We have analyzed solutions of the standard dispersion equations for longitudinal (electric) and transversal (electromagnetic and electron) waves in half-infinite slab of the uniform collisionless plasmas with non-Maxwellian and Maxwellian-like electron energy distribution functions. One considered the most typical cases of both the delta-function type distribution function (the plasma stream with monochromatic electrons) an...
Phase conjugation by four-wave mixing in inhomogeneous plasmas
Williams, Edward A.; Lininger, Diana M.; Goldman, Martin V.
1989-01-01
The effects of density, temperature, and velocity gradients on four-wave mixing (FWM) in a plasma are investigated. A fluid model is used in which the stimulated Brillouin terms are included, but pump depletion is neglected. The steady state phase conjugate reflectivity and signal transmission coefficients are calculated and discussed for both degenerate and resonant FWM. The substantial effects of inhomogeneity on the use of FWM as a plasma diagnostic are discussed.
Electron plasma wave filamentation in the kinetic regime
Lushnikov, Pavel; Rose, Harvey; Silantyev, Denis
2016-10-01
We consider nonlinear electron plasma wave (EPW) dynamics in the kinetic wavenumber regime, 0.25 Bernstein-Greene-Kruskal (BGK) mode. Transverse perturbations of any of these initial conditions grow with time eventually producing strongly nonlinear filamentation followed by plasma turbulence. We compared these simulations with the theoretical results on growth rates of the transverse instability BGK mode showing the satisfactory agreement. Supported by the New Mexico Consortium and NSF DMS-1412140.
Harmonics Effect on Ion-Bulk Waves in CH Plasmas
Feng, Q S; Liu, Z J; Cao, L H; Xiao, C Z; Wang, Q; He, X T
2016-01-01
The harmonics effect on ion-bulk (IBk) waves has been researched by Vlasov simulation. The condition of excitation of a large-amplitude IBk waves is given to explain the phenomenon of strong short-wavelength electrostatic activity in solar wind. When $k$ is much lower than $k_{lor}/2$ ($k_{lor}$ is the wave number at loss-of-resonance point), the IBk waves will not be excited to a large amplitude, because a large part of energy will be spread to harmonics. The nature of nonlinear IBk waves in the condition of $k
Energy Technology Data Exchange (ETDEWEB)
Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)
2016-11-15
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.
2016-11-01
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
Energy Technology Data Exchange (ETDEWEB)
Anderson, M. W.; O' Neil, T. M.; Dubin, D. H. E.; Gould, R. W. [Physics Department, University of California at San Diego, La Jolla, California 92093 (United States)
2011-10-15
In the cold-fluid dispersion relation {omega}={omega}{sub p}/[1+(k{sub perpendicular}/k{sub z}){sup 2}]{sup 1/2} for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k{sub perpendicular}/k{sub z}. As a result, for any frequency {omega}<{omega}{sub p}, there are infinitely many degenerate waves, all having the same value of k{sub perpendicular}/k{sub z}. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr={+-}({omega}{sub p}{sup 2}/{omega}{sup 2}-1){sup 1/2}. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.
The incomplete plasma dispersion function: properties and application to waves in bounded plasmas
Baalrud, Scott D.
2013-01-01
The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near...
Evolution of Modulated Dispersive Electron Waves in a Plasma
DEFF Research Database (Denmark)
Sugai, H.; Lynov, Jens-Peter; Michelsen, Poul
1979-01-01
The linear propagation of amplitude-modulated electron waves was examined in a low-density Q-machine plasma. Three effects of the strong dispersion on the modulated wave have been demonstrated: (i) a wavepacket expands along its direction of propagation, followed by a shift of the frequency through...... the wavepacket, (ii) the number of oscillations in the temporally observed packet is not identical with that in the spatially observed packet and (iii) continuously modulated waves exhibit recurrence of modulation. The experimental results agree with both a simple analysis based on the Schrodinger equation...
Directory of Open Access Journals (Sweden)
K. Sigsbee
2004-07-01
Full Text Available We present the statistics of Langmuir wave amplitudes in the Earth's foreshock using Cluster Wideband Data (WBD Plasma Wave Receiver electric field waveforms from spacecraft 2, 3 and 4 on 26 March 2002. The largest amplitude Langmuir waves were observed by Cluster near the boundary between the foreshock and solar wind, in agreement with earlier studies. The characteristics of the waves were similar for all three spacecraft, suggesting that variations in foreshock structure must occur on scales greater than the 50-100km spacecraft separations. The electric field amplitude probability distributions constructed using waveforms from the Cluster WBD Plasma Wave Receiver generally followed the log-normal statistics predicted by stochastic growth theory for the event studied. Comparison with WBD receiver data from 17 February 2002, when spacecraft 4 was set in a special manual gain mode, suggests non-optimal auto-ranging of the instrument may have had some influence on the statistics.
Plasma wave instabilities in nonequilibrium graphene
DEFF Research Database (Denmark)
Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka
2016-01-01
We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....
RF wave propagation and scattering in turbulent tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Horton, W., E-mail: wendell.horton@gmail.com; Michoski, C. [Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78654 (United States); Peysson, Y.; Decker, J. [CEA, IRFM, 13108, Saint-Paul, Durance Cedex (France)
2015-12-10
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
Estimation of Plasma Density by Surface Plasmons for Surface-Wave Plasmas
Institute of Scientific and Technical Information of China (English)
CHEN Zhao-Quan; LIU Ming-Hai; LAN Chao-Hui; CHEN Wei; LUO Zhi-Qing; HU Xi-Wei
2008-01-01
@@ An estimation method of plasma density based on surface plasmons theory for surface-wave plasmas is proposed. The number of standing-wave is obtained directly from the discharge image, and the propagation constant is calculated with the trim size of the apparatus in this method, then plasma density can be determined with the value of 9.1 × 1017 m-3. Plasma density is measured using a Langmuir probe, the value is 8.1 × 1017 m-3 which is very close to the predicted value of surface plasmons theory. Numerical simulation is used to check the number of standing-wave by the finite-difference time-domain (FDTD) method also. All results are compatible both of theoretical analysis and experimental measurement.
Relativistic nonlinearity and wave-guide propagation of rippled laser beam in plasma
Indian Academy of Sciences (India)
R K Khanna; K Baheti
2001-06-01
In the present paper we have investigated the self-focusing behaviour of radially symmetrical rippled Gaussian laser beam propagating in a plasma. Considering the nonlinearity to arise from relativistic phenomena and following the approach of Akhmanov et al, which is based on the WKB and paraxial-ray approximation, the self-focusing behaviour has been investigated in some detail. The effect of the position and width of the ripple on the self-focusing of laser beam has been studied for arbitrary large magnitude of nonlinearity. Results indicate that the medium behaves as an oscillatory wave-guide. The self-focusing is found to depend on the position parameter of ripple as well as on the beam width. Values of critical power has been calculated for different values of the position parameter of ripple. Effects of axially and radially inhomogeneous plasma on self-focusing behaviour have been investigated and presented here.
Magneto-Hydro-Dynamic Waves In The Collisionless Space Plasma
Dzhalilov, N. S.; Kuznetsov, V. D.; Staude, J.
2007-12-01
The instability of magneto-hydro-dynamic (MHD) waves in an anisotropic, collisionless, rarefied hot plasma is studied. Anisotropy properties of such a plasma are caused by a strong magnetic field, when the thermal gas pressures across and along the field become unequal. Moreover, there appears an anisotropy of the thermal fluxes. The study of the anisotropy features of the plasma are motivated by observed solar coronal data. The 16 moments equations derived from the Boltzmann-Vlasov kinetic equation are used. These equations strongly differ from the usual isotropic MHD case. For linear disturbances the wave equations in homogenous anisotropic plasma are deduced. The general dispersion relation for the incompressible wave modes is derived, solved and analyzed. It is shown that a wide wave spectrum with stable and unstable behavior is possible, in contrast to the usual isotropic MHD case. The dependence of the instability on magnetic field, pressure anisotropy, and heat fluxes is investigated. The general instability condition is obtained. The results can be applied to the theory of solar and stellar coronal heating, to wind models and in other modeling, where the collisionless approximation is valid.
Electrostatic solitary waves in dusty pair-ion plasmas
Misra, A P
2013-01-01
The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the "fast" and "slow" waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass $(m)$ and temperature $(T)$ ratios of negative to positive ions, as well as the effects of immobile charged dusts $(\\delta)$. For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique (RPT) is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves ...
Surface Wave Propagation in non--ideal plasmas
Pandey, B P
2015-01-01
The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the nonideal magnetohydrodynamic effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few percent) due to the compressibility of the medium in both ideal as well as Hall diffusion dominated regimes. However, unlike ideal regime, only waves below certain cut off frequency can propagate in the medium in Hall dominated regime. This cut off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut off is introduce...
Revisiting linear plasma waves for finite value of the plasma parameter
Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren
2010-11-01
We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.
A Schamel equation for ion acoustic waves in superthermal plasmas
Energy Technology Data Exchange (ETDEWEB)
Williams, G., E-mail: gwilliams06@qub.ac.uk; Kourakis, I. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen' s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Verheest, F. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, M. A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Anowar, M. G. M. [Department of Physics, Begum Rokeya University, Rangpur, Rangpur-5400 (Bangladesh)
2014-09-15
An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.
Nonextensive dust acoustic waves in a charge varying dusty plasma
Bacha, Mustapha; Tribeche, Mouloud
2012-01-01
Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.
Modulated envelope localized wavepackets associated with electrostatic plasma waves
Kourakis, I; Kourakis, Ioannis; Shukla, Padma Kant
2004-01-01
The nonlinear amplitude modulation of known electrostatic plasma modes is examined in a generic manner, by applying a collisionless fluid model. Both cold (zero-temperature) and warm fluid descriptions are discussed and the results are compared. The moderately nonlinear oscillation regime is investigated by applying a multiple scale technique. The calculation leads to a Nonlinear Schrodinger-type Equation (NLSE), which describes the evolution of the slowly varying wave amplitude in time and space. The NLSE admits localized envelope (solitary wave) solutions of bright- (pulses) or dark- (holes, voids) type, whose characteristics (maximum amplitude, width) depend on intrinsic plasma parameters. Effects like amplitude perturbation obliqueness, finite temperature and defect (dust) concetration are explicitly considered. The relevance with similar highly localized modulated wave structures observed during recent satellite missions is discussed.
Solitary and freak waves in superthermal plasma with ion jet
Abdelsalam, U. M.; Abdelsalam
2013-06-01
The nonlinear solitary and freak waves in a plasma composed of positive and negative ions, superthermal electrons, ion beam, and stationary dust particles have been investigated. The reductive perturbation method is used to obtain the Korteweg-de Vries (KdV) equation describing the system. The latter admits solitary wave solution, while the dynamics of the modulationally unstable wavepackets described by the KdV equation gives rise to the formation of freak/rogue excitation described by the nonlinear Schrödinger equation. In order to show that the characteristics of solitary and freak waves are influenced by plasma parameters, relevant numerical analysis of appropriate nonlinear solutions are presented. The results from this work predict nonlinear excitations that may associate with ion jet and superthermal electrons in Herbig-Haro objects.
Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet
Laroussi, Mounir; Razavi, Hamid
2015-09-01
Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.
Coherent structures and transport in drift wave plasma turbulence
DEFF Research Database (Denmark)
Korsholm, Søren Bang
for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa- Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa......-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron......Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important...
Helicon waves in uniform plasmas. II. High m numbers
Energy Technology Data Exchange (ETDEWEB)
Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)
2015-09-15
Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B{sub 0}. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel [“Helicon modes in uniform plasmas. I. Low m modes,” Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name “helicon” to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B{sub 0}. The field lines near the axis of helicons are perpendicular to B{sub 0} and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B{sub 0}. The radiation efficiency of multipole antennas has been found to decrease with m.
Bernstein wave aided laser third harmonic generation in a plasma
Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok
2016-09-01
The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.
Nonlinear Alfvén wave dynamics in plasmas
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Anwesa; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Schamel, Hans [Theoretical Physics, University of Bayreuth, D-95440 Bayreuth (Germany)
2015-07-15
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Nonlinear Alfvén wave dynamics in plasmas
Sarkar, Anwesa; Chakrabarti, Nikhil; Schamel, Hans
2015-07-01
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Correlation dimension analysis and capillary wave turbulence in Dragon-Wash phenomena
Peng, Huai-Wu; Li, Rui-Qu; Chen, Song-Ze; Li, Cun-Biao
2008-02-01
This paper describes the evolution of surface capillary waves of deep water excited by gradually increasing the lateral external force at a single frequency. The vertical velocities of the water surface are measured by using a Polytec Laser Vibrometer with a thin layer of aluminium powder scattering on the surface to reflect the laser beam. Nonlinear interaction processes result in a stationary Fourier spectrum of the vertical surface velocities (the same as the surface elevation), i.e. Iω ~ ω-3.5. The observed spectrum can be interpreted as a wave-turbulent Kolmogorov spectrum for the case of 'narrowband pumping' for a direct cascade of energy. Correlation dimension analysis of the whole development process reveals four distinct stages during the wave structure development and identifies the wave turbulence stage.
Correlation dimension analysis and capillary wave turbulence in Dragon-Wash phenomena
Institute of Scientific and Technical Information of China (English)
Peng Huai-Wu; Li Rui-Qu; Chen Song-Ze; Li Cun-Biao
2008-01-01
This paper describes the evolution of surface capillary waves of deep water excited by gradually increasing the lateral external force at a single frequency.The vertical velocities of the water surface are measured by using a Polytec Laser Vibrometer with a thin layer of aluminium powder scattering on the surface to reflect the laser beam.Nonlinear interaction processes result in a stationary Fourier spectrum of the vertical surface velocities (the same as the surface elevation),i.e.Iω～ω-3.5.The observed spectrum can be interpreted as a wave-turbulent Kolmogorov spectrum for the case of 'narrowband pumping' for a direct cascade of energy.Correlation dimension analysis of the whole development process reveals four distinct stages during the wave structure development and identifies the wave turbulence stage.
Koons, H. C.; Roeder, J. L.; Bauer, O. H.; Haerendel, G.; Treumann, R.
1987-01-01
Nonlinear wave decay processes have been detected in the solar wind by the plasma wave experiment aboard the Active Magnetospheric Particle Tracer Explorers (AMPTE) IRM spacecraft. The main process is the generation of ultralow-frequency ion acoustic waves from the decay of Langmuir waves near the electron plasma frequency. Frequently, this is accompanied by an enhancement of emissions near twice the plasma frequency. This enhancement is most likely due to the generation of electromagnetic waves from the coalescence of two Langmuir waves. These processes occur within the electron foreshock in front of the earth's bow shock.
Potential role of kinetic Alfvén waves and whistler waves in solar wind plasmas
Nandal, P.; Yadav, N.; Sharma, R. P.; Goldstein, M. L.
2016-07-01
Spacecraft observations indicate the signatures of highly oblique kinetic Alfvén waves (KAWs) and whistler waves in the solar wind plasma. In the present work, we explore the possible role of KAWs and whistler waves in the observed solar wind magnetic turbulent spectrum. The nonlinear spatial evolution of KAW is studied including the effects of the ponderomotive force which results in intense localized structures due to the background density modification. Weak quasi-transverse whistler wave propagating through these localized structures also gets localized in the form of small-scale localized structures. We present numerically calculated magnetic power spectra for both KAW as well as for whistler wave. Our obtained results demonstrate the important role that KAWs and whistler waves play in the energy cascading from larger to smaller scales. The relevance of these results to recent spacecraft observations is also pointed out.
Atamaniuk, B; Atamaniuk, Barbara; Zuchowski, Krzysztof
2007-01-01
There is a quickly increasing wealth of experimental data on so-called dusty plasmas i. e. ionized gases or usual plasmas that contain micron sized charged particles. Interest in these structures is driven both by their importance in many astrophysical as well as commercial situations. Among them are linear and nonlinear wave phenomena. We consider the influence of dust charge fluctuations on stability of the ion-acoustic waves when the stream of particles is present. It is assumed that all grains of dust have equal masses but charges are not constant in time-they may fluctuate in time. The dust charges are not really independent of the variations of the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the...
Exploring Divisibility and Summability of 'Photon' Wave Packets in Nonlinear Optical Phenomena
Prasad, Narasimha; Roychoudhuri, Chandrasekhar
2009-01-01
Formulations for second and higher harmonic frequency up and down conversions, as well as multi photon processes directly assume summability and divisibility of photons. Quantum mechanical (QM) interpretations are completely congruent with these assumptions. However, for linear optical phenomena (interference, diffraction, refraction, material dispersion, spectral dispersion, etc.), we have a profound dichotomy. Most optical engineers innovate and analyze all optical instruments by propagating pure classical electromagnetic (EM) fields using Maxwell s equations and gives only lip-service to the concept "indivisible light quanta". Further, irrespective of linearity or nonlinearity of the phenomena, the final results are always registered through some photo-electric or photo-chemical effects. This is mathematically well modeled by a quadratic action (energy absorption) relation. Since QM does not preclude divisibility or summability of photons in nonlinear & multi-photon effects, it cannot have any foundational reason against these same possibilities in linear optical phenomena. It implies that we must carefully revisit the fundamental roots behind all light-matter interaction processes and understand the common origin of "graininess" and "discreteness" of light energy.
Analysis of plasma waves observed in the inner Saturn magnetosphere
Directory of Open Access Journals (Sweden)
J. D. Menietti
2008-09-01
Full Text Available Plasma waves observed in the Saturn magnetosphere provide an indication of the plasma population present in the rotationally dominated inner magnetosphere. Electrostatic cyclotron emissions often with harmonics and whistler mode emission are a common feature of Saturn's inner magnetosphere. The electron observations for a region near 5 R_{S} outside and near a plasma injection region indicate a cooler low-energy (<100 eV, nearly isotropic plasma, and a much warmer (E>1000 eV more pancake or butterfly distribution. We model the electron plasma distributions to conduct a linear dispersion analysis of the wave modes. The results suggest that the electrostatic electron cyclotron emissions can be generated by phase space density gradients associated with a loss cone that may be up to 20° wide. This loss cone is sometimes, but not always, observed because the field of view of the electron detectors does not include the magnetic field line at the time of the observations. The whistler mode emission can be generated by the pancake-like distribution and temperature anisotropy (T_{⊥}/T_{||}>1 of the warmer plasma population.
Obliquely propagating large amplitude solitary waves in charge neutral plasmas
Directory of Open Access Journals (Sweden)
F. Verheest
2007-01-01
Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.
Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.
Schroeder, C B; Esarey, E
2010-05-01
A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.
SCREENING OF HIGH-Z GRAINS AND RELATED PHENOMENA IN COLLOIDAL PLASMAS
Directory of Open Access Journals (Sweden)
O.Bystrenko
2003-01-01
Full Text Available Recent important results are briefly presented concerning the screening of high-Z impurities in colloidal plasmas. The review focuses on the phenomenon of nonlinear screening and its effects on the structure of colloidal plasmas, the role of trapped ions in grain screening, and the effects of strong collisions in the plasma background. It is shown that the above effects may strongly modify the properties of the grain screening giving rise to considerable deviations from the conventional Debye-Huckel theory as dependent on the physical processes in the plasma background.
Oblique solitary waves in a five component plasma
Energy Technology Data Exchange (ETDEWEB)
Sijo, S.; Manesh, M.; Sreekala, G.; Venugopal, C., E-mail: cvgmgphys@yahoo.co.in [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, 686 560 Kerala (India); Neethu, T. W. [Department of Physics, CMS College, Mahatma Gandhi University, Kottayam, 686 001 Kerala (India); Renuka, G. [Kerala State Council for Science, Technology and Environment, Thiruvananthapuram, 695 004 Kerala (India)
2015-12-15
We investigate the influence of a second electron component on oblique dust ion acoustic solitary waves in a five component plasma consisting of positively and negatively charged dust, hydrogen ions, and hotter and colder electrons. Of these, the heavier dust and colder photo-electrons are of cometary origin while the other two are of solar origin; electron components are described by kappa distributions. The K-dV equation is derived, and different attributes of the soliton such as amplitude and width are plotted for parameters relevant to comet Halley. We find that the second electron component has a profound influence on the solitary wave, decreasing both its amplitude and width. The normalized hydrogen density strongly influences the solitary wave by decreasing its width; the amplitude of the solitary wave, however, increases with increasing solar electron temperatures.
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
Quantum ion-acoustic solitary waves in weak relativistic plasma
Indian Academy of Sciences (India)
Biswajit Sahu
2011-06-01
Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized twospecies relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects signiﬁcantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter on the nature of solitary wave solutions is studied in some detail.
Full wave simulation of waves in ECRIS plasmas based on the finite element method
Energy Technology Data Exchange (ETDEWEB)
Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)
2014-02-12
This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.
Institute of Scientific and Technical Information of China (English)
GUO Bin
2009-01-01
Based on the electromagnetic theory and by using an analytical technique-the transfer matrix method,the obliquely incident electromagnetic waves propagating in one-dimension plasma photonic crystals is studied.The dispersion relations for both the P-polarization waves and S-polarization waves,depending on the plasma density,plasma thickness and period,are discussed.
Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor
Energy Technology Data Exchange (ETDEWEB)
Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M
2005-07-21
A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.
Excitation and evolution of finite-amplitude plasma wave
Energy Technology Data Exchange (ETDEWEB)
Hou, Y. W.; Wu, Y. C., E-mail: yican.wu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Chen, M. X. [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); Yu, M. Y., E-mail: myyu@zju.edu.cn [Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44780 Bochum (Germany); Wu, B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)
2015-12-15
The evolution of a small spatially periodic perturbation in the electron velocity distribution function in collisionless plasma is reconsidered by numerically solving the Vlasov and Poisson equations. The short as well as long time behaviors of the excited oscillations and damping/modulation are followed. In the small but finite-amplitude excited plasma wave, resonant electrons become trapped in the wave potential wells and their motion affects the low-velocity electrons participating in the plasma oscillations, leading to modulation of the latter at an effective trapping frequency. It is found that the phase space of the resonant and low-velocity electrons becomes chaotic, but then self-organization takes place but remains fine-scale chaotic. It is also found that as long as particles are trapped, there is only modulation and no monotonic damping of the excited plasma wave. The modulation period/amplitude increases/decreases as the magnitude of the initial disturbance is reduced. For the initial and boundary conditions used here, linear Landau damping corresponds to the asymptotic limit of the modulation period becoming infinite, or no trapping of the resonant electrons.
Dust Acoustic Wave Excitation in a Plasma with Warm Dust
Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.
2008-11-01
Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).
Rivera-Ortega, Uriel; Dirckx, Joris
2015-09-01
In this manuscript a computer based simulation is proposed for teaching concepts of interference of light (under the scheme of a Michelson interferometer), phase-shifting and polarization states. The user can change some parameters of the interfering waves, such as their amplitude and phase difference in order to graphically represent the polarization state of a simulated travelling wave. Regarding to the interference simulation, the user is able to change the wavelength and type of the interfering waves by selecting combinations between planar and Gaussian profiles, as well as the optical path difference by translating or tilting one of the two mirrors in the interferometer setup, all of this via a graphical user interface (GUI) designed in MATLAB. A theoretical introduction and simulation results for each phenomenon will be shown. Due to the simulation characteristics, this GUI can be a very good non-formal learning resource.
Kryjevskaia, Lioudmila N.
This dissertation reports on an in-depth investigation of student understanding of wave phenomena at a boundary. The research and curriculum development were conducted in the contexts of the introductory calculus-based physics course and special courses for preservice and inservice teachers. Research methods included pretests, post-tests, and informal observations and discussions with students. Several student difficulties with wave behavior at a boundary and the cause and effect relationship between wavelength, frequency, and propagation speed were identified. The results from this investigation have guided the development of two sets of instructional materials designed to address the conceptual and reasoning difficulties that were identified. The first is a sequence of tutorials intended to supplement standard lecture and laboratory instruction on mechanical waves in a traditional introductory course. The second consists of a module on mechanical waves designed for use in inquiry-oriented courses for preservice and inservice teachers. Ongoing assessment of both sets of materials indicates that they are effective in addressing many of the student difficulties that were found to be persistent. Such difficulties, when not addressed, may hinder student understanding of more advanced topics such as interference and diffraction of waves.
Global regularity, and wave breaking phenomena in a class of nonlocal dispersive equations
Liu, Hailiang
2009-01-01
This paper is concerned with a class of nonlocal dispersive models -- the $\\theta$-equation proposed by H. Liu [ On discreteness of the Hopf equation, {\\it Acta Math. Appl. Sin.} Engl. Ser. {\\bf 24}(3)(2008)423--440]: cted range of parameters results here are equivalent to those known for the $b-$equations [e.g. J. Escher and Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the b-equation, {\\it J. reine angew. Math.}, {\\bf 624} (2008)51--80.
The incomplete plasma dispersion function: properties and application to waves in bounded plasmas
Baalrud, Scott D
2013-01-01
The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near boundary sheaths or double layers, where the passing interval can be modeled as Maxwellian with a lower temperature than the trapped interval. The depleted Maxwellian is used as an example to demonstrate the utility of using the incomplete plasma dispersion function for calculating modifications to wave dispersion relations.
The Nonlinear Landau Damping Rate of a Driven Plasma Wave
Energy Technology Data Exchange (ETDEWEB)
Benisti, D; Strozzi, D J; Gremillet, L; Morice, O
2009-08-04
In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
Wave propagation in a moving cold magnetized plasma
Hebenstreit, H.
1980-03-01
Polarization relations and dispersion equations are derived for media that are electrically anisotropic in the comoving frame. Three-dimensional calculations for media at rest recover the known dispersion equations, i.e., Astrom's dispersion equation for magnetized cold plasmas and Fresnel's wave normal equation for uniaxial crystals. An analogous four-dimensional calculation yields the generalization to moving media. The dispersion equations so obtained for moving gyrotropic media are then discussed qualitatively for various special media and special directions of wave propagation. Finally, the polarization relations are specialized to media gyrotropic in the comoving frame.
Ladder Climbing and Autoresonant Acceleration of Plasma Waves
Barth, Ido; Fisch, Nathaniel J
2015-01-01
Classical plasma waves are predicted to exhibit quantumlike ladder climbing, which is achieved by chirped modulations of the background density. An equivalence with the quantum particle in a box is identified and used to calculate the efficiency and the rate of this effect. In the limit of densely spaced spectrum, ladder climbing transforms into continuous autoresonance; plasmons may then be manipulated by chirped background modulations much like electrons are autoresonantly manipulated by chirped fields. Such ladder climbing and autoresonance effects are also predicted for other classical waves by means of a unifying Lagrangian theory.
On the Presentation of Wave Phenomena of Electrons with the Young-Feynman Experiment
Matteucci, Giorgio
2011-01-01
The Young-Feynman two-hole interferometer is widely used to present electron wave-particle duality and, in particular, the buildup of interference fringes with single electrons. The teaching approach consists of two steps: (i) electrons come through only one hole but diffraction effects are disregarded and (ii) electrons come through both holes…
Ambrose, Bradley S.; Heron, Paula R. L.; Vokos, Stamatis; McDermott, Lillian C.
1999-01-01
Some serious difficulties that students have in understanding physical optics may be due in part to a lack of understanding of light as an electromagnetic wave. Describes the development and use of tutorials designed to address students' conceptual difficulties. (Contains over 15 references.) (Author/WRM)
Neto, A.; Cavallo, D.; Gerini, G.
2011-01-01
This paper presents a Green's function based procedure to assess edge effects in finite wideband connected arrays. Truncation effects are more severe in broadband arrays, since the inter-element mutual coupling facilitates the propagation of edge-born waves that can become dominant over large portio
Optical Multi-hysteresises and "Rogue Waves" in Nonlinear Plasma
Kaplan, A E
2010-01-01
An overdense plasma layer irradiated by an intense light can exhibit dramatic nonlinear-optical effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and transition, and emergence of gigantic "rogue waves". Those are trapped quasi-soliton field spikes inside the layer, sustained by an incident radiation with a tiny fraction of their peak intensity once they have been excited by orders of magnitude larger pumping. The phenomenon persists even in the layers with "soft" boundaries, as well as in a semi-infinite plasma with low absorption.
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.
2011-10-01
In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.
Iwai, Akinori; Nakamura, Yoshihiro; Sakai, Osamu
2016-09-01
We clarify the relation between second harmonic wave (SH wave) and plasma generation in various experimental conditions by detecting properties of propagating electromagnetic waves (EM waves). Plasma has a nonlinear reaction against EM wave, generating harmonic waves which depends on electron density ne. In the case with increased ne, EM wave comes to be prevented from going into plasma with negative permittivity ɛp. Double-split-ring resonators (DSRRs), one of metamaterials, make permeability μD negative. We have shown that EM wave being volume wave can propagate into the combination of overdense plasma and DSRRs because of real negative value refractive index N. In our previous paper, we have confirmed enhanced SH wave (4.9 GHz) generation in the composite with 2.45-GHz input. In this report, we show the dependence of the SH wave emission with plasma generation on plasma parameters and gas conditions of plasma. Furthermore, we show the phase change with N variation of the composite space in the case with various input power as the proof of the negative index state.
Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions
Gong, Jingyu; Du, Jiulin
2012-01-01
The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.
Dust acoustic waves in strongly coupled dissipative plasmas
Xie, B. S.; Yu, M. Y.
2000-12-01
The theory of dust acoustic waves is revisited in the frame of the generalized viscoelastic hydrodynamic theory for highly correlated dusts. Physical processes relevant to many experiments on dusts in plasmas, such as ionization and recombination, dust-charge variation, elastic electron and ion collisions with neutral and charged dust particles, as well as relaxation due to strong dust coupling, are taken into account. These processes can be on similar time scales and are thus important for the conservation of particles and momenta in a self-consistent description of the system. It is shown that the dispersion properties of the dust acoustic waves are determined by a sensitive balance of the effects of strong dust coupling and collisional relaxation. The predictions of the present theory applicable to typical parameters in laboratory strongly coupled dusty plasmas are given and compared with the experiment results. Some possible implications and discrepanies between theory and experiment are also discussed.
Nonlinear electrostatic wave equations for magnetized plasmas - II
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....
Material measurement method based on femtosecond laser plasma shock wave
Zhong, Dong; Li, Zhongming
2017-03-01
The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.
Drift waves and chaos in a LAPTAG plasma physics experiment
Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam
2016-02-01
In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.
Ionization wave propagation on a micro cavity plasma array
Wollny, Alexander; Gebhardt, Markus; Brinkmann, Ralf Peter; Boettner, Henrik; Winter, Joerg; der Gathen, Volker Schulz-von; Mussenbrock, Thomas
2011-01-01
Microcavity plasma arrays are regular arrays of inverse pyramidal cavities created on positive doped silicon wafers. Each cavity acts as a microscopic dielectric barrier discharge. Operated at atmospheric pressure in argon and excited with high voltage at about 10 kHz frequency each cavity develops a localized microplasma. Experiments show a strong interaction of the individual cavities, leading to the propagation of wave-like emission structures along the array surface. This paper studies the ignition process of a micro cavity plasma array by means of a numerical simulation and confirms the experimental results. The propagation of an ionization wave is observed. Its propagation speed of 1 km/s matches experimental findings.
Structures of Strong Shock Waves in Dense Plasmas
Institute of Scientific and Technical Information of China (English)
JIANG Zhong-He; HE Yong; HU Xi-Wei; LV Jian-Hong; HU Ye-Min
2007-01-01
@@ Structures of strong shock waves in dense plasmas are investigated via the steady-state Navier-Stokes equations and Poisson equation. The structures from fluid simulation agree with the ones from kinetic simulation. The effects of the transport coefficients on the structures are analysed. The enhancements of the electronic heat conduction and ionic viscosity both will broaden the width of the shock fronts, and decrease the electric fields in the fronts.
Iakovlev, S.; Seaton, C. T.; Sigrist, J.-F.
2013-10-01
A submerged evacuated circular cylindrical shell subjected to a sequence of two external shock waves generated at the same source is considered. A semi-analytical model combining the classical methods of mathematical physics with the finite-difference methodology is developed and employed to simulate the interaction. Both the hydrodynamic and structural aspects of the problem are considered, and it is demonstrated that varying the delay between the first and second wavefronts has a very significant effect on the stress-strain state of the structure. In particular, it is shown that for certain values of the delay, the constructive superposition of the elastic waves travelling around the shell results in a 'resonance-like' increase of the structural stress in certain regions. The respective stress can be so high that it sometimes exceeds the overall maximum stress observed in the same structure but subjected to a single-front shock wave with the same parameters, in some cases by as much as 50%. A detailed parametric analysis of the observed phenomenon is carried out, and an easy-to-use diagram summarizing the finding is proposed to aim the pre-design analysis of engineering structures.
Secondary fast magnetoacoustic waves trapped in randomly structured plasmas
Yuan, Ding; Walsh, Robert W
2016-01-01
Fast magnetoacoustic wave is an important tool for inferring solar atmospheric parameters. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas mimicking the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the fast wave speed, we quantify the properties of secondary waves by examining the dependence of the average temporal period ($\\bar{p}$) on the initial pulse width ($w_0$) as well as the density contrast ($\\delta_\\rho$) and correlation length ($L_c$) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, $\\delta_\\rho$ does not alter $\\bar{p}$ significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when $\\delta_\\rho$ is small but have a smoothing effect when $\\delta_\\rho$ is suffic...
Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu
1988-12-01
An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.
FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma
Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun
2016-08-01
The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Characteristics of Wave-Particle Interaction in a Hydrogen Plasma
Institute of Scientific and Technical Information of China (English)
HE Hui-Yong; CHEN Liang-Xu; LI Jiang-Fan
2008-01-01
We study the characteristics of cyclotron wave-particle interaction in a typical hydrogen plasma. The numerical calculations of minimum resonant energy Emin, resonant wave frequency w, and pitch angle diffusion coefficient Dαα for interactions between R-mode/L-mode and electrons/protons are presented. It is found that Emin decreases with ω for R-mode/electron, L-mode/proton and L-mode/electron interactions, but increase with w for R-mode/proton interaction. It is shown that both R-mode and L-mode waves can efficiently scatter energetic (10 keV～100 keV) electrons and protons and cause precipitation loss at L=4, indicating that perhaps waveparticle interaction is a serious candidate for the ring current decay.
Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma
El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.
2015-08-01
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.
On Plasma Rotation Induced by Traveling Fast Alfvin Waves
Energy Technology Data Exchange (ETDEWEB)
F.W. Perkins; R.B. White; and V.S. Chan
2001-08-09
Absorption of fast Alfven waves by the minority fundamental ion-cyclotron resonance, coupled with finite banana width physics, generates torque distributions and ultimately rotational shear layers in the bulk plasma, even when the toroidal wavenumber k(subscript ''phi'') = n/R of the fast wave vanishes (n=0) and cyclotron absorption introduces no angular momentum nor canonical angular momentum [F.W. Perkins, R.B. White, P.T. Bonoli, and V.S. Chan, Phys. Plasmas 8 (2001) 2181]. The present work extends these results to travelling waves with non-zero n where heating directly introduces angular momentum. Since tokamak fast-wave antennas have approximately one wavelength per toroidal field coil, the toroidal mode number n lies in the range n = 10-20, independent of machine size. A zero-dimensional analysis shows that the rotation rate arising from direct torque is comparable to that of the rotational shear layer and has the same scaling. Nondimensional rotation profiles for n = (-10, 10) show modest changes from the n = 0 case in the expected direction. For a balanced antenna spectrum, the nondimensional rotational profile (averaged over n = -10, 10) lies quite close to the n = 0 profile.
High harmonic fast waves in high beta plasmas
Energy Technology Data Exchange (ETDEWEB)
Ono, Masayuki
1995-04-01
High harmonic fast magnetosonic wave in high beta/high dielectric plasmas is investigated. including the finite-Larmor-radius effects. In this regime, due to the combination of group velocity slow down and the high beta enhancement, the electron absorption via electron Landau and electron magnetic pumping becomes significant enough that one can expect a strong ({approximately} 100%) single pass absorption. By controlling the wave spectrum, the prospect of some localized electron heating and current drive appears to be feasible in high beta low-aspect-ratio tokamak regimes. Inclusion of finite-Larmor-radius terms shows an accessibility limit in the high ion beta regime ({beta}{sub i} = 50% for a deuterium plasma) due to mode-conversion into an ion Bernstein-wave-like mode while no beta limit is expected for electrons. With increasing ion beta, the ion damping can increase significantly particularly near the beta limits. The presence of energetic ion component expected during intense NBI and {alpha}-heating does not appear to modify the accessibility condition nor cause excessive wave absorption.
Low frequency waves in streaming quantum dusty plasmas
Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.
2017-09-01
The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.
Dynamic Thomson Scattering from Nonlinear Electron Plasma Waves in a Raman Plasma Amplifier
Davies, A.; Katz, J.; Bucht, S.; Haberberger, D.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.
2016-10-01
Electron plasma waves (EPW's) can be used to transfer significant energy from a long-pulse laser to a short-pulse seed laser through the Raman scattering instability. Successful implementation of Raman amplification could open an avenue to producing high-intensity pulses beyond the capabilities of current laser technology ( 1022 W / cm 2). This three-wave interaction takes advantage of the plasma's ability to sustain large-amplitude plasma waves. Having complete knowledge of the EPW amplitude is essential to establishing optimal parameters for high-efficiency Raman amplification. A dynamic Thomson-scattering diagnostic is being developed to spatially and temporally resolve the amplitude of the driven and thermal EPW's. By imaging the scattered probe light onto a novel pulse-front tilt compensated streaked optical spectrometer, the diffraction efficiency of this plasma wave can be measured as a function of space and time. These data will be used in conjunction with particle-in-cell simulations to determine the EPW's spatial and temporal profile. This will allow the effect of the EPW profile on Raman scattering to be experimentally determined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.
2016-11-01
Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.
Fast transient transport phenomena measured by soft X-ray emission in TCV tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Furno, I. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2001-08-01
Energy and particle transport during sawtooth activity in TCV plasmas has been studied in this thesis with high temporal resolution many chord diagnostics. We indicated the influence of sawteeth on plasma profiles in ohmic conditions and in the presence of auxiliary electron cyclotron resonance heating and current drive. A 2-dimensional model for heat transport, including localised heat source and a magnetic island, has been used to interpret the experimental observations. These results provided a new interpretation of a coupled heat and transport phenomenon which is potentially important for plasma confinement. The observations validate the applicability and show the possibility of improvement of a 2-dimensional theoretic a1 model for the study of heat transport in the presence of localised heat source and a magnetic island. Furthermore, the TCV results showed a new possibility for the interpretation of a coupled heat and particle transport phenomenon previously understood only in stellarators. (author)
Observation of Periodic Multiplication and Chaotic Phenomena in Atmospheric Cold Plasma Jets
Institute of Scientific and Technical Information of China (English)
QI Bing; HUANG Jian-Jun; ZHANG Zhe-Huang; WANG De-Zhen
2008-01-01
We investigate the temporal evolution of the current pulses from an ac He cold plasma jet at atmospheric pressure and with driving frequency in the range 14.76-15.30 kHz. The driving frequency is used as the plasma system's bifurcation parameter in analogy with the evolution in which the current pulses undergoes multiplication and chaos. Such time-domain nonlinearity is important for controlling instabilities in atmospheric glow discharges.In addition, the observation can provide some data to support the simulation results reported previously [Appl.Phys. Lett. 90 (2007) 071501].
Wang, Hongjuan; Lin, Jun
2009-01-01
The origin of the Moreton wave observed in the chromosphere and the EIT wave observed in the corona during the eruption remains being an active research subject for a while. We investigate numerically in this work the evolutionary features of the magnetic configuration that includes a current-carrying flux rope, which is used to model the filament, after the loss of equilibrium in the system takes place in a catastrophic fashion. Rapid motions of the flux rope following the catastrophe invokes the velocity vortices behind the rope, and may invoke as well slow and fast mode shocks in front of the rope. The velocity vortices at each side of the flux rope propagate roughly horizontally away from the area where it is produced, and both shocks expand toward the flank of the flux rope. The fast one may eventually reach the bottom boundary and produces two echoes moving back into the corona, but the slow one and the vortices totally decay somewhere in the lower corona before arriving the bottom boundary. The interac...
Recent results from studies of electron beam phenomena in space plasmas
Neubert, Torsten; Banks, Peter M.
1992-01-01
The paper examines selected results from experiments, performed in 1980s, involving the ejection of beams of electrons from spacecraft. Special attention is given to the basic processes associated with the spacecraft charging, passive current collection, beam-atmosphere interactions, beam-plasma interactions, and neutral gas emission. Consideration is also given to future experiments on active electron beam ejections in space.
Lindeman, Erick L., Jr.
1989-11-01
The following topics are discussed: electron trajectories and magnetic insulation; blade-load simulation studies; azimuthal asymmetries; MAGIC simulation studies of a segmented plasma opening switch; PBFA II calculations with different spatial resolution; and analytic solution of the electron current layer in the magnetic front.
Scattering of Electromagnetic Waves by Drift Vortex in Plasma
Institute of Scientific and Technical Information of China (English)
WANG Dong; CHEN Yinhua; WANG Ge
2008-01-01
In a quasi-two-dimensional model, the scattering of incident ordinary electromag-netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia << 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approxi-mation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then ki<< 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.
Decay of Langmuir wave in dense plasmas and warm dense matter
Son, S; Moon, Sung Joon
2010-01-01
The decays of the Langmuir waves in dense plasmas are computed using the dielectric function theory widely used in the solid state physics. Four cases are considered: a classical plasma, a Maxwellian plasma, a degenerate quantum plasma, and a partially degenerate plasma. The result is considerably different from the conventional Landau damping theory.
Indian Academy of Sciences (India)
Pier A Mello
2001-02-01
Universal statistical aspects of wave scattering by a variety of physical systems ranging from atomic nuclei to mesoscopic systems and microwave cavities are described. A statistical model for the scattering matrix is employed to address the problem of quantum chaotic scattering. The model, introduced in the past in the context of nuclear physics, discusses the problem in terms of a prompt and an equilibrated component: it incorporates the average value of the scattering matrix to account for the prompt processes and satisﬁes the requirements of ﬂux conservation, causality and ergodicity. The main application of the model is the analysis of electronic transport through ballistic mesoscopic cavities: it describes well the results from the numerical solutions of the Schrödinger equation for two-dimensional cavities.
On the Self-Focusing of Whistler Waves in a Radial Inhomogeneous Plasma
DEFF Research Database (Denmark)
Balmashnov, A. A.
1980-01-01
The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation...... of the latter wave is accompanied by a density modification, which leads to trapping of the whistler wave in a density trough in the center of the plasma column....
Lee, Myoung-Jae; Jung, Young-Dae
2017-02-01
High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.
Nonlinear processes in the strong wave-plasma interaction
Pegoraro, Francesco; Califano, Francesco; Attico, Nicola; Bulanov, Sergei
2000-10-01
Nonlinear interactions in hot laboratory and/or astrophysical plasmas are a very efficient mechanism able to transfer the energy from the large to the small spatial scales of the system. As a result, kinetic processes are excited and play a key role in the plasma dynamics since the typical fluid dissipative length scales (where the nonlinear cascade is stopped) are (much) smaller then the kinetic length scales. Then, the key point is the role of the kinetic effects in the global plasma dynamics, i.e. whether the kinetic effects remains confined to the small scales of the system or whether there is a significant feedback on the large scales. Here we will address this problem by discussing the nonlinear kinetic evolution of the electromagnetic beam plasma instability where phase space vortices, as well as large scale vortex like magnetic structures in the physical space, are generated by wave - particle interactions. The role and influence of kinetic effects on the large scale plasma dynamics will be also discussed by addressing the problem of collisionless magnetic reconection.
Shock wave interaction with a thermal layer produced by a plasma sheet actuator
Koroteeva, E.; Znamenskaya, I.; Orlov, D.; Sysoev, N.
2017-03-01
This paper explores the phenomena associated with pulsed discharge energy deposition in the near-surface gas layer in front of a shock wave from the flow control perspective. The energy is deposited in 200 ns by a high-current distributed sliding discharge of a ‘plasma sheet’ type. The discharge, covering an area of 100× 30 mm2, is mounted on the top or bottom wall of a shock tube channel. In order to analyse the time scales of the pulsed discharge effect on an unsteady supersonic flow, we consider the propagation of a planar shock wave along the discharge surface area 50–500 μs after the discharge pulse. The processes in the discharge chamber are visualized experimentally using the shadowgraph method and modelled numerically using 2D/3D CFD simulations. The interaction between the planar shock wave and the discharge-induced thermal layer results in the formation of a lambda-shock configuration and the generation of vorticity in the flow behind the shock front. We determine the amount and spatial distribution of the electric energy rapidly transforming into heat by comparing the calculated flow patterns and the experimental shadow images. It is shown that the uniformity of the discharge energy distribution strongly affects the resulting flow dynamics. Regions of turbulent mixing in the near-surface gas are detected when the discharge energy is deposited non-uniformly along the plasma sheet. They account for the increase in the cooling rate of the discharge-induced thermal layer and significantly influence its interaction with an incident shock wave.
Verma, Prabal Singh; Sengupta, Sudip; Kaw, Predhiman
2012-07-01
A one-dimensional particle in cell simulation of large amplitude plasma oscillations is carried out to explore the physics beyond wave breaking in a cold homogeneous unmagnetized plasma. It is shown that after wave breaking, all energy of the plasma oscillation does not end up as random kinetic energy of particles, but some fraction, which is decided by Coffey's wave breaking limit in warm plasma, always remains with two oppositely propagating coherent Bernstein-Greene-Kruskal like modes with supporting trapped particle distributions. The randomized energy distribution of untrapped particles is found to be characteristically non-Maxwellian with a preponderance of energetic particles.
Collective phenomena in the non-equilibrium quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Schenke, Bjoern Peter
2008-07-03
In this work we study the non-equilibrium dynamics of a quark-gluon plasma, as created in heavy-ion collisions. We investigate how big of a role plasma instabilities can play in the isotropization and equilibration of a quark-gluon plasma. In particular, we determine, among other things, how much collisions between the particles can reduce the growth rate of unstable modes. This is done both in a model calculation using the hard-loop approximation, as well as in a real-time lattice simulation combining both classical Yang-Mills-fields as well as inter-particle collisions. The new extended version of the simulation is also used to investigate jet transport in isotropic media, leading to a cutoff-independent result for the transport coefficient q. The precise determination of such transport coefficients is essential, since they can provide important information about the medium created in heavy ion collisions. In anisotropic media, the effect of instabilities on jet transport is studied, leading to a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth. The investigation of collective modes in the hard-loop limit is extended to fermionic modes, which are shown to be all stable. Finally, we study the possibility of using high energy photon production as a tool to experimentally determine the anisotropy of the created system. Knowledge of the degree of local momentum-space anisotropy reached in a heavy-ion collision is essential for the study of instabilities and their role for isotropization and thermalization, because their growth rate depends strongly on the anisotropy. (orig.)
Study of nonlinear waves in astrophysical quantum plasmas
Energy Technology Data Exchange (ETDEWEB)
Hossen, M.R.; Mamun, A.A., E-mail: rasel.plasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2015-10-01
The nonlinear propagation of the electron acoustic solitary waves (EASWs) in an unmagnetized, collisionless degenerate quantum plasma system has been investigated theoretically. Our considered model consisting of two distinct groups of electrons (one of inertial non-relativistic cold electrons and other of inertialess ultrarelativistic hot electrons) and positively charged static ions. The Korteweg-de Vries (K-dV) equation has been derived by employing the reductive perturbation method and numerically examined to identify the basic features (speed, amplitude, width, etc.) of EASWs. It is shown that only rarefactive solitary waves can propagate in such a quantum plasma system. It is found that the effect of degenerate pressure and number density of hot and cold electron fluids, and positively charged static ions, significantly modify the basic features of EASWs. It is also noted that the inertial cold electron fluid is the source of dispersion for EA waves and is responsible for the formation of solitary structures. The applications of this investigation in astrophysical compact objects (viz. non-rotating white dwarfs, neutron stars, etc.) are briefly discussed. (author)
Coherent structures and transport in drift wave plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Bang Korsholm, S.
2011-12-15
Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)
The dust acoustic waves in three dimensional scalable complex plasma
Zhukhovitskii, D I
2015-01-01
Dust acoustic waves in the bulk of a dust cloud in complex plasma of low pressure gas discharge under microgravity conditions are considered. The dust component of complex plasma is assumed a scalable system that conforms to the ionization equation of state (IEOS) developed in our previous study. We find singular points of this IEOS that determine the behavior of the sound velocity in different regions of the cloud. The fluid approach is utilized to deduce the wave equation that includes the neutral drag term. It is shown that the sound velocity is fully defined by the particle compressibility, which is calculated on the basis of the scalable IEOS. The sound velocities and damping rates calculated for different 3D complex plasmas both in ac and dc discharges demonstrate a good correlation with experimental data that are within the limits of validity of the theory. The theory provides interpretation for the observed independence of the sound velocity on the coordinate and for a weak dependence on the particle ...
Radio and Plasma Waves Synergistic Science Opportunities with EJSM
Cecconi, Baptiste; André, Nicolas; Bougeret, Jean-Louis
2010-05-01
The radio and plasma wave (RPW) diagnostics provide a unique access to critical parameters of space plasma, in particular in planetary and satellite environments. Concerning giant planets, this has been demonstrated by major results obtained by the radio investigation on the Galileo and Cassini spacecraft, but also during the Ulysses, Voyager, and Pioneer flybys of Jupiter. Several other missions, past or in flight, demonstrate the uniqueness and relevance of RPW diagnostics to basic problems of astrophysics. The EJSM mission consists of two platforms operating in the Jupiter environment: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO will execute a choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. The EJSM mission architecture hence offers unique opportunities for synergistic and complementary observations that significantly enhance the overall science return of the mission. In this paper, we will first review new and unique science aspects of the Jupiter system that may benefit from different capabilities of RPW investigations onboard JGO and/or JEO: spectral and polarization information, mapping of radio sources, measurements of in situ plasma waves, currents, thermal noise, dust and nano-particle detection and characterization. We will then illustrate unique synergistic and complementary science opportunities offered by RPW investigations onboard JGO and/or JEO, both in terms of Satellite science and in terms of Magnetospheric Science.
Freak waves in a plasma having Cairns particles
El-Tantawy, S. A.; El-Awady, E. I.; Schlickeiser, R.
2015-12-01
The probability of the existence of the ion-acoustic rogue waves in a plasma composed of warm ions and non-Maxwellian (nonthermal or Kappa) electrons is investigated in the framework of the modified Korteweg-de Vries (mKdV) equation. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived. After numerical analysis, it is found that the present plasma system populated with nonthermal (Cairns) electrons leads to generation of compressive and rarefactive pulses, in contrast to the case of Kappa distribution. Thus, only for the nonthermal populated electrons, there is a critical value of the nonthermal parameter at which the coefficient of the nonlinear term of the KdV equation vanishes. In this case, we derived the modified KdV (mKdV) equation to describe the evolution of the system. To investigate the rogue waves propagation in our system, the mKdV equation should transfer to the nonlinear Schrödinger equation (NLSE). Our results provide a better understanding of observations in space plasmas which indicate the existence of nonthermal particles.
Cross-polarization scattering from low-frequency waves in a tandem mirror plasma
Energy Technology Data Exchange (ETDEWEB)
Kogi, Yuichiro; Mase, Atsushi; Bruskin, L.G.; Oyama, Naoyuki; Tokuzawa, Tokihiko; Itakura, Akiyosi; Hojo, Hitoshi; Tamano, Teruo [Tsukuba Univ., Ibaraki (Japan). Plasma Research Center
1997-05-01
Cross-polarization scattering (CPS) diagnostic was applied to the central-cell plasma of the GAMMA 10 tandem mirror in order to study electromagnetic plasma waves with frequencies of less than 200 kHz. In the CPS process, an incident ordinary (extraordinary) wave is converted to an extraordinary (ordinary) wave by magnetic fluctuations in a plasma. The converted wave propagates through the cutoff layer and reaches the opposite diagnostic port. The experimental data suggest that the power spectral density of the CPS signal satisfies the Bragg condition, while the reflectometer detects the waves near the cutoff layer where the wave number cannot be resolved. (author)
Cassini Radio and Plasma Wave Observations at Saturn
Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Ceccni, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.
2005-01-01
Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.
Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Piston, K; Felker, B; Kilkenny, J D; Chung, T; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L
2014-11-01
The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.
Energy Technology Data Exchange (ETDEWEB)
Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)
2014-11-15
The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.
Overrelaxation phenomena during the formation of reversed-field pinch plasmas
Mazur, S.; Nordlund, P.
1995-10-01
Experiments on the Extrap T1 reversed-field pinch (RFP) [Phys. Scr. 49, 224 (1994)] have shown that the formation of the RFP configuration is quite sensitive to the relative programming of the toroidal field and Ohmic heating circuits. In this paper, new measurements of the evolution of the current density profile and of the spectral structure of the fluctuations during the setup phase of RFP plasmas in the T1 experiment are presented. These measurements improve the understanding of the role of different spectral components in the dynamics of RFP formation. Under unfavorable (slow) setup conditions, comparatively high energy is accumulated in m=1 internal kinks prior to reversal of the edge toroidal field. At reversal, nonlinearly driven m=0 modes trigger a rapid broadening of the m=1 spectrum. This behavior is associated with a violent suppression of the current density in the core, leading to an overrelaxation of the discharge involving a hollowing of the parallel current density profile. The setup conditions are found to affect the volt-second consumption and plasma/wall interaction during RFP formation, as well as the flat-top discharge performance.
Nonextensivity effect on radio-wave transmission in plasma sheath
Mousavi, A.; Esfandiari-Kalejahi, A.; Akbari-Moghanjoughi, M.
2016-04-01
In this paper, new theoretical findings on the application of magnetic field in effective transmission of electromagnetic (EM) waves through a plasma sheath around a hypersonic vehicle are reported. The results are obtained by assuming the plasma sheath to consist of nonextensive electrons and thermal ions. The expressions for the electric field and effective collision frequency are derived analytically in the framework of nonextensive statistics. Examination of the reflection, transmission, and absorption coefficients regarding the strength of the ambient magnetic field shows the significance of q-nonextensive parameter effect on these entities. For small values of the magnetic field, the transmission coefficient increases to unity only in the range of - 1 hypersonic flights.
Physics of Collisionless Shocks Space Plasma Shock Waves
Balogh, André
2013-01-01
The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...
Polarizer design for millimeter-wave plasma diagnostics.
Leipold, F; Salewski, M; Jacobsen, A S; Jessen, M; Korsholm, S B; Michelsen, P K; Nielsen, S K; Stejner, M
2013-08-01
Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted by birefringent windows, the microwave receivers can be designed to be more compact at lower cost. Sapphire windows (a-cut) as well as grooved high density polyethylene windows can serve this purpose. The sapphire window can be designed such that the calculated transmission of the wave energy is better than 99%, and that of the high density polyethylene can be better than 97%.
‘Magneto-elastic’ waves in an anisotropic magnetised plasma
Del Sarto, D.; Pegoraro, F.; Tenerani, A.
2017-04-01
The linear waves that propagate in a two fluid magnetised plasma allowing for a non-gyrotropic perturbed ion pressure tensor are investigated. For perpendicular propagation and perturbed fluid velocity a low frequency (magnetosonic) and a high frequency (ion Bernstein) branch are identified and discussed. For both branches a comparison is made with the results of a truncated Vlasov treatment. For the low frequency branch we show that a consistent expansion procedure allows us to recover the correct expression of the finite Larmor radius corrections to the magnetosonic dispersion relation.
"Magneto-elastic" waves in an anisotropic magnetised plasma
Del Sarto, Daniele; Tenerani, Anna
2015-01-01
The linear waves that propagate in a two fluid magnetised plasma allowing for a non-gyrotropic perturbed ion pressure tensor are investigated. For perpendicular propagation and perturbed fluid velocity a low frequency (magnetosonic) and a high frequency (ion Bernstein) branch are identified and discussed. For both branches a comparison is made with the results of a kinetic Vlasov treatment. For the low frequency branch we show that a consistent expansion procedure allows us to recover the correct expression of the FLR corrections to the magnetosonic dispersion relation in agreement with Mikhailovskii and Smoliakov, Soviet Phys., JETP, 11, 1469 (1985).
Wave Localization and Density Bunching in Pair Ion Plasmas
Mahajan, Swadesh M
2008-01-01
By investigating the nonlinear propagation of high intensity electromagnetic (EM) waves in a pair ion plasma, whose symmetry is broken via contamination by a small fraction of high mass immobile ions, it is shown that this new and interesting state of (laboratory created) matter is capable of supporting structures that strongly localize and bunch the EM radiation with density excess in the region of localization. Testing of this prediction in controlled laboratory experiments can lend credence, inter alia, to conjectures on structure formation (via the same mechanism) in the MEV era of the early universe.
Broadband notch filter design for millimeter-wave plasma diagnostics
DEFF Research Database (Denmark)
Furtula, Vedran; Michelsen, Poul; Leipold, Frank;
2010-01-01
Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼ 900 MHz, and a typical insertion loss below 2 dB in the passband...... of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode...
Introduction to plasma dynamics
Morozov, A I
2013-01-01
As the twenty-first century progresses, plasma technology will play an increasing role in our lives, providing new sources of energy, ion-plasma processing of materials, wave electromagnetic radiation sources, space plasma thrusters, and more. Studies of the plasma state of matter not only accelerate technological developments but also improve the understanding of natural phenomena. Beginning with an introduction to the characteristics and types of plasmas, Introduction to Plasma Dynamics covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock w
Bowman, A.; Williams, R. L.
2016-10-01
Numerical simulation results suggest that a low energy electron beam, injected perpendicularly across co-propagating plasma waves and laser beams, can be compressed to a line focus under certain conditions, but under different conditions can be spread out into two main lobes on which bunching patterns are impressed. We report several explanations for these observations, and also discuss the similarity of these results to other research results previously reported in the literature. The prospects for testing these results in a laboratory will be discussed, as well as the use of these phenomena as diagnostics. Supported by the Department of Energy.
Nonlinear instability and chaos in plasma wave-wave interactions. II. Numerical methods and results
Energy Technology Data Exchange (ETDEWEB)
Kueny, C.S.; Morrison, P.J.
1995-05-01
In Part I of this work and Physics of Plasmas, June 1995, the behavior of linearly stable, integrable systems of waves in a simple plasma model was described using a Hamiltonian formulation. It was shown that explosive instability arises from nonlinear coupling between modes of positive and negative energy, with well-defined threshold amplitudes depending on the physical parameters. In this concluding paper, the nonintegrable case is treated numerically. Several sets of waves are considered, comprising systems of two and three degrees of freedom. The time evolution is modelled with an explicit symplectic integration algorithm derived using Lie algebraic methods. When initial wave amplitudes are large enough to support two-wave decay interactions, strongly chaotic motion destroys the separatrix bounding the stable region for explosive triplets. Phase space orbits then experience diffusive growth to amplitudes that are sufficient for explosive instability, thus effectively reducing the threshold amplitude. For initial amplitudes too small to drive decay instability, small perturbations might still grow to arbitrary size via Arnold diffusion. Numerical experiments do not show diffusion in this case, although the actual diffusion rate is probably underestimated due to the simplicity of the model.
Mechanism of laser-induced plasma shock wave evolution in air
Institute of Scientific and Technical Information of China (English)
Zhao Rui; Liang Zhong-Cheng; Han Bing; Zhang Hong-Chao; Xu Rong-Qing; Lu Jian; Ni Xiao-Wu
2009-01-01
A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track the plasma shock wave evolution process. The theoretical model and the experimental signals are found to be in good agreement with each other. It is shown that the laser-induced plasma shock wave undergoes formation, increase and decay processes; the increase and the decay processes of the laser-induced plasma shock wave result from the overlapping of the compression wave and the rarefaction wave, respectively. In addition, the laser-induced plasma shock wave speed and pressure distributions, both a function of distance, are presented.
Vladimirov, S V
2015-01-01
The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The results are discussed in the context of dusty plasma experiments.
Visualizing a Dusty Plasma Shock Wave via Interacting Multiple-Model Mode Probabilities
Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Céline; Samsonov, Dmitry
2011-01-01
Particles in a dusty plasma crystal disturbed by a shock wave are tracked using a three-mode interacting multiple model approach. Color-coded mode probabilities are used to visualize the shock wave propagation through the crystal.
Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas
Lee, Myoung-Jae; Jung, Young-Dae
2017-02-01
The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
Energy Technology Data Exchange (ETDEWEB)
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-03-15
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The poloidal rotation of the magnetized edge plasma in tokamak driven by theponderomotive force which is generated by injecting lower hybrid wave(LHW) electric field hasbeen studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla’sgrill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneouscold plasma have been derived. It is shown that a strong wave electric field will be generated inthe plasma edge by injecting LH wave of the power in MW magnitude, and this electric field willinduce a poloidal rotation with a sheared poloidal velocity.PACS: 52.55.Fa
Quasi-periodic behavior of ion acoustic solitary waves in electron-ion quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Sahu, Biswajit [Department of Mathematics, West Bengal State University Barasat, Kolkata-700126 (India); Poria, Swarup [Department of Applied Mathematics, University of Calcutta Kolkata-700009 (India); Narayan Ghosh, Uday [Department of Mathematics, Siksha Bhavana, Visva Bharati University Santiniketan (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata-700108 (India)
2012-05-15
The ion acoustic solitary waves are investigated in an unmagnetized electron-ion quantum plasmas. The one dimensional quantum hydrodynamic model is used to study small as well as arbitrary amplitude ion acoustic waves in quantum plasmas. It is shown that ion temperature plays a critical role in the dynamics of quantum electron ion plasma, especially for arbitrary amplitude nonlinear waves. In the small amplitude region Korteweg-de Vries equation describes the solitonic nature of the waves. However, for arbitrary amplitude waves, in the fully nonlinear regime, the system exhibits possible existence of quasi-periodic behavior for small values of ion temperature.
Propagation of Surface Wave Along a Thin Plasma Column and Its Radiation Pattern
Institute of Scientific and Technical Information of China (English)
WANG Zhijiang; ZHAO Guowei; XU Yuemin; LIANG Zhiwei; XU Jie
2007-01-01
Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various plasma parameters. The radiation patterns are shown. Results show that the radiation patterns are controllable by flexibly changing the plasma length and other parameters in comparison to the metal monopole antenna. It is meaningful and instructional for the optimization of the plasma antenna design.
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)
2017-02-12
High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.
Surface-wave capillary plasmas in helium: modeling and experiment
Santos, M.; Alves, L. L.; Noel, C.; Belmonte, T.
2012-10-01
In this paper we use both simulations and experiments to study helium discharges (99.999% purity) sustained by surface-waves (2.45 GHz frequency), in capillary tubes (3 mm radius) at atmospheric pressure. Simulations use a self-consistent homogeneous and stationary collisional-radiative model that solves the rate balance equations for the different species present in the plasma (electrons, the He^+ and He2^+ ions, the He(nexcimers) and the gas thermal balance equation, coupled to the two-term electron Boltzmann equation (including direct and stepwise collisions as well as electron-electron collisions). Experiments use optical emission spectroscopy diagnostics to measure the electron density (Hβ Stark broadening), the gas temperature (ro-vibrational transitions of OH, present at trace concentrations), and the populations of different excited states. Model predictions at 1.7x10^13 cm-3 electron density (within the range estimated experimentally) are in good agreement with measurements (deviations < 10%) of (i) the excitation spectrum and the excitation temperatures (2795 ± 115 K, obtained from the Boltzmann-plot of the excited state populations, with energies lying between 22.7 and 24.2 eV), (ii) the power coupled to the plasma (˜ 180 ± 10 W), and (iii) the gas temperature (˜ 1700 ± 100 K). We discuss the extreme dependence of model results (particularly the gas temperature) on the power coupled to the plasma.
Generation and detection of whistler wave induced space plasma turbulence at Gakona, Alaska
Rooker, L. A.; Lee, M. C.; Pradipta, R.; Watkins, B. J.
2013-07-01
We report on high-frequency wave injection experiments using the beat wave technique to study the generation of very-low-frequency (VLF) whistler waves in the ionosphere above Gakona, Alaska. This work is aimed at investigating whistler wave interactions with ionospheric plasmas and radiation belts. The beat wave technique involves injecting two X-mode waves at a difference frequency in the VLF range using the High-frequency Active Auroral Research Program (HAARP) heating facility. A sequence of beat wave-generated whistler waves at 2, 6.5, 7.5, 8.5, 9.5, 11.5, 15.5, 22.5, 28.5 and 40.5 kHz were detected in our 2011 experiments. We present Modular Ultra-high-frequency Ionospheric Radar (MUIR) (446 MHz) measurements of ion lines as the primary diagnosis of ionospheric plasma effects caused by beat wave-generated whistler waves. A magnetometer and digisonde were used to monitor the background ionospheric plasma conditions throughout the experiments. Our theoretical and data analyses show that VLF whistler waves can effectively interact with ionospheric plasmas via two different four-wave interaction processes leading to energization of electrons and ions. These preliminary results support our Arecibo experiments to study NAU-launched 40.75 kHz whistler wave interactions with space plasmas.
Zhao, Qing; Bo, Yong; Lei, Mingda; Liu, Shuzhang; Liu, Ying; Liu, Jianwei; Zhao, Yizhe
2016-11-01
Numerical study of electromagnetic (EM) wave transmission through the magnetized plasma layer is presented in this paper. The plasma parameters are derived from computational fluid dynamics simulation of the flow field around a blunt body flying at supersonic speed and serve as the background plasma condition in the numerical modeling for EM wave transmission. The EM wave is generated by our newly designed coaxial feed GPS patch antenna. The external magnetic field is applied and assumed to vary linearly as a function of wall distance. The effects of the external applied magnetic field and the plasma parameters on wave transmission are studied, and the results show that EM wave propagation in the non-uniformly magnetized plasma is a matter of impedance matching, and the EM wave transmission can be adjusted only when the proper strength of the magnetic field is applied.
Moradi, Afshin
2016-04-01
In a recent article [Niknam et al., Phys. Plasmas 20, 122106 (2013)], Niknam et al. investigated the propagation of TM surface waves on a semi-bounded quantum magnetized collisional plasma in the Faraday configuration (in this case, the magnetic field is parallel to the both of the plasma surface and direction of propagation). Here, we present a fresh look at the problem and show that TM surface waves cannot propagate on surface of the present system. We find in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the main result of the work by Niknam et al. is incorrect.
Kinetic theory of the interaction of gravitational waves with a plasma
Energy Technology Data Exchange (ETDEWEB)
Galtsov, D.V.; Melkumova, E.Iu.
1983-01-01
The interaction of weak gravitational waves (GWs) with a plasma is described in terms of kinetic equations and is reduced to the mutual excitation and a energy exchange between the GW, plasmons, and charged particles of the plasma. The approach used is based on elementary quantum considerations, which makes it possible to obtain a closed system of balance equations for the distribution functions of plasma particles, plasmons, and gravitons. The calculation of probabilities included in the balance equations is based on the correspondence principle, which makes it necessary to consider only those processes which accompany gravitational-wave emission. Particular consideration is given to the gravitational susceptibility of the plasma, gravitational-wave generation during the merging of plasma waves, and the 'super-light-speed' Cerenkov emission of gravitational waves from a plasma filament.
Oscillating two-stream instability of laser wakefield-driven plasma wave
Indian Academy of Sciences (India)
Nafis Ahmad; V K Tripathi; Moiz Ahmad; M Rafat
2016-01-01
The laser wakefield-driven plasma wave in a low-density plasma is seen to be susceptible to the oscillating two-stream instability (OTSI). The plasma wave couples to two short wavelength plasma wave sidebands. The pump plasma wave and sidebands exert a ponderomotive force on the electrons driving a low-frequency quasimode. The electron density perturbation associated with this mode couples with the pump-driven electron oscillatory velocity to produce nonlinear currents driving the sidebands. At large pump amplitude, the instability grows faster than the ion plasma frequency and ions do not play a significant role. The growth rate of the quasimode, at large pump amplitude scales faster than linear. The growth rate is maximum for an optimum wave number of the quasimode and also increases with pump amplitude. Nonlocal effects, however reduce the growth rate by about half.
Space and Astrophysical Plasmas : Sun–Earth connection: Boundary layer waves and auroras
Indian Academy of Sciences (India)
G S Lakhina; B T Tsurutani; J K Arballo; C Galvan
2000-11-01
Boundary layers are the sites where energy and momentum are exchanged between two distinct plasmas. Boundary layers occurring in space plasmas can support a wide spectrum of plasma waves spanning a frequency range of a few mHz to 100 kHz and beyond. The main characteristics of the broadband plasma waves (with frequencies > 1 Hz) observed in the magnetopause, polar cap, and plasma sheet boundary layers are described. The rapid pitch angle scattering of energetic particles via cyclotron resonant interactions with the waves can provide sufﬁcient precipitated energy ﬂux to the ionosphere to create the diffused auroral oval. The broadband plasma waves may also play an important role in the processes of local heating/acceleration of the boundary layer plasma.
The ''phase velocity'' of nonlinear plasma waves in the laser beat-wave accelerator
Energy Technology Data Exchange (ETDEWEB)
Spence, W.L.
1985-04-01
A calculational scheme for beat-wave accelerators is introduced that includes all orders in velocity and in plasma density, and additionally accounts for the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which it is possible to sum up all orders of forward Raman scattering. It is found that the nonlinear plasma wave does not have simply a single phase velocity, but that the beat-wave which drives it is usefully described by a non-local ''effective phase velocity'' function. A time-space domain approach is followed. (LEW)
Plasma depletion layer: the role of the slow mode waves
Directory of Open Access Journals (Sweden)
Y. L. Wang
2004-12-01
Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding values in the upstream magnetosheath. The depletion layer usually occurs during northward (IMF conditions with low magnetic shear across the magnetopause. We have previously validated the Raeder global model by comparing the computed formation of a magnetosheath density depletion with in-situ observations. We also have performed a detailed force analysis and found the varying roles that different MHD forces play along the path of a plasma parcel flowing around the magnetopause. That study resulted in a new description of the behavior of magnetosheath magnetic flux tubes which better explains the plasma depletion along a flux tube. The slow mode waves have been observed in the magnetosheath and have been used to explain the formation of the PDL in some of the important PDL models. In this study, we extend our former work by investigating the possible role of the slow mode waves for the formation of the PDL, using global MHD model simulations. We propose a new technique to test where a possible slow mode front may occur in the magnetosheath by comparing the slow mode group velocity with the local flow velocity. We find that the slow mode fronts can exist in certain regions in the magnetosheath under certain solar wind conditions. The existence and location of such fronts clearly depend on the IMF. We do not see from our global simulation results either the sharpening of the slow mode front into a slow mode shock or noticeable changes of the flow and field in the magnetosheath across the slow mode front, which implies that the slow mode front is not likely responsible for the formation of the PDL, at least for the stable solar wind conditions used in these simulations. Also, we do not see the two-layered slow mode structures shown in some observations and proposed in certain PDL
Farhad Kiyaei, Forough; Dorranian, Davoud
2017-01-01
Effects of the obliqueness and the strength of external magnetic field on the ion acoustic (IA) cnoidal wave in a nonextensive plasma are investigated. The reductive perturbation method is employed to derive the corresponding KdV equation for the IA wave. Sagdeev potential is extracted, and the condition of generation of IA waves in the form of cnoidal waves or solitons is discussed in detail. In this work, the domain of allowable values of nonextensivity parameter q for generation of the IA cnoidal wave in the plasma medium is considered. The results show that only the compressive IA wave may generate and propagate in the plasma medium. Increasing the strength of external magnetic field will increase the frequency of the wave and decrease its amplitude, while increasing the angle of propagation will decrease the frequency of the wave and increase its amplitude.
Institute of Scientific and Technical Information of China (English)
Song Falun; Cao Jinxiang; Wang Ge
2005-01-01
The purpose of the present work is to present a full-wave analysis of scattering from the weakly ionized plasma in the plane geometry. We have yielded an approximate solution in an analytic form to the electromagnetic wave scattering from the weakly ionizsd plasma. In the normal and oblique incidence, the analytic solution works well, as compared with the exact solution and the solution based on the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation to the uniform density profile.
Wave spectra of 2D dusty plasma solids and liquids
Hou, Lu-Jing; Piel, Alexander; Murillo, Michael S
2009-01-01
Brownian dynamics simulations were carried out to study wave spectra of two-dimensional dusty plasma liquids and solids for a wide range of wavelengths. The existence of a longitudinal dust thermal mode was confirmed in simulations, and a cutoff wavenumber in the transverse mode was measured. Dispersion relations, resulting from simulations, were compared with those from analytical theories, such as the random-phase approximation (RPA), quasi-localized charged approximation (QLCA), and harmonic approximation (HA). An overall good agreement between the QLCA and simulations was found for wide ranges of states and wavelengths after taking into account the direct thermal effect in the QLCA, while for the RPA and HA good agreement with simulations were found in the high and low temperature limits, respectively.
Zolghadr, S. H.; Jafari, S.; Raghavi, A.
2016-05-01
Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FEL has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.
Tsurutani, Bruce T.
1995-01-01
As the lead-off presentation for the topic of nonlinear waves and their evolution, we will illustrate some prominent examples of waves in space plasmas. We will describe recent observations detected within planetary foreshocks, near comets and in interplanetary space. It is believed that the nonlinear LF plasma wave features discussed here are part of and may be basic to the development of plasma turbulence. In this sense, this is one area of space plasma physics that is fundamental, with applications to fusion physics and astrophysics as well. It is hoped that the reader(s) will be stimulated to study nonlinear wave development themselves, if he/she is not already involved.
Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows
Energy Technology Data Exchange (ETDEWEB)
Saleem, H. [Department of Space Science, Institute of Space Technology, 1-Islamabad Highway, Islamabad (Pakistan); Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); Ali, S. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Haque, Q. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)
2015-08-15
The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.
Generation of fast electrons by breaking of a laser-induced plasma wave
Trines, Rmgm; Goloviznin, V. V.; Kamp, L. P. J.; Schep, T. J.
2001-01-01
A one-dimensional model for fast electron generation by an intense, nonevolving laser pulse propagating through an underdense plasma has been developed. Plasma wave breaking is considered to be the dominant mechanism behind this process, and wave breaking both in front of and behind the laser pulse
Energy Technology Data Exchange (ETDEWEB)
Light, Max Eugene [Los Alamos National Laboratory
2017-04-13
This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density n_{e}(r), which will modify the wave propagation in the direction of the gradient rn_{e}(r).
WIND observations of plasma waves inside the magnetic cloud boundary layers
Institute of Scientific and Technical Information of China (English)
WEI Fengsi; ZHONG Dingkun; FENG Xueshang; YANG Fang; LIU Rui
2005-01-01
Based on the WIND observational data for the plasma waves from thermal noise receptor (TNR) working on the frequency 4―256 kHz and the solar wind and the magnetic fields, we analyze the plasma wave activities in the 60 magnetic cloud's boundary layers (BLs) and find that there are often various plasma wave activities in the BLs, which are different from those in the adjacent solar wind (SW) and the magnetic clouds (MC). The basic characteristics are that: (1) the enhancement of the Langmuir wave near the electronic plasma frequency (fpe) is a dominant wave activity, which occupies 75% investigated samples; (2) the events enhanced both in the langmuir and ion acustic (f < fpe) waves are about 60% of investigated samples; (3) broadband, continuous enhancement events in the plasma wave activities were observed in the whole frequency band of TNR, and about 30% of the 60 samples, however, were not observed in the SW and the MC investigated events; (4) although the ratio of the temperatures between the electon and proton, Te/Tp≤1, the ion caustic wave enhancement activities are still often observed in the BLs, which makes it difficult to ex-plain them by the traditional plasma theory. New results reported in this paper further show that the magnetic cloud's BL is an important dynamic structure, which could provide useful diagnosis for understanding the cloud's BL physics and could expand a space developing space plasma wave theory.
CO2 Laser Beat-Wave Experiment in an Unmagnetized Plasma
Liu, Fei; Hwang, David; Horton, Robert; Hong, Sean; Evans, Russell
2012-10-01
The ability to remotely generate plasma current in dense plasmas is a basic yet important investigation in experimental plasma physics and fusion energy research. It is even more advantageous if the wave penetration is independent of the electron acceleration process. Plasma current can be generated through beat-wave mixing process by launching two intense electromagnetic waves (φ>>φpe) into plasma. The beat wave formation process can be efficient if the difference frequency of the two pump waves is matched to a local resonant frequency of the medium, i.e. in this case the local plasma frequency. Beat wave can accelerate plasma electrons via quasi-linear Landau process, which has been demonstrated in a low-density plasma using microwaves.footnotetextRogers, J. H. and Hwang, D. Q., Phys. Rev. Lett. v68 p3877 (1992). The CO2 lasers provide the high tunability for the wave-particle interaction experiment at a variety of plasma densities with plasma frequency in THz range. Two sections of Lumonics TEA CO2 lasers have been modified to serve as the two pump wave sources with peak power over 100MW. The development of the tunable CO2 lasers, a high-density plasma target source and diagnostics system will be presented. The initial results of unbalanced beat-wave experiment using one high-power pulsed and one low-power CW CO2 lasers will be presented and discussed using the independent plasma source to control the φpe of the interaction region. This work is supported by U.S. DOE under Contract No. DE-FG02-10ER55083.
Effective-action approach to wave propagation in scalar QED plasmas
Shi, Yuan; Fisch, Nathaniel J.; Qin, Hong
2016-07-01
A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we give two examples: a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasmas are cold. These waves account for cyclotron absorption features observed in spectra of x-ray pulsars. Moreover, cutoff frequencies of the two nondegenerate electromagnetic waves are red-shifted by different amounts. These corrections need to be taken into account in order to correctly interpret diagnostic results in laser plasma experiments.
Low-Frequency Electrostatic Ion Surface Waves in Magnetized Electron-Positron Plasmas
Cho, Sang-Hoon; Lee, Hee J.
The dispersion relations of a surface ion wave propagating on the interface between a warm electron-positron plasma and vacuum when a static magnetic field is directed either normal to the interface (x-wave) or parallel to the wave vector (z-wave) are solved analytically, and the influence of the magnetic field on the ion surface wave is investigated in detail using some numerical work. It is shown that ion surface waves do not exist if the magnetic field is large enough to make the ion gyrofrequency greater than the ion plasma frequency. The attenuation constant of x-waves is more attenuated than that of z-waves and the x-wave is more attenuated as the parameter normalized ion gyrofrequency ζ increases toward 1, but this tendency is reversed for the z-wave. The z-wave does not exist for k2λD2< (ζ/(1-ζ))(p + 1) while the x-wave exists over the whole range of k, where the fractional number p is the ratio between the unperturbed positron and the electron number density. Additionally, we compare the ion surface wave properties of electron-positron plasma with conventional electron-ion plasma.
Sewell, Stephen
This thesis introduces a software framework that effectively utilizes low-cost commercially available Graphic Processing Units (GPUs) to simulate complex scientific plasma phenomena that are modeled using the Particle-In-Cell (PIC) paradigm. The software framework that was developed conforms to the Compute Unified Device Architecture (CUDA), a standard for general purpose graphic processing that was introduced by NVIDIA Corporation. This framework has been verified for correctness and applied to advance the state of understanding of the electromagnetic aspects of the development of the Aurora Borealis and Aurora Australis. For each phase of the PIC methodology, this research has identified one or more methods to exploit the problem's natural parallelism and effectively map it for execution on the graphic processing unit and its host processor. The sources of overhead that can reduce the effectiveness of parallelization for each of these methods have also been identified. One of the novel aspects of this research was the utilization of particle sorting during the grid interpolation phase. The final representation resulted in simulations that executed about 38 times faster than simulations that were run on a single-core general-purpose processing system. The scalability of this framework to larger problem sizes and future generation systems has also been investigated.
M, G. Hafez; N, C. Roy; M, R. Talukder; M Hossain, Ali
2017-01-01
A comparative study is carried out for the nonlinear propagation of ion acoustic shock waves both for the weakly and highly relativistic plasmas consisting of relativistic ions and q-distributed electrons and positions. The Burgers equation is derived to reveal the physical phenomena using the well known reductive perturbation technique. The integration of the Burgers equation is performed by the (G\\prime /G)-expansion method. The effects of positron concentration, ion–electron temperature ratio, electron–positron temperature ratio, ion viscosity coefficient, relativistic streaming factor and the strength of the electron and positron nonextensivity on the nonlinear propagation of ion acoustic shock and periodic waves are presented graphically and the relevant physical explanations are provided.
Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Joshi, C.
1993-01-01
High-gradient acceleration of externally injected 2.1-MeV electrons by a laser beat wave driven relativistic plasma wave has been demonstrated for the first time. Electrons with energies up to the detection limit of 9.1 MeV were detected when such a plasma wave was resonantly excited using a two-frequency laser. This implies a gradient of 0.7 GeV/m, corresponding to a plasma-wave amplitude of more than 8%. The electron signal was below detection threshold without injection or when the laser was operated on a single frequency.
Characteristics of Plasma Shock Waves Generated in the Pulsed Laser Ablation Process
Institute of Scientific and Technical Information of China (English)
李智华; 张端明; 郁伯铭; 关丽
2002-01-01
We modify the Sedov theory to describe plasma shock waves generated in a pulsed laser ablating process. We also study the propagation characteristics of plasma shock waves during the preparation process of functional thin films deposited by a pulsed laser. In particular, we discuss in detail the temporal behaviour of energy causing the difference of the propagation characteristics between the plasma shock wave and the ideal shock wave in the point explosion model. Under the same experimental conditions, the theoretical results calculated with our modified Sedov theory are in good agreement with the existing experimental data.
Impact of the Collisional Plasma on the Propagation of Millimeter Waves
Institute of Scientific and Technical Information of China (English)
袁忠才; 时家明; 汪家春; 许波
2004-01-01
The plasma generated in the low-altitude atmosphere is of high collision frequencies.In this paper, the transmission coefficients of millimeter(MM) waves normally incident upon the plasma with high collision frequencies are calculated and analyzed. The experimental results of reflection and attenuation are presented for the eight-millimeter waves propagating through the plasma. Both the calculated experimental results indicate that the MM-waves concerned are attenuated significantly and reflected weakly, when propagating through the plasma of high collision frequencies.
The Nonlinear Langmuir Waves in a Multi-ion-Component Plasma
Institute of Scientific and Technical Information of China (English)
CHEN Yin-Hua; LU Wei; WANG Wen-Hao
2001-01-01
We investigated the nonlinear Langmuir waves in a multi-ion-component low-temperature plasma. Beginning with the fluid theory of plasma, and taking fully nonlinear response of the low-frequency ion motion into account, we derived a set of equations governing the nonlinear coupling of the amplitude of the Langmuir wave and the Iow-frequency perturbation density. Using the Sagdeev potential method, we analyzed the characteristics of solitary wave. In the limit of small amplitude, the envelope soliton was found. Our investigation demonstrates that the properties of soliton in a multi-ion-component plasma are different from those of soliton in an electron-ion plasma.
Enhanced acceleration of injected electrons in a laser-beat-wave-induced plasma channel.
Tochitsky, S Ya; Narang, R; Filip, C V; Musumeci, P; Clayton, C E; Yoder, R B; Marsh, K A; Rosenzweig, J B; Pellegrini, C; Joshi, C
2004-03-05
Enhanced energy gain of externally injected electrons by a approximately 3 cm long, high-gradient relativistic plasma wave (RPW) is demonstrated. Using a CO2 laser beat wave of duration longer than the ion motion time across the laser spot size, a laser self-guiding process is initiated in a plasma channel. Guiding compensates for ionization-induced defocusing (IID) creating a longer plasma, which extends the interaction length between electrons and the RPW. In contrast to a maximum energy gain of 10 MeV when IID is dominant, the electrons gain up to 38 MeV energy in a laser-beat-wave-induced plasma channel.
The effect of lower hybrid waves on JET plasma rotation
Nave, M. F. F.; Kirov, K.; Bernardo, J.; Brix, M.; Ferreira, J.; Giroud, C.; Hawkes, N.; Hellsten, T.; Jonsson, T.; Mailloux, J.; Ongena, J.; Parra, F.; Contributors, JET
2017-03-01
This paper reports on observations of rotation in JET plasmas with lower hybrid current drive. Lower hybrid (LH) has a clear impact on rotation. The changes in core rotation can be either in the co- or counter-current directions. Experimental features that could determine the direction of rotation were investigated. Changes from co- to counter-rotation as the q-profile evolves from above unity to below unity suggests that magnetic shear could be important. However, LH can drive either co- or counter-rotation in discharges with similar magnetic shear and at the same plasma current. It is not clear if a slightly lower density is significant. A power scan at fixed density, shows a lower hybrid power threshold around 3 MW. For smaller LH powers, counter rotation increases with power, while for larger powers a trend towards co-rotation is found. The estimated counter-torque from the LH waves, would not explain the observed angular frequencies, neither would it explain the observation of co-rotation.
Resonant Alfven waves in partially ionized plasmas of the solar atmosphere
Soler, R; Goossens, M
2011-01-01
Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. In magnetic waveguides resonant absorption due to plasma inhomogeneity naturally transfers wave energy from large-scale motions to small-scale motions. In the cooler parts of the solar atmosphere as, e.g., the chromosphere, effects due to partial ionization may be relevant for wave dynamics and heating. Aims. We study resonant Alfven waves in partially ionized plasmas. Methods. We use the multifluid equations in the cold plasma approximation. We investigate propagating resonant MHD waves in partially ionized flux tubes. We use approximate analytical theory based on normal modes in the thin tube and thin boundary approximations along with numerical eigenvalue computations. Results. We find that the jumps of the wave perturbations across the resonant layer are the same as in fully ionized plasmas. The damping length due to resonant absorption is inversely proportional to the frequency, while that due to ion-neutral collisions is in...
Institute of Scientific and Technical Information of China (English)
郭斌; 王晓钢
2005-01-01
We have studied the absorption, reflection, and transmission of electromagnetic waves in an unmagnetized uniform plasma layer covering a metal surface in atmosphere conditions.Instead of the absorption of the electromagnetic wave propagating only once in previous work on the plasma layer, a general formula of total power absorption by the plasma layer with an infinite time of reflections between the atmosphere-plasma interface and the metal surface has been derived for the first time. Effects of plasma parameters, especially the dependence of the fraction of positive ions, negative ions and electrons in plasmas on the power absorption processes are discussed. The results show that the existence of negative ions significantly reduces the power absorption of the electromagnetic wave. Absorptions of electromagnetic waves are calculated.
Modulational instability of ion-acoustic waves in a warm plasma
Institute of Scientific and Technical Information of China (English)
薛具奎; 段文山; 郎和
2002-01-01
Using the standard reductive perturbation technique, a nonlinear Schrodinger equation is derived to study themodulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma. It is found thatthe inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the solitonstructures. The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties areinvestigated in detail.
Sabeen, A.; Masood, W.; Qureshi, M. N. S.; Shah, H. A.
2017-07-01
In this paper, linear and nonlinear coupling of kinetic Alfven and acoustic waves has been studied in a dusty plasma in the presence of trapping and self-gravitation effects. In this regard, we have derived the linear dispersion relations for positively and negatively coupled dust kinetic Alfven-acoustic waves. Stability analysis of the coupled dust kinetic Alfven-acoustic wave has also been presented. The formation of solitary structures has been investigated following the Sagdeev potential approach by using the two-potential theory. Numerical results show that the solitary structures can be obtained only for sub-Alfvenic regimes in the scenario of space plasmas.
Nonlinear acoustic waves in a collisional self-gravitating dusty plasma
Institute of Scientific and Technical Information of China (English)
Guo Zhi-Rong; Yang Zeng-Qiang; Yin Bao-Xiang; Sun Mao-Zhu
2010-01-01
Using the reductive perturbation method,we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma.The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation,and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.
Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.
2012-12-01
High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.
On the rogue waves propagation in non-Maxwellian complex space plasmas
El-Tantawy, S. A.; El-Awady, E. I.; Tribeche, M.
2015-11-01
The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.
On the rogue waves propagation in non-Maxwellian complex space plasmas
Energy Technology Data Exchange (ETDEWEB)
El-Tantawy, S. A., E-mail: samireltantawy@yahoo.com; El-Awady, E. I., E-mail: eielawady@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Tribeche, M., E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Physics, University of Bab-Ezzouar, USTHB, BP 32, El Alia, Algiers 16111 (Algeria)
2015-11-15
The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.
Energy Technology Data Exchange (ETDEWEB)
Molin, B. [Ecole Generaliste d' Ingenieurs de Marseille, 13 (France)
2006-03-15
At first approximation, the study of wave interaction with fixed or floating bodies is carried out within a linear frame. However nonlinear effects are numerous and they have diverse origins: mechanical nonlinearities, variation in time of the wetted part of the hull, viscous phenomena (flow separation), nonlinear free surface equations. We focus here on the latter type of nonlinearities. Two different approaches are described, both being based on potential flow theory. Practical applications are given for two basic geometries: a vertical cylinder and a vertical plate, perpendicular to the wave direction. In the first approach, one proceeds through successive approximations, based on a perturbation series development. The first-order of approximation coincides with the linear theory. The main interest of the second-order of approximation, well mastered nowadays, is that it yields excitation loads in an enlarged frequency domain, encompassing most of the natural frequencies of the system considered. At third-order the complexity of the equations becomes dissuasive and few researchers have ventured there. We suggest that third-order (or tertiary) interactions, between incoming waves and reflected waves by the structure, can play a very important role, overlooked so far, in phenomena such as run-up or green water. In the second approach one integrates in time and space the nonlinear equations of the initial boundary value problem, with the free surface equations being exactly satisfied. In this way one obtains numerical equivalents of the physical wave-tanks. They are briefly described and some illustrative results are given. (authors)
Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube
Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.
2003-01-01
A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.
Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode
Directory of Open Access Journals (Sweden)
A. Parvazian
2008-03-01
Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.
New numerical tools to study waves and instabilities of flowing plasmas
Beliën, A.J.C.; Botchev, M.A.; Goedbloed, J.P.; Holst, van der B.; Keppens, R.
2002-01-01
Studying plasma waves and instabilities is an indispensable part of present thermonuclear fusion and astrophysical magnetohydrodynamics (MHD). Up till recently, spectral analysis was mostly restricted to static plasmas. However, the assumption of a static plasma is unrealistic not only for astrophys
Electrostatic Waves in Dense Dusty Plasmas with High Fugacity
Rao, N. N.
Propagation of electrostatic dust modes has been reviewed in the light of the concept of dust fugacity defined by f≡4πnd0λD2R, where nd0 and R are the dust number density and the grain size (radius) while the plasma Debye length (λD) is given through λD-2=λDe-2+λDi-2. Dusty plasmas are defined to be tenuous, dilute or dense when f≪1, ˜1, or ≫1, respectively. Attention is focused on “Dust-Acoustic Waves” (DAWs) and “Dust-Coulomb Waves” (DCWs) which exist in the tenuous (f≪1) and the dense (f≫1) regimes, respectively. A simple physical picture of the DCWs has been proposed in terms of an effective pressure called “Coulomb Pressure defined by PC≡nd0qd02/R, where qd0 is the grain charge. In the lowest order, the DCW phase speed is given by ω/k=PC/ρdδ, where ρd≡nd0md is the dust mass density and δ≡ω2/ω1 is the ratio of charging frequencies. Thus, DCWs which are driven by the Coulomb pressure can be considered as the electrostatic analogue of hydromagnetic (Alfvén or magnetoacoustic) modes which are driven by magnetic field pressure. In the dilute regime, the two waves loose their identities and merge into a single mode, which may be called “Dust Charge-Density Wave” (DCDW). When the grains are closest, DCW dispersion relation is identical with that of “Dust-Lattice Waves” (DLWs). Dense dusty plasmas are governed by a new scale-length defined by λR≡1/4πnd0Rδ, which characterizes the effective shielding length due to grain collective interactions. The scale-length λR plays a fundamental role in dense dusty plasmas, which is very similar to that of the Debye length λD in the tenuous regime. The two scale-lengths are related to the fugacity through fδ≡λD2/λR2. The frequency spectrum as well as the damping rates for various dust modes have been analytically obtained, and compared with the numerical solutions of the kinetic (Vlasov) dispersion relation.
Millimeter-wave receiver design for plasma diagnostics
DEFF Research Database (Denmark)
Leipold, Frank; Hansen, S. K.; Jacobsen, Asger Schou;
2016-01-01
Scattered millimeter waves entering from the collective Thomson scattering diagnostic at ASDEX Upgrade fusion device are generally elliptically polarized. In order to convert the millimeter waves to linearly polarized waves (required for the detector), birefringent window assemblies (sapphire) have...
Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas
2012-01-01
It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore in the high-beta solar wind plasma whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave turbulence creates a plateau by quasilinear diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only ~10^-3 that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.
Directory of Open Access Journals (Sweden)
Mahinder Singh
2016-10-01
Full Text Available The generation mechanism of the electromagnetic radiation in case of inhomogeneous plasma on the basis of plasma-maser interaction in presence of drift wave turbulence is studied. The drift wave turbulence is taken as the low-frequency mode field and is found to be strongly in phase relation with thermal particles and may transfer its wave energy nonlinearly through a modulated field of high-frequency extraordinary mode (X-mode wave. It has been found that amplification of X-mode wave is possible at the expense of drift wave turbulent energy. This type of high-frequency instability can leads to auroral kilometric radiation (AKR. The growth rate of the X-mode wave, in the form of AKR, has been calculated with the involvement of spatial density gradient parameter. This result may be particularly important for stability of various drift modes in magnetically confined plasma as well as for transport of momentum and energy in such inhomogeneous plasma
Energy Technology Data Exchange (ETDEWEB)
Coroniti, F.V.; Greenstadt, E.W.; Moses, S.L. [TRW Space and Electronics Group, Redondo Beach, CA (United States); Tsurutani, B.T.; Smith, E.J. [California Institute of Technology, Pasadena, CA (United States)
1994-12-01
In early September, 1983 ISEE-3 made a long traversal of the distant dawnside magnetosheath starting near x = {minus}150 R{sub E} downstream. The distant magnetosheath often contains moderately intense plasma wave emissions at frequencies from several hundred Hz to 5 kHz. However, over time scales of many days, a clear correlation exists between the occurrence of the plasma waves and the cone angle ({theta}{sub xB}) between the magnetic field and the plasma flow velocity (x-direction). For {theta}{sub xB} large (small), the plasma wave amplitudes are near background (high). Sudden (<1 minute) changes in the local magnetic field orientation produce correspondingly sudden changes in the wave amplitudes. Statistically, the wave amplitudes decrease continuously with increasing {theta}{sub xB}. 7 refs., 5 figs.
Absorption of electromagnetic waves by the dust particles in a plasma
Institute of Scientific and Technical Information of China (English)
LI; Fang; LI; Lianlin; SUI; Qiang
2004-01-01
Absorption of electromagnetic waves by the dust particles in a plasma has been studied based on a Mie-Debye scattering mode. The longitudinal field of the Debye scattering has been derived and the wave energy loss from it has been calculated. It is shown that the lower the temperature of the plasma is and the higher the density of the plasma is, the larger the absorption cross section will be due to the longitudinal scattering.For the low frequency waves the electromagnetic waves scattered in a dusty plasma are mainly in the form of Debye scattering. In this case the energy loss due to the longitudinal scattering will affect the wave propagation seriously.
Plasma acceleration by the interaction of parallel propagating Alfv\\'en waves
Mottez, Fabrice
2014-01-01
It is shown that two circularly polarised Alfv\\'en waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic waves. The simulations are done with monochromatic waves and with wave packets. The simulations show parallel electromagnetic fields consistent with the theory, and they show that the particle acceleration result in plasma cavities and, if the waves amplitudes are high enough, in ion beams. These acceleration processes could be relevant in space plasmas. For instance, they could be at work in the auroral zone and in the radiation belts of the Earth magnetosphere. In particular, they may explain the origin of the deep plasma...
Development of Small Plasma Wave Receiver with a Dedicated Chip for Scientific Spacecraft
Fukuhara, H.; Kojima, H.; Ishii, H.; Okada, S.; Yamakawa, H.
2012-04-01
Since space is filled with collisionless plasmas, kinetic energy of each particle of the plasmas is exchanged via electric and magnetic fields, so-called plasma waves. The plasma waves have been observed a number of scientific spacecraft. Plasma wave receivers are classified into two kinds of the receiver, spectrum receivers, and waveform receivers. The spectrum receivers provide an overview of the plasma waves. The waveform receivers give not only amplitude but also phase of the plasma waves. Phase information between the plasma waves and plasma particle is essential in wave-particle interactions. It is important for understanding physical processes to combine both kinds of data of spectra and waveforms. Since the plasma waves have various intensities in wide-band frequency range, from DC to tens of MHz, the onboard instruments for the plasma wave observation are required to have low noise, high sensitivity, and wide dynamic range in wide-band. The required performances lead to increase the weight budget of the analog part of the instrument. The dedicated system chip can drastically decrease weight budget of the plasma wave instruments for multi-point observation missions and deep space exploration missions. It is also significant that manufacturing a number of instruments with the same performance becomes easy. In this paper, we demonstrate the miniaturized plasma wave receiver, which is realized in a dedicated chip for the analog part. The spectrum receiver is a double super heterodyne receiver, so-called `Sweep Frequency Analyzer (SFA).' This SFA is improved in the time resolution with keeping good frequency resolution by combining the analog frequency conversion and FFT. The SFA consists of an amplifier, a frequency synthesizer, mixers and band-pass filters. These component circuits are fabricated in chips and their performances are tested. The waveform receiver generally consists of the band-limiting filter, the amplifier, the anti-aliasing filter, and the A
Electron trajectories and growth rates of the plasma wave pumped free-electron laser
Jafari, S.; Jafarinia, F.; Nilkar, M.; Amiri, M.
2014-12-01
A theory for a plasma wave wiggler has been described which employs the plasma whistler wave for producing laser radiation in a free-electron laser (FEL). While electromagnetically pumped FELs have been proven to be an effective means generating short wavelengths, practical difficulties occur in the design of these wigglers. For this reason, it is found that a plasma wave wiggler can be employed in concept with an electromagnetic wave wiggler due to both higher tunability and holding the focus of pump wave and e-beam over a significant distance to achieve a suitable amplification. Plasma in the presence of static magnetic field supports a plasma whistler wave. The plasma wiggler period can be tuned by varying the plasma density and/or ambient magnetic field. Electron trajectories have been analyzed using single particle dynamics and regimes of orbital stability have been demonstrated. A polynomial dispersion relation for electromagnetic and space-charge waves has then been derived, analytically. Numerical studies of the dispersion relation reveal that the growth rates are sensitive functions of the cyclotron frequency. It has been shown that by increasing the axial magnetic field strength (or cyclotron frequency), the growth rate for groups I and III orbits increases, while a growth decrement has been obtained for groups II and IV orbits.
Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas
Energy Technology Data Exchange (ETDEWEB)
Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Mushtaq, A. [National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan)
2013-07-15
The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are strongly influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.
Dust acoustic solitary and shock waves in strongly coupled dusty plasmas with nonthermal ions
Indian Academy of Sciences (India)
Hamid Reza Pakzad; Kurosh Javidan
2009-11-01
The Korteweg–de Vries–Burgers (KdV–Burgers) equation and modified Korteweg–de Vries–Burgers equation are derived in strongly coupled dusty plasmas containing nonthermal ions and Boltzmann distributed electrons. It is found that solitary waves and shock waves can be produced in this medium. The effects of important parameters such as ion nonthermal parameter, temperature, density and velocity on the properties of shock waves and solitary waves are discussed.
Investigation of Ionospheric Turbulence and Whistler Wave Interactions with Space Plasmas
2012-11-21
GeoMagnetic Observatory System ( GMO ). We then have detection of HF heater-induced large plasma sheets, using MUIR radar and GPS satellites [Cohen et al...experiments. It is found that the heat wave fronts, which occurred in US, were plausible sources of free energy generating intense gravity waves and...that the heat wave fronts, which occurred in USA, were the plausible sources of free energy, generating intense gravity waves and triggering large
Kasaba, Y.; Bougeret, J.-L.; Blomberg, L. G.; Kojima, H.; Yagitani, S.; Moncuquet, M.; Trotignon, J.-G.; Chanteur, G.; Kumamoto, A.; Kasahara, Y.; Lichtenberger, J.; Omura, Y.; Ishisaka, K.; Matsumoto, H.
2010-01-01
The BepiColombo Mercury Magnetospheric Orbiter (MMO) spacecraft includes the plasma and radio wave observation system called Plasma Wave Investigation (PWI). Since the receivers for electric field, plasma waves, and radio waves are not installed in any of the preceding spacecraft to Mercury, the PWI will provide the first opportunity for conducting in-situ and remote-sensing observations of electric fields, plasma waves, and radio waves in the Hermean magnetosphere and exosphere. These observations are valuable in studying structure, dynamics, and energy exchange processes in the unique magnetosphere of Mercury. They are characterized by the key words of the non-MHD environment and the peculiar interaction between the relatively large planet without ionosphere and the solar wind with high dynamic pressure. The PWI consists of three sets of receivers (EWO, SORBET, and AM 2P), connected to two sets of electric field sensors (MEFISTO and WPT) and two kinds of magnetic field sensors (LF-SC and DB-SC). The PWI will observe both waveforms and frequency spectra in the frequency range from DC to 10 MHz for the electric field and from 0.3 Hz to 640 kHz for the magnetic field. From 2008, we will start the development of the engineering model, which is conceptually consistent with the flight model design. The present paper discusses the significance and objectives of plasma/radio wave observations in the Hermean magnetosphere, and describes the PWI sensors, receivers and their performance as well as the onboard data processing.
Trapped electron acceleration by a laser-driven relativistic plasma wave
Everett, M.; Lal, A.; Gordon, D.; Clayton, C. E.; Marsh, K. A.; Joshi, C.
1994-04-01
THE aim of new approaches for high-energy particle acceleration1 is to push the acceleration rate beyond the limit (~100 MeV m-1) imposed by radio-frequency breakdown in conventional accelerators. Relativistic plasma waves, having phase velocities very close to the speed of light, have been proposed2-6 as a means of accelerating charged particles, and this has recently been demonstrated7,8. Here we show that the charged particles can be trapped by relativistic plasma waves-a necessary condition for obtaining the maximum amount of energy theoretically possible for such schemes. In our experiments, plasma waves are excited in a hydrogen plasma by beats induced by two collinear laser beams, the difference in whose frequencies matches the plasma frequency. Electrons with an energy of 2 MeV are injected into the excited plasma, and the energy spectrum of the exiting electrons is analysed. We detect electrons with velocities exceeding that of the plasma wave, demonstrating that some electrons are 'trapped' by the wave potential and therefore move synchronously with the plasma wave. We observe a maximum energy gain of 28 MeV, corresponding to an acceleration rate of about 2.8 GeV m-1.
Laser-driven Beat-Wave Current Drive in Dense Plasmas with Demo on CTIX
Liu, Fei; Horton, Robert; Hwang, David; Zhu, Ben; Evans, Russell; Hong, Sean; Hsu, Scott
2010-11-01
The ability to remotely generate plasma current in dense plasmas hanging freely in vacuum in voluminous amount without obstruction to diagnostics will greatly enhance our ability to study the physics of high energy density plasmas in strong magnetic fields. Plasma current can be generated through nonlinear beat-wave process by launching two intense electromagnetic waves into unmagnetized plasma. Beat-wave acceleration of electrons has been demonstrated in a low-density plasma using microwaves [1]. The proposed PLX experimental facility presently under construction at Los Alamos offers the opportunity to test the method at a density level scalable to the study of HED plasmas. For PLX beat-wave experiments, CO2 lasers will be used as pump waves due to their high power and tunability. For a typical PLX density ne=10^17cm-3, two CO2 lasers can be separately tuned to 9P(28) and 10P(20) to match the 2.84THz plasma frequency. The beat-wave demo experiment will be conducted on CTIX. The laser arrangement is being converted to two independent single lasers. Frequency-tuning methods, optics focusing system and diagnostics system will be discussed. The laser measurements and results of synchronization of two lasers will be presented, and scaling to PLX experiments will be given. [1] Rogers, J. H. and Hwang, D. Q., PRL. v68 p3877 (1992).
Microwave power coupling in a surface wave excited plasma
Kar, Satyananda; Kousaka, Hiroyuki
2014-01-01
In recent decades, different types of plasma sources have been used for various types of plasma processing, such as, etching and thin film deposition. The critical parameter for effective plasma processing is high plasma density. One type of high density plasma source is Microwave sheath-Voltage combination Plasma (MVP). In the present investigation, a better design of MVP source is reported, in which over-dense plasma is generated for low input microwave powers. The results indicate that the length of plasma column increases significantly with increase in input microwave power.
Indian Academy of Sciences (India)
A P Misra; A Roy Chowdhury; S N Paul
2004-09-01
Characteristic features of low frequency transverse wave propagating in a magnetised dusty plasma have been analysed considering the effect of dust-charge fluctuation. The distinctive behaviours of both the left circularly polarised and right circularly polarised waves have been exhibited through the analysis of linear and non-linear dispersion relations. The phase velocity, group velocity, and group travel time for the waves have been obtained and their propagation characteristics have been shown graphically with the variations of wave frequency, dust density and amplitude of the wave. The change in non-linear wave number shift and Faraday rotation angle have also been exhibited with respect to the plasma parameters. It is observed that the effects of dust particles are significant only when the higher order contributions are considered. This may be referred to as the `dust regime' in plasma.
Plasma Instability and Wave Propagation in Gate-Controlled GaN Conduction Channels
Rudin, Sergey; Rupper, Greg
2013-08-01
The plasma wave in the conduction channel of a semiconductor heterostructure high electron mobility transistor (HEMT) can be excited at frequencies significantly higher than the cut-off frequency in a short channel device. The hydrodynamic model predicts a resonance response to applied harmonic signal at the plasma oscillation frequency. When either the ac voltage induced in the channel by the signal at the gate or the current applied at the drain or source contact are not very small, the plasma waves in the semiconductor channel will propagate as a shock wave. The device can be used either as a detector or a tunable source of terahertz range radiation. Using the parameters appropriate for the GaN channel we show that in both configurations the charge flow develops shock waves due to hydrodynamic nonlinearities. In a sufficiently wide channel the wave propagation separates into two or more different bands giving a two-dimensional structure to the waves.
Measurement of Wave Electric Fields in Plasmas by Electro-Optic Probe
Nishiura, M; Mushiake, T; Kawazura, Y; Osawa, R; Fujinami, K; Yano, Y; Saitoh, H; Yamasaki, M; Kashyap, A; Takahashi, N; Nakatsuka, M; Fukuyama, A
2016-01-01
Electric field measurement in plasmas permits quantitative comparison between the experiment and the simulation in this study. An electro-optic (EO) sensor based on Pockels effect is demonstrated to measure wave electric fields in the laboratory magnetosphere of the RT-1 device with high frequency heating sources. This system gives the merits that electric field measurements can detect electrostatic waves separated clearly from wave magnetic fields, and that the sensor head is separated electrically from strong stray fields in circumference. The electromagnetic waves are excited at the double loop antenna for ion heating in electron cyclotron heated plasmas. In the air, the measured wave electric fields are in good absolute agreement with those predicted by the TASK/WF2 code. In inhomogeneous plasmas, the wave electric fields in the peripheral region are enhanced compared with the simulated electric fields. The potential oscillation of the antenna is one of the possible reason to explain the experimental resu...
Solar Corona and plasma effects on Radio Frequency waves
Nkono, C.; Rosenblatt, P.; Dehant, V. M.
2009-12-01
Solar corona (plasma) effects on radio signal waves for three different frequency bands S (2.3 GHz), X (8.4 GHz), and Ka (32 GHz), currently used to track probes in the solar system, have been computed using different models of the total electron content (TEC) along the propagation path between the Earth and Mars. The Earth-Mars-Sun configuration has been obtained from the planetary ephemerides DE421 (using SPICE kernels) for the period from September 2004 to September 2006. This configuration is expressed as a function of the Sun-Earth-Probe (SEP) angles (the probe being in close orbit to Mars). We used the TEC values provided by the different models proposed in the literature in order to estimate the TEC along the propagation path (STEC, for Slant TEC). From these model-dependent STEC estimates, the time delay on the wave propagation as well as the associated frequency shift with a 10 seconds sampling time have been obtained for each of the three frequency bands. For the X-band mostly used in radio science, we have obtained estimates differing by up to several orders of magnitude due to the different STEC values derived from different models of TEC. For example, if the propagation path passes near the Sun such that SEP angle is 1.55° the STEC is ranging from 4.6x1020 electron/m2 to 6.07x1016 electron/m2, which corresponds to a time delay range between 0.87 μs and 1.15x10-4 μs, respectively. For SEP angles between 2° and 8°, the range of the different time delay values reduces to 2.8x10-1 μs and becomes as small as 1.6x10-2 μs for SEP angles larger than 8° (1x10-2 μs is about the order of magnitude of the radioscience instrument precision). These results show that the correction of the solar corona effect on radio frequency waves can be reliably done on usual X-band tracking data of spacecraft for SEP angles >12°, but should be use with caution for lower SEP angles, especially lower than 2°.
Landau damping of the dust-acoustic surface waves in a Lorentzian dusty plasma slab
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)
2016-01-15
Landau damping of a dust-acoustic surface wave propagating at the interfaces of generalized Lorentzian dusty plasma slab bounded by a vacuum is kinetically derived as the surface wave displays the symmetric and the anti-symmetric mode in a plasma slab. In the limiting case of small scaled wave number, we have found that Landau damping is enhanced as the slab thickness is increased. In particular, the damping of anti-symmetric mode is much stronger for a Lorentzian plasma than for a Maxwellian plasma. We have also found that the damping is more affected by superthermal particles in a Lorentzian plasma than by a Maxwellian plasma for both of the symmetric and the anti-symmetric cases. The variations of Landau damping with various parameters are also discussed.
The impact of magnetic geometry on wave modes in cylindrical plasmas
Chang, Lei
2015-01-01
Both space and laboratory plasmas can be associated with static magnetic field, and the field geometry varies from uniform to non-uniform. This thesis investigates the impact of magnetic geometry on wave modes in cylindrical plasmas. The cylindrical configuration is chosen so as to explore this impact in a tractable but experimentally realisable configuration. Three magnetic geometries are considered: uniform, focused and rippled. These studies suggest suppressing drift waves in a uniformly magnetised plasma by increasing the field strength, enhancing the efficiency of helicon wave production of plasma by using a focused magnetic field, and forming a gap eigenmode on a linear plasma device by introducing a local defect to the system's periodicity, which is useful for understanding the gap-mode formation and interaction with energetic particles in fusion plasmas.
Nonlocal wave turbulence in non-Abelian plasmas
Mehtar-Tani, Yacine
2016-01-01
We investigate driven wave turbulence in non-Abelian plasmas, in the framework of kinetic theory where both elastic and inelastic processes are considered in the small angle approximation. The gluon spectrum, that forms in the presence of a steady source, is shown to be controlled by nonlocal interactions in momentum space, in contrast to the universal Kolmogorov-Zakharov spectra. Assuming strongly nonlocal interactions, we show that inelastic processes are dominant in the IR and cause a thermal bath to form below the forcing scale, as a result of a detailed balance between radiation and absorption of soft gluons by the hard ones. Above the forcing scale, the inelastic collision term reduces to an inhomogeneous diffusion-like equation yielding a spectrum that spreads to the UV as $t^{1/2}$, similarly to elastic processes. Due to nonlocal interactions the non-universal turbulent spectrum is not steady and flattens when time goes on toward the thermal distribution. This analysis is complemented by numerical sim...
Sound waves and resonances in electron-hole plasma
Lucas, Andrew
2016-06-01
Inspired by the recent experimental signatures of relativistic hydrodynamics in graphene, we investigate theoretically the behavior of hydrodynamic sound modes in such quasirelativistic fluids near charge neutrality, within linear response. Locally driving an electron fluid at a resonant frequency to such a sound mode can lead to large increases in the electrical response at the edges of the sample, a signature, which cannot be explained using diffusive models of transport. We discuss the robustness of this signal to various effects, including electron-acoustic phonon coupling, disorder, and long-range Coulomb interactions. These long-range interactions convert the sound mode into a collective plasmonic mode at low frequencies unless the fluid is charge neutral. At the smallest frequencies, the response in a disordered fluid is quantitatively what is predicted by a "momentum relaxation time" approximation. However, this approximation fails at higher frequencies (which can be parametrically small), where the classical localization of sound waves cannot be neglected. Experimental observation of such resonances is a clear signature of relativistic hydrodynamics, and provides an upper bound on the viscosity of the electron-hole plasma.
Indian Academy of Sciences (India)
V H Kulkarni; Shobha Kadam
2012-07-01
The role of added electrons on the drift dissipative instability in a nonuniform collisional plasma is analysed. We observe the presence of a drift wave that depends entirely on the added electrons through the collision frequency coupling and there is an additional damping. The present study is applied to the density irregularities caused by meteor ionization in the ionosphere.
Kukushkin, A. B.; Rantsev-Kartinov, V. A.
2003-10-01
The phenomenon of skeletal structures (tubules, cartwheels, and their simple combinations) formerly found in laboratory plasmas, is extended to atmospheric and cosmic phenomena (Phys. Lett. A 306, 175, Dec. 2002). The long-lived filaments in plasmas have been suggested (1998) to possess a skeleton self-assembled during electric breakdown from wildly produced nanodust. The proof-of-concept studies revealed the skeletal structures in (1) plasmas in tokamaks, Z-pinches, plasma focus (in the range 0.01-10 cm), including the electric breakdown stage of discharge, (2) dust deposits in tokamak (10 nm - 10 microns), (3) hailstones (1-10 cm), tornado (10 m -1 km), (4) a wide class of objects in space (10^11-10^23 cm). The similarity of, and the trend toward self-similarity in, skeletal structures suggest all them to possess a fractal condensed matter of particular topology of the fractal. Here we discuss probable role of skeletal structures in the fast nonlocal transport of energy in strongly localized severe weather phenomena (tornado) and laboratory plasmas.
Does the schock wave in a highly ionized non-isothermal plasma really exist ?
Rukhadze, A A; Samkharadze, T
2015-01-01
Here we study the structure of a highly ionizing shock wave in a gas of high atmospheric pressure. We take into account the gas ionization when the gas temperature reaches few orders of an ionization potential. It is shown that after gasdynamic temperature-raising shock and formation of a highly-ionized nonisothermal plasma $T_e>>T_i$ only the solitary ion-sound wave (soliton) can propagate in this plasma. In such a wave the charge separation occurs: electrons and ions form the double electric layer with the electric field. The shock wave form, its amplitude and front width are obtained.
EM wave propagation analysis in plasma covered radar absorbing material
Singh, Hema; Rawat, Harish Singh
2017-01-01
This book focuses on EM propagation characteristics within multilayered plasma-dielectric-metallic media. The method used for analysis is impedance transformation method. Plasma covered radar absorbing material is approximated as a multi-layered dielectric medium. The plasma is considered to be bounded homogeneous/inhomogeneous medium. The reflection coefficient and hence return loss is analytically derived. The role of plasma parameters, such as electron density, collision frequency, plasma thickness, and plasma density profile in the absorption behavior of multi-layered plasma-RAM structure is described. This book provides a clearer picture of EM propagation within plasma. The reader will get an insight of plasma parameters that play significant role in deciding the absorption characteristics of plasma covered surfaces.
Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas
Energy Technology Data Exchange (ETDEWEB)
Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7 (Canada); Chapman, T.; Berger, R. L. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Brantov, A.; Bychenkov, V. Yu. [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 119991 Russia and Center for Fundamental and Applied Research, VNIIA, ROSATOM, 127055 Moscow (Russian Federation); Winjum, B. J. [Department of Electrical Engineering, UCLA, Los Angeles, California 90095 (United States); Brunner, S. [Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Tableman, A.; Tzoufras, M. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095 (United States); Glenzer, S. [LCLS, Stanford, California 94025 (United States)
2016-01-15
In ignition scale hot plasmas, temperature gradients and thermal transport modify electron distributions in a velocity range resonant with Langmuir waves typical of those produced by stimulated Raman scattering. We examine the resultant changes to the Landau damping experienced by these Langmuir waves and the levels of thermal plasma fluctuations. The form factor and Thomson scattering cross-section in such plasmas display unique characteristics of the background conditions. A theoretical model and high-order Vlasov-Fokker-Planck simulations are used in our analysis. An experiment to measure changes in thermal plasma fluctuation levels due to a thermal gradient is proposed.
Analysis of the axial electric field in a plasma-loaded-helix travelling wave tube
Institute of Scientific and Technical Information of China (English)
Xie Hong-Quan; Liu Pu-Kun
2006-01-01
A helix type slow wave structure filled with plasma is immersed in a strong longitudinal magnetic field. Taking into account the effect of the plasma and the dielectric, the system is separated radially into three regions. By means of the sheath model and Maxwell equation, the distribution of the electromagnetic field is established. Using the boundary conditions of each region, the dispersion relation of the slow wave structure is derived. The trend of change for the radial profile of the axial electric field is analysed respectively in different plasma densities, plasma column radius and dielectric constant by numerical computation. Some useful results are obtained on the basis of the discussion.
Acceleration of energetic electrons by waves in inhomogeneous solar wind plasmas
Krafft, C.; Volokitin, A.
2017-04-01
The paper studies the influence of the background plasma density fluctuations on the dynamics of the Langmuir turbulence generated by electron beams, for parameters typical for solar type III beams and plasmas near 1 AU. A self-consistent Hamiltonian model based on the Zakharov and the Newton equations is used, which presents several advantages compared to the Vlasov approach. Beams generating Langmuir turbulence can be accelerated as a result of wave transformation effects or/and decay cascade processes; in both cases, the beam-driven Langmuir waves transfer part of their energy to waves of smaller wavenumbers, which can be reabsorbed later on by beam particles of higher velocities. As a consequence, beams can conserve a large part of their initial kinetic energy while propagating and radiating wave turbulence over long distances in inhomogeneous plasmas. Beam particles can also be accelerated in quasi-homogeneous plasmas due to the second cascade of wave decay, the wave transformation processes being very weak in this case. The net gains and losses of energy of a beam and the wave turbulence it radiates are calculated as a function of the average level of plasma density fluctuations and the beam parameters. The results obtained provide relevant information on the mechanism of energy reabsorption by beams radiating Langmuir turbulence in solar wind plasmas.
Multi-Spacecraft Analysis of Plasma Jet Events and Associated Whistler-Wave Emissions using MMS Data
Breuillard, Hugo; Le Contel, Olivier; Retino, Alessandro; Chasapis, Alexandros; Chust, Thomas; Cohen, Ian; Wilder, Frederick; Graham, Daniel; Khotyaintsev, Yuri
2016-04-01
Plasma jets aka bursty bulk flows play a crucial role in Earth's plasmasheet dynamics, in particular during substorms where they can sometimes even penetrate down to the geosynchronous orbit. The energy input from the solar wind is partly dissipated in jet fronts(also called dipolarization fronts) in the form of strong whistler waves that can heat and accelerate energetic electrons. The ratio of the energy transported during jets to the substorm energy consumption is still under debate due to instrumental limitations. In May 2015 the Magnetospheric Multiscale (MMS) mission evolves in a string-of-pearls configuration with an average inter-satellite distance of 300 km which allows us to study in detail the microphysics of these phenomena. Thus in this study we employ MMS data to investigate the properties of jet fronts propagating earthward and their associated whistler-mode wave emissions. We show that the spatial dynamics of jet fronts are of the order of the ion gyroradius and whistler-wave dynamics have a temporal scale of a few seconds. We also investigate the energy dissipation associated with such waves and their interaction with energetic electrons in the vicinity of the flow/jet braking region. In addition, we make use of ray tracing simulations to evaluate their propagation properties, as well as their impact on particles in the off-equatorial magnetosphere.
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
Modulational instability of plasma waves in two dimensions
DEFF Research Database (Denmark)
Karpman, V.I.; Lynov, Jens-Peter; Michelsen, Poul
1996-01-01
The nonlinear behavior of whistler waves coupled to either fast magnetosonic waves (FMS) or slow magnetosonic waves (SMS) is investigated in two spatial dimensions. For each branch our investigation is based on a numerical solution of a reduced set of equations consisting of two partial...... differential equations, of which one, describing the evolution of the whistler wave envelope, is complex of first order in time and the other, describing the slow response of the medium in which the whistler wave is propagating, is real and of second order in time. These equations were solved in a two...... of nonlinear waves in dispersive media....
Kinetic full wave analyses of O-X-B mode conversion of EC waves in tokamak plasmas
Fukuyama, Atsushi; Khan, Shabbir Ahmad; Igami, Hiroe; Idei, Hiroshi
2016-10-01
For heating and current drive in a high-density plasma of tokamak, especially spherical tokamak, the use of electron Bernstein waves and the O-X-B mode conversion were proposed and experimental observations have been reported. In order to evaluate the power deposition profile and the current drive efficiency, kinetic full wave analysis using an integral form of dielectric tensor has been developed. The incident angle dependence of wave structure and O-X-B mode conversion efficiency is examined using one-dimensional analysis in the major radius direction. Two-dimensional analyses on the horizontal plane and the poloidal plane are also conducted, and the wave structure and the power deposition profile are compared with those of previous analyses using ray tracing method and cold plasma approximation. This work is supported by JSPS KAKENHI Grant Number JP26630471.
Prepulse-induced shock waves in the gas jet target of a laser plasma EUV radiation source
Garbaruk, A. V.; Gritskevich, M. S.; Kalmykov, S. G.; Mozharov, A. M.; Sasin, M. E.
2017-01-01
In experiments with a laser-plasma EUV-radiation source, the main IR Nd:YAG laser pulse was preceded by that of a UV KrF excimer laser. Dramatic modulations of EUV plasma emissivity have been observed at long interpulse times, from hundreds of nanoseconds up to microseconds. To discover the nature of these prepulse-produced long-living perturbations of the target, a fluid dynamics numerical simulation of the Xe gas jet has been carried out. The prepulse has been found to generate a quasi-spherical shock wave with a thin dense front layer and a vast rarefied inside area. In the course of time, the front expands and simultaneously drifts downstream along with the gas. Depending on the interpulse time, the IR laser beam either intersects the dense layer or propagates within the rarefied gas cavity whereby the above-mentioned variations in the plasma emission can be explained. The possibilities of making use of the discovered phenomena to enhance the observed EUV plasma brightness are discussed.
2015-05-05
AND SUBTITLE LASER-DRIVEN ULTRA-RELATIVISTIC PLASMAS - NUCLEAR FUSION IN COULOMB SHOCK WAVES, ROUGE WAVES, AND BACKGROUND MATTER. 5a. CONTRACT...blackbody radiation on free electrons .........................9 2.vi. Proposal of ultimate test of laser nuclear fusion efficiency in clusters...domain of energies and temperatures, with applications in particular to controlled nuclear fusion . 2. Final technical report on the grant #F49620-11-1
Heat loads on JET plasma facing components from ICRF and LH wave absorption in the SOL
Jacquet, P.; Colas, L.; Mayoral, M.-L.; Arnoux, G.; Bobkov, V.; Brix, M.; Coad, P.; Czarnecka, A.; Dodt, D.; Durodie, F.; Ekedahl, A.; Frigione, D.; Fursdon, M.; Gauthier, E.; Goniche, M.; Graham, M.; Joffrin, E.; Korotkov, A.; Lerche, E.; Mailloux, J.; Monakhov, I.; Noble, C.; Ongena, J.; Petrzilka, V.; Portafaix, C.; Rimini, F.; Sirinelli, A.; Riccardo, V.; Vizvary, Z.; Widdowson, A.; Zastrow, K.-D.; EFDA Contributors, JET
2011-10-01
In JET, lower hybrid (LH) and ion cyclotron resonance frequency (ICRF) wave absorption in the scrape-off layer can lead to enhanced heat fluxes on some plasma facing components (PFCs). Experiments have been carried out to characterize these heat loads in order to: (i) prepare JET operation with the Be wall which has a reduced power handling capability as compared with the carbon wall and (ii) better understand the physics driving these wave absorption phenomena and propose solutions for next generation systems to reduce them. When using ICRF, hot spots are observed on the antenna structures and on limiters close to the powered antennas and are explained by acceleration of ions in RF-rectified sheath potentials. High temperatures up to 800 °C can be reached on locations where a deposit has built up on tile surfaces. Modelling which takes into account the fast thermal response of surface layers can reproduce well the surface temperature measurements via infrared (IR) imaging, and allow evaluation of the heat fluxes local to active ICRF antennas. The flux scales linearly with the density at the antenna radius and with the antenna voltage. Strap phasing corresponding to wave spectra with lower kpar values can lead to a significant increase in hot spot intensity in agreement with antenna modelling that predicts, in that case, an increase in RF sheath rectification. LH absorption in front of the antenna through electron Landau damping of the wave with high Npar components generates hot spots precisely located on PFCs magnetically connected to the launcher. Analysis of the LH hot spot surface temperature from IR measurements allows a quantification of the power flux along the field lines: in the worst case scenario it is in the range 15-30 MW m-2. The main driving parameter is the LH power density along the horizontal rows of the launcher, the heat fluxes scaling roughly with the square of the LH power density. The local electron density in front of the grill increases
Drake, D J; Howes, G G; Kletzing, C A; Skiff, F; Carter, T A; Auerbach, D W
2013-01-01
Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfven waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfven waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfven wave generated nonlinearly by a collision between counterpropagating Alfven waves.
Electromagnetic-wave excitation in a large laboratory beam-plasma system
Whelan, D. A.; Stenzel, R. L.
1981-01-01
The mechanism by which unstable electrostatic waves of a beam-plasma system are converted into observed electromagnetic waves is of current interest in space physics and in tokamak fusion research. The process involved in the conversion of electrostatic to electromagnetic waves at the critical layer is well understood. However, the radiation from uniform plasmas cannot be explained on the basis of this process. In connection with certain difficulties, it has not yet been possible to establish the involved emission processes by means of experimental observations. In the considered investigation these difficulties are overcome by employing a large laboratory plasma in a parameter range suitable for detailed diagnostics. A finite-diameter electron beam is injected into a uniform quiescent afterglow plasma of dimensions large compared with electromagnetic wavelengths. The considered generation mechanism concerning the electromagnetic waves is conclusively confirmed by observing the temporal evolution of an instability
A New Look at the Landau's Theory of Spreading and Damping of Waves in Collisionless Plasmas
Soshnikov, V N
2008-01-01
The theory of plasma waves and Landau damping in Maxwellian plasmas, Landau's ``rule of pass around poles'' include doubtful statements, particularly related to an artificial ``constructing'' of the dispersion equation, what should allow the possibility of its solution otherwise not existing at all, and the possibility of analytical continuations of corresponding very specific ruptured functions in the one-dimensional Laplace transformation, used by Landau, what is the base of his theory. We represent, as an accessible variant, a more general alternative theory based on a two-dimensional Laplace transformation, leading to an asymptotical in time and space solution as a complicated superposition of coupled damping and {\\em non-damping \\/} plane waves and oscillations with different dispersion laws for every constituent mode. This theory naturally and very simply explains paradoxes of the phenomenon of plasma echo. We propose for discussion a new ideology of plasma waves (both electron and ion-acoustic waves) q...
Propagation of electromagnetic waves through magnetized plasmas in arbitrary gravitational fields
Breuer, R; Ehlers, J.
1981-01-01
A generalized JWBK-method for high-frequency waves traveling through inhomogeneous, moving plasmas imbedded in arbitrary relativistic gravitational fields is reported. In particular, a generalization of the standard formula for Faraday rotation is given.
Theoretical analysis of a relativistic travelling wave tube filled with plasma
Institute of Scientific and Technical Information of China (English)
Xie Hong-Quan; Liu Pu-Kun
2007-01-01
A cold and uniform plasma-filled travelling wave tube with sinusoidally corrugated slow wave structure is driven by a finite thick annular intense relal:ivistic electron beam with the entire system immersed in a strong longitudinal magnetic field.By means of the linear field theory,the dispersion relation for the relativistic travelling wave tube (RTWT) is derived.By numerical computation,the dispersion characteristics of the RTWT are analysed in difierent cases of various geometric parameters of the slow wave structure and plasma densities.Also the gain versus frequency for three difierent plasma densities and the peak gain of the tube versus plasma density are analysed.Some useful results are obtained on the basis of the discussion.
Indian Academy of Sciences (India)
Sourabh Bal; M Bose
2009-10-01
We have investigated analytically the stimulated Brillouin scattering (SBS) of an electromagnetic wave in non-dissipative weakly magnetized plasma in the presence of dust particles with variable charge.
Linear and nonlinear dynamics of current-driven waves in dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)
2012-09-15
The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.
Ion acoustic kinetic Alfvén rogue waves in two temperature electrons superthermal plasmas
Kaur, Nimardeep; Saini, N. S.
2016-10-01
The propagation properties of ion acoustic kinetic Alfvén (IAKA) solitary and rogue waves have been investigated in two temperature electrons magnetized superthermal plasma in the presence of dust impurity. A nonlinear analysis is carried out to derive the Korteweg-de Vries (KdV) equation using the reductive perturbation method (RPM) describing the evolution of solitary waves. The effect of various plasma parameters on the characteristics of the IAKA solitary waves is studied. The dynamics of ion acoustic kinetic Alfvén rogue waves (IAKARWs) are also studied by transforming the KdV equation into nonlinear Schrödinger (NLS) equation. The characteristics of rogue wave profile under the influence of various plasma parameters (κc, μc, σ , θ) are examined numerically by using the data of Saturn's magnetosphere (Schippers et al. 2008; Sakai et al. 2013).
Microwave beatwave excitation of electron plasma wave and high energy electron production
Energy Technology Data Exchange (ETDEWEB)
Yatsuzuka, M.; Obata, K.; Nobuhara, S. [Himeji Inst. of Tech., Hyogo (Japan)
1997-12-31
Two X-band microwave beams with a slightly different frequency and the maximum output power of 50 kW are injected into a target plasma antiparallel to each other through a standard horn. The resonant excitation of an electron plasma wave is observed when the difference in frequency between counterstreaming microwaves is equal to the electron plasma frequency. The excited wave propagates in the same direction as the higher-frequency microwave with a wave length which satisfies the resonance condition of wave number. The wave amplitude grows with an increase in incident microwave power, and reaches the density perturbation {delta}n/n{sub 0} of approximately 3.2 % at the incident microwave power of 40 kW and beat frequency of 600 MHz. A small amount of high-energy electrons with the speed of 27 eV are observed in the high-power region of incident microwave. (author)
Enhanced Plasma Confinement in a Magnetic Well by Whistler Waves
DEFF Research Database (Denmark)
Balmashnov, A. A.; Juul Rasmussen, Jens
1981-01-01
The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well.......The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well....
Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma
Energy Technology Data Exchange (ETDEWEB)
Jian Liu and Hong Qin
2011-11-07
The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.
Alfvén wave coupled with flow-driven fluid instability in interpenetrating plasmas
Energy Technology Data Exchange (ETDEWEB)
Vranjes, J. [Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife, Spain and Departamento de Astrofisica, Universidad de La Laguna, 38205 La Laguna, Tenerife (Spain)
2015-05-15
The Alfvén wave is analyzed in case of one quasineutral plasma propagating with some constant speed v{sub 0} through another static quasineutral plasma. A dispersion equation is derived describing the Alfvén wave coupled with the flow driven mode ω=kv{sub 0} and solutions are discussed analytically and numerically. The usual solutions for two oppositely propagating Alfvén waves are substantially modified due to the flowing plasma. More profound is modification of the solution propagating in the negative direction with respect to the magnetic field and the plasma flow. For a large enough flow speed (exceeding the Alfvén speed in the static plasma), this negative solution may become non-propagating, with frequency equal to zero. In this case, it represents a spatial variation of the electromagnetic field. For greater flow speed it becomes a forward mode, and it may merge with the positive one. This merging of the two modes represents the starting point for a flow-driven instability, with two complex-conjugate solutions. The Alfvén wave in interpenetrating plasmas is thus modified and coupled with the flow-driven mode and this coupled mode is shown to be growing when the flow speed is large enough. The energy for the instability is macroscopic kinetic energy of the flowing plasma. The dynamics of plasma particles caused by such a coupled wave still remains similar to the ordinary Alfvén wave. This means that well-known stochastic heating by the Alfvén wave may work, and this should additionally support the potential role of the Alfvén wave in the coronal heating.
Refined Study of ECR Wave Propagation and Absorption in the Weakly Relativistic Plasma
Institute of Scientific and Technical Information of China (English)
SHIBingren; LONGYongxin
2001-01-01
The ECR wave heating is now a routine method for plasma heating and profile control in fusion devices and also in plasma applications. Theoretical study of ECR wave propagation and absorption began very early in 1950's. Basic theoretical work had accomplished in 1970～1980. For toroidal devices like the tokamak, the fundamental O-mode and X-mode with nearly perpendicular propagation were used very often. For pure O-mode and X-mode with kx=O,
Study on Propagation Characteristics of Plasma Surface Wave in Medium Tube
Institute of Scientific and Technical Information of China (English)
WANG Shiqing; YAN Zelin; LI Wenzhong; LIU Jian; LI Jian; XU Lingfei
2008-01-01
Axial propagation characteristics of the axisymmetric surface wave along the plasma in the medium tube were studied. The expressions of electromagnetic field inside and outside the medium tube were deduced. Also, the impacts of several factors, such as plasma density, signal frequency, inner radius of medium tube, collision frequency, etc., on plasma surface wave propa-gation were numerically simulated. The results show that, the properties of plasma with higher density and .lower gas pressure are closer to those of metal conductor. Furthermore, larger radius of medium tube and lower signal frequency are better for surface wave propagation. However, the effect of collision frequency is not obvious. The optimized experimental parameters can be chosen as the plasma density of about 1017 m-3 and the medium radius between 11 mm and 19 mm.
Propagation of ion-acoustic solitary waves in a relativistic electron-positron-ion plasma
Saberian, E; Akbari-Moghanjoughi, M
2011-01-01
Propagation of large amplitude ion-acoustic solitary waves (IASWs) in a fully relativistic plasma consisting of cold ions and ultrarelativistic hot electrons and positrons is investigated using the Sagdeev's pseudopotential method in a relativistic hydrodynamics model. Effects of streaming speed of plasma fluid, thermal energy, positron density and positron temperature on large amplitude IASWs are studied by analysis of the pseudopotential structure. It is found that in regions that the streaming speed of plasma fluid is larger than that of solitary wave, by increasing the streaming speed of plasma fluid the depth and width of potential well increases and resulting in narrower solitons with larger amplitude. This behavior is opposite for the case where the streaming speed of plasma fluid is smaller than that of solitary wave. On the other hand, increase of the thermal energy results in wider solitons with smaller amplitude, because the depth and width of potential well decreases in that case. Additionally, th...
Axisymmetric Nonlinear Waves And Structures in Hall Plasmas
Islam, Tanim
2011-01-01
A Hall plasma consists of a plasma with not all species frozen into the magnetic field. In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature -- whistler drift modes that propagate along the electron drift as a Burger's shock, and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral -- are analyzed. We derive analytical and numerical solutions in an electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to electron-ion-gas Hall plasmas, in which the ions are coupled to the motion of gases in low ionized plasmas (lower ionosphere and protostellar disks), and to dusty Hall plasmas (such as molecular clouds), in which the much heavier charged dust may be collisionally coupled to the gas.
Moradi, Afshin
2016-07-01
In a recent article [C. Li et al., Phys. Plasmas 21, 072114 (2014)], Li et al. studied the propagation of surface waves on a magnetized quantum plasma half-space in the Voigt configuration (in this case, the magnetic field is parallel to the surface but is perpendicular to the direction of propagation). Here, we present a fresh look at the problem and obtain a new form of dispersion relation of surface waves of the system. We find that our new dispersion relation does not agree with the result obtained by Li et al.
Nonlinear Alfvén Waves in a Vlasov Plasma
DEFF Research Database (Denmark)
Bell, T.F.
1965-01-01
Stationary solutions to the nonlinear Vlasov—Boltzmann equations are considered which represent one-dimensional electromagnetic waves in a hot magnetoplasma. These solutions appear in arbitrary reference frames as circularly polarized, sinusoidal waves of unlimited amplitude, i.e., as nonlinear...... Alfvén waves. Solutions are found implicitly by deriving a set of integral dispersion relations which link the wave characteristics with the particle distribution functions. A physical discussion is given of the way in which the Alfvén waves can trap particles, and it is shown that the presence...
The structure of standing Alfvén waves in a dipole magnetosphere with moving plasma
Directory of Open Access Journals (Sweden)
D. A. Kozlov
2006-03-01
Full Text Available The structure and spectrum of standing Alfvén waves were theoretically investigated in a dipole magnetosphere with moving plasma. Plasma motion was simulated with its azimuthal rotation. The model's scope allowed for describing a transition from the inner plasmasphere at rest to the outer magnetosphere with convecting plasma and, through the magnetopause, to the moving plasma of the solar wind. Solutions were found to equations describing longitudinal and transverse (those formed, respectively, along field lines and across magnetic shells structures of standing Alfvén waves with high azimuthal wave numbers m>>1. Spectra were constructed for a number of first harmonics of poloidal and toroidal standing Alfvén waves inside the magnetosphere. For charged particles with velocities greatly exceeding the velocity of the background plasma, an effective parallel wave component of the electric field appears in the region occupied by such waves. This results in structured high-energy-particle flows and in the appearance of multiband aurorae. The transverse structure of the standing Alfvén waves' basic harmonic was shown to be analogous to the structure of a discrete auroral arc.
Observation of Hot Electrons in Surface-Wave Plasmas Excited by Surface Plasmon Polaritons
Institute of Scientific and Technical Information of China (English)
HU Ye-Lin; CHEN Zhao-Quan; LIU Ming-Hai; HONG Ling-Li; LI Ping; ZHENG Xiao-Liang; XIA Guang-Qing; HU Xi-Wei
2011-01-01
The electron energy distribution functions (EEDFs) are studied in the planar-type surface-wave plasma (SWP)caused by resonant excitation of surface plasmon polaritons (SPPs) using a single cylindrical probe.Sustained plasma characteristics can be considered as a bi-Maxwellian EEDF,which correspond to a superposition of the bulk low-temperature electron and the high-energy electron beam-like part.The beam component energy is pronounced at about 10eV but the bulk part is lower than 3.5eV.The hot electrons included in the proposed plasmas play a significant role in plasma heating and further affect the discharge chemistry.During the past several years,in the fabrication ofamorphous or crystalline silicon films,diamond film synthesis and carbon nanotube growth,the large-area overdense plasma source has been useful.In electronic device fabrication techniques such as etching,ashing or plasma chemical vapor deposition,overdense electrons and radicals are required,especially hot electrons.Among the various plasma devices,the planar-type surface-wave plasma (SWP) source is an advanced plasma source,which is a type of promising plasma source satisfying the above rigorous requirements for large-area plasma processing.%The electron energy distribution functions (EEDFs) are studied in the planar-type surface-wave plasma (SWP) caused by resonant excitation of surface plasmon polaritons (SPPs) using a single cylindrical probe. Sustained plasma characteristics can be considered as a bi-Maxwellian EEDF, which correspond to a superposition of the bulk low-temperature electron and the high-energy electron beam-like part. The beam component energy is pronounced at about 10 eV but the bulk part is lower than 3.5 eV. The hot electrons included in the proposed plasmas play a significant role in plasma heating and further affect the discharge chemistry.
Enhancement of wave growth for warm plasmas with a high-energy tail distribution
Thorne, Richard M.; Summers, Danny
1991-01-01
The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.
Plasma production by helicon waves with single mode number in low magnetic fields
Sato, G; Hatakeyama, R; Sato, Genta; Oohara, Wataru; Hatakeyama, Rikizo
2004-01-01
Radio-frequency discharges are performed in low magnetic fields (0-10 mT) using three types of helicon-wave exciting antennas with the azimuthal mode number of $|m|$ = 1. The most pronounced peak of plasma density is generated in the case of phased helical antenna at only a few mT, where the helicon wave with $|m| = 1$ is purely excited and propagates. An analysis based on the dispersion relation well explains the density-peak phenomenon in terms of the correspondence between the antenna one-wavelength and the helicon wavelength. The $m=+1$ helicon wave propagates even in high magnetic fields where the density peaks are not observed, but the $m=-1$ helicon wave disappers. It is expected theoretically that the $m=-1$ helicon wave shows cutoff behavior in a low density region, [M. Kramer, Phys. Plasmas 6, 1052 (1999)], and the cutoff of $m=-1$ helicon wave experimentally observed coincides with the calculated one.
DISPERSION RELATION OF A MAGNETIZED PLASMA-FILLED BACKWARD WAVE OSCILLATOR
Institute of Scientific and Technical Information of China (English)
GAO HONG; LIU SHENG-GANG
2000-01-01
A linear theory and a more general dispersion relation of electromagnetic radiation from a magnetized plasma-filled backward wave oscillator with sinusoidally corrugated slow-wave structure driven by a solid intense relativistic electron beam have been given. The comparisons show good agreement with the previous works when B0 → ∞ and ωb = 0 from this dispersion relation.
Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas
Nakariakov, V M; Ibáñez, M H; Nakariakov, Valery M.; Mendoza-Briceno, Cesar A.
1999-01-01
The evolution of quasi-isentropic magnetohydrodynamic waves of small but finite amplitude in an optically thin plasma is analyzed. The plasma is assumed to be initially homogeneous, in thermal equilibrium and with a straight and homogeneous magnetic field frozen in. Depending on the particular form of the heating/cooling function, the plasma may act as a dissipative or active medium for magnetoacoustic waves, while Alfven waves are not directly affected. An evolutionary equation for fast and slow magnetoacoustic waves in the single wave limit, has been derived and solved, allowing us to analyse the wave modification by competition of weakly nonlinear and quasi-isentropic effects. It was shown that the sign of the quasi-isentropic term determines the scenario of the evolution, either dissipative or active. In the dissipative case, when the plasma is first order isentropically stable the magnetoacoustic waves are damped and the time for shock wave formation is delayed. However, in the active case when the plasm...
Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances
Villalon, Elena
1989-03-01
Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency.
Nonlinear Alfvén wave propagating in ideal MHD plasmas
Zheng, Jugao; Chen, Yinhua; Yu, Mingyang
2016-01-01
The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.
Nishino, Hideo; Iwata, Kodai; Ishikawa, Masashi
2016-07-01
We present a novel method of measuring the pipe wall thickness using the resonance of the circumferential (C-) Lamb wave generated by a piezoelectric ring-shaped sensor (PS). The PS is a special device for an axially propagating torsional wave; however, the C-Lamb waves are generated simultaneously as spurious signals owing to the structure of the PS. Particularly under resonant conditions, the C-Lamb waves are dominantly generated, distorting the axially propagating wave. In this method, these troublesome spurious signals are used effectively for the measurement of the wall thickness under the PS location that is a dead zone of the PS itself. The method can compensate for its drawback, namely, the dead zone problem, without using additional instruments. In this study, the mechanisms of the generation and resonance of the C-Lamb waves were first explained. Secondly, the principle of the wall thickness estimation utilizing the resonance of the C-Lamb waves was proposed. Finally, experimental verifications were carried out. The estimated wall thicknesses agreed very well (maximum 1.5% error) with those measured by a micrometer caliper under suitable resonant conditions.
Observation of Thomson Scattering off Entropy Waves in a Laser-Produced Plasma
Institute of Scientific and Technical Information of China (English)
ZHENG Jian; BAI Bo; LIU Wan-Dong; YU Chang-Xuan; JIANG Xiao-Hua; YUAN Xiao-Dong; LI Wen-Hong; ZHENG Zhi-Jian
2001-01-01
A new feature in the Thomson scattering spectrum is observed from a laser-produced aluminium plasma, which may be the Thomson scattering off entropy waves in the plasma. Such a feature is only observable when the energy of the heater beam is low enough.
Dispersion relation for electromagnetic wave propagation in a strongly magnetized plasma
Marklund, G B M; Shukla, P K
2006-01-01
A dispersion relation for electromagnetic wave propagation in a strongly magnetized cold plasma is deduced, taking photon-photon scattering into account. It is shown that the combined plasma and quantum electrodynamic effect is important for understanding the mode-structures in magnetar and pulsar atmospheres. The implications of our results are discussed.
Gaina, Alex
1996-08-01
Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.
A flowing plasma model to describe drift waves in a cylindrical helicon discharge
Chang, L; Cormac, C S
2011-01-01
A two-fluid model developed originally to describe wave oscillations in the vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature and confined plasma column, is applied to interpret plasma oscillations in a RF generated linear magnetised plasma (WOMBAT), with similar density and field strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower normalised rotation frequency, lower temperature and lower axial velocity. Despite these differences, the two-fluid model provides a consistent description of the WOMBAT plasma configuration and yields qualitative agreement between measured and predicted wave oscillation frequencies with axial field strength. In addition, the radial profile of the density perturbation predicted by this model is consistent with the data. Parameter scans show that the dispersion curve is sensitive to the axial field strength and the electron temperature, and the dependence of oscillation frequency with electron temperature matches the experiment. These r...
Modulational Instability of Dust Ion Acoustic Waves in a Collisional Dusty Plasma
Institute of Scientific and Technical Information of China (English)
XUEJu-Kui
2003-01-01
The modulational instability of dust ion accoustic waves in a dust plasma with ion-dust collision effects is studied.Using the perturbation method,a modified nonlinear Schroedinger equation contains a damping term that comes from the effect of the ion-dust collision is derived.It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.
Noureen, S.; Abbas, G.; Farooq, H.
2017-09-01
Using Vlasov-Maxwell's equations, the spectra of the perpendicular propagating Bernstein wave and Extraordinary wave in ultra-relativistic fully degenerate electron plasma are studied. The equilibrium particle distribution function is assumed to be isotropic Fermian. The analysis of high frequency spectra of the waves is carried out in the weak propagation limit Ω≫k .v and in the weak magnetic field limit |ω-k .v | ≫Ω and graphically observed.
Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)
2016-09-15
The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.
Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect
Lee, Myoung-Jae; Jung, Young-Dae
2016-09-01
The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.
Broadband plasma waves observed in the polar cap boundary layer: Polar
Tsurutani, B. T.; Lakhina, G. S.; Ho, C. M.; Arballo, J. K.; Galvan, C.; Boonsiriseth, A.; Pickett, J. S.; Gurnett, D. A.; Peterson, W. K.; Thorne, R. M.
1998-08-01
Polar observations indicate the presence of intense broadband plasma waves nearly all of the time (96% occurrence frequency in this study) near the apogee of the Polar trajectory (~6-8RE). The region of wave activity bounds the dayside (0500 to 1800 LT) polar cap magnetic fields, and we thus call these waves polar cap boundary layer (PCBL) waves. The waves are spiky signals spanning a broad frequency range from ~101 to 2×104Hz. The waves have a rough power law spectral shape. The wave magnetic component has on average a f-2.7 frequency dependence and appears to have an upper frequency cutoff of ~(6-7)×103Hz, which is the electron cyclotron frequency. The electric component has on average a f-2.2 frequency dependence and extends up to ~2×104Hz. The frequency dependences of the waves and the amplitude ratios of B'/E' indicate a possible mixture of obliquely propagating electromagnetic whistler mode waves plus electrostatic waves. There are no clear intensity peaks in either the magnetic or electric spectra which can identify the plasma instability responsible for the generation of the PCBL waves. The wave character (spiky nature, frequency dependence and admixture of electromagnetic and electrostatic components) and intensity are quite similar to those of the low-latitude boundary layer (LLBL) waves detected at and inside the low-latitude dayside magnetopause. Because of the location of the PCBL waves just inside the polar cap magnetic field lines, it is natural to assume that these waves are occurring on the same magnetic field lines as the LLBL waves, but at lower altitudes. Because of the similar wave intensities at both locations and the occurrence at all local times, we rule out an ionospheric source. We also find a magnetosheath origin improbable. The most likely scenario is that the waves are locally generated by field-aligned currents or current gradients. We find a strong relationship between the presence of ionospheric and magnetosheath ions and the
Kourakis, I.; Elkamash, I. S.
2016-10-01
In a recent article (J. Plasma Phys., vol. 82, 2009, 905820104), weakly dissipative dust-ion acoustic wave modulation in dusty plasmas was considered. It is shown in this Comment that the analysis therein involved severe fallacies, and is in fact based on an erroneous plasma fluid model, which fails to satisfy an equilibrium condition, among other shortcomings. The subsequent analysis therefore is dubious and of limited scientific value.
Survey of ELF-VLF plasma waves in outer radiation belt observed by Cluster STAFF-SA experiment
Directory of Open Access Journals (Sweden)
D. Pokhotelov
2008-10-01
Full Text Available Various types of plasma waves have profound effects on acceleration and scattering of radiation belt particles. For the purposes of radiation belt modeling it is necessary to know statistical distributions of plasma wave parameters. This paper analyzes four years of plasma wave observations in the Earth's outer radiation belt obtained by the STAFF-SA experiment on board Cluster spacecraft. Statistical distributions of spectral density of different plasma waves observed in ELF-VLF range (chorus, plasmaspheric hiss, magnetosonic waves are presented as a function of magnetospheric coordinates and geomagnetic activity indices. Comparison with other spacecraft studies supports some earlier conclusions about the distribution of chorus and hiss waves and helps to remove the long-term controversy regarding the distribution of equatorial magnetosonic waves. This study represents a step towards the development of multi-spacecraft database of plasma wave activity in radiation belts.
AN INVESTIGATION OF ELECTROMAGNETIC WAVE PROPAGATION IN PLASMA BY SHOCK TUBE
Institute of Scientific and Technical Information of China (English)
ZHU Naiyi; LI Xuefen; HUANG Lishun; YU Xilong; YANG Qiansuo
2004-01-01
This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters ne, v, ω, L, ωb. The φ800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 ～ 35) GHz (ω = 2π f, wave length λ = 15 cm ～ 8 mm). The electron density in the plasma is ne = (3 × 1010 ～ 1× 1014) cm-3. The collision frequency v = (1× 10s ～ 6 × 1010)Hz. The thickness of the plasma layer L = (2 ～ 80) cm. The electron circular frequency ωb = eBo/me, magnetic flux density B0 = (0 ～ 0.84)T. The experimental results show that when the plasma layer is thick (such as L/λ≥ 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters ne, v, ω, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and λ are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range,but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters ne, v, ω, L. In fact, if ω＜ωp, v2 ＜＜ω2, the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if ω＞ωp, v2 ＜＜ω2 (just v ≈ f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power
Small amplitude nonlinear electron acoustic solitary waves in weakly magnetized plasma
Energy Technology Data Exchange (ETDEWEB)
Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata-700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata-700 108 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar Kolkata-700 064 (India)
2013-01-15
Nonlinear propagation of electron acoustic waves in homogeneous, dispersive plasma medium with two temperature electron species is studied in presence of externally applied magnetic field. The linear dispersion relation is found to be modified by the externally applied magnetic field. Lagrangian transformation technique is applied to carry out nonlinear analysis. For small amplitude limit, a modified KdV equation is obtained, the modification arising due to presence of magnetic field. For weakly magnetized plasma, the modified KdV equation possesses stable solitary solutions with speed and amplitude increasing temporally. The solutions are valid upto some finite time period beyond which the nonlinear wave tends to wave breaking.
Does the schock wave in a highly ionized non-isothermal plasma really exist ?
Rukhadze, A. A.; Sadykova, S.; Samkharadze, T.
2015-01-01
Here we study the structure of a highly ionizing shock wave in a gas of high atmospheric pressure. We take into account the gas ionization when the gas temperature reaches few orders of an ionization potential. It is shown that after gasdynamic temperature-raising shock and formation of a highly-ionized nonisothermal plasma $T_e>>T_i$ only the solitary ion-sound wave (soliton) can propagate in this plasma. In such a wave the charge separation occurs: electrons and ions form the double electri...
Dust acoustic waves in an inhomogeneous plasma having dust size distribution
Banerjee, Gadadhar; Maitra, Sarit
2017-07-01
Propagations of nonlinear dust acoustic solitary waves in an inhomogeneous unmagnetized dusty plasma having power law dust distribution are investigated. Using a reductive perturbation technique, a variable coefficient deformed Korteweg-deVries (VCdKdV) equation is derived from the basic set of hydrodynamic equations. The generalized expansion method is employed to obtain a solitary wave solution for the VCdKdV equation. The different propagation characteristics of the solitary waves are studied in the presence of both plasma inhomogeneity and dust distribution.
Some aspects of geomagnetically conjugate phenomena
Energy Technology Data Exchange (ETDEWEB)
Rycroft, M.J.
1987-12-01
Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.
Damping and Frequency Shift of Large Amplitude Electron Plasma Waves
DEFF Research Database (Denmark)
Thomsen, Kenneth; Juul Rasmussen, Jens
1983-01-01
The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...... damping rate γ(t) shows that it increases with time within the initial phase of propagation, t≲π/ωB (ωB is the bounce frequency), whereafter it decreases and changes sign implying a regrowth of the wave. The shift in the wave frequency δω is observed to be positive for t≲π/ωB; then δω changes sign...
Howard, John; Oliver, David
2006-12-01
We report the development and initial implementation of what we believe to be a new rapid- spatial-scan millimeter-wave interferometer for plasma density measurements. The fast scan is effected by electronic frequency sweeping of a wideband (180-280 GHz) backward-wave oscillator whose output is focused onto a fixed blazed diffraction grating. The system, which augments the rotating-grating scanned multiview H-1 heliac interferometer, can sweep the plasma cross section in a period of less than 1 ms with a beam diameter in the plasma of 20 mm and phase noise of the order of 0.01 rad.
Three-Dimensional Dust-Acoustic Waves in a Collisional Dusty Plasma with Opposite Polarity Particles
Institute of Scientific and Technical Information of China (English)
LIN Mai-Mai; DUAN Wen-Shan
2005-01-01
The dispersion relation is derived for three-dimensional dust-acoustic waves in a current-driven dusty plasmas with both positively and negatively charged dust particles. The dependencies of the frequency and the growth rate on the wave number K, the intensity of magnetic field B, and the inclination angle θ have been numerically shown in this paper. The growth rate is negative for the laboratory dusty plasma, but it is positive for the cosmic dusty plasma.It is found that when the inclination angle θ = π/2, there is no instability. The effect of the electrostatic field E0 has also been studied in this paper.
Diffusion in plasma: the Hall effect, compositional waves, and chemical spots
Urpin, Vadim
2016-01-01
We consider diffusion caused by a combined influence of the electric current and the Hall effect, and argue that such diffusion can form inhomogeneities of the chemical composition in plasma. The considered mechanism can be responsible for a formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type waves in which the impurity number density oscillate alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure,
Whistler wave-induced ionospheric plasma turbulence: Source mechanisms and remote sensing
Pradipta, R.; Rooker, L. A.; Whitehurst, L. N.; Lee, M. C.; Ross, L. M.; Sulzer, M. P.; Gonzalez, S.; Tepley, C.; Aponte, N.; See, B. Z.; Hu, K. P.
2013-10-01
We report a series of experiments conducted at Arecibo Observatory in the past, aimed at the investigation of 40.75 kHz whistler wave interactions with ionospheric plasmas and the inner radiation belts at L=1.35. The whistler waves are launched from a Naval transmitter (code-named NAU) operating in Aguadilla, Puerto Rico at the frequency and power of 40.75 kHz and 100 kW, respectively. Arecibo radar, CADI, and optical instruments were used to monitor the background ionospheric conditions and detect the induced ionospheric plasma effects. Four-wave interaction processes produced by whistler waves in the ionosphere can excite lower hybrid waves, which can accelerate ionospheric electrons. Furthermore, whistler waves propagating into the magnetosphere can trigger precipitation of energetic electrons from the radiation belts. Radar and optical measurements can distinguish wave-wave and wave-particle interaction processes occurring at different altitudes. Electron acceleration by different mechanisms can be verified from the radar measurements of plasma lines. To facilitate the coupling of NAU-launched 40.75 kHz whistler waves into the ionosphere, we can rely on naturally occurring spread F irregularities to serve as ionospheric ducts. We can also use HF wave-created ducts/artificial waveguides, as demonstrated in our earlier Arecibo experiments and recent Gakona experiments at HAARP. The newly constructed Arecibo HF heater will be employed in our future experiments, which can extend the study of whistler wave interactions with the ionosphere and the magnetosphere/radiation belts as well as the whistler wave conjugate propagation between Arecibo and Puerto Madryn, Argentina.
Spontaneous excitation of waves by an intense ion beam on the Large Plasma Device
Tripathi, Shreekrishna; van Compernolle, Bart; Gekelman, Walter; Pribyl, Patrick; Heidbrink, William
2016-10-01
A hydrogen ion beam (15 keV, 10 A) has been injected into a large magnetized plasma (n 1010 -1013 cm-3, Te = 5.0 - 15.0 eV, B = 0.6 - 1.8 kG, He+ and H+ ions, 19 m long, 0.6 m diameter) for performing fast-ion studies on the Large Plasma Device (LAPD). The beam forms a helical orbit (pitch-angle 7° -55°), propagates with an Alfvénic speed (beam-speed/Alfvén-speed = 0.2 - 3.0), and significantly enhances the electron temperature and density when injected during the plasma afterglow. We report results on spontaneous generation of Alfvén waves and electrostatic waves in the lower-hybrid range of frequencies by the beam. Roles of normal and anomalous Doppler-shifted ion-cyclotron resonances in destabilizing the Alfvén waves were examined by measuring the phase-speed of waves and relevant parameters of the plasma using a variety of diagnostic tools (retarding-field energy analyzer, three-axis magnetic-loop, Dipole, and Langmuir probes). Conditions for the maximum growth of these waves were determined by varying the parameters of the beam and ambient plasma and examining the mode-structures in the fluctuation-spectra. Work jointly supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.
Dey, Indranuj; Bhattacharjee, Sudeep
2011-04-01
Laboratory observation of rotation of the polarization axis (θc˜20°-40° with respect to vacuum) of a penetrating electromagnetic wave through a bounded supercritical plasma (plasma frequency ωp>wave frequency ω), confined in a multicusp magnetic field is reported. Birefringence of the radial and polar wave electric field components (Er and Eθ) has been identified as the cause for the rotation, similar to a magneto-optic medium, however, with distinct differences owing to the presence of wave induced resonances. Numerical simulation results obtained by solving the Maxwell's equations by incorporating the plasma and magnetostatic field inhomogeneities within a conducting boundary shows a reasonable agreement with the experimental results.
A numerical simulation of surface wave excitation in a rectangular planar-type plasma source
Institute of Scientific and Technical Information of China (English)
Chen Zhao-Quan; Liu Ming-Hai; Lan Chao-Hui; Chen Wei; Tang Liang; Luo Zhi-Qing; Yan Bao-Rong; Lu Jian-Hong; Hu Xi-Wei
2009-01-01
The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory.The distribution of surface-wave electric field at the interface of the plasma-dielectric slab is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD) with different slotantenna structures.And the experimental image of discharge with a novel slot antenna array and the simulation of the electric field with this slot antenna array are both displayed.Combined with the distribution of surface wave excitation and experimental results,the numerical simulation performed by using 3D-FDTD is shown to be a useful tool in the computer-aided antenna design for large area planar-type surface-wave plasma sources.
On the role of wave-particle interactions in the macroscopic dynamics of collisionless plasmas
Wilson, Lynn B; Osmane, Adnane; Malaspina, David M
2015-01-01
What is the relative importance of small-scale (i.e., electron to sub-electron scales), microphysical plasma processes to the acceleration of particles from thermal to suprathermal or even to cosmic-ray energies? Additionally, can these microphysical plasma processes influence or even dominate macroscopic (i.e., greater than ion scales) processes, thus affecting global dynamics? These are fundamental and unresolved questions in plasma and astrophysical research. Recent observations of large amplitude electromagnetic waves in the terrestrial radiation belts [i.e., Cattell et al., 2008; Kellogg et al., 2010; Wilson III et al., 2011] and in collisionless shock waves [i.e., Wilson III et al., 2014a,b] have raised questions regarding the macrophysical effect of these microscopic waves. The processes thought to dominate particle acceleration and the macroscopic dynamics in both regions have been brought into question with these recent observations. The relative importance of wave-particle interactions has recently ...
Self-excited dust-acoustic waves in an electron-depleted nanodusty plasma
Energy Technology Data Exchange (ETDEWEB)
Tadsen, Benjamin, E-mail: tadsen@physik.uni-kiel.de; Greiner, Franko; Groth, Sebastian; Piel, Alexander [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany)
2015-11-15
A dust density wave field is observed in a cloud of nanodust particles confined in a radio frequency plasma. Simultaneous measurements of the dust properties, grain size and density, as well as the wave parameters, frequency and wave number, allow for an estimate of the ion density, ion drift velocity, and the dust charge using a hybrid model for the wave dispersion. It appears that the charge on the dust grains in the cloud is drastically reduced to tens of elementary charges compared with isolated dust particles in a plasma. The charge is much higher at the cloud's periphery, i.e., towards the void in the plasma center and also towards the outer edge of the cloud.
Alfven Waves in a Plasma Sheet Boundary Layer Associated with Near-Tail Magnetic Reconnection
Institute of Scientific and Technical Information of China (English)
YUAN Zhi-Gang; DENG Xiao-Hua; PANG Ye; LI Shi-You; WANG Jing-Fang
2007-01-01
We report observations from Geotail satellite showing that large Poynting fluxes associated with Alfven waves in the plasma sheet boundary layer(PSBL) occur in the vicinity of the near-tail reconnection region on 10 December 1996.During the period of large Poynting fluxex,Geotail also observed strong tailward plasma flws.These observations demonstrate the importance of near-tail reconnection process as the energy source of Alfven waves in the PSBL.Strong tailward(Earthward)plasma flows ought to be an important candidate in generating Alfven waves.Furthermore,the strong pertutbations not only of the magnetic field but also of the electric field observed in the PSBL indicate that the PSBL plays an important role in the generation and propagation of the energy flux associated with Alfven waves.
Hafez, M. G.; Talukder, M. R.
2015-09-01
This work investigates the theoretical and numerical studies on nonlinear propagation of ion acoustic solitary waves (IASWs) in an unmagnetized plasma consisting of nonextensive electrons, Boltzmann positrons and relativistic thermal ions. The Korteweg-de Vries (KdV) equation is derived by using the well known reductive perturbation method. This equation admits the soliton like solitary wave solution. The effects of phase velocity, amplitude of soliton, width of soliton and electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves have been discussed with graphical representation found in the variation of the plasma parameters. The obtained results can be helpful in understanding the features of small but finite amplitude localized relativistic ion-acoustic waves for an unmagnetized three component plasma system in astrophysical compact objects.
Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust size distribution
Energy Technology Data Exchange (ETDEWEB)
Wang, Hong-Yan; Zhang, Kai-Biao [Sichuan University of Science and Engineering, Zigong (China)
2014-06-15
Nonlinear dust-acoustic solitary waves which are described with a Kortweg-de vries (KdV) equation by using the reductive perturbation method, are investigated in a planar unmagnetized dusty plasma consisting of electrons, positrons, ions and negatively-charged dust particles of different sizes and masses. The effects of the power-law distribution of dust and other plasma parameters on the dust-acoustic solitary waves are studied. Numerical results show that the dust size distribution has a significant influence on the propagation properties of dust-acoustic solitons. The amplitudes of solitary waves in the case of a power-law distribution is observed to be smaller, but the soliton velocity and width are observed to be larger, than those of mono-sized dust grains with an average dust size. Our results indicate that only compressed solitary waves exist in dusty plasma with different dust species. The relevance of the present investigation to interstellar clouds is discussed.
Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma
Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.
2016-09-01
Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave - zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow.