WorldWideScience

Sample records for plasma wave experiment

  1. Plasma wave observations during electron and ion gun experiments

    International Nuclear Information System (INIS)

    Olsen, R.C.; Lowery, D.R.; Weddle, L.E.

    1988-01-01

    Plasma wave instruments with high temporal and frequency resolution in the 0-6 kHz frequency range have been used to monitor electron gun-employing charge control experiments with the USAF/NASA p78-2 satellite, in order to determine whether plasma wave signatures consistent with the previous inference of electron heating were present. Strong plasma waves were noted near the electron gyrofrequency; these waves can heat ambient low energy electrons, as previously inferred. Attention is given to the two distinct classes of behavior revealed by the ion gun experiments. 16 references

  2. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  3. Theory for beam-plasma millimeter-wave radiation source experiments

    International Nuclear Information System (INIS)

    Rosenberg, M.; Krall, N.A.

    1989-01-01

    This paper reports on theoretical studies for millimeter-wave plasma source experiments. In the device, millimeter-wave radiation is generated in a plasma-filled waveguide driven by counter-streaming electron beams. The beams excite electron plasma waves which couple to produce radiation at twice the plasma frequency. Physics topics relevant to the high electron beam current regime are discussed

  4. Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, S.P.

    1990-01-01

    Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed

  5. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    International Nuclear Information System (INIS)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-01

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a “black out” phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm× 260 mm× 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  6. Plasma waves

    National Research Council Canada - National Science Library

    Swanson, D. G

    1989-01-01

    ... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...

  7. Electron plasma waves and plasma resonances

    International Nuclear Information System (INIS)

    Franklin, R N; Braithwaite, N St J

    2009-01-01

    In 1929 Tonks and Langmuir predicted of the existence of electron plasma waves in an infinite, uniform plasma. The more realistic laboratory environment of non-uniform and bounded plasmas frustrated early experiments. Meanwhile Landau predicted that electron plasma waves in a uniform collisionless plasma would appear to be damped. Subsequent experimental work verified this and revealed the curious phenomenon of plasma wave echoes. Electron plasma wave theory, extended to finite plasmas, has been confirmed by various experiments. Nonlinear phenomena, such as particle trapping, emerge at large amplitude. The use of electron plasma waves to determine electron density and electron temperature has not proved as convenient as other methods.

  8. Magnetospheric plasma waves

    International Nuclear Information System (INIS)

    Shawhan, S.D.

    1977-01-01

    A brief history of plasma wave observations in the Earth's magnetosphere is recounted and a classification of the identified plasma wave phenomena is presented. The existence of plasma waves is discussed in terms of the characteristic frequencies of the plasma, the energetic particle populations and the proposed generation mechanisms. Examples are given for which plasmas waves have provided information about the plasma parameters and particle characteristics once a reasonable theory has been developed. Observational evidence and arguments by analogy to the observed Earth plasma wave processes are used to identify plasma waves that may be significant in other planetary magnetospheres. The similarities between the observed characteristics of the terrestrial kilometric radiation and radio bursts from Jupiter, Saturn and possibly Uranus are stressed. Important scientific problems concerning plasma wave processes in the solar system and beyond are identified and discussed. Models for solar flares, flare star radio outbursts and pulsars include elements which are also common to the models for magnetospheric radio bursts. Finally, a listing of the research and development in terms of instruments, missions, laboratory experiments, theory and computer simulations needed to make meaningful progress on the outstanding scientific problems of plasma wave research is given. (Auth.)

  9. Observation of large-amplitude ion acoustic wave in microwave-plasma interaction experiments

    International Nuclear Information System (INIS)

    Yugami, Noboru; Nishida, Yasushi

    1997-01-01

    Large amplitude ion acoustic wave, which is not satisfied with a linear dispersion relationship of ion acoustic wave, is observed in microwave-plasma interaction experiments. This ion acoustic wave is excited around critical density layer and begins to propagate to underdense region with a phase velocity one order faster than sound velocity C s , which is predicted by the linear theory, the phase velocity and the wave length of the wave decreases as it propagates. Finally, it converges to C s and strongly dumps. Diagnostic by the Faraday cup indicates that this ion acoustic wave is accompanied with a hot ion beam. (author)

  10. Theory and experiments on the generation of spontaneous emission using a plasma wave undulator

    International Nuclear Information System (INIS)

    Williams, R.L.; Clayton, C.E.; Joshi, C.; Katsouleas, T.; Mori, W.B.; Slater, J.

    1990-01-01

    This paper reports that, the authors are studying the feasibility of using relativistically moving plasma waves as short wavelength undulators for possible FEL and Compton scattering applications at UCLA. The remarkable property of such waves is that the wiggler parameter a w = eA/mc 2 can be on the order 0.1 while their wavelength λ w can be submillimeter. Such waves can be excited by either an intense electron bunch going through a plasma (plasma wake field) or a short but intense laser pulse going through the plasma (laser wake field). A variation of the laser wake field scheme is the plasm beat wave excitation. Here a moderately intense laser pulse containing two frequencies excites the plasm wave resonantly. Using a laser pulse containing 10.27 μm and 9.6 μm lines of the Co 2 laser that is approximately 400 ps (FWHM) and 200 GW of power, we were able to measure a w times the length product of 0.013 cm in our experiments. If a length of 0.75 cm i assumed, this implies an a w of 0.17 for a λ w ∼156 μm. Injection of an electron beam across such a plasma wave proved not to be feasible in these experiments, because the θ-pinch plasma source contained significant trapped magnetic fields. We are currently developing a field free plasma source which will permit transverse electron injection

  11. Initial measurements of two- and three-dimensional ordering, waves, and plasma filamentation in the Magnetized Dusty Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-05-15

    The Magnetized Dusty Plasma Experiment at Auburn University has been operational for over one year. In that time, a number of experiments have been performed at magnetic fields up to B = 2.5 T to explore the interaction between magnetized plasmas and charged, micron-sized dust particles. This paper reports on the initial results from studies of: (a) the formation of imposed, ordered structures, (b) the properties of dust wave waves in a rotating frame, and (c) the generation of plasma filaments.

  12. Rocket experiment on spontaneously and artificially stimulated VLF plasma waves in the ionosphere

    International Nuclear Information System (INIS)

    Matsumoto, H.; Miyatake, S.; Kimura, I.

    1975-01-01

    In situ active experiments on the nonlinear wave-wave and wave-particle interactions in the ionospheric plasma were performed by a Japanese sounding rocket K-9M-41. Both spontaneously and artificially stimulated plasma waves in the VLF range were observed. When a large amplitude electron plasma wave was transmitted from the rocket, parametrically excited ion acoustic waves were observed in addition to natural emissions such as whistlers, LHR emissions, and hisslike emissions. It was also found that 'risers' were triggered by the LHR emissions, which seem to be very similar to a phenomenon of the so-called ASE (artificially stimulated emissions). When a slow electron beam with energy lower than 3 eV was ejected from the rocket, a new type of periodic U-shaped discrete emission was observed which was excited through a wave-particle interaction. The frequency of these emissions is lower than the LHR frequency and decreases as the beam energy is increased. Spectrograms of the observed plasma are presented, and some are analyzed theoretically. (auth)

  13. Non linear evolution of plasma waves excited to mode conversion at the vicinity of plasma resonance. Application to experiments of ionosphere modification

    International Nuclear Information System (INIS)

    Cros, Brigitte

    1989-01-01

    This research thesis reports the study of the non linear evolution of plasma waves excited by mode conversion in a non homogeneous, non collisional, and free-of-external-magnetic-field plasma. Experiments performed in the microwave domain in a plasma created by means of a multi-polar device show that the evolution of plasma waves displays a transition between a non linear quasi-steady regime and a stochastic regime when the power of incident electromagnetic waves or plasma gradient length is increased. These regimes are characterized through a numerical resolution of Zakharov equations which describe the coupled evolution of plasma wave envelope and low frequency density perturbations [fr

  14. Registration of ELF waves in rocket-satellite experiment with plasma injection

    Science.gov (United States)

    Korobeinikov, V. G.; Oraevskii, V. N.; Ruzhin, Iu. Ia.; Sobolev, Ia. P.; Skomarovskii, V. S.; Chmyrev, V. M.; Namazov, C. A.; Pokhunkov, A. A.; Nesmeianov, V. I.

    1992-12-01

    Two rocket KOMBI-SAMA experiments with plasma injection at height 100-240 km were performed in August 1987 in the region of Brazilian magnetic anomaly (L = 1.25). The launching time of the rocket was determined so that plasma injection was at the time when COSMOS 1809 satellite passed as close as possible to magnetic tube of injection. Caesium plasma jet was produced during not less than 300 s by an electric plasma generator separated from the payload. When the satellite passed the geomagnetic tube intersecting the injection region an enhancement of ELF emission at 140 Hz, 450 Hz by a factor of 2 was registered on board the satellite. An enhancement of energetic particle flux by a factor of 4-5 was registered on board the rocket. Observed ELF emission below 100 Hz is interpreted as the generation of oblique electromagnetic ion-cyclotron waves due to drift plasma instability at the front of the plasma jet.

  15. The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite

    Science.gov (United States)

    Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ozaki, Mitsunori; Matsuda, Shoya; Imachi, Tomohiko; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Katoh, Yuto; Ota, Mamoru; Shoji, Masafumi; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    The Exploration of energization and Radiation in Geospace (ERG) project aims to study acceleration and loss mechanisms of relativistic electrons around the Earth. The Arase (ERG) satellite was launched on December 20, 2016, to explore in the heart of the Earth's radiation belt. In the present paper, we introduce the specifications of the Plasma Wave Experiment (PWE) on board the Arase satellite. In the inner magnetosphere, plasma waves, such as the whistler-mode chorus, electromagnetic ion cyclotron wave, and magnetosonic wave, are expected to interact with particles over a wide energy range and contribute to high-energy particle loss and/or acceleration processes. Thermal plasma density is another key parameter because it controls the dispersion relation of plasma waves, which affects wave-particle interaction conditions and wave propagation characteristics. The DC electric field also plays an important role in controlling the global dynamics of the inner magnetosphere. The PWE, which consists of an orthogonal electric field sensor (WPT; wire probe antenna), a triaxial magnetic sensor (MSC; magnetic search coil), and receivers named electric field detector (EFD), waveform capture and onboard frequency analyzer (WFC/OFA), and high-frequency analyzer (HFA), was developed to measure the DC electric field and plasma waves in the inner magnetosphere. Using these sensors and receivers, the PWE covers a wide frequency range from DC to 10 MHz for electric fields and from a few Hz to 100 kHz for magnetic fields. We produce continuous ELF/VLF/HF range wave spectra and ELF range waveforms for 24 h each day. We also produce spectral matrices as continuous data for wave direction finding. In addition, we intermittently produce two types of waveform burst data, "chorus burst" and "EMIC burst." We also input raw waveform data into the software-type wave-particle interaction analyzer (S-WPIA), which derives direct correlation between waves and particles. Finally, we introduce our

  16. Magnetoresistive waves in plasmas

    International Nuclear Information System (INIS)

    Felber, F.S.; Hunter, R.O. Jr.; Pereira, N.R.; Tajima, T.

    1982-01-01

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed

  17. Electron Bernstein wave experiments in a over-dense reversed field pinch plasma

    International Nuclear Information System (INIS)

    Forest, C. B.; Anderson, J.K.; Cengher, M.; Chattopadhyay, P.K.; Carter, M.; Harvey, R.W.; Pinsker, R.I.; Smirnov, A.P.

    2003-01-01

    Experiments and theoretical work show that it is possible to couple power to the EBW in an RFP, and that these waves may be suitable for driving current. The main results of our work thus far are: (1) A coupling theory for a phased array of waveguides is developed and compared to experiment. Both O and X mode polarizations can be used; in general coupling for both is optimized for obliquely launched waves. (2) The surface impedance and reflection coefficients have been measured for EBWs launched by waveguide antennas on the edge of MST. Emission and coupling measurements are both consistent with theoretical models and the measured density gradients at the plasma edge. In particular, the coupling showed a strong asymmetry in N Φ for X-mode launch. (3) Black-body levels of emission have been observed in the ECRF from over-dense MST plasmas, which by reciprocity indicate that coupling to the EBW is possible with external antennas. Emission is preferentially polarized in the X-mode and is affected by density fluctuations at the plasma edge. Mode conversion efficiencies as high as 75% have been observed. (4) Ray tracing of EBW waves, coupled to Fokker Planck calculations show that localized, efficient current drive is possible. Current drive is possible by choosing the poloidal angle of the launching antenna to control the N of the wave. (authors)

  18. Waves in unmagnetized plasma

    International Nuclear Information System (INIS)

    Lambert, A.J.D.

    1979-01-01

    A review of linear and weakly non-linear theory of electron waves, ion waves and electromagnetic waves in plasmas is presented. The author restricts the discussion to an infinitely extended, homogeneous and isotropic plasma, not affected by external fields and described by Vlasov's and Maxwell's equations. (Auth.)

  19. Plasma waves produced by an ion beam: observations by the VLF experiment on Porcupine

    International Nuclear Information System (INIS)

    Jones, D.

    1980-01-01

    Results are presented from the VLF electric field experiments flown on Porcupine flights F3 and F4, which also had ejectable xenon ion sources. The xenon ion beam was found to produce plasma instabilities whose frequencies could be linked to the local proton gyrofrequency fsub(cH + ). The main energy in the instabilities lies at approximately 3kHz for events when the Xe + source is close to the rocket, and at approximately 7kHz when the source is farther away. Theory predicts that these frequencies should be the lower-hybrid-resonance and this implies that Xe + is the dominant ion in the first case and that it is the ambient plasma that dominates later. There is no discernable antenna spin-modulation during the Xe events which indicates that the wave k-vectors are not unidirectional. A theory is cited based on the 'setting up' of the proton cyclotron harmonic waves by the Xe + or O + cyclotron harmonic waves. The second Xe + event on both flights exhibited an, as yet, unexplained harmonic structure related to fsub(cH + )/2. (Auth.)

  20. Stochastic plasma heating by electrostatic waves: a comparison between a particle-in-cell simulation and a laboratory experiment

    International Nuclear Information System (INIS)

    Fivaz, M.; Fasoli, A.; Appert, K.; Trans, T.M.; Tran, M.Q.; Skiff, F.

    1993-08-01

    Dynamical chaos is produced by the interaction between plasma particles and two electrostatic waves. Experiments performed in a linear magnetized plasma and a 1D particle-in-cell simulation agree qualitatively: above a threshold wave amplitude, ion stochastic diffusion and heating occur on a fast time scale. Self-consistency appears to limit the extent of the heating process. (author) 5 figs., 18 refs

  1. Experiments on ion-acoustic shock waves in a dusty plasma

    International Nuclear Information System (INIS)

    Nakamura, Y.

    2002-01-01

    Dust ion-acoustic shock waves have been investigated experimentally in a homogeneous unmagnetized dusty double-plasma device. An initial compressional wave with a ramp shape steepens to form oscillations at the leading part due to dispersion. The oscillation develops to a train of solitons when the plasma contains no dust grain. The wave becomes an oscillatory shock wave when the dust is mixed in the plasma and the density of the dust grains is smaller than a critical value. When the dust density is larger than the critical value, only steepening is observed at the leading part of the wave and a monotonic shock structure is observed. The velocity and width of the shock waves are measured and compared with results of numerical integrations of the modified Korteweg-de Vries-Burgers equation

  2. Accurate calibration of waveform data measured by the Plasma Wave Experiment on board the ARASE satellite

    Science.gov (United States)

    Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.

    2017-12-01

    The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can

  3. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  4. Solar system plasma waves

    Science.gov (United States)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  5. Millimeter wave and terahertz wave transmission characteristics in plasma

    International Nuclear Information System (INIS)

    Ma Ping; Qin Long; Chen Weijun; Zhao Qing; Shi Anhua; Huang Jie

    2013-01-01

    An experiment was conducted on the shock tube to explore the transmission characteristics of millimeter wave and terahertz wave in high density plasmas, in order to meet the communication requirement of hypersonic vehicles during blackout. The transmission attenuation curves of millimeter wave and terahertz wave in different electron density and collision frequency were obtained. The experiment was also simulated by auxiliary differential equation finite-difference time-domain (ADE-FDTD) methods. The experimental and numerical results show that the transmission attenuation of terahertz wave in the plasma is smaller than that of millimeter wave under the same conditions. The transmission attenuation of terahertz wave in the plasma is enhanced with the increase of electron density. The terahertz wave is a promising alternative to the electromagnetic wave propagation in high density plasmas. (authors)

  6. Plasma waves in an inhomogeneous cylindrical plasma

    International Nuclear Information System (INIS)

    Pesic, S.S.

    1976-01-01

    The complete dispersion equation governing small amplitude plasma waves propagating in an inhomogeneous cylindrical plasma confined by a helical magnetic field is solved numerically. The efficiency of the wave energy thermalization in the lower hybrid frequency range is studied

  7. Cyclotron waves in plasma

    International Nuclear Information System (INIS)

    Lominadse, D.G.

    1975-01-01

    The book deals with fundamental physical concepts of the theory of cyclotron waves and cyclotron instabilities conditioned by the presence in plasma of direct or alternating electric currents passing in it perpendicularily to a magnetic field. A great variety of problems is considered connected with the linear theory of cyclotron oscillations in equilibrium and electron plasma of metals and semiconductors. Parametric excitations of electron cyclotron oscillations of plasma in an alternating electric field are studied. Particular attention is paid to the investigation of plasma turbulence arising as a result of development of cyclotron instabilities. Experimental data are discussed and compared with theoretical results

  8. Waves in Space Plasmas Program

    Science.gov (United States)

    Fredricks, R. W.; Taylor, W. W. L.

    1981-01-01

    The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions; ELF/VLF propagation; traveling ionospheric disturbances and gravity wave coupling; equatorial plasma bubble phenomena; plasma wave physics such as mode-coupling, dispersion, and instabilities; and plasma physics of the antenna-plasma interactions.

  9. Waves in Space Plasmas Program

    International Nuclear Information System (INIS)

    Fredricks, R.W.; Taylor, W.W.L.

    1981-01-01

    The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions, ELF/VLF propagation, traveling ionospheric disturbances and gravity wave coupling, equatorial plasma bubble phenomena, plasma wave physics such as mode-coupling, dispersion, and instabilities, and plasma physics of the antenna-plasma interactions

  10. Plasma wave accelerator. II

    International Nuclear Information System (INIS)

    Mori, W.; Joshi, C.; Dawson, J.M.

    1982-01-01

    It was shown that the insertion of a cross magnetic field prevents the particles from getting out of phase with the electric field of the plasma wave in the beat wave accelerator scheme. Thus, using a CO 2 laser, n/sub c//n/sub e/ = (ω 0 /ω/sub p/) 2 approx. 35, and a 300 kG magnetic field, electrons can be (in principle) accelerated to 100 GeV in 2 meters. For comparison without the magnetic field, the same energies may be obtained in a n/sub c//n/sub e/ approx. 10 5 plasma over a distance of 100 meters

  11. Undamped electrostatic plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, F.; Perrone, D.; Veltri, P. [Dipartimento di Fisica and CNISM, Universita della Calabria, 87036 Rende (CS) (Italy); Califano, F.; Pegoraro, F. [Dipartimento di Fisica and CNISM, Universita di Pisa, 56127 Pisa (Italy); Morrison, P. J. [Institute for Fusion Studies and Department of Physics, University of Texas at Austin, Austin, Texas 78712-1060 (United States); O' Neil, T. M. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)

    2012-09-15

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.

  12. Undamped electrostatic plasma waves

    International Nuclear Information System (INIS)

    Valentini, F.; Perrone, D.; Veltri, P.; Califano, F.; Pegoraro, F.; Morrison, P. J.; O'Neil, T. M.

    2012-01-01

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,ω R ) plane (ω R being the real part of the wave frequency and k the wavenumber), away from the well-known “thumb curve” for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.

  13. On generation of Alfvenic-like fluctuations by drift wave-zonal flow system in large plasma device experiments

    International Nuclear Information System (INIS)

    Horton, W.; Correa, C.; Chagelishvili, G. D.; Avsarkisov, V. S.; Lominadze, J. G.; Perez, J. C.; Kim, J.-H.; Carter, T. A.

    2009-01-01

    According to recent experiments, magnetically confined fusion plasmas with ''drift wave-zonal flow turbulence'' (DW-ZF) give rise to broadband electromagnetic waves. Sharapov et al. [Europhysics Conference Abstracts, 35th EPS Conference on Plasma Physics, Hersonissos, 2008, edited by P. Lalousis and S. Moustaizis (European Physical Society, Switzerland, 2008), Vol. 32D, p. 4.071] reported an abrupt change in the magnetic turbulence during L-H transitions in Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] plasmas. A broad spectrum of Alfvenic-like (electromagnetic) fluctuations appears from ExB flow driven turbulence in experiments on the large plasma device (LAPD) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] facility at UCLA. Evidence of the existence of magnetic fluctuations in the shear flow region in the experiments is shown. We present one possible theoretical explanation of the generation of electromagnetic fluctuations in DW-ZF systems for an example of LAPD experiments. The method used is based on generalizing results on shear flow phenomena from the hydrodynamics community. In the 1990s, it was realized that fluctuation modes of spectrally stable nonuniform (sheared) flows are non-normal. That is, the linear operators of the flows modal analysis are non-normal and the corresponding eigenmodes are not orthogonal. The non-normality results in linear transient growth with bursts of the perturbations and the mode coupling, which causes the generation of electromagnetic waves from the drift wave-shear flow system. We consider shear flow that mimics tokamak zonal flow. We show that the transient growth substantially exceeds the growth of the classical dissipative trapped-particle instability of the system.

  14. Interaction between electromagnetic waves and plasma waves in motional plasma

    International Nuclear Information System (INIS)

    Chen, S. Y.; Gao, M.; Tang, C. J.; Peng, X. D.

    2009-01-01

    The electromagnetic wave (EM wave) behavior and the electromagnetic instability caused by the interaction between an EM wave and a plasma wave in motional plasma are studied. The dispersion relation of EM waves and the dielectric tensor of motional plasma are derived by magnetohydrodynamics, and the wave phenomenon in motional plasma is displayed. As a result, the electromagnetic instability, which is excited by the interaction between the EM waves and the plasma waves, is revealed. The mechanism of the instability is the coupling between high frequency electromagnetic field and the transverse electron oscillation derived from the deflection of longitudinal electron oscillation due to self-magnetic field. The present research is useful with regard to the new type of plasma radiation source, ion-focusing accelerator, and plasma diagnostic technique.

  15. Plasma Wave Electronic Terahertz Technology

    National Research Council Canada - National Science Library

    Shur, Michael

    2003-01-01

    Plasma waves are oscillations of electron density in time and space. In deep submicron field effect transistors plasma wave frequencies lie in the terahertz range and can be tuned by applied gate bias...

  16. Experiment on a large-diameter plasma-filled backward-wave oscillator

    International Nuclear Information System (INIS)

    Ogura, K.; Minami, K.; Kurashina, K.I.; Kim, W.; Watanabe, T.; Ishii, K.; Sugito, S.

    1995-01-01

    A large-diameter plasma-filled backward-wave oscillator (BWO) is investigated experimentally. The parameters of slow wave structure are chosen so that the oscillation frequency is about 20GHz at 60keV beam energy. Plasma is produced by the beam and has favorable effects for beam propagation and Cerenkov oscillations. The output power of the BWO with plasma is observed to be three to six times that of vacuum BWO. The power level is several kilowatts and the efficiency is about 0.01%. For Cerenkov oscillations of a large-diameter BWO, the beam energy mainly determines the starting conditions for oscillation. The output power is strongly enhanced when the guiding magnetic field approaches the fundamental electron cyclotron resonance. This mechanism is closely related to the anomalous Doppler cyclotron resonance. The maximum power of 480kW with an efficiency of 5% is achieved even for a relatively low beam energy of 60keV. ((orig.))

  17. Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer

    Science.gov (United States)

    Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and

  18. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.

  19. Nonlinear Electron Waves in Strongly Magnetized Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens

    1980-01-01

    Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....

  20. Enhancement of mode-converted electron Bernstein wave emission during National Spherical Torus Experiment H-mode plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Le Blanc, B.P.; Maingi, R.

    2002-01-01

    A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs

  1. Localization of waves in a fluctuating plasma

    International Nuclear Information System (INIS)

    Escande, D.F.; Souillard, B.

    1984-01-01

    We present the first application of localization theory to plasma physics: Density fluctuations induce exponential localization of longitudinal and transverse electron plasma waves, i.e., the eigenmodes have an amplitude decreasing exponentially for large distances without any dissipative mechanism in the plasma. This introduces a new mechanism for converting a convective instability into an absolute one. Localization should be observable in clear-cut experiments

  2. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  3. Super rogue wave in plasma

    International Nuclear Information System (INIS)

    Pathak, Pallabi; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    The evolution of super rogue wave having amplitude ∼5 times the background wave has been observed in multicomponent plasma with critical concentration of negative ions in a double plasma device. In normal electron-ion plasma the ion acoustic solitons are described by the Korteweg-de Vries (KdV) equation. At a critical concentration of negative ions, the ion acoustic modified KdV solitons are found to propagate. Multicomponent plasma also supports the propagation of a special kind of soliton namely 'Peregrine soliton' at critical concentration of negative ions. Peregrine soliton is a doubly localized solution of the nonlinear Schrodinger equation (NLSE) having amplitude 3 times the background carrier wave. In a double plasma device, ion-acoustic Peregrine soliton is excited by applying slowly varying amplitude modulated continuous sinusoidal signal to the source anode and described by the rational solution of NLSE. The ion acoustic wave is modulationally unstable in multicomponent plasma with critical concentration of negative ions and an initial modulated wave perturbation is found to undergo self-modulation to form localized structures by balancing the nonlinearity with the dispersion. In presence of higher order nonlinearity, propagation of a high amplitude (∼5 times of background carrier wave) ion acoustic Peregrine soliton has been observed experimentally. The existence of such types of higher order wave has been reported in other dispersive media. These are considered to be the prototype of super rogue wave in deep water. In this work, experimental results on the evolution of super rogue wave in a double plasma device are presented and compared with the numerical solution of NLSE. (author)

  4. Project of experimental study on plasma waves and plasma turbulence

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1990-09-01

    The objective of this project is to perform experiments with wave phenomena on plasmas. Particular attention will be given to Langmuir and whistler waves due to its relations with several phenomena occuring on space and laboratory plasmas. The new concepts of particle acceleration with electromagnetic waves, the auroral phenomena on the polar regions and the charged particle precipitation to the atmosphere through anomalies of the earth magnetic field are examples where these waves have an important role. In this project we intend to study the propagation of these waves in a quiescent plasma machine. This machine is able to produce a plasma with density and temperature with values similar to what is met in the ionosphere. This project will be a part of the activities of the basic plasma group of the INPE's Associated Plasma Laboratory (LAP). It will have the collaboration of the departments of Aeronomy and Geophysics also from INPE, and the collaboration of the Plasma and Gas Physics Laboratory from University of Paris - South, in France. (author)

  5. A simple electron plasma wave

    International Nuclear Information System (INIS)

    Brodin, G.; Stenflo, L.

    2017-01-01

    Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.

  6. A simple electron plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, G., E-mail: gert.brodin@physics.umu.se [Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Stenflo, L. [Department of Physics, Linköping University, SE-581 83 Linköping (Sweden)

    2017-03-18

    Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.

  7. Waves and instabilities in plasmas

    International Nuclear Information System (INIS)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations

  8. Waves and Oscillations in Plasmas

    CERN Document Server

    Pecseli, Hans L

    2012-01-01

    The result of more than 15 years of lectures in plasma sciences presented at universities in Denmark, Norway, and the United States, Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences. The book covers fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping. Offering a clear separation of linear and nonlinear models, the book can be tailored for readers of varying levels of expertise.Designed to provide basic training in linear as well as nonlinear plasma dynamics, and practical in areas as d

  9. Cold plasma waves

    International Nuclear Information System (INIS)

    Booker, H.G.

    1984-01-01

    The book aims to present current knowledge concerning the propagation of electromagnetic waves in a homogeneous magnetoplasma for which temperature effects are unimportant. It places roughly equal emphasis on the radio and the hydromagnetic parts of the electromagnetic spectrum. The dispersion properties of a magnetoplasma are treated as a function both of wave frequency (assumed real) and of ionization density. The effect of collisions is included only in so far as this can be done with simplicity. The book describes how pulses are radiated from both small and large antennas embedded in a homogeneous magnetoplasma. The power density radiated from a type of dipole antenna is studied as a function of direction of radiation in all bands of wave frequency. Input reactance is not treated, but the dependence of radiation resistance on wave frequency is described for the entire electromagnetic spectrum. Also described is the relation between beaming and guidance for Alfven waves. (Auth.)

  10. Waves in plasmas (part 1 - wave-plasma interaction general background)

    International Nuclear Information System (INIS)

    Dumont, R.

    2004-01-01

    This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)

  11. Alfven Waves in Gyrokinetic Plasmas

    International Nuclear Information System (INIS)

    Lee, W.W.; Qin, H.

    2003-01-01

    A brief comparison of the properties of Alfven waves that are based on the gyrokinetic description with those derived from the MHD equations is presented. The critical differences between these two approaches are the treatment of the ion polarization effects. As such, the compressional Alfven waves in a gyrokinetic plasma can be eliminated through frequency ordering, whereas geometric simplifications are needed to decouple the shear Alfven waves from the compressional Alfven waves within the context of MHD. Theoretical and numerical procedures of using gyrokinetic particle simulation for studying microturbulence and kinetic-MHD physics including finite Larmor radius effects are also presented

  12. Time variations of hf induced plasma waves

    International Nuclear Information System (INIS)

    Showen, R.L.

    1976-01-01

    Intense plasma waves are generated by an HF pump wave in an ionospheric heating experiment at the Arecibo Observatory. These plasma waves can be observed as enhancements to the ion and plasma lines of the incoherent backscatter echo. The enhancements can be three or four orders of magnitude more intense than the unenhanced lines, and tend to fluctuate wildly. Both the purely growing and the decay mode parametric instabilities are present. When the pump wave is turned on abruptly the enhancements develop in time in a repeatable manner. A rather remarkable feature on time scales of seconds is an overshoot in instability power. These overshoots occur frequently but not universally and last for 1 to 6 seconds. They can have a magnitude from ten to hundreds of times the average instability level. Field aligned irregularities may be the cause of the overshoots. The overshoots appear definitely related to an unusually rapid rise in measured electron temperature that cannot be understood in terms of ohmic energy deposition. On time scales of milliseconds there is a ''mini-overshoot'' before the growth of the instability to a large value. The spectral details also change in a striking manner. The instabilities can first be detected 2 to 4 msec after the pump wave turn-on. The decay mode is present as well as a broad featureless ''noise bump'', which partially sharpens into a line as time progresses. These changes of the spectra in time seem to run counter to the currently accepted theories of plasma wave saturation

  13. Effects of multiple scatter on the propagation and absorption of electromagnetic waves in a field-aligned-striated cold magneto-plasma: implications for ionospheric modification experiments

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  14. Analysis of Waves in Space Plasma (WISP) near field simulation and experiment

    Science.gov (United States)

    Richie, James E.

    1992-01-01

    The WISP payload scheduler for a 1995 space transportation system (shuttle flight) will include a large power transmitter on board at a wide range of frequencies. The levels of electromagnetic interference/electromagnetic compatibility (EMI/EMC) must be addressed to insure the safety of the shuttle crew. This report is concerned with the simulation and experimental verification of EMI/EMC for the WISP payload in the shuttle cargo bay. The simulations have been carried out using the method of moments for both thin wires and patches to stimulate closed solids. Data obtained from simulation is compared with experimental results. An investigation of the accuracy of the modeling approach is also included. The report begins with a description of the WISP experiment. A description of the model used to simulate the cargo bay follows. The results of the simulation are compared to experimental data on the input impedance of the WISP antenna with the cargo bay present. A discussion of the methods used to verify the accuracy of the model is shown to illustrate appropriate methods for obtaining this information. Finally, suggestions for future work are provided.

  15. Plasma production from helicon waves

    International Nuclear Information System (INIS)

    Degeling, A.W.; Jung, C.O.; Boswell, R.W.; Ellingboe, A.R.

    1996-01-01

    Experimental measurements taken in a large magnetoplasma show that a simple double half-turn antenna will excite m=1 helicon waves with wavelengths from 10 endash 60 cm. Increased ionization in the center of the downstream plasma is measured when the axial wavelength of the helicon wave becomes less than the characteristic length of the system, typically 50 endash 100 cm. A sharp maximum in the plasma density downstream from the source is measured for a magnetic field of 50 G, where the helicon wave phase velocity is about 3x10 8 cms -1 . Transport of energy away from the source to the downstream region must occur to create the hot electrons needed for the increased ionization. A simple model shows that electrons in a Maxwellian distribution most likely to ionize for these experimental conditions also have a velocity of around 3x10 8 cms -1 . This strong correlation suggests that the helicon wave is trapping electrons in the Maxwellian distribution with velocities somewhat slower than the wave and accelerating them into a quasibeam with velocity somewhat faster than the wave. The nonlinear increase in central density downstream as the power is increased for helicon waves with phase velocities close to the optimum electron velocity for ionization lends support to this idea. copyright 1996 American Institute of Physics

  16. Ionospheric plasma by VHF waves

    Indian Academy of Sciences (India)

    The amplitude scintillations of very high frequency electromagnetic wave ... Scintillations at low latitude are known to occur in discrete patches [5,6] and are part .... weakly ionized plasma with a density gradient and a relative drift of ions and ...

  17. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  18. Current-drive and plasma formation experiments on the Versator-II tokamak using lower-hybrid and electron-cyclotron waves

    International Nuclear Information System (INIS)

    Colborn, J.A.

    1992-01-01

    During lower-hybrid current-driven (LHCD) tokamak discharges with thermal electron temperature T e ∼ 150 eV, a two-parallel-temperature tail is observed in the electron distribution function. The cold tail extends to parallel energy E parallel ∼ 4.5 keV with temperature T cold tail ∼ 1.5 keV, and the hot tail extends to E parallel > 150 keV with T hot tail > 40 keV. Fokker-Planck computer simulations suggest the cold tail is created by low power, high-N parallel sidelobes in the lower-hybrid antenna spectrum, and that these sidelobes bridge the spectral gap, enabling current drive on small tokamaks such as Versator. During plasma-formation experiments using 28 GHz electroncyclotron (EC) waves, the plasma is born near the EC layer, then moves toward the upper-hybrid (UH) layer within 100-200μs. Wave power is detected in the plasma with frequency f = 300 MHz. Measured turbulent plasma fluctuations are correlated with decay-wave amplitude. Electron-cyclotron current-drive (ECCD) is observed with loop voltage V loop ≤ 0 and fully sustained plasma current I p approx-lt 15 kA at densities up to [n e ] = 2 x 10 12 cm -3 . The efficiency falls rapidly to zero as the density is raised, suggesting the ECCD depends on low collisonality. The EC waves enhance magnetic turbulence in the frequency range 50 kHz approx-lt f approx-lt 400 kHz by up to an order of magnitude. The time-of-arrival of the turbulence to probes at the plasma boundary is longer when the EC layer is farther from the probes

  19. On helicon wave induced radial plasma transport

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-04-01

    Estimates of helicon wave induced radial plasma transport are presented. The wave induced transport grows or decreases in dependence on the sign of the azimuthal wave number; these changes in transport may play an important role in helicon wave plasma sources. (author) 5 figs., 18 refs

  20. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  1. Kinetic theory of plasma waves: Part II homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2000-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  2. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2008-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  3. Electron waves and resonances in bounded plasmas

    CERN Document Server

    Vandenplas, Paul E

    1968-01-01

    General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.

  4. X-ray measurements during plasma current start-up experiments using the lower hybrid wave on the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Wakatsuki, Takuma; Ejiri, Akira; Kakuda, Hidetoshi

    2012-01-01

    Non-inductive plasma current start-up experiments using RF power in the lower hybrid frequency range is being conducted on the TST-2 spherical tokamak. Plasma currents of up to 15 kA have been achieved. The effect of direct current drive can be seen by comparing the cases with co-drive and counter-drive. X-rays in various energy ranges were measured to investigate the interaction between the wave and the electrons. Soft X-ray (SX) measurements revealed that the perpendicular SX emission increased significantly as the plasma current increased, and that the tangential SX emission in the direction of RF drive was enhanced more strongly in the co-drive case compared to the counter-drive case. These observations imply that the fast electrons accelerated by the lower hybrid wave contribute to the plasma current. However, RF amplitude modulation experiments showed that the confinement time of these fast electrons are very short (less than 0.05 ms), much shorter than the collisional slowing down time. Hard X-ray spectral measurements showed that the radiation temperature of fast electrons in the co-direction for current drive was higher than that in the counter-direction. These observations are consistent with the existence of RF-driven fast electrons. (author)

  5. Electron plasma waves in CO/sub 2/ laser plasma interactions

    International Nuclear Information System (INIS)

    Baldis, H.A.; Villeneuve, D.M.; Walsh, C.J.

    1984-01-01

    During the past few years, the use of Thomson scattering in CO/sub 2/ laser produced plasmas has permitted the identification and study of electron plasma waves and ion waves, driven by various instabilities in the plasma corona, such as Stimulated Raman Scattering (SRS), two plasmon decay, and Stimulated Brillouin Scattering (SBS). Since these instabilities may coexist in the plasma, the density fluctuations associated with one wave may influence the behaviour of one or more of the other instabilities. The authors discuss the experimental evidence of such effects and, in particular, the consequences of a recent experiment in which the ion waves driven by SBS were observed to adversely affect the production of the electron plasma waves driven by SRS. In that experiment, a strong correlation was observed between the onset of SBS and the disappearance of the electron plasma waves driven by SRS at low densities (n/sub e/ n/sub e/ > 0.05 n/sub c/)

  6. Waves in plasmas: some historical highlights

    International Nuclear Information System (INIS)

    Stix, T.H.

    1984-08-01

    To illustrate the development of some fundamental concepts in plasma waves, a number of experimental observations, going back over half a century, are reviewed. Particular attention is paid to the phenomena of dispersion, collisionfree damping, finite-Larmor-radius and cyclotron and cyclotron-harmonic effects, nonlocal response, and stochasticity. One may note not only the constructive interplay between observation and theory and experiment but also that major advances have come from each of the many disciplines that invoke plasma physics as a tool, including radio communication, astrophysics, controlled fusion, space physics, and basic research

  7. ECOLE POLYTECHNIQUE: Acceleration by plasma beat waves

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    An experiment by a multi-disciplinary team including laser, plasma, accelerator and particle detector specialists at the École Polytechnique, Palaiseau, France, has confirmed the principle of particle acceleration by the 'beating' of laser waves. The first accelerated electrons were detected in May 1994, just after the apparatus had been completely assembled, during the subsequent set of experiments in July, and again in January. In the continual quest for new acceleration methods, such ideas had been proposed for several decades, but it was only about ten years ago that experimental verification of these effects began. In existing accelerators using radiofrequency cavities the electric field is limited to some hundred megavolts per metre, beyond which breakdowns occur. The joint use of power lasers and plasmas, however, should make it possible to generate fields very much greater than a GV/m. The light wave fulfils the same purpose as radiofrequency and the material medium required to couple the electromagnetic energy to the particle beam is provided by the plasma which - already fully ionized - is not destroyed by a breakdown. In the wave-beating method, proposed in 1979 by Dawson and Tajima, two laser waves of adjacent frequencies are transmitted and produce 'beats'. If the frequency of these is equal to the natural oscillation frequency of the plasma electrons, there is resonant energy transfer. The resultant longitudinal electric field is propagated at slightly below the speed of light and may be used to accelerate particles injected into the plasma in the right phase

  8. Nonlinear waves in solar plasmas - a review

    International Nuclear Information System (INIS)

    Ballai, I

    2006-01-01

    Nonlinearity is a direct consequence of large scale dynamics in the solar plasmas. When nonlinear steepening of waves is balanced by dispersion, solitary waves are generated. In the vicinity of resonances, waves can steepen into nonlinear waves influencing the efficiency of energy deposition. Here we review recent theoretical breakthroughs that have lead to a greater understanding of many aspects of nonlinear waves arising in homogeneous and inhomogeneous solar plasmas

  9. Plasma waves observed by sounding rockets

    International Nuclear Information System (INIS)

    Kimura, I.

    1977-01-01

    Observations of plasma wave phenomena have been conducted with several rockets launched at Kagoshima Space Center, Kyushu, Japan, and at Showa Base, Antarctica. This report presents some results of the observations in anticipation of having valuable comments from other plasma physicists, especially from those who are concerned with laboratory plasma. In the K-9M-41 rocket experiment, VLF plasma waves were observed. In this experiment, the electron beam of several tens of uA was emitted from a hot cathode when a positive dc bias changing from 0 to 10V at 1V interval each second was applied to a receiving dipole antenna. The discrete emissions with 'U' shaped frequency spectrum were observed for the dc bias over 3 volts. The U emissions appeared twice per spin period of the rocket. Similar rocket experiment was performed at Showa Base using a loop and dipole antenna and without hot cathode. Emissions were observed with varying conditions. At present, the authors postulate that such emissions may be produced just in the vicinity of a rocket due to a kind of wake effect. (Aoki, K.)

  10. Millimetre waves and plasma physics

    International Nuclear Information System (INIS)

    Brand, G.F.

    1999-01-01

    Full text: This talk is a review of the plasma-related presentations at the 23rd International Conference on Infrared and Millimeter Waves held at the University of Essex, Colchester, UK 7-11 September 1998. Of most relevance to fusion is the development of high-power sources for electron cyclotron resonance heating and current drive. The requirements for ITER are a total of 50 MW at 170 GHz. The state of the art is illustrated by (a) high-power gyrotrons that deliver 1 MW for 1 s at 170 GHz, and (b) a free-electron maser that has generated millimetre waves for the first time, 730 kW at 200 GHz. A number of papers describe new technologies that allow high powers to be achieved; internal mode converters to convert the whispering-gallery mode generated in the gyrotron cavity into a gaussian beam, depressed collectors to raise the efficiency from 1/3 to better than 1/2, CVD diamond output windows and coaxial gyrotrons with improved mode purity. Other papers describe transmission lines and steerable mirrors. Several papers deal with millimetre-wave plasma diagnostics for fusion such as electron cyclotron emission measurements and reflectometry. (author)

  11. Plasma wave and second harmonic generation

    International Nuclear Information System (INIS)

    Sodha, M.S.; Sharma, J.K.; Tewari, D.P.; Sharma, R.P.; Kaushik, S.C.

    1978-01-01

    An investigation is made of a plasma wave at pump wave frequency and second harmonic generation caused by a self induced transverse inhomogeneity introduced by a Gaussian electromagnetic beam in a hot collisionless plasma. In the presence of a Gaussian beam the carriers get redistributed from the high field region to the low field region by ponderomative force and a transverse density gradient is established in the plasma. When the electric vector of the main beam is parallel to this density gradient, a plasma wave at the pump wave frequency is generated. In addition to this the transverse intensity gradient of the electromagnetic wave also contributes significantly to the plasma wave generation. The power of the plasma wave exhibits a maximum and minimum with the power of the pump wave (at z = 0). The generated plasma wave interacts with the electromagnetic wave and leads to the generation of a second harmonic. Furthermore, if the initial power of the pump wave is more than the critical power for self-focusing, the beam gets self-focused and hence the generated plasma wave and second harmonic which depend upon the background electron concentration and power of the main beam also get accordingly modified. (author)

  12. Magnetoacoustic waves in current-carrying plasmas

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1980-04-01

    The results of theoretical and experimental investigations of the characteristics of magnetoacoustic waves in non-uniform, current-carrying plasmas are reviewed. Dissipative MHD and collisionless theories are considered. Also discussed is the use of magnetoacoustic waves in plasma diagnostics and plasma heating

  13. Large amplitude waves and fields in plasmas

    International Nuclear Information System (INIS)

    Angelis, U. de; Naples Univ.

    1990-02-01

    In this review, based mostly on the results of the recent workshop on ''Large Amplitude Waves and Fields in Plasmas'' held at ICTP (Trieste, Italy) in May 1989 during the Spring College on Plasma Physics, I will mostly concentrate on underdense, cold, homogeneous plasmas, discussing some of the alternative (to fusion) uses of laser-plasma interaction. In Part I an outline of some basic non-linear processes is given, together with some recent experimental results. The processes are chosen because of their relevance to the applications or because new interesting developments have been reported at the ICTP workshop (or both). In Part II the excitation mechanisms and uses of large amplitude plasma waves are presented: these include phase-conjugation in plasmas, plasma based accelerators (beat-wave, plasma wake-field and laser wake-field), plasma lenses and plasma wigglers for Free Electron Lasers. (author)

  14. Scattering of electromagnetic waves into plasma oscillations via plasma particles

    International Nuclear Information System (INIS)

    Lin, A.T.; Dawson, J.M.

    1975-01-01

    A plasma subjected to an intense electromagnetic wave can exhibit a large number of parametric instabilities. An interesting example which has received little attention is the decay of the electromagnetic wave into a plasma oscillation with the excess energy and momentum being carried off by electrons. This process has been simulated on a one-and-two-halves dimensional electromagnetic code. The incident electromagnetic wave had a frequency near the plasma frequency so that decay into a plasma oscillation and a backscattered electromagnetic wave was excluded. As expected, the threshold for this instability was very large , so it is unlikely that this instability is competitive in most laser plasmas. Nevertheless, the physical mechanism involved provides a means for absorption of laser light and acceleration of particles in a plasma containing large amplitude plasma oscillations

  15. Fundamental plasma emission involving ion sound waves

    International Nuclear Information System (INIS)

    Cairns, I.H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L ± S → T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived. (author)

  16. Propagation of electromagnetic waves in a weakly ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Li, Hui; Wu, Jian; Pu, Shaozhi

    2015-01-01

    Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments. (paper)

  17. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  18. Gravitational wave experiments

    CERN Document Server

    Hamilton, W O

    1993-01-01

    There were three oral sessions and one poster session for Workshop C1 on Gravitational Wave Experiments. There was also an informal experimental roundtable held one after- noon. The first two oral sessions were devoted mainly to progress reports from various interferometric and bar detector groups. A total of 15 papers were presented in these two sessions. The third session of Workshop C1 was devoted primarily to theoretical and experimental investigations associated with the proposed interferometric detectors. Ten papers were presented in this session. In addition, there were a total of 13 papers presented in the poster session. There was some overlap between the presentations in the third oral session and the posters since only two of the serious posters were devoted to technology not pertinent to interferometers. In general, the papers showed the increasing maturity of the experimental aspects of the field since most presented the results of completed investigations rather than making promises of wonderf...

  19. Waves and oscillations in plasma crystals

    International Nuclear Information System (INIS)

    Piel, A; Homann, A; Klindworth, M; Melzer, A; Zafiu, C; Nosenko, V; Goree, J

    2003-01-01

    An overview of the properties of plasma crystals and clusters is given with emphasis on oscillations of particles in the plasma trap, instabilities associated with the solid-liquid phase transition and the propagation of waves. It is demonstrated how laser manipulation can be used to stimulate particle motion and waves. From characteristic resonance frequencies and from wave dispersion the particle charge and shielding length parameters, which determine the interparticle forces, can be quantitatively measured

  20. Numerical simulation of electrostatic waves in plasmas

    International Nuclear Information System (INIS)

    Erz, U.

    1981-08-01

    In this paper the propagation of electrostatic waves in plasmas and the non-linear interactions, which occur in the case of large wave amplitudes, are studied using a new numerical method for plasma simulation. This mathematical description is based on the Vlasov-model. Changes in the distribution-function are taken into account and thus plasma kinetic effects can be treated. (orig./HT) [de

  1. Shock waves in gas and plasma

    International Nuclear Information System (INIS)

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  2. Beat wave current drive experiment on DDT

    International Nuclear Information System (INIS)

    Hwang, D.Q.

    1991-03-01

    Several improvements have been made to the beat wave experiment this year. We are now able to vary the magnetic field over a much larger range, the plasma density is more uniform, and the electron temperature is significantly higher than last year (making it easier to couple energy from the electrostatic wave into the electron distribution). We have found evidence that at higher magnetic fields, ω ce /ω pe > 1, that numerous electrostatic modes are excited. This may be due to the fact that for a bounded plasma, ω pe is allowed (for small wave numbers). Although we are still not sure why the rvec k matching criteria (rvec k 0 = rvec k 1 + rvec k e ) is not more restrictive. A 35 GHz microwave scattering diagnostic has been designed, built, and tested in order to make a less perturbing measure of the electrostatic wave

  3. Wave-driven countercurrent plasma centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J; Fisch, Nathaniel J [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540 (United States)

    2009-11-15

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the {alpha} channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  4. Wave-driven countercurrent plasma centrifuge

    International Nuclear Information System (INIS)

    Fetterman, Abraham J; Fisch, Nathaniel J

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  5. Wave-driven Countercurrent Plasma Centrifuge

    International Nuclear Information System (INIS)

    Fetterman, A.J.; Fisch, N.J.

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided

  6. Wire Probe Antenna (WPT) and Electric Field Detector (EFD) of Plasma Wave Experiment (PWE) aboard the Arase satellite: specifications and initial evaluation results

    Science.gov (United States)

    Kasaba, Yasumasa; Ishisaka, Keigo; Kasahara, Yoshiya; Imachi, Tomohiko; Yagitani, Satoshi; Kojima, Hirotsugu; Matsuda, Shoya; Shoji, Masafumi; Kurita, Satoshi; Hori, Tomoaki; Shinbori, Atsuki; Teramoto, Mariko; Miyoshi, Yoshizumi; Nakagawa, Tomoko; Takahashi, Naoko; Nishimura, Yukitoshi; Matsuoka, Ayako; Kumamoto, Atsushi; Tsuchiya, Fuminori; Nomura, Reiko

    2017-12-01

    This paper summarizes the specifications and initial evaluation results of Wire Probe Antenna (WPT) and Electric Field Detector (EFD), the key components for the electric field measurement of the Plasma Wave Experiment (PWE) aboard the Arase (ERG) satellite. WPT consists of two pairs of dipole antennas with 31-m tip-to-tip length. Each antenna element has a spherical probe (60 mm diameter) at each end of the wire (15 m length). They are extended orthogonally in the spin plane of the spacecraft, which is roughly perpendicular to the Sun and enables to measure the electric field in the frequency range of DC to 10 MHz. This system is almost identical to the WPT of Plasma Wave Investigation aboard the BepiColombo Mercury Magnetospheric Orbiter, except for the material of the spherical probe (ERG: Al alloy, MMO: Ti alloy). EFD is a part of the EWO (EFD/WFC/OFA) receiver and measures the 2-ch electric field at a sampling rate of 512 Hz (dynamic range: ± 200 mV/m) and the 4-ch spacecraft potential at a sampling rate of 128 Hz (dynamic range: ± 100 V and ± 3 V/m), with the bias control capability of WPT. The electric field waveform provides (1) fundamental information about the plasma dynamics and accelerations and (2) the characteristics of MHD and ion waves in various magnetospheric statuses with the magnetic field measured by MGF and PWE-MSC. The spacecraft potential provides information on thermal electron plasma variations and structure combined with the electron density obtained from the upper hybrid resonance frequency provided by PWE-HFA. EFD has two data modes. The continuous (medium-mode) data are provided as (1) 2-ch waveforms at 64 Hz (in apoapsis mode, L > 4) or 256 Hz (in periapsis mode, L < 4), (2) 1-ch spectrum within 1-232 Hz with 1-s resolution, and (3) 4-ch spacecraft potential at 8 Hz. The burst (high-mode) data are intermittently obtained as (4) 2-ch waveforms at 512 Hz and (5) 4-ch spacecraft potential at 128 Hz and downloaded with the WFC

  7. Resonances and surface waves in bounded plasmas

    International Nuclear Information System (INIS)

    Bowers, K.J.; Qui, D.W.; Smith, H.B.; Birdsall, C.K.

    1999-01-01

    Surface waves provide a promising means of creating large, area plasmas. These waves can uniformly distribute the excitation energy and while presenting a small resistance and zero reactance to the driving source. Experimentally and in the simulations, the electron temperature is low (like 1--3 eV) as is the plasma potential (like 10 Te). The use of surface waves experimentally, and now industrially, to sustain large area plasma sources with device size is comparable to free space wavelength have motivated the authors to refine the theories of [1] and [2] to be fully electromagnetic. The wave dispersion predicted by the electromagnetic theory differs from the predictions of the prior theories and the results illuminate limitations of the electrostatic model. The use of surface waves have also motivated them to explore the mechanisms by which surface waves heat the plasma. In the 1d electrostatic simulations high velocity electron bunches are formed in the sheaths and are alternatively accelerated from each sheath into the bulk plasma each RF cycle. They speculate similar mechanisms provide the ionization in surface wave discharges. They also see in these simulations the plasma makes an abrupt transition from capacitively coupled to resistively coupled and the series resonance locks onto the drive frequency; these abrupt transitions resemble mode-jumping seen experimentally in large area sources. Furthermore, the density profile of the plasma tracks the drive frequency while in the resonant mode giving a new mechanism by which the plasma parameters can be controlled. They are currently investigating the effect of the driving electrode shape has on these resonances and conducting 2d simulations of a large area surface wave source to explore the ignition of surface wave devices and how the plasma fills in the device

  8. Properties of ELF electromagnetic waves in and above the earth's ionosphere deduced from plasma wave experiments on the OV1-17 and Ogo 6 satellites

    International Nuclear Information System (INIS)

    Kelley, M.C.; Tsurutani, B.T.; Mozer, F.S.

    1975-01-01

    An analysis of ac electric field data obtained on board the OV1-17 satellite and ac magnetic field data obtained on board the Ogo 6 satellite has been made during the northern hemisphere spring and summer of 1969 with the purpose of studying extreme low frequency (ELF) electromagnetic waves above the earth's ionosphere. The results are in basic agreement with a number of previous ground-based and low-altitude satellite experiments in that the peak signal was observed at high latitudes outside the statistical location of the plasmapause on the day side of the earth, that ELF chorus was very often observed in conjunction with the steady ELF hiss emissions, that the winter hemisphere signal was considerably smaller than that observed in summer or in equinoctial months, and that the emission strength and region of occurrence are asymmetric about magnetic noon. Observations of such strong hiss signals outside the plasmasphere are somewhat surprising in light of Ogo 3 and Ogo 5 measurements which show steady ELF hiss to be closely confined to the plasmasphere at high altitudes during normal circumstances. The present study supports the hypothesis that hiss leaks out of the plasmasphere and refracts downward into the lower ionosphere; such a model predicts the observed summer-winter asymmetry and the poleward skewing of the ELF peak signal strength with decreasing altitude

  9. Evolution Of Nonlinear Waves in Compressing Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Dodin, I.Y.; Fisch, N.J.

    2011-01-01

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size Δ during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches Δ. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  10. Evolution Of Nonlinear Waves in Compressing Plasma

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit, I.Y. Dodin, and N.J. Fisch

    2011-05-27

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  11. Harmonic surface wave propagation in plasma

    International Nuclear Information System (INIS)

    Shivarova, A.; Stoychev, T.

    1980-01-01

    Second order harmonic surface waves generated by one fundamental high-frequency surface wave are investigated experimentally in gas discharge plasma. Two types of harmonic waves of equal frequency, associated with the linear dispersion relation and the synchronism conditions relatively propagate. The experimental conditions and the different space damping rates of the waves ensure the existence of different spatial regions (consecutively arranged along the plasma column) of a dominant propagation of each one of these two waves. Experimental data are obtained both for the wavenumbers and the space damping rates by relatively precise methods for wave investigations such as the methods of time-space diagrams and of phase shift measurements. The results are explained by the theoretical model for nonlinear mixing of dispersive waves. (author)

  12. Radiation from nonlinear coupling of plasma waves

    International Nuclear Information System (INIS)

    Fung, S.F.

    1986-01-01

    The author examines the generation of electromagnetic radiation by nonlinear resonant interactions of plasma waves in a cold, uniformly magnetized plasma. In particular, he considers the up-conversion of two electrostatic wave packets colliding to produce high frequency electromagnetic radiation. Efficient conversion of electrostatic to electromagnetic wave energy occurs when the pump amplitudes approach and exceed the pump depletion threshold. Results from the inverse scattering transform analysis of the three-wave interaction equations are applied. When the wave packets are initially separated, the fully nonlinear set of coupling equations, which describe the evolution of the wave packets, can be reduced to three separate eigenvalue problems; each can be considered as a scattering problem, analogous to eh Schroedinger equation. In the scattering space, the wave packet profiles act as the scattering potentials. When the wavepacket areas approach (or exceed) π/2, the wave functions are localized (bound states) and the scattering potentials are said to contain solitons. Exchange of solitons occurs during the interaction. The transfer of solitons from the pump waves to the electromagnetic wave leads to pump depletion and the production of strong radiation. The emission of radio waves is considered by the coupling of two upper-hybrid branch wave packets, and an upper-hybrid and a lower hybrid branch wave packet

  13. Surge of plasma waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Benhassine, Mohammed

    1985-01-01

    The first part of this research thesis addresses the propagation of waves in a plasma. It presents the equation of propagation of an electromagnetic wave in a plasma without magnetic field, and analyses the propagation in an inhomogeneous medium. The second part addresses the wave-particle interaction: interaction between electrons and an electromagnetic wave, between electrons and an electrostatic wave (trapping), and between electrons and a localised electric field. The third chapter presents the analytic theory of oscillations of a cold plasma (macroscopic equations in Lagrangian coordinates, analytic solution before surge). The next chapter discusses physical interpretations before the wave surge, after the wave surge, and about energy exchange (within or outside of resonance). Numerical simulations and their results are then reported and discussed. The sixth chapter addresses the case of an electrostatic wave surge in a hot plasma. It notably addresses the following aspects: equivalence between the description of moments and the Waterbag model, interaction between non linearity and thermal effects, variation of electric field amplitude with temperature. Results of numerical simulations are presented, and the last part addresses experimental predictions for microwaves-plasma interaction and laser-matter interaction [fr

  14. Experimental works in plasma developed in INPE (Brazil). 1. Double plasma machine for longitudinal wave study. 2. Plasma centrifuge

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Ludwig, G.O.; Del Bosco, E.

    1982-01-01

    This work describes some experiments done at the Plasma Physics Laboratory at INPE. In the first part, the double plasma machine used for the study of ion acoustic wave propagation is described, and the results obtained so far are shown. The second part consists in the description of a plasma centrifuge project. It contains some basic parameters of our apparatus used for isotope separation, throuth electromagtnetic rotation of the plasma. (Author) [pt

  15. Fast wave evanescence in filamentary boundary plasmas

    International Nuclear Information System (INIS)

    Myra, J. R.

    2014-01-01

    Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed

  16. Quasi-electrostatic waves in dusty plasma

    International Nuclear Information System (INIS)

    Das, A.C.; Goswami, K.S.; Misra, A.K.

    1997-01-01

    Low frequency quasi-electrostatic waves in cold dusty plasma are investigated taking account of liberation and absorption of electrons and ions by the dust and their momentum transfer mechanism. (author)

  17. Wire Probe Antenna (WPT) and Electric Field Detector (EFD0 of Plasma Wave Experiment (PWE) aboard ARASE: Specifications and Evaluation results

    Science.gov (United States)

    Matsuda, S.; Kasaba, Y.; Ishisaka, K.; Kasahara, Y.; Imachi, T.; Yagitani, S.; Kojima, H.; Kurita, S.; Shoji, M.; Hori, T.; Shinbori, A.; Teramoto, M.; Miyoshi, Y.; Nakagawa, T.; Takahashi, N.; Nishimura, Y.; Matsuoka, A.; Tsuchiya, F.; Kumamoto, A.; Nomura, R.

    2017-12-01

    This paper summarizes the specifications and the evaluation results of Wire Probe Antenna (WPT) and Electric Field Detector (EFD), which are the key parts of Plasma Wave Experiment (PWE) aboard the Arase satellite, in their initial operations and the beginning phase of the full observations. WPT consists of the two dipole antennas as electric field sensors with 32m tip-to-tip length, with a sphere probe (6 cm diameter) attached at each end of wires (length: 15-m). They are extended orthogonally in the spin plane which is roughly perpendicular to the Sun. It enables the PWE to measure the E-field from DC to 10 MHz. This system is almost compatible to the WPT of the Plasma Wave Investigation (PWI) aboard BepiColombo Mercury Magnetospheric Orbiter, except the material of the spherical probe (ERG: Aluminium alloy, MMO: Titanium-alloy). This paper shows the extended length evaluated by the Lorentz force (spacecraft velocity x B-field) and the antenna impedance as the basic information of the E-field measurement capability of the PWE E-field receivers, with the evaluation for the possible degradation of the probe surface coated by TiAlN as BepiColombo. EFD is the 2-channel low frequency electric receiver as a part of EWO (EFD/WFC/OFA), for the measurement of 2ch electric field in the spin-plane with the sampling rate of 512 Hz (dynamic range: +-200 mV/m, +-3 V/m) and the 4ch spacecraft potential with the sampling rate of 128 Hz (dynamic range: +-100 V), respectively, with the bias control capability fed to the WPT probes. The electric field in DC - 232Hz provides the capability to detect (1) the fundamental information of the plasma dynamics and accelerations and (2) the characteristics of MHD and ion waves with their Poynting vectors with the data measured by MGF and PWE/WFC-B connected to PWE/SCM. The spacecraft potential provides the electron density information with UHR frequency. This paper also introduces the data sets and their calibration status.

  18. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  19. Electromagnetic wave in a relativistic magnetized plasma

    International Nuclear Information System (INIS)

    Krasovitskiy, V. B.

    2009-01-01

    Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.

  20. Drift waves in a weakly ionized plasma

    DEFF Research Database (Denmark)

    Popovic, M.; Melchior, H.

    1968-01-01

    A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....

  1. Creating an anisotropic plasma resistivity with waves

    International Nuclear Information System (INIS)

    Fisch, N.J.; Boozer, A.H.

    1980-05-01

    An anisotropic plasma resistivity may be created by preferential heating of electrons traveling in one direction. This can result in a steady-state toroidal current in a tokamak even in the absence of net wave momentum. In fact, at high wave phase velocities, the current associated with the change in resistivity is greater than that associated with net momentum input. An immediate implication is that other waves, such as electron cyclotron waves, may be competitive with lower-hybrid waves as a means for generating current. An analytical expression is derived for the current generated per power dissipated which agrees remarkably well with numerical calculations

  2. Radiation phenomena of plasma waves, 1

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro.

    1978-06-01

    The fundamental radiation theories on radiation phenomena of plasma waves are presented. As the fundamental concepts of propagating waves, phase, group and ray velocities are explained, and phase velocity surface, group velocity surface, ray velocity surface and refractive index surface are considered. These concepts are important in anisotropic plasma. Fundamental equations for electron plasma waves in a fluid model and fundamental equations for ion plasma waves can be expressed with the above mentioned concepts. Kuehl derived the formulas for general radiation fields of electromagnetic and electrostatic waves which are radiated from an arbitrary current source. Fundamental equations for kinetic model are the Vlasov equation and Maxwell equations. By investigating electromagnetic radiation in cold anisotropic plasma, Kuehl found the important behavior that the fields radiated from a source become very large in certain directions for some ranges of plasma parameters. The fact is the so-called high frequency resonance cone. A fundamental formula for quasi-static radiation from an oscillating point source in warm anisotropic plasma includes the near field of electromagnetic mode and the field of electrostatic mode, which are radiated from the source. This paper presents the formula in a generalized form. (Kato, T.)

  3. On solitary surface waves in cold plasmas

    International Nuclear Information System (INIS)

    Vladimirov, S.V.; Yu, M.Y.; Stenflo, L.

    1993-01-01

    A new type of nonlinear electromagnetic solitary surface waves propagating along the boundary of a cold plasma is discussed. These waves are described by a novel nonlinear evolution equation, obtained when the nonlinear surface currents at the boundary are taken into consideration. (Author)

  4. Plasma mechanizm for auroral kilometer wave radiation

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1989-01-01

    The linear mechanism of auroral kilometer radiation (AKR) on the Cherenkov resonance is developed. The point is that plasma waves swinged by the electron beam in a dimer auroral plasma cavern on the Cherenkov resonance excercise 100% transformation under conventional and inconventional AKR modes under definite conditions

  5. Gabor Wave Packet Method to Solve Plasma Wave Equations

    International Nuclear Information System (INIS)

    Pletzer, A.; Phillips, C.K.; Smithe, D.N.

    2003-01-01

    A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach

  6. BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas

    Science.gov (United States)

    Porkolab, Miklos

    1998-11-01

    The linear theory of plasma waves in homogeneous plasma is arguably the most mature and best understood branch of plasma physics. Given the recently revised version of Stix's excellent Waves in Plasmas (1992), one might ask whether another book on this subject is necessary only a few years later. The answer lies in the scope of this volume; it is somewhat more detailed in certain topics than, and complementary in many fusion research relevant areas to, Stix's book. (I am restricting these comments to the homogeneous plasma theory only, since the author promises a second volume on wave propagation in inhomogeneous plasmas.) This book is also much more of a theorist's approach to waves in plasmas, with the aim of developing the subject within the logical framework of kinetic theory. This may indeed be pleasing to the expert and to the specialist, but may be too difficult to the graduate student as an `introduction' to the subject (which the author explicitly states in the Preface). On the other hand, it may be entirely appropriate for a second course on plasma waves, after the student has mastered fluid theory and an introductory kinetic treatment of waves in a hot magnetized `Vlasov' plasma. For teaching purposes, my personal preference is to review the cold plasma wave treatment using the unified Stix formalism and notation (which the author wisely adopts in the present book, but only in Chapter 5). Such an approach allows one to deal with CMA diagrams early on, as well as to provide a framework to discuss electromagnetic wave propagation and accessibility in inhomogeneous plasmas (for which the cold plasma wave treatment is perfectly adequate). Such an approach does lack some of the rigour, however, that the author achieves with the present approach. As the author correctly shows, the fluid theory treatment of waves follows logically from kinetic theory in the cold plasma limit. I only question the pedagogical value of this approach. Otherwise, I welcome this

  7. Weakly nonlinear electron plasma waves in collisional plasmas

    DEFF Research Database (Denmark)

    Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.

    1986-01-01

    The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...

  8. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2016-06-15

    Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

  9. Saturation of Langmuir waves in laser-produced plasmas

    International Nuclear Information System (INIS)

    Baker, K.L.

    1996-04-01

    This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser

  10. Nonlinear wavenumber of an electron plasma wave

    International Nuclear Information System (INIS)

    Vidmar, P.J.; Malmberg, J.H.; Starke, T.P.

    1976-01-01

    The wavenumber of a large-amplitude electron plasma wave propagating on a collisionless plasma column is measured. The wavenumber is shifted from that of a small-amplitude wave of the same frequency. This nonlinear wavenumber shift, deltak/subr/, depends on position, frequency, and initial wave amplitude, Phi. The observed spatial oscillations of deltak/subr/ agree qualitatively with recent theories. Experimentally deltak/subr/proportionalk/subi/S (Phi) rootPhi where k/subi/ is the linear Landau damping coefficient, S (Phi) equivalentk/subi/(Phi)/k/subi/, and k/subi/(Phi) is the initial damping coefficient which depends on Phi

  11. Guided propagation of Alfven waves in a toroidal plasma

    International Nuclear Information System (INIS)

    Borg, G.G.; Brennan, M.H.; Cross, R.C.; Giannone, L.; Donnelly, I.J.

    1985-01-01

    Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed. (author)

  12. Guided propagation of Alfven waves in a toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Borg, G G; Brennan, M H; Cross, R C; Giannone, L.; Donnelly, I J

    1985-10-01

    Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed.

  13. A laser plasma beatwave accelerator experiment

    International Nuclear Information System (INIS)

    Ebrahim, N.A.

    1987-03-01

    An experiment to test the laser plasma beatware accelerator concept is outlined. A heuristic estimate of the relevant experimental parameters is obtained from fluid theory and considerations of wave-particle interactions. Acceleration of 10 MeV electrons to approximately 70 MeV over a plasma length of 3 cm appears to be feasible. This corresponds to an accelerating gradient of approximately 2.5 GeV/m

  14. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1985-01-01

    The propagation of submillimeter-waves (smm) in tokamak plasmas has been investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses have been carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system has been employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes have been developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements

  15. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1986-01-01

    Propagation of submillimeter waves (smm) in tokamak plasma was investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses were carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system was employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes were developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements. 5 references, 2 figures

  16. Nonlinear extraordinary wave in dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)

    2013-10-15

    Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.

  17. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-11-01

    Electron Acoustic Waves (EAW) are the low frequency branch of electrostatic plasma waves. These waves exist in neutralized plasmas, pure electron plasmas and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing mθ= 0 mz= 1 EAWs in a pure ion plasma column. At small amplitude, the EAWs have a phase velocity vph ˜1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v vph diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.

  18. Twisted electron-acoustic waves in plasmas

    International Nuclear Information System (INIS)

    Aman-ur-Rehman; Ali, S.; Khan, S. A.; Shahzad, K.

    2016-01-01

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q_e_f_f accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  19. Wave propagation in plasma-filled wave-guide

    International Nuclear Information System (INIS)

    Leprince, Philippe

    1966-01-01

    This research thesis reports the study of wave propagation along a plasma column without external magnetic field. The author first present and comment various theoretical results, and dispersion curves plotted for the main modes (particularly, the bipolar mode). He tries to define fundamental magnitudes which characterise a plasma-filled wave-guide. He reports the comparison of some experimental results with the previous theoretical results. Based on the study of the bipolar mode, the author develops a method of measurement of plasma column density. In the last part, the author reports the study of the resonance of a plasma-containing cavity. Several resonances are highlighted and new dispersion curves are plotted by using a varying length cavity. He also addresses the coupling of plasma modes with guide modes, and thus indicates the shape of Brillouin diagrams for a plasma-filled wave-guide. Moreover, some phenomena highlighted during plasma column density measurements by using the cavity method could then be explained [fr

  20. Quiescent plasma machine for beam-plasma interaction and wave studies

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1994-01-01

    A quiescent double plasma machine for beam-plasma interaction wave studies is described. A detailed description of several plasma diagnostics used for plasma and wave excitation detection is given. A beam-plasma wave dispersion relation is used to compare theoretical values with the experimentally measured Langmuir wave frequencies and wavelengths. (author). 14 refs, 10 figs

  1. Nonlinear waves in plasma with negative ion

    International Nuclear Information System (INIS)

    Saito, Maki; Watanabe, Shinsuke; Tanaca, Hiroshi.

    1984-01-01

    The propagation of nonlinear ion wave is investigated theoretically in a plasma with electron, positive ion and negative ion. The ion wave of long wavelength is described by a modified K-dV equation instead of a K-dV equation when the nonlinear coefficient of the K-dV equation vanishes at the critical density of negative ion. In the vicinity of the critical density, the ion wave is described by a coupled K-dV and modified K-dV equation. The transition from a compressional soliton to a rarefactive soliton and vice versa are examined by the coupled equation as a function of the negative ion density. The ion wave of short wavelength is described by a nonlinear Schroedinger equation. In the plasma with a negative ion, the nonlinear coefficient of the nonlinear Schroedinger equation changes the sign and the ion wave becomes modulationally unstable. (author)

  2. Stochastic growth of localized plasma waves

    International Nuclear Information System (INIS)

    Robinson, P.A.; Cairns, Iver H.

    2001-01-01

    Localized bursty plasma waves are detected by spacecraft in many space plasmas. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the system, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it far longer than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. These mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing and power-law distributed in strong turbulence. Recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type III solar radio sources, the Earth's foreshock, magnetosheath, and polar cap regions. It is shown that when combined with wave-wave processes, SGT also accounts for associated radio emissions

  3. Additional heating experiments of FRC plasmas

    International Nuclear Information System (INIS)

    Okada, S.; Asai, T.; Kodera, F.; Kitano, K.; Suzuki, T.; Yamanaka, K.; Kanki, T.; Inomoto, M.; Yoshimura, S.; Okubo, M.; Sugimoto, S.; Ohi, S.; Goto, S.

    2001-01-01

    Additional heating experiments of neutral beam (NB) injection and application of low frequency wave on a plasma with extremely high averaged beta value of about 90% - a field reversed configuration (FRC) plasma - are carried out on the FRC Injection experiment (FIX) apparatus. These experiments are made possible by translating the FRC plasma produced in a formation region of a theta pinch to a confinement region in order to secure better accessibility to heating facilities and to control plasma density. By appropriate choice of injection geometry and the mirror ratio of the confinement region, the NB with the energy of 14keV and the current of 23A is enabled to be injected into the FRC in the solenoidal confining field of only 0.04-0.05T. Confinement is improved by this experiment. Ion heating is observed by the application of low frequency (80kHz ; about 1/4 of the ion gyro frequency) compressional wave. A shear wave, probably mode converted from the compressional wave, is detected to propagate axially. (author)

  4. Use of plasma waves to create in Tokamaks quasi-stationary conditions required for controlled fusion

    International Nuclear Information System (INIS)

    Moreau, D.

    1993-04-01

    In this thesis are studied the coupling of hybrid waves to the plasma, multijunction antennas, hybrid wave stochastic propagation, fast wave current drive and lower-hybrid current drive experiments in Tore Supra and Jet. The possibility of decoupling current density profile and temperature give one more degree of freedom for the control of plasma in a configuration which is not very flexible

  5. Arbitrary electron acoustic waves in degenerate dense plasmas

    Science.gov (United States)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  6. Interrelated experiments in laboratory and space plasmas

    International Nuclear Information System (INIS)

    Koepke, M. E.

    2005-01-01

    Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modelling and/or laboratory experiments. Here are discussed advances for which laboratory experiments played an important role. How the interpretation of the space plasma data was influenced by one or more laboratory experiments is described. The space-motivation of laboratory investigations and the scaling of laboratory plasma parameters to space plasma conditions are discussed. Examples demonstrating how laboratory experiments develop physical insight, benchmark theoretical models, discover unexpected behaviour, establish observational signatures, and pioneer diagnostic methods for the space community are presented. The various device configurations found in space-related laboratory investigations are outlined. A primary objective of this review is to articulate the overlapping scientific issues that are addressable in space and lab experiments. A secondary objective is to convey the wide range of laboratory and space plasma experiments involved in this interdisciplinary alliance. The interrelation ship between plasma experiments in the laboratory and in space has a long history, with numerous demonstrations of the benefits afforded the space community by laboratory results. An experiment's suitability and limitations for investigating space processes can be quantitatively established using dimensionless parameters. Even with a partial match of these parameters, aspects of waves, instabilities, nonlinearities, particle transport, reconnection, and hydrodynamics are addressable in a way useful to observers and modelers of space phenomena. Because diagnostic access to space plasmas, laboratory-experimentalists awareness of space phenomena, and efforts by theorists and funding agencies to help scientists bridge the gap between the space and laboratory communities are increasing, the range of laboratory and space plasma experiments with overlapping scientific

  7. Studies on Charge Variation and Waves in Dusty Plasmas

    Science.gov (United States)

    Kausik, Siddhartha Sankar

    Plasma and dust grains are both ubiquitous ingredients of the universe. The interplay between them has opened up a new and fascinating research domain, that of dusty plasmas, which contain macroscopic particles of solid matter besides the usual plasma constituents. The research in dusty plasmas received a major boost in the early eighties with Voyager spacecraft observation on the formation of Saturn rings. Dusty plasmas are defined as partially or fully-ionized gases that contain micron-sized particles of electrically charged solid material, either dielectric or conducting. The physics of dusty plasmas has recently been studied intensively because of its importance for a number of applications in space and laboratory plasmas. This thesis presents the experimental studies on charge variation and waves in dusty plasmas. The experimental observations are carried out in two different experimental devices. Three different sets of experiments are carried out in two different experimental devices. Three different sets of experiments are carried out to study the dust charge variation in a filament discharge argon plasma. The dust grains used in these experiments are grains of silver. In another get of experiment, dust acoustic waves are studied in a de glow discharge argon plasma. Alumina dust grains are sprinkled in this experiment. The diagnostic tools used in these experiments are Langmuir probe and Faraday cup. The instruments used in these experiments are electrometer, He-Ne laser and charge coupled device (CCD) camera. Langmuir probe is used to measure plasma parameters, while Faraday cup and electrometer are used to measure very low current (~pA) carried by a collimated dust beam. He-Ne laser illuminates the dust grains and CCD camera is used to capture the images of dust acoustic waves. Silver dust grains are produced in the dust chamber by gas-evaporation technique. Due to differential pressure maintained between the dust and plasma chambers, the dust grains move

  8. Mode coupling of electron plasma waves

    International Nuclear Information System (INIS)

    Harte, J.A.

    1975-01-01

    The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta 2 /sub ko/k lambda/sub De/ less than 1 where eta 2 /sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at ω/sub ek/, the Bohn Gross frequency, and at Ω/sub k/, the ion acoustic frequency, subject to the damping rates ν/sub ek/ and ν/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, ω/sub pe/ the plasma frequency

  9. Particle acceleration by plasma waves

    International Nuclear Information System (INIS)

    Joshi, C.

    2006-01-01

    In an advanced particle accelerator particles are driven near by light velocity through ionized gas. Such plasma devices are compact, cost efficient and usable in many fields. Examples are given in detail. (GL)

  10. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.

  11. On the design of experiments for the study of extreme field limits in the ultra-relativistic interaction of electromagnetic waves with plasmas

    Science.gov (United States)

    Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg

    2011-06-01

    The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.

  12. Plasma heating by kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S. de.

    1982-01-01

    The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt

  13. Langmuir wave dispersion relation in non-Maxwellian plasmas

    International Nuclear Information System (INIS)

    Ouazene, M.; Annou, R.

    2010-01-01

    The Langmuir wave dispersion relation is derived in partially ionized plasmas, where free electrons are confined to move in a nearest neighbor ions' potential well. The equilibrium velocity distribution function experiences then, a departure from Maxwell distribution function. The effect of the non-Maxwellian character of the distribution function on the Langmuir phase and group velocities as well as the phase matching conditions and the nonlinear growth rate of decay instability is investigated. The proposed Langmuir wave dispersion relation is relevant to dense and cryogenic plasmas.

  14. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  15. Introduction to wave heating and current drive in magnetized plasmas

    International Nuclear Information System (INIS)

    Pinsker, R. I.

    2001-01-01

    The development of high-power wave heating and current drive in magnetized plasmas in the last 40 years is a major ongoing success story in plasma science. A hallmark of this area of research has been the detailed quantitative comparison of theory and experiment; the good agreement consistently found is indicative of the robustness and the predictive power of the underlying theory. This tutorial paper is a brief overview of the fundamental concepts and applications of this branch of plasma science. Most of the high-power applications have been in three frequency regimes: the ion cyclotron range of frequencies (ICRF), the lower hybrid range of frequencies (LHRF), and the electron cyclotron range of frequencies (ECRF). The basic physics of wave propagation and damping in these regimes is briefly discussed. Some of the coupling structures (antennas) used to excite the waves at the plasma boundary are described, and the high-power systems used to generate the wave energy are touched on. Representative examples of the remarkably wide range of applications of high-power wave heating and current drive in high-temperature fusion plasmas will be discussed

  16. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  17. Alfven wave absorption in dissipative plasma

    International Nuclear Information System (INIS)

    Gavrikov, M B; Taiurskii, A A

    2017-01-01

    We consider nonlinear absorption of Alfven waves due to dissipative effects in plasma and relaxation of temperatures of electrons and ions. This study is based on an exact solution of the equations of two-fluid electromagnetic hydrodynamics (EMHD) of plasma. It is shown that in order to study the decay of Alfven waves, it suffices to examine the behavior of their amplitudes whose evolution is described by a system of ordinary differential equations (ODEs) obtained in this paper. On finite time intervals, the system of equations on the amplitudes is studied numerically, while asymptotic integration (the Hartman-Grobman theorem) is used to examine its large-time behavior. (paper)

  18. Solitons and nonlinear waves in space plasmas

    International Nuclear Information System (INIS)

    Stasiewicz, K.

    2005-01-01

    Recent measurements made on the ESA/NASA Cluster mission to the Earth's magnetosphere have provided first detailed measurements of magnetosonic solitons in space. The solitons represent localized enhancements of the magnetic field by a factor of 2-10, or depressions down to 10% of the ambient field. The magnetic field signatures are associated with density depressions/enhancements A two-fluid model of nonlinear electron and ion inertial waves in anisotropic plasmas explains the main properties of these structures. It is shown that warm plasmas support four types of nonlinear waves, which correspond to four linear modes: Alfvenic, magnetosonic, sound, and electron inertial waves. Each of these nonlinear modes has slow and fast versions. It is shown by direct integration that the exponential growth rate of nonlinear modes is balanced by the ion and electron dispersion leading to solutions in the form of trains of solitons or cnoidal waves. By using a novel technique of phase portraits it is shown how the dispersive properties of electron and ion inertial waves change at the transition between warm and hot plasmas, and how trains of solitons ('' mirror modes '') are produced in a hot, anisotropic plasma. The applicability of the model is illustrated with data from Cluster spacecraft. (author)

  19. Stationary quenching wave in magnetized plasma

    International Nuclear Information System (INIS)

    Alikhanov, S.G.; Glushkov, I.S.

    1976-01-01

    The interaction of a magnetized hot plasma (ωsub(e)tau sub(e)>>1) with cold plasma or a gas leads to the appearanci of a cooling wave. The transition layer between hot and cold plasma is the main source of radiation losses which should be compensated by a heat flow from the hot region. A stationary state is considered, equations are written in the system in which temperature and magnetic field profiles are steady, and the plasma flux with magnetic field passes through the cooling wave. Calculations, have been carried out on a computer. The dependence of the magnetized plasma flux velocity Vsub(r) on the ratio p/Hsub(r) is shown, where p is the pressure, Hsub(r) is the magnetic field in the hot reqion. The dependence of the characteristic dimension of the cooling wave on the magnetic field is determined for the hot plasma region. A considerable fraction of the rediation losses is shown to fall to the region of (ωsub(e)tausub(e)< or approximately)1

  20. Properties of waves in an ion-beam plasma system

    International Nuclear Information System (INIS)

    Zank, G.P.; McKenzie, J.F.

    1988-01-01

    A multi-fluid approach is used to describe electrostatic interactions in an ion-beam plasma system. The structure of the wave equation governing the system exhibits the anisotropic and dispersive nature of the waves, whose properties are analysed in terms of the dispersion relation. The main purpose is to classify the different waves that can arise in an ion-beam plasma system in a systematic fashion. The classification is facilitated by introducing a three-parameter CMA diagram that illustrates the topological changes in not only the wavenumber, or refractive-index, surface but also the ray-velocity surface. Furthermore, an analytic expression governing wave amplification in an ion beam plasma is incorporated within the framework of a generalized CMA diagram. Such a description provides a simple interpretation for the onset of wave amplification in terms of a topological change in the refractive-index surface. It is hoped that by collating the wave properties in a unified form, many of the complicated wave features observed in an experiment may be interpreted more easily. (author)

  1. The Potential for Ambient Plasma Wave Propulsion

    Science.gov (United States)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  2. Wave-particle Interactions in Space and Laboratory Plasmas

    Science.gov (United States)

    An, Xin

    This dissertation presents a study of wave-particle interactions in space and in the laboratory. To be concrete, the excitation of whistler-mode chorus waves in space and in the laboratory is studied in the first part. The relaxation of whistler anisotropy instability relevant to whistler-mode chorus waves in space is examined. Using a linear growth rate analysis and kinetic particle-in-cell simulations, the electron distributions are demonstrated to be well-constrained by the whistler anisotropy instability to a marginal-stability state, consistent with measurements by Van Allen Probes. The electron parallel beta beta ∥e separates the excited whistler waves into two groups: (i) quasi-parallel whistler waves for beta∥e > 0.02 and (ii) oblique whistler waves close to the resonance cone for beta∥e cell simulations. Motivated by the puzzles of chorus waves in space and by their recognized importance, the excitation of whistler-mode chorus waves is studied in the Large Plasma Device by the injection of a helical electron beam into a cold plasma. Incoherent broadband whistler waves similar to magnetospheric hiss are observed in the laboratory plasma. Their mode structures are identified by the phase-correlation technique. It is demonstrated that the waves are excited through a combination of Landau resonance, cyclotron resonance and anomalous cyclotron resonance. To account for the finite size effect of the electron beam, linear unstable eigenmodes of whistler waves are calculated by matching the eigenmode solution at the boundary. It is shown that the perpendicular wave number inside the beam is quantized due to the constraint imposed by the boundary condition. Darwin particle-in-cell simulations are carried out to study the simultaneous excitation of Langmuir and whistler waves in a beam-plasma system. The electron beam is first slowed down and relaxed by the rapidly growing Langmuir wave parallel to the background magnetic field. The tail of the core electrons

  3. Counterstreaming magnetized plasmas. II. Perpendicular wave propagation

    International Nuclear Information System (INIS)

    Tautz, R.C.; Schlickeiser, R.

    2006-01-01

    The properties of longitudinal and transverse oscillations in magnetized symmetric counterstreaming Maxwellian plasmas with equal thermal velocities for waves propagating perpendicular to the stream direction are investigated on the basis of Maxwell equations and the nonrelativistic Vlasov equation. With the constraint of vanishing particle flux in the stream direction, three distinct dispersion relations are known, which are the ordinary-wave mode, the Bernstein wave mode, and the extraordinary electromagnetic wave mode, where the latter two are only approximations. In this article, all three dispersion relations are evaluated for a counterstreaming Maxwellian distribution function in terms of the hypergeometric function 2 F 2 . The growth rates for the ordinary-wave mode are compared to earlier results by Bornatici and Lee [Phys. Fluids 13, 3007 (1970)], who derived approximate results, whereas in this article the exact dispersion relation is solved numerically. The original results are therefore improved and show differences of up to 21% to the results obtained in this article

  4. Bulk plasma rotation in the presence of waves in the ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Eriksson, L.G.; Noterdaeme, J.M.; Kirov, K.

    2003-01-01

    Experiments with directed ICRF waves have for the first time in JET demonstrated the influence of absorbed wave momentum on bulk plasma rotation. Resonating fast ions acted as an intermediary in this process, and the experiments therefore provided evidence for the effect of fast ions on the plasma rotation. Results from these experiments are reviewed together with results from ICRF heated plasmas with symmetric spectra in JET and Tore Supra. The relevance of different theoretical models is briefly considered. (author)

  5. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  6. Waves in inhomogeneous plasma of cylindrical geometry

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1966-01-01

    The conductivity tensor of a hot and inhomogeneous plasma has been calculated for a cylindrical geometry using Vlasov equations. The method used consists in a perturbation method involving the first integrals of the unperturbed movement. The conductivity tensor will be particularly useful for dealing with stability problems. In the case of a cold plasma the wave equation giving the electric fields as a function of the radius is obtained. This equation shows the existence of resonant layers which lead to an absorption analogous to the Landau absorption in a hot plasma. (author) [fr

  7. Solitons and Weakly Nonlinear Waves in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1985-01-01

    Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...

  8. The influence of multiple ion species on Alfven wave dispersion and Alfven wave plasma heating

    International Nuclear Information System (INIS)

    Elfimov, A.G.; Tataronis, J.A.; Hershkowitz, N.

    1994-01-01

    In this paper, the effects of light impurities, such as deuterium, helium, or carbon, on Alfven wave dispersion characteristics are explored. It is shown that a small population of light impurities in a hydrogen plasma modify the dispersion of the global Alfven waves and the Alfven continuum in such a way that the wave frequency depends weakly on the toroidal wave number. It is also shown that the global Alfven wave enters into the Alfven continuum. Under these conditions, it is possible to heat plasma efficiently by employing an antenna with a broad toroidal wavelength spectrum. The relationship between impurity concentration and the efficiency of Alfven wave heating is explored. Under appropriate conditions, the results indicate that in the presence of impurities, Alfven waves can heat electrons predominantly in the central part of the plasma. This effect is explored via a series of numerical calculations of the heating specifically for the Phaedrus-T Alfven wave heating experiment [Phys. Fluids B 5, 2506 (1993)

  9. Ion Acceleration in Plasmas with Alfven Waves

    International Nuclear Information System (INIS)

    Kolesnychenko, O.Ya.; Lutsenko, V.V.; White, R.B.

    2005-01-01

    Effects of elliptically polarized Alfven waves on thermal ions are investigated. Both regular oscillations and stochastic motion of the particles are observed. It is found that during regular oscillations the energy of the thermal ions can reach magnitudes well exceeding the plasma temperature, the effect being largest in low-beta plasmas (beta is the ratio of the plasma pressure to the magnetic field pressure). Conditions of a low stochasticity threshold are obtained. It is shown that stochasticity can arise even for waves propagating along the magnetic field provided that the frequency spectrum is non-monochromatic. The analysis carried out is based on equations derived by using a Lagrangian formalism. A code solving these equations is developed. Steady-state perturbations and perturbations with the amplitude slowly varying in time are considered

  10. Stochastic growth of localized plasma waves

    International Nuclear Information System (INIS)

    Robinson, P.A.; Cairns, I.H.

    2000-01-01

    Full text: Localized bursty plasma waves occur in many natural systems, where they are detected by spacecraft. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the wave-driver interaction, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; observed bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it for much longer times and distances than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. Growth mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing, power-law distributed in strong turbulence, and uniformly distributed in log under secular growth. After delineating stochastic growth and strong-turbulence regimes, recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type II and III solar radio sources, foreshock regions upstream of the bow shocks of Earth and planets, and Earth's magnetosheath, auroras, and polar-caps. It is shown that when combined with wave-wave processes, SGT accounts for type II and III solar radio emissions. SGT thus removes longstanding problems in understanding persistent unstable distributions, bursty fields, and radio emissions observed in space

  11. Experimental measurements of Helicon wave coupling in KSTAR plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Wi, H. H.; Wang, S. J.; Park, S. Y.; Jeong, J. H.; Han, J. W.; Kwak, J. G.; Oh, Y. K. [National Fusion Research Institute, Daejeon (Korea, Republic of); Chun, M. H.; Yu, I. H. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2016-05-15

    KSTAR tokamak can be a good platform to test this current drive concept because it has adequate machine parameters. Furthermore, KSTAR will have high electron beta plasmas in near future with additional ECH power. In 2015 KSTAR experiments, low-power traveling wave antenna has been designed, fabricated and installed for helicon wave coupling tests in KSTAT plasmas. In 2016 KSTAR campaign, 200 kW klystron power will be combined using three coaxial hybrid couplers and three dummy loads. High power RF will be fed into the traveling wave antenna with two coaxial feeders through two dual disk windows and 6 inch coaxial transmission line system. Current status and plan for high power helicon wave current drive system in KSTAR will be presented. Mock-up TWA antenna installed at the KSTAR reveals high couplings in both L- and H-mode plasmas. The coupling can be easily controlled by radial outer gap without degradation of plasma confinement or local gas puffing with slight decrease of plasma confinement.

  12. Nonlinear modulation of ion acoustic waves in a magnetized plasma

    International Nuclear Information System (INIS)

    Bharuthram, R.; Shukla, P.K.

    1987-01-01

    The quasistatic plasma slow response to coherent ion acoustic waves in a magnetized plasma is considered. A multidimensional cubic nonlinear Schroedinger equation is derived. It is found that the ion acoustic waves remain modulationally stable against oblique perturbations

  13. Electromagnetic Wave Attenuation in Atmospheric Pressure Plasma

    International Nuclear Information System (INIS)

    Zhang Shu; Hu Xiwei; Liu Minghai; Luo Fang; Feng Zelong

    2007-01-01

    When an electromagnetic (EM) wave propagates in an atmospheric pressure plasma (APP) layer, its attenuation depends on the APP parameters such as the layer width, the electron density and its profile and collision frequency between electrons and neutrals. This paper proposes that a combined parameter-the product of the line average electron density n-bar and width d of the APP layer (i.e., the total number of electrons in a unit volume along the wave propagation path) can play a more explicit and decisive role in the wave attenuation than any of the above individual parameters does. The attenuation of the EM wave via the product of n-bar and d with various collision frequencies between electrons and neutrals is presented

  14. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  15. Suitability of tunneling ionization produced plasmas for the plasma beat wave accelerator

    International Nuclear Information System (INIS)

    Leeman, W.P.; Clayton, C.E.; Marsh, K.A.; Dyson, A.; Joshi, C.

    1991-01-01

    Tunneling ionization can be thought of as the high intensity, low frequency limit of multi-photon ionization (MPI). Extremely uniform plasmas were produced by the latter process at Rutherford lab for beat wave excitation experiments using a 0.5 μm laser. Plasmas with 100% ionization were produced with densities exceeding 10 17 cm -3 . The experiment uses a CO 2 laser (I max ∼ 5 x 10 14 W/cm 2 ) which allows the formation of plasmas via the tunneling process. For the experiments the authors need plasmas with densities in the range of 5 to 10 x 10 16 cm -3 . Using Thomson scattering as a diagnostic they have explored the density and temperature regime of tunneling ionization produced plasmas. They find that plasmas with densities up to 10 16 cm -3 can indeed be produced and that these plasmas are hot. Beyond this density strong refraction of laser radiation occurs due to the radial profile of the plasma. Implications of this work to the Beat Wave Accelerator program will be discussed

  16. Wave function of free electron in a strong laser plasma

    International Nuclear Information System (INIS)

    Zhu Shitong; Shen Wenda; Guo Qizhi

    1993-01-01

    The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed

  17. Time domain phenomena of wave propagation in rapidly created plasma of periodic distribution

    International Nuclear Information System (INIS)

    Kuo, S P

    2007-01-01

    Theories, experiments and numerical simulations on the interaction of electromagnetic waves with rapidly created unmagnetized plasmas are presented. In the case that plasma is created uniformly, the frequency of a propagating electromagnetic wave is upshifted. An opposite propagation wave of the same frequency is also generated. In addition, a static current supporting a wiggler magnetic field is also produced in the plasma. When a spatially periodic structure is introduced to the rapidly created plasma, the theory and numerical simulation results show that both frequency-upshifted and downshifted waves are generated. If the plasma has a large but finite dimension in the incident wave propagation direction and is created rapidly rather than instantaneously, the frequency downshifted waves are found to be trapped by the plasma when the plasma frequency is larger than the wave frequency. The wave trapping results in accumulating the frequency-downshifted waves during the finite transient period of plasma creation. Indeed, in the experimental observations the frequency downshifted signals were detected repetitively with considerably enhanced spectral intensities, confirming the results of the numerical simulations. The missing of frequency upshifted signals in the experimental observations is explained by the modal field distributions in the periodic structure, indicating that the frequency upshifted modes experience heavier collisional damping of the plasma than the frequency downshifted modes

  18. Spheromak type plasma experiment apparatus

    International Nuclear Information System (INIS)

    Odagiri, Kiyoyuki; Miyauchi, Yasuyuki; Oomura, Hiroshi

    1985-01-01

    The fusion power reactor which is expected to be the most promising energy has been developed for several plasma confinement systems. Under these circumstances, Spheromak configuration has recently attracted attention because of its simple structure and efficient plasma confinement. This apparatus was ordered by the Engineering Department of University of Tokyo for basic studies of the Spheromak plasma confinement technologies. This forms Spheromak plasma according to the induction discharge system which injects this plasma with magnetic energy generated by a toroidal current in the plasma and discharges the current through the electrical feed through. Toroidal current is induced by the poloidal coil in the vessel. We worked together with the researchers of University of Tokyo to conduct experiments and confirmed the formation and confinement of Spheromak plasma in the initial test. (author)

  19. Nonlinear electrostatic solitary waves in electron-positron plasmas

    Science.gov (United States)

    Lazarus, I. J.; Bharuthram, R.; Moolla, S.; Singh, S. V.; Lakhina, G. S.

    2016-02-01

    The generation of nonlinear electrostatic solitary waves (ESWs) is explored in a magnetized four component two-temperature electron-positron plasma. Fluid theory is used to derive a set of nonlinear equations for the ESWs, which propagate obliquely to an external magnetic field. The electric field structures are examined for various plasma parameters and are shown to yield sinusoidal, sawtooth and bipolar waveforms. It is found that an increase in the densities of the electrons and positrons strengthen the nonlinearity while the periodicity and nonlinearity of the wave increases as the cool-to-hot temperature ratio increases. Our results could be useful in understanding nonlinear propagation of waves in astrophysical environments and related laboratory experiments.

  20. Wave propagation on a plasma media

    International Nuclear Information System (INIS)

    Torres-Silva, H.; Villarroel-Gonzalez, C.; Reggiani, N.; Sakanaka, P.H.

    1995-01-01

    Chiral-media and ferrite media have been studied over the last decade for many applications. Chiral-media have been examined as coating for reducing radar cross section, for antennas and arrays, for antenna radomes in waveguides and for microstrip substrate. Here, we examine a chiral-plasma medium, where the plasma part of the composite medium is non-reciprocal due to the external magnetic field, to find the general dispersion relation giving the ω against K behavior, vector phasor Helmholtz based equations are derived. We determine the modal eigenvalue properties in the chiral-plasma medium, which is doubly anisotropic. For the case of waves which propagate parallel to the magnetic field is a cold magnetized chiro-plasma. We compare our results with the typical results obtained for a cold plasma. Also we obtain the chiral-Faraday rotation which can be compared with the typical Faraday rotation for a pair of right-and left-handed circularly polarized waves. (author). 5 refs., 2 figs

  1. Three-wave interactions in a warm plasma

    International Nuclear Information System (INIS)

    Shivamoggi, B.K.

    1983-01-01

    The nonlinear resonance interactions between a Langmuir wave and two transverse electromagnetic waves (T-T-L) as well as between an ion-acoustic wave and two transverse electromagnetic waves (T-T-S) in a warm plasma are studied. It is shown that an incident transverse electromagnetic wave decays into another transverse electromagnetic wave and a Langmuir wave in a T-T-L wave-wave interaction as well as into another transverse electromagnetic wave and an ion-acoustic wave in a T-T-S wave-wave interaction. The growth rates of the daughter waves in the T-T-L wave-wave interaction are shown to be smaller than those of the daughter waves in the T-T-S wave-wave interaction. (M.F.W.)

  2. Electron Landau damping of ion Bernstein waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1998-01-01

    Absorption of ion Bernstein (IB) waves by electrons is investigated. These waves are excited by linear mode conversion in tokamak plasmas during fast wave (FW) heating and current drive experiments in the ion cyclotron range of frequencies. Near mode conversion, electromagnetic corrections to the local dispersion relation largely suppress electron Landau damping of these waves, which becomes important again, however, when their wavelength is comparable to the ion Larmor radius or shorter. The small Larmor radius wave equations solved by most numerical codes do not correctly describe the onset of electron Landau damping at very short wavelengths, and these codes, therefore, predict very little damping of IB waves, in contrast to what one would expect from the local dispersion relation. We present a heuristic, but quantitatively accurate, model which allows account to be taken of electron Landau damping of IB waves in such codes, without affecting the damping of the compressional wave or the efficiency of mode conversion. The possibilities and limitations of this approach are discussed on the basis of a few examples, obtained by implementing this model in the toroidal axisymmetric full wave code TORIC. (author)

  3. Theory of longitudinal plasma waves with allowance for ion mobility

    International Nuclear Information System (INIS)

    Kichigin, G.N.

    2003-01-01

    One studies propagation of stationary longitudinal plasma wave of high amplitude in collisionless cold plasma with regard to motion of electrons and ions in a wave. One derived dependences of amplitudes of electric field, potential, frequency and length of wave on the speed of wave propagation and on the parameter equal to the ration of ion mass to electron mass. Account of motion of ions in the wave with maximum possible amplitude resulted in nonmonotone dependence of frequency on wave speed [ru

  4. Waves in plasmas: Highlights from the past and present

    International Nuclear Information System (INIS)

    Stix, T.H.

    1990-03-01

    To illustrate the development of some fundamental concepts in plasma waves, a number of experimental observations, going back over half a century, are reviewed. Particular attention is paid to the phenomena of dispersion, collisionfree damping, ray trajectories, amplitude transport, plasma wave echos, finite-Larmor-radius and cyclotron and cyclotron-harmonic effects, nonlocal response, and mode conversion. Also to the straight, trajectory approximation and two-level phase mixing. And to quasilinear diffusion and its relation to radiofrequency heating, current drive and induced neoclassical transport, and to stochasticity and superadiabaticity. One notes not only the constructive interplay between experiment and theory but also that major advances have come from each of the many disciplines that invoke plasma physics as a tool, including radio communication, astrophysics, controlled fusion, space physics, and basic research. 47 refs., 33 figs

  5. Experimental high power plasma-filled backward wave oscillator results

    International Nuclear Information System (INIS)

    Minami, K.; Lou, W.R.; Destler, W.W.; Kehs, R.A.; Granatstein, V.L.; Carmel, Y.

    1988-01-01

    Previous results have indicated that a background gas can be used to increase the output microwave power of relativistic backward wave oscillators (BWOs) two or three times the vacuum case. In their experiments, two methods of plasma production are investigated in detail: the use of the electron beam to ionize a background gas, and the use of a plasma gun to inject a background plasma into the slow-wave structure of a BWO. It is found in the first case that there was a resonant increase in microwave power at a particular pressure of the background gas by a factor of ten. In the second case, power also increased compared with power production in vacuum. Detailed results are presented and the relative merits of the two approaches is discussed and compared with theoretical expectations

  6. Beat-wave generation of plasmons in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1995-08-01

    It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap seimconductors (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas

  7. Beat-wave generation of plasmons in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1995-08-01

    It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap semiconductor (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas. (author). 7 refs

  8. The study of waves, instabilities, and turbulence using Thomson scattering in laser plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1995-01-01

    Much basic work in plasma physics has been devoted to the study of wave properties in plasmas, one of the nonlinear development of driven waves, and of the instabilities in which such waves may participate. The use of laser-plasma techniques has allowed one to extend such studies into new regimes. Such techniques and their results are the subject here. Once one chooses a physical problem within this subject area, it is now possible to design a laser-plasma experiment that is optimized for the study of that problem. The plasma can be designed to have a variety of density and flow-velocity profiles, the damping of ion acoustic waves and of electron plasma waves can be independently controlled, and the waves can be driven weakly or strongly. By using Nd-glass lasers and their harmonics one can non-invasively drive and diagnose the waves, using separate laser beams to produce the plasma, drive the waves, and diagnose their properties. The author uses as examples some recent work with his collaborators, including the first experimental detection of ion plasma waves and the first direct observation of the plasma wave driven by the acoustic decay of laser light

  9. Linear wave propagation in a hot axisymmetric toroidal plasma

    International Nuclear Information System (INIS)

    Jaun, A.

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell's equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models' resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs

  10. Linear wave propagation in a hot axisymmetric toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaun, A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell`s equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models` resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs.

  11. Dust confinement and dust acoustic waves in a magnetized plasma

    Science.gov (United States)

    Piel, A.

    2005-10-01

    Systematic laboratory experiments on dust acoustic waves require the confinement of dust particles. Here we report on new experiments in a magnetized plasma region in front of an additional positively biased disk electrode in a background plasma which is generated in argon at 27MHz between a disk and grid electrode. The plasma diffuses through the grid along the magnetic field. The three-dimensional dust distribution is measured with a horizontal sheet of laser light and a CCD camera, which are mounted on a vertical translation stage. Depending on magnetic field and discharge current, cigar or donut-shaped dust clouds are generated, which tend to rotate about the magnetic field direction. Measurements with emissive probes show that the axial confinement of dust particles with diameters between 0.7-2 μm is achieved by a balance of ion-drag force and electric field force. Dust levitation and radial confinement is due to a strong radial electric field. Dust acoustic waves are destabilized by the ion flow or can be stimulated by a periodic bias on the disk electrode. The observed wave dispersion is compared with fluid and kinetic models of the dust acoustic wave.

  12. Chaotic waves in Hall thruster plasma

    International Nuclear Information System (INIS)

    Peradzynski, Zbigniew; Barral, S.; Kurzyna, J.; Makowski, K.; Dudeck, M.

    2006-01-01

    The set of hyperbolic equations of the fluid model describing the acceleration of plasma in a Hall thruster is analyzed. The characteristic feature of the flow is the existence of a trapped characteristic; i.e. there exists a characteristic line, which never intersects the boundary of the flow region in the thruster. To study the propagation of short wave perturbations, the approach of geometrical optics (like WKB) can be applied. This can be done in a linear as well as in a nonlinear version. The nonlinear version describes the waves of small but finite amplitude. As a result of such an approach one obtains so called transport equation, which are governing the wave amplitude. Due to the existence of trapped characteristics this transport equation appears to have chaotic (turbulent) solutions in both, linear and nonlinear versions

  13. 2XIIB plasma confinement experiments

    International Nuclear Information System (INIS)

    Coensgen, F.H.; Clauser, J.F.; Correll, D.L.

    1976-01-01

    This paper reports results of 2XIIB neutral-beam injection experiments with plasma-stream stabilization. The plasma stream is provided either by a pulsed plasma generator located on the field lines outside the plasma region or by ionization of neutral gas introduced at the mirror throat. In the latter case, the gas is ionized by the normal particle flux through the magnetic mirror. A method of plasma startup and sustenance in a steady-state magnetic field is reported in which the plasma stream from the pulsed plasma generator serves as the initial target for the neutral beams. After an energetic plasma of sufficient density is established, the plasma generator stream is replaced by the gas-fed stream. Lifetimes of the stabilized plasma increase with plasma temperature in agreement with the plasma stabilization of the drift-cyclotron loss-cone mode. The following plasma parameters are attained using the pulsed plasma generator for stabilization: n approximately 5 x 10 13 cm -3 , anti W/sub i/ approximately 13 keV, T/sub e/ = 140 eV, and ntau/sub p/ approximately 7 x 10 10 cm -3 .s. With the gas feed, the mean deuterium ion energy is 9 keV and the peak density n approximately 10 14 cm -3 . In the latter case, the energy confinement parameter reaches ntau/sub E/ = 7 x 10 10 cm -3 .s, and the particle confinement parameter reaches ntau/sub p/ = 1 x 10 11 cm -3 .s

  14. Direct measurement of the plasma response to electrostatic ion waves

    International Nuclear Information System (INIS)

    Sarfaty, M.; DeSouza-Machado, S.; Skiff, F.

    1995-01-01

    Plasma wave-wave and wave-particle interactions are studied in a linear magnetized plasma. The relatively quiet plasma is produced by an argon gas-discharge. The plasma density is n e ≅ 10 9 cm -3 and the electron/ion temperatures are T e ≅ 5eV and T i = 0.05eV. A grid and a four ring antenna, both mounted on a scanning carriage, are used to launch electrostatic ion waves in the plasma. Laser Induced Fluorescence measurements of both the linear and the nonlinear plasma response to the wave fields are presented. The Vlasov-Poisson equations are used to explain the measured zero, first and second order terms of the ion distribution function in the presence of wave fields. In addition to the broadening (heating) of the ion distribution as the authors increase the wave amplitudes, induced plasma flows are observed both along and across the magnetic field

  15. Laser plasma simulations of the generation processes of Alfven and collisionless shock waves in space plasma

    International Nuclear Information System (INIS)

    Prokopov, P A; Zakharov, Yu P; Tishchenko, V N; Shaikhislamov, I F; Boyarintsev, E L; Melekhov, A V; Ponomarenko, A G; Posukh, V G; Terekhin, V A

    2016-01-01

    Generation of Alfven waves propagating along external magnetic field B 0 and Collisionless Shock Waves propagating across B 0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field E φ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field B φ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B 0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number M A ∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*10 13 cm -3 is observed. At the same conditions but smaller M A ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B 0 ∼100÷500 G for a distance of ∼2.5 m is studied. (paper)

  16. WHAMP - waves in homogeneous, anisotropic, multicomponent plasmas

    International Nuclear Information System (INIS)

    Roennmark, K.

    1982-06-01

    In this report, a computer program which solves the dispersion relation of waves in a magnetized plasma is described. The dielectric tensor is derived using the kinetic theory of homogeneous plasmas with Maxwellian velocity distribution. Up to six different plasma components can be included in this version of the program, and each component is specified by its density, temperature, particle mass, anisotropy and drift velocity along the magnetic field. The program is thus applicable to a very wide class of plasmas, and the method should in general be useful whenever a homogeneous magnetized plasma can be approximated by a linear combination of Maxwellian components. The general theory underlying the program is outlined. It is shown that by introducing a Pade approximant for the plasma dispersion function Z, the infinite sums of modified Bessel functions which appear in the dielectric tensor may be reduced to a summable form. The Pade approximant is derived and the accuracy of the approximation is also discussed. The subroutines making up the program are described. (Author)

  17. Collisional damping rates for plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Tigik, S. F., E-mail: sabrina.tigik@ufrgs.br; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul (Brazil); Yoon, P. H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2016-06-15

    The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic (“Spitzer”) formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.

  18. Electromagnetic wave propagation in relativistic magnetized plasmas

    International Nuclear Information System (INIS)

    Weiss, I.

    1985-01-01

    An improved mathematical technique and a new code for deriving the conductivity tensor for collisionless plasmas have been developed. The method is applicable to a very general case, including both hot (relativistic) and cold magnetized plasmas, with only isotropic equilibrium distributions being considered here. The usual derivation starts from the relativistic Vlasov equation and leads to an integration over an infinite sum of Bessel functions which has to be done numerically. In the new solution the integration is carried out over a product of two Bessel functions only. This reduces the computing time very significantly. An added advantage over existing codes is our capability to perform the computations for waves propagating obliquely to the magnetic field. Both improvements greatly facilitate investigations of properties of the plasma under conditions hitherto unexplored

  19. Nonlinear radiation of waves at combination frequencies due to radiation-surface wave interaction in plasmas

    International Nuclear Information System (INIS)

    El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1992-09-01

    Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs

  20. Experimental evidences of modulational instability of Langmuir waves excited by an electron beam in a plasma

    International Nuclear Information System (INIS)

    Karfidov, D.M.; Alves, M.V.; Prado, F. do; Ueda, M.

    1993-01-01

    The results obtained in a beam plasma interaction experiment are reported. The experiment and the wave energy growth and saturation are governed by kinetic effects. The estimation of the maximum wave energy due to the warm beam quasi-linear diffusion process gives W r ≥ (κ o λ D ) 2 , indicating that the modulational instability can be the responsible mechanism for the suppression of the beam plasma instability observed in the experiment. (author)

  1. Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice

    Science.gov (United States)

    Matlis, Eric; Corke, Thomas; Hoffman, Anthony

    2017-11-01

    Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.

  2. 2D full wave simulation on electromagnetic wave propagation in toroidal plasma

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi

    2002-01-01

    Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)

  3. Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas

    Science.gov (United States)

    Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1997-01-01

    We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.

  4. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    International Nuclear Information System (INIS)

    Podder, Nirmol K.

    2009-01-01

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  5. Nonlinear plasma wave models in 3D fluid simulations of laser-plasma interaction

    Science.gov (United States)

    Chapman, Thomas; Berger, Richard; Arrighi, Bill; Langer, Steve; Banks, Jeffrey; Brunner, Stephan

    2017-10-01

    Simulations of laser-plasma interaction (LPI) in inertial confinement fusion (ICF) conditions require multi-mm spatial scales due to the typical laser beam size and durations of order 100 ps in order for numerical laser reflectivities to converge. To be computationally achievable, these scales necessitate a fluid-like treatment of light and plasma waves with a spatial grid size on the order of the light wave length. Plasma waves experience many nonlinear phenomena not naturally described by a fluid treatment, such as frequency shifts induced by trapping, a nonlinear (typically suppressed) Landau damping, and mode couplings leading to instabilities that can cause the plasma wave to decay rapidly. These processes affect the onset and saturation of stimulated Raman and Brillouin scattering, and are of direct interest to the modeling and prediction of deleterious LPI in ICF. It is not currently computationally feasible to simulate these Debye length-scale phenomena in 3D across experimental scales. Analytically-derived and/or numerically benchmarked models of processes occurring at scales finer than the fluid simulation grid offer a path forward. We demonstrate the impact of a range of kinetic processes on plasma reflectivity via models included in the LPI simulation code pF3D. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Plasma production for electron acceleration by resonant plasma wave

    International Nuclear Information System (INIS)

    Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G.P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-01-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  7. Plasma production for electron acceleration by resonant plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M.P., E-mail: maria.pia.anania@lnf.infn.it [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome Tor Vergata - INFN, via della Ricerca Scientifica, 1, 00133 Roma (Italy); INFN, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Croia, M.; Curcio, A. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Di Giovenale, D.; Di Pirro, G.P. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Filippi, F. [University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Romeo, S. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ferrario, M. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy)

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  8. Lage-area planar RF plasma productions by surface waves

    International Nuclear Information System (INIS)

    Nonaka, S.

    1994-01-01

    Large-area rf plasmas are confirmed to be produced by means of RF discharges inside a large-area dielectric tube. The plasma space is 73 cm x 176 cm and 2.5 cm. The plasma is thought to be produced by an odd plasma-surface wave (PSW ο ) in case of using large-area electrodes and by an even plasma-surface wave (PSW ο ) in case of without the electrodes. (author). 7 refs, 4 figs

  9. Nonlinear interaction of the surface waves at a plasma boundary

    International Nuclear Information System (INIS)

    Dolgopolov, V.V.; El-Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1976-01-01

    Amplitudes of electromagnetic waves with combination frequencies, radiating from the plasma boundary due to nonlinear interaction of the surface waves, have been found. Previous papers on this subject did not take into account that the tangential components of the electric field of waves with combination frequencies were discontinuous at the plasma boundary. (Auth.)

  10. Rarefaction Shock Waves in Collisionless Plasma with Electronic Beam

    OpenAIRE

    Gurovich, Victor Ts.; Fel, Leonid G.

    2011-01-01

    We show that an electronic beam passing through the collisionless plasma of the "cold" ions and the "hot" Boltzmann electrons can give rise to the propagation of the supersonic ion-acoustic rarefaction shock waves. These waves are analogous to those predicted by Zeldovich [5] in gasodynamics and complementary to the ion-acoustic compression shock waves in collisionless plasma described by Sagdeev [3].

  11. Electron cyclotron waves, transport and instabilities in hot plasmas

    International Nuclear Information System (INIS)

    Westerhof, E.

    1987-01-01

    A number of topics relevant to the magnetic confinement approach to the thermonuclear fusion is addressed. The absorption and emission of electron cyclotron waves in a thermal plasma with a small population of supra-thermal, streaming electrons is examined and the properties of electron cyclotron waves in a plasma with a pure loss-cone distribution are studied. A report is given on the 1-D transport code simulations that were performed to assist the interpretation of the electron cyclotron heating experiments on the TFR tokamak. Transport code simulations of sawteeth discharges in the T-10 tokamak are discussed in order to compare the predictions of different models for the sawtooth oscillations with the experimental findings. 149 refs.; 69 figs.; 7 tabs

  12. Studies on the propagation of relativistic plasma waves in high density plasmas produced by hypersonic ionizing shock waves

    International Nuclear Information System (INIS)

    Williams, R.L.; Johnson, J.A. III

    1993-01-01

    The feasibility of using an ionizing shock wave to produce high density plasmas suitable for the propagation large amplitude relativistic plasma waves is being investigated. A 20 kv arc driven shock tube of coaxial geometry produces a hypersonic shock wave (10 p > 10 17 cm -3 ). The shock can be made to reflect off the end of the tube, collide with its wake, and thus increase the plasma density further. After reflecting, the plasma is at rest. The shock speed is measured using piezoelectric pressure probes and the ion density is measured using laser induced fluorescence (LIF) techniques on argon 488.0 nm and 422.8 nm lines. The future plans are to excite large amplitude relativistic plasma waves in this plasma by either injecting a short pulse laser (Laser Wake Field Scheme), two beating lasers (Plasma Beat Wave Scheme), or a short bunch of relativistic electrons (Plasma Wake Field Scheme). Results of recent computational and theoretical studies, as well as initial experimental measurements on the plasma using LIF, are reported. Implications for the application of high density plasmas produced in this way to such novel schemes as the plasma wave accelerator, photon accelerator, plasma wave undulator, and also plasma lens, are discussed. The effect of plasma turbulence is also discussed

  13. Electromagnetic solitary waves in magnetized plasmas

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Holm, D.D.; Morrison, P.J.

    1985-03-01

    A Hamiltonian formulation, in terms of noncanonical Poisson bracket, is presented for a nonlinear fluid system that includes reduced magnetohydrodynamics and the Hasegawa-Mima equation as limiting cases. The single-helicity and axisymmetric versions possess three nonlinear Casimir invariants, from which a generalized potential can be constructed. Variation of the generalized potential yields a description of exact nonlinear stationary states. The new equilibria, allowing for plasma flow as well as partial electron adiabaticity, are distinct from those found in conventional magnetohydrodynamic theory. They differ from electrostatic stationary states in containing plasma current and magnetic field excitation. One class of steady-state solutions is shown to provide a simple electromagnetic generalization of drift-solitary waves

  14. Nonlinear plasma waves excited near resonance

    International Nuclear Information System (INIS)

    Cohen, B.I.; Kaufman, A.N.

    1977-01-01

    The nonlinear resonant response of a uniform plasma to an external plane-wave field is formulated in terms of the mismatch Δ/sub n l/ between the driving frequency and the time-dependent, complex, nonlinear normal mode frequency at the driving wavenumber. This formalism is applied to computer simulations of this process, yielding a deduced nonlinear frequency shift. The time dependence of the nonlinear phenomena, at frequency Δ/sub n l/ and at the bounce frequency of the resonant particles, is analyzed. The interdependence of the nonlinear features is described by means of energy and momentum relations

  15. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  16. Plasma waves in hot relativistic beam-plasma systems: Pt. 1

    International Nuclear Information System (INIS)

    Magneville, A.

    1990-01-01

    Dispersion relations of plasma waves in a beam-plasma system are computed in the general case where the plasma and beam temperatures, and the velocity of the beam, may be relativistic. The two asymptotic temperature cases, and different contributions of plasma or beam particles to wave dispersion are considered. (author)

  17. Plasma Waves Associated with Mass-Loaded Comets

    Science.gov (United States)

    Tsurutani, Bruce; Glassmeier, Karl-Heinz

    2015-01-01

    Plasma waves and instabilities are integrally involved with the plasma "pickup" process and the mass loading of the solar wind (thus the formation of ion tails and the magnetic tails). Anisotropic plasmas generated by solar wind-comet interactions (the bow shock, magnetic field pileup) cause the generation of plasma waves which in turn "smooth out" these discontinuities. The plasma waves evolve and form plasma turbulence. Comets are perhaps the best "laboratories" to study waves and turbulence because over time (and distance) one can identify the waves and their evolution. We will argue that comets in some ways are better laboratories than magnetospheres, interplanetary space and fusion devices to study nonlinear waves and their evolution.

  18. Plasma wave excitation by intense microwave transmission from a space vehicle

    Science.gov (United States)

    Kimura, I.; Matsumoto, H.; Kaya, N.; Miyatake, S.

    An impact of intense microwave upon the ionospheric plasma was empirically investigated by an active rocket experiment (MINIX). The rocket carried two high-power (830W) transmitters of 2.45 GHz microwave on the mother section of the rocket. The ionospheric plasma response to the intense microwave was measured by a diagnostic package installed on both mother and daughter sections. The daughter section was separated from the mother with a slow speed of 15 cm/sec. The plasma wave analyzers revealed that various plasma waves are nonlinearly excited by the microwave. Among them, the most intense are electron cyclotron waves, followed by electron plasma waves. Extremely low frequency waves (several tens of Hz) are also found. The results of the data analysis as well as comparative computer simulations are given in this paper.

  19. Waves and instabilities in noneutral plasmas

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1989-01-01

    This paper presents a survey of the equilibrium, stability and collective oscillation properties of magnetically-confined nonneutral plasmas. Emphasis is placed on summarizing several of the technical advances that have occurred in both theory and experiment since the early 1970's. 97 refs., 26 figs

  20. Applications of nanosecond, kilojoule lasers to the basic physics of waves in plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1992-01-01

    Plasmas can sustain many normal modes of oscillation (waves), including both electromagnetic and electrostatic modes. These waves can interact by a wide variety of linear and nonlinear mechanisms, including mode coupling, mixing, and instabilities. Furthermore, such mechanisms compete, so that a given wave might be absorbed, might mode convert, or might decay by one of several instabilities, depending upon the specific circumstances in which it is produced. Moreover, such waves are important in many applications, including for example laser fusion, x-ray lasers, plasma accelerators, and ionospheric heating. Laser-produced plasmas can provide an effective medium for the studies of such waves and the related mechanisms. New opportunities will be made possible by the advent of comparatively inexpensive nanosecond, kilojoule lasers. One can now contemplate affordable experiments, not limited by programmatic constraints, that could study such the basic physics of the waves in such plasmas with unprecedented precision and in unprecedented detail

  1. RFP plasma experiment at INPE

    International Nuclear Information System (INIS)

    Ueda, M.; Aso, Y.

    1988-01-01

    Plasma experiments in CECI, a small Reversed Field Pinch (RFP) apparatus, are described. Preliminary measurements in this device shown the production of a plasma with peak current of 1.3kA and discharge duration of nearly 80μs, when a toroidal DC field of 100G was used. A loop voltage of 40V was measured and a maximum electron temperature of 3eV was estimated for these discharges. Experimental points in the F-θ diagram for CECI indicate that its plasma is approaching the RFP configuration when the discharge is optimize. The probe data also show that the plasma column expands outward. Numerical results indicate that leakage fields have to be reduced below 5G to form appropriate magnetic surfaces. (author) [pt

  2. Linear and Nonlinear Electrostatic Waves in Unmagnetized Dusty Plasmas

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2010-01-01

    A rigorous and systematic theoretical study has been made of linear and nonlinear electrostatic waves propagating in unmagnetized dusty plasmas. The basic features of linear and nonlinear electrostatic waves (particularly, dust-ion-acoustic and dust-acoustic waves) for different space and laboratory dusty plasma conditions are described. The experimental observations of such linear and nonlinear features of dust-ion-acoustic and dust-acoustic waves are briefly discussed.

  3. Wave trajectory and electron cyclotron heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Tanaka, S.; Maekawa, T.; Terumichi, Y.; Hamada, Y.

    1980-01-01

    Wave trajectories in high density tokamak plasmas are studied numerically. Results show that the ordinary wave injected at an appropriate incident angle can propagate into the dense plasmas and is mode-converted to the extraordinary wave at the plasma cutoff, is further converted to the electron Bernstein wave during passing a loop or a folded curve near the upper hybrid resonance layer, and is cyclotron damped away, resulting in local electron heating before arriving at the cyclotron resonance layer. Similar trajectory and damping are obtained when a microwave in a form of extraordinary wave is injected quasi-perpendicularly in the direction of decreasing toroidal field

  4. Resonant emission of electromagnetic waves by plasma solitons

    International Nuclear Information System (INIS)

    Mironov, V.A.; Sergeev, A.M.; Khimich, A.V.

    1988-01-01

    The ability of plasma-wave solitons to radiate electromagnetic waves at the frequency of the natural oscillations of the field is considered. It is shown that this radiation is the main energy dissipation channel for strong plasma turbulence in a magnetoactive plasma. An interpretation is proposed for the artificial radio emission produced when the ionosphere is acted upon by beams of strong electromagnetic waves. The use of this phenomenon for plasma turbulence, particularly in the outer-space plasma near the earth, is discussed

  5. Ulysses radio and plasma wave observations in the jupiter environment.

    Science.gov (United States)

    Stone, R G; Pedersen, B M; Harvey, C C; Canu, P; Cornilleau-Wehrlin, N; Desch, M D; de Villedary, C; Fainberg, J; Farrell, W M; Goetz, K; Hess, R A; Hoang, S; Kaiser, M L; Kellogg, P J; Lecacheux, A; Lin, N; Macdowall, R J; Manning, R; Meetre, C A; Meyer-Vernet, N; Moncuquet, M; Osherovich, V; Reiner, M J; Tekle, A; Thiessen, J; Zarka, P

    1992-09-11

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of aurorallike hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the lo plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the lo torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  6. Parametrically induced low-frequency waves in weakly inhomogeneous magnetized plasmas

    International Nuclear Information System (INIS)

    Pesic, S.

    1981-01-01

    The linear dispersion relation governing the parametric interaction of a lower hybrid pump wave with a weakly-inhomogeneous current carrying hot plasma confined by a helical magnetic field is derived and solved numerically. The stability boundaries are delineated over a wide range in the k-space. The frequency and growth rate of decay instabilities are calculated for plasma parameters relevant to lower hybrid plasma heating experiments. The parametric excitation of drift waves and ion cyclotron current instabilities is discussed. In the low-density plasma region low minimum thresholds and high growth rates are obtained for the pump decay into ion cyclotron and nonresonant quasimodes. The spatial amplification of hot ion Bernstein waves and nonresonant quasimodes dominate in the plasma core (ω 0 /ωsub(LH) < 2). The presented theoretical results are in qualitative agreement with current LH plasma heating experiments. (author)

  7. THz Backward-wave oscillators for plasma diagnostic in nuclear fusion

    OpenAIRE

    Paoloni, Claudio; Yue, Lingna; Tang, Xiaopin; Zhang, Fuzhi; Popovic, Branko; Himes, Logan; Barchfeld, Robert; Gamzina, Diana; Mineo, Mauro; Letizia, Rosa; Luhmann Jr., Neville C.

    2015-01-01

    Summary form only given. The understanding of plasma turbulence in nuclear fusion is related to the availability of powerful THz sources and the possibility to map wider plasma regions. A novel approach to realize compact THz sources to be implemented in the plasma diagnostic at NSTX experiment (Princeton Plasma Physics Laboratory, USA) is reported.Two novel 0.346 THz Backward-Wave Oscillators (BWOs) have been designed and are presently in the fabrication phase. One BWO is based on the Double...

  8. S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission

    Czech Academy of Sciences Publication Activity Database

    Bougeret, J. L.; Goetz, K.; Kaiser, M. L.; Bale, S. D.; Kellogg, P. J.; Maksimovic, M.; Monge, N.; Monson, S. J.; Astier, P. L.; Davy, S.; Dekkali, M.; Hinze, J. J.; Manning, R. E.; Aguilar-Rodriguez, E.; Bonnin, X.; Briand, C.; Cairns, I. H.; Cattell, C. A.; Cecconi, B.; Eastwood, J.; Ergun, R. E.; Fainberg, J.; Hoang, S.; Huttunen, K. E. J.; Krucker, S.; Lecacheux, A.; MacDowall, R. J.; Macher, W.; Mangeney, A.; Meetre, C. A.; Moussas, X.; Nguyen, Q. N.; Oswald, T. H.; Pulupa, M.; Reiner, M. J.; Robinson, P. A.; Rucker, H.; Salem, c.; Santolík, Ondřej; Silvis, J. M.; Ullrich, R.; Zarka, P.; Zouganelis, I.

    2008-01-01

    Roč. 136, 1-4 (2008), s. 487-528 ISSN 0038-6308 Grant - others: NASA (US) NAS5-03076 Institutional research plan: CEZ:AV0Z30420517 Keywords : S/WAVES * STEREO * plasma waves * radio waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.372, year: 2008

  9. Relativistic electromagnetic waves in an electron-ion plasma

    Science.gov (United States)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  10. Energy balance of plasma with wave taking the nonpotential nature of the waves into consideration

    International Nuclear Information System (INIS)

    Gel'berg, M.G.; Volosevich, A.V.

    1986-01-01

    It is shown that in the ionospheric plasma the potential electric field of low-frequency plasma waves is shifted in phase with respect to fluctuations of current by approximately -π/2 and the rotational field is almost in phase with the current. Therefore, the energy transfer between the plasma and the wave occurs mainly with the participation of rotational field

  11. Surface flute waves in plasmas theory and applications

    CERN Document Server

    Girka, Volodymyr; Thumm, Manfred

    2014-01-01

    The book presents results of a comprehensive study of various features of eigen electromagnetic waves propagating across the axis of plasma filled metal waveguides with cylindrical geometry. The authors collected in one book material on various features of surface flute waves, i. e. impact of waveguide design on wave dispersion, wave damping influenced by various reasons, impact of plasma density and external magnetic field inhomogeneity on the wave, and impact of waveguide corrugation and electric current on the wave. A variety of present surface waves applications and possible future applications is also included. Using the method of successive approximations it is shown how one can solve problems, which concern real experimental devices, starting from simple models. The book applies to both professionals dealing with problems of confined plasmas and to graduate and post-graduate students specializing in the field of plasma physics and related applications.

  12. Shock wave interaction with pulsed glow discharge and afterglow plasmas

    International Nuclear Information System (INIS)

    Podder, N.K.; LoCascio, A.C.

    2009-01-01

    Acoustic shock waves are launched by the spark-discharge of a high voltage capacitor in pulsed glow discharge and afterglow plasmas. The glow discharge section of the shock tube is switched on for a period of less than one second at a time, during which a shock wave is launched starting with a large delay between the plasma switch-on and the shock-launch. In the subsequent runs this delay is decremented in equal time intervals up to the plasma switch-on time. A photo acoustic deflection method sensitive to the density gradient of the shock wave is used to study the propagating shock structure and velocity in the igniting plasma. A similar set of measurements are also performed at the plasma switch-off, in which the delay time is incremented in equal time intervals from the plasma switch-off time until the afterglow plasma fully neutralizes itself into the room-temperature gas. Thus, complete time histories of the shock wave propagation in the igniting plasma, as well as in the afterglow plasma, are produced. In the igniting plasma, the changes in the shock-front velocity and dispersion are found to be a strong non-linear function of delay until a saturation point is reached. On the other hand, in the afterglow plasma the trend has been opposite and reversing towards the room temperature values. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  13. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  14. Rogue waves in a water tank: Experiments and modeling

    Science.gov (United States)

    Lechuga, Antonio

    2013-04-01

    Recently many rogue waves have been reported as the main cause of ship incidents on the sea. One of the main characteristics of rogue waves is its elusiveness: they present unexpectedly and disappear in the same wave. Some authors (Zakharov and al.2010) are attempting to find the probability of their appearances apart from studyingthe mechanism of the formation. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum(Akhmediev et al. 2011) as input on the wave maker. The produced waves were clearly rogue waves with a rate (maximum wave height/ Significant wave height) of 2.33 and a kurtosis of 4.77 (Janssen 2003, Onorato 2006). These results were already presented (Lechuga 2012). Similar waves (in pattern aspect, but without being extreme waves) were described as crossing waves in a water tank(Shemer and Lichter1988). To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg-Landau equation. This apparently amazing result is easily explained: We know that the Ginzburg-Landau model is related to some regular structures on the surface of a liquid and also in plasmas, electric and magnetic fields and other media. Another important characteristic of the model is that their solutions are invariants with respectto the translation group. The main aim of this presentation is to extract conclusions of the model and the comparison with the measured waves in the water tank.The nonlinear structure of waves and their regularity make suitable the use of the Ginzburg-Landau model to the envelope of generated waves in the tank,so giving us a powerful tool to cope with the results of our experiment.

  15. Non linear excitation of waves at the vicinity of plasma resonance

    International Nuclear Information System (INIS)

    Chiron, Arnaud

    1992-01-01

    This research thesis reports the study of the non linear evolution of ionic acoustic and plasma waves excited by resonant absorption of an electromagnetic wave, in a non collisional plasma, without external magnetic field, and with a parabolic density profile. The plasma resonance occurs about the density profile peak. The numerical resolution of the Zakharov equation system is performed to describe the coupled evolution of the plasma wave electric field envelope, and low frequency density disturbances. Experiments performed in the microwave domain show the existence of a new effect related to the modification of the electromagnetic wave propagation under the influence of plasma density disturbances created by the ponderomotive force. This effect which results in a collisional relaxation of plasma waves trapped in the cavity formed at resonance, cannot be taken into account by a numerical simulation using a capacitive pump field. Measurements showed that plasma waves were trapped and relaxing in a cavity with characteristic dimensions of some thousands of Debye lengths, and that the plasma wave in the cavity was stationary. A new turbulence regime is thus highlighted [fr

  16. Analysis of waves in the plasma guided by a periodical vane-type slow wave structure

    International Nuclear Information System (INIS)

    Wu, T.J.; Kou, C.S.

    2005-01-01

    In this study, the dispersion relation has been derived to characterize the propagation of the waves in the plasma guided by a periodical vane-type slow wave structure. The plasma is confined by a quartz plate. Results indicate that there are two different waves in this structure. One is the plasma mode that originates from the plasma surface wave propagating along the interface between the plasma and the quartz plate, and the other is the guide mode that originally travels along the vane-type slow wave structure. In contrast to its original slow wave characteristics, the guide mode becomes a fast wave in the low-frequency portion of the passband, and there exists a cut-off frequency for the guide mode. The vane-type guiding structure has been shown to limit the upper frequency of the passband of the plasma mode, compared with that of the plasma surface wave. In addition, the passband of the plasma mode increases with the plasma density while it becomes narrower for the guide mode. The influences of the parameters of the guiding structure and plasma density on the propagation of waves are also presented

  17. Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes

    International Nuclear Information System (INIS)

    Leppert, H.D.; Schuelter, H.; Wiesemann, K.

    1982-01-01

    The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)

  18. Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma

    International Nuclear Information System (INIS)

    Faith, J.; Kuo, S.P.; Huang, J.

    1997-01-01

    Experimental and numerical results of the interaction of electromagnetic waves with rapidly time varying spatially periodic plasmas are presented. It is shown that a number of Floquet modes, each with their own oscillation frequency, are created during the interaction. Included among these modes are downshifted waves which will not exist in the single slab case, and also waves with a larger upshifted frequency than one can obtain with a single plasma layer of the same density. In addition, the periodic structure is characterized by pass and stop bands that are different from those of a single plasma layer, and the frequencies of the downshifted modes falling in the stop band of a single plasma layer. Therefore these waves are trapped within the plasma structure until the plasma decays away. To show this phenomenon a chamber experiment is conducted, with the periodic plasma being produced by a capacitive discharge. The power spectrum recorded for waves interacting with the plasma shows vastly improved efficiency in the downshift mechanism, which the numerical calculations suggest is related to the trapping of the wave within the plasma. Reproducible results are recorded which are found to agree well with the numerical simulation. copyright 1997 The American Physical Society

  19. Spectroscopic investigation of wave driven microwave plasmas

    International Nuclear Information System (INIS)

    Wijtvliet, R.; Felizardo, E.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.; Nijdam, S.; Veldhuizen, E. V.; Kroesen, G.

    2009-01-01

    Large H atom line broadening was found throughout the volume of surface wave generated He-H 2 and H 2 microwave plasmas at low pressures. The measured Doppler temperatures corresponding to the H β , H γ , H δ , H ε , and H ζ line profiles were found to be higher than the rotational temperature of the hydrogen molecular Fulcher-α band and the Doppler temperature of the 667.1 nm singlet He line. No excessive broadening has been found. The Lorentzian and Gaussian widths as determined by fitting the spectral lines with a Voigt profile increase with the principal quantum number of the upper level. In contrast, no such dependence for the Gaussian width has been observed in an Ar-H 2 discharge. No population inversion has been observed from measurements of the relative intensities of transitions within the Balmer series.

  20. Continuing studies of the plasma beat wave accelerator

    International Nuclear Information System (INIS)

    Joshi, C.

    1990-01-01

    This is a proposal for the release of third year funds for the ''Plasma Beat Wave Accelerator'' program (PBWA) at UCLA under the direction of Professor C. Joshi. This report is also a summary of progress on this project since March 1990; i.e., the date of the last report to the DOE. Once again we note that although the program is for historical reasons called the Plasma Beat Wave Accelerator Program, our group is active in all areas of applications of lasers and plasmas in future high energy accelerators. These are as follows: heat gradient plasma structures; excited by plasma beat wave technique; laser wake field technique; and plasma wake field technique. Development of a photoinjector-driven, 20 MeV linac; and theoretical studies of the plasma lens and use of plasmas at the final focus

  1. Resonant absorption of radar waves by a magnetized collisional plasma

    International Nuclear Information System (INIS)

    Sun Aiping; Tong Honghui; Shen Liru; Tang Deli; Qiu Xiaoming

    2001-01-01

    The propagation of radar waves in a magnetized collisional plasma slab is studied numerically. It is found for uniform plasma that: first, the wave attenuation and absorbed power show a peak value, i.e., resonant absorption when the collision frequency f en = 0.1, 0.5, 1 GHz and the wave frequency nears upper hybrid frequency. Secondly, the attenuation, absorbed, and transmitted power curves become flat at f en = 5, 10 Ghz. thirdly, the attenuation and absorbed power increase with plasma density, and the attenuation and the proportion of absorbed power can reach 100 dB and 80%, respectively, at the plasma density n = 10 11 cm -3 . For nonuniform plasma, the peak value of reflected power is larger than that in uniform plasma. So, uniform magnetized plasma is of more benefit to plasma cloaking

  2. Penetration of slow waves into an overdense plasma

    International Nuclear Information System (INIS)

    Motley, R.W.; Bernabei, S.; Hooke, W.M.; McWilliams, R.; Olson, L.

    1978-06-01

    Probe measurements are reported of the propagation of a 2.45 GHz slow wave launched into a linear, overdense test plasma by a phased double waveguide. We find that waves in the frequency interval omega/sub LH/ < omega < omega/sub pe/ penetrate to the plasma interior only if they satisfy the accessibility criterion

  3. Studies on waves and turbulence in natural plasmas and in laboratory plasmas

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1990-09-01

    The project for studying plasma waves and plasma turbulence submitted to CAPES to be included in the CAPES/COFECUB international cooperation agreement is presented. The project will be carry out in cooperation with Paris University aiming to simulate in laboratory wave-particle interaction phenomena occuring in space plasma. (M.C.K.)

  4. Plasma heating by non-linear wave-Plasma interaction | Echi ...

    African Journals Online (AJOL)

    We simulate the non-linear interaction of waves with magnetized tritium plasma with the aim of determining the parameter values that characterize the response of the plasma. The wave-plasma interaction has a non-conservative Hamiltonian description. The resulting system of Hamilton's equations is integrated numerically ...

  5. Parametric trapping of electromagnetic waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Silin, V.P.; Starodub, A.N.

    1977-01-01

    Considered is parametric instability in an inhomogeneous plasma at which a pumping wave is transformed to an electromagnetic wave and aperiodically in-time-growing disturbances. It is shown that after achievement of some boundary pumping value by electric field intensity an absolute parametric instability evolution becomes possible. In-time growing plasma disturbances are localized near electric field extremums of a pumping wave. Such localization areas are small as compared to characteristic size of pumping inhomogeneity in a plasma. The secondary electromagnetic waves stay within the localization areas and, therefore, are not scattered by a plasma. As following from this it has been established, that due to parametric instability electromagnetic radiation trapping by a plasma occurs. Such a trapping is considerably connected with a spatial structure of a pumping field and it cannot arise within the field of a running wave in the theoretical model considered. However parametric trapping turns out to be possible even with very small reflection coefficients

  6. Plasma acceleration in a wave with varying frequency

    International Nuclear Information System (INIS)

    Petrzilka, V.A.

    1978-01-01

    The averaged velocity of a test particle and the averaged velocity of a plasma in an electromagnetic wave packet with varying frequency (e.g., a radiation pulse from pulsar) is derived. The total momentum left by the wave packet in regions of plasma inhomogeneity is found. In case the plasma concentration is changing due to ionization the plasma may be accelerated parallelly or antiparallelly to the direction of the wave packet propagation which is relevant for a laser induced breakdown in gas. (author)

  7. Some remarks on coherent nonlinear coupling of waves in plasmas

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1976-01-01

    The analysis of nonlinear processes in plasma physics has given rise to a basic set of coupled equations. These equations describe the coherent nonlinear evolution of plasma waves. In this paper various possibilities of analysing these equations are discussed and inherent difficulties in the description of nonlinear interactions between different types of waves are pointed out. Specific examples of stimulated excitation of waves are considered. These are the parametric excitation of hybrid resonances in hot magnetized multi-ion component plasma and laser-plasma interactions. (B.D.)

  8. On lower hybrid wave scattering by plasma density fluctuations

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1988-01-01

    The scattering of lower hybrid waves on plasma density fluctuations in a thin turbulent layer at the plasma periphery is studied numerically. The lower hybrid waves are supposed to be radiated by a four-waveguide grill used on the CASTOR tokamak. A great number of calculated scattered wave spectra show that the scattered spectrum shifts to larger values of the parallel-to-magnetic-field component of the wave vector (to slower waves) with increasing central plasma density and with the decreasing safety factor at the boundary. As known, this shift of the wave spectra results in a decrease in current drive efficiency. The current drive efficiency will hence decrease with growing plasma density and with decreasing safety factor. (J.U.). 2 figs., 4 refs

  9. FISIC - a full-wave code to model ion cyclotron resonance heating of tokamak plasmas

    International Nuclear Information System (INIS)

    Kruecken, T.

    1988-08-01

    We present a user manual for the FISIC code which solves the integrodifferential wave equation in the finite Larmor radius approximation in fully toroidal geometry to simulate ICRF heating experiments. The code models the electromagnetic wave field as well as antenna coupling and power deposition profiles in axisymmetric plasmas. (orig.)

  10. Wave Model Development in Multi-Ion Plasmas

    Directory of Open Access Journals (Sweden)

    Sung-Hee Song

    1999-06-01

    Full Text Available Near-earth space is composed of plasmas which embed a number of plasma waves. Space plasmas consist of electrons and multi-ion that determine local wave propagation characteristics. In multi-ion plasmas, it is di cult to find out analytic solution from the dispersion relation in general. In this work, we have developed a model with an arbitrary magnetic field and density as well as multi-ion plasmas. This model allows us to investigate how plasma waves behave when they propagate along realistic magnetic field lines, which are assumed by IGRF(International Geomagnetic Reference Field. The results are found to be useful for the analysis of the in situ observational data in space. For instance, if waves are assumed to propagate into the polar region, from the equatorial region, our model quantitatively shows how polarization is altered along earth travel path.

  11. Nonlinear interaction of waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Istomin, Ya.N.

    1988-01-01

    Nonlinear wave processes in a weakly inhomogeneous plasma are considered. A quasilinear equation is derived which takes into account the effect of the waves on resonance particles, provided that the inhomogeneity appreciably affects the nature of the resonance interaction. Three-wave interaction is investigated under the same conditions. As an example, the nonlinear interaction in a relativistic plasma moving along a strong curvilinear magnetic field is considered

  12. Unlimited electron acceleration in laser-driven plasma waves

    International Nuclear Information System (INIS)

    Katsouleas, T.; Dawson, J.M.

    1983-01-01

    It is shown that the limitation to the energy gain of 2(ω/ω/sub p/) 2 mc 2 of an electron in the laser-plasma beat-wave accelerator can be overcome by imposing a magnetic field of appropriate strength perpendicular to the plasma wave. This accelerates particles parallel to the phase fronts of the accelerating wave which keeps them in phase with it. Arbitrarily large energy is theoretically possible

  13. THz detectors using surface Josephson plasma waves in layered superconductors

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Yampol'skii, Valery; Nori, Franco

    2006-01-01

    We describe a proposal for THz detectors based on the excitation of surface waves, in layered superconductors, at frequencies lower than the Josephson plasma frequency ω J . These waves propagate along the vacuum-superconductor interface and are attenuated in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). The surface Josephson plasma waves are also important for the complete suppression of the specular reflection from a sample (Wood's anomalies, used for gratings) and produce a huge enhancement of the wave absorption, which can be used for the detection of THz waves

  14. Linear theory of plasma filled backward wave oscillator

    Indian Academy of Sciences (India)

    An analytical and numerical study of backward wave oscillator (BWO) in linear regime is presented to get an insight into the excitation of electromagnetic waves as a result of the interaction of the relativistic electron beam with a slow wave structure. The effect of background plasma on the BWO instability is also presented.

  15. The energy density of a Landau damped plasma wave

    NARCIS (Netherlands)

    Best, R. W. B.

    1999-01-01

    In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite

  16. Experiments and Observations on Intense Alfven Waves in the Laboratory and in Space

    International Nuclear Information System (INIS)

    Gekelman, W.; VanZeeland, M.; Vincena, S.; Pribyl, P.

    2003-01-01

    There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma that can support Alfven waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfven wave propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. A new class of experiments which involve the expansion of a dense (initially, δn/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfven waves will be presented. Measurements are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, coupled to the initial electron current, which replace fast electrons escaping the initial blast

  17. Magnetization of a warm plasma by the nonstationary ponderomotive force of an electromagnetic wave

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P. K.; Stenflo, L.

    2009-01-01

    It is shown that magnetic fields can be generated in a warm plasma by the nonstationary ponderomotive force of a large-amplitude electromagnetic wave. In the present Brief Report, we derive simple and explicit results that can be useful for understanding the origin of the magnetic fields that are produced in intense laser-plasma interaction experiments.

  18. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  19. Propagation of a hybrid inferior wave in axisymmetrical plasma

    International Nuclear Information System (INIS)

    Fivaz, M.; Appert, K.; Krlin, L.

    1990-05-01

    The linear propagation of hybrid inferior waves in an axisymmetrical plasma (magnetohydrodynamic equilibrium of the Soloviev type) has been numerically simulated. The evolution of k // (component of the wave vector k parallel to the magnetic field B), important for current drive modelling, has been studied as a function of the geometric parameters of the equilibrium: aspect ratio, ellipticity and triangularity. The results show that k // depends abruptly on the parameters; the engendered structures are very rich. Two mechanisms by which k // increases have been shown: the 'resonance' occurring in small bands of the space of the parameters and which is associated with trajectories in (R,Z) near stabilization; a stochastic evolution resembling diffusion in equlibriums of very high triangularity. However, a strong increase of k // of a part of the waves, susceptible of engendering a current in the plasma, has only been observed in a minority of cases. In literature current drive experiments have been reported which work and whose parameters are a priori such that our model cannot be expected to show the desired growth of k // . Consequently, our model, which is similar to normally used models, does not explain the current drive. 5 refs., 16 figs

  20. Bounce-harmonic Landau Damping of Plasma Waves

    Science.gov (United States)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v vph / 5 . The measurements are conducted in trapped pure ion plasmas contained in Penning-Malmberg trap, with wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  1. Electromagnetic-wave absorption by inhomogeneous, collisional plasmas

    International Nuclear Information System (INIS)

    Gregoire, D.J.; Santoru, J.; Schumacher, R.W.

    1990-01-01

    Unmagnetized, collisional plasmas can be used as broadband EM-wave absorbers or refractors. In the absorption process, plasma electrons are first accelerated by the EM-wave fields and then collide with background-gas molecules, thereby transferring energy from the EM waves to the gas. A plasma absorber has several advantages compared to conventional materials. A plasma can be turned on and off very rapidly, thereby switching between absorbing and transparent conditions. Calculations indicate that plasma absorbers can also be tailored to provide broadband absorption (>40 dB) over multiple octaves. The authors have developed a one-dimensional model and a computer code to calculate the net power reflected from a plasma-enclosed EM-wave-reflecting target. They included three contributions to the reflected EM-wave power: reflections from the vacuum-plasma interface; reflections from the bulk plasma volume; and reflection of the attenuated EM wave that is transmitted through the plasma and reflected by the target

  2. Plasma-filled rippled wall rectangular backward wave oscillator

    Indian Academy of Sciences (India)

    Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-filled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma ...

  3. Kinetic theory of surface waves in plasma jets

    International Nuclear Information System (INIS)

    Shokri, B.

    2002-01-01

    The kinetic theory analysis of surface waves propagating along a semi-bounded plasma jet is presented. The frequency spectra and their damping rate are obtained in both the high and low frequency regions. Finally, the penetration of the static field in the plasma jet under the condition that the plasma jet velocity is smaller than the sound velocity is studied

  4. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    International Nuclear Information System (INIS)

    Sati, Priti; Tripathi, V. K.

    2012-01-01

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  5. Criteria governing electron plasma waves in a two-temperature plasma

    International Nuclear Information System (INIS)

    Dell, M.P.; Gledhill, I.M.A.; Hellberg, M.A.

    1987-01-01

    Using a technique based on the saddle-points of the dielectric function, criteria are found which govern the behaviour of electron plasma waves in plasmas with two electron populations having different temperatures. (orig.)

  6. Labotratory Simulation Experiments of Cometary Plasma

    OpenAIRE

    MINAMI, S.; Baum, P. J.; Kamin, G.; White, R. S.; 南, 繁行

    1986-01-01

    Laboratory simulation experiment to study the interaction between a cometary plasma and the solar wind has been performed using the UCR-T 1 space simulation facility at the Institute of Geophysics and Planetary Physics, the University of California, Riverside. Light emitting plasma composed of Sr, Ba and/or C simulating cometary coma plasma is produced by a plasma emitter which interacts with intense plasma flow produced by a co-axial plasma gun simulating the solar wind. The purpose of this ...

  7. ICRF heating on the burning plasma experiment (BPX)

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Carter, M.D.; Goulding, R.H.; Hoffman, D.J.; Jaeger, E.F.; Ryan, P.M.; Swain, D.W.; Tolliver, J.S.; Yugo, J.J.; Goldston, R.J.; Hosea, J.C.; Kaye, S.M.; Phillips, C.K.; Wilson, J.R.; Mau, T.K.

    1991-01-01

    RF power in the ion cyclotron range of frequencies (ICRF) has been chosen as the primary heating technique for BPX. This decision is based on the wide success of ICRF heating in existing experiments (JET, TFTR, JT-60), the capability of ion cyclotron waves to penetrate the high-density plasmas of BPX, the ability to concentrate ICRF power deposition near the plasma center, and the ready availability of high-power sources at the appropriate frequency. The primary task of the ICRF system is to heat the plasma to ignition. However, other important roles are envisaged; these include the stabilization of sawteeth, preheating of the plasma during current ramp-up, and possible control of the plasma current profile by means of fast-wave current drive. We give a brief overview of the RF system, describe the operating scenarios planned for BPX, and discuss some of the antenna design issues for BPX. 4 refs., 3 figs

  8. Helicon wave coupling to a chiral-plasma column

    International Nuclear Information System (INIS)

    Torres-Silva, H.; Reggiani, N.; Sakanaka, P.H.

    1995-01-01

    Inductive helicon wave coupling to a chiro-plasma column is studied numerically. In our theoretical model, the RF current distribution of the chiro-plasma is taken into account using the constitutive relations of a chiral-plasma. Computational results based on the data of present-day helicon devices are show. In particular, we discuss the role of magnetic-field-aligned electron landau damping for the helicon wave absorption. In many a see, the numerical findings can be understood reasonably in terms of the wavenumber spectra of the helicon wave dispersion relation for slow and fast wave of a chiral-plasma. In general however, the full electromagnetic treatment is necessary in order to describe and to understand the inductive coupling in the helicon wave regime. (author). 9 refs., 1 fig

  9. Electro-acoustic shock waves in dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Rahman, A.

    2005-10-01

    A rigorous theoretical investigation has been made of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] shock waves in unmagnetized dusty plasmas. The reductive perturbation method has been employed for the study of the small but finite amplitude DIA and DA shock waves. It has been reported that the dust grain charge fluctuation can be one of the candidates for the source of dissipation, and can be responsible for the formation of DIA shock waves in an unmagnetized dusty plasma with static charged dust particles. It has also been reported that the strong co-relation among dust particles can be one of the candidates for the source of dissipation, and can be responsible for the formation of DA shock waves in an unmagnetized strongly coupled dusty plasma. The basic features and the underlying physics of DIA and DA shock waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  10. Wave trajectory and electron cyclotron heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Maekawa, T.; Tanaka, S.; Terumichi, Y.; Hamada, Y.

    1977-12-01

    Wave trajectories propagating obliquely to magnetic field in toroidal plasmas are studied theoretically. Results show that the ordinary wave at appropriate incident angle is mode-converted to the extraordinary wave at first turning point and is further converted to the electron Bernstein wave during passing a loop or a hooked nail curve near second turning point and is cyclotron-damped away, resulting in local electron heating, before arriving at cyclotron resonance layer. (auth.)

  11. Nonlinear periodic waves in dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, Lakhan Lal; Bharuthram, R.

    2002-01-01

    Using the reductive perturbation method, we present a theory of nonlinear periodic waves, viz. the cnoidal waves, in a dusty plasma consisting of electrons, ions, and cold dust grains with charge fluctuations, which in the limiting case reduce to dust acoustic solitons. It is found that the frequency of the dust acoustic cnoidal wave increases with its amplitude. The dust charge fluctuations are found to affect the characteristics of the cnoidal waves

  12. Using plasma waves to create in tokamaks the necessary quasi-stationary conditions for controlled fusion

    International Nuclear Information System (INIS)

    Moreau, D.

    1993-04-01

    It is studied, on the one hand, how using hybrid waves with frequency near from lower hybrid frequency in fusion plasma. Works about coupling waves in plasma (chap.I), their propagation and response of the plasma to the absorption of the waves (chap.II). This method is the most effective until today. Because of limits, it has been investigated, on the other hand, fast magnetosonic wave to control current density in the centre of the discharge in a reactor or a very hot plasma. Theoretical study (chap.III) and experimental results (chap.IV) are presented. Experiments are in progress or planned in following tokamaks: D3-D (USA), JET (Europe), TORE SUPRA (France), JT-60 (Japan). figs. refs. tabs

  13. High Harmonic Fast Wave Heating Experiments on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.; Bitter, M.; Bonoli, P.

    2000-01-01

    A radio frequency (rf) system has been installed on the National Spherical Torus Experiment (NSTX) with the aim of heating the plasma and driving plasma current. The system consists of six rf transmitters, a twelve element antenna and associated transmission line components to distribute and couple the power from the transmitters to the antenna elements in a fashion to allow control of the antenna toroidal wavenumber spectrum. To date, power levels up to 3.85 MW have been applied to the NSTX plasmas. The frequency and spectrum of the rf waves has been selected to heat electrons via Landau damping and transit time magnetic pumping. The electron temperature has been observed to increase from 400 to 900 eV with little change in plasma density resulting in a plasma stored energy of 59 kJ and a toroidal beta, bT , =10% and bn = 2.7

  14. High harmonic fast wave heating experiments on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.; Bitter, M.

    2001-01-01

    A radio frequency (rf) system has been installed on the National Spherical Torus Experiment (NSTX) with the aim of heating the plasma and driving plasma current. The system consists of six rf transmitters, a twelve element antenna and associated transmission line components to distribute and couple the power from the transmitters to the antenna elements in a fashion to allow control of the antenna toroidal wavenumber spectrum. To date, power levels up to 3.85 MW have been applied to the NSTX plasmas. The frequency and spectrum of the rf waves has been selected to heat electrons via Landau damping and transit time magnetic pumping. The electron temperature has been observed to increase from 400 to 900 eV with little change in plasma density resulting in a plasma stored energy of 59 kJ , a toroidal beta, β T =10% and a normalized beta, β n =2.7. (author)

  15. Investigations of electrostatic ion waves in a collisionless plasma

    International Nuclear Information System (INIS)

    Michelsen, P.

    1980-06-01

    The author reviews a series of publications concerning theoretical and experimental investigations of electrostatic ion waves in a collisionless plasma. The experimental work was performed in the Risoe Q-machine under various operational conditions. Besides a description of this machine and the diagnostic techniques used for the measurements, two kinds of electrostatic waves are treated, namely, ion-acoustic waves and ion-cyclotron waves. Due to the relative simplicity of the ion-acoustic waves, these were treated in detail in order to get a more general understanding of the behaviour of the propagation properties of electrostatic waves. The problem concerning the difficulties in describing waves excited at a certain position and propagating in space by a proper mathematical model was especially considered in depth. Furthermore, ion-acoustic waves were investigated which propagated in a plasma with a density gradient, and afterwards in a plasma with an ion beam. Finally, a study of the electrostatic ion-cyclotron waves was undertaken, and it was shown that these waves were unstable in a plasma traversed by an ion beam. (Auth.)

  16. A new linear plasma device for the study of plasma waves in the electron magnetohydrodynamics regime

    Science.gov (United States)

    Joshi, Garima; Ravi, G.; Mukherjee, S.

    2018-06-01

    A new, user-friendly, linear plasma device has been developed in our laboratory where a quiescent (Δ n/n ≈ 1%), low temperature (1-10 eV), pulsed (3-10 ms) plasma can be produced over a large uniform region of 30-40 cm diameter and 40 cm length. Salient features of the device include the flexibility of tuning the plasma density in the range of 10^{10} to 10^{12} cm^{-3} and capability of scanning the plasma and field parameters in two dimensions with a precision of electromagnetic field parameters by miniature magnetic probes and Rogowski coils. The plasma produced is uniform and essentially unbounded for performing experiments on waves and turbulence. The whole device can be operated single-handedly by undergraduate or graduate students. The device can be opened, serviced, new antennas/probes installed and ready for operation in a matter of hours. Some results on the excitation of electromagnetic structures in the context of electron magnetohydrodynamics (EMHD) are also presented to demonstrate the suitability of the device for carrying out such experiments.

  17. Studies of instabilities and waves in a mirror confined hot electron plasma

    International Nuclear Information System (INIS)

    Huang Chaosong; Qiu Lijian; Ren Zhaoxing

    1989-01-01

    The stability of hot electron plasmas is studied. The hot electron component can stabilize the low frequency drift wave and the interchange mode driven by the plasma, which depends only on α=N h /N i , the density ratio of the hot electrons to the plasma ions, but not on the beta value and the annular structure of the hot electrons. Stabilization of the drift wave occurs for α > 40%, and that of the interchange mode for α > 5%, which allows the prediction that the interchange mode can be suppressed in hot electron plasma experiments. The experiments have been conducted in a simple mirror machine. It is observed that the plasma drives a drift wave at 40 kHz and an interchange mode at about 100 kHz. The fluctuation amplitude of the drift wave is much higher than that of the interchange mode. The hot electrons reduce the density gradient, the fluctuation amplitude and the radial loss of the plasma. On the other hand, the hot electrons drive the interchange mode and drift wave in the ion cyclotron frequency region. The effects of a cold plasma on hot electron perturbations are discussed. (author). 10 refs, 6 figs

  18. Beat wave current drive experiment on the Davis Diverted Tokamak (DDT)

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Horton, R.D.; Rogers, J.H.

    1993-01-01

    The beatwave current drive experiment is summarized. The first phase of the experiment was the construction of the microwave sources and the diagnostics needed to demonstrate the beat wave effects, i.e. the measurement of the electrostatic plasma wave produced by the beating of two high intensity electromagnetic waves. In order to keep the cost of the experiments to a minimum, a low density filament plasma source (10 8 ) to (10 10 particles cm -3 ) was employed and the magnetic field in the toroidal plasma was produced by a dc power supply

  19. Electro-acoustic solitary waves in dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Sayed, F.

    2005-10-01

    present a rigorous theoretical investigation of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] solitary waves in dusty plasmas. We employ the reductive perturbation method for small but finite amplitude solitary waves as well as the pseudo-potential approach for arbitrary amplitude ones. We also analyze the effects of non-planar geometry and dust charge fluctuations on both DIA and DA solitary waves, the effect of finite ion-temperature on DIA solitary waves, and the effects of dust-fluid temperature and non-isothermal ion distributions on DA solitary waves. It has been reported that these effects do not only significantly modify the basic features of DIA or DA solitary waves, but also introduce some important new features. The basic features and the underlying physics of DIA and DA solitary waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  20. Plasma wave amplitude measurement created by guided laser wakefield

    International Nuclear Information System (INIS)

    Wojda, Franck

    2010-01-01

    The interaction of an intense laser pulse of short duration with a plasma produces a plasma wave with large amplitude in its wake, which is associated with a longitudinal electric field. It can be used to accelerate relativistic electrons injected into the wave to energies in the GeV range over distances of the order of a few centimeters, short compared to acceleration lengths in conventional accelerators. The control of the electron beam characteristics during the acceleration process is fundamental for achieving a usable laser-plasma acceleration stage. The main result of this thesis is the creation and characterization of a plasma wave in a weakly nonlinear regime over a length of several centimeters. Capillary tubes are used to guide the laser beam over these distances, while maintaining a large enough intensity (∼ 10 17 W/cm 2 ). The guided laser beam ionizes the gas in the tube and creates the plasma wave. A diagnostic based on the modification of the laser pulse spectrum was used to determine the amplitude of the plasma wave along the tube. The amplitude of the plasma wave was studied as a function of gas filling pressure, length of the capillary and laser energy. Experimental results are compared; they are in excellent agreement with analytical results and modeling. They show that the electric field associated with the plasma wave is between 1 and 10 GV/m over a length of up to 8 cm. This work has demonstrated the ability to create a controlled plasma wave in a weakly nonlinear regime. (author)

  1. Plasma waves in the Earth's foreshock, bow shock, and magnetosheath

    International Nuclear Information System (INIS)

    Onsager, T.G.

    1988-01-01

    The research presented in this dissertation is a detailed analysis of electrostatic waves in the Earth's foreshock, bow shock, and magnetosheath. The wave modes measured in these regions, the possible generation mechanisms, and the process which drive the plasma to its unstable state are investigated. The measurements used in this study were obtained from the plasma wave receiver, the particle instrument, and the magnetometer on board the Active Magnetospheric Particle Tracer Explorer (AMPTE) Ion Release Module (IRM). Electron beam mode waves have been identified in the Earth's foreshock. A technique is developed which allows the rest frame frequency and wave number of the electron beam mode waves to be determined from the measurements. The experimentally determined values are compared with theoretical predictions, and approximate limits are put on the beam temperatures. It is demonstrated that electrostatic waves are present in the bow shock and magnetosheath with frequencies above the maximum frequency for Doppler shifted ion acoustic waves, yet below the Langmuir frequency. Waves in this frequency range are tentatively identified as electron beam mode waves. This identification is based on the measured frequencies and electric field polarization directions. Data from 45 bow shock crossings are then used to investigate possible correlations between the electron beam mode waves and the near shock plasma parameters. The best correlations are found with Alfven Mach number and electron beta. Possible mechanism which might produce electron beams in the shock and magnetosheath are discussed in terms of the correlation study results

  2. Studies on the parametric decay of waves in fusion plasmas

    International Nuclear Information System (INIS)

    Paettikangas, T.

    1992-08-01

    Parametric instabilities of large-amplitude electromagnetic waves are investigated in fusion applications. In laser fusion, the electromegnetic wave reflected from the overdense plasma can act as a secondary pump wave and exite parametric instabilities. In double simulated Brilloun scattering (DSBS), both the incoming and the reflected pump wave scatter from a common ion sound wave. The stationary states and the dynamics of DSBS are investigated by using a simple envelope model. The ion sound wave that is exited in DSBS is shown to have soliton-like properties. The simulated Raman scattering (SRS) of free-electron-laser radiation can be applied to current drive in tokamaks. SRS generates fast longitudinal electron plasma waves which accelerate electrons to relativistic energies. Since the energetic current-carrying electrons are almost collisionless, the current decays very slowly. The feasibility of the Raman current drive in tokamaks is investigated theoretically. The current drive efficiency and the optimum free-electron-laser parameters are determined. The energy transfer to the fast electrons from the electrostatic wave is studied with relativistic Vlasov-Maxwell simulations. The parametric decay of a wave to half-harmonics is investigated. It is shown that the growth rate of the decay vanishes in the limit of a long wavelenght of the pump wave even for general electromagnetic or electrostatic decay models. The results are applied to the decay of a fast magnetosonic waves in tokamak plasmas. (orig.)

  3. Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF

    International Nuclear Information System (INIS)

    Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.

    1984-10-01

    The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)

  4. Observation of Ion Acoustic Waves Excited by Drift Waves in a Weakly Magnetized Plasma

    International Nuclear Information System (INIS)

    Tsukabayashi, Isao; Sato, Sugiya; Nakamura, Yoshiharu

    2003-01-01

    Spontaneous fluctuations excited by drift waves are investigated experimentally in magnetic multi-pole plasma. The magnetic multi-pole has been widely used in DP devices and so on. It was observed that the high level of density fluctuations was generated by the drift instability near a magnetic multi-pole or a dipole magnet. The waves propagate to the middle plasma region forming the envelope train waves

  5. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, Marc, E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-11-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.

  6. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    International Nuclear Information System (INIS)

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc

    2013-01-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given

  7. Numerical experiments on 2D strongly coupled complex plasmas

    International Nuclear Information System (INIS)

    Hou Lujing; Ivlev, A V; Thomas, H M; Morfill, G E

    2010-01-01

    The Brownian Dynamics simulation method is briefly reviewed at first and then applied to study some non-equilibrium phenomena in strongly coupled complex plasmas, such as heat transfer processes, shock wave excitation/propagation and particle trapping, by directly mimicking the real experiments.

  8. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    International Nuclear Information System (INIS)

    Tataronis, J. A.

    2004-01-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory

  9. Stochastic acceleration of electrons from multiple uncorrelated plasma waves

    Science.gov (United States)

    Gee, David; Michel, Pierre; Wurtele, Jonathan

    2017-10-01

    One-dimensional theory puts a strict limit on the maximum energy attainable by an electron trapped and accelerated by an electron plasma wave (EPW). However, experimental measurements of hot electron distributions accelerated by stimulated Raman scattering (SRS) in ICF experiments typically show a thermal distribution with temperatures of the order of the kinetic energy of the resonant EPW's (Thot mvp2 , where vp is the phase velocity of the EPW's driven by SRS) and no clear cutoff at high energies. In this project, we are investigating conditions under which electrons can be stochastically accelerated by multiple uncorrelated EPW's, such as those generated by incoherent laser speckles in large laser spots like the ones used on NIF ( mm-size), and reproduce distributions similar to those observed in experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  10. Phase velocity of nonlinear plasma waves in the laser beat-wave accelerator

    International Nuclear Information System (INIS)

    Spence, W.L.

    1985-01-01

    The suggested plasma-laser accelerator is an attempt to achieve a very high energy gradient by resonantly exciting a longitudinal wave traveling at close to the speed of light in cold plasma by means of the beat-wave generated by the transverse fields in two laser beams. Previous calculations to all orders in v/sub z/ have been done essentially from the laboratory frame point of view and have treated the plasma wave as having sharply defined phase velocity equal to the speed of light. However a high energy particle beam undergoing acceleration sees the plasma wave from a nearly light-like frame of reference and hence is very sensitive to small deviations in its phase velocity. Here the authors introduce a calculational scheme that includes all orders in v/sub z/ and in the plasma density, and additionally takes into account the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which they are able to in essence formally sum up all orders of forward Raman scattering. They find that the nonlinear plasma wave does not have simply a single phase velocity - it is really a superposition of many - but that the beat-wave which drives it is usefully described by a non-local effective phase velocity function

  11. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    International Nuclear Information System (INIS)

    Liu Zhiwei; Bao Weimin; Li Xiaoping; Liu Donglin; Zhou Hui

    2016-01-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. (paper)

  12. Guided ionization waves: Theory and experiments

    International Nuclear Information System (INIS)

    Lu, X.; Naidis, G.V.; Laroussi, M.; Ostrikov, K.

    2014-01-01

    This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves–streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures—sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures—plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g., He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path—the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology

  13. Neutrino bursts and gravitational waves experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1978-05-01

    Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.

  14. Velocity-space diffusion due to resonant wave-wave scattering of electromagnetic and electrostatic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, Reija

    1991-01-01

    The velocity-space diffusion equation describing distortion of the velocity distribution function due to resonant wave-wave scattering of electromagnetic and electrostatic waves in an unmagnetized plasma is derived from the Vlasov-Maxwell equations by perturbation theory. The conservation laws for total energy and momentum densities of waves and particles are verified, and the time evolutions of the energy and momentum densities of particles are given in terms of the nonlinear wave-wave coupling coefficient in the kinetic wave equation. (author)

  15. High energy particle acceleration by relativistic plasma waves

    International Nuclear Information System (INIS)

    Amiranoff, F.; Jacquet, F.; Mora, P.; Matthieussent, G.

    1991-01-01

    Accelerating schemes using plasmas, lasers or electron beams are proposed and compared to electron bunches in dielectric media or laser propagation through a slow wave structure made of liquid droplets. (L.C.J.A.). 33 refs, 20 figs

  16. Interaction of EM Waves with Atmospheric Pressure Plasmas

    National Research Council Canada - National Science Library

    Laroussi, Mounir

    2000-01-01

    .... The focus of the main activities is the generation of large volume, non-thermal, atmospheric pressure plasmas, their diagnostics, and their interactions with EM waves and with the cells of microorganism...

  17. Propagation and scattering of waves in dusty plasmas

    International Nuclear Information System (INIS)

    Vladimirov, S.V.

    1994-01-01

    Wave propagation and scattering in dusty plasmas with variable charges on dust particles are considered. New kinetic theory including instant charge of a dust particle as a new independent variable is further developed. (author). 9 refs

  18. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp [Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, RIKEN, Sendai, Miyagi 980-0845 (Japan); Midorikawa, Katsumi [Attosecond Science Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  19. Excitation of nonlinear wave patterns in flowing complex plasmas

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2018-01-01

    We describe experimental observations of nonlinear wave structures excited by a supersonic mass flow of dust particles over an electrostatic potential hill in a dusty plasma medium. The experiments have been carried out in a Π- shaped experimental (DPEx) device in which micron sized Kaolin particles are embedded in a DC glow discharge Argon plasma. An equilibrium dust cloud is formed by maintaining the pumping speed and gas flow rate and the dust flow is induced either by suddenly reducing the height of a potential hill or by suddenly reducing the gas flow rate. For a supersonic flow of the dust fluid precursor solitons are seen to propagate in the upstream direction while wake structures propagate in the downstream direction. For flow speeds with a Mach number greater than 2 the dust particles flowing over the potential hill give rise to dispersive dust acoustic shock waves. The experimental results compare favorably with model theories based on forced K-dV and K-dV Burger's equations.

  20. Waves generated in the plasma plume of helicon magnetic nozzle

    International Nuclear Information System (INIS)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen

    2013-01-01

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.

  1. Waves generated in the plasma plume of helicon magnetic nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)

    2013-03-15

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.

  2. Simulation studies of plasma waves in the electron foreshock - The transition from reactive to kinetic instability

    Science.gov (United States)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to analyze the electron beam-plasma instability. It is shown that there is a transition from the reactive state of the electron beam-plasma instability to the kinetic instability of Langmuir waves. Quantitative tests, which include an evaluation of the dispersion relation for the evolving non-Maxwellian beam distribution, show that a quasi-linear theory describes the onset of this transition and applies again fully to the kinetic stage. This stage is practically identical to the late stage seen in simulations of plasma waves in the electron foreshock described by Dum (1990).

  3. Stationary Density Variation Produced by a Standing Plasma Wave

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field.......Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field....

  4. Dynamical chaos of plasma ions in electrostatic waves

    International Nuclear Information System (INIS)

    Fasoli, A.; Kleiber, R.; Tran, M.Q.; Paris, P.J.; Skiff, F.

    1992-09-01

    Chaos generated by the interaction between charged particles and electrostatic plasma waves has been observed in a linear magnetized plasma. The macroscopic wave properties, the kinetic ion dielectric response and the microscopic heating mechanisms have been investigated via optical diagnostic techniques based on laser induced fluorescence. Observations of test-particle dynamical evolution indicate an exponential separation of initially close ion trajectories. (author) 5 figs., 20 refs

  5. Four-wave mixing and phase conjugation in plasmas

    International Nuclear Information System (INIS)

    Federici, J.F.

    1989-01-01

    Nonlinear optical effects such as Stimulated Brillouin Scattering, Stimulated Raman Scattering, self-focusing, wave-mixing, parametric mixing, etc., have a long history in plasma physics. Recently, four-wave mixing in plasmas and its applications to phase conjugation has been extensively studied. Although four-wave mixing (FWM), using various nonlinear mediums, has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate FWM for wavelengths longer than 10μm. Plasmas as phase conjugate mirrors have received considerable attention since they become more efficient at longer wavelengths (far-infrared to microwave). The purpose of this thesis is to study various fundamental issues which concern the suitability of plasmas for four-wave mixing and phase conjugation. The major contributions of this thesis are the identification and study of thermal and ionization nonlinearities as potential four-wave mixing and phase conjugation mechanisms and the study of the affect of density inhomogeneities on the FWM process. Using a fluid description for the plasma, this thesis demonstrates that collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. The prospect of using a novel ionization nonlinearity in weakly ionized plasmas for wave-mixing and phase conjugation is discussed. The ionization nonlinearity arises from localized heating of the plasma by the beat-wave. Wherever, the local temperature is increased, a plasma density grating is produced due to increased electron-impact ionization. Numerical estimates of the phase conjugate reflectivity indicate reflectivities in the range of 10 -4 -10 -3 are possible in a weakly ionized steady-state gas discharge plasma

  6. Classical wave experiments on chaotic scattering

    International Nuclear Information System (INIS)

    Kuhl, U; Stoeckmann, H-J; Weaver, R

    2005-01-01

    We review recent research on the transport properties of classical waves through chaotic systems with special emphasis on microwaves and sound waves. Inasmuch as these experiments use antennas or transducers to couple waves into or out of the systems, scattering theory has to be applied for a quantitative interpretation of the measurements. Most experiments concentrate on tests of predictions from random matrix theory and the random plane wave approximation. In all studied examples a quantitative agreement between experiment and theory is achieved. To this end it is necessary, however, to take absorption and imperfect coupling into account, concepts that were ignored in most previous theoretical investigations. Classical phase space signatures of scattering are being examined in a small number of experiments

  7. Global magnetospheric perturbations stimulated by the plasma wave discharge in the lower ionosphere

    International Nuclear Information System (INIS)

    Markov, G.A.; Chugunov, Yu.V.

    1994-01-01

    In this paper we discuss a new method of controlled stimulation of global perturbations and the diagnostics of plasma physical processes in the ionosphere and the magnetosphere of the Earth. The method was realized with a series of rocket experiments by means of excitation of the radio frequency plasma wave discharge in the near field of the dipole antenna. We focus considerable attention on the results obtained in these experiments testifying to the wide choice and diversity of potentialities of this new method

  8. Evolution of rogue waves in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com [Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Moslem, W. M., E-mail: wmmoslem@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); El-Labany, S. K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt)

    2015-04-15

    The evolution of rogue waves associated with the dynamics of positively charged dust grains that interact with streaming electrons and ions is investigated. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which proposed as an effective tool for studying the rogue waves in Jupiter. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming densities of the ions and electrons. Furthermore, the supersonic rogue waves are much taller than the subsonic rogue waves by ∼25 times.

  9. The analysis of Alfven wave current drive and plasma heating in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Lerche, E.A.; Galvao, R.M.O.; Elfimov, A.G.; Nascimento, I.C.; Sa, W.P. de; Sanada, E.; Elizondo, J.I.; Ferreira, A.A.; Saettone, E.A.; Severo, J.H.F.; Bellintani, V.; Usuriaga, O.N.

    2002-01-01

    The results of experiments on Alfven wave current drive and plasma heating in the TCABR tokamak are analyzed with the help of a numerical code for simulation of the diffusion of the toroidal electric field. It permits to find radial distributions of plasma current density and conductivity, which match the experimentally measured total plasma current and loop voltage changes, and thus to study the performance of the RF system during Alfven wave plasma heating and current drive experiments. Regimes with efficient RF power input in TCABR have been analyzed and revealed the possibility of noninductive current generation with magnitudes up to ∼8 kA. The increase of plasma energy content due to RF power input is consistent with the diamagnetic measurements. (author)

  10. Stochastic particle acceleration by plasma waves in AGN jets

    International Nuclear Information System (INIS)

    Li, Hui; Colgate, S.A.; Miller, J.A.

    1997-01-01

    The free energy stored in the stressed magnetic fields in AGN jets could be dissipated via generating turbulent plasma waves. The authors review several key wave-particle resonant interactions and point out the importance of a broad wave spectrum. Under several idealized assumptions, they show that the transit-time damping process can accelerate electrons to TeV energies in an AGN jet environment, and present a preliminary calculation on the evolution of plasma wave, electron, and photon distributions. The authors especially emphasize several open questions on particle acceleration by waves, and argue that a plausible scenario is to energize electrons out of the thermal background via transit-time damping and further accelerate them by the parallel propagating right-handed waves

  11. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.

  12. Wave launching as a diagnostic tool to investigate plasma turbulence

    International Nuclear Information System (INIS)

    Tsui, H.Y.W.; Bengtson, R.D.; Li, G.X.; Richards, B.; Uglum, J.; Wootton, A.J.; Uckan, T.

    1994-01-01

    An experimental scheme to extend the investigation of plasma turbulence has been implemented. It involves driving waves into the plasma to modify the statistical properties of the fluctuations; the dynamic balance of the turbulence is perturbed via the injection of waves at selected spectral regions. A conditional sampling technique is used in conjunction with correlation analyses to study the wave launching and the wave-wave coupling processes. Experimental results from TEXT-U tokamak show that the launched waves interact with the intrinsic fluctuations both linearly and nonlinearly. The attainment of driven nonlinearity is necessary for this diagnostic scheme to work. It is also the key to an active modification and control of edge turbulence in tokamaks

  13. Electromagnetic ion cyclotron waves in the plasma depletion layer

    Science.gov (United States)

    Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.

    1993-01-01

    Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.

  14. Solitary ionizing surface waves on low-temperature plasmas

    International Nuclear Information System (INIS)

    Vladimirov, S.V.; Yu, M.Y.

    1993-01-01

    It is demonstrated that at the boundary of semi-infinite low-temperature plasma new types of localized ionizing surface wave structures can propagate. The solitary waves are described by an evolution equation similar to the KdV equation, but the solutions differ considerably from that of the latter

  15. Evolution of Modulated Dispersive Electron Waves in a Plasma

    DEFF Research Database (Denmark)

    Sugai, H.; Lynov, Jens-Peter; Michelsen, Poul

    1979-01-01

    The linear propagation of amplitude-modulated electron waves was examined in a low-density Q-machine plasma. Three effects of the strong dispersion on the modulated wave have been demonstrated: (i) a wavepacket expands along its direction of propagation, followed by a shift of the frequency through...

  16. Dispersion surfaces and ion wave instabilities in space plasmas

    International Nuclear Information System (INIS)

    Andre, M

    1985-08-01

    In this thesis, the dispersion relation of linear waves in a non-relativistic, collisionless and homogeneous plasma in a uniform magnetic field, is solved numerically. Both electrostatic and elecromagnetic waves with frequencies from below the ion gyrofrequency to above the electron gyrofrequency are studied for all angles of propagation. Modes occurring in a cold plasma as well as waves dependent on thermal effects are included. Dispersion surfaces, that is plots of frequency versus wavevector components, are presented for some models of space plasmas. Waves with frequencies of the order of the ion gyrofrequency (ion waves), are well known to exist in space plasmas. In this thesis, the generation of ion waves by ion distributions with loss-cones or temperature anisotropies, or by beams of charged particles, is investigated by numerical methods. Effects of heavy ions are considered. Dispersion surfaces and analytical arguments are used to clarify the results. It is shown that particle beams and ion loss-cone distributions can generate electrostatic ion waves, even when a significant amount of the electrons are cool. These calculations are in agreement with simultaneous observatons of waves and particles obtained by a satellite on auroral field lines. (author)

  17. Active-passive waveguide array for wave excitation in plasmas

    International Nuclear Information System (INIS)

    Motley, R.W.; Hooke, W.M.

    1979-11-01

    A modified version of the standard waveguide grill for exciting lower hybrid plasma waves is proposed. This version should reduce both the number of RF drive components and the amplitude of the (undesirable) surface waves. Results from a simple 2-element array are presented

  18. Plasma particle drifts due to traveling waves with cyclotron frequencies

    International Nuclear Information System (INIS)

    Hatakeyama, Rikizo; Sato, Naoyuki; Sato, Noriyoshi

    1991-01-01

    A particle orbit theory yields that traveling waves with cyclotron frequencies give rise to charged particle drifts perpendicular both to the wave propagation and external magnetic field lines. The result is applicable to particle-flux control of magnetized plasmas. (author)

  19. Nonlinear drift waves in a dusty plasma with sheared flows

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.

  20. Nonlinear drift waves in a dusty plasma with sheared flows

    International Nuclear Information System (INIS)

    Vranjes, J.; Shukla, R.K.

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented

  1. Nonlinear periodic space-charge waves in plasma

    International Nuclear Information System (INIS)

    Kovalev, V. A.

    2009-01-01

    A solution is obtained in the form of coupled nonlinear periodic space-charge waves propagating in a magnetoactive plasma. The wave spectrum in the vicinity of the critical point, where the number of harmonics increases substantially, is found to fall with harmonic number as ∝ s -1/3 . Periodic space-charge waves are invoked to explain the zebra pattern in the radio emission from solar flares.

  2. Ion Bernstein wave experiments on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Moody, J.D.

    1988-09-01

    Ion Bernstein wave experiments are carried out on the Alcator C tokamak to study wave excitation, propagation, absorption, and plasma heating due to wave power absorption. It is shown that ion Bernstein wave power is coupled into the plasma and follows the expected dispersion relation. The antenna loading is maximized when the hydrogen second harmonic layer is positioned just behind the antenna. Plasma heating results at three values of the toroidal magnetic field are presented. Central ion temperature increases of ΔT/sub i//Ti /approx lt/ 0.1 and density increases Δn/n 6 s/sup /minus/1/ for plasmas within the density range 0.6 /times/ 10 20 m/sup /minus/3/ ≤ /bar n//sub e/ ≤ 4 /times/ 10 20 m/sup /minus/3/ and magnetic fields 2.4 ≥ ω/Ω/sub H/ ≥ 1.1. The density increases is usually accompanied by an improvement in the global particle confinement time relative to the Ohmic value. The ion heating rate is measured to be ΔT/sub i//P/sub rf/ ≅ 2-4.5 eV/kW at low densities. At higher densities /bar n//sub e/ ≤ 1.5 /times/ 10 20 m/sup /minus/3/ the ion heating rate dramatically decreases. It is shown that the decrease in the ion heating rate can be explained by the combined effects of wave scattering through the edge turbulence and the decreasing on energy confinement of these discharges with density. The effect of observed edge turbulence is shown to cause a broadening of the rf power deposition profile with increasing density. It is shown that the inferred value of the Ohmic ion thermal conduction, when compared to the Chang-Hinton neoclassical prediction, exhibits an increasing anomaly with increasing plasma density

  3. Propagation of waves in a multicomponent plasma having charged ...

    Indian Academy of Sciences (India)

    Propagation of waves in a multicomponent plasma having charged dust particles has been investigated by various authors in recent times as the presence of charged dust grains give rise to a new kind of modes called dust modes and it has wide applications in magneto- sphere and space plasma [1–3]. In fact, Rao et al [4] ...

  4. Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

    Czech Academy of Sciences Publication Activity Database

    Martines, E.; Zuin, M.; Cavazzana, R.; Adámek, Jiří; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N.

    2014-01-01

    Roč. 21, č. 10 (2014), s. 102309-102309 ISSN 1070-664X Institutional support: RVO:61389021 Keywords : Drift waves * Magnetron sputtering plasma * Spatiotemporal synchronization Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://dx.doi.org/10.1063/1.4898693

  5. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    International Nuclear Information System (INIS)

    Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.

    2011-01-01

    In the cold-fluid dispersion relation ω=ω p /[1+(k perpendicular /k z ) 2 ] 1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k perpendicular /k z . As a result, for any frequency ω p , there are infinitely many degenerate waves, all having the same value of k perpendicular /k z . On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr=±(ω p 2 /ω 2 -1) 1/2 . Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  6. Interaction of the electromagnetic waves and non-magnetized plasmas

    International Nuclear Information System (INIS)

    Sun Aiping; Qiu Xiaoming; Dong Yuying; Li Liqiong

    2002-01-01

    The propagation of electromagnetic waves with 0.5 - 10 GHz in a non-magnetized collisional plasma slab is studied numerically. The change in the absorbed power, reflected power and transmitted power of the electromagnetic wave with collisional frequency of electrons and neutral atoms in plasma from 0.1 - 10 GHz, is calculated, in the condition of the uniform plasma with density of 10 10 or 10 11 cm -3 and depth of 10 cm, and the non-uniform plasma with density distribution of n = n 0 exp[2(z/d-1)] and depth of 10 cm, respectively. The results show that the absorbed power in either uniform or non-uniform plasma is large when the plasma density is large and collision frequency is high, and the peak value is 90%

  7. Electron acceleration by surface plasma waves in double metal surface structure

    Science.gov (United States)

    Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.

    2007-12-01

    Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.

  8. Ion temperature in plasmas with intrinsic Alfven waves

    International Nuclear Information System (INIS)

    Wu, C. S.; Yoon, P. H.; Wang, C. B.

    2014-01-01

    This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process

  9. Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens

    1978-01-01

    The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing...... the long-time slow modulation of the wave amplitude. From this equation the amplitude-dependent frequency and wavenumber shifts are calculated, and it is found that the electron waves with short wavelengths are modulationally unstable with respect to long-wavelength, low-frequency perturbations...

  10. Auroral E-region diagnosis by means of nonlinearly stabilized plasma waves

    International Nuclear Information System (INIS)

    Primdahl, F.; Bahnsen, A.

    1985-01-01

    Recently published comparative measurements indicate that the phase velocity of low frequency waves in the ionospheric E-region is often lower than the drift speed of the electrons that drive the waves unstable. This finding is in agreement with a rocket experiment that measured plasma waves ''in situ''. These data are reevaluated in the present paper. In order to understand these results, the linear instability theory is modified, following Sudan, to conform with zero growth rate even above threshold. The result is that the waves travel at the ion-acoustic velocity with an amplitude stabilized at a level which is found to agree with our observations

  11. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    International Nuclear Information System (INIS)

    Filippi, F.; Mostacci, A.; Palumbo, L.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Ferrario, M.; Cianchi, A.; Zigler, A.

    2016-01-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC-LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 10 16 –10 17  cm −3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  12. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  13. New method for rekindling the nonlinear solitary waves in Maxwellian complex space plasma

    Science.gov (United States)

    Das, G. C.; Sarma, Ridip

    2018-04-01

    Our interest is to study the nonlinear wave phenomena in complex plasma constituents with Maxwellian electrons and ions. The main reason for this consideration is to exhibit the effects of dust charge fluctuations on acoustic modes evaluated by the use of a new method. A special method (G'/G) has been developed to yield the coherent features of nonlinear waves augmented through the derivation of a Korteweg-de Vries equation and found successfully the different nature of solitons recognized in space plasmas. Evolutions have shown with the input of appropriate typical plasma parameters to support our theoretical observations in space plasmas. All conclusions are in good accordance with the actual occurrences and could be of interest to further the investigations in experiments and satellite observations in space. In this paper, we present not only the model that exhibited nonlinear solitary wave propagation but also a new mathematical method to the execution.

  14. Wave propagation in a quasi-chemical equilibrium plasma

    Science.gov (United States)

    Fang, T.-M.; Baum, H. R.

    1975-01-01

    Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.

  15. Ion Bernstein wave heating experiments in HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping

    2005-01-01

    Ion Bernstein Wave (IBW) experiments have been carried out in recent years in the HT-7 superconducting Tokamak. The electron heating experiment has been concentrated on deuterium plasma with an injecting RF power up to 350 kw. The globe heating and localized heating can be seen clearly by controlling the ICRF resonance layer's position. On-axis and off-axis electron heating have been realized by properly setting the target plasma parameters. Experimental results show that the maximum increment in electron temperature has been more than 1 keV, the electron temperature profile has been modified by IBW under different plasma conditions, and both energy and particle confinement improvements have been obtained. (author)

  16. New particle accelerations by magnetized plasma shock waves

    International Nuclear Information System (INIS)

    Takeuchi, Satoshi

    2005-01-01

    Three mechanisms concerning particle accelerations are proposed to account for the high energy of cosmic rays. A model of magnetized plasma clouds is used to simulate a shock-type wave. The attainable energies of test particles colliding with the moving magnetic clouds are investigated by analytical and numerical methods for the three mechanisms. The magnetic trapping acceleration is a new type of particle trapping and acceleration in which, in principle, the test particle is accelerated indefinitely; hence, this mechanism surpasses the Fermi-type acceleration. In the single-step acceleration, the test particle obtains a significant energy gain even though it only experiences a single collision. Lastly, there is the bouncing acceleration by which the test particle is substantially accelerated due to repeated collisions

  17. Variations of helicon wave induced radial plasma transport in different experimental conditions

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-08-01

    Variations of the helicon wave induced radial plasma transport are presented in dependence on values of the plasma radius, magnetostatic field, plasma density, frequency of the helicon wave and on the ion charge. 22 refs., 14 figs

  18. In-tube shock wave driven by atmospheric millimeter-wave plasma

    International Nuclear Information System (INIS)

    Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Komurasaki, Kimiya

    2009-01-01

    A shock wave in a tube supported by atmospheric millimeter-wave plasma is discussed. After atmospheric breakdown, the shock wave supported by the millimeter wave propagates at a constant velocity in the tube. In this study, a driving model of the millimeter-wave shock wave is proposed. The model consists of a normal shock wave supported by a propagating heat-supply area in which an ionization front is located. The flow properties predicted by the model show good agreement with the measured properties of the shock wave generated in the tube using a 170 GHz millimeter wave beam. The shock propagation velocity U shock is identical to the propagation velocity of the ionization front U ioniz when U ioniz is supersonic. Then the pressure increment at the tube end is independent of the power density. (author)

  19. Chaos in plasma simulation and experiment

    International Nuclear Information System (INIS)

    Watts, C.; Sprott, J.C.

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system

  20. Chaos in plasma simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Watts, C. [Texas Univ., Austin, TX (United States). Fusion Research Center; Newman, D.E. [Oak Ridge National Lab., TN (United States); Sprott, J.C. [Wisconsin Univ., Madison, WI (United States). Plasma Physics Research

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  1. Dissipation of a power electromagnetic wave in an inhomogeneous plasma and ''superstrong'' plasma turbulence

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Shapiro, V.D.; Shevchenko, V.I.

    1980-01-01

    An attempt is made to analyze two assumptions of the present theory of plasma turbulence, initiated by an electromagnetic wave, as applied to the problem of heating the plasma target. It has been assumed that in the long-scale region (the region of an electromagnetic wave source) and in the inertia range, separating the source region and the short-wave absorption region, there is a permanent pumping. The first assumption consists in simulating a situation in a plasma target when the Langmuir turbulence arises due to an electromagnetic wave incident on the target. The second assumption is valid only at a very high intensity of plasma waves when their energy is significantly less than the thermal energy of plasma W/nsub(c)T 0 is the frequency of an incident electromagnetic wave). At W approximately equal to nsub(c)T the plasma oscillations, arising due to modulation instability from the electromagnetic pumping wave, fall immediately into the absorption region. A phenomenological theory of such a turbulence, called ''superstrong'', is formulated on the assumption that there is a mechanism of ''mixing up'' plasmon phases as a result of their populating the long-wave density fluctuations

  2. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    Science.gov (United States)

    Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.

    2011-10-01

    In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz /dr=±(ωp2/ω2-1)1/2. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  3. LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Volokitin, A. S. [IZMIRAN, Troitsk, 142190, Moscow (Russian Federation); Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, 3A Av. de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France)

    2015-08-20

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  4. Low-frequency waves in magnetized dusty plasmas revisited

    International Nuclear Information System (INIS)

    Salimullah, M.; Khan, M.I.; Amin, R.; Nitta, H.; Shukla, P.K.

    2005-10-01

    The general dispersion relation of any wave is examined for low-frequency waves in a homogeneous dusty plasma in the presence of an external magnetic field. The low-frequency parallel electromagnetic wave propagates as a dust cyclotron wave or a whistler in the frequency range below the ion cyclotron frequency. In the same frequency regime, the transverse electromagnetic magnetosonic wave is modified with a cutoff frequency at the dust-ion lower-hybrid frequency, which reduces to the usual magnetosonic wave in absence of the dust. Electrostatic dust-lower- hybrid mode is also recovered propagating nearly perpendicular to the magnetic field with finite ion temperature and cold dust particles which for strong ion-Larmor radius effect reduces to the usual dust-acoustic wave driven by the ion pressure. (author)

  5. Parametric wave penetration through an overdense plasma layer

    International Nuclear Information System (INIS)

    Gradov, O.M.; Suender, D.

    1981-01-01

    The nonlinear penetration of an electromagnetic wave through an overdense plasma layer due to the excitation of parametric instabilities is studied. The quasistatic h.f. surface wave and the ion-acoustic wave, both parametrically growing, generate a nonlinear current which also exist beyound the linear skin length of the incident electromagnetic wave. This current leads to an exponential amplification of the electromagnetic wave amplitude in the layer. The growth rate of this process depends on the overthreshold value of the external wave intensity and the thickness of the layer. The saturation level of the transmitted wave amplitude is estimated for the case, when the instabilities are stabilized by generation of ion-acoustic harmonics. (author)

  6. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    International Nuclear Information System (INIS)

    Gennady Shvets; Nathaniel J. Fisch; Alexander Pukhov

    2001-01-01

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined

  7. Fast wave current drive in H mode plasmas on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Grassie, J.S. de; Baity, F.W.

    1999-01-01

    Current driven by fast Alfven waves is measured in H mode and VH mode plasmas on the DIII-D tokamak for the first time. Analysis of the poloidal flux evolution shows that the fast wave current drive profile is centrally peaked but sometimes broader than theoretically expected. Although the measured current drive efficiency is in agreement with theory for plasmas with infrequent ELMs, the current drive efficiency is an order of magnitude too low for plasmas with rapid ELMs. Power modulation experiments show that the reduction in current drive with increasing ELM frequency is due to a reduction in the fraction of centrally absorbed fast wave power. The absorption and current drive are weakest when the electron density outside the plasma separatrix is raised above the fast wave cut-off density by the ELMs, possibly allowing an edge loss mechanism to dissipate the fast wave power since the cut-off density is a barrier for fast waves leaving the plasma. (author)

  8. Analysis of Z Pinch Shock Wave Experiments

    International Nuclear Information System (INIS)

    Asay, James; Budge, Kent G.; Chandler, Gordon; Fleming, Kevin; Hall, Clint; Holland, Kathleen; Konrad, Carl; Lawrence, Jeffery; Trott, Wayne; Trucano, Timothy

    1999-01-01

    In this paper, we report details of our computational study of two shock wave physics experiments performed on the Sandia Z machine in 1998. The novelty of these particular experiments is that they represent the first successful application of VISAR interferometry to diagnose shock waves generated in experimental payloads by the primary X-ray pulse of the machine. We use the Sandia shock-wave physics code ALEGRA to perform the simulations reported in this study. Our simulations are found to be in fair agreement with the time-resolved VISAR experimental data. However, there are also interesting and important discrepancies. We speculate as to future use of time-resolved shock wave data to diagnose details of the Z machine X-ray pulse in the future

  9. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    of charged particles in electromagnetic fields. The linear and nonlinear collective modes in electron-positron plasma have been investigated theoretically [3–6]. Recently, Oohara and Hatakeyama [7] have developed a novel method for generating a pair plasma con- sisting of only negative and positive ions with equal mass ...

  10. Resonant magnetohydrodynamic waves in high-beta plasmas

    International Nuclear Information System (INIS)

    Ruderman, M. S.

    2009-01-01

    When a global magnetohydrodynamic (MHD) wave propagates in a weakly dissipative inhomogeneous plasma, the resonant interaction of this wave with either local Alfven or slow MHD waves is possible. This interaction occurs at the resonant position where the phase velocity of the global wave coincides with the phase velocity of either Alfven or slow MHD waves. As a result of this interaction a dissipative layer embracing the resonant position is formed, its thickness being proportional to R -1/3 , where R>>1 is the Reynolds number. The wave motion in the resonant layer is characterized by large amplitudes and large gradients. The presence of large gradients causes strong dissipation of the global wave even in very weakly dissipative plasmas. Very often the global wave motion is characterized by the presence of both Alfven and slow resonances. In plasmas with small or moderate plasma beta β, the resonance positions corresponding to the Alfven and slow resonances are well separated, so that the wave motion in the Alfven and slow dissipative layers embracing the Alfven and slow resonant positions, respectively, can be studied separately. However, when β > or approx. R 1/3 , the two resonance positions are so close that the two dissipative layers overlap. In this case, instead of two dissipative layers, there is one mixed Alfven-slow dissipative layer. In this paper the wave motion in such a mixed dissipative layer is studied. It is shown that this motion is a linear superposition of two motions, one corresponding to the Alfven and the other to the slow dissipative layer. The jump of normal velocity across the mixed dissipative layer related to the energy dissipation rate is equal to the sum of two jumps, one that occurs across the Alfven dissipative layer and the other across the slow dissipative layer.

  11. Self-reflection of intense electromagnetic waves in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, D P; Kumar, A; Sharma, J K [Indian Inst. of Tech., New Delhi. Dept. of Physics

    1977-10-01

    A uniform electromagnetic wave of high power density, propagating in a collisional plasma gives rise to a modification in temperature-dependent collision frequency and in turn induces a gradient in the complex refractive index of the medium. A WKB solution of the problem predicts a backward propagating wave on account of the self-induced inhomogeneity. The amplitude of the backward (i.e. reflected) wave increases with increasing power density of the wave. This is a volume nonlinear effect and is appreciable for usually employed power densities.

  12. Stimulated brillouin scattering of electromagnetic waves in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Sen, A.

    1991-08-01

    The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs

  13. Parametric decay of an extraordinary electromagnetic wave in relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dorofeenko, V. G. [Institute for Advanced Studies (Austria); Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Peoples’ Friendship University of Russia (Russian Federation)

    2015-03-15

    Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.

  14. Nonlinear nonresonant forces by radio-frequency waves in plasmas

    International Nuclear Information System (INIS)

    Gao Zhe; Fisch, Nathaniel J.; Qin, Hong; Myra, J. R.

    2007-01-01

    Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc magnetic field, the force arises from the gradient of the ponderomotive potential. Only when the dc magnetic field is straight, however, is this parallel force completely consistent with that from the single particle picture, where the ponderomotive force depends on the gradients of rf fields only. Across the dc magnetic field, besides the ponderomotive force from the particle picture, additional Reynolds stress and polarization stress contribute to the total force. For waves with frequency much lower than the cyclotron frequency, the perpendicular forces from the particle and fluid pictures can have opposite signs. In plasmas with a symmetry angle (e.g., toroidal systems), nonresonant forces cannot drive net flow or current in the flux surface, but the radial force may influence macroscopic behavior of plasma. Moreover, nonresonant forces may drive flow or current in linear plasmas or in a localized region of toroidal plasmas

  15. Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings

    International Nuclear Information System (INIS)

    Lee, K.-H.; Lin, M.-W.; Pai, C.-H.; Ha, L.-C.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings is demonstrated in the near-infrared regime. The quadratic dependence of the reflectivity of the probe pulse on plasma density indicates that the mixing is caused by the quasineutral plasma grating driven by the laser ponderomotive force. The experiment verifies that ponderomotive force is an effective means to produce a large-amplitude short-period plasma grating, which has many important applications in ultrahigh-intensity optics. In particular, such a grating is a crucial element for the development of plasma phase-conjugate mirrors that can be used to restore the wave-front distortion that is ubiquitous in nonlinear propagation

  16. Mechanism for plasma waves at the harmonics of the plasma frequency in the electron foreshock boundary

    International Nuclear Information System (INIS)

    Klimas, A.J.

    1983-01-01

    A bump-on-tail unstable reduced velocity distribution has been constructed from data obtained at the upstream boundary of the electron foreshock by the GSFC electron spectrometer experiment on the ISEE 1 satellite. This distribution is used as the initial plasma state for a numerical integration of the one-dimensional Vlasov-Maxwell system of equations. The integration is carried through the growth of the instability, beyond its saturation, and well into the stabilized plasma regime. A power spectrum for the electric field of the stabilized plasma is computed. The spectrum is dominated by a narrow peak at the Bohm-Gross frequency of the unstable field mode but it also contain significant power at the harmonics of the Bohm-Gross frequency. The harmonic power is in sharp peaks which are split into closely spaced doublets. The fundamental peak at the Bohm-Gross frequency is also split, in this case into a closely space triplet. The fundamental peak at the Bohm-Gross frequency is also split, in this case into a closely space triplet. The splitting is due to slow modulations of the stabilized electric field oscillations which, it is thought, are caused by wave-particle trapping. The wavelength of mth harmonic of the Bohm-Gross frequency is given by lambda/sub u//m, where lambda/sub u/ is the wavelength of the unstable mode. The mechanism for excitation of the second harmonic is shwn to be second-order wave-wave coupling which takes place during that period in the evolution of the instability which would otherwise be called the linear growth phase. It is conjectured that the higher harmonics are excited by the same mechanism. It is further argued that harmonic excitation at the boundary of the electron foreshock should be a common occurrence

  17. A survey of elementary plasma instabilities and ECH wave noise properties relevant to plasma sounding by means of particle in cell simulations

    International Nuclear Information System (INIS)

    Dieckmann, M.E.

    1999-01-01

    In this work the emission of high amplitude wave packets into a plasma is examined. The plasma is modelled by an 1 1/2D electromagnetic and relativistic particle in cell code. The antenna is modelled by applying forced electrostatic field oscillations to a subset of the simulation grid cells. The emitted wave packets are followed in space and time. It is investigated how the wave packets are affected by instabilities. The detected instabilities affecting ECH waves have been identified as wave decay, nonlinear damping due to trapping and modulational instabilities. These instabilities have been discussed with hindsight to the plasma sounding experiment. A plasma sounder is an experiment emitting short wave packets into the ambient plasma and then it listens to the response. The assumption that the emitted waves are linear waves then allows to determine the plasma magnetic field strength, the electron density and possibly the electron thermal velocity from the response spectrum. The impact of the non-linear instabilities on the plasma wave response spectrum provided by a sounder have been predicted in this work and the predictions have been shown to match a wide range of experimental observations. A dependence of the instabilities on the simulation noise levels, for example the dependence of the wave interaction time in a wave decay on the noise electric field amplitudes, required it to investigate the simulation noise properties (spectral distribution) and to compare it to real plasma thermal noise. It has also been examined how a finite length antenna would filter the simulation noise. (author)

  18. Electron beam injection during active experiments. 1. Electromagnetic wave emissions

    International Nuclear Information System (INIS)

    Winglee, R.M.; Kellogg, P.J.

    1990-01-01

    During the active injection of an electron beam, a broad spectrum of waves is generated. In this paper examples of spectra from the recent Echo 7 experiment are presented. These results show that the characteristics of the emissions can change substantially with altitude. Two-dimensional (three velocity) relativistic electromagnetic particle simulations are used to investigate the changes in the plasma conditions required to account for the observed spectral variations. It is shown that many of these variations can be accounted for by assuming that the ratio of the electron plasma frequency ω pe to cyclotron frequency Ω e is less than unity at the lower altitudes of about 200 km and near or above unity at apogee of about 300 km. In the former case, whistlers with a cutoff at ω pe , lower hybrid and plasma waves are driven by the parallel beam energy while electromagnetic fundamental z mode and second harmonic x mode and electrostatic upper hybrid waves are driven by the perpendicular beam energy through the master instability. E x B drifts driven by perpendicular electric fields associated with the beam-plasma interaction can also be important in generating maser emission, particularly for field-aligned injection where there is no intrinsic perpendicular beam energy. The power in the electrostatic waves is a few percent of the beam energy and that in the electromagnetic waves a few tenths of a percent. In the latter case, where ω pe /Ω e increases above unity, emission in the fundamental z mode and second harmonic x mode become suppressed

  19. Direct excitation of a high frequency wave by a low frequency wave in a plasma

    International Nuclear Information System (INIS)

    Tanaka, Takayasu

    1993-01-01

    A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)

  20. Plasma characterization using terahertz-wave-enhanced fluorescence

    International Nuclear Information System (INIS)

    Liu Jingle; Zhang, X.-C.

    2010-01-01

    We demonstrate that the terahertz-wave-enhanced fluorescence emission from excited atoms or molecules can be employed in the characterization of laser-induced gas plasmas. The electron relaxation time and plasma density were deduced through applying the electron impact excitation/ionization and electron-ion recombination processes to the measured time-dependent enhanced fluorescence. The electron collision dynamics of nitrogen plasma excited at different gas pressures and laser pulse energies have been systematically investigated. This plasma characterization method provides picosecond temporal resolution and enables omnidirectional optical signal collection.

  1. Nonlinear instability and chaos in plasma wave-wave interactions

    International Nuclear Information System (INIS)

    Kueny, C.S.

    1993-01-01

    Conventional linear stability analysis may fail for fluid systems with an indefinite free energy functional. When such a system is linearly stable, it is said to possess negative energy modes. Instability may then occur either via dissipation of the negative energy modes. Instability may then occur either via dissipation of the negative energy modes. Instability may then occur either via dissipitation of the negative energy modes, or nonlinearly via resonant wave-wave coupling, which leads to explosive growth. In the dissipationaless case, it is conjectured that intrinsic chaotic behavior may allow initially non-resonant systems to reach resonance by diffusion in phase space. This is illustrated for a simple equilibrium involving cold counter-streaming ions. The system is described in the fluid approximation by a Hamilitonian functional and associated noncanonical Poisson bracket. By Fourier decomposition and appropriate coordinate transformations, the Hamilitonian for the perturbed energy is expressed in action-angle form. The normal modes correspond to Doppler-shifted ion-acoustic waves of positive and negative energy. Nonlinear coupling leads to decay instability via two-wave interactions, which occur generically for long enough wavelengths. Three-wave interactions which occur in isolated, but numerous, regions of parameter space can drive either decay instability or explosive instability. When the resonance for explosive growth is detuned, a stable region exists around the equilibrium point in phase space, while explosive growth occurs outside of a separatrix. These interactions may be described exactly if only one resonance is considered, while multiple nonlinear terms make the Hamiltonian nonintegradable. Simple Hamiltonians of two and three degrees of freedom are studied numerically using symplectic integration algorithms, including an explicit algorithm derived using Lie algebraic methods

  2. Relativistic solitary waves modulating long laser pulses in plasmas

    International Nuclear Information System (INIS)

    Sanchez-Arriaga, G; Siminos, E; Lefebvre, E

    2011-01-01

    This paper discusses the existence of solitary electromagnetic waves trapped in a self-generated Langmuir wave and embedded in an infinitely long circularly polarized electromagnetic wave propagating through a plasma. From a mathematical point of view they are exact solutions of the one-dimensional relativistic cold fluid plasma model with nonvanishing boundary conditions. Under the assumption of travelling wave solutions with velocity V and vector potential frequency ω, the fluid model is reduced to a Hamiltonian system. The solitary waves are homoclinic (grey solitons) or heteroclinic (dark solitons) orbits to fixed points. Using a dynamical systems description of the Hamiltonian system and a spectral method, we identify a large variety of solitary waves, including asymmetric ones, discuss their disappearance for certain parameter values and classify them according to (i) grey or dark character, (ii) the number of humps of the vector potential envelope and (iii) their symmetries. The solutions come in continuous families in the parametric V-ω plane and extend up to velocities that approach the speed of light. The stability of certain types of grey solitary waves is investigated with the aid of particle-in-cell simulations that demonstrate their propagation for a few tens of the inverse of the plasma frequency.

  3. Ion-acoustic cnoidal waves in a quantum plasma

    International Nuclear Information System (INIS)

    Mahmood, S.; Haas, F.

    2014-01-01

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H e which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented

  4. Charged particle and photon acceleration by wakefield plasma waves in non-uniform plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Kirsanov, V.I.; Sakharov, A.S.; Pegoraro, F.

    1993-01-01

    We discuss the acceleration of charged particles and the upshift of the frequency of short wave packets of laser radiation. The acceleration and the upshift are caused by wake plasma waves excited by a strong laser pulse in a non-uniform plasma. We show that unlimited acceleration of charged particles is possible for specific spatial dependencies of the plasma density. In this unlimited acceleration regime, particles have a fixed phase relationship with respect to the plasma wave, while their energy increases with time. When the wave breaking limit is approached and surpassed, the efficiency of the acceleration of the charged particles and of the frequency upshift of the photons can be increased significantly. (author) 3 refs

  5. Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, R. A.; Ziebell, L. F. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP: 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354-Campus UFPel, CEP: 96010-900 Pelotas, Rio Grande do Sul (Brazil); Juli, M. C. de [Centro de Radio-Astronomia e Astrofisica Mackenzie-CRAAM, Universidade Presbiteriana Mackenzie, Rua da Consolacao 896, CEP: 01302-907 Sao Paulo, Sao Paulo (Brazil)

    2012-12-15

    We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.

  6. Plasma crowbars in cylindrical flux compression experiments

    International Nuclear Information System (INIS)

    Suter, L.J.

    1979-01-01

    We have done a series of one- and two-dimensional calculations of hard-core Z-pinch flux compression experiments in order to study the effect of a plasma on these systems. These calculations show that including a plasma can reduce the amount of flux lost during the compression. Flux losses to the outer wall of such experiments can be greatly reduced by a plasma conducting sheath which forms along the wall. This conducting sheath consists of a cold, dense high β, unmagnetized plasma which has enough pressure to balance a large field gradient. Flux which is lost into the center conductor is not effectively stopped by this plasma sheath until late in the implosion, at which time a layer similar to the one formed at the outer wall is created. Two-dimensionl simulations show that flux losses due to arching along the sliding contact of the experiment can be effectively stopped by the formation of a plasma conducting sheath

  7. Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

    Energy Technology Data Exchange (ETDEWEB)

    Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N. [Consorzio RFX, Padova (Italy); Adámek, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic)

    2014-10-15

    A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.

  8. Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

    International Nuclear Information System (INIS)

    Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N.; Adámek, J.

    2014-01-01

    A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved

  9. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  10. Full-wave solution of short impulses in inhomogeneous plasma

    International Nuclear Information System (INIS)

    Ferencz, Orsolya E.

    2005-01-01

    In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation. (author)

  11. Transverse MHD shock waves in a partly ionized plasma

    International Nuclear Information System (INIS)

    Mathers, C.D.

    1980-01-01

    The structure of transverse MHD shock waves in a partly ionized hydrogen plasma is studied using a three-fluid model with collisional transport coefficients. The morphology of the various sublayers in the shock front is analyzed in detail and it is shown that strong shock waves have a characteristic viscous structure. Weak to moderate strength shock waves display a resistive structure in which the enhanced transverse resistivity due to ion-slip plays a significant role, leading to a pronounced peak in the ion temperature profile. Calculated shock structure profiles are also compared with experimental temperature data. Results in the form of tables and figures are presented for shock waves with fast Mach number ranging from 1-10 in hydrogen plasma with initial degree of ionization ranging from 5-100%. (author)

  12. SOLAR WIND STRAHL BROADENING BY SELF-GENERATED PLASMA WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, J.; Gaelzer, R. [UFPEL, Pelotas (Brazil); Vinas, A. F. [NASA GSFC, Greenbelt, MD 20771 (United States); Yoon, P. H. [IPST, UMD, College Park, MD (United States); Ziebell, L. F., E-mail: joel.pavan@ufpel.edu.br, E-mail: rudi@ufpel.edu.br, E-mail: adolfo.vinas@nasa.gov, E-mail: yoonp@umd.edu, E-mail: luiz.ziebell@ufrgs.br [UFRGS, Porto Alegre (Brazil)

    2013-06-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  13. Energy balance in the TCA tokamak plasma with Alfven wave heating

    International Nuclear Information System (INIS)

    Ding Ning; Qu Wenxiao; Huang Li; Long Yongxing; Qiu Xiaoming

    1993-01-01

    The energy balance in TCA tokamak plasma with Alfven wave heating is studied, in which the equivalent electron thermal conductivity is determined by using the profile consistency principle. The results are in good agreement with experiments. It is shown that this method is applicable to various devices and other heating methods

  14. The calculation for energy balance of heating plasmas by Alfven waves

    International Nuclear Information System (INIS)

    Long Yongxing; Ding Ning; He Qibing; Qu Wenxiao; Huang Lin; Qiu Xiaoming

    1992-10-01

    A numerical method for computing the energy balance of heating tokamak plasmas by Alfven waves is introduced. The results are in agreement with experiments. This method is not only simpler and more distinct but also considerably saving time in computation. It also can be used in kinetic problems with other types of radio frequency (RF) heating

  15. Destabilization of hydromagnetic drift-Alfven waves in a finite pressure collisional plasma

    International Nuclear Information System (INIS)

    Tang, J.T.

    1974-01-01

    In a finite beta (β = 8πn 0 kT 0 /B 0 2 ) plasma, where the plasma pressure n 0 kT 0 is an appreciable fraction of the confining magnetic field energy-density B 0 2 /8π, density-gradient driven drift waves couple with Alfven waves when the phase velocities of the two waves become comparable. The resulting hydromagnetic drift-Alfven waves separate into two branches--a drift mode and an Alfven mode, with both modes exhibiting magnetic field and localized density fluctuations near the coupling point. The dispersion relation of the collisional drift-Alfven wave is derived by using a slab-geometry, two-fluid model which includes finite beta, electron-ion collisions, ion-ion collisions, finite ion larmar radius, temperature fluctuations, and an axial electron current. A hydromagnetic drift mode is found to be unstable in a moderately dense plasma. A localized ''Alfven'' mode is destabilized only with the passage of an axial current along the plasma column. In order to check the theoretical predictions an experiment is performed in a finite-beta plasma of density n 0 = 10 13 -10 15 cm -3 and temperature T/sub e/ approximately T/sub i/ = 1-7 eV. (U.S.)

  16. MHD waves, reconnection, and plasma transport at the dayside magnetopause

    International Nuclear Information System (INIS)

    Johnson, J.R.; Cheng, C.Z.

    1996-01-01

    The magnetic field of the Earth creates a huge cavity in the solar wind known as the magnetosphere. The transition region between the solar wind plasma and magnetosphere plasma is of substantial interest because many magnetospheric processes are governed by the transport of particles, momentum and energy across that boundary. At this boundary, the magnetopause, there is an abrupt decrease in plasma bulk flow, density and pressure, and large increase in temperature and magnetic field. Throughout this region the plasmas is large. Large amplitude compressional waves are nearly always found in the region just outside of the magnetopause. These waves are either intrinsic solar wind fluctuations or they may be global mirror modes which are generated in a localized region of large pressure anisotropy just outside the magnetopause. The substantial background gradients observed at the magnetopause strongly couple the compressional waves with kinetic Alfven waves near the Alfven resonance location, leading to substantial particle transport. Moreover, for a sheared background magnetic field, as is found at times of southward interplanetary magnetic field, the mode converted kinetic Alfven waves can propagate to the location where k parallel = 0 and generate islands in phase space. We present a solution of the kinetic-MHD wave equations for the magnetic field structure based on a realistic steady state profile which includes: a sheared magnetic field; magnetic curvature; and gradients in the background density, pressure and magnetic field. We incorporate wave-particle resonance interactions for electrons and ions to obtain the dissipation. The background magnetic Keld curvature and gradient give rise to drifts which alter the resonance condition for the various particle species (ω - k circ V d - k parallel v parallel ) and reduces the Landau damping of the kinetic Alfven wave, allowing it to propagate to the k parallel = 0 location

  17. Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagtion

    International Nuclear Information System (INIS)

    Matda, Y.; Crawford, F.W.

    1974-12-01

    An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described. (auth)

  18. On the rogue wave propagation in ion pair superthermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A. [Physics Department, College of Sciences and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K., E-mail: emadshewy@yahoo.com; Elwakil, S. A. [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2016-02-15

    Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.

  19. Subcritical collisionless shock waves. [in earth space plasma

    Science.gov (United States)

    Mellott, M. M.

    1985-01-01

    The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.

  20. Measurements of beat wave accelerated electrons in a toroidal plasma

    International Nuclear Information System (INIS)

    Rogers, J.H.

    1992-06-01

    Electrons are accelerated by large amplitude electron plasma waves driven by counter-propagating microwaves with a difference frequency approximately equal to the electron plasma frequency. Energetic electrons are observed only when the phase velocity of the wave is in the range 3v e ph e (v ph was varied 2v e ph e ), where v e is the electron thermal velocity, (kT e /m e ) 1/2 . As the phase velocity increases, fewer electrons are accelerated to higher velocities. The measured current contained in these accelerated electrons has the power dependence predicted by theory, but the magnitude is lower than predicted

  1. Nonlinear Electron Acoustic Waves in Dissipative Plasma with Superthermal Electrons

    Science.gov (United States)

    El-Hanbaly, A. M.; El-Shewy, E. K.; Kassem, A. I.; Darweesh, H. F.

    2016-01-01

    The nonlinear properties of small amplitude electron-acoustic ( EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and superthermal hot electrons obeying superthermal distribution, and stationary ions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili-Burgers (KP-Brugers) equation. Some solutions of physical interest are obtained. These solutions are related to soliton, monotonic and oscillatory shock waves and their behaviour are shown graphically. The formation of these solutions depends crucially on the value of the Burgers term and the plasma parameters as well. By using the tangent hyperbolic (tanh) method, another interesting type of solution which is a combination between shock and soliton waves is obtained. The topology of phase portrait and potential diagram of the KP-Brugers equation is investigated.The advantage of using this method is that one can predict different classes of the travelling wave solutions according to different phase orbits. The obtained results may be helpful in better understanding of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  2. Stimulation of plasma waves by electron guns on the ISEE-1 satellite

    Science.gov (United States)

    Lebreton, J.-P.; Torbert, R.; Anderson, R.; Harvey, C.

    1982-01-01

    The results of the ISEE-1 satellite experiment relating to observations of the waves stimulated during electron injections, when the spacecraft is passing through the magnetosphere, the magnetosheath, and the solar wind, are discussed. It is shown that the injection of an electron beam current of the order of 10 to 60 microamperes with energies ranging from 0 to 40 eV produces enhancements in the electric wave spectrum. An attempt has been made to identify the low-frequency electrostatic wave observed below the ion plasma frequency as an ion acoustic mode, although the excitation mechanism is not clear. A coupling mechanism between the electron plasma mode and streaming electrons with energies higher than the thermal speed of the cold electron population has been proposed to explain the observations above the electron plasma frequency.

  3. Stimulation of plasma waves by electron guns on the ISEE-1 satellite

    International Nuclear Information System (INIS)

    Lebreton, J.P.; Torbert, R.; Anderson, R.; Harvey, C.

    1982-01-01

    The results of the ISEE-1 satellite experiment relating to observations of the waves stimulated during electron injections, when the spacecraft is passing through the magnetosphere, the magnetosheath, and the solar wind, are discussed. It is shown that the injection of an electron beam current of the order of 10 to 60 microamperes with energies ranging from 0 to 40 eV produces enhancements in the electric wave spectrum. An attempt has been made to identify the low-frequency electrostatic wave observed below the ion plasma frequency as an ion acoustic mode, although the excitation mechanism is not clear. A coupling mechanism between the electron plasma mode and streaming electrons with energies higher than the thermal speed of the cold electron population has been proposed to explain the observations above the electron plasma frequency. 9 references

  4. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  5. Harmonic emission due to the nonlinear coupling of a Gaussian laser and a plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, R; Jain, R K [Department of Mathematics, SSL Jain College, Vidisha, MP, 464001 (India); Parashar, J [Department of Physics, Samrat Ashok Technological Institute, Vidisha, MP, 464001 (India)

    2010-04-15

    A high-power Gaussian laser propagating through a plasma couples with a large-amplitude plasma wave and undergoes scattering to produce harmonics. The process is sensitive to the phase matching angle between the laser and plasma wave numbers and the plasma wave frequency. For larger harmonics, the phase matching angle is high. The efficiency of the process is comparatively high at higher plasma wave frequencies.

  6. Plasma Sprayed Coatings for RF Wave Absorption

    Czech Academy of Sciences Publication Activity Database

    Nanobashvili, S.; Matějíček, Jiří; Žáček, František; Stöckel, Jan; Chráska, Pavel; Brožek, Vlastimil

    307-311, - (2002), s. 1334-1338 ISSN 0022-3115 Grant - others: COST (XE) Euratom DV4/04(TWO) Institutional research plan: CEZ:AV0Z2043910 Keywords : boron carbide, thermal spray coatings, fusion materials, RF wave absorption Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.730, year: 2002

  7. Linear waves in a resistive plasma with Hall current

    International Nuclear Information System (INIS)

    Almaguer, J.A.

    1992-01-01

    Dispersion relations for the case of a magnetized plasma are determined taking into account the Hall current and a constant resistivity, η, in Ohm's law. It is found that the Hall effect is relevant only for parallel (to the equilibrium magnetic field) wave numbers in the case of uniform plasmas, giving place to a dispersive behavior. In particular, the cases of η→0 and small (nonzero) resistivity are discussed

  8. Nonlinear propagation of Alfven waves in cometary plasmas

    International Nuclear Information System (INIS)

    Lakhina, G.S.; Shukla, P.K.

    1987-07-01

    Large amplitude Alfven waves propagating along the guide magnetic field in a three-component plasma are shown to be modulationally unstable due to their nonlinear interaction with nonresonant electrostatic density fluctuations. A new class of subsonic Alfven soliton solutions are found to exist in the three-component plasma. The Alfven solitons can be relevant in explaining the properties of hydromagnetic turbulence near the comets. (author). 15 refs

  9. Wave propagation near the lower hybrid resonance in toroidal plasmas

    International Nuclear Information System (INIS)

    Ohkubo, K.; Ohasa, K.; Matsuura, K.

    1975-10-01

    Dielectric tensor and equipotential curves (ray trajectories) of an electrostatic wave near the lower hybrid resonance are investigated for the toroidal plasma with a shear magnetic field. The ray trajectories start from the vicinity of the plasma surface, and rotate in a spiral form around the magnetic axis, and then reach the lower or upper parts of lower hybrid resonance layer. The numerical computations are performed on the parameters of JIPP T-II device with two dimensional inhomogeneity. (auth.)

  10. Research status of fast flows and shocks in laboratory plasmas. Supersonic plasma flow and shock waves in various magnetic channels

    International Nuclear Information System (INIS)

    Inutake, Masaaki; Ando, Akira

    2007-01-01

    Fast plasma flow is produced by Magneto-Plasma-Dynamic Arcjet (MPDA). The properties of fast flow and shock wave in various magnetic channels are reported by the experiment results. Fast plasma flow by MPDA, shocked flow in the magnetic channel, supersonic plasma flow in the divergence magnetic nozzle, ion acoustic wave in the mirror field, transonic flow and sonic throat in the magnetic Laval nozzle, fast flow in the helical magnetic channel, and future subjects are reported. Formation of the supersonic plasma flow by the divergence magnetic nozzle and effects of background gas, helical-kink instability in the fast plasma jet, and formation of convergence magnetic nozzle near outlet are described. From the phase difference of azimuthal and axial probe array signals, the plasma has twisted structure and it rotates in the same direction of the twist. Section of MPDA, principle of magnetic acceleration of MPDA, HITOP, relation among velocities, temperature, and Mach number of He ion and atom and the discharge current, distribution of magnetic-flux density in the direction of electromagnetic field, measurement of magnetic field near MPDA exit are illustrated. (S.Y.)

  11. 2D full-wave simulation of waves in space and tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Kim Eun-Hwa

    2017-01-01

    Full Text Available Simulation results using a 2D full-wave code (FW2D for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF waves in the scape-off layer (SOL of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.

  12. 2D full-wave simulation of waves in space and tokamak plasmas

    Science.gov (United States)

    Kim, Eun-Hwa; Bertelli, Nicola; Johnson, Jay; Valeo, Ernest; Hosea, Joel

    2017-10-01

    Simulation results using a 2D full-wave code (FW2D) for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry) and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC) waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF) waves in the scape-off layer (SOL) of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.

  13. Statistical behavior of foreshock Langmuir waves observed by the Cluster wideband data plasma wave receiver

    Directory of Open Access Journals (Sweden)

    K. Sigsbee

    2004-07-01

    Full Text Available We present the statistics of Langmuir wave amplitudes in the Earth's foreshock using Cluster Wideband Data (WBD Plasma Wave Receiver electric field waveforms from spacecraft 2, 3 and 4 on 26 March 2002. The largest amplitude Langmuir waves were observed by Cluster near the boundary between the foreshock and solar wind, in agreement with earlier studies. The characteristics of the waves were similar for all three spacecraft, suggesting that variations in foreshock structure must occur on scales greater than the 50-100km spacecraft separations. The electric field amplitude probability distributions constructed using waveforms from the Cluster WBD Plasma Wave Receiver generally followed the log-normal statistics predicted by stochastic growth theory for the event studied. Comparison with WBD receiver data from 17 February 2002, when spacecraft 4 was set in a special manual gain mode, suggests non-optimal auto-ranging of the instrument may have had some influence on the statistics.

  14. Statistical behavior of foreshock Langmuir waves observed by the Cluster wideband data plasma wave receiver

    Directory of Open Access Journals (Sweden)

    K. Sigsbee

    2004-07-01

    Full Text Available We present the statistics of Langmuir wave amplitudes in the Earth's foreshock using Cluster Wideband Data (WBD Plasma Wave Receiver electric field waveforms from spacecraft 2, 3 and 4 on 26 March 2002. The largest amplitude Langmuir waves were observed by Cluster near the boundary between the foreshock and solar wind, in agreement with earlier studies. The characteristics of the waves were similar for all three spacecraft, suggesting that variations in foreshock structure must occur on scales greater than the 50-100km spacecraft separations. The electric field amplitude probability distributions constructed using waveforms from the Cluster WBD Plasma Wave Receiver generally followed the log-normal statistics predicted by stochastic growth theory for the event studied. Comparison with WBD receiver data from 17 February 2002, when spacecraft 4 was set in a special manual gain mode, suggests non-optimal auto-ranging of the instrument may have had some influence on the statistics.

  15. Nonlinear plasma waves excitation by intense ion beams in background plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2004-01-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p =(4πe 2 n p /m) 1/2 is the electron plasma frequency, and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma

  16. Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2004-01-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p = (4πe 2 n p /m) 1/2 is the electron plasma frequency and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma

  17. Gravitational Wave Speed: Undefined. Experiments Proposed

    Directory of Open Access Journals (Sweden)

    Daniel Russell

    2018-04-01

    Full Text Available Since changes in all 4 dimensions of spacetime are components of displacement for gravitational waves, a theoretical result is presented that their speed is undefined, and that the Theory of Relativity is not reliable to predict their speed. Astrophysical experiments are proposed with objectives to directly measure gravitational wave speed, and to verify these theoretical results. From the circumference of two merging black hole's final orbit, it is proposed to make an estimate of a total duration of the last ten orbits, before gravitational collapse, for comparison with durations of reported gravitational wave signals. It is proposed to open a new field of engineering of spacetime wave modulation with an objective of faster and better data transmission and communication through the Earth, the Sun, and deep space. If experiments verify that gravitational waves have infinite speed, it is concluded that a catastrophic gravitational collapse, such as a merger of quasars, today, would re-define the geometry and curvature of spacetime on Earth, instantly, without optical observations of this merger visible, until billions of years in the future.

  18. Start-up of plasma current by electron Bernstein wave

    International Nuclear Information System (INIS)

    Maekawa, Takashi; Tanaka, Hitoshi; Uehide, Masaki

    2009-01-01

    Electron cyclotron current drive by electron Bernstein (EB) waves for the start-up and ramp-up of toroidal plasma current with no central solenoid in tokamaks is discussed. It is shown that high N// EB waves have ability to ramp-up the current against the counter voltage from self-induction, where N// is the parallel refractive index to the magnetic field, and they are especially suitable for initial current start-up phase where the bulk electron temperature is low enough to ensure high N// EB waves. (author)

  19. Wall effects on the propagation of compressional Alfven waves in a cylindrical plasma with two-ion species

    International Nuclear Information System (INIS)

    Akiyama, H.; Hayler, M.O.; Kristiansen, M.

    1985-01-01

    The dispersion relations for the compressional Alfven waves in a two-ion species plasma of deuterium and hydrogen are calculated for a configuration which includes a vacuum layer between the cylindrical plasma and the conducting wall. The presence of the vacuum layer strongly affects the propagation of the compressional Alfven wave, permitting some branches to propagate and penetrate the plasma column over most frequencies in the ion-cyclotron range. Basic Alfven-wave propagation and heating experiments in two-ion species consequently should be possible using tokamak and mirror devices with minor radii smaller than the Alfven wavelength

  20. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Zhou, Qianhong; Dong, Zhiwei; Yang, Wei

    2016-01-01

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance between the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.

  1. Shock-wave structure formation in a dusty plasma

    International Nuclear Information System (INIS)

    Popel', S.I.; Golub', A.P.; Loseva, T.V.; Bingkhem, R.; Benkadda, S.

    2001-01-01

    Nonstationary problem on evolution perturbation and its transformation into nonlinear wave structure is considered. The method developed permits finding solution to the system of nonlinear evolution equations describing dust particles with variable charge, Boltzmann electron and inertia ions. An accurate stationary solution as ion-sonic wave structures explained by anomalous dissipation due to electric discharge of dust particles was found. Evolution of two types of initial perturbations was studied, i.e.: soliton and immobile region with increased density of ions - a step. Soliton evolution in plasma with variable charge of dust particles results in the appearance on nonstationary shock-wave structure, whereas the step evolution gives rise to appearance of a shock wave similar to the stationary one along with rarefaction wave [ru

  2. Plasma wave instabilities in nonequilibrium graphene

    DEFF Research Database (Denmark)

    Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka

    2016-01-01

    We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....

  3. A flowing plasma model to describe drift waves in a cylindrical helicon discharge

    International Nuclear Information System (INIS)

    Chang, L.; Hole, M. J.; Corr, C. S.

    2011-01-01

    A two-fluid model developed originally to describe wave oscillations in the vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature, and confined plasma column, is applied to interpret plasma oscillations in a RF generated linear magnetized plasma [WOMBAT (waves on magnetized beams and turbulence)], with similar density and field strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower normalized rotation frequency, lower temperature, and lower axial velocity. Despite these differences, the two-fluid model provides a consistent description of the WOMBAT plasma configuration and yields qualitative agreement between measured and predicted wave oscillation frequencies with axial field strength. In addition, the radial profile of the density perturbation predicted by this model is consistent with the data. Parameter scans show that the dispersion curve is sensitive to the axial field strength and the electron temperature, and the dependence of oscillation frequency with electron temperature matches the experiment. These results consolidate earlier claims that the density and floating potential oscillations are a resistive drift mode, driven by the density gradient. To our knowledge, this is the first detailed physics model of flowing plasmas in the diffusion region away from the RF source. Possible extensions to the model, including temperature nonuniformity and magnetic field oscillations, are also discussed.

  4. Spike morphology in blast-wave-driven instability experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Fryxell, B.; Budde, A.; Hansen, J. F.; Miles, A. R.; Plewa, T.; Hearn, N.; Knauer, J.

    2010-01-01

    The laboratory experiments described in the present paper observe the blast-wave-driven Rayleigh-Taylor instability with three-dimensional (3D) initial conditions. About 5 kJ of energy from the Omega laser creates conditions similar to those of the He-H interface during the explosion phase of a supernova. The experimental target is a 150 μm thick plastic disk followed by a low-density foam. The plastic piece has an embedded, 3D perturbation. The basic structure of the pattern is two orthogonal sine waves where each sine wave has an amplitude of 2.5 μm and a wavelength of 71 μm. In some experiments, an additional wavelength is added to explore the interaction of modes. In experiments with 3D initial conditions the spike morphology differs from what has been observed in other Rayleigh-Taylor experiments and simulations. Under certain conditions, experimental radiographs show some mass extending from the interface to the shock front. Current simulations show neither the spike morphology nor the spike penetration observed in the experiments. The amount of mass reaching the shock front is analyzed and potential causes for the spike morphology and the spikes reaching the shock are discussed. One such hypothesis is that these phenomena may be caused by magnetic pressure, generated by an azimuthal magnetic field produced by the plasma dynamics.

  5. Interaction of High Intensity Electromagnetic Waves with Plasmas: Final Report

    International Nuclear Information System (INIS)

    Shvets, G.

    2008-01-01

    The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

  6. Determination of Jupiter's electron density profile from plasma wave observations

    International Nuclear Information System (INIS)

    Gurnett, D.A.; Scarf, F.L.; Kurth, W.S.; Shaw, R.R.; Poynter, R.L.

    1981-01-01

    This paper summarizes the electron density measurements obtained in the Jovian magnetosphere from the plasma wave instruments on the Voyager 1 and 2 spacecraft. Three basic techniques are discussed for determining the electron density: (1) local measurements from the low-frequency cutoff of continuum radiation, (2) local measurements from the frequency of upper hybrid resonance emissions, and (3) integral measurements from the dispersion of whistlers. The limitations and advantages of each technique are critically reviewed. In all cases the electron densities are unaffected by spacecraft charging or sheath effects, which makes these measurements of particular importance for verifying in situ plasma and low-energy charged particle measurments. In the outer regions of the dayside magnetosphere, beyond about 40 R/sub J/, the electron densities range from about 3 x 10 -3 to 3 x 10 -2 cm -3 . On Voyager 2, several brief excursions apparently occurred into the low-density region north of the plasma sheet with densities less than 10 -3 cm -3 . Approaching the planet the electron density gradually increases, with the plasma frequency extending above the frequency range of the plasma wave instrument (56 kHz, or about 38 electrons cm -3 ) inside of about 8 R/sub J/. Within the high-density region of the Io plasma torus, whistlers provide measurements of the north-south scale height of the plasma torus, with scale heights ranging from about 0.9 to 2.5 R/sub J/

  7. First results from the Cluster wideband plasma wave investigation

    Directory of Open Access Journals (Sweden)

    D. A. Gurnett

    2001-09-01

    Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The

  8. First results from the Cluster wideband plasma wave investigation

    Directory of Open Access Journals (Sweden)

    D. A. Gurnett

    Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The

  9. Drift waves and counter rotating vortices in pair-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Q., E-mail: qamar_haque@hotmail.co [Theoretical Plasma Physics Division, PINSTECH P.O. Nilore, Islamabad (Pakistan)

    2010-07-19

    Linear dispersion relation has been found for drift and acoustic waves in pair-ion-electron plasmas. The stationary solution in the form of counter rotating vortices has been obtained in the presence of equilibrium potential profile. It is noticed that the speed of nonlinear structures is reduced with the increase of electrons concentration in pair-ion plasmas. Linear instability condition has also been found in the presence of shear flow. It is pointed out that the present results can be useful for future pair-ion plasma experiments.

  10. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    Abstract. Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized two- species relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive ...

  11. A relativistic solitary wave in electron positron plasma

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Skarka, V.; Mahajan, S.

    1993-09-01

    The relativistic solitary wave propagation is studied in cold electron-positron plasma embedded in an external arbitrary strong magnetic field. The exact, analytical soliton-like solution corresponding to a localized, purely electromagnetic pulse with arbitrary big amplitude is found. (author). 7 refs, 1 fig

  12. Influence of radio frequency waves on the interchange stability in HANBIT mirror plasmas

    International Nuclear Information System (INIS)

    Hogun Jhang; Kim, S.S.; Lee, S.G.; Park, B.H.; Bak, J.G.

    2005-01-01

    Experimental and theoretical studies are made of the influence of high frequency radio frequency (rf) waves upon interchange stability in HANBIT mirror plasmas. An emphasis is put on the interchange stability near the resonance region, ω 0 ∼Ω i , where ω 0 is the angular frequency of the applied rf wave and Ω i is the ion cyclotron frequency. Recent HANBIT experiments have shown the existence of the interchange-stable operation window in favor of ω 0 /Ω i ≤1 with its sensitivity on the applied rf power. A strong nonlinear interaction between the rf wave and the interchange mode has been observed with the generation of sideband waves. A theoretical analysis including both the ponderomotive force and the nonlinear sideband wave coupling has been developed and applied to the interpretation of the experiments, resulting in a good agreement. From the study, it is concluded that the nonlinear wave-wave coupling process is responsible for the rf stabilization of the interchange modes in HANBIT mirror plasmas operating near the resonance condition. (author)

  13. Studies of hydromagnetic waves and oscillations in plasmas

    International Nuclear Information System (INIS)

    Sawley, M.L.

    1980-10-01

    Small amplitude magnetoacoustic oscillations in a partially ionized, non-uniform, current carrying plasma column of finite beta are considered. The linearized magnetohydrodynamic equations are used to develop a theory describing both free and forced magnetoacoustic oscillations. The results of numerical calculations are given for the specific case of diffuse pinch equilibrium configurations. In an experimental study the amplitude of the oscillating axial magnetic flux is determined for several frequencies in the vicinity of the first magnetoacoustic resonance. Accurate determination of the plasma density profile is shown to be possible. Finite-amplitude effects on the propagation of axisymmetric hydromagnetic waves are examined. A nonlinear theory is developed which describes the second-order perturbation that accompanies the primary wave. The influence of Hall currents and the presence of neutral atoms on the second-order fields is treated. In an investigation on the propagation of torsional waves the observed second-order fields are shown to exhibit good quantitative agreement with theoretical calculations for moderate primary wave amplitudes. The re-ionization of the plasma by a torsional wave is investigated. A theoretical description is given of the nonlinear excitation of magnetoacoustic oscillations by means of an oscillating axial current

  14. Acoustic nonlinear periodic waves in pair-ion plasmas

    Science.gov (United States)

    Mahmood, Shahzad; Kaladze, Tamaz; Ur-Rehman, Hafeez

    2013-09-01

    Electrostatic acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in unmagnetized pair-ion plasmas consisting of same mass and oppositely charged ion species with different temperatures. Using reductive perturbation method and appropriate boundary conditions, the Korteweg-de Vries (KdV) equation is derived. The analytical solutions of both cnoidal wave and soliton solutions are discussed in detail. The phase plane plots of cnoidal and soliton structures are shown. It is found that both compressive and rarefactive cnoidal wave and soliton structures are formed depending on the temperature ratio of positive and negative ions in pair-ion plasmas. In the special case, it is revealed that the amplitude of soliton may become larger than it is allowed by the nonlinear stationary wave theory which is equal to the quantum tunneling by particle through a potential barrier effect. The serious flaws in the earlier published results by Yadav et al., [PRE 52, 3045 (1995)] and Chawla and Misra [Phys. Plasmas 17, 102315 (2010)] of studying ion acoustic nonlinear periodic waves are also pointed out.

  15. Ion Bernstein wave heating in a multi-component plasma

    International Nuclear Information System (INIS)

    Puri, S.

    1980-10-01

    Conditions for the coupling and absorption of Gross-Bernstein ion-cyclotron waves in a multi-component plasma are examined. Two cases are distinguished depending upon whether, the antenna initially launches, (i) the quasi-torsional slow electromagnetic wave with azimuthal magnetic field (TM) polarization, or (ii) the quasi-compressional fast wave with the electric field oriented azimuthally (TE). Analytic expressions for the plasma surface impedance are derived taking into account the pertinent warm plasma modifications near the vacuum-plasma interface. Antenna configurations capable of efficient coupling of the radio frequency energy to these modes are studied. A method for simulating waveguide like launching using transmission lines is pointed out. It is found that impurity concentrations exceeding a few parts in a thousand are capable of competing with the bulk ions in the energy absorption processes; this could lead to energy deposition near the plasma edge. Measures for avoiding edge heating problems by a careful choice of parameters e.g. restricting the heating frequency to the fundamental ion gyrofrequency are outlined. Equal care is to be exercised in limiting the nsub(z) spectrum to low discrete values in order to avoid the potentially dangerous problem of runaway electron heating. (orig.)

  16. Alfven wave propagation in a partially ionized plasma

    International Nuclear Information System (INIS)

    Watts, Christopher; Hanna, Jeremy

    2004-01-01

    Results from a laboratory study of the dispersion relation of Alfven waves propagating through a partially ionized plasma are presented. The plasma is generated using a helicon source, creating a high density, current-free discharge, where the source can be adjusted to one of several modes with varying neutral fraction. Depending on the neutral fraction, the measured dispersion curve of shear Alfven waves can change significantly. Measurement results are compared with theoretical predictions of the effect of neutral particles on Alfven wave propagation. In fitting the theory, the neutral fraction is independently estimated using two simple particle transport models, one collisionless, the other collisional. The two models predict comparable neutral fractions, and agree well with the neutral fraction required for the Alfven dispersion theory

  17. Plasma acceleration by magnetic nozzles and shock waves

    International Nuclear Information System (INIS)

    Hattori, Kunihiko; Murakami, Fumitake; Miyazaki, Hiroyuki; Imasaki, Atsushi; Yoshinuma, Mikirou; Ando, Akira; Inutake, Masaaki

    2001-01-01

    We have measured axial profiles of ion acoustic Mach number, M i , of a plasma flow blowing off from an MPD (magneto-plasma-dynamic) arc-jet in various magnetic configurations. It is found that the Mach number increases in a divergent nozzle up to 3, while it stays at about unity in a uniform magnetic channel. When a magnetic bump is added in the exit of the divergent magnetic nozzle, the Mach number suddenly decreases below unity, due to an occurrence of shock wave. The subsonic flow after the shock wave is re-accelerated to a supersonic flow through a magnetic Laval nozzle. This behavior is explained well by the one-dimensional isotropic flow model. The shock wave is discussed in relation to the Rankine-Hugoniot relation. (author)

  18. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    Science.gov (United States)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-12-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter.

  19. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    International Nuclear Information System (INIS)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-01-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter

  20. Nonextensive dust acoustic waves in a charge varying dusty plasma

    Science.gov (United States)

    Bacha, Mustapha; Tribeche, Mouloud

    2012-01-01

    Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.

  1. Nonlinear acoustic waves in partially ionized collisional plasmas

    International Nuclear Information System (INIS)

    Rao, N.N.; Kaup, D.J.; Shukla, P.K.

    1991-01-01

    Nonlinear propagation of acoustic-type waves in a partially ionized three-component collisional plasma consisting of electrons, ions and neutral particles is investigated. For bidirectional propagation, it is shown that the small- but finite-amplitude waves are governed by the Boussinesq equation, which for unidirectional propagation near the acoustic speed reduces to the usual Korteweg-de Vries equation. For large-amplitude waves, it is demonstrated that the relevant fluid equations are integrable in a stationary frame, and the parameter values for the existence of finite-amplitude solutions are explicitly obtained. In both cases, the different temperatures of the individual species, are taken into account. The relevance of the results to the earth's ionospheric plasma in the lower altitude ranges is pointed out. (author)

  2. Development of SMM wave laser scattering apparatus for the measurements of waves and turbulences in the tokamak plasma

    International Nuclear Information System (INIS)

    Saito, T.; Hamada, Y.; Yamashita, T.; Ikeda, M.; Nakamura, M.

    1980-01-01

    The SMM wave laser scattering apparatus has been developed for the measurement of the waves and turbulences in the plasma. This apparatus will help greatly to clarify the physics of RF heating of the tokamak plasma. The present status of main parts of the apparatus, the SMM wave laser and the Schottky barrier diode mixer for the heterodyne receiver, are described. (author)

  3. Revisiting linear plasma waves for finite value of the plasma parameter

    Science.gov (United States)

    Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren

    2010-11-01

    We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.

  4. Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagation

    International Nuclear Information System (INIS)

    Matsuda, Y.; Crawford, F.W.

    1975-01-01

    An economical low-noise plasma simulation model originated by Denavit is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation. These tests serve to establish the low-noise features of the model, and to verify the theoretical linear dispersion relation at wave energy levels as low as 10 -6 of the plasma thermal energy: Better quantitative results are obtained, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories

  5. Nonlinear self-precession and wavenumber shift of electromagnetic waves under resonance and of Alfven waves in plasmas

    International Nuclear Information System (INIS)

    Bhattacharyya, B.; Chakraborty, B.

    1979-01-01

    Nonlinear corrections of a left and a right circularly polarized electromagnetic wave of the same frequency, propagating in the direction of a static and uniform magnetic field in a cold and collisionally damped two-component plasma, have been evaluated. The nonlinearly correct dispersion relation, self-generating nonlinear precessional rotation of the polarization ellipse of the wave and the shift in a wave parameter depend on linear combinations of products of the amplitude components taken two at a time and hence on the energies of the waves. Both in the low frequency resonance (that is when the ion cyclotron frequency equals the wave frequency) and in the high frequency resonance (that is when the electron cyclotron frequency equals the wave frequency), the self-precessional rate and wavenumber shift are found to be large and so have the possibility of detection in laboratory experiments. Moreover, for the limit leading to Alfven waves, these nonlinear effects have been found to have some interesting and significant properties. (Auth.)

  6. Solitary Langmuir waves in two-electron temperature plasma

    Science.gov (United States)

    Prudkikh, V. V.; Prudkikh

    2014-06-01

    Nonlinear interaction of Langmuir and ion-acoustic waves in two-electron temperature plasma is investigated. New integrable wave interaction regime was discovered, this regime corresponds to the Langmuir soliton with three-hump amplitude, propagating with a speed close to the ion-sound speed in the conditions of strong non-isothermality of electronic components. It was discovered that besides the known analytical solution in the form of one- and two-hump waves, there exists a range of solutions in the form of solitary waves, which in the form of envelope has multi-peak structure and differs from the standard profiles described by hyperbolic functions. In case of fixed plasma parameters, different group velocities correspond to the waves with different number of peaks. It is found that the Langmuir wave package contains both even and uneven numbers of oscillations. Low-frequency potential here has uneven number of peaks. Interrelation of obtained and known earlier results are also discussed.

  7. Radio frequency wave experiments on the MST reversed field pinch

    International Nuclear Information System (INIS)

    Forest, C.B.; Chattopadhyay, P.K.; Nornberg, M.D.; Prager, S.C.; Thomas, M.A.; Harvey, R.W.; Ram, A.K.

    1999-04-01

    Experiments, simulations, and theory all indicate that the magnetic fluctuations responsible for the poor confinement in the reversed field pinch (RFP) can be controlled by altering the radial profile of the current density. The magnetic fluctuations in the RFP are due to resistive MHD instabilities caused by current profile peaking; thus confinement in the RFP is ultimately the result of a misalignment between inductively driven current profiles and the stable current profiles characteristic of the Taylor state. If a technique such as rf current drive can be developed to non-inductively sustain a Taylor state (a current profile linearly stable to all tearing modes), the confinement of the RFP and its potential as a reactor concept are likely to increase. Whether there is a self-consistent path from poor confinement to greatly improved confinement through current profile modification is an issue for future experiments to address if and only if near term experiments can demonstrate: (1) coupling to and the propagation of rf waves in RFP plasmas, (2) efficient current drive, and (3) control of the power deposition which will make it possible to control the current profile. In this paper, modeling results and experimental plans are presented for two rf experiments which have the potential of satisfying these three goals: high-n parallel lower hybrid (LH) waves and electron Bernstein waves (EBWs)

  8. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  9. Effect of a transverse plasma jet on a shock wave induced by a ramp

    Directory of Open Access Journals (Sweden)

    Hongyu WANG

    2017-12-01

    Full Text Available We conducted experiments in a wind tunnel with Mach number 2 to explore the evolution of a transverse plasma jet and its modification effect on a shock wave induced by a ramp with an angle of 24°. The transverse plasma jet was created by arc discharge in a small cylindrical cavity with a 2 mm diameter orifice. Three group tests with different actuator arrangements in the spanwise or streamwise direction upstream from the ramp were respectively studied to compare their disturbances to the shock wave. As shown by a time-resolved schlieren system, an unsteady motion of the shock wave by actuation was found: the shock wave was significantly modified by the plasma jet with an upstream motion and a reduced angle. Compared to spanwise actuation, a more intensive impact was obtained with two or three streamwise actuators working together. From shock wave structures, the control effect of the plasma jet on the shock motion based on a thermal effect, a potential cause of shock modification, was discussed. Furthermore, we performed a numerical simulation by using the Improved Delayed Detached Eddy Simulation (IDDES method to simulate the evolution of the transverse plasma jet plume produced by two streamwise actuators. The results show that flow structures are similar to those identified in schlieren images. Two streamwise vortices were recognized, which indicates that the higher jet plume is the result of the overlap of two streamwise jets. Keywords: Flow control, Improved delayed detached eddy simulation (IDDES method, Plasma synthetic jet, Shock wave/boundary layer interaction, Time resolved schlieren system

  10. Lagrangian analysis of nonlinear wave-wave interactions in bounded plasmas

    International Nuclear Information System (INIS)

    Carr, A.R.

    1979-01-01

    In a weakly turbulent nonlinear wave-supporting medium, one of the important nonlinear processes which may occur is resonant three-wave interaction. Whitham's averaged Lagrangian method provides a general formulation of wave evolution laws which is easily adapted to nonlinear dispersive media. In this thesis, the strength of nonlinear interactions between three coherent, axisymmetric, low frequency, magnetohydrodynamic (Alfven) waves propagating in resonance along a cold cylindrical magnetized plasma column is calculated. Both a uniform and a parabolic density distribution have been considered. To account for a non-zero plasma temperature, pressure effects have been included. Distinctive features of the work are the use of cylindrical geometry, the presence of a finite rather than an infinite axial magnetic field, the treatment of a parabolic density distribution, and the inclusion of both ion and electron contributions in all expressions. Two astrophysical applications of the presented theory have been considered. In the first, the possibility of resonant three-wave coupling between geomagnetic micropulsations, which propagate as Alfven or magnetosonic waves along the Earth's magnetic field lines, has been investigated. The second case is the theory of energy transport through the solar chromosphere by upward propagating magnetohydrodynamic waves, which may then couple to heavily damped waves in the corona, causing the observed excess heating in that region

  11. Conditions for sustaining low-pressure plasma columns by travelling electromagnetic UHF waves

    International Nuclear Information System (INIS)

    Benova, E.; Zhelyazkov, I.

    1997-01-01

    The paper considers the conditions for sustaining low-pressure plasma columns by travelling electromagnetic waves in symmetric and dipolar modes, respectively. The treatment is fully electrodynamic. It is shown that the wave energy flux along the plasma column determines the conditions for sustaining the discharge. In particular as the plasma is sustained by a symmetric wave whose flux depends mainly on the radial distribution of the wave electric field whilst for a dipolar wave sustained plasma the flux is specified by the magnitude of the axial wave field component at the plasma-dielectric interface. (orig.)

  12. Obliquely propagating large amplitude solitary waves in charge neutral plasmas

    Directory of Open Access Journals (Sweden)

    F. Verheest

    2007-01-01

    Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.

  13. Resonance absorption of ICRF wave in edge plasma

    International Nuclear Information System (INIS)

    Sugihara, Ryo; Yamanaka, Kaoru.

    1987-07-01

    An edge plasma is shown to significantly absorb ICRF wave when a resonant triplet, a cutoff-resonance-cutoff triplet, is constructed in the evanescent region. Two-ion-component plasmas in a torus are considered though the plasmas are modeled by a slab in which the density changes linearly along the x-axis. The resonance is a perpendicular-ion-cyclotron resonance, i.e., an Alfven resonance, and is formed when the applied frequency ω is smaller than the local cyclotron frequency, at the edge of the antenna side, of the lighter species of ions. Roughly the absorption rate A b is given by M 2 for M 2 >> S 2 and S 4 for S 2 >> M 2 where M = k y l and S ≅ k z l and l is a scale length of the order of the plasma minor radius and k y and k z are the perpendicular and the parallel components of the wave vector. It is noted that the both quantities, M and S, readily become of the order of unity. Since A b is not very sensitive to the density ratio of the two ion species, a few percent of impurities may cause a significant absorption. As the mass ratio of the two ion species comes close to unity the triplet forms readily. Therefore a D-T plasma seems to suffer more easily this kind of resonance absorption than a D-H plasma. (author)

  14. Wave excitation in electron beam experiment on Japanese satellite JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Kawashima, N.

    1982-01-01

    This chapter reports on a beam-plasma interaction experiment conducted in the magnetosphere by emitting an electron beam (100-200 eV, 0.25-1.0 mA) from the JIKIKEN satellite. Topics considered include instrumentation, wave excitation, and the charging of the satellite. Various types of wave emission are detected by low frequency and high frequency wave detectors. Waves near upper-hybrid frequency and at electron cyclotron frequency are detected in a low L-value region, which will be useful diagnostic means for plasma density and magnetic field. Vehicle charging up to the beam energy is observed outside the plasmapause. The main objectives of the Controlled Beam Experiment (CBE) are to control the satellite potential by an electron beam emission, and to study the wave excitation (linear and non-linear wave phenomena due to the beam-plasma interaction). It is concluded that waves excited in the beamplasma interaction are strongly dependent on plasma and other parameters in the magnetosphere so that it will provide important knowledge of the magnetosphere plasma processes

  15. Full wave simulation of waves in ECRIS plasmas based on the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)

    2014-02-12

    This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.

  16. Experiment on dust acoustic solitons in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)

  17. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  18. Identification of waves by RF magnetic probes during lower hybrid wave injection experiments on the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Shinya, Takahiro; Ejiri, Akira; Takase, Yuichi

    2014-01-01

    RF magnetic probes can be used to measure not only the wavevector, but also the polarization of waves in plasmas. A 5-channel RF magnetic probe (5ch-RFMP) was installed in the TST-2 spherical tokamak and the waves were studied in detail during lower hybrid wave injection experiments. From the polarization measurements, the poloidal RF magnetic field is found to be dominant. In addition to polarization, components of k perpendicular to the major radial direction were obtained from phase differences among the five channels. The radial wavenumber was obtained by scanning the radial position of the 5ch-RFMP on a shot by shot basis. The measured wavevector and polarization in the plasma edge region were consistent with those calculated from the wave equation for the slow wave branch. While the waves with small and large k ∥ were excited by the antenna, only the small k ∥ component was measured by the 5ch-RFMP; this suggests that the waves with larger k ∥ were absorbed by the plasma. (author)

  19. Heat wave experiments on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Erckmann, V.; Gasparino, U.; Giannone, L.; Maassberg, H.; Tutter, M.

    1993-01-01

    Power modulation with well localized ECRH power deposition at both 70 and 140 GHz, has been used to generate temperature perturbations which propagate away from the deposition region. Radiometry of the ECE is used to diagnose the generated temperature perturbation as a function of distance to the deposition zone. The decay of the amplitude and the delay of the wave provide the information to determine the electron thermal diffusivity. This value is then compared with the one derived from a global power balance. It is found that both values agree with the error bars. The technique has also been applied in recent experiments during L-H-mode transitions in W7-AS demonstrating a significant reduction in the effective heat diffusivity in the plasma core during the H-phase. The modulated ECRH causes a modulation of the Shafranov shift. Interference of the prompt shift with the heat wave results in an apparent asymmetry of the decay length of the heat wave with respect to the plasma centre. (orig.)

  20. Parametric Excitations of Fast Plasma Waves by Counter-propagating Laser Beams

    International Nuclear Information System (INIS)

    Shvets, G.; Fisch, N.J.

    2001-01-01

    Short- and long-wavelength plasma waves can become strongly coupled in the presence of two counter-propagating laser pump pulses detuned by twice the cold plasma frequency. What makes this four-wave interaction important is that the growth rate of the plasma waves occurs much faster than in the more obvious co-propagating geometry

  1. Reflection and absorption of ordinary waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Croci, R.

    1990-11-01

    This study treats the system of Vlasov and Maxwell equations for the Fourier transform in space and time of a plasma referred to Cartesian coordinates with the coordinate z parallel to the uniform equilibrium magnetic field with the equilibrium plasma density dependent on ηx, where η is a parameter. The k y component of the wave vector is taken equal to zero, whereas k z is different from zero. When the interaction of ordinary and extraordinary waves is neglected, the Fourier transform of the electric field of the ordinary waves obeys a homogeneous integral equation with principal part integrals, which is solved in the case of weak absorption and sufficiently small η (essentially smaller than vacuum wave vector), but without limitations on the ratio of the wavelength to the Larmor radius (the usual approximation being limited to wavelengths much smaller than the Larmor radius). The reflection and transmission coefficients and the total energy absorption are given in this approximation, whereas the energy conservation theorem for the reflection and transmission coefficients in an absorption-free plasma are derived for every value of η without explicit knowledge of the solutions. Finally, a general and compact equation for the eigenvalues which does not require complex analysis and knowledge of all solutions of the dispersion relation is given. (orig.)

  2. Fast Particle Interaction With Waves In Fusion Plasmas

    International Nuclear Information System (INIS)

    Breizman, Boris

    2006-01-01

    There are two well-known motivations for theoretical studies of fast particle interaction with waves in magnetic confinement devices. One is the challenge of avoiding strong collective losses of alpha particles and beam ions in future burning plasma experiments. The other one is the compelling need to quantitatively interpret the large amount of experimental data from JET, TFTR, JT-60U, DIII-D, and other machines. Such interpretation involves unique diagnostic opportunities offered by MHD spectroscopy. This report discusses how the present theory responds to the stated challenges and what theoretical and computational advances are required to address the outstanding problems. More specifically, this paper deals with the following topics: predictive capabilities of linear theory and simulations; theory of Alfven cascades; diagnostic opportunities based on linear and nonlinear properties of unstable modes; interplay of kinetic and fluid nonlinearities; fast chirping phenomena for non-perturbative modes; and global transport of fast particles. Recent results are presented on some of the listed topics, although the main goal is to identify critical issues for future work

  3. Electron acceleration by wave turbulence in a magnetized plasma

    Science.gov (United States)

    Rigby, A.; Cruz, F.; Albertazzi, B.; Bamford, R.; Bell, A. R.; Cross, J. E.; Fraschetti, F.; Graham, P.; Hara, Y.; Kozlowski, P. M.; Kuramitsu, Y.; Lamb, D. Q.; Lebedev, S.; Marques, J. R.; Miniati, F.; Morita, T.; Oliver, M.; Reville, B.; Sakawa, Y.; Sarkar, S.; Spindloe, C.; Trines, R.; Tzeferacos, P.; Silva, L. O.; Bingham, R.; Koenig, M.; Gregori, G.

    2018-05-01

    Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1-3. Strong shocks are expected to accelerate particles to very high energies4-6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.

  4. The Material Plasma Exposure eXperiment (MPEX)

    Science.gov (United States)

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Canik, J.; Caughman, J. B. O.; Duckworth, R. C.; Goulding, R. H.; Hillis, D. L.; Lore, J. D.; Lumsdaine, A.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Shaw, G. C.; Luo, G.-N.

    2014-10-01

    Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The Material Plasma Exposure eXperiment (MPEX) will address this regime with electron temperatures of 1--10 eV and electron densities of 1021--1020 m-3. The resulting heat fluxes are about 10 MW/m2. MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH). Preliminary modeling has been used for pre-design studies of MPEX. MPEX will be capable to expose neutron irradiated samples. In this concept targets will be irradiated in ORNL's High Flux Isotope Reactor (HFIR) or possibly at the Spallation Neutron Source (SNS) and then subsequently (after a sufficient long cool-down period) exposed to fusion reactor relevant plasmas in MPEX. The current state of the pre-design of MPEX including the concept of handling irradiated samples will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  5. ASPI experiment: measurements of fields and waves on board the INTERBALL-1 spacecraft

    Directory of Open Access Journals (Sweden)

    S. Klimov

    1997-05-01

    Full Text Available The plasma-wave experiment ASPI (analysis of spectra of plasma waves and instabilities on board the INTERBALL spacecraft is a combined wave diagnostics experiment. It performs measurements of the DC and AC magnetic field vector by flux-gate and search-coil sensors, the DC and AC electric field vector by Langmuir double probes and the plasma current by Langmuir split probe. Preliminary data analysis shows the low noise levels of the sensors and the compatibility of new data with the results of previous missions. During several months of in-orbit operation a rich collection of data was acquired, examples of which at the magnetopause and plasma sheet are presented in second part of the paper.

  6. A new method for detection of the electron temperature in laser-plasma short wave cut off of stimulated Raman scattering spectrum

    International Nuclear Information System (INIS)

    Zhang Jiatai

    1994-01-01

    From the theory of stimulated Raman scattering (SRS) three wave interaction, a new method of detecting the electron temperature in laser-plasma is obtained. SRS spectrum obtained from Shenguang No. 12 Nd-laser experiments are analysed. Using the wave length of short wave cut off of SRS, the electron temperature in corona plasma region is calculated consistently. These results agree reasonable with X-ray spectrum experiments

  7. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    Science.gov (United States)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with

  8. Role of plasma equilibrium current in Alfven wave antenna optimization

    International Nuclear Information System (INIS)

    Puri, S.

    1986-12-01

    The modifications in the antenna loading produced by the plasma equilibrium current, the Faraday shield, and the finite electron temperature for coupling to the Alfven waves are studied using a self-consistent, three-dimensional, fully analytic periodic-loop-antenna model. The only significant changes are found to occur due to the plasma current and consist of an improved coupling (by a factor of ∝ 2.5) at low toroidal numbers (n ∝ 1-3). Despite this gain, however, the coupling to low n continues to be poor with R=0.03 Ω and Q=180 for n=2. Optimum coupling with R=0.71 Ω and Q=16.8 occurs for n=8 as was also the case in the absence of the plasma current. For the large n values, mode splitting due to the removal of the poloidal degeneracy combined with the finite electron temperatures effects lead to significant broadening of the energy absorption profile. Direct antenna coupling to the surface shear wave is small and no special provision, such as Faraday shielding, may be needed for preventing surface losses. The introduction of the Faraday screen, in fact, increases the coupling to the surface shear wave, possibly by acting as an impedance matching transformer between the antenna and the plasma. The finite electron temperature causes the predictable increase in the absorption width without influencing the antenna coupling. Thus the recommendations for antenna design for optimum coupling to the Alfven wave remain unaffected by the inclusion of the plasma current. Efficient coupling with capabilities for dynamic impedance tracking through purely electronic means may be obtained using a dense-cluster-array antenna with a toroidal configuration of n ∝ 8. (orig.)

  9. Surface impedance of travelling--Wave antenna in magnetized plasma

    International Nuclear Information System (INIS)

    Denisenko, I.B.; Ostrikov, K.N.

    1993-01-01

    Wave properties of metal antennas immersed in a magnetoactive plasma are intensively studied nowadays with the objects of radio communications in ionosphere, plasma heating, gas discharge technique. Many papers are devoted to studies of sheath waves (SW) in magnetoplasma, which are surface by nature and propagate along the metal-low-density sheath-plasma waveguide structure. The results of these papers suggest that the existence of these waves makes significant contribution in antenna impedance. Note that the impedance measurement is one of possible ways of experimental surface waves characterization. In the present report the surface impedance of travelling SW antenna immersed in magnetoactive plasma is calculated and its dependence on the waveguide structure parameters such as plasma density, external magnetic field H 0 and electrons collisional frequency values, sheath region width, conductivity of metal surface is studied. The calculations have been carried out in a quasiplane approximation, when antenna radius greatly exceeds the SW skin depth. Note that the finite conductivity of metal is necessary to be taken into account to provide a finite surface impedance value. The surface impedance is calculated in two cases, namely when SW propagate along (Ζ parallel ) and across (Ζ perpendicular ) the external magnetic field. The relation between the values Ζ parallel and Ζ perpendicular is obtained. This relation shows that the values Ζ parallel and Ζ parallel may satisfy both inequalities Ζ parallel much-gt Ζ perpendicular and Ζ perpendicular approx-gt Ζ perpendicular dependent on the parameters of the structure. The comparison of dispersion properties of the SW propagating along Η 0 with the experimental results is carried out. The results are shown to satisfactorily correspond to the experimental results

  10. Numerical Computation of Wave-Plasma Interactions in Multi-Dimensional Systems

    International Nuclear Information System (INIS)

    D. A. D'Ippolito; J. R. Myra

    2005-01-01

    This project studied two kinds of nonlinear interactions between ion cyclotron range of frequency waves and fusion plasmas. A wavelet technique was also developed for analyzing the complex wave fields produced by wave propagation codes

  11. Observation of refraction and convergence of ion acoustic waves in a plasma with a temperature gradient

    International Nuclear Information System (INIS)

    Nishida, Y.; Hirose, A.

    1977-01-01

    The refraction and convergence of ion acoustic waves are experimentally investigated in a magnetized plasma with an electron temperature gradient. When ion acoustic waves are launched parallel to the field lines the waves converge toward the interior of the plasma column where the electron temperature is lower, in good agreement with theoretical prediction. Wave interference is also observed. (author)

  12. On the self-trapping of an electromagnetic wave in magnetized plasma

    International Nuclear Information System (INIS)

    El-Ashry, M.Y.; Berezhiani, V.I.; Pichkhadze, Sh.D.

    1987-06-01

    The possibility of relativistic self-trapping of an electromagnetic wave in magnetized plasma is studied. It is shown that in the case of propagation of fast wave packet of electromagnetic wave in plasma, self-trapping is possible due to the effect of relativistic non-linearity, which is effective even for small amplitudes of the pumping wave. (author). 7 refs

  13. Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument

    Science.gov (United States)

    Gurnett, D. A.

    2017-12-01

    Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.

  14. Wave excitation in electron beam experiment on Japanese satellite JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Kawashima, N.

    1982-01-01

    Beam-plasma interaction experiment has been made in the magnetosphere by emitting an electron beam (100-200 eV, 0.25-1.0 mA) from the satellite JIKIKEN (EXOS-B). Various types of wave emission are detected by LF and HF wave detectors. Waves near at upper-hybrid frequency and at electron cyclotron frequency are detected in a low L-value region, which will be useful diagnostic means for plasma density and magnetic field. Vehicle charging up to the beam energy is also observed outside the plasmapause

  15. Optimization of incident EC wave polarization in real-time polarization scan experiments on LHD

    International Nuclear Information System (INIS)

    Tsujimura, Toru I.; Mizuno, Yoshinori; Makino, Ryohei

    2016-01-01

    Real-time polarization scan experiments were performed on the Large Helical Device (LHD) to search an optimal incident wave polarization for electron cyclotron resonance heating. The obtained optimal polarization state to maximize the power absorption to the LHD plasma is compared with the ray-tracing code that includes mode content analyses, which indicates that the calculated results are generally in good agreement with the experimental results. The analyses show that optimal coupling to plasma waves requires a fine adjustment for an incident wave polarization even for perpendicular injection due to the finite density profile and the magnetic shear at the peripheral region. (author)

  16. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    International Nuclear Information System (INIS)

    Leyser, T.B.

    1994-01-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. The electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission

  17. Plasma opening switch experiments on supermite

    International Nuclear Information System (INIS)

    Mendel, C.W.; Quintenz, J.P.; Rosenthal, S.E.; Savage, M.E.

    1988-01-01

    Experiments using plasma opening switches with fast field coils and plasmas injected on slow magnetic fields are described. Data showing the measurement of the field penetration into the volume that initially held the plasma fill will be shown. Assuming the plasma is mostly pushed back from the coil, rather than being penetrated by the magnetic field allows the density to be calculated, and gives densities of a few times 10 13 cm -3 for our usual operating range. The data makes it clear that the switch is open well before the initial plasma volume is completely penetrated by the magnetic fields. Additional measurements relating to the magnetic field penetration distance and physical penetration mechanism are presented. Other data presented show a magnetic insulation problem which must be solved before very large voltage multiplication can be accomplished with sufficient switch efficiency

  18. Plasma waves generated by rippled magnetically focused electron beams surrounded by tenuous plasmas

    International Nuclear Information System (INIS)

    Cuperman, S.; Petran, F.

    1982-01-01

    This chapter investigates the electrostatic instability and the corresponding unstable wave spectrum of magnetically focused neutralized rippled electron beams under spacelike conditions. Topics considered include general equations and equilibrium, the derivation of the dispersion relation, and the solution of the dispersion relation (long wavelength perturbations, short wavelength perturbations, the rippled beam). The results indicate that in the long wavelength limit two types of instability (extending over different frequency ranges) exist. An instability of the beam-plasma type occurs due to the interaction between the beam electrons and the surrounding plasm electrons at the beam-plasma interface. A parametric type instability is produced by the coupling of a fast forward wave and a fast backward wave due to the rippling (modulation) of the beam. It is demonstrated that in the short wavelength limit, surface waves which are stable for the laminar beam may become unstable in the rippled beam case

  19. Effect of electromagnetic waves and higher harmonics in capacitively coupled plasma phenomena

    International Nuclear Information System (INIS)

    Upadhyay, R R; Sawada, I; Ventzek, P L G; Raja, L L

    2013-01-01

    High-resolution self-consistent numerical simulation of electromagnetic wave phenomena in an axisymmetric capacitively coupled plasma reactor is reported. A prominent centre-peaked plasma density profile is observed for driving frequencies of 60 MHz and is consistent with observations in the literature and accompanying experimental studies. A power spectrum of the simulated wave electric field reveals the presence of well-resolved high frequency harmonic content up to the 20th harmonic of the excitation frequency; an observation that has also been reported in experiments. Importantly, the simulation results reveal that the occurrence of higher harmonics is strongly correlated with the occurrence of a centre-peaked plasma density profile. (fast track communication)

  20. Influence of plasma shock wave on the morphology of laser drilling in different environments

    Science.gov (United States)

    Zhai, Zhaoyang; Wang, Wenjun; Mei, Xuesong; Wang, Kedian; Yang, Huizhu

    2017-05-01

    Nanosecond pulse laser was used to study nickel-based alloy drilling and compare processing results of microholes in air environment and water environment. Through analysis and comparison, it's found that environmental medium had obvious influence on morphology of laser drilling. High-speed camera was used to shoot plasma morphology during laser drilling process, theoretical formula was used to calculate boundary dimension of plasma and shock wave velocity, and finally parameters were substituted into computational fluid dynamics simulation software to obtain solutions. Obtained analysis results could intuitively explain different morphological features and forming reasons between laser drilling in air environment and water environment in the experiment from angle of plasma shock waves. By comparing simulation results and experimental results, it could help to get an understanding of formation mechanism of microhole morphology, thus providing basis for further improving process optimization of laser drilling quality.

  1. Beam-plasma coupling physics in support of active experiments

    Science.gov (United States)

    Yakymenko, K.; Delzanno, G. L.; Roytershteyn, V.

    2017-12-01

    The recent development of compact relativistic accelerators might open up a new era of active experiments in space, driven by important scientific and national security applications. Examples include using electron beams to trace magnetic field lines and establish causality between physical processes occurring in the magnetosphere and those in the ionosphere. Another example is the use of electron beams to trigger waves in the near-Earth environment. Waves could induce pitch-angle scattering and precipitation of energetic electrons, acting as an effective radiation belt remediation scheme. In this work, we revisit the coupling between an electron beam and a magnetized plasma in the framework of linear cold-plasma theory. We show that coupling can occur through two different regimes. In the first, a non-relativistic beam radiates through whistler waves. This is well known, and was in fact the focus of many rockets and space-shuttle campaigns aimed at demonstrating whistler emissions in the eighties. In the second regime, the beam radiates through extraordinary (R-X) modes. Nonlinear simulations with a highly-accurate Vlasov code support the theoretical results qualitatively and demonstrate that the radiated power through R-X modes can be much larger than in the whistler regime. Test-particle simulations in the wave electromagnetic field will also be presented to assess the efficiency of these waves in inducing pitch-angle scattering via wave-particle interactions. Finally, the implications of these results for a rocket active experiment in the ionosphere and for a radiation belt remediation scheme will be discussed.

  2. Longitudinal traveling waves bifurcating from Vlasov plasma equilibria

    International Nuclear Information System (INIS)

    Holloway, J.P.

    1989-01-01

    The kinetic equations governing longitudinal motion along a straight magnetic field in a multi-species collisionless plasma are investigated. A necessary condition for the existence of small amplitude spatially periodic equilibria and traveling waves near a given spatially uniform background equilibrium is derived, and the wavelengths which such solutions must approach as their amplitude decreases to zero are discussed. A sufficient condition for the existence of these small amplitude waves is also established. This is accomplished by studying the nonlinear ODE for the potential which arises when the distribution functions are represented in a BGK form; the arbitrary functions of energy that describe the BGK representation are tested as an infinite dimensional set of parameters in a bifurcation theory for the ODE. The positivity and zero current condition in the wave frame of the BGK distribution functions are maintained. The undamped small amplitude nonlinear waves so constructed can be made to satisfy the Vlasov dispersion relation exactly, but in general they need only satisfy it approximately. Numerical calculations reveal that even a thermal equilibrium electron-proton plasma with equal ion and electron temperatures will support undamped traveling waves with phase speeds greater than 1.3 times the electron velocity; the dispersion relation for this case exhibits both Langmuir and ion-acoustic branches as long wavelength limits, and shows how these branches are in fact connected by short wavelength waves of intermediate frequency. In apparent contradiction to the linear theory of Landau, these exact solutions of the kinetic equations do not damp; this contradiction is explained by observing that the linear theory is, in general, fundamentally incapable of describing undamped traveling waves

  3. Alfven wave experiments on the TORTUS tokamak

    International Nuclear Information System (INIS)

    Ballico, M.J.; Bowden, M.; Brand, G.F.; Brennan, M.H.; Cross, R.C.; Fekete, P.; James, B.W.

    1989-01-01

    Results are presented on the first observations of the Discrete Alfven Wave (DAW) and the first measurements of laser scattering off the kinetic Alfven wave in the TORTUS tokamak. TORTUS is a relatively small device, with major radius R=0.44m, minor radius 0.1m and has previously been operated routinely with B Φ =0.7T, I p =20 kA and n e ∼ 1x10 19 m -3 . Under these conditions, and over a wide frequency range (1-14 MHz), there has been no evidence of the DAW modes observed on TCA. Recently, a minor upgrade of TORTUS has permitted routine operation at B Φ =1.0 T, I p =39 kA, q(a)∼5 and n e ∼1-4 x 10 19 m -3 . At the operating frequency, 3.2 MHz, chosen for this study, DAW modes are observed clearly at both low and high densities. The appearance of DAW modes appears to be due to a steeper current profile at the higher plasma currents now generated in TORTUS. The general behaviour of DAW modes is in fact quite sensitive to the density and current profiles, indicating that DAW modes should provide a useful current profile diagnostic. (author) 6 refs., 2 figs

  4. Status of 2XIIB plasma confinement experiments

    International Nuclear Information System (INIS)

    Coensgen, F.J.; Clauser, J.F.; Correll, D.L.

    1976-01-01

    This report describes the status of 2XIIB neutral beam injection experiments with stabilizing plasma. The stream suppresses ion-cyclotron fluctuations and permits density to 5 x 10 13 cm -3 . The ion energy is 13 keV, and electron temperature reaches 140 eV. Plasma confinement increases with ion energy and n tau reaches 7 x 10 10 cm -3 .s at 13 keV. The n tau energy scaling is consistent with electron drag and ion-ion scattering losses. Buildup on a streaming plasma in a steady-state magnetic field is described

  5. Relation of wave energy and momentum with the plasma dispersion relation in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Berk, H.L.; Pfirsch, D.

    1988-01-01

    The expressions for wave energy and angular momentum commonly used in homogeneous and near-homogeneous media is generalized to inhomogeneous media governed by a nonlocal conductivity tensor. The expression for wave energy applies to linear excitations in an arbitrary three-dimensional equilibrium, while the expression for angular momentum applies to linear excitations of azimuthally symmetric equilibria. The wave energy E-script/sub wave/ is interpreted as the energy transferred from linear external sources to the plasma if there is no dissipation. With dissipation, such a simple interpretation is lacking as energy is also thermally absorbed. However, for azimuthally symmetric equilibria, the expression for the wave energy in a frame rotating with a frequency ω can be unambiguously separated from thermal energy. This expression is given by E-script/sub wave/ -ωL/sub wave/ l, where L/sub wave/ is the wave angular momentum defined in the text and l the azimuthal wavenumber and it is closely related to the real part of a dispersion relation for marginal stability. The imaginary part of the dispersion is closely related to the energy input into a system. Another useful quantity discussed is the impedance form, which can be used for three-dimensional equilibrium without an ignorable coordinate and the expression is closely related to the wave impedance used in antenna theory. Applications to stability theory are also discussed

  6. A real time 155 GHz millimeter wave interferometer module for electron density measurement in large plasma devices

    International Nuclear Information System (INIS)

    Huettemann, P.W.; Waidmann, G.

    1982-09-01

    A homodyne, real time 155 GHz interferometer channel is described which is one module of a multichannel system for use on TEXTOR tokamak. A standing sine wave is generated in a phase bridge by transmitting a frequency modulated millimeter wave down two unequal interferometer branches. The presence of plasma produces a phase slip of the sine wave with respect to a reference signal. The phase shift is linear proportional to plasma density for expected TEXTOR plasmas. Long plasma paths give multiradian phase shifts which are recorded by a digital fringe counting system. The accuracy of phase measurement is ΔPHI = 2π/16. Phase changes of 7π/8 are accepted per modulation period. The microwave in the measurement branch of the interferometer is transmitted using a quasioptical technique. Components and technical details are described. The interferometer was tested in a simulation set-up and in two different plasma experiments. Experimental results are presented. (orig.)

  7. Pre-launch simulation experiment of microwave-ionosphere nonlinear interaction rocket experiment in the space plasma chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N. (Kobe University, Kobe, Japan); Tsutsui, M. (Kyoto University, Uji, Japan); Matsumoto, H. (Kyoto University, Kyoto, Japan)

    1980-09-01

    A pre-flight test experiment of a microwave-ionosphere nonlinear interaction rocket experiment (MINIX) has been carried out in a space plasma simulation chamber. Though the first rocket experiment ended up in failure because of a high voltage trouble, interesting results are observed in the pre-flight experiment. A significant microwave heating of plasma up to 300% temperature increase is observed. Strong excitations of plasma waves by the transmitted microwaves in the VLF and HF range are observed as well. These microwave effects may have to be taken into account in solar power satellite projects in the future.

  8. PLASMA-WAVE GENERATION IN A DYNAMIC SPACETIME

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L2Y5 (Canada); Zhang, Fan [Gravitational Wave and Cosmology Laboratory, Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2016-02-01

    We propose a new electromagnetic (EM)-emission mechanism in magnetized, force-free plasma, which is driven by the evolution of the underlying dynamic spacetime. In particular, the emission power and angular distribution of the emitted fast-magnetosonic and Alfvén waves are separately determined. Previous numerical simulations of binary black hole mergers occurring within magnetized plasma have recorded copious amounts of EM radiation that, in addition to collimated jets, include an unexplained, isotropic component that becomes dominant close to the merger. This raises the possibility of multimessenger gravitational-wave and EM observations on binary black hole systems. The mechanism proposed here provides a candidate analytical characterization of the numerical results, and when combined with previously understood mechanisms such as the Blandford–Znajek process and kinetic-motion-driven radiation, it allows us to construct a classification of different EM radiation components seen in the inspiral stage of compact-binary coalescences.

  9. Nonlinear electrostatic wave equations for magnetized plasmas - II

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....

  10. Mathematical preliminaries for a study of waves in a plasma

    International Nuclear Information System (INIS)

    Trocheris, M.

    1965-01-01

    This report contains the detailed proofs of mathematical results which are used in a study of the linear and 'quasi-linear' approximation for 'electrostatic' waves in a uniform plasma. Certain classes of functions of a complex variable, which are analytic in a strip parallel to the real axis, are defined and studied. In particular, properties of convergence of a sequence and of continuity with respect to a parameter are established for functions remaining inside one such class. The results are used to prove an existence theorem for the simplest equation in the quasi-linear theory of plasma waves. A number of elementary lemmas are used in the text and proved in an appendix. (author) [fr

  11. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Gates, D.; Hosea, J.; Le Blanc, B.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Rosenberg, A.; Bonoli, P.; Mau, T.K.; Pinsker, R.I.; Raman, R.; Ryan, P.; Swain, D.; Wilgen, J.

    2003-01-01

    High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge

  12. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T.K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Pinsker, R.I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.

    2003-01-01

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge

  13. Excitation of plasma waves by electron guns at the ISEE-1 satellite

    International Nuclear Information System (INIS)

    Lebreton, Zh.P.; Torbert, R.; Anderson, R.; Kharvi, K.

    1985-01-01

    Study of the effects resulting from excitation of plasma waves by electron beams injected from JSEE-1 satellite is carried out. Cases of the satellite traversing the magnetosphere magnetosheath and solar wind are considered. 10-60 μA and 0-40 V electron beam injection from the satellite increased electrostatic waves spectral intensity. The waves below ionic plasma frequency are interpreted as ion acoustic waves. To explain the-above-electron-plasma-frequency wave oscillation a communication system between electron plasma mode and electron flux with the velocities above the mean thermal velocity of plasma cold electrons is suggested

  14. Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1997-01-01

    This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({ω Alf (r)} min Alf (r)} max ) and discrete range, DR, where global Alfven eigenmodes, GAEs (ω Alf (r)} min ) exist, are considered. (Here, ω Alf (r) ≡ ω Alf [n(r), B 0 (r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author)

  15. Ion-Bernstein wave mode conversion in hot tokamak plasmas

    International Nuclear Information System (INIS)

    Jaun, A.; Hellsten, T.; Chiu, S.C.

    1997-08-01

    Mode conversion at the second harmonic cyclotron resonance is studied in a toroidal plasma, showing how the ion-Bernstein wave can dramatically affect the power profile and partition among the species. The results obtained with the gyrokinetic toroidal PENN code in particular suggest that off-axis electron and second harmonic core ion heating should become important when the temperatures in JET reach 10 keV. (author) 1 fig., 11 refs

  16. Pulsed lower-hybrid wave penetration in reactor plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Bonoli, P.T.; Porkolab, M.; Rognlien, T.D.

    1989-01-01

    Providing lower-hybrid power in short, intense (GW) pulses allows enhanced wave penetration in reactor-grade plasmas. We examine nonlinear absorption, ray propagation, and parametric instability of the intense pulses. We find that simultaneously achieving good penetration while avoiding parametric instabilities is possible, but imposes restrictions on the peak power density, pulse duration, and/or r.f. spot shape. In particular, power launched in narrow strips, elongated along the field direction, is desired

  17. Drift wave coherent vortex structures in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Su, X.N.

    1992-01-01

    Nonlinear drift wave vortex structures in magnetized plasmas are studied theoretically and numerically in the various physical environments. The effects of density and temperature gradients on drift wave vortex dynamics are analyzed using a fully nonlinear model with the Boltzmann density distribution. The equation, based on the full Boltzmann relation, possess no localized monopole solution in the short wavelength (∼ρ s ) region, while in the longer wavelength (∼(ρ s (r) n ) 1/2 ) region the density profile governs the existence of monopole-like solutions. In the longer wavelength regime, however, the monopoles cannot be localized sufficiently to avoid coupling to propagating drift waves due to the inhomogeneity of the plasma. Thus, the monopole vortex is a long lived coherent structure, but it is not precisely a stationary structure since the coupling results in a open-quote flapping close-quote tail. The tail causes energy of the vortex to leak out, but the effect of the temperature gradient is to reduce the leaking of this energy. Nonlinear coherent structures governing by the coupled drift wave-ion acoustic mode equations in sheared magnetic field are studied analytically and numerically. A solitary vortex equation that includes the effects of density and temperature gradients and magnetic shear is derived and analyzed. The results show that for a plasma in a sheared magnetic field, there exist the solitary vortex solutions. The new vortex structures are dipole-like in their symmetry, but not the modon type of dipoles. The numerical simulations are performed in 2-D with the coupled vorticity and parallel mass flow equations. The vortex structures in an unstable drift wave system driven by parallel shear flow are studied. The nonlinear solitary vortex solutions are given and the formation of the vortices from a turbulent state is observed from the numerical simulations

  18. FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma

    Science.gov (United States)

    Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun

    2016-08-01

    The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)

  19. FOREWORD: Workshop on Large Amplitude Waves and Fields in Plasmas, sponsored by the Commission of the European Communities

    Science.gov (United States)

    Bingham, R.; De Angelis, U.; Shukla, P. K.; Stenflo, L.

    1990-01-01

    During the last decade considerable progress has been made in the area of nonlinear plasma wave phenomena and their applications. In order to exhibit the present state-of-art in this field, a one-week (22-26 May) workshop on Large Amplitude Waves and Fields was organized at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, during the bi-yearly activity of the Spring College on Plasma Physics (15 May-9 June, 1989). Most of the invited lectures are published in this Topical Issue of Physica Scripta so that scientists working, or who want to enter the field of nonlinear plasma wave theory, can find out what has been achieved and what are the current research trends in this area. The material included here consists of general plasma wave theory, results of computer simulations, and experimental verifications. Without going into any detail, we shall just highlight the topics and the general features of the lectures contained in these proceedings. Various aspects of the excitation, propagation and interaction of nonlinear waves in plasmas are reviewed. Their relevance to plasma-based beat wave accelerators, short pulse laser and particle beam wake-field accelerators, plasma lenses, laser fusion and ionospheric modification experiments is discussed. Some introductory lectures present the general physics of nonlinear plasma waves including the saturation mechanisms and wave breaking conditions for both non-relativistic and relativistic nonlinearities. Three wave and four wave processes which include stimulated Raman, Brillouin and Compton scattering, modulational instabilities, self-focusing and collapse of the waves are discussed, emphasizing the important effects due to the relativistic electron mass variation and ponderomotive force. Detailed numerical studies of the interaction of high frequency plasma waves with low frequency density fluctuations described by the Zakharov equations show the localization of the high frequency field in density

  20. Experiments on the WavePiston, Wave Energy Converter

    DEFF Research Database (Denmark)

    Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...... in the wave basin at Aalborg University allowed to investigate power production in the North Sea typical wave climate, with varying design parameters such as plate dimensions and their mutual distance. The power produced per meter by each collector is about the 5% of the available wave power. Experimental...... results and survivability considerations suggest that the WavePiston would be particularly suited for installations in milder seas. An example application is therefore presented in the Mediterranean Sea, off-shore the island of Sicily. In this case, each collector harvests the 10% of the available wave...

  1. Nonlinear electromagnetic waves in a degenerate electron-positron plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)

    2015-08-15

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)

  2. Improved ion acceleration via laser surface plasma waves excitation

    Energy Technology Data Exchange (ETDEWEB)

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  3. Fast-wave heating of a two-component plasma

    International Nuclear Information System (INIS)

    Stix, T.H.

    1975-02-01

    The use of the compressional hydromagnetic mode (also called the magnetosonic or, simply, the fast wave) is examined in some detail with respect to the heating of a tritium plasma containing a few percent deuterium. Efficient absorption of wave energy by the deuteron component is found when ω = ω/sub c/ (deuterons), with Q/sub wave/ greater than or equal to 100. The dominant behavior of the high-energy deuteron distribution function is found to be f(v) approximately exp[3/2) ∫/sup v/ dv less than Δv greater than/less than(Δv/sub perpendicular to/) 2 greater than], where [Δv] is the Chandrasekhar-Spitzer drag coefficient, and [(Δv/sub perpendicular to/) 2 sigma] is the Kennel-Englemann quasilinear diffusion coefficient for wave--particle interaction at the deuteron cyclotron frequency. An analytic solution to the one-dimensional Fokker--Planck equation, with rf-induced diffusion, is developed, and using this solution together with Duane's fit to the D-T fusion cross-section, it is found that the nuclear fusion power output from an rf-produced two-component plasma can significantly exceed the incremental (radiofrequency) power input. (auth)

  4. Observation of electron plasma waves in plasma of two-temperature electrons

    International Nuclear Information System (INIS)

    Ikezawa, Shunjiro; Nakamura, Yoshiharu.

    1981-01-01

    Propagation of electron plasma waves in a large and unmagnetized plasma containing two Maxwellian distributions of electrons is studied experimentally. Two kinds of plasma sources which supply electrons of different temperature are used. The temperature ratio is about 3 and the density ratio of hot to cool electrons is varied from 0 to 0.5. A small contamination of hot electrons enhances the Landau damping of the principal mode known as the Bohm-Gross mode. When the density of hot electrons is larger than about 0.2, two modes are observed. The results agree with theoretical dispersion relations when excitation efficiencies of the modes are considered. (author)

  5. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    Science.gov (United States)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  6. Assessment of thermodynamic parameters of plasma shock wave

    International Nuclear Information System (INIS)

    Vasileva, O V; Isaev, Yu N; Budko, A A; Filkov, A I

    2014-01-01

    The work is devoted to the solution of the one-dimensional equation of hydraulic gas dynamics for the coaxial magneto plasma accelerator by means of Lax-Wendroff modified algorithm with optimum choice of the regularization parameter artificial viscosity. Replacement of the differential equations containing private derivatives is made by finite difference method. Optimum parameter of regularization artificial viscosity is added using the exact known decision of Soda problem. The developed algorithm of thermodynamic parameter calculation in a braking point is proved. Thermodynamic parameters of a shock wave in front of the plasma piston of the coaxial magneto plasma accelerator are calculated on the basis of the offered algorithm. Unstable high-frequency fluctuations are smoothed using modeling and that allows narrowing the ambiguity area. Results of calculation of gas dynamic parameters in a point of braking coincide with literary data. The chart 3 shows the dynamics of change of speed and thermodynamic parameters of a shock wave such as pressure, density and temperature just before the plasma piston

  7. High intensity surface plasma waves, theory and PIC simulations

    Science.gov (United States)

    Raynaud, M.; Héron, A.; Adam, J.-C.

    2018-01-01

    With the development of intense (>1019 W cm-2) short pulses (≤25 fs) laser with very high contrast, surface plasma wave (SPW) can be explored in the relativistic regime. As the SPW propagates with a phase velocity close to the speed of light it may results in a strong acceleration of electron bunches along the surface permitting them to reach relativistic energies. This may be important e.g. for applications in the field of plasma-based accelerators. We investigate in this work the excitation of SPWs on grating preformed over-dense plasmas for laser intensities ranging from 1019 up to 1021 W cm-2. We discuss the nature of the interaction with respect to the solid case in which surface plasmon can be resonantly excited with weak laser intensity. In particular, we show the importance of the pulse duration and focalization of the laser beam on the amplitude of the SPW.

  8. Low frequency waves in streaming quantum dusty plasmas

    Science.gov (United States)

    Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.

    2017-09-01

    The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.

  9. Collisional Damping of Electron Bernstein Waves and its Mitigation by Evaporated Lithium Conditioning in Spherical-Tokamak Plasmas

    International Nuclear Information System (INIS)

    Diem, S. J.; Caughman, J. B.; Taylor, G.; Efthimion, P. C.; Kugel, H.; LeBlanc, B. P.; Phillips, C. K.; Preinhaelter, J.; Urban, J.; Sabbagh, S. A.

    2009-01-01

    The first experimental verification of electron Bernstein wave (EBW) collisional damping, and its mitigation by evaporated Li conditioning, in an overdense spherical-tokamak plasma has been observed in the National Spherical Torus Experiment (NSTX). Initial measurements of EBW emission, coupled from NSTX plasmas via double-mode conversion to O-mode waves, exhibited <10% transmission efficiencies. Simulations show 80% of the EBW energy is dissipated by collisions in the edge plasma. Li conditioning reduced the edge collision frequency by a factor of 3 and increased the fundamental EBW transmission to 60%.

  10. Waves and turbulences studies in plasmas: ten years of research on quiescent plasmas at the Brazilian Space Research National Institute

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1991-01-01

    Quiescent plasmas generated by thermionic discharges and surface confined by multipole magnetic fields have been used in basic plasma research since 1973. The first machine was developed at UCLA (USA) to produce an uniform plasma for beam and waves studies in large cross section plasmas. A double quiescent plasma machine was constructed at the plasma laboratory of INPE in 1981, it began its operation producing linear ion-acoustic waves in an Argon plasma. Later on non linear ion acoustic waves and solitons were studied in plasma containing several species of negative and positive ions. The anomalous particle transport across multipole magnetic fields were also investigated. An anomalous resistivity associated with an ion acoustic turbulence is responsible for the formation of a small amplitude double-layer. The existence of a bootstrap mechanism is shown experimentally. Today, the main interest is toward the generation of Langmuir waves in non uniform plasmas. An experimental study on Langmuir wave generation using a grid system is been carried on. A magnetized quiescent plasma device for studies of whistle wave generation is been constructed. This machine will make possible future studies on several wave modes of magnetized plasmas. (author). 31 refs, 16 figs

  11. Effect of exchange correlation potential on dispersion properties of lower hybrid wave in degenerate plasma

    Science.gov (United States)

    Rimza, Tripti; Sharma, Prerana

    2017-05-01

    The dispersion properties of lower hybrid wave are studied in electron-iondegenerate plasma with exchange effect in non-relativistic regime. It is found that the combined effect of Bohm potential and exchange correlation potential significantly modifies the dispersion properties of lower hybrid wave. The graphical results explicitly show the influence of degeneracy pressure, Bohm force and exchange correlation potential on the frequency of the lower hybrid mode. Present work should be of relevance for the dense astrophysical environments like white dwarfs and for laboratory experiments.

  12. Assessing wave energy effects on biodiversity: the wave hub experience.

    Science.gov (United States)

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  13. Diagnostics for the Plasma Liner Experiment

    International Nuclear Information System (INIS)

    Lynn, A. G.; Merritt, E.; Gilmore, M.; Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.

    2010-01-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical ''plasma liners'' via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n i ∼10 16 cm -3 , T e ≅T i ∼1 eV at the plasma gun mouth to n i >10 19 cm -3 , T e ≅T i ∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  14. Diagnostics for the plasma liner experiment.

    Science.gov (United States)

    Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T

    2010-10-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  15. Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas

    Science.gov (United States)

    Bowen, LI; Zhibin, WANG; Qiuyue, NIE; Xiaogang, WANG; Fanrong, KONG; Zhenyu, WANG

    2018-01-01

    Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.

  16. Sound excitation at reflection of two electromagnetic waves from dence semibounded plasma

    International Nuclear Information System (INIS)

    Livdan, D.O.; Muratov, V.I.; Shuklin, A.P.

    1988-01-01

    The problem of two electromagnetic waves reflection by semibounded plasma which is nontransparent for each of these waves is solved. The reflection coefficients are obtained for normally incident waves. It is shown that the moduli of the reflection coefficients differ from the unit and this is due to the interaction of the external raiation with the acoustic wave excited in plasma. The energy flux in plasma is calculated

  17. Plasma waves and electrical discharges stimulated by beam operations on a high altitude satellite

    International Nuclear Information System (INIS)

    Koons, H.C.; Cohen, H.A.

    1982-01-01

    A satellite experiment was conducted to measure the characteristics of the spacecraft charging process near synchronous orbit. The payload included a particle beam system (both an electron gun and an ion gun) and a charging electrical effects analyzer consisting of a pulse shape analyzer, a VLF analyzer, and an RF analyzer. The characteristics of plasma waves and electrical discharges measured by these instruments during electron and ion beam operations are discussed

  18. Diagnostics for Pioneer I imploding plasma experiments

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Benjamin, R.F.; Brownell, J.H.

    1985-01-01

    The Pioneer I series of imploding plasma experiments are aimed at collapsing a thin aluminum foil with a multimegampere, submicrosecond electrical pulse produced by an explosive flux compression generator and fast plasma compression opening switch. Anticipated experimental conditions are bounded by implosion velocities of 2 x 10 7 cm/s and maximum plasma temperatures of 100 eV. A comprehensive array of diagnostics have been deployed to measure implosion symmetry (gated microchannel plate array and other time-resolved imaging), temperature of the imploding plasma (visible/uv spectroscopy), stagnation geometry (x-ray pinhole imaging), radiation emission characteristics at pinch (XRD's, fast bolometry), and electrical drive history (Rogowski loops, Faraday rotation current detectors, and capacitive voltage probes). Diagnostic performance is discussed and preliminary results are presented

  19. LONGITUDINAL AND TRANSVERSAL PLASMA WAVE INSTABILITIES IN TWO COUNTERSTREAMING PLASMAS WITHOUT EXTERNAL FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Buenemann, D

    1963-03-15

    Some aspects of the theory of longitudinal and transversal waves in a collisionless nonrelativistic plasma are treated. A dispersion relation for multicomponent plasmas is derived from the linearized Boltzmann-Vlasov equation using the full set of Maxwell's equations without an external field. The velocity distributions of the plasma streams are assumed to be Maxwellian. For the particular case of two counterstreaming plasmas it is shown that there exists transversal instabilities for all counterstreaming velocities whereas the well known two stream instabilities only exist for velocities greater than a critical velocity. Exact solutions for the onset of the instabilities can be given. This kind of instability may occur for any nonisotropic velocity distribution in a collisionless plasma. (auth)

  20. The plasma focus - numerical experiments leading technology

    International Nuclear Information System (INIS)

    Saw, S.H.; Lee, S.

    2013-01-01

    Numerical experiments on the plasma focus are now used routinely to assist design and provide reference points for diagnostics. More importantly guidance has been given regarding the implementation of technology for new generations of plasma focus devices. For example intensive series of experiments have shown that it is of no use to reduce static bank inductance L0 below certain values because of the consistent loading effects of the plasma focus dynamics on the capacitor bank. Thus whilst it was thought that the PF1000 could receive major benefits by reducing its bank inductance L 0 , numerical experiments have shown to the contrary that its present L 0 of 30 nH is already optimum and that reducing L 0 would be a very expensive fruitless exercise. This knowledge gained from numerical experiments now acts as a general valuable guideline to all high performance (ie low inductance) plasma focus devices not to unnecessarily attempt to further lower the static inductance L 0 . The numerical experiments also show that the deterioration of the yield scaling law (e.g. the fusion neutron yield scaling with storage energy) is inevitable again due to the consistent loading effect of the plasma focus, which becomes more and more dominant as capacitor bank impedance reduces with increasing capacitance C 0 as storage energy is increased. This line of thinking has led to the suggestion of using higher voltages (as an alternative to increasing C 0 ) and to seeding of Deuterium with noble gases in order to enhance compression through thermodynamic mechanisms and through radiation cooling effects of strong line radiation. Circuit manipulation e.g. to enhance focus pinch compression by current-stepping is also being numerically experimented upon. Ultimately however systems have to be built, guided by numerical experiments, so that the predicted technology may be proven and realized. (author)

  1. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  2. Bragg scattering of electromagnetic waves by microwave-produced plasma layers

    Science.gov (United States)

    Kuo, S. P.; Zhang, Y. S.

    1990-01-01

    A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.

  3. Feasibility study of the plasma electron density measurement by electromagnetic radiation from the laser-driven plasma wave

    International Nuclear Information System (INIS)

    Jang, D G; Kim, J J; Suk, H; Hur, M S

    2012-01-01

    When an intense laser beam is focused in a plasma, a plasma wake wave is generated and the oscillatary motion of the plasma electrons produces a strong electromagnetic wave by a Cherenkov-like process. Spectrum of the genetated electromagnetic wave has dependence on the plasma density. In this paper, we propose to use the emitted electromagnetic radiation for plasma diagnostic, which may provide an accurate information for local electron densities of the plasma and will be very useful for three-dimensional plasma density profiles by changing the focal point location of the laser beam. Two-dimensional (2-D) particle-in-cell (PIC) simulation is used to study the correlation between the spectrum of the emitted radiation and plasma density, and the results demonstrate that this method is promising for the electron density measurement in the plasma.

  4. Experiments on seismic metamaterials: molding surface waves.

    Science.gov (United States)

    Brûlé, S; Javelaud, E H; Enoch, S; Guenneau, S

    2014-04-04

    Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.

  5. Electron Bernstein Wave Research on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Taylor, G.; Bers, A.; Bigelow, T.S.; Carter, M.D.; Caughman, J.B.; Decker, J.; Diem, S.; Efthimion, P.C.; Ershov, N.M.; Fredd, E.; Harvey, R.W.; Hosea, J.; Jaeger, F.; Preinhaelter, J.; Ram, A.K.; Rasmussen, D.A.; Smirnov, A.P.; Wilgen, J.B.; Wilson, J.R.

    2005-01-01

    Off-axis electron Bernstein wave current drive (EBWCD) may be critical for sustaining noninductive high-beta National Spherical Torus Experiment (NSTX) plasmas. Numerical modeling results predict that the ∼100 kA of off-axis current needed to stabilize a solenoid-free high-beta NSTX plasma could be generated via Ohkawa current drive with 3 MW of 28 GHz EBW power. In addition, synergy between EBWCD and bootstrap current may result in a 10% enhancement in current-drive efficiency with 4 MW of EBW power. Recent dual-polarization EBW radiometry measurements on NSTX confirm that efficient coupling to EBWs can be readily accomplished by launching elliptically polarized electromagnetic waves oblique to the confining magnetic field, in agreement with numerical modeling. Plans are being developed for implementing a 1 MW, 28 GHz proof-of-principle EBWCD system on NSTX to test the EBW coupling, heating and current-drive physics at high radio-frequency power densities

  6. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, A; Fraboulet, D; Giruzzi, G; Moreau, D; Saoutic, B [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Chinardet, J [CISI Ingenierie, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs.

  7. Drift wave dispersion relation for arbitrarily collisional plasma

    International Nuclear Information System (INIS)

    Angus, Justin R.; Krasheninnikov, Sergei I.

    2012-01-01

    The standard local linear analysis of drift waves in a plasma slab is generalized to be valid for arbitrarily collisional electrons by considering the electrons to be governed by the drift-kinetic equation with a BGK-like (Bhatnagar-Gross-Krook) collision operator. The obtained dispersion relation reduces to that found from collisionless kinetic theory when the collision frequency is zero. Electron temperature fluctuations must be retained in the standard fluid analysis in order to obtain good quantitative agreement with our general solution in the highly collisional limit. Any discrepancies between the fluid solution and our general solution in this limit are attributed to the limitations of the BGK collision operator. The maximum growth rates in both the collisional and collisionless limits are comparable and are both on the order of the fundamental drift wave frequency. The main role of the destabilizing mechanism is found to be in determining the parallel wave number at which the maximum growth rate will occur. The parallel wave number corresponding to the maximum growth rate is set by the wave-particle resonance condition in the collisionless limit and transitions to being set by the real frequency being on the order of the rate for electrons to diffuse a parallel wavelength in the collisional limit.

  8. Drift wave dispersion relation for arbitrarily collisional plasma

    Energy Technology Data Exchange (ETDEWEB)

    Angus, Justin R.; Krasheninnikov, Sergei I. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093-0417 (United States)

    2012-05-15

    The standard local linear analysis of drift waves in a plasma slab is generalized to be valid for arbitrarily collisional electrons by considering the electrons to be governed by the drift-kinetic equation with a BGK-like (Bhatnagar-Gross-Krook) collision operator. The obtained dispersion relation reduces to that found from collisionless kinetic theory when the collision frequency is zero. Electron temperature fluctuations must be retained in the standard fluid analysis in order to obtain good quantitative agreement with our general solution in the highly collisional limit. Any discrepancies between the fluid solution and our general solution in this limit are attributed to the limitations of the BGK collision operator. The maximum growth rates in both the collisional and collisionless limits are comparable and are both on the order of the fundamental drift wave frequency. The main role of the destabilizing mechanism is found to be in determining the parallel wave number at which the maximum growth rate will occur. The parallel wave number corresponding to the maximum growth rate is set by the wave-particle resonance condition in the collisionless limit and transitions to being set by the real frequency being on the order of the rate for electrons to diffuse a parallel wavelength in the collisional limit.

  9. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Becoulet, A.; Fraboulet, D.; Giruzzi, G.; Moreau, D.; Saoutic, B.

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs

  10. Scattering of Electromagnetic Waves by Drift Vortex in Plasma

    International Nuclear Information System (INIS)

    Wang Dong; Chen Yinhua; Wang Ge

    2008-01-01

    In a quasi-two-dimensional model, the scattering of incident ordinary electromagnetic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (k i a || 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then k i a || 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.

  11. Solitary electron density waves in a magnetized, plasma-loaded waveguide

    International Nuclear Information System (INIS)

    Lynov, J.-P.

    1980-08-01

    Investigations of two different types of nonlinear, solitary electron density waves in a magnetized, plasma-loaded waveguide are presented. One of the wavetypes is a localized, compressional pulse identified as a Trivelpiece-Gould soliton. The modification of this soliton by the resonant electrons is studied theoretically, by direct numerical solution of the model equation, experimentally, and by numerical simulation of the experiment. The other wave is a localized, rarefactive pulse called an electron hole. It is a positive pulse consisting of a large number of trapped electrons and is a purely kinetic phenomenon. A simple waterbag model for the electron hole is derived and compared with the results from the experiment and the numerical simulation. Finally, interactions between the solitary waves are investigated. (Auth.)

  12. COMPARISON STUDY OF EXPERIMENTS AND PREDICTIONS OF WAVE KINEMATICS FOR ROGUE WAVE

    Directory of Open Access Journals (Sweden)

    Hae Jin Choi

    2018-01-01

    Full Text Available To investigate the wave kinematics under the rogue wave crest, a series of experiments were performed in 2-D wave tank with the application of PIV technique to measure the velocities under the free surface. Three different prediction methods of linear extrapolation, Wheeler stretching, and modified stretching were applied to estimate water wave kinematics and compared with PIV experimental results under the highest wave crest of irregular wave trains satisfying with rogue wave criteria. Also, the cut-off frequency dependence for three prediction methods was investigated with varying spectral peak frequencies to estimate wave kinematics including velocities and accelerations in horizontal and vertical directions. It was suggested that the cut-off frequency for the reasonable prediction of the wave kinematics under the rogue wave crest could be chosen three times of spectral peak wave frequency for the linear extrapolation and higher frequency than four times of spectral peak wave frequency for Wheeler stretching and modified stretching method.

  13. Electron Bernstein wave excitation by counterpropagating electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Kumar, Asheel; Tripathi, V.K.

    2005-01-01

    Two high-power counterpropagating electromagnetic waves (ω 1 ,k 1 x) and (ω 2 ,-k 2 x) in a low-density plasma in the presence of a static magnetic field B s z, drive an electron Bernstein wave at the beat frequency ω=ω 1 -ω 2 and k=(k 1 +k 2 )x, when ω∼ω c 1 ,ω 2 and kρ≥1, where ω c is the electron cyclotron frequency and ρ is the Larmor radius. The electromagnetic waves exert a ponderomotive force on the electrons and resonantly drive the Bernstein mode(ω,k). When the pump waves have finite z extent, the Bernstein wave has an effective k z and a component of group velocity in the direction of the magnetic field, leaking it out of the interaction region, limiting the level of the Bernstein mode. Plasma inhomogeneity also introduces convection losses. However, the electron Bernstein mode potential could still be significantly greater than the ponderomotive potential

  14. US plans for burning plasma experiments

    International Nuclear Information System (INIS)

    Nelson, D.

    1982-01-01

    The first US burning plasma experiment will be the TFTR at Princeton Plasma Physics Laboratory. The initial start-up with hydrogen is expected in December, 1983. The experiment by D-T reaction will begin in 1986. Because of the lack of shielding capability, later experiment is not yet defined. The informal scientific interaction with JET (European project) is kept. The design work on the Fusion Engineering Device (FED) continues, but is delayed. US fusion laboratories collaborated with IPP-Garching on the conceptual design of Zephyr experiment. The US continues to participate in INTOR activities, and will investigate into the critical issues relevant to both INTOR and FED in coming years. (Kato, T.)

  15. Oblique Propagation of Fast Surface Waves in a Low-Beta Hall-Magnetohydrodynamics Plasma Slab

    International Nuclear Information System (INIS)

    Zhelyazkov, I.; Mann, G.

    1999-01-01

    The oblique propagation of fast sausage and kink magnetohydrodynamics (MHD) surface waves in an ideal magnetized plasma slab in the low-beta plasma limit is studied considering the Hall term in the generalized Ohm's law. It is found that the combined action of the Hall effect and oblique wave propagation makes possible the existence of multivalued solutions to the wave dispersion relations - some of them corresponding to positive values of the transfer wave number, k y , undergo a 'propagation stop' at specific (numerically found) full wave numbers. It is also shown that with growing wave number the waves change their nature - from bulk modes to pseudosurface or pure surface waves. (author)

  16. Design of wave breaking experiments and A-Posteriori Simulations

    NARCIS (Netherlands)

    Kurnia, R.; Kurnia, Ruddy; van Groesen, Embrecht W.C.

    2014-01-01

    This report presents results of 30 wave breaking experiments conducted in the long wave tank of TU Delft, Department of Maritime and Transport Technology (6,7 and 10-12 March 2014), together with simulations performed before the experiment to determine the required wave maker motion and a-posteriori

  17. Design of wave breaking experiments and A-Posteriori Simulations

    NARCIS (Netherlands)

    Kurnia, Ruddy; van Groesen, Embrecht W.C.

    This report presents results of 30 wave breaking experiments conducted in the long wave tank of TU Delft, Department of Maritime and Transport Technology (6,7 and 10-12 March 2014), together with simulations performed before the experiment to determine the required wave maker motion and a-posteriori

  18. SPDE: Solar Plasma Diagnostic Experiment

    Science.gov (United States)

    Bruner, Marilyn E.

    1995-01-01

    The physics of the Solar corona is studied through the use of high resolution soft x-ray spectroscopy and high resolution ultraviolet imagery. The investigation includes the development and application of a flight instrument, first flown in May, 1992 on NASA sounding rocket 36.048. A second flight, NASA founding rocket 36.123, took place on 25 April 1994. Both flights were successful in recording new observations relevant to the investigation. The effort in this contract covers completion of the modifications to the existing rocket payload, its reflight, and the preliminary day reduction and analysis. Experience gained from flight 36.048 led us to plan several payload design modifications. These were made to improve the sensitivity balance between the UV and EUV spectrographs, to improve the scattered light rejection in the spectrographs, to protect the visible light rejection filter for the Normal Incidence X-ray Imager instrument (NIXI), and to prepare one new multilayer mirror coating to the NIXI. We also investigated the addition of a brassboard CCD camera to the payload to test it as a possible replacement for the Eastman type 101-07 film used by the SPDE instruments. This camera was included in the experimeter's data package for the Project Initiation Conference for the flight of NASA Mission 36.123, held in January, 1994, but for programmatic reasons was deleted from the final payload configuration. The payload was shipped to the White Sands Missile Range on schedule in early April. The launch and successful recovery took place on 25 April, in coordination with the Yohkoh satellite and a supporting ground-based observing campaign.

  19. Fast wave current drive experiment on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Lohr, J.; Luce, T.C.; Mayberry, M.J.; Prater, R.; Porkolab, M.; Baity, F.W.; Goulding, R.H.; Hoffman, J.D.; James, R.A.; Kawashima, H.

    1992-06-01

    One method of radio-frequency heating which shows theoretical promise for both heating and current drive in tokamak plasmas is the direct absorption by electrons of the fast Alfven wave (FW). Electrons can directly absorb fast waves via electron Landau damping and transit-time magnetic pumping when the resonance condition ω - κ parallele υ parallele = O is satisfied. Since the FW accelerates electrons traveling the same toroidal direction as the wave, plasma current can be generated non-inductively by launching FW which propagate in one toroidal direction. Fast wave current drive (FWCD) is considered an attractive means of sustaining the plasma current in reactor-grade tokamaks due to teh potentially high current drive efficiency achievable and excellent penetration of the wave power to the high temperature plasma core. Ongoing experiments on the DIII-D tokamak are aimed at a demonstration of FWCD in the ion cyclotron range of frequencies (ICRF). Using frequencies in the ICRF avoids the possibility of mode conversion between the fast and slow wave branches which characterized early tokamak FWCD experiments in the lower hybrid range of frequencies. Previously on DIII-D, efficient direct electron heating by FW was found using symmetric (non-current drive) antenna phasing. However, high FWCD efficiencies are not expected due to the relatively low electron temperatures (compared to a reactor) in DIII-D

  20. Effect of switching-off of a plasma medium on a traveling wave

    International Nuclear Information System (INIS)

    Kalluri, D.K.

    1989-01-01

    It is known that a sudden creation of a plasma medium of plasma frequency ω ρ splits a traveling wave of frequency ω o into two new waves of frequencies. The negative value for the frequency here indicates a reflected wave. The effect of a sudden collapse of the plasma medium, on a travelling wave of frequency ω o is shown to be the creation of two new waves of frequencies. A numerical solution is obtained for the case of a gradual collapse of the plasma medium. For the case of a slow decay of the particle density an approximate WKB type solution is obtained. Several results are presented