WorldWideScience

Sample records for plasma wave electric

  1. Wave rectification in plasma sheaths surrounding electric field antennas

    Science.gov (United States)

    Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Ergun, R. E.; Mozer, F. S.

    1994-01-01

    Combined measurements of Langmuir or broadband whistler wave intensity and lower-frequency electric field waveforms, all at 10-microsecond time resolution, were made on several recent sounding rockets in the auroral ionosphere. It is found that Langmuir and whistler waves are partically rectified in the plasma sheaths surrounding the payload and the spheres used as antennas. This sheath rectification occurs whenever the high frequency (HF) potential across the sheath becomes of the same order as the electron temperature or higher, for wave frequencies near or above the ion plasma frequency. This rectification can introduce false low-frequency waves into measurements of electric field spectra when strong high-frequency waves are present. Second harmonic signals are also generated, although at much lower levels. The effect occurs in many different plasma conditions, primarily producing false waves at frequencies that are low enough for the antenna coupling to the plasma to be resistive.

  2. Measurement of Wave Electric Fields in Plasmas by Electro-Optic Probe

    CERN Document Server

    Nishiura, M; Mushiake, T; Kawazura, Y; Osawa, R; Fujinami, K; Yano, Y; Saitoh, H; Yamasaki, M; Kashyap, A; Takahashi, N; Nakatsuka, M; Fukuyama, A

    2016-01-01

    Electric field measurement in plasmas permits quantitative comparison between the experiment and the simulation in this study. An electro-optic (EO) sensor based on Pockels effect is demonstrated to measure wave electric fields in the laboratory magnetosphere of the RT-1 device with high frequency heating sources. This system gives the merits that electric field measurements can detect electrostatic waves separated clearly from wave magnetic fields, and that the sensor head is separated electrically from strong stray fields in circumference. The electromagnetic waves are excited at the double loop antenna for ion heating in electron cyclotron heated plasmas. In the air, the measured wave electric fields are in good absolute agreement with those predicted by the TASK/WF2 code. In inhomogeneous plasmas, the wave electric fields in the peripheral region are enhanced compared with the simulated electric fields. The potential oscillation of the antenna is one of the possible reason to explain the experimental resu...

  3. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  4. Analysis of the axial electric field in a plasma-loaded-helix travelling wave tube

    Institute of Scientific and Technical Information of China (English)

    Xie Hong-Quan; Liu Pu-Kun

    2006-01-01

    A helix type slow wave structure filled with plasma is immersed in a strong longitudinal magnetic field. Taking into account the effect of the plasma and the dielectric, the system is separated radially into three regions. By means of the sheath model and Maxwell equation, the distribution of the electromagnetic field is established. Using the boundary conditions of each region, the dispersion relation of the slow wave structure is derived. The trend of change for the radial profile of the axial electric field is analysed respectively in different plasma densities, plasma column radius and dielectric constant by numerical computation. Some useful results are obtained on the basis of the discussion.

  5. The Plasma Wave Investigation (PWI) onboard the BepiColombo/MMO: First measurement of electric fields, electromagnetic waves, and radio waves around Mercury

    Science.gov (United States)

    Kasaba, Y.; Bougeret, J.-L.; Blomberg, L. G.; Kojima, H.; Yagitani, S.; Moncuquet, M.; Trotignon, J.-G.; Chanteur, G.; Kumamoto, A.; Kasahara, Y.; Lichtenberger, J.; Omura, Y.; Ishisaka, K.; Matsumoto, H.

    2010-01-01

    The BepiColombo Mercury Magnetospheric Orbiter (MMO) spacecraft includes the plasma and radio wave observation system called Plasma Wave Investigation (PWI). Since the receivers for electric field, plasma waves, and radio waves are not installed in any of the preceding spacecraft to Mercury, the PWI will provide the first opportunity for conducting in-situ and remote-sensing observations of electric fields, plasma waves, and radio waves in the Hermean magnetosphere and exosphere. These observations are valuable in studying structure, dynamics, and energy exchange processes in the unique magnetosphere of Mercury. They are characterized by the key words of the non-MHD environment and the peculiar interaction between the relatively large planet without ionosphere and the solar wind with high dynamic pressure. The PWI consists of three sets of receivers (EWO, SORBET, and AM 2P), connected to two sets of electric field sensors (MEFISTO and WPT) and two kinds of magnetic field sensors (LF-SC and DB-SC). The PWI will observe both waveforms and frequency spectra in the frequency range from DC to 10 MHz for the electric field and from 0.3 Hz to 640 kHz for the magnetic field. From 2008, we will start the development of the engineering model, which is conceptually consistent with the flight model design. The present paper discusses the significance and objectives of plasma/radio wave observations in the Hermean magnetosphere, and describes the PWI sensors, receivers and their performance as well as the onboard data processing.

  6. Measurements of plasma density fluctuations and electric wave fields using spherical electrostatic probes

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, A.I.; Bostroem, R.

    1995-04-01

    Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs.

  7. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  8. Effect of High-Frequency Electric Field on Propagation of Electrostatic Wave in a Non-Uniform Relativistic Plasma Waveguide

    Institute of Scientific and Technical Information of China (English)

    Kh. H. EL-SHORBAGY

    2008-01-01

    The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid plasma model. An analytical study of the reflection of electro-static wave propagation along a magnetized non-uniform relativistic plasma slab subjected to an intense HF electric field is presented and compared with the case of a non relativistic plasma. It is found that, when the frequency of the incident wave is close to the relativistic electron plasma frequency, the plasma is less reflective due to the presence of both an HF field and the effect of rel-ativistic electrons. On the other hand, for a low-frequency incident wave the reflection coefficient is directly proportional to the amplitude of the HF field. Also, it is shown that the relativistic electron plasma leads to a decrease in the value of reflection coefficient in comparison with the case of the non relativistic plasma.

  9. Initial Results of DC Electric Fields, Associated Plasma Drifts, Magnetic Fields, and Plasma Waves Observed on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Bromund, K.; Klenzing, J.; Rowland, D.; Maynard, N.

    2010-01-01

    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. Finally, the data set includes a wide range of ELF/VLF/HF oscillations corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth's low latitude ionosphere.

  10. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  11. Magnetoresistive waves in plasmas

    Science.gov (United States)

    Felber, F. S.; Hunter, R. O., Jr.; Pereira, N. R.; Tajima, T.

    1982-10-01

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed.

  12. Electrical properties of bilayer graphene synthesized using surface wave microwave plasma techniques at low temperature

    Science.gov (United States)

    Yamada, Takatoshi; Kato, Hiromitsu; Okigawa, Yuki; Ishihara, Masatou; Hasegawa, Masataka

    2017-01-01

    Bilayer graphene was synthesized at low temperature using surface wave microwave plasma techniques where poly(methyl metacrylate) (PMMA) and methane (CH4) were used as carbon sources. Temperature-dependent Hall effect measurements were carried out in a helium atmosphere. Sheet resistance, sheet carrier density and mobility showed weak temperature dependence for graphene from PMMA, and the highest carrier mobility is 740 cm2 V-1 s-1. For graphene from CH4, tunneling of the domain boundary limited carrier transport. The difference in average domain size was determined by Raman signal maps. In addition, residuals of PMMA were detected on graphene from PMMA. The low sheet resistances of graphene synthesized at a temperature of 280 °C using plasma techniques were explained by the PMMA related residuals rather than the domain sizes.

  13. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  14. Solar system plasma waves

    Science.gov (United States)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  15. Electric Field Observations of Plasma Convection, Shear, Alfven Waves, and other Phenomena Observed on Sounding Rockets in the Cusp and Boundary Layer

    Science.gov (United States)

    Pfaff, R. F.

    2009-01-01

    On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.

  16. DC and Wave Electric Fields and Other Plasma Parameters Observed on Two Sounding Rockets in the Dark Cusp during IMF Bz North and South Conditions

    Science.gov (United States)

    Pfaff, R. F.; Acuna, M.; Bounds, S.; Farrell, W.; Freudenreich, W.; Lepping, R.; Vondrak, R.; Maynard, N. C.; Moen, J.; Egeland, A.

    1999-01-01

    Two Black Brant IX sounding rockets were launched into the dark, dayside cusp near magnetic noon on December 2 and 3, 1997, from Ny Alesund, Spitzbergen at 79 deg N reaching altitudes of about 450 km. Real-time ground-based and Wind IMF data were used to determine the launch conditions. The first launch, with Bz north conditions, crossed into and back out of an open field region with merging poleward of the projected trajectory. The second flight, into Bz south conditions, was timed to coincide with an enhancement in the merging rate from a increase in the negative Bz, while the DMSP Fl 3 satellite was situated slightly to the north of the rocket trajectory. Each payload returned DC electric and magnetic fields, plasma waves, energetic particles, photometer data, and thermal plasma data. Data from both flights will be shown, with an emphasis on the DC electric field results. In particular, the data gathered on December 2, 1997 will be used to discuss ionospheric signatures of merging and the open/closed character of the the cusp/low latitude boundary layer. In contrast, the data gathered on December 3, 1997 shows evidence of pulsed electric field structures which will be examined in the context of cusp plasma entry processes. Both data sets returned a rich variety of plasma waves, as well as optical emissions and thermal plasma data.

  17. Analytical study of whistler mode waves in presence of parallel DC electric field for relativistic plasma in the magnetosphere of Uranus

    Science.gov (United States)

    Pandey, R. S.; Kaur, Rajbir

    2016-10-01

    In present paper, field aligned whistler mode waves are analyzed, in the presence of DC field in background plasma having relativistic distribution function in the magnetosphere of Uranus. The work has been examined for relativistic Maxwellian and loss-cone distribution function. In both the cases, we have studied the effect of various plasma parameters on the growth rate of waves by using the method of characteristics and discussed using data provided by Voyager 2. Growth rate has increased by increasing the magnitude of electric field, temperature anisotropy, energy density and number density of particles for Maxwellian and loss-cone background. However, when relativistic factor (λ =√{ 1 -v2 /c2 }) increases, growth rate decreases. The significant increase in real frequency of whistler waves can be observed. The results can be used for comparative study of planetary magnetospheres. The derivation can also be adapted to study various other instabilities in magnetosphere of Uranus.

  18. Electric Field and Plasma Density Observations of Large Scale (100's of km) Waves Below the Equatorial F-peak as Seeds of Spread-F

    Science.gov (United States)

    Pfaff, R. F.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.

    2012-12-01

    Electric field and plasma density observations gathered on the C/NOFS satellite are presented in cases where the ionosphere F-peak has been elevated above the satellite perigee of 400 km in the evening. During these passes, data from the electric field and plasma density probes on the satellite frequently show evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. We present statistics of numerous examples of these large scale waves detected by instruments on the C/NOFS satellite.

  19. Inductance of rf-wave-heated plasmas.

    Science.gov (United States)

    Farshi, E; Todo, Y

    2003-03-14

    The inductance of rf-wave-heated plasmas is derived. This inductance represents the inductance of fast electrons located in a plateau during their acceleration due to electric field or deceleration due to collisions and electric field. This inductance has been calculated for small electric fields from the two-dimensional Fokker-Planck equation as the flux crossing the surface of critical energy mv(2)(ph)/2 in the velocity space. The new expression may be important for radio-frequency current drive ramp-up, current drive efficiency, current profile control, and so on in tokamaks. This inductance may be incorporated into transport codes that study plasma heating by rf waves.

  20. Spectroscopy of a plasma formed in the vicinity of implosion of the shock wave generated by underwater electrical explosion of spherical wire array

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, O.; Efimov, S.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel); Bernshtam, V. [Weizmann Institute of Science, Rehovot 76100 (Israel)

    2015-05-15

    The results of visible spectroscopy of the plasma formed inside a copper capillary placed at the equatorial plane of an underwater electrically exploded spherical wire array (30 mm in diameter; 40 wires, each of 100 μm in diameter) are reported. In the experiments, a pulsed power generator with current amplitude of ∼300 kA and rise time of ∼1.1 μs was used to produce wire array explosion accompanied by the formation of a converging strong shock wave. The data obtained support the assumption of uniformity of the shock wave along the main path of its convergence. The spectroscopic measurements show that this rather simple method of formation of a converging strong shock wave can be used successfully for studying the shock wave's interaction with matter and the evaporation processes of atoms from a target.

  1. Flow angle dependence of 1-m ionospheric plasma wave turbulence for near-threshold radar echo electric fields

    Science.gov (United States)

    Timofeev, E. E.; Vallinkoski, M. K.; Pollari, P.; Kangas, J.; Virdi, T.; Williams, P. J. S.; Nielsen, E.

    2002-10-01

    Coordinated STARE-EISCAT data from the E-region Rocket and Radar Instability Study (ERRRIS) campaign are used to study the flow angle distributions of threshold (signal-to-noise ratio [SNR] ≤ 1 dB) ionospheric parameters controlling the STARE radar echo appearance for either radar above Tromsø. Altogether, there are 64 measurements for the Finnish radar and 128 for the Norwegian radar. For the Finnish radar, the threshold E-field strength is drift-aligned with minimum-to-maximum ratio of the electron drift velocities of about 3. The strengths tend to decrease when going from positive to negative flow angles. For the Norwegian radar, the threshold electric fields are practically independent of flow angle. For the Finnish radar, the STARE line-of-sight Doppler velocities are exclusively positive, large, and well correlated with the corresponding EISCAT plasma velocity components. The Norwegian radar Doppler velocities are randomly distributed around zero and are practically uncorrelated. For either radar, the N(h) profiles have permanent upward vertical density gradients within the echo layers. The jet averaged threshold E-fields are lower in the westjet than within the eastjet, but the averaged threshold electron densities are higher in the westjet than in the eastjet. For the Norwegian radar, the jet averaged turbulence level is about two times higher within the eastjet. The flow angle distributions of the plasma wave turbulence level are different. The westjet distribution is of the equilibrium type with a maximum at small flow angles and a minimum at large angles. The eastjet distribution is consistent with a flat one and can be kept stationary only if there is a damping of the turbulence for small flow angles and an enhancement for large angles. It is then conjectured that Finnish radar threshold echoes are generated by the Farley-Buneman instability, but the Norwegian echoes by a nonlinear gradient drift or/and wind-driven mechanism. The gradient drift

  2. Undamped electrostatic plasma waves

    CERN Document Server

    Valentini, F; Califano, F; Pegoraro, F; Veltri, P; Morrison, P J; O'Neil, T M

    2015-01-01

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named {\\it corner modes}. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the $(k,\\omega_{_R})$ plane ($\\omega_{_R}$ being the real part of the wave frequency and $k$ the wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existenc...

  3. Investigation of a shock wave in an arcjet He plasma by using an electric probe and emission spectroscope

    Energy Technology Data Exchange (ETDEWEB)

    Kumagawa, G.; Kozue, K.; Fujino, S.; Matsuoka, L.; Endo, T.; Namba, S. [Hiroshima University, Higashi-Hiroshima (Japan); Tamura, N. [National Institute for Fusion Science, Gifu (Japan); Ezumi, N. [Nagano National College of Technology, Nagano (Japan)

    2014-10-15

    We developed an arcjet plasma device having a converging and diverging supersonic conical nozzle. Bright and dark emission structures were formed, depending on the gas pressure in the expansion section. In order to understand the mechanism for the formation of the structures, we evaluated the plasma parameters (electron density and temperature) by using a single probe and a visible emission spectroscope. The analysis of the probe measurements showed no temperature variation around the bright emission region. The plasma density increased significantly by a factor of two. Similar trends were also observed in the spectroscopic measurements. Moreover, the cell width (wavelength) of the shock wave calculated from the compressible fluid dynamics was in good agreement with the experimental value, indicating that this emission structure was caused by a shock cell that could be described by using compressible flow dynamics.

  4. Model of the Dynamics of Plasma-Wave Channels in Magnetized Plasmas

    Science.gov (United States)

    Shirokov, E. A.; Chugunov, Yu. V.

    2016-06-01

    We analyze the dynamics of the plasma-wave channels excited in magnetized plasmas in the whistler frequency range. A linear theory of excitation of a plasma waveguide by an external source is developed using the quasistatic approximation. Self-consistent spatio-temporal distributions of the electric field of quasipotential waves and plasma density, which are solutions of the nonlinear nonstationary problem of the ionizing self-channeling of waves in plasmas are found on the basis of the linear theory.

  5. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  6. Nonlinear plasma wave in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-08-15

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.

  7. Waves and instabilities in plasmas

    CERN Document Server

    Chen Liu

    1987-01-01

    The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.

  8. A simple electron plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, G., E-mail: gert.brodin@physics.umu.se [Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Stenflo, L. [Department of Physics, Linköping University, SE-581 83 Linköping (Sweden)

    2017-03-18

    Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.

  9. Breaking of Large Amplitude Electron Plasma Wave in a Maxwellian Plasma

    CERN Document Server

    Mukherjee, Arghya

    2016-01-01

    The determination of maximum possible amplitude of a coherent longitudinal plasma oscillation/wave is a topic of fundamental importance in non-linear plasma physics. The amplitudes of these large amplitude plasma waves is limited by a phenomena called wave breaking which may be induced by several non-linear processes. It was shown by Coffey [T. P. Coffey, Phys. Fluids 14, 1402 (1971)] using a "water-bag" distribution for electrons that, in a warm plasma the maximum electric field amplitude and density amplitude implicitly depend on the electron temperature, known as Coffey's limit. In this paper, the breaking of large amplitude freely running electron plasma wave in a homogeneous warm plasma where electron's velocity distribution is Maxwellian has been studied numerically using 1D Particle in Cell (PIC) simulation method. It is found that Coffey's propagating wave solutions, which was derived using a "water-bag" distribution for electrons, also represent propagating waves in a Maxwellian plasma. Coffey's wave...

  10. Testing THEMIS wave measurements against the cold plasma theory

    Science.gov (United States)

    Taubenschuss, Ulrich; Santolik, Ondrej; Le Contel, Olivier; Bonnell, John

    2016-04-01

    The THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission records a multitude of electromagnetic waves inside Earth's magnetosphere and provides data in the form of high-resolution electric and magnetic waveforms. We use multi-component measurements of whistler mode waves and test them against the theory of wave propagation in a cold plasma. The measured ratio cB/E (c is speed of light in vacuum, B is magnetic wave amplitude, E is electric wave amplitude) is compared to the same quantity calculated from cold plasma theory over linearized Faraday's law. The aim of this study is to get estimates for measurement uncertainties, especially with regard to the electric field and the cold plasma density, as well as evaluating the validity of cold plasma theory inside Earth's radiation belts.

  11. Intensity improvement of shock waves induced by liquid electrical discharges

    Science.gov (United States)

    Liu, Yi; Li, Zhi-Yuan; Li, Xian-Dong; Liu, Si-Wei; Zhou, Gu-Yue; Lin, Fu-Chang

    2017-04-01

    When shock waves induced by pulsed electrical discharges in dielectric liquids are widely applied in industrial fields, it is necessary to improve the energy transfer efficiency from electrical energy to mechanical energy to improve the shock wave intensity. In order to investigate the effect of the plasma channel length created by the liquid electrical discharge on the shock wave intensity, a test stand of dielectric liquid pulsed electrical discharge is designed and constructed. The main capacitor is 3 μF, and the charging voltage is 0-30 kV. Based on the needle-needle electrode geometry with different gap distances, the intensities of shock waves corresponding to the electrical parameters, the relationship between the plasma channel length and the deposited energy, and the time-resolved observation of the plasma channel development by a high speed camera are presented and compared. The shock wave intensity is closely related to the power and energy dissipated into the plasma channel. The longer plasma channel and the quicker arc expansion can lead to a higher power and energy deposited into the plasma channel, which can activate a stronger shock wave.

  12. The Potential for Ambient Plasma Wave Propulsion

    Science.gov (United States)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  13. Nonlinear Plasma Wave in Magnetized Plasmas

    CERN Document Server

    Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke

    2013-01-01

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].

  14. A simple electron plasma wave

    Science.gov (United States)

    Brodin, G.; Stenflo, L.

    2017-03-01

    Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large.

  15. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  16. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  17. Kinetic theory of plasma waves: Part II homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2000-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  18. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2008-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  19. Kinetic theory of plasma waves: Part II homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2000-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  20. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  1. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2008-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  2. Electro-optic probe measurements of electric fields in plasmas

    Science.gov (United States)

    Nishiura, M.; Yoshida, Z.; Mushiake, T.; Kawazura, Y.; Osawa, R.; Fujinami, K.; Yano, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2017-02-01

    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

  3. Electron waves and resonances in bounded plasmas

    CERN Document Server

    Vandenplas, Paul E

    1968-01-01

    General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.

  4. Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The poloidal rotation of the magnetized edge plasma in tokamak driven by theponderomotive force which is generated by injecting lower hybrid wave(LHW) electric field hasbeen studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla’sgrill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneouscold plasma have been derived. It is shown that a strong wave electric field will be generated inthe plasma edge by injecting LH wave of the power in MW magnitude, and this electric field willinduce a poloidal rotation with a sheared poloidal velocity.PACS: 52.55.Fa

  5. Electron cyclotron waves in the presence of parallel electric fields in the Earthś auroral plasma

    Science.gov (United States)

    Kumar, S.; Dixit, S. K.; Gwal, A. K.

    1997-01-01

    The electron cyclotron waves that originate at low altitudes (regions. Acknowledgements. The authors are grateful to Prof. D. J. Southwood (Imperial College, London), J. C. Samson (University of Alberta, Edmonton), L. J. Lanzerotti (AT&T Bell Laboratories), A. Wolfe (New York City Technical College) and to Dr. M. Vellante (University of LÁquila) for helpful discussions. They also thank Dr. A. Meloni (Istituto Nazionale di Geofisica, Roma) who made available geomagnetic field observations from LÁquila Geomagnetic Observatory. This research activity at LÁquila is supported by MURST (40% and 60% contracts) and by GIFCO/CNR. Topical Editor K.-H. Glaßmeier thanks C. Waters and S. Fujita for their help in evaluating this paper.-> Correspondence to :P. Francia->

  6. Energy-dispersed ions in the plasma sheet boundary layer and associated phenomena: Ion heating, electron acceleration, Alfvén waves, broadband waves, perpendicular electric field spikes, and auroral emissions

    Directory of Open Access Journals (Sweden)

    A. Keiling

    2006-10-01

    Full Text Available Recent Cluster studies reported properties of multiple energy-dispersed ion structures in the plasma sheet boundary layer (PSBL that showed substructure with several well separated ion beamlets, covering energies from 3 keV up to 100 keV (Keiling et al., 2004a, b. Here we report observations from two PSBL crossings, which show a number of identified one-to-one correlations between this beamlet substructure and several plasma-field characteristics: (a bimodal ion conics (<1 keV, (b field-aligned electron flow (<1 keV, (c perpendicular electric field spikes (~20 mV/m, (d broadband electrostatic ELF wave packets (<12.5 Hz, and (e enhanced broadband electromagnetic waves (<4 kHz. The one-to-one correlations strongly suggest that these phenomena were energetically driven by the ion beamlets, also noting that the energy flux of the ion beamlets was 1–2 orders of magnitude larger than, for example, the energy flux of the ion outflow. In addition, several more loosely associated correspondences were observed within the extended region containing the beamlets: (f electrostatic waves (BEN (up to 4 kHz, (g traveling and standing ULF Alfvén waves, (h field-aligned currents (FAC, and (i auroral emissions on conjugate magnetic field lines. Possible generation scenarios for these phenomena are discussed. In conclusion, it is argued that the free energy of magnetotail ion beamlets drove a variety of phenomena and that the spatial fine structure of the beamlets dictated the locations of where some of these phenomena occurred. This emphasizes the notion that PSBL ion beams are important for magnetosphere-ionosphere coupling. However, it is also shown that the dissipation of electromagnetic energy flux (at altitudes below Cluster of the simultaneously occurring Alfvén waves and FAC was larger (FAC being the largest than the dissipation of beam kinetic energy flux, and thus these two energy carriers contributed more to the energy transport on PSBL field lines

  7. Predictability of Wave Energy and Electricity Markets

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    2012-01-01

    The articlw addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...

  8. Cyclotron waves in a non-neutral plasma column

    Energy Technology Data Exchange (ETDEWEB)

    Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)

    2013-04-15

    A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.

  9. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    Samiran Ghosh; Nikhil Chakrabarti; Manoranjan Khan; M R Gupta

    2013-02-01

    The conditions for the existence of low-frequency electrostatic drift wave in pair-ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.

  10. Surface-wave plasma source with magnetic multicusp fields; Multicusp jiba tojikome hyomenha plasma gen

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, M.; Ono, K.; Tsuchihashi, M.; Hanazaki, M.; Komemura, T. [Mitsubishi Electric Corp., Tokyo (Japan)

    1998-11-01

    A new-type microwave plasma source has been developed for materials processing. The plasma reactor employed a launcher of azimuthally symmetric surface waves at a frequency of 2.45 GHz and also magnetic multicusp fields around the reactor chamber walls. This configuration yielded high-density (Ne {>=} 10{sup 11}cm{sup -3}) plasmas sustained by surface waves even at low gas pressures below 10 m Torr, following easy plasma ignition by electron cyclotron resonance (ECR) discharges. Electrical and optical diagnostics were made to obtain the plasma properties in Ar. It was shown that a transition from ECR excited to surface-wave excited plasmas occurs under conditions where the plasma electron density exceeds a critical value of Ne-1 times 10{sup 11}cm{sup -3}. 21 refs., 14 figs.

  11. Plasma heating by electric field compression.

    Science.gov (United States)

    Avinash, K; Kaw, P K

    2014-05-09

    Plasma heating by compression of electric fields is proposed. It is shown that periodic cycles of external compression followed by the free expansion of electric fields in the plasma cause irreversible, collisionless plasma heating and corresponding entropy generation. As a demonstration of general ideas and scalings, the heating is shown in the case of a dusty plasma, where electric fields are created due to the presence of charged dust. The method is expected to work in the cases of compression of low frequency or dc electric fields created by other methods. Applications to high power laser heating of plasmas using this scheme are discussed.

  12. Dichromatic Langmuir waves in degenerate quantum plasma

    Science.gov (United States)

    Dubinov, A. E.; Kitayev, I. N.

    2015-06-01

    Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.

  13. Low-Frequency Waves in Space Plasmas

    Science.gov (United States)

    Keiling, Andreas; Lee, Dong-Hun; Nakariakov, Valery

    2016-02-01

    Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.

  14. Predictability of Wave Energy and Electricity Markets

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    2012-01-01

    The articlw addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...... power outputs of three wave energy technologies in the Danish North Sea are examined. The simultaneous and co-located forecast and buoy-measured wave parameters at Hanstholm, Denmark, during a non-consecutive autumn and winter 3-month period form the basis of the investigation. The objective...

  15. Plasma Waves as a Benchmark Problem

    CERN Document Server

    Kilian, Patrick; Schreiner, Cedric; Spanier, Felix

    2016-01-01

    A large number of wave modes exist in a magnetized plasma. Their properties are determined by the interaction of particles and waves. In a simulation code, the correct treatment of field quantities and particle behavior is essential to correctly reproduce the wave properties. Consequently, plasma waves provide test problems that cover a large fraction of the simulation code. The large number of possible wave modes and the freedom to choose parameters make the selection of test problems time consuming and comparison between different codes difficult. This paper therefore aims to provide a selection of test problems, based on different wave modes and with well defined parameter values, that is accessible to a large number of simulation codes to allow for easy benchmarking and cross validation. Example results are provided for a number of plasma models. For all plasma models and wave modes that are used in the test problems, a mathematical description is provided to clarify notation and avoid possible misunderst...

  16. Electromagnetic waves in a strong Schwarzschild plasma

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, J.; Tajima, T.

    1996-11-01

    The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.

  17. Some notes on ideology of waves in plasmas

    CERN Document Server

    Soshnikov, V N

    2002-01-01

    Our last three papers provide an occasion to make some brief notes on ideology of waves in plasmas and to rehabilitate Vlasov prescription to calculate relevant logarithmically divergent integrals in the principal value sense. In this approach asymptotical solutions of plasma oscillations are selected according to self-consistent boundary physical conditions. Landau damping is absent in this case by definition. Boundary electrical field together with conditions of absence of unphysical backward and kinematical waves define single-valued dependence of boundary distribution function on electron velocity \\vec{v} in the case of transversal waves and on the surface break of the normal electrical field in the case of longitudinal oscillations. We have proposed physically more justified modified iteration procedure of collisional damping calculation and demonstrated some results of damping decrements calculations in a low-collision electron-ion plasma. Dispersion smearing of both longitudinal and transversal high-fr...

  18. Fundamental plasma emission involving ion sound waves

    Science.gov (United States)

    Cairns, Iver H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.

  19. Statistical behavior of foreshock Langmuir waves observed by the Cluster wideband data plasma wave receiver

    Directory of Open Access Journals (Sweden)

    K. Sigsbee

    2004-07-01

    Full Text Available We present the statistics of Langmuir wave amplitudes in the Earth's foreshock using Cluster Wideband Data (WBD Plasma Wave Receiver electric field waveforms from spacecraft 2, 3 and 4 on 26 March 2002. The largest amplitude Langmuir waves were observed by Cluster near the boundary between the foreshock and solar wind, in agreement with earlier studies. The characteristics of the waves were similar for all three spacecraft, suggesting that variations in foreshock structure must occur on scales greater than the 50-100km spacecraft separations. The electric field amplitude probability distributions constructed using waveforms from the Cluster WBD Plasma Wave Receiver generally followed the log-normal statistics predicted by stochastic growth theory for the event studied. Comparison with WBD receiver data from 17 February 2002, when spacecraft 4 was set in a special manual gain mode, suggests non-optimal auto-ranging of the instrument may have had some influence on the statistics.

  20. Solitary Waves in Relativistic Electromagnetic Plasma

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song; HUA Cun-Cai

    2005-01-01

    Solitary waves in relativistic electromagnetic plasmas are obtained numerically. The longitudinal momentum of electrons has been taken into account in the problem. It is found that in the moving frame with electromagnetic field propagating the solitary waves can exist in both cases, where the vector potential frequency is larger or smaller than the plasma characteristic frequency.

  1. Broadband transverse electric surface wave in silicene

    Science.gov (United States)

    Ukhtary, M. Shoufie; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Saito, Riichiro

    2016-08-01

    Transverse electric (TE) surface wave in silicine is theoretically investigated. The TE surface wave in silicene is found to exhibit better characteristics compared with that in graphene, in terms of a broader frequency range and more confinement to the surface which originate from the buckled structure of silicene. We found that even undoped silicene can support the TE surface wave. We expect the similar characteristics of the TE surface wave in other two-dimensional materials that have a slightly buckled honeycomb lattice.

  2. Collisionless damping of electron waves in non-Maxwellian plasma

    OpenAIRE

    Soshnikov, V. N.

    2007-01-01

    In this paper we have criticized the so-called Landau damping theory. We have analyzed solutions of the standard dispersion equations for longitudinal (electric) and transversal (electromagnetic and electron) waves in half-infinite slab of the uniform collisionless plasmas with non-Maxwellian and Maxwellian-like electron energy distribution functions. One considered the most typical cases of both the delta-function type distribution function (the plasma stream with monochromatic electrons) an...

  3. Threshold electric field in unconventional density waves

    Science.gov (United States)

    Dóra, Balázs; Virosztek, Attila; Maki, Kazumi

    2001-07-01

    As it is well known most charge-density waves (CDW's) and spin-density waves exhibit nonlinear transport with well-defined threshold electric field ET. Here we study theoretically the threshold electric field of unconventional density waves. We find that the threshold field increases monotonically with temperature without divergent behavior at Tc, unlike the one in conventional CDW. The present result in the three-dimensional weak pinning limit appears to describe rather well the threshold electric field observed recently in the low-temperature phase of α-(BEDT-TTF)2KHg(SCN)4.

  4. Polar Plasma Wave Investigation Data Analysis in the Extended Mission

    Science.gov (United States)

    Gurnett, Donald A.

    2004-01-01

    The low latitude boundary layer (LLBL) is a region where solar wind momentum and energy is transferred to the magnetosphere. Enhanced "broadband" electric plasma waves from less than 5 Hz to 10(exp 5) Hz and magnetic waves from less than 5 Hz to the electron cyclotron frequency are characteristic of the LLBL. Analyses of Polar plasma waves show that these "broadband" waves are actually discrete electrostatic and electromagnetic modes as well as solitary bipolar pulses (electron holes). It is noted that all wave modes can be generated by approx. 100 eV to approx. 10 keV auroral electrons and protons. We will review wave-particle interactions, with focus on cross-diffusion rates and the contributions of such interactions toward the formation of the boundary layer. In summary, we will present a scenario where the global solar wind-magnetosphere interaction is responsible for the auroral zone particle beams, and hence for the generation of plasma waves and the formation of the boundary layer. It is speculated that all planetary magnetospheres will have boundary layers and they will be characterized by similar currents and plasma wave modes.

  5. Investigation on laser accelerators. Plasma beat wave accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Akihiko; Miyamoto, Yasuaki; Hagiwara, Masayoshi; Suzuki, Mitsutoshi; Sudo, Osamu [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-04-01

    Laser accelerator technology has characteristics of high energy, compact, short pulse and high luminescence{center_dot}low emittance. This means potential many applications in wide ranges of fields as well as high energy and nuclear physics. High power short laser pulses are injected to a plasma in the typical example of laser accelerators. Large electric fields are induced in the plasma. Electrons in the plasma are accelerated with the ponderomotive force of the electric field. The principles of interaction on beat wave, wakefield accelerators, inverse free electron laser and inverse Cherenkov radiation are briefly introduced. The overview of plasma beat wave accelerator study is briefly described on the programs at Chalk River Laboratories(Canada), UCLA(USA), Osaka Univ. (Japan) and Ecole Polytechnique (France). Issues of the plasma beat wave accelerator are discussed from the viewpoint of application. Existing laser technologies of CO{sub 2}, YAG and YFL are available for the present day accelerator technology. An acceleration length of beat wave interaction is limited due to its phase condition. Ideas on multi-staged acceleration using the phasing plasma fiber are introduced. (Y. Tanaka)

  6. Alfven Wave Tomography for Cold MHD Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    I.Y. Dodin; N.J. Fisch

    2001-09-07

    Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.

  7. Magnetic and Electric Field Polarizations of Oblique Magnetospheric Chorus Waves

    Science.gov (United States)

    Verkhoglyadova, Olga; Tsurutani, Bruce T.; Lakhina, Gurbax S.

    2012-01-01

    A theory was developed to explain the properties of the chorus magnetic and electric field components in the case of an arbitrary propagation angle. The new theory shows that a whistler wave has circularly polarized magnetic fields for oblique propagation. This theoretical result is verified by GEOTAIL observations. The wave electric field polarization plane is not orthogonal to the wave vector, and in general is highly elliptically polarized. A special case of the whistler wave called the Gendrin mode is also discussed. This will help to construct a detailed and realistic picture of wave interaction with magnetosphere electrons. It is the purpose of this innovation to study the magnetic and electric polarization properties of chorus at all frequencies, and at all angles of propagation. Even though general expressions for electromagnetic wave polarization in anisotropic plasma are derived in many textbooks, to the knowledge of the innovators, a detailed analysis for oblique whistler wave mode is lacking. Knowledge of the polarization properties is critical for theoretical calculations of resonant wave-particle interactions.

  8. Wave-driven Countercurrent Plasma Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    A.J. Fetterman and N.J. Fisch

    2009-03-20

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  9. Effect of wave localization on plasma instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Levedahl, W.K.

    1987-01-01

    The Anderson model of wave localization in random media is invoked to study the effect of solar-wind density turbulence on plasma processes associated with the solar type-III radio burst. ISEE-3 satellite data indicate that a possible model for the type-III process is the parametric decay of Langmuir waves excited by solar-flare electron streams into daughter electromagnetic and ion-acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir-wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Riegel criteria for wave localization in the solar wind with observed density fluctuations {approximately}1%. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action-principle approach is used to develop a theory of nonlinear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability.

  10. Evolution Of Nonlinear Waves in Compressing Plasma

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit, I.Y. Dodin, and N.J. Fisch

    2011-05-27

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  11. Kinetic Alfven wave turbulence in space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.P. [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India); Kumar, Sachin, E-mail: dynamicalfven@gmail.co [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India)

    2010-07-26

    This work presents the derivation of nonlinear coupled equations for the evolution of solar wind turbulence. These equations are governing the coupled dynamics of kinetic Alfven wave and ion acoustic wave. Numerical simulation of these equations is also presented. The ponderomotive nonlinearity is incorporated in the wave dynamics. Filamentation of kinetic Alfven wave and the turbulent spectra are presented in intermediate-{beta} plasmas at heliocentric distances (0.3 AU{<=}r<1.0 AU). The growing filaments and steeper turbulent spectra (of power law k{sup -S}, 5/3{<=}S{<=}3) can be responsible for plasma heating and particle acceleration in solar wind.

  12. Nonlinear Electron Waves in Strongly Magnetized Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens

    1980-01-01

    dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.......Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...

  13. Generation of longitudinal electric current by the transversal electromagnetic field in classical and quantum plasma

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with degenerate collisionless classical and quantum plasmas is carried out. Formulas for calculation electric current in degenerate collisionless classical and quantum plasmas are deduced. It has appeared, that the nonlinearity account leads to occurrence of longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis. Graphic comparison of density of electric current for classical degenerate Fermi plasmas and Fermi-Dirac plasmas (plasmas with any degree of degeneration of electronic gas) is carried out. Graphic comparison of density of electric current for classical and quantum degenerate plasmas is carried out. Also comparison of dependence of density of electric current of quantum degenerate plasmas from dimensionless wave number at various values of dimensionless frequency of oscillations of electromagnetic field is carried ...

  14. Generation of longitudinal electric current by transversal electromagnetic field in Maxwellian plasmas

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with Maxwellian collisionless classical and quntum plasmas is carried out. Formulas for calculation electric current in Maxwellian collisionless classical and quntum plasmas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis. Graphic comparison of density of electric current for classical Maxwellian plasmas and Fermi---Dirac plasmas (plasmas with any degree of degeneration of electronic gas) is carried out. Graphic comparison of density of electric current for classical and quantum Maxwellian plasmas is carried out. Also comparison of dependence of density of electric current of quantum Maxwellian plasmas from dimensionless wave number at various values of dimensionless frequency of oscillations of electromagnetic field is carried ou...

  15. Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet

    Science.gov (United States)

    Laroussi, Mounir; Razavi, Hamid

    2015-09-01

    Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.

  16. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  17. Drift waves in a weakly ionized plasma

    DEFF Research Database (Denmark)

    Popovic, M.; Melchior, H.

    1968-01-01

    A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....

  18. Waves in plasmas (part 1 - wave-plasma interaction general background); Ondes dans les plasmas (Partie 1 - interaction onde / plasma: bases physiques)

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, R

    2004-07-01

    This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)

  19. Chaotic ion motion in magnetosonic plasma waves

    Science.gov (United States)

    Varvoglis, H.

    1984-01-01

    The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.

  20. Weakly nonlinear electron plasma waves in collisional plasmas

    DEFF Research Database (Denmark)

    Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.

    1986-01-01

    The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...

  1. Generalized Langmuir Waves in Magnetized Kinetic Plasmas

    Science.gov (United States)

    Willes, A. J.; Cairns, Iver H.

    2000-01-01

    The properties of unmagnetized Langmuir waves and cold plasma magnetoionic waves (x, o, z and whistler) are well known. However, the connections between these modes in a magnetized kinetic plasma have not been explored in detail. Here, wave properties are investigated by numerically solving the dispersion equation derived from the Vlasov equations both with and without a beam instability present. For omega(sub p)>Omega(sub e), it is shown that the generalized Langmuir mode at oblique propagation angles has magnetic z-mode characteristics at low wave numbers and thermal Langmuir mode characteristics at high wave numbers. For omega(sub p)Langmuir mode instead connects to the whistler mode at low wave numbers. The transition from the Langmuir/z mode to the Langmuir/whistler mode near omega(sub p) = Omega(sub e) is rapid. In addition, the effects on wave dispersion and polarization after adding a beam are investigated. Applications of this theory to magnetized Langmuir waves in Earth's foreshock and the solar wind, to waves observed near the plasma frequency in the auroral regions, and to solar type III bursts are discussed.

  2. Twisted electron-acoustic waves in plasmas

    Science.gov (United States)

    Aman-ur-Rehman, Ali, S.; Khan, S. A.; Shahzad, K.

    2016-08-01

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number qeff accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  3. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983

  4. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for ~500 km-scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    Science.gov (United States)

    Pfaff, R. F.; Freudenreich, H. T.; Klenzing, J. H.; Liebrecht, M. C.; Valladares, C. E.

    2011-12-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F-peak at night. The vector electric field insrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983]. We

  5. Colliding solitary waves in quark gluon plasmas

    Science.gov (United States)

    Rafiei, Azam; Javidan, Kurosh

    2016-09-01

    We study the head-on collision of propagating waves due to perturbations in quark gluon plasmas. We use the Massachusetts Institute of Technology bag model, hydrodynamics equation, and suitable equation of state for describing the time evolution of such localized waves. A nonlinear differential equation is derived for the propagation of small amplitude localized waves using the reductive perturbation method. We show that these waves are unstable and amplitude of the left-moving (right-moving) wave increases (decreases) after the collision, and so they reach the borders of a quark gluon plasma fireball with different amplitudes. Indeed we show that such arrangements are created because of the geometrical symmetries of the medium.

  6. Structures of Strong Shock Waves in Dense Plasmas

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhong-He; HE Yong; HU Xi-Wei; LV Jian-Hong; HU Ye-Min

    2007-01-01

    @@ Structures of strong shock waves in dense plasmas are investigated via the steady-state Navier-Stokes equations and Poisson equation. The structures from fluid simulation agree with the ones from kinetic simulation. The effects of the transport coefficients on the structures are analysed. The enhancements of the electronic heat conduction and ionic viscosity both will broaden the width of the shock fronts, and decrease the electric fields in the fronts.

  7. Study of the Effect of Decrease in the Conductivity Ahead of a Shock Wave in a Glow-Discharge Plasma

    Science.gov (United States)

    Baryshnikov, A. S.; Basargin, I. V.; Bobashev, S. V.; Monakhov, N. A.; Popov, P. A.; Sakharov, V. A.; Chistyakova, M. V.

    2016-05-01

    The electrical conductivity of a glow-discharge plasma ahead of a shock wave moving perpendicularly to the discharge axis has been investigated using a double electric probe. The obtained results have shown that the interaction of the shock wave with the glow-discharge plasma is accompanied by a change in its conductivity in the entire investigated volume simultaneously.

  8. Wave propagation in a moving cold magnetized plasma

    Science.gov (United States)

    Hebenstreit, H.

    1980-03-01

    Polarization relations and dispersion equations are derived for media that are electrically anisotropic in the comoving frame. Three-dimensional calculations for media at rest recover the known dispersion equations, i.e., Astrom's dispersion equation for magnetized cold plasmas and Fresnel's wave normal equation for uniaxial crystals. An analogous four-dimensional calculation yields the generalization to moving media. The dispersion equations so obtained for moving gyrotropic media are then discussed qualitatively for various special media and special directions of wave propagation. Finally, the polarization relations are specialized to media gyrotropic in the comoving frame.

  9. Does the schock wave in a highly ionized non-isothermal plasma really exist ?

    CERN Document Server

    Rukhadze, A A; Samkharadze, T

    2015-01-01

    Here we study the structure of a highly ionizing shock wave in a gas of high atmospheric pressure. We take into account the gas ionization when the gas temperature reaches few orders of an ionization potential. It is shown that after gasdynamic temperature-raising shock and formation of a highly-ionized nonisothermal plasma $T_e>>T_i$ only the solitary ion-sound wave (soliton) can propagate in this plasma. In such a wave the charge separation occurs: electrons and ions form the double electric layer with the electric field. The shock wave form, its amplitude and front width are obtained.

  10. Collapse of nonlinear electron plasma waves in a plasma layer

    Science.gov (United States)

    Grimalsky, V.; Koshevaya, S.; Rapoport, Yu; Kotsarenko, A.

    2016-10-01

    The excitation of nonlinear electron plasma waves in the plasma layer is investigated theoretically. This excitation is realized by means of initial oscillatory perturbations of the volume electron concentration or by initial oscillatory distributions of the longitudinal electron velocity. The amplitudes of the initial perturbations are small and the manifestation of the volume nonlinearity is absent. When the amplitudes of the initial perturbations exceed some thresholds, the values of the electron concentration near the plasma boundary increase catastrophically. The maxima of the electron concentration reach extremely high magnitudes, and sharp peaks in the electron concentration occur, which are localized both in the longitudinal and transverse directions. This effect is interpreted as wave collapse near the plasma boundary.

  11. Plasma heating, electric fields and plasma flow by electron beam ionospheric injection

    Science.gov (United States)

    Winckler, J. R.; Erickson, K. N.

    1990-01-01

    The electric fields and the floating potentials of a Plasma Diagnostics Payload (PDP) located near a powerful electron beam injected from a large sounding rocket into the auroral zone ionosphere have been studied. As the PDP drifted away from the beam laterally, it surveyed a region of hot plasma extending nearly to 60 m radius. Large polarization electric fields transverse to B were imbedded in this hot plasma, which displayed large ELF wave variations and also an average pattern which has led to a model of the plasma flow about the negative line potential of the beam resembling a hydrodynamic vortex in a uniform flow field. Most of the present results are derived from the ECHO 6 sounding rocket mission.

  12. Electric fields and double layers in plasmas

    Science.gov (United States)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  13. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  14. Survey of the Frequency Dependent Latitudinal Distribution of the Fast Magnetosonic Wave Mode from Van Allen Probes Electric and Magnetic Field Instrument and Integrated Science Waveform Receiver Plasma Wave Analysis

    Science.gov (United States)

    Boardsen, Scott A.; Hospodarsky, George B.; Kletzing, Craig A.; Engebretson, Mark J.; Pfaff, Robert F.; Wygant, John R.; Kurth, William S.; Averkamp, Terrance F.; Bounds, Scott R.; Green, Jim L.; hide

    2016-01-01

    We present a statistical survey of the latitudinal structure of the fast magnetosonic wave mode detected by the Van Allen Probes spanning the time interval of 21 September 2012 to 1 August 2014. We show that statistically, the latitudinal occurrence of the wave frequency (f) normalized by the local proton cyclotron frequency (f(sub cP)) has a distinct funnel-shaped appearance in latitude about the magnetic equator similar to that found in case studies. By comparing the observed E/B ratios with the model E/B ratio, using the observed plasma density and background magnetic field magnitude as input to the model E/B ratio, we show that this mode is consistent with the extra-ordinary (whistler) mode at wave normal angles (theta(sub k)) near 90 deg. Performing polarization analysis on synthetic waveforms composed from a superposition of extra-ordinary mode plane waves with theta(sub k) randomly chosen between 87 and 90 deg, we show that the uncertainty in the derived wave normal is substantially broadened, with a tail extending down to theta(sub k) of 60 deg, suggesting that another approach is necessary to estimate the true distribution of theta(sub k). We find that the histograms of the synthetically derived ellipticities and theta(sub k) are consistent with the observations of ellipticities and theta(sub k) derived using polarization analysis.We make estimates of the median equatorial theta(sub k) by comparing observed and model ray tracing frequency-dependent probability occurrence with latitude and give preliminary frequency dependent estimates of the equatorial theta(sub k) distribution around noon and 4 R(sub E), with the median of approximately 4 to 7 deg from 90 deg at f/f(sub cP) = 2 and dropping to approximately 0.5 deg from 90 deg at f/f(sub cP) = 30. The occurrence of waves in this mode peaks around noon near the equator at all radial distances, and we find that the overall intensity of these waves increases with AE*, similar to findings of other studies.

  15. Collisional Drift Waves in Stellarator Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    J.L.V. Lewandowski

    2003-10-07

    A computational study of resistive drift waves in the edge plasma of a stellarator with an helical magnetic axis is presented. Three coupled field equations, describing the collisional drift wave dynamics in the linear approximation, are solved as an initial-value problem along the magnetic field line. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.

  16. On the freak waves in mesospheric plasma

    Science.gov (United States)

    El-Labany, S. K.; El-Shewy, E. K.; El-Bedwehy, N. A.; El-Razek, H. N. Abd; El-Rahman, A. A.

    2017-03-01

    The nonlinear properties of dusty ionic freak waves have been studied in homogeneous, unmagnetized dusty plasma system containing ions, isothermal electrons, negative and positive grains. By using the derivative expansion method and assuming strongly dispersive medium, the basic model equations are reduced to a nonlinear form of Schrodinger equation (NLSE). One of the solutions of the NLSE in the unstable region is the rational one which is responsible for the creation of the freak profiles. The reliance of freak waves profile on dusty grains charge and carrier wave number are discussed.

  17. Plasma shock waves excited by THz radiation

    Science.gov (United States)

    Rudin, S.; Rupper, G.; Shur, M.

    2016-10-01

    The shock plasma waves in Si MOS, InGaAs and GaN HEMTs are launched at a relatively small THz power that is nearly independent of the THz input frequency for short channel (22 nm) devices and increases with frequency for longer (100 nm to 1 mm devices). Increasing the gate-to-channel separation leads to a gradual transition of the nonlinear waves from the shock waves to solitons. The mathematics of this transition is described by the Korteweg-de Vries equation that has the single propagating soliton solution.

  18. Solitons and Weakly Nonlinear Waves in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1985-01-01

    Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...

  19. First results from the Cluster wideband plasma wave investigation

    Directory of Open Access Journals (Sweden)

    D. A. Gurnett

    Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The

  20. Electron Bernstein Wave Emission from RFP Plasmas

    Science.gov (United States)

    Nornberg, M. D.; Thomas, M.; Anderson, J.; Forest, C. B.

    1998-11-01

    Electron cyclotron emission (ECE) has proven to be a powerfull diagnostic tool in tokamak plasmas for determining the time evolution of the electron temperature profile. The standard technique of observing O-mode or X-mode electromagnetic waves normal to the magnetic field is not applicable to reversed field pinch (RFP) plasmas since the plasma frequency is much larger than the electron cyclotron frequency. We are investigating the use of electron Bernstein waves (presumed to be in thermal equilibrium with the electrons) through the aip.org/journal_cgi/ getpdf?KEY=PRLTAO&cvips=PRLTAO000078000018003467000001>O-X-B mode conversion process. At oblique incidence, the evanescent layer separating the plamsa cutoff from the cyclotron cutoff vanishes, allowing conversion of the Bernstein mode waves to the extraordinary mode and finally to the ordinary mode. The O-mode radiation is received by a phased array antenna consisting of two waveguides on the edge of the plasma, and the spectrum of emitted radiation is measured using a radiometer spanning 4-8 GHz. In addition to providing information about the electron temperature profile, the spectrum can provide a novel method of measuring the central magnetic field strength for current profile reconstructions.

  1. Fluctuation of the electric field in a plasma

    Science.gov (United States)

    Lee, Hee J.

    2015-04-01

    The theory of electric field fluctuations in a plasma is reviewed. The fluctuations of an electric field can be assumed to be due to the Cerenkov radiation, which is emitted by single particles that satisfy the Landau wave-particle resonance conditions. This view naturally agrees with the picture that a plasma can be considered to be an aggregate of non-interacting dressed particles. A simple classical derivation of the fluctuation-dissipation theorem is presented to show that the fluctuations of the Cerenkov electric field agree with the fluctuation-dissipation theorem. A quasilinear-like solution of the Liouville equation is shown to derive an electric field fluctuation with the same form as that obtained by using the dressed particle approach. We suggest that the fluctuation can be traced to the causality that gives rise to collisionless dissipation (imaginary part of the dielectric function). Therefore, the fluctuation in a plasma has a philosophical implication in that its existence is fundamentally due to the causal principle that the effect cannot be precedent to the cause, thus defining the direction of time.

  2. Power loss of an oscillating electric dipole in a quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderipoor, L. [Department of Physics, Faculty of Science, University of Qom, 3716146611 (Iran, Islamic Republic of); Mehramiz, A. [Department of Physics, Faculty of Science, Imam Khomeini Int' l University, Qazvin 34149-16818 (Iran, Islamic Republic of)

    2012-12-15

    A system of linearized quantum plasma equations (quantum hydrodynamic model) has been used for investigating the dispersion equation for electrostatic waves in the plasma. Furthermore, dispersion relations and their modifications due to quantum effects are used for calculating the power loss of an oscillating electric dipole. Finally, the results are compared in quantum and classical regimes.

  3. Plasma Limiter Based on Surface Wave Plasma Excited by Microwave

    Institute of Scientific and Technical Information of China (English)

    YANG Geng; TAN Jichun; SHEN Benjian

    2008-01-01

    A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres-sure, ionization degree and density of seed electrons under low pressure (0.01 ~1 Torr) and high pressure (10 ~1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 1016 m-3, and ionization degree of 10-4, has a breakdown time of approximate 19.6 ns.

  4. Laser plasma simulations of the generation processes of Alfven and collisionless shock waves in space plasma

    Science.gov (United States)

    Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.

    2016-11-01

    Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.

  5. Tunable Plasma-Wave Laser Amplifier

    Science.gov (United States)

    Bromage, J.; Haberberger, D.; Davies, A.; Bucht, S.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2016-10-01

    Raman amplification is a process by which a long energetic pump pulse transfers its energy to a counter-propagating short seed pulse through a resonant electron plasma wave. Since its conception, theory and simulations have shown exciting results with up to tens of percent of energy transfer from the pump to the seed pulse. However, experiments have yet to surpass transfer efficiencies of a few percent. A review of past literature shows that largely chirped pump pulses and finite temperature wave breaking could have been the two most detrimental effects. A Raman amplification platform is being developed at the Laboratory for Laser Energetics where a combination of a high-intensity tunable seed laser with sophisticated plasma diagnostics (dynamic Thomson scattering) will make it possible to find the optimal parameter space for high-energy transfer. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Geotail MCA Plasma Wave Investigation Data Analysis

    Science.gov (United States)

    Anderson, Roger R.

    1997-01-01

    The primary goals of the International Solar Terrestrial Physics/Global Geospace Science (ISTP/GGS) program are identifying, studying, and understanding the source, movement, and dissipation of plasma mass, momentum, and energy between the Sun and the Earth. The GEOTAIL spacecraft was built by the Japanese Institute of Space and Astronautical Science and has provided extensive measurements of entry, storage, acceleration, and transport in the geomagnetic tail and throughout the Earth's outer magnetosphere. GEOTAIL was launched on July 24, 1992, and began its scientific mission with eighteen extensions into the deep-tail region with apogees ranging from around 60 R(sub e) to more than 208 R(sub e) in the period up to late 1994. Due to the nature of the GEOTAIL trajectory which kept the spacecraft passing into the deep tail, GEOTAIL also made 'magnetopause skimming passes' which allowed measurements in the outer magnetosphere, magnetopause, magnetosheath, bow shock, and upstream solar wind regions as well as in the lobe, magnetosheath, boundary layers, and central plasma sheet regions of the tail. In late 1994, after spending nearly 30 months primarily traversing the deep tail region, GEOTAIL began its near-Earth phase. Perigee was reduced to 10 R(sub e) and apogee first to 50 R(sub e) and finally to 30 R(sub e) in early 1995. This orbit provides many more opportunities for GEOTAIL to explore the upstream solar wind, bow shock, magnetosheath, magnetopause, and outer magnetosphere as well as the near-Earth tail regions. The WIND spacecraft was launched on November 1, 1994 and the POLAR spacecraft was launched on February 24, 1996. These successful launches have dramatically increased the opportunities for GEOTAIL and the GGS spacecraft to be used to conduct the global research for which the ISTP program was designed. The measurement and study of plasma waves have made and will continue to make important contributions to reaching the ISTP/GGS goals and solving the

  7. Nonlinear phenomena of generation of longitudinal electric current by transversal electromagnetic field in plasmas

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with collisionless plasma is carried out. Formulas for calculation electric current in collisionless plasma with arbitrary degree of degeneration of electronic gas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis.

  8. Scattering processes and electrical conductivity of partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany); SRIETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Galiyev, K.; Dzhumagulova, K.N. [SRIETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Roepke, G.; Redmer, R. [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany)

    2003-07-01

    We consider partially ionized hydrogen plasma for the density region n{sub e} = (10{sup 18} / 10{sup 22}) cm{sup -} {sup 3}. The cross sections for scattering processes between the particles are calculated within the partial wave method. Charged particles in the system (electrons, protons) interact via an effective potential that takes into account three-particle correlations. The Buckingham polarization potential is used to describe electron-atom and proton-atom interactions. The electrical conductivity is determined using the Chapman-Enskog method. The results are compared with other available data. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  9. Collisional damping rates for plasma waves

    Science.gov (United States)

    Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.

    2016-06-01

    The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.

  10. Waves in relativistic electron beam in low-density plasma

    Science.gov (United States)

    Sheinman, I.; Sheinman (Chernenco, J.

    2016-11-01

    Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.

  11. Static electric dipole polarizability of lithium atoms in Debye plasmas

    Institute of Scientific and Technical Information of China (English)

    Ning Li-Na; Qi Yue-Ying

    2012-01-01

    The static electric dipole polarizabilities of the ground state and n ≤ 3 excited states of a lithium atom embedded in a weekly coupled plasma environment are investigated as a function of the plasma screening radium.The plasma screening of the Coulomb interaction is described by the Debye-Hückel potential and the interaction between the valence electron and the atomic core is described by a model potential.The electron energies and wave functions for both the bound and continuum states are calculated by solving the Schr(o)dinger equation numerically using the symplectic integrator.The oscillator strengths,partial-wave,and total static dipole polarizabilities of the ground state and n ≤ 3 excited states of the lithium atom are calculated.Comparison of present results with thosc of other authors,when available,is made.The results for the 2s ground state demonstrated that the oscillator strengths and the static dipole polarizabilities from np orbitals do not always increase or decrease with the plasma screening effect increasing,unlike that for hydrogen-like ions,especially for 2s→3p transition there is a zero value for both the oscillator strength and the static dipole polarizability for screening length D =10.3106a0,which is associated with the Cooper minima.

  12. Inductive Measurement of Plasma Jet Electrical Conductivity

    Science.gov (United States)

    Turner, Matthew W.; Hawk, Clark W.; Litchford, Ron J.

    2005-01-01

    An inductive probing scheme, originally developed for shock tube studies, has been adapted to measure explosive plasma jet conductivities. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-inch diameter probe was designed and constructed, and calibration was accomplished by firing an aluminum slug through the probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-gram high explosive shaped charges. Measured conductivities were in the range of 3 kS/m for unseeded octol charges and 20 kS/m for seeded octol charges containing 2% potassium carbonate by mass.

  13. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  14. Plasma production for electron acceleration by resonant plasma wave

    Science.gov (United States)

    Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  15. Plasma production for electron acceleration by resonant plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M.P., E-mail: maria.pia.anania@lnf.infn.it [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome Tor Vergata - INFN, via della Ricerca Scientifica, 1, 00133 Roma (Italy); INFN, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Croia, M.; Curcio, A. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Di Giovenale, D.; Di Pirro, G.P. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Filippi, F. [University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Romeo, S. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ferrario, M. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy)

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  16. Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas

    Science.gov (United States)

    Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1997-01-01

    We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.

  17. Gravitational waves in a free isotropic plasma. II

    Energy Technology Data Exchange (ETDEWEB)

    Galtsov, D.V.; Grats, IU.V.; Melkumova, E.IU.

    1985-07-01

    The generation of gravitational waves in an isotropic homogeneous plasma is investigated theoretically, within the frame work of a recently developed formalism. The effectiveness of different mechanisms generating gravitational waves is considered. Attention is given to thermal gravitational radiation by a two-component plasma; the transformation of longitudinal plasma waves into gravitons due to current fluctuations; and the generation of gravitational waves due to Langmuir turbulence. It is shown that collective plasma effects play a critical role in the generation of gravitational waves.

  18. Effective action approach to wave propagation in scalar QED plasmas

    CERN Document Server

    Shi, Yuan; Qin, Hong

    2016-01-01

    A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we study a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well-known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasma...

  19. A numerical simulation of surface wave excitation in a rectangular planar-type plasma source

    Institute of Scientific and Technical Information of China (English)

    Chen Zhao-Quan; Liu Ming-Hai; Lan Chao-Hui; Chen Wei; Tang Liang; Luo Zhi-Qing; Yan Bao-Rong; Lu Jian-Hong; Hu Xi-Wei

    2009-01-01

    The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory.The distribution of surface-wave electric field at the interface of the plasma-dielectric slab is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD) with different slotantenna structures.And the experimental image of discharge with a novel slot antenna array and the simulation of the electric field with this slot antenna array are both displayed.Combined with the distribution of surface wave excitation and experimental results,the numerical simulation performed by using 3D-FDTD is shown to be a useful tool in the computer-aided antenna design for large area planar-type surface-wave plasma sources.

  20. Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.

  1. Nonextensivity effect on radio-wave transmission in plasma sheath

    Science.gov (United States)

    Mousavi, A.; Esfandiari-Kalejahi, A.; Akbari-Moghanjoughi, M.

    2016-04-01

    In this paper, new theoretical findings on the application of magnetic field in effective transmission of electromagnetic (EM) waves through a plasma sheath around a hypersonic vehicle are reported. The results are obtained by assuming the plasma sheath to consist of nonextensive electrons and thermal ions. The expressions for the electric field and effective collision frequency are derived analytically in the framework of nonextensive statistics. Examination of the reflection, transmission, and absorption coefficients regarding the strength of the ambient magnetic field shows the significance of q-nonextensive parameter effect on these entities. For small values of the magnetic field, the transmission coefficient increases to unity only in the range of - 1 hypersonic flights.

  2. Development of Small Plasma Wave Receiver with a Dedicated Chip for Scientific Spacecraft

    Science.gov (United States)

    Fukuhara, H.; Kojima, H.; Ishii, H.; Okada, S.; Yamakawa, H.

    2012-04-01

    Since space is filled with collisionless plasmas, kinetic energy of each particle of the plasmas is exchanged via electric and magnetic fields, so-called plasma waves. The plasma waves have been observed a number of scientific spacecraft. Plasma wave receivers are classified into two kinds of the receiver, spectrum receivers, and waveform receivers. The spectrum receivers provide an overview of the plasma waves. The waveform receivers give not only amplitude but also phase of the plasma waves. Phase information between the plasma waves and plasma particle is essential in wave-particle interactions. It is important for understanding physical processes to combine both kinds of data of spectra and waveforms. Since the plasma waves have various intensities in wide-band frequency range, from DC to tens of MHz, the onboard instruments for the plasma wave observation are required to have low noise, high sensitivity, and wide dynamic range in wide-band. The required performances lead to increase the weight budget of the analog part of the instrument. The dedicated system chip can drastically decrease weight budget of the plasma wave instruments for multi-point observation missions and deep space exploration missions. It is also significant that manufacturing a number of instruments with the same performance becomes easy. In this paper, we demonstrate the miniaturized plasma wave receiver, which is realized in a dedicated chip for the analog part. The spectrum receiver is a double super heterodyne receiver, so-called `Sweep Frequency Analyzer (SFA).' This SFA is improved in the time resolution with keeping good frequency resolution by combining the analog frequency conversion and FFT. The SFA consists of an amplifier, a frequency synthesizer, mixers and band-pass filters. These component circuits are fabricated in chips and their performances are tested. The waveform receiver generally consists of the band-limiting filter, the amplifier, the anti-aliasing filter, and the A

  3. Spin waves and spin instabilities in quantum plasmas

    CERN Document Server

    Andreev, P A

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Instabilities appearing due to interaction of magnetic moments of neutrons with plasma are described.

  4. Plasma Waves and Jets from Moving Conductors

    CERN Document Server

    Gralla, Samuel E

    2016-01-01

    We consider force-free plasma waves launched by the motion of conducting material through a magnetic field. We develop a spacetime-covariant formalism for perturbations of a uniform magnetic field and show how the transverse motion of a conducting fluid acts as a source. We show that fast-mode waves are sourced by the compressibility of the fluid, with incompressible fluids launching a pure-Alfven outflow. Remarkably, this outflow can be written down in closed form, at the nonlinear level, for an arbitrary incompressible flow. The instantaneous flow velocity is imprinted on the magnetic field and transmitted away at the speed of light, carrying detailed information about the conducting source at the time of emission. These results can be applied to transients in pulsar outflows and to jets from neutron stars orbiting in the magnetosphere of another compact object. We discuss jets from moving conductors in some detail.

  5. Co-existence of Whistler Waves with Kinetic Alfven Wave Turbulence for the High-beta Solar Wind Plasma

    CERN Document Server

    Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas

    2012-01-01

    It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore in the high-beta solar wind plasma whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave turbulence creates a plateau by quasilinear diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only ~10^-3 that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.

  6. Radiation Heat Waves in Gold Plasma

    Institute of Scientific and Technical Information of China (English)

    YANG Jia-Min; XU Yan; DING Yao-Nan; LAI Dong-Xian; DING Yong-Kun; JIANG Shao-En; ZHENG Zhi-Jian; MIAO Wen-Yong

    2003-01-01

    Eight beams 0.35/um laser with pulse duration of about 1.0ns and energy of 260 J per beam was injected into a cylindrical cavity to generate intense x-ray radiation on the "Shengguang I" high power laser facility. Gold foils with a thickness in the range of 0.09-0.52/j,m were attached on the diagnostic hole of the cavity and ablated by the intense x-ray radiation. The propagating radiation heat wave in the high-Z gold plasma was observed clearly. For comparison, we also simulated the experimental results.

  7. Plasma-maser instability of the ion acoustics wave in the presence of lower hybrid wave turbulence in inhomogeneous plasma

    Indian Academy of Sciences (India)

    M Singh; P N Deka

    2006-03-01

    A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.

  8. Measurement of Plasma Clotting Using Shear Horizontal Surface Acoustic Wave Sensor

    Science.gov (United States)

    Nagayama, Tatsuya; Kondoh, Jun; Oonishi, Tomoko; Hosokawa, Kazuya

    2013-07-01

    The monitoring of blood coagulation is important during operation. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied to monitor plasma clotting. An SH-SAW sensor with a metallized surface for mechanical perturbation detection can detect plasma clotting. As plasma clotting is a gel formation reaction, the SH-SAW sensor detects viscoelastic property changes. On the other hand, an SH-SAW sensor with a free surface for electrical perturbation detection detects only the liquid mixing effect. No electrical property changes due to plasma clotting are obtained using this sensor. A planar electrochemical sensor is also used to monitor plasma clotting. In impedance spectral analysis, plasma clotting is measured. However, in the measurement of time responses, no differences between clotting and nonclotting are obtained. Therefore, the SH-SAW sensor is useful for monitoring plasma clotting.

  9. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high

  10. Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi-Shi; XIE Bai-Song; TIAN Miao; YIN Xin-Tao; ZHANG Xin-Hui

    2008-01-01

    Stable propagating waves and wake fields in relativistic electromagnetic plasma are investigated. The incident electromagnetic field has a finite initial constant amplitude meanwhile the longitudinal momentum of electrons is taken into account in the problem. It is found that in the moving frame with transverse wave group velocity the stable propagating transverse electromagnetic waves and longitudinal plasma wake fields can exist in the appropriate regime of plasma.

  11. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    We analyze nonequilibrium screening with nonequilibrium Green function techniques. By employing the generalized Kadanoff-Baym ansatz to relate the correlation function to the nonequilibrium distribution function, the latter of which is assumed to be a shifted Maxwellian, an analytically tractable...... expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  12. Magnetohydrodynamic waves in fusion and astrophysical plasmas.

    Science.gov (United States)

    Goedbloed, J. P.

    Macroscopic plasma dynamics in both controlled thermonuclear confinement machines and in the atmospheres of X-ray emitting stars is described by the equations of magnetohydrodynamics. This provides a vast area of overlapping research activities which is presently actively pursued. In this lecture the author concentrates on some important differences in the dynamics of the two confined plasma systems related to the very different geometries that are encountered and, thus, the role of the different boundary conditions that have to be posed. As a result, the basic MHD waves in a tokamak are quite different from those found in a solar magnetic flux tube. The result is that, whereas the three well-known MHD waves can be traced stepwise in the curved geometry of a tokamak, their separate existence is eliminated right from the start in a line-tied coronal loop because line-tying in general conflicts with the phase relationships between the vector components of the three velocity fields. The consequences are far-reaching, viz. completely different resonant frequencies and continuous spectra, absence of rational magnetic surfaces, and irrelevance of local marginal stability theory for coronal magnetic loops.

  13. Diffusion in plasma: the Hall effect, compositional waves, and chemical spots

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    We consider diffusion caused by a combined influence of the electric current and the Hall effect, and argue that such diffusion can form inhomogeneities of the chemical composition in plasma. The considered mechanism can be responsible for a formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type waves in which the impurity number density oscillate alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure,

  14. Relativistic electromagnetic waves in an electron-ion plasma

    Science.gov (United States)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  15. Magnetoacoustic waves in a partially ionized two-fluid plasma

    CERN Document Server

    Soler, Roberto; Ballester, Jose Luis

    2013-01-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by the ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma $\\beta$, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional da...

  16. Particle-in-cell investigation on the resonant absorption of a plasma surface wave

    Institute of Scientific and Technical Information of China (English)

    Lan Chao-Hui; Hu Xi-Wei

    2011-01-01

    The resonant absorption of a plasma surface wave is supposed to be an important and efficient mechanism of power deposition for a surface wave plasma source.In this paper,by using the particle-in-cell method and Monte Carlo simulation,the resonance absorption mechanism is investigated.Simulation results demonstrate the existence of surface wave resonance and show the high efficiency of heating electrons.The positions of resonant points,the resonance width and the spatio-temporal evolution of the resonant electric field are presented,which accord well with the theoretical results.The paper also discusses the effect of pressure on the resonance electric field and the plasma density.

  17. Space and Astrophysical Plasmas : Ionospheric plasma by VHF waves

    Indian Academy of Sciences (India)

    R P Patel; Abhay Kumar Singh; R P Singh

    2000-11-01

    The amplitude scintillations of very high frequency electromagnetic wave transmitted from geo-stationary satellite at 244.168 MHz have been recorded at Varanasi (geom. lat. 14° 55'N) during 1991 to 1999. The data are analyzed to determine the statistical features of overhead ionospheric plasma irregularities which are mostly of small duration < 30 minutes and are predominant during pre-midnight period. The increase of solar activity generally increases the depth of scintillation. The auto-correlation functions and power spectra of scintillations predict that the scale length of these irregularities varies from 200–500 m having velocity of movement between 75 m/sec to 200 m/sec. These results agree well with the results obtained by other workers.

  18. High latitude electromagnetic plasma wave emissions

    Science.gov (United States)

    Gurnett, D. A.

    1983-01-01

    The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.

  19. Generation of longitudinal electric current by the transversal electromagnetic field in collisional plasma

    CERN Document Server

    Latyshev, A V

    2015-01-01

    From kinetic Vlasov equation for collisional plasmas distribution function is received in square-law approximation on size of electromagnetic field. The formula for calculation electric current is deduced at any temperature (any degree of degeneration electronic gas). This formula contains one-dimension quadrature. It is shown, that the nonlinearity account leads to occurrence the longitudinal electric current directed along a wave vector. This longitudinal current is perpendicular to the known transversal classical current, received at the linear analysis. When frequency of collisions tends to zero, all received results for collisional plasma pass in known corresponding formulas for collisionless plasma. The case of small values of wave number is considered. It is shown, that the received quantity of longitudinal current at tendency of frequency of collisions to zero also passes in known corresponding expression of current for collisionless plasmas. Graphic comparison of dimensionless size of current is spen...

  20. On parallel electric field generation in transversely inhomogeneous plasmas

    CERN Document Server

    Tsiklauri, David

    2007-01-01

    The generation of parallel electric fields by the propagation of ion cyclotron waves in the plasma with a transverse density inhomogeneity was studied. It was proven that the minimal model required to reproduce the previous kinetic simulation results of E_{||} generation [Tsiklauri et al 2005, Genot et al 2004] is the two-fluid, cold plasma approximation in the linear regime. By considering the numerical solutions it was also shown that the cause of E_{||} generation is the electron and ion flow separation induced by the transverse density inhomogeneity. We also investigate how E_{||} generation is affected by the mass ratio and found that amplitude attained by E_{||} decreases linearly as inverse of the mass ratio m_i/m_e. For realistic mass ratio of m_i/m_e=1836, such empirical scaling law, within a time corresponding to 3 periods of the driving ion cyclotron wave, is producing E_{||}=14 Vm^{-1} for solar coronal parameters. Increase in mass ratio does not have any effect on final parallel (magnetic field a...

  1. Second-harmonic plasma response in diffusion-controlled surface-wave-sustained discharges

    Science.gov (United States)

    Stoev, L.

    2008-05-01

    The formation of nonlinear plasma response at the second harmonic frequency in diffusion controlled surface-wave-sustained discharges is studied theoretically. The study is aimed at estimating theoretically the ratio of the squared amplitudes of the wave field of fundamental frequency and of the resulting - from the nonlinear effects - electric field at the second harmonic frequency. The model presented is intended for further use in discharge diagnostics.

  2. Effects of Schwarzschild Geometry on Isothermal Plasma Wave Dispersion

    CERN Document Server

    Sharif, M

    2007-01-01

    The behavior of isothermal plasma waves has been analyzed near the Schwarzschild horizon. We consider a non-rotating background with non-magnetized and magnetized plasmas. The general relativistic magnetohydrodynamical equations for the Schwarzschild planar analogue spacetime with an isothermal state of the plasma are formulated. The perturbed form of these equations is linearized and Fourier analyzed by introducing simple harmonic waves. The determinant of these equations in each case leads to a complex dispersion relation, which gives complex values of the wave number. This has been used to discuss the nature of the waves and their characteristics near the horizon.

  3. Anisotropy induced wave birefringence in bounded supercritical plasma confined in a multicusp magnetic field

    Science.gov (United States)

    Dey, Indranuj; Bhattacharjee, Sudeep

    2011-04-01

    Laboratory observation of rotation of the polarization axis (θc˜20°-40° with respect to vacuum) of a penetrating electromagnetic wave through a bounded supercritical plasma (plasma frequency ωp>wave frequency ω), confined in a multicusp magnetic field is reported. Birefringence of the radial and polar wave electric field components (Er and Eθ) has been identified as the cause for the rotation, similar to a magneto-optic medium, however, with distinct differences owing to the presence of wave induced resonances. Numerical simulation results obtained by solving the Maxwell's equations by incorporating the plasma and magnetostatic field inhomogeneities within a conducting boundary shows a reasonable agreement with the experimental results.

  4. Alfven Waves in a Plasma Sheet Boundary Layer Associated with Near-Tail Magnetic Reconnection

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhi-Gang; DENG Xiao-Hua; PANG Ye; LI Shi-You; WANG Jing-Fang

    2007-01-01

    We report observations from Geotail satellite showing that large Poynting fluxes associated with Alfven waves in the plasma sheet boundary layer(PSBL) occur in the vicinity of the near-tail reconnection region on 10 December 1996.During the period of large Poynting fluxex,Geotail also observed strong tailward plasma flws.These observations demonstrate the importance of near-tail reconnection process as the energy source of Alfven waves in the PSBL.Strong tailward(Earthward)plasma flows ought to be an important candidate in generating Alfven waves.Furthermore,the strong pertutbations not only of the magnetic field but also of the electric field observed in the PSBL indicate that the PSBL plays an important role in the generation and propagation of the energy flux associated with Alfven waves.

  5. The structure of standing Alfvén waves in a dipole magnetosphere with moving plasma

    Directory of Open Access Journals (Sweden)

    D. A. Kozlov

    2006-03-01

    Full Text Available The structure and spectrum of standing Alfvén waves were theoretically investigated in a dipole magnetosphere with moving plasma. Plasma motion was simulated with its azimuthal rotation. The model's scope allowed for describing a transition from the inner plasmasphere at rest to the outer magnetosphere with convecting plasma and, through the magnetopause, to the moving plasma of the solar wind. Solutions were found to equations describing longitudinal and transverse (those formed, respectively, along field lines and across magnetic shells structures of standing Alfvén waves with high azimuthal wave numbers m>>1. Spectra were constructed for a number of first harmonics of poloidal and toroidal standing Alfvén waves inside the magnetosphere. For charged particles with velocities greatly exceeding the velocity of the background plasma, an effective parallel wave component of the electric field appears in the region occupied by such waves. This results in structured high-energy-particle flows and in the appearance of multiband aurorae. The transverse structure of the standing Alfvén waves' basic harmonic was shown to be analogous to the structure of a discrete auroral arc.

  6. Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas

    Science.gov (United States)

    Kaur, Maninder; Nandan Gupta, Devki

    2016-11-01

    The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.

  7. Effects of Schwarzschild Geometry on Isothermal Plasma Wave Dispersion

    OpenAIRE

    Sharif, M.; Sheikh, Umber

    2007-01-01

    The behavior of isothermal plasma waves has been analyzed near the Schwarzschild horizon. We consider a non-rotating background with non-magnetized and magnetized plasmas. The general relativistic magnetohydrodynamical equations for the Schwarzschild planar analogue spacetime with an isothermal state of the plasma are formulated. The perturbed form of these equations is linearized and Fourier analyzed by introducing simple harmonic waves. The determinant of these equations in each case leads ...

  8. Second harmonic plasma emission involving ion sound waves

    Science.gov (United States)

    Cairns, Iver H.

    1987-01-01

    The theory for second harmonic plasma emission by the weak turbulence (or random phase) processes L + L + or - S to T, proceeding in two three-wave steps, L + or - S to L prime and L + L prime to T, where L, S and T denote Langmuir, ion sound and electromagnetic waves, respectively, is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes, and constraints on the characteristics of the source plasma, are derived. Limits on the brightness temperature of the radiation and the levels of the L prime and S waves are determined. Expressions for the growth rates and path-integrated wave temperatures are derived for simple models of the wave spectra and source plasma.

  9. The energy density of a Landau damped plasma wave

    NARCIS (Netherlands)

    Best, R. W. B.

    1999-01-01

    In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite

  10. Does the Decay Wave Propagate Forwards in Dusty Plasmas?

    Institute of Scientific and Technical Information of China (English)

    谢柏松

    2002-01-01

    The decay interaction of the ion acoustic wave in a dusty plasma with variable-charge dust grains is studied.Even if strong charging relaxation for dust grains and the short wavelength regime for ion waves are included, it is found that the decay wave must be backward propagating.

  11. Evidence for Langmuir wave collapse in the interplanetary plasma

    Science.gov (United States)

    Kellogg, Paul J.; Goetz, K.; Howard, R. L.; Monson, S. J.

    1992-01-01

    With the Fast Envelope Sampler part of the URAP experiment on Ulysses, there is observed much rapidly varying structure in plasma waves in the solar wind. Extremely narrow (1 ms) structures observed together with electrostatic Langmuir waves, as well as some broader Langmuir wave packets are discussed.

  12. Linear theory of plasma filled backward wave oscillator

    Indian Academy of Sciences (India)

    Preeti Vyas; Arti Gokhale; Y Choyal; K P Maheshwari

    2001-05-01

    An analytical and numerical study of backward wave oscillator (BWO) in linear regime is presented to get an insight into the excitation of electromagnetic waves as a result of the interaction of the relativistic electron beam with a slow wave structure. The effect of background plasma on the BWO instability is also presented.

  13. Surface wave and linear operating mode of a plasma antenna

    Energy Technology Data Exchange (ETDEWEB)

    Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2015-10-15

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.

  14. Broadband plasma waves observed in the polar cap boundary layer: Polar

    Science.gov (United States)

    Tsurutani, B. T.; Lakhina, G. S.; Ho, C. M.; Arballo, J. K.; Galvan, C.; Boonsiriseth, A.; Pickett, J. S.; Gurnett, D. A.; Peterson, W. K.; Thorne, R. M.

    1998-08-01

    Polar observations indicate the presence of intense broadband plasma waves nearly all of the time (96% occurrence frequency in this study) near the apogee of the Polar trajectory (~6-8RE). The region of wave activity bounds the dayside (0500 to 1800 LT) polar cap magnetic fields, and we thus call these waves polar cap boundary layer (PCBL) waves. The waves are spiky signals spanning a broad frequency range from ~101 to 2×104Hz. The waves have a rough power law spectral shape. The wave magnetic component has on average a f-2.7 frequency dependence and appears to have an upper frequency cutoff of ~(6-7)×103Hz, which is the electron cyclotron frequency. The electric component has on average a f-2.2 frequency dependence and extends up to ~2×104Hz. The frequency dependences of the waves and the amplitude ratios of B'/E' indicate a possible mixture of obliquely propagating electromagnetic whistler mode waves plus electrostatic waves. There are no clear intensity peaks in either the magnetic or electric spectra which can identify the plasma instability responsible for the generation of the PCBL waves. The wave character (spiky nature, frequency dependence and admixture of electromagnetic and electrostatic components) and intensity are quite similar to those of the low-latitude boundary layer (LLBL) waves detected at and inside the low-latitude dayside magnetopause. Because of the location of the PCBL waves just inside the polar cap magnetic field lines, it is natural to assume that these waves are occurring on the same magnetic field lines as the LLBL waves, but at lower altitudes. Because of the similar wave intensities at both locations and the occurrence at all local times, we rule out an ionospheric source. We also find a magnetosheath origin improbable. The most likely scenario is that the waves are locally generated by field-aligned currents or current gradients. We find a strong relationship between the presence of ionospheric and magnetosheath ions and the

  15. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  16. Dispersive MHD waves and alfvenons in charge non-neutral plasmas

    Directory of Open Access Journals (Sweden)

    K. Stasiewicz

    2008-08-01

    Full Text Available Dispersive properties of linear and nonlinear MHD waves, including shear, kinetic, electron inertial Alfvén, and slow and fast magnetosonic waves are analyzed using both analytical expansions and a novel technique of dispersion diagrams. The analysis is extended to explicitly include space charge effects in non-neutral plasmas. Nonlinear soliton solutions, here called alfvenons, are found to represent either convergent or divergent electric field structures with electric potentials and spatial dimensions similar to those observed by satellites in auroral regions. Similar solitary structures are postulated to be created in the solar corona, where fast alfvenons can provide acceleration of electrons to hundreds of keV during flares. Slow alfvenons driven by chromospheric convection produce positive potentials that can account for the acceleration of solar wind ions to 300–800 km/s. New results are discussed in the context of observations and other theoretical models for nonlinear Alfvén waves in space plasmas.

  17. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  18. Excitation of surface plasma waves over corrugated slow-wave structure

    Indian Academy of Sciences (India)

    Ashim P Jain; Jetendra Parashar

    2005-08-01

    A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between dielectric and slow-wave structure. These slow SPW can couple the microwave energy to the plasma and can sustain the discharge. The efficiency of the power coupling is few per cent and is sensitive to separation between dielectric and slow-wave structure.

  19. Freak waves in negative-ion plasmas: an experiment revisited

    Science.gov (United States)

    Kourakis, Ioannis; Elkamash, Ibrahem; Reville, Brian

    2016-10-01

    Extreme events in the form of rogue waves (freak waves) occur widely in the open sea. These are space- and time-localised excitations, which appear unexpectedly and are characterised by a significant amplitude. Beyond ocean dynamics, the mechanisms underlying rogue wave formation are now being investigated in various physical contexts, including materials science, nonlinear optics and plasma physics, to mention but a few. We have undertaken an investigation, from first principles, of the occurrence of rogue waves associated with the propagation of electrostatic wavepackets in plasmas. Motivated by recent experimental considerations involving freak waves in negative-ion plasmas (NIP), we have addresed the occurrence of freak waves in NIP from first principles. An extended range of plasma parameter values was identified, where freak wave formation is possible, in terms of relevant plasma parameters. Our results extend -and partly contradict- the underlying assumptions in the interpretation of the aforementioned experiment, where a critical plasma configuration was considered and a Gardner equation approach was adopted. This work was supported from CPP/QUB funding. One of us (I. Elkamash) acknowledges financial support by an Egyptian Government fellowship.

  20. Stimulation of plasma waves by electron guns on the ISEE-1 satellite

    Science.gov (United States)

    Lebreton, J.-P.; Torbert, R.; Anderson, R.; Harvey, C.

    1982-01-01

    The results of the ISEE-1 satellite experiment relating to observations of the waves stimulated during electron injections, when the spacecraft is passing through the magnetosphere, the magnetosheath, and the solar wind, are discussed. It is shown that the injection of an electron beam current of the order of 10 to 60 microamperes with energies ranging from 0 to 40 eV produces enhancements in the electric wave spectrum. An attempt has been made to identify the low-frequency electrostatic wave observed below the ion plasma frequency as an ion acoustic mode, although the excitation mechanism is not clear. A coupling mechanism between the electron plasma mode and streaming electrons with energies higher than the thermal speed of the cold electron population has been proposed to explain the observations above the electron plasma frequency.

  1. A laboratory search for plasma erosion by Alfven waves

    Science.gov (United States)

    Vincena, S.; Gekelman, W.; Pribyl, P.

    2007-12-01

    Obliquely propagating shear Alfven waves with transverse wavelengths on the order of the electron inertial length or even the ion gyro-radius are commonly observed in the earth's low-altitude auroral zones. These regions are also replete with observations of electron beams and transversely heated ions. A kinetic treatment of shear Alfven wave-particle interaction reveals how these waves can be responsible for some of the observed particle acceleration. The auroral plasma environment is further enriched by the presence of field-aligned depletions in plasma density, and it has been suggested* that the Alfven waves may, in fact, be the cause of the erosion of ionospheric density. In this laboratory experiment, shear waves will be launched using a variety of proven antennas, and also allowed to grow spontaneously as Drift-Alfven modes in seeded density depletions**. Detailed measurements of the wave magnetic fields in the perpendicular density gradient regions will be presented which demonstrate the generation of short perpendicular wave scales due to the perpendicular gradient in parallel wave phase speed. Miniature in-situ particle diagnostics will also be used to look for electron and ion acceleration. The waves will also be launched into an increasing region of background magnetic field in an attempt to model the ratios of Alfven speed to electron thermal speed, and density gradient scale length to electron inertial length appropriate to the earth's auroral zone. Preliminary results will be presented on the efficacy of shear Alfven waves to self-generate plasma density depletions, or deepen ambient density inhomogeneities. The experiments are conducted at UCLA's Basic Plasma Science Facility in the Large Plasma Device. *Chaston, et al., "Ionospheric erosion by Alfven Waves," JGR, V 111, A03206, 2006. **Penano, et al., "Drift-Alfven fluctuations associated with a narrow pressure striation," Phys. Plasmas, V 7, Issue 1, pp. 144-157 (2000).

  2. Lamb-shift and electric field measurements in plasmas

    Science.gov (United States)

    Doveil, F.; Chérigier-Kovacic, L.; Ström, P.

    2017-01-01

    The electric field is a quantity of particular relevance in plasma physics. Indeed, its fluctuations are responsible for different macroscopic phenomena such as anomalous transport in fusion plasmas. Answering a long-standing challenge, we offer a new method to locally and non-intrusively measure weak electric fields and their fluctuations in plasmas, by means of a beam of hydrogen ions or atoms. We present measurements of the electric field in vacuum and in a plasma where Debye shielding is measured. For the first time, we have used the Lamb-shift resonance to measure oscillating electric fields around 1 GHz and observed the strong enhancement of the Lyman-α signal. The measurement is both direct and non-intrusive. This method provides sensitivity (mV cm-1) and temporal resolution (ns) that are three orders higher compared to current diagnostics. It thus allows measuring fluctuations of the electric field at scales not previously reached experimentally.

  3. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tataronis, J. A.

    2004-06-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.

  4. Effect of wave localization on plasma instabilities. Ph. D. Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Levedahl, W.K.

    1987-10-01

    The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.

  5. Acceleration of injected electrons by the plasma beat wave accelerator

    Science.gov (United States)

    Joshi, C.; Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Katsouleas, T.; Mori, W. B.

    1992-07-01

    In this paper we describe the recent work at UCLA on the acceleration of externally injected electrons by a relativistic plasma wave. A two frequency laser was used to excite a plasma wave over a narrow range of static gas pressures close to resonance. Electrons with energies up to our detection limit of 9.1 MeV were observed when 2.1 MeV electrons were injected in the plasma wave. No accelerated electrons above the detection threshold were observed when the laser was operated on a single frequency or when no electrons were injected. Experimental results are compared with theoretical predictions, and future prospects for the plasma beat wave accelerator are discussed.

  6. Relativistic effects on the modulational instability of electron plasma waves in quantum plasma

    Indian Academy of Sciences (India)

    Basudev Ghosh; Swarniv Chandra; Sailendra Nath Paul

    2012-05-01

    Relativistic effects on the linear and nonlinear properties of electron plasma waves are investigated using the one-dimensional quantum hydrodynamic (QHD) model for a twocomponent electron–ion dense quantum plasma. Using standard perturbation technique, a nonlinear Schrödinger equation (NLSE) containing both relativistic and quantum effects has been derived. This equation has been used to discuss the modulational instability of the wave. Through numerical calculations it is shown that relativistic effects significantly change the linear dispersion character of the wave. Unlike quantum effects, relativistic effects are shown to reduce the instability growth rate of electron plasma waves.

  7. Registration of ELF waves in rocket-satellite experiment with plasma injection

    Science.gov (United States)

    Korobeinikov, V. G.; Oraevskii, V. N.; Ruzhin, Iu. Ia.; Sobolev, Ia. P.; Skomarovskii, V. S.; Chmyrev, V. M.; Namazov, C. A.; Pokhunkov, A. A.; Nesmeianov, V. I.

    1992-12-01

    Two rocket KOMBI-SAMA experiments with plasma injection at height 100-240 km were performed in August 1987 in the region of Brazilian magnetic anomaly (L = 1.25). The launching time of the rocket was determined so that plasma injection was at the time when COSMOS 1809 satellite passed as close as possible to magnetic tube of injection. Caesium plasma jet was produced during not less than 300 s by an electric plasma generator separated from the payload. When the satellite passed the geomagnetic tube intersecting the injection region an enhancement of ELF emission at 140 Hz, 450 Hz by a factor of 2 was registered on board the satellite. An enhancement of energetic particle flux by a factor of 4-5 was registered on board the rocket. Observed ELF emission below 100 Hz is interpreted as the generation of oblique electromagnetic ion-cyclotron waves due to drift plasma instability at the front of the plasma jet.

  8. Excitation of Chirping Whistler Waves in a Laboratory Plasma

    Science.gov (United States)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Gekelman, W. N.; Pribyl, P.

    2015-12-01

    Whistler mode chorus emissions with a characteristic frequency chirp are an important magnetospheric wave, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified. The research was funded by NSF/DOE Plasma Partnership program by grant DE-SC0010578. Work was done at the Basic Plasma Science Facility (BAPSF) also funded by NSF/DOE.

  9. Verification of the plasma diffusion-wave propagation in an atmospheric-pressure plasma jet with the solution of a diffusion equation

    Science.gov (United States)

    Cho, Guangsup; Uhm, Han Sup

    2016-10-01

    The time-dependent solution of diffusion equation by the Fourier integration provides the axial diffusion velocity of a plasma packet, which is a key element of the plasma propagation in a plasma jet operated by the several tens of kHz. The plasma diffusion velocity is higher than the order of un ˜ 10 m/s at a high electric-field region of plasma generation and it is about the order of un ˜ 10 m/s at the plasma column of a low field region in a jet-nozzle inside. Meanwhile, the diffusion velocity is slower than the order of un ˜ 10 m/s in the open-air space where the plasma density flattens due to its radial expansion. Using these diffusion velocity data, the group-velocity of plasma diffusion wave-packet is given by ug ˜ cs2/un, a combination of the diffusion velocity un and the acoustic velocity cs. The experimental results of the plasma propagation can be verified with the plasma propagation in a form of the wave-packet whose propagation velocity is 104 m/s in a tube inside and is as fast as 105 m/s in the open-air space, thereby reconfirming that the theory of a plasma diffusion-wave is the origin of the plasma propagation in a plasma jet.

  10. Enhancement of electrical properties of polyimide films by plasma treatment

    Science.gov (United States)

    Meddeb, A. Barhoumi; Ounaies, Z.; Lanagan, M.

    2016-04-01

    In this study, the effect of oxygen plasma treatment on the electrical and surface properties of polyimide, Kapton HN, film is investigated. The plasma treatment led to an increase in the oxygen presence on the polyimide surface and a marked surface hydrophilicity. The plasma treatment led to an increase in the dielectric breakdown and Weibull modulus as well as a remarkable reduction in the scatter of all electrical measurements. There is a significant reduction in the high field/high temperature leakage current after plasma treatment. These findings have important implications in the development and improvement of dielectric polymer capacitors.

  11. High-frequency electric field amplification in a magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2006-11-30

    In the investigation of cyclotron ion heating in systems designed for plasma isotope separation, the high-frequency (HF) electric field amplification effect was found to occur in equilibrium plasma. In the present article this effect is treated as a result of the interaction of the plasma placed in a constant external magnetic field with the HF modes of the vacuum chamber. Consistent elaboration of this approach allowed obtaining a clear interpretation of the HF electric field amplification effect and constructing a simple model of HF field excitation in a plasma column embedded in the external magnetic field. (methodological notes)

  12. Kinetic simulations of ladder climbing by electron plasma waves

    Science.gov (United States)

    Hara, Kentaro; Barth, Ido; Kaminski, Erez; Dodin, I. Y.; Fisch, N. J.

    2017-05-01

    The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma parameters, which can be driven by external fields. Depending on whether the wave spectrum is discrete (bounded plasma) or continuous (boundless plasma), this phenomenon is called ladder climbing (LC) or autoresonant acceleration of plasmons. It was first proposed by Barth et al. [Phys. Rev. Lett. 115, 075001 (2015), 10.1103/PhysRevLett.115.075001] based on a linear fluid model. In this paper, LC of electron plasma waves is investigated using fully nonlinear Vlasov-Poisson simulations of collisionless bounded plasma. It is shown that, in agreement with the basic theory, plasmons survive substantial transformations of the spectrum and are destroyed only when their wave numbers become large enough to trigger Landau damping. Since nonlinear effects decrease the damping rate, LC is even more efficient when practiced on structures like quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on Langmuir waves per se.

  13. Alfven waves in a partially ionized two-fluid plasma

    CERN Document Server

    Soler, R; Ballester, J L; Terradas, J

    2013-01-01

    Alfv\\'en waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfv\\'en waves is affected by the interaction between ionized and neutral species. Here we study Alfv\\'en waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cut-off values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mo...

  14. Excitation of electrostatic waves in the electron cyclotron frequency range during magnetic reconnection in laboratory overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahata, A., E-mail: kuwahata@ts.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Igami, H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Kawamori, E. [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Kogi, Y. [Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Inomoto, M.; Ono, Y. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561 (Japan)

    2014-10-15

    We report the observation of electromagnetic radiation at high harmonics of the electron cyclotron frequency that was considered to be converted from electrostatic waves called electron Bernstein waves (EBWs) during magnetic reconnection in laboratory overdense plasmas. The excitation of EBWs was attributed to the thermalization of electrons accelerated by the reconnection electric field around the X-point. The radiative process discussed here is an acceptable explanation for observed radio waves pulsation associated with major flares.

  15. Scattering of radio frequency waves by turbulence in fusion plasmas

    Science.gov (United States)

    Ram, Abhay K.

    2016-10-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments and incoherent fluctuations due to turbulence are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on RF waves has not been quantified experimentally, there are telltale signs, arising from differences between results from simulations and from experiments, that fluctuations can modify the spectrum of RF waves. Any effect on RF waves in the scrape-off layer can have important experimental consequences. For example, electron cyclotron waves are expected to stabilize the deleterious neoclassical tearing mode (NTM) in ITER. Spectral and polarization changes due to scattering will modify the spatial location and profile of the current driven by the RF waves, thereby affecting the control of NTMs. Pioneering theoretical studies and complementary computer simulations have been pursued to elucidate the impact of fluctuations on RF waves. From the full complement of Maxwell's equations for cold, magnetized plasmas, it is shown that the Poynting flux in the wake of filaments develops spatial structure due to diffraction and shadowing. The uniformity of power flow into the plasma is affected by side-scattering, modifications to the wave spectrum, and coupling to plasma waves other than the incident RF wave. The Snell's law and the Fresnel equations have been reformulated within the context of magnetized plasmas. They are distinctly different from their counterparts in scalar dielectric media, and reveal new and important physical insight into the scattering of RF waves. The Snell's law and Fresnel equations are the basis for the Kirchhoff approximation necessary to determine properties of the scattered waves. Furthermore, this theory is also relevant for studying back

  16. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.

  17. Surface Waves in the paritally ionized solar plasma slab

    CERN Document Server

    Pandey, B P

    2013-01-01

    The properties of surface waves in the partially ionized, incompressible magnetized plasma slab are investigated in the present work. The waves are affected by the non ideal MHD effects which causes the finite drift of the magnetic field in the medium. When the finite drift of the magnetic field is ignored, the characteristics of the wave propagation in the partially ionized plasma fluid is similar to the ideal MHD except now the propagation properties depend on the fractional ionization of the medium. In the presence of Hall diffusion, the propagation of the sausage and kink surface waves depends on the level of fractional ionization of the medium. When both the Hall and Pedersen diffusion are present in the medium, the waves undergoes damping. For typical solar parameters, waves may damp over few minutes.

  18. Electromagnetic ion cyclotron waves in the plasma depletion layer

    Science.gov (United States)

    Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.

    1993-01-01

    Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.

  19. Separation method in the problem of a beam-plasma interaction in bounded warm plasma under the effect of HF electric field

    CERN Document Server

    Ei-Shorbagy, K H

    2002-01-01

    The stabilization effect of a strong HP electric field on beam-plasma instability in a cylindrical warm plasma waveguide is discussed. A new mathematical technique 'separation method' which has been applied to the two-fluid plasma model to separate the equations, which describe the system, into two parts, temporal and space parts. Plasma electrons are considered to have a thermal velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a warm plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to cold plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem.

  20. Surface waves on a quantum plasma half-space

    CERN Document Server

    Lázár, M; Smolyakov, A

    2007-01-01

    Surface modes are coupled electromagnetic/electrostatic excitations of free electrons near the vacuum-plasma interface and can be excited on a sufficiently dense plasma half-space. They propagate along the surface plane and decay in either sides of the boundary. In such dense plasma models, which are of interest in electronic signal transmission or in some astrophysical applications, the dynamics of the electrons is certainly affected by the quantum effects. Thus, the dispersion relation for the surface wave on a quantum electron plasma half-space is derived by employing the quantum hydrodynamical (QHD) and Maxwell-Poison equations. The QHD include quantum forces involving the Fermi electron temperature and the quantum Bohm potential. It is found that, at room temperature, the quantum effects are mainly relevant for the electrostatic surface plasma waves in a dense gold metallic plasma.

  1. Dispersion Relations and Polarizations of Low-frequency Waves in Two-fluid Plasmas

    CERN Document Server

    Zhao, Jinsong

    2015-01-01

    Analytical expressions for the dispersion relations and polarizations of low-frequency waves in magnetized plasmas based on two-fluid model are obtained. The properties of waves propagating at different angles (to the ambient magnetic field $\\mathbf{B}_{0}$) and \\beta (the ratio of the plasma to magnetic pressures) values are investigated. It is shown that two linearly polarized waves, namely the fast and Alfv\\'{e}n modes in the low-\\beta $\\left( \\beta \\ll 1\\right)$ plasmas, the fast and slow modes in the \\beta \\sim 1 plasmas, and the Alfv\\'{e}n and slow modes in the high-\\beta $\\left( \\beta \\gg 1\\right)$ plasmas, become circularly polarized at the near-parallel (to $\\mathbf{B}_{0}$) propagation. The negative magnetic-helicity of the Alfv\\'{e}n mode occurs only at small or moderate angles in the low-\\beta plasmas, and the ion cross-helicity of the slow mode is nearly the same as that of the Alfv\\'{e}n mode in the high-\\beta plasmas. It also shown the electric polarization $\\delta E_{z}/\\delta E_{y}$ decreases...

  2. Electric-Magnetic-Waves Resident Archive for Polar (EMWRAP)

    Science.gov (United States)

    Hart, R.; Chi, P. J.; Faden, J.; Granroth, L. J.; Menietti, J. D.; Mozer, F. S.; Russell, C. T.; Vernetti, J.

    2010-12-01

    EMWRAP is a NASA-sponsored resident archive (RA) for the Electric Field Instrument (EFI), Magnetic Field Experiment (MFE), and Plasma Wave Instrument (PWI) data collected by the Polar satellite. The main objective of EMWRAP is to maintain the data availability to the scientific community after Polar ended its operation in April 2008. With more than eleven years of observations, Polar sampled all the regions of the magnetosphere inside a distance of 9 Re, and its dataset continues to be valuable for magnetospheric research through the use of these data either alone or with other joint observations. In this presentation we demonstrate the existing capability of disseminating Polar EFI, MFE, and PWI data, and we also describe the ongoing efforts to construct the RA, such as: (1) Establishing a central web server and two backup servers, each equipped with the entire data archive to safeguard against data loss; (2) Generating documentation for the data sets following widely accepted standards, and archiving the expertise in data interpretation for the use by future researchers; (3) Providing the metadata to fully integrate with the Virtual Magnetospheric Observatory (VMO) and other components of NASA's Heliophysics Data Environment (HPDE). When these essential functions are established, a copy of the data products and documentation will be submitted to NSSDC for permanent archives.

  3. Surface plasma waves over bismuth–vacuum interface

    Indian Academy of Sciences (India)

    Ashim P Jain; J Parashar

    2003-09-01

    A surface plasma wave (SPW) over bismuth–vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW cutoff=$_{p}/\\sqrt{2(_{L}+)}$ lies in the far infrared region and can be accessed using free electron laser. The damping rate of waves at low temperatures is low. The surface plasma wave may be excited by an electron beam of current ∼ 100 mA propagating parallel to the interface in its close proximity.

  4. Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens

    1978-01-01

    The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing...... the long-time slow modulation of the wave amplitude. From this equation the amplitude-dependent frequency and wavenumber shifts are calculated, and it is found that the electron waves with short wavelengths are modulationally unstable with respect to long-wavelength, low-frequency perturbations...

  5. Investigation of heavy ions diffusion under the influence of current-driven mechanism and compositional waves in plasma

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    We consider diffusion caused by a combined influence of the Hall effect and electric currents, and argue that such diffusion forms chemical inhomogeneities in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. Such current-driven diffusion can be accompanied by the propagation of a particular type of waves which have not been considered earlier. In these waves, the impurity number density oscillare alone and their frequency is determined by the electric currents and sort of impurity ions. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure. Such waves lead to local variations of chemical composition and, hence, can manifest themselves by variations of the emission in spectral lines.

  6. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  7. Plasma Boundaries and Kinetic-Scale Electric Field Structures in the Inner Magnetosphere

    Science.gov (United States)

    Malaspina, David; Larsen, Brian; Ergun, R. E.; Skoug, Ruth; Wygant, John; Reeves, Geoffrey; Jaynes, Allison

    2016-07-01

    Recent advances in spacecraft instrumentation have enabled fresh examination of coupling between macro-scale and micro-scale physics in the terrestrial magnetosphere, demonstrating not only that cross-scale interactions are a key component of magnetospheric dynamics, but also that plasma boundaries play a crucial role in mediating cross-scale coupling. We use Van Allen Probe observations to study the cross-scale interaction between inner magnetospheric plasma boundaries (including the plasmapause and injection fronts) and kinetic-scale electric field structures including kinetic Alfven waves, double layers, phase space holes, and nonlinear whistler mode waves. We focus on the spatial distribution of these kinetic structures in the inner magnetosphere and their interaction with plasma boundaries. We demonstrate that both the occurrence probability and amplitude of these structures peak at plasma boundaries. Further, it is found that regions of kinetic-scale electric field structure activity travel with plasma boundaries. These observations imply that kinetic-scale electric field structures are continually generated by instabilities localized to these boundaries, constraining their ability to energize radiation belt particles over large spatial regions.

  8. Electrostatic solitary waves in dusty pair-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Misra, A. P. [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan-731 235, West Bengal (India); Adhikary, N. C. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati-781035, Assam (India)

    2013-10-15

    The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the “fast” and “slow” waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass (m) and temperature (T) ratios of negative to positive ions, as well as the effects of immobile charged dusts (δ). For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons, are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves (SWs) with only the negative potential. The results may be useful for the excitation of SWs in laboratory dusty pair-ion plasmas, electron-free industrial plasmas as well as for observation in space plasmas where electron density is negligibly small compared to that of negative ions.

  9. Instability wave control in turbulent jet by plasma actuators

    Science.gov (United States)

    Kopiev, V. F.; Akishev, Y. S.; Belyaev, I. V.; Berezhetskaya, N. K.; Bityurin, V. A.; Faranosov, G. A.; Grushin, M. E.; Klimov, A. I.; Kopiev, V. A.; Kossyi, I. A.; Moralev, I. A.; Ostrikov, N. N.; Taktakishvili, M. I.; Trushkin, N. I.; Zaytsev, M. Yu

    2014-12-01

    Instability waves in the shear layer of turbulent jets are known to be a significant source of jet noise, which makes their suppression important for the aviation industry. In this study we apply plasma actuators in order to control instability waves in the shear layer of a turbulent air jet at atmospheric pressure. Three types of plasma actuators are studied: high-frequency dielectric barrier discharge, slipping surface discharge, and surface barrier corona discharge. Particle image velocimetry measurements of the shear layer demonstrate that the plasma actuators have control authority over instability waves and effectively suppress the instability waves artificially generated in the shear layer. It makes these actuators promising for application in active control systems for jet noise mitigation.

  10. Using the cold plasma dispersion relation and whistler mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument

    Science.gov (United States)

    Hartley, D. P.; Kletzing, C. A.; Kurth, W. S.; Bounds, S. R.; Averkamp, T. F.; Hospodarsky, G. B.; Wygant, J. R.; Bonnell, J. W.; Santolík, O.; Watt, C. E. J.

    2016-05-01

    Cold plasma theory and parallel wave propagation are often assumed when approximating the whistler mode magnetic field wave power from electric field observations. The current study is the first to include the wave normal angle from the Electric and Magnetic Field Instrument Suite and Integrated Science package on board the Van Allen Probes in the conversion factor, thus allowing for the accuracy of these assumptions to be quantified. Results indicate that removing the assumption of parallel propagation does not significantly affect calculated plasmaspheric hiss wave powers. Hence, the assumption of parallel propagation is valid. For chorus waves, inclusion of the wave normal angle in the conversion factor leads to significant alterations in the distribution of wave power ratios (observed/ calculated); the percentage of overestimates decreases, the percentage of underestimates increases, and the spread of values is significantly reduced. Calculated plasmaspheric hiss wave powers are, on average, a good estimate of those observed, whereas calculated chorus wave powers are persistently and systematically underestimated. Investigation of wave power ratios (observed/calculated), as a function of frequency and plasma density, reveals a structure consistent with signal attenuation via the formation of a plasma sheath around the Electric Field and Waves spherical double probes instrument. A simple, density-dependent model is developed in order to quantify this effect of variable impedance between the electric field antenna and the plasma interface. This sheath impedance model is then demonstrated to be successful in significantly improving agreement between calculated and observed power spectra and wave powers.

  11. Spiral Wave Generation in a Vortex Electric Field

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-Ping; CHEN Jiang-Xing; ZHAO Ye-Hua; LOU Qin; WANG Lu-Lu; SIIEN Qian

    2011-01-01

    The effect of a vortical electric field on nonlinear patterns in excitable media is studied. When an appropriate vortex electric field is applied, the system exhibits pattern transition from chemical turbulence to spiral waves, which possess the same chtality as the vortex electric field. The underlying mechanism of this is discussed. We also show the meandering behavior of a spiral under the taming of a vortex electric field. The results obtained here may contribute to control strategies of patterns on surface reaction.%The effect of a vortical electric field on nonlinear patterns in excitable media is studied.When an appropriate vortex electric field is applied,the system exhibits pattern transition from chemical turbulence to spiral waves,which possess the same chirality as the vortex electric field.The underlying mechanism of this is discussed.We also show the meandering behavior of a spiral under the taming of a vortex electric field.The results obtained here may contribute to control strategies of patterns on surface reaction.Spiral waves are one of the most common and widely studied patterns in nature.They appear in hydrodynamic systems,chemical reactions and a large variety of biological,chemical and physical systems.[1-5] Much attention has been paid to their rich nonlinear dynamics,as well as potential applications in various biological or physiological systems,since the emergence and instability of spirals usually lead to abnormal states,for example in cardiac arrythmia[6,7] and epilepsy[8].Much research has been carried out in studying pattern formations in catalytic CO oxidation on Pt(110),[9-11] because they provide practical utilization in industry.A rich variety of spatiotemporal patterns,including travelling pulses,standing waves,target patterns,spiral waves and chemical turbulence have been observed in this system.[12-16

  12. Eulerian simulations of collisional effects on electrostatic plasma waves

    CERN Document Server

    Pezzi, Oreste; Perrone, Denise; Veltri, Pierluigi

    2013-01-01

    The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attach, both from the theoretical and the numerical point of view, and which requires in general to approximate the original collisional Landau integral by simplified differential operators in reduced dimensionality. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear form. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator...

  13. Surface waves in the magnetized, collisional dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B. P. [Department of Physics, Astronomy and Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney NSW 2109 (Australia); Vladimirov, S. V. [School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan); Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 (Russian Federation); Ishihara, O. [Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan)

    2013-10-15

    The properties of the low frequency surface waves in inhomogeneous, magnetized collisional complex dusty plasma are investigated in this work. The inhomogeneity is modelled by the two distinct regions of the dusty medium with different dust densities. The external magnetic field is assumed to be oriented along the interface dividing the two medium. It is shown that the collisional momentum exchange that is responsible for the relative drift between the plasma particles affects the propagation of the surface waves in the complex plasma via the Hall drift of the magnetic fluctuations. The propagation properties of the sausage and kink waves depend not only on the grain charge and size distribution but also on the ambient plasma thermal conditions.

  14. Low-Frequency Waves in Cold Three-Component Plasmas

    Science.gov (United States)

    Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong

    2016-09-01

    The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS

  15. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.

  16. Damping of Slow Magnetoacoustic Waves in an Inhomogeneous Coronal Plasma

    Indian Academy of Sciences (India)

    Nagendra Kumar; Pradeep Kumar; Shiv Singh; Anil Kumar

    2008-03-01

    We study the propagation and dissipation of slow magnetoacoustic waves in an inhomogeneous viscous coronal loop plasma permeated by uniform magnetic field. Only viscosity and thermal conductivity are taken into account as dissipative processes in the coronal loop. The damping length of slow-mode waves exhibit varying behaviour depending upon the physical parameters of the loop in an active region AR8270 observed by TRACE. The wave energy flux associated with slow magnetoacoustic waves turns out to be of the order of 106 erg cm-2 s-1 which is high enough to replace the energy lost through optically thin coronal emission and the thermal conduction belowto the transition region. It is also found that only those slow-mode waves which have periods more than 240 s provide the required heating rate to balance the energy losses in the solar corona. Our calculated wave periods for slow-mode waves nearly match with the oscillation periods of loop observed by TRACE.

  17. Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view

    Science.gov (United States)

    Laval, Guy; Pesme, Denis; Adam, Jean-Claude

    2016-11-01

    The first researches on nuclear fusion for energy applications marked the entrance of hot plasmas into the laboratory. It became necessary to understand the behavior of such plasmas and to learn how to manipulate them. Theoreticians and experimentalists, building on the foundations of empirical laws, had to construct this new plasma physics from first principles and to explain the results of more and more complicated experiments. Along this line, two important topics emerged: wave-particle and wave-wave interactions. Here, their history is recalled as it has been lived by a French team from the end of the sixties to the beginning of the twenty-first century.

  18. Terahertz generation by beating two Langmuir waves in a warm and collisional plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn [Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2015-09-15

    Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.

  19. Absolute parametric instability of low-frequency waves in a 2D nonuniform anisotropic warm plasma

    Indian Academy of Sciences (India)

    N G Zaki

    2010-05-01

    Using the separation method, absolute parametric instability (API) of electrostatic waves in a magnetized pumped warm plasma is investigated. In this case the effect of static strong magnetic field is considered. The problem of strong magnetic field is solved in two-dimensional (2D) nonuniform plane plasma. Equations which describe the spatial part of the electric potential are obtained. Also, the growth rates and conditions of the parametric instability for periodic and aperiodic cases are obtained. It is found that the spatial nonuniformity of the plasma exerts a stabilizing effect on the API. It is shown that the growth rates of periodic and aperiodic API in warm plasma are less when compared to that in cold plasma.

  20. Saturation of Langmuir waves in laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.L.

    1996-04-01

    This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.

  1. Effects of pulsed electric field on ULQ and RFP plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M. [Iwate Univ., Morioka (Japan). Faculty of Engineering; Saito, K.; Suzuki, T. [and others

    1997-12-31

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  2. Wave packet dynamics under effect of a pulsed electric field

    Science.gov (United States)

    da Silva, A. R. C. B.; de Moura, F. A. B. F.; Dias, W. S.

    2016-06-01

    We studied the dynamics of an electron in a crystalline one-dimensional model under effect of a time-dependent Gaussian field. The time evolution of an initially Gaussian wave packet it was obtained through the numerical solution of the time-dependent Schrödinger equation. Our analysis consists of computing the electronic centroid as well as the mean square displacement. We observe that the electrical pulse is able to promote a special kind of displacement along the chain. We demonstrated a direct relation between the group velocity of the wave packet and the applied electrical pulses. We compare those numerical calculations with a semi-classical approach.

  3. Effect of nonlinear wave collapse on line shapes in a plasma

    Science.gov (United States)

    Hannachi, I.; Stamm, R.; Rosato, J.; Marandet, Y.

    2016-04-01

    The nonlinear interaction of waves can change the structural and radiative properties of plasmas. We describe the main features of a fully ionized unmagnetized plasma affected by strong Langmuir turbulence characterized by nonlinear wave collapse, and propose a simple model for evaluating the changes expected on a hydrogen line shape affected by such conditions. Our model is based on a stochastic renewal model using an exponential waiting time distribution and a half-normal probability density function for the electric-field magnitude of the turbulent wave packet. The first results obtained with a simulation calculation of the hydrogen \\text{L}α line show that strong Langmuir turbulence can provide an additional broadening to a Stark profile.

  4. Three-Dimensional Numerical Simulation of Surface-Wave Plasma Source

    Institute of Scientific and Technical Information of China (English)

    LAN Chaohui; CHEN Zhaoquan; LIU Minghai; JIANG Zhonghe; HU Xiwei

    2009-01-01

    A three-dimensional model of a surface-wave plasma(SWP)source is built numerically using the finite-difference time-domain(FDTD)method to investigate the structure of the surface wave propagation along the plasma-dielectric interface and the distributions of electromagnetic fields in the whole system.A good-performance excitation source technique for the waveguide which is pivotal to the simulation is presented.The technique can avoid the dc distortions of magnetic fields caused by the forcing electric wall.An example of simulation is given to confirm the existence of the surface waves.The simulation also shows that the code developed is a useful tool in the computer-aided design of the antenna of the SWP source.

  5. Secondary Fast Magnetoacoustic Waves Trapped in Randomly Structured Plasmas

    Science.gov (United States)

    Yuan, Ding; Li, Bo; Walsh, Robert W.

    2016-09-01

    Fast magnetoacoustic waves are an important tool for inferring parameters of the solar atmosphere. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas that mimic the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the speed of the fast wave, we quantify the properties of secondary waves by examining the dependence of the average temporal period (\\bar{p}) on the initial pulse width (w 0) and studying the density contrast ({δ }ρ ) and correlation length (L c ) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, {δ }ρ does not alter \\bar{p} significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when {δ }ρ is small but have a smoothing effect when {δ }ρ is sufficiently large. We found that \\bar{p} scales linearly with L c and that the scaling factor is larger for a narrower pulse. However, in terms of the absolute values of \\bar{p}, broader pulses generate secondary waves with longer periods, and this effect is stronger in random plasmas with shorter correlation lengths. Secondary waves carry the signatures of both the leading wave pulse and the background plasma. Our study may find applications in magnetohydrodynamic seismology by exploiting the secondary waves detected in the dimming regions after coronal mass ejections or extreme ultraviolet waves.

  6. Analysis of circular wave packets generated by pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S., E-mail: shuhei@concord.itp.tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Reinhold, C.O. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Burgdoerfer, J. [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Wyker, B.; Ye, S.; Dunning, F.B. [Department of Physics and Astronomy and the Rice Quantum Institute, Rice University, Houston, TX 77005-1892 (United States)

    2012-05-15

    We demonstrate that circular wave packets in high Rydberg states generated by a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wave packets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficients.

  7. Sound waves and resonances in electron-hole plasma

    Science.gov (United States)

    Lucas, Andrew

    2016-06-01

    Inspired by the recent experimental signatures of relativistic hydrodynamics in graphene, we investigate theoretically the behavior of hydrodynamic sound modes in such quasirelativistic fluids near charge neutrality, within linear response. Locally driving an electron fluid at a resonant frequency to such a sound mode can lead to large increases in the electrical response at the edges of the sample, a signature, which cannot be explained using diffusive models of transport. We discuss the robustness of this signal to various effects, including electron-acoustic phonon coupling, disorder, and long-range Coulomb interactions. These long-range interactions convert the sound mode into a collective plasmonic mode at low frequencies unless the fluid is charge neutral. At the smallest frequencies, the response in a disordered fluid is quantitatively what is predicted by a "momentum relaxation time" approximation. However, this approximation fails at higher frequencies (which can be parametrically small), where the classical localization of sound waves cannot be neglected. Experimental observation of such resonances is a clear signature of relativistic hydrodynamics, and provides an upper bound on the viscosity of the electron-hole plasma.

  8. Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas

    Science.gov (United States)

    Arshad, Kashif; Lazar, M.; Mahmood, Shahzad; Aman-ur-Rehman, Poedts, S.

    2017-03-01

    The kinetic theory of electrostatic twisted waves' instability in a dusty plasma is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons, ions, and dust particles. The kappa distributed electrons are considered to have a drift velocity. The perturbed distribution function and helical electric field are decomposed by Laguerre-Gaussian mode functions defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to investigate the growth rates of the electrostatic twisted waves in a non-thermal dusty plasma. The growth rates of the dust ion acoustic twisted mode (DIATM) and dust acoustic twisted mode (DATM) are obtained analytically and also pictorial presented numerically. The instability condition for the DIATM and DATM is also discussed with different plasma parameters. The growth rates of DIATM and DATM are larger when the drifted electrons are non-Maxwellian distributed and smaller for the Maxwellian distributed drifted electrons in the presence of the helical electric field.

  9. Ion-acoustic cnoidal waves in a quantum plasma

    CERN Document Server

    Mahmood, Shahzad

    2016-01-01

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter $H_{e}$ which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  10. Effective electrical conductivity of a nonuniform plasma

    Science.gov (United States)

    Nichols, L. D.

    1975-01-01

    A simple nonuniformity model for calculating effective electrical conductivity and Hall parameter is proposed. The model shows that the effective conductivity can be significantly reduced by nonuniformities in the Hall parameter, even if the local conductivity is uniform.

  11. Excitation of Chirping Whistler Waves in a Laboratory Plasma.

    Science.gov (United States)

    Van Compernolle, B; An, X; Bortnik, J; Thorne, R M; Pribyl, P; Gekelman, W

    2015-06-19

    Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density, and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified.

  12. Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

    CERN Document Server

    Martines, E; Cavazzana, R; Adámek, J; Antoni, V; Serianni, G; Spolaore, M; Vianello, N

    2014-01-01

    A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.

  13. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  14. Solar Wind Strahl Broadening by Self-Generated Plasma Waves

    Science.gov (United States)

    Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.

    2013-01-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  15. Accumulative coupling between magnetized tenuous plasma and gravitational waves

    Science.gov (United States)

    Zhang, Fan

    2016-07-01

    We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) traveling through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW comoves with the GW and absorbs its energy to grow over time, creating an essentially force-free counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is comparable to the vacuum case, but the associated current may offer a more sensitive alternative to photodetection when designing experiments for detecting/constraining high-frequency gravitational waves. Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical gravitational waves that are generated directly by the latter as a second-order phenomenon.

  16. Accumulative coupling between magnetized tenuous plasma and gravitational waves

    CERN Document Server

    Zhang, Fan

    2016-01-01

    We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) travelling through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW co-moves with the GW and absorbs its energy to grow over time, creating an essentially force-free counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is comparable to the vacuum case, but the associated current may offer a more sensitive alternative to photodetection when designing experiments for detecting/constraining high frequency gravitational waves. Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical gravitational waves, that are generated directly by the latter as a second order phenomenon.

  17. Electromagnetic waves in a magnetized plasma near the critical surface

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2004-06-30

    Electromagnetic waves in a plasma in a magnetic field give rise to enhanced refraction, produce a change in polarization, and cause electromagnetic energy to flow from one wave mode to another when propagating near the critical surface (CS), the one where the electron Langmuir frequency is equal to the wave frequency. A simple unified model of all phenomena taking place near the CS is proposed. These phenomena are due to electromagnetic waves linearly interacting with electron Langmuir oscillations which are localized at the CS in a cold plasma. This interaction manifests itself most strikingly in electron Langmuir oscillation energy escaping directly into a vacuum in the form of electromagnetic radiation. (reviews of topical problems)

  18. Full-wave solution of short impulses in inhomogeneous plasma

    Indian Academy of Sciences (India)

    Orsolya E Ferencz

    2005-02-01

    In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened in [1]. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation.

  19. Theoretical and Experimental Study of Scattering of a Plane Wave by an Inhomogeneous Plasma Sphere

    Institute of Scientific and Technical Information of China (English)

    SONG Fa-Lun; CAO Jin-Xiang; WANG Ge; WANG Yan; ZHU Ying; ZHU Jian; WANG Liang; NIU Tian-Ye

    2006-01-01

    @@ Scattering of electromagnetic waves by an inhomogeneous plasma sphere has been studied theoretically and experimentally. The offset angles of electromagnetic waves caused by the plasma sphere have been observed experimentally. The effects of the electromagnetic wave frequency and plasma density on the offset angle are discussed. The plasma density is estimated with the offset angle.

  20. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin [School of Electronical and Mechanical Engineering, Xidian University, Xi' an Shaanxi 710071 (China); Liu Yanming [School of Telecommunications Engineering, Xidian University, Xi' an Shaanxi 710071 (China)

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  1. Laser-driven plasma waves in capillary tubes.

    Science.gov (United States)

    Wojda, F; Cassou, K; Genoud, G; Burza, M; Glinec, Y; Lundh, O; Persson, A; Vieux, G; Brunetti, E; Shanks, R P; Jaroszynski, D; Andreev, N E; Wahlström, C-G; Cros, B

    2009-12-01

    The excitation of plasma waves over a length of up to 8 cm is demonstrated using laser guiding of intense laser pulses through hydrogen-filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift-measured as a function of filling pressure, capillary tube length, and incident laser energy-is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range of 1-10 GV/m.

  2. On the rogue wave propagation in ion pair superthermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A. [Physics Department, College of Sciences and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K., E-mail: emadshewy@yahoo.com; Elwakil, S. A. [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2016-02-15

    Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.

  3. Refraction of VHF radio waves in artificial plasma formations

    Science.gov (United States)

    Kashirin, A. I.; Kliueva, N. M.; Mikhailik, P. P.; Chkalov, V. G.

    1991-09-01

    The defocusing refraction of VHF waves during the radio occultation of artificial plasma clouds in the ionosphere is calculated in the framework of the geometrical-optics approximation. The possibility of determining the main cloud parameters from characteristic power variations of the received radio waves in the case of a monotonic change in the sighting parameter during the experiment is demonstrated. Results of a rocket experiment implementing this method are presented.

  4. Electricity from wave and tide an introduction to marine energy

    CERN Document Server

    Lynn, Paul A

    2014-01-01

    This is a concise yet technically authoritative overview of modern marine energy devices with the goal of sustainable electricity generation. With 165 full-colour illustrations and photographs of devices at an advanced stage, the book provides inspiring case studies of today's most promising marine energy devices and developments, including full-scale grid-connected prototypes tested in sea conditions. It also covers the European Marine Energy Centre (EMEC) in Orkney, Scotland, where many of the devices are assessed. Topics discussed: global resources - drawing energy from the World's waves and tides history of wave and tidal stream systems theoretical background to modern developments conversion of marine energy into grid electricity modern wave energy converters and tidal stream energy converters. This book is aimed at a wide readership including professionals, policy makers and employees in the energy sector needing an introduction to marine energy. Its descriptive style and technical level will also appea...

  5. Phase conjugation by four-wave mixing in inhomogeneous plasmas

    Science.gov (United States)

    Williams, Edward A.; Lininger, Diana M.; Goldman, Martin V.

    1989-01-01

    The effects of density, temperature, and velocity gradients on four-wave mixing (FWM) in a plasma are investigated. A fluid model is used in which the stimulated Brillouin terms are included, but pump depletion is neglected. The steady state phase conjugate reflectivity and signal transmission coefficients are calculated and discussed for both degenerate and resonant FWM. The substantial effects of inhomogeneity on the use of FWM as a plasma diagnostic are discussed.

  6. Electron plasma wave filamentation in the kinetic regime

    Science.gov (United States)

    Lushnikov, Pavel; Rose, Harvey; Silantyev, Denis

    2016-10-01

    We consider nonlinear electron plasma wave (EPW) dynamics in the kinetic wavenumber regime, 0.25 Bernstein-Greene-Kruskal (BGK) mode. Transverse perturbations of any of these initial conditions grow with time eventually producing strongly nonlinear filamentation followed by plasma turbulence. We compared these simulations with the theoretical results on growth rates of the transverse instability BGK mode showing the satisfactory agreement. Supported by the New Mexico Consortium and NSF DMS-1412140.

  7. Harmonics Effect on Ion-Bulk Waves in CH Plasmas

    CERN Document Server

    Feng, Q S; Liu, Z J; Cao, L H; Xiao, C Z; Wang, Q; He, X T

    2016-01-01

    The harmonics effect on ion-bulk (IBk) waves has been researched by Vlasov simulation. The condition of excitation of a large-amplitude IBk waves is given to explain the phenomenon of strong short-wavelength electrostatic activity in solar wind. When $k$ is much lower than $k_{lor}/2$ ($k_{lor}$ is the wave number at loss-of-resonance point), the IBk waves will not be excited to a large amplitude, because a large part of energy will be spread to harmonics. The nature of nonlinear IBk waves in the condition of $kwaves with harmonics superposition. Only when the wave number $k$ of IBk waves satisfies $k_{lor}/2\\lesssim k\\leq k_{lor}$, can a large-amplitude and mono-frequency IBk wave be excited. These results give a guidance for a novel scattering mechanism related to IBk waves in the field of laser plasma interaction.

  8. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  9. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Science.gov (United States)

    Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  10. Computational study of nonlinear plasma waves: 1: Simulation model and monochromatic wave propagation

    Science.gov (United States)

    Matda, Y.; Crawford, F. W.

    1974-01-01

    An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.

  11. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M. W.; O' Neil, T. M.; Dubin, D. H. E.; Gould, R. W. [Physics Department, University of California at San Diego, La Jolla, California 92093 (United States)

    2011-10-15

    In the cold-fluid dispersion relation {omega}={omega}{sub p}/[1+(k{sub perpendicular}/k{sub z}){sup 2}]{sup 1/2} for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k{sub perpendicular}/k{sub z}. As a result, for any frequency {omega}<{omega}{sub p}, there are infinitely many degenerate waves, all having the same value of k{sub perpendicular}/k{sub z}. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr={+-}({omega}{sub p}{sup 2}/{omega}{sup 2}-1){sup 1/2}. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  12. Kinematic dust viscosity effect on linear and nonlinear dust-acoustic waves in space dusty plasmas with nonthermal ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Hanbaly, A. M.; Sallah, M., E-mail: msallahd@mans.edu.eg [Mansoura University, Physics Department, Faculty of Science (Egypt); El-Shewy, E. K. [Taibah University Al-Madinah Al-Munawarah, Department of Physics (Saudi Arabia); Darweesh, H. F. [Mansoura University, Physics Department, Faculty of Science (Egypt)

    2015-10-15

    Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions are related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.

  13. The incomplete plasma dispersion function: properties and application to waves in bounded plasmas

    OpenAIRE

    Baalrud, Scott D.

    2013-01-01

    The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near...

  14. Electric field strength determination in filamentary DBDs by CARS-based four-wave mixing

    Science.gov (United States)

    Boehm, Patrick; Kettlitz, Manfred; Brandenburg, Ronny; Hoeft, Hans; Czarnetzki, Uwe

    2016-09-01

    The electric field strength is a basic parameter of non-thermal plasmas. Therefore, a profound knowledge of the electric field distribution is crucial. In this contribution a four wave mixing technique based on Coherent Anti-Stokes Raman spectroscopy (CARS) is used to measure electric field strengths in filamentary dielectric barrier discharges (DBDs). The discharges are operated with a pulsed voltage in nitrogen at atmospheric pressure. Small amounts hydrogen (10 vol%) are admixed as tracer gas to evaluate the electric field strength in the 1 mm discharge gap. Absolute values of the electric field strength are determined by calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. Alteration of the electric field strength has been observed during the internal polarity reversal and the breakdown process. In this case the major advantage over emission based methods is that this technique can be used independently from emission, e.g. in the pre-phase and in between two consecutive, opposite discharge pulses where no emission occurs at all. This work was supported by the Deutsche Forschungsgemeinschaft, Forschergruppe FOR 1123 and Sonderforschungsbereich TRR 24 ``Fundamentals of complex plasmas''.

  15. Evolution of Modulated Dispersive Electron Waves in a Plasma

    DEFF Research Database (Denmark)

    Sugai, H.; Lynov, Jens-Peter; Michelsen, Poul

    1979-01-01

    The linear propagation of amplitude-modulated electron waves was examined in a low-density Q-machine plasma. Three effects of the strong dispersion on the modulated wave have been demonstrated: (i) a wavepacket expands along its direction of propagation, followed by a shift of the frequency through...... the wavepacket, (ii) the number of oscillations in the temporally observed packet is not identical with that in the spatially observed packet and (iii) continuously modulated waves exhibit recurrence of modulation. The experimental results agree with both a simple analysis based on the Schrodinger equation...

  16. Plasma wave instabilities in nonequilibrium graphene

    DEFF Research Database (Denmark)

    Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka

    2016-01-01

    We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....

  17. RF wave propagation and scattering in turbulent tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W., E-mail: wendell.horton@gmail.com; Michoski, C. [Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78654 (United States); Peysson, Y.; Decker, J. [CEA, IRFM, 13108, Saint-Paul, Durance Cedex (France)

    2015-12-10

    Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.

  18. Nonlinear waves in electron–positron–ion plasmas including charge separation

    Indian Academy of Sciences (India)

    A MUGEMANA; S MOOLLA; I J LAZARUS

    2017-02-01

    Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth andspiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E0 was reduced. The results are compared with satellite observations.

  19. Plasma oscillations in two-dimensional semiconductor superstructures in the presence of a high electric field

    CERN Document Server

    Glazov, S Y

    2001-01-01

    The effect of the high permanent electric field on plasma oscillations in the two-dimensional electron gas with the superstructure and taking into account the transfer processes is investigated. The dispersions omega(k) is obtained for the case of high temperature T (DELTA << T, where DELTA is the width of the conductivity miniband). It is shown that the frequency of plasmons in the high electric field depends on the value of the electric field intensity and the wave number k as the oscillating function. The spectrum is periodic with the period equal to 2 pi/d for arbitrary values of k. The numerical estimation shown that the oscillations can be manifested at the electric field intensity more than 3 x 10 sup 3 V/cm

  20. Estimation of Plasma Density by Surface Plasmons for Surface-Wave Plasmas

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhao-Quan; LIU Ming-Hai; LAN Chao-Hui; CHEN Wei; LUO Zhi-Qing; HU Xi-Wei

    2008-01-01

    @@ An estimation method of plasma density based on surface plasmons theory for surface-wave plasmas is proposed. The number of standing-wave is obtained directly from the discharge image, and the propagation constant is calculated with the trim size of the apparatus in this method, then plasma density can be determined with the value of 9.1 × 1017 m-3. Plasma density is measured using a Langmuir probe, the value is 8.1 × 1017 m-3 which is very close to the predicted value of surface plasmons theory. Numerical simulation is used to check the number of standing-wave by the finite-difference time-domain (FDTD) method also. All results are compatible both of theoretical analysis and experimental measurement.

  1. Interaction of High Intensity Electromagnetic Waves with Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    G. Shvets

    2008-10-03

    The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

  2. Magneto-Hydro-Dynamic Waves In The Collisionless Space Plasma

    Science.gov (United States)

    Dzhalilov, N. S.; Kuznetsov, V. D.; Staude, J.

    2007-12-01

    The instability of magneto-hydro-dynamic (MHD) waves in an anisotropic, collisionless, rarefied hot plasma is studied. Anisotropy properties of such a plasma are caused by a strong magnetic field, when the thermal gas pressures across and along the field become unequal. Moreover, there appears an anisotropy of the thermal fluxes. The study of the anisotropy features of the plasma are motivated by observed solar coronal data. The 16 moments equations derived from the Boltzmann-Vlasov kinetic equation are used. These equations strongly differ from the usual isotropic MHD case. For linear disturbances the wave equations in homogenous anisotropic plasma are deduced. The general dispersion relation for the incompressible wave modes is derived, solved and analyzed. It is shown that a wide wave spectrum with stable and unstable behavior is possible, in contrast to the usual isotropic MHD case. The dependence of the instability on magnetic field, pressure anisotropy, and heat fluxes is investigated. The general instability condition is obtained. The results can be applied to the theory of solar and stellar coronal heating, to wind models and in other modeling, where the collisionless approximation is valid.

  3. Plasma diagnostics by means of electric probes; Diagnostico del plasma por medio de sondas electricas

    Energy Technology Data Exchange (ETDEWEB)

    Colunga S, S

    1991-04-15

    In this work a summary of the classical theoretical models to interpret the characteristic curve of a Langmuir electric probe placed in a plasma without magnetic field and with the one is made. The methodology for the electron temperature calculation and the density of the plasma in both cases is given, starting from the characteristic curve of the probe, as well as the approaches for the correct application of this diagnostic method of the plasma. (Author)

  4. HIS-TORIC: extending core ICRF wave simulation to include realistic SOL plasmas

    Science.gov (United States)

    Shiraiwa, S.; Wright, J. C.; Lee, J. P.; Bonoli, P. T.

    2017-08-01

    This paper presents a novel approach to incorporating an arbitrarily shaped edge scrape-off-layer (SOL) plasma and an ion cyclotron range of frequency (ICRF) antenna structure into existing core ICRF wave simulation models. We partition the entire computation domain into two sub-domains: a core and an edge region. Simulations in each domain are performed separately with appropriate numerical solvers. For the core, the TORIC ICRF solver (Brambilla 1999 Plasma Phys. Control. Fusion 41 1) was modified to impose an essential (Dirichlet) boundary condition at its interface with the edge domain. In the edge, a finite element method is used to solve a cold collisional plasma model. The domains are then joined together using the continuity boundary condition for the tangential electric and magnetic fields at their interfaces (Hybrid Integration of SOL to TORIC: HIS-TORIC). The model developed here was tested using an ICRH H minority heating scenario on the Alcator C-Mod tokamak (Hutchinson et al 1994 Phys. Plasmas 1 1511). The simulated pattern of core wave propagation agrees well with a standard TORIC simulation. This approach opens the possibility of using a realistic diverted SOL plasma and a complicated 3D RF antenna together with a rigorous hot core plasma model, while requiring only minimal modification to existing RF codes.

  5. Electrostatic solitary waves in dusty pair-ion plasmas

    CERN Document Server

    Misra, A P

    2013-01-01

    The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the "fast" and "slow" waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass $(m)$ and temperature $(T)$ ratios of negative to positive ions, as well as the effects of immobile charged dusts $(\\delta)$. For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique (RPT) is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves ...

  6. Surface Wave Propagation in non--ideal plasmas

    CERN Document Server

    Pandey, B P

    2015-01-01

    The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the nonideal magnetohydrodynamic effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few percent) due to the compressibility of the medium in both ideal as well as Hall diffusion dominated regimes. However, unlike ideal regime, only waves below certain cut off frequency can propagate in the medium in Hall dominated regime. This cut off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut off is introduce...

  7. Revisiting linear plasma waves for finite value of the plasma parameter

    Science.gov (United States)

    Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren

    2010-11-01

    We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.

  8. Suppression of spiral waves using intermittent local electric shock

    Institute of Scientific and Technical Information of China (English)

    Ma Jun; Ying He-Ping; Li Yan-Long

    2007-01-01

    In this paper, an intermittent local electric shock scheme is proposed to suppress stable spiral waves in the Barkley model by a weak electric shock (about 0.4 to 0.7) imposed on a random selected n × n grids (n = 1-5, compared with the original 256×256 lattice) and monitored synchronically the evolutions of the activator on the grids as the sampled signal of the activator steps out a given threshold (i.e., the electric shock works on the n × n grids if the activator u (≤) 0.4 or u (≥) 0.8). The numerical simulations show that a breakup of spiral is observed in the media state evolution to finally obtain homogeneous states if the electric shock with appropriate intensity is imposed.

  9. A Schamel equation for ion acoustic waves in superthermal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G., E-mail: gwilliams06@qub.ac.uk; Kourakis, I. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen' s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Verheest, F. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, M. A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Anowar, M. G. M. [Department of Physics, Begum Rokeya University, Rangpur, Rangpur-5400 (Bangladesh)

    2014-09-15

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  10. Nonextensive dust acoustic waves in a charge varying dusty plasma

    Science.gov (United States)

    Bacha, Mustapha; Tribeche, Mouloud

    2012-01-01

    Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.

  11. Modulated envelope localized wavepackets associated with electrostatic plasma waves

    CERN Document Server

    Kourakis, I; Kourakis, Ioannis; Shukla, Padma Kant

    2004-01-01

    The nonlinear amplitude modulation of known electrostatic plasma modes is examined in a generic manner, by applying a collisionless fluid model. Both cold (zero-temperature) and warm fluid descriptions are discussed and the results are compared. The moderately nonlinear oscillation regime is investigated by applying a multiple scale technique. The calculation leads to a Nonlinear Schrodinger-type Equation (NLSE), which describes the evolution of the slowly varying wave amplitude in time and space. The NLSE admits localized envelope (solitary wave) solutions of bright- (pulses) or dark- (holes, voids) type, whose characteristics (maximum amplitude, width) depend on intrinsic plasma parameters. Effects like amplitude perturbation obliqueness, finite temperature and defect (dust) concetration are explicitly considered. The relevance with similar highly localized modulated wave structures observed during recent satellite missions is discussed.

  12. Solitary and freak waves in superthermal plasma with ion jet

    Science.gov (United States)

    Abdelsalam, U. M.; Abdelsalam

    2013-06-01

    The nonlinear solitary and freak waves in a plasma composed of positive and negative ions, superthermal electrons, ion beam, and stationary dust particles have been investigated. The reductive perturbation method is used to obtain the Korteweg-de Vries (KdV) equation describing the system. The latter admits solitary wave solution, while the dynamics of the modulationally unstable wavepackets described by the KdV equation gives rise to the formation of freak/rogue excitation described by the nonlinear Schrödinger equation. In order to show that the characteristics of solitary and freak waves are influenced by plasma parameters, relevant numerical analysis of appropriate nonlinear solutions are presented. The results from this work predict nonlinear excitations that may associate with ion jet and superthermal electrons in Herbig-Haro objects.

  13. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    OpenAIRE

    F. Sohbatzadeh; Bagheri, M; S. Motallebi

    2017-01-01

    In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV) wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chem...

  14. Coherent structures and transport in drift wave plasma turbulence

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang

    for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa- Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa......-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron......Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important...

  15. Analysis of Circular Wave Packets Generated by Pulsed Electric Fields

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S. [Vienna University of Technology, Austria; Reinhold, Carlos O [ORNL; Burgdorfer, J. [Vienna University of Technology, Austria; Wyker, B. [Rice University; Ye, S. [Rice University; Dunning, F. B. [Rice University

    2011-01-01

    We demonstrate that circular wave packets in high Rydberg states generated using a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wavepackets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficient.

  16. Enhancement of electric and magnetic wave fields at density gradients

    Directory of Open Access Journals (Sweden)

    A. Reiniusson

    2006-03-01

    Full Text Available We use Freja satellite data to investigate irregular small-scale density variations. The observations are made in the auroral region at about 1000-1700 km. The density variations are a few percent, and the structures are found to be spatial down to a scale length of a few ion gyroradii. Irregular density variations are often found in an environment of whistler mode/lower hybrid waves and we show that at the density gradients both the electric and magnetic wave fields are enhanced.

  17. Helicon waves in uniform plasmas. II. High m numbers

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-09-15

    Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B{sub 0}. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel [“Helicon modes in uniform plasmas. I. Low m modes,” Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name “helicon” to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B{sub 0}. The field lines near the axis of helicons are perpendicular to B{sub 0} and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B{sub 0}. The radiation efficiency of multipole antennas has been found to decrease with m.

  18. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  19. Bernstein wave aided laser third harmonic generation in a plasma

    Science.gov (United States)

    Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok

    2016-09-01

    The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.

  20. Nonlinear Alfvén wave dynamics in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Anwesa; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Schamel, Hans [Theoretical Physics, University of Bayreuth, D-95440 Bayreuth (Germany)

    2015-07-15

    Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.

  1. Nonlinear Alfvén wave dynamics in plasmas

    Science.gov (United States)

    Sarkar, Anwesa; Chakrabarti, Nikhil; Schamel, Hans

    2015-07-01

    Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.

  2. Statistical Analysis of EMIC Waves in Multiple Component Plasma Including Heavy Ions

    Science.gov (United States)

    Matsuda, S.; Kasahara, Y.; Goto, Y.

    2013-12-01

    It is well known that Earth's radiation belts are located around geomagnetic equator, where wide ranges of energetic particles from several hundred keV to several tens MeV are contained. According to the recent study, it is suggested that ELF/VLF waves such as EMIC waves and chorus emissions deeply contribute to the generation and loss mechanism of relativistic electrons in the radiation belt. The ERG mission[1] is expected to provide important clues for solving plasma dynamics in the Earth's radiation belts by means of integrated observation of wide energy range of plasma particles and high resolution plasma waves. On the other hand, long-term observation data which covers over 2 cycles of solar activity obtained by the Akebono satellite is very valuable to work out the strategy of the ERG mission. The ELF receiver, which is a sub-system of the VLF instruments onboard Akebono, measures waveforms below 50 Hz for one component of electric field and three components of magnetic field, or waveforms below 100 Hz for one component of electric and magnetic field, respectively. It was reported that ion cyclotron waves were observed near magnetic equator by the receiver[2]. In our previous study[3], we introduced four events of characteristic EMIC waves observed by Akebono in April, 1989. These waves have sudden decrease of intensity just above half of proton cyclotron frequency changing along the trajectories of Akebono. Comparing the observed data with the dispersion relation in multiple species of ions under cold plasma approximation, we demonstrate that a few percent of 'M / Z = 2 ions (M = mass of ions, Z = charge of ions)' such as alpha particles (He++) or deuterons (D+) cause such characteristic attenuation of EMIC at lower hybrid frequency. In the present study, we performed polarization analysis and direction finding of the waves. It was found that these EMIC waves were left-handed polarized in the higher frequency part, while the polarization gradually changes to

  3. Observation of nonlinear wave decay processes in the solar wind by the AMPTE IRM plasma wave experiment

    Science.gov (United States)

    Koons, H. C.; Roeder, J. L.; Bauer, O. H.; Haerendel, G.; Treumann, R.

    1987-01-01

    Nonlinear wave decay processes have been detected in the solar wind by the plasma wave experiment aboard the Active Magnetospheric Particle Tracer Explorers (AMPTE) IRM spacecraft. The main process is the generation of ultralow-frequency ion acoustic waves from the decay of Langmuir waves near the electron plasma frequency. Frequently, this is accompanied by an enhancement of emissions near twice the plasma frequency. This enhancement is most likely due to the generation of electromagnetic waves from the coalescence of two Langmuir waves. These processes occur within the electron foreshock in front of the earth's bow shock.

  4. Potential role of kinetic Alfvén waves and whistler waves in solar wind plasmas

    Science.gov (United States)

    Nandal, P.; Yadav, N.; Sharma, R. P.; Goldstein, M. L.

    2016-07-01

    Spacecraft observations indicate the signatures of highly oblique kinetic Alfvén waves (KAWs) and whistler waves in the solar wind plasma. In the present work, we explore the possible role of KAWs and whistler waves in the observed solar wind magnetic turbulent spectrum. The nonlinear spatial evolution of KAW is studied including the effects of the ponderomotive force which results in intense localized structures due to the background density modification. Weak quasi-transverse whistler wave propagating through these localized structures also gets localized in the form of small-scale localized structures. We present numerically calculated magnetic power spectra for both KAW as well as for whistler wave. Our obtained results demonstrate the important role that KAWs and whistler waves play in the energy cascading from larger to smaller scales. The relevance of these results to recent spacecraft observations is also pointed out.

  5. Analysis of plasma waves observed in the inner Saturn magnetosphere

    Directory of Open Access Journals (Sweden)

    J. D. Menietti

    2008-09-01

    Full Text Available Plasma waves observed in the Saturn magnetosphere provide an indication of the plasma population present in the rotationally dominated inner magnetosphere. Electrostatic cyclotron emissions often with harmonics and whistler mode emission are a common feature of Saturn's inner magnetosphere. The electron observations for a region near 5 RS outside and near a plasma injection region indicate a cooler low-energy (<100 eV, nearly isotropic plasma, and a much warmer (E>1000 eV more pancake or butterfly distribution. We model the electron plasma distributions to conduct a linear dispersion analysis of the wave modes. The results suggest that the electrostatic electron cyclotron emissions can be generated by phase space density gradients associated with a loss cone that may be up to 20° wide. This loss cone is sometimes, but not always, observed because the field of view of the electron detectors does not include the magnetic field line at the time of the observations. The whistler mode emission can be generated by the pancake-like distribution and temperature anisotropy (T/T||>1 of the warmer plasma population.

  6. Obliquely propagating large amplitude solitary waves in charge neutral plasmas

    Directory of Open Access Journals (Sweden)

    F. Verheest

    2007-01-01

    Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.

  7. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.

    Science.gov (United States)

    Schroeder, C B; Esarey, E

    2010-05-01

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  8. Theory of wave propagation along waveguide filled with plasma in finite magnetic field

    Institute of Scientific and Technical Information of China (English)

    刘盛纲; J.K.Lee; 祝大军

    1996-01-01

    Rigorous analytical theory of wave propagation along a cylindrical waveguide filled with plasmas in a dielectric tube immersed in finite magnetic field is presented.The field components’ expressions,eigenvalues,dispersion equations and complex wave power transmission equations have been obtained rigorously and discussed in detail.It is shown analytically that there is no disruption of the wave propagationin the ECR (ω=ωa) case,although the electrical permittivities approach to infinite in the case,and it hasbeen found that a real resonance takes place in this case while ω=(ωa2+ωpc2)1/2,in which the wave propagationof any mode is broken.The effective collisions are taken into consideration in the theory.Based on the above theory,the analytical theory of corrugated plasma waveguide immersed in finite axial magnetic field is also presented.The Floquet’s expansion of field components,the dispersion equations,and the coupling coefficients of the corrugated plasma waveguide have been derived rigorously a

  9. A Plasma-Based DC-DC Electrical Transformer

    Science.gov (United States)

    Nebel, Richard; Finn, John

    2013-10-01

    Previous work has indicated that it may be possible to make DC-DC electrical transformers using plasmas. The mechanism is an MHD electromagnetic relaxation process induced by helical electrodes. This process is now being tested on the Bismark device at Tibbar Technologies.

  10. Plasma waves observed by the IRM and UKS spacecraft during the AMPTE solar wind lithium releases - Overview

    Science.gov (United States)

    Haeusler, B.; Woolliscroft, L. J.; Anderson, R. R.; Gurnett, D. A.; Holzworth, R. H.

    1986-01-01

    The wave measurements from the Ion Release Module and the United Kingdom Satellite in the diamagnetic cavity, the transition region, and the upstream region are examined. Solar wind conditions during the releases on September 11 and 20, 1984 are described. The quasi-static electric field, wideband, high-frequency waves, and medium and VLF waves observations are analyzed. The data reveal that extremely low levels of wave activity are observed in the boundary between the diamagnetic cavity and external magnetic field, medium and VLF waves in the ion acoustic electrostatic cyclotron harmonic modes are detected in the transition region from the diamagnetic cavity to the solar wind, and decay in the magnetic field strength and density, and an increase in the quasi-static electric field is seen in the upstream edge of the transition region. The emissions observed are related to the different phases of the Li cloud development and different spatial regimes of the Li plasma-solar wind interaction.

  11. Oblique solitary waves in a five component plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sijo, S.; Manesh, M.; Sreekala, G.; Venugopal, C., E-mail: cvgmgphys@yahoo.co.in [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, 686 560 Kerala (India); Neethu, T. W. [Department of Physics, CMS College, Mahatma Gandhi University, Kottayam, 686 001 Kerala (India); Renuka, G. [Kerala State Council for Science, Technology and Environment, Thiruvananthapuram, 695 004 Kerala (India)

    2015-12-15

    We investigate the influence of a second electron component on oblique dust ion acoustic solitary waves in a five component plasma consisting of positively and negatively charged dust, hydrogen ions, and hotter and colder electrons. Of these, the heavier dust and colder photo-electrons are of cometary origin while the other two are of solar origin; electron components are described by kappa distributions. The K-dV equation is derived, and different attributes of the soliton such as amplitude and width are plotted for parameters relevant to comet Halley. We find that the second electron component has a profound influence on the solitary wave, decreasing both its amplitude and width. The normalized hydrogen density strongly influences the solitary wave by decreasing its width; the amplitude of the solitary wave, however, increases with increasing solar electron temperatures.

  12. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  13. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    Biswajit Sahu

    2011-06-01

    Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized twospecies relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter on the nature of solitary wave solutions is studied in some detail.

  14. Charge transfer to a dielectric target by guided ionization waves using electric field measurements

    Science.gov (United States)

    Slikboer, Elmar; Garcia-Caurel, Enric; Guaitella, Olivier; Sobota, Ana

    2017-03-01

    A kHz-operated atmospheric pressure plasma jet is investigated by measuring charge transferred to a dielectric electro-optic surface (BSO crystal) allowing for the measurement of electric field by exploiting the Pockels effect. The electric field values, distribution of the surface discharge and amount of deposited charge are obtained for various parameters, including gas flow, applied voltage, target distance and the length of the capillary from ground to the end. A newly formed surface discharge emerges at the target when enough charge is deposited at the impact point and electric fields are high enough, i.e. 200 pC and 9 ± 2 kV cm‑1. The maximum amount of charge transferred by a single ionization wave (‘plasma bullet’) is 350 ± 40 pC. Due to the emerging new surface discharge behind the impact point, the total charge deposited on the surface of the dielectric target can increase up to 950 pC. The shape of the secondary discharge on the target is found to be mainly driven by gas flow, while the applied voltage allows us to utilize longer distances within the boundaries set by this gas mixing. Finally the ionization wave is found to lose charge along its propagation on the inner walls of the capillary. The loss is estimated to be approximately 7.5 pC mm‑1 of travel distance inside the capillary.

  15. Full wave simulation of waves in ECRIS plasmas based on the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)

    2014-02-12

    This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.

  16. Transfer Matrix for Obliquely Incident Electromagnetic Waves Propagating in One Dimension Plasma Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    GUO Bin

    2009-01-01

    Based on the electromagnetic theory and by using an analytical technique-the transfer matrix method,the obliquely incident electromagnetic waves propagating in one-dimension plasma photonic crystals is studied.The dispersion relations for both the P-polarization waves and S-polarization waves,depending on the plasma density,plasma thickness and period,are discussed.

  17. Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M

    2005-07-21

    A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.

  18. Excitation and evolution of finite-amplitude plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y. W.; Wu, Y. C., E-mail: yican.wu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Chen, M. X. [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); Yu, M. Y., E-mail: myyu@zju.edu.cn [Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44780 Bochum (Germany); Wu, B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2015-12-15

    The evolution of a small spatially periodic perturbation in the electron velocity distribution function in collisionless plasma is reconsidered by numerically solving the Vlasov and Poisson equations. The short as well as long time behaviors of the excited oscillations and damping/modulation are followed. In the small but finite-amplitude excited plasma wave, resonant electrons become trapped in the wave potential wells and their motion affects the low-velocity electrons participating in the plasma oscillations, leading to modulation of the latter at an effective trapping frequency. It is found that the phase space of the resonant and low-velocity electrons becomes chaotic, but then self-organization takes place but remains fine-scale chaotic. It is also found that as long as particles are trapped, there is only modulation and no monotonic damping of the excited plasma wave. The modulation period/amplitude increases/decreases as the magnitude of the initial disturbance is reduced. For the initial and boundary conditions used here, linear Landau damping corresponds to the asymptotic limit of the modulation period becoming infinite, or no trapping of the resonant electrons.

  19. Dust Acoustic Wave Excitation in a Plasma with Warm Dust

    Science.gov (United States)

    Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.

    2008-11-01

    Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).

  20. Electron acoustic waves in a magnetized plasma with kappa distributed ions

    Energy Technology Data Exchange (ETDEWEB)

    Devanandhan, S.; Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Singh, S. V. [Indian Institute of Geomagnetism, Navi Mumbai (India); School of Physics, University of Kwazulu-Natal, Durban (South Africa); Bharuthram, R. [University of the Western Cape, Bellville (South Africa)

    2012-08-15

    Electron acoustic solitary waves in a two component magnetized plasma consisting of fluid cold electrons and hot superthermal ions are considered. The linear dispersion relation for electron acoustic waves is derived. In the nonlinear regime, the energy integral is obtained by a Sagdeev pseudopotential analysis, which predicts negative solitary potential structures. The effects of superthermality, obliquity, temperature, and Mach number on solitary structures are studied in detail. The results show that the superthermal index {kappa} and electron to ion temperature ratio {sigma} alters the regime where solitary waves can exist. It is found that an increase in magnetic field value results in an enhancement of soliton electric field amplitude and a reduction in soliton width and pulse duration.

  1. Electric-Arc Plasma Installation for Preparing Nanodispersed Carbon Structures

    Institute of Scientific and Technical Information of China (English)

    P. STEFANOV; D. GARLANOV; G. VISSOKOV

    2008-01-01

    An electric-arc plasma installation operated in the hidden anode arrangement is constructed and used for the preparation of carbon nanostructures. A contracted plasma arc gen-erated by a plasma torch using an inert gas is used as heat source. The average mass temperature of arc is higher than 104 K, while its power density, which is directly transferred onto the electrode (anode), is ~ 2 kW/mm2. The anode contact area formed on the electrode moves against the arc by way of shifting the electrode and is hidden completely in the interior of plasma gas stream moving towards it. As a result of both the direct plasma attack and the opposite movement of streams in the hidden anode contact area, a temperature higher than 6000 K is reached. Thus, intensive vaporization takes place, which forms a saturated plasma-gas-aerosol phase of the initial material of electrode (anode). This gas phase is mixed in and carried by the plasma stream. Over that mixed plasma stream, a controlled process of quenching (fixation) is carried out by twisted turbulent fluid streams. After the fixation, the resultant carbon nano-structures are caught by a filter and collected in a bunker.

  2. Numerical Modeling and Analysis of Space-Based Electric Antennas via Plasma Particle Simulation

    Science.gov (United States)

    Miyake, Y.; Usui, H.; Kojima, H.

    2009-12-01

    Better understanding of electric antenna properties (e.g., impedance) in space plasma environment is necessitated, because calibration of electric field data obtained by scientific spacecraft should be done with precise knowledge about the properties. Particularly, a strong demand arises regarding a sophisticated method for evaluating modern electric field instrument properties toward future magnetospheric missions. However, due to complex behavior of surrounding plasmas, it is often difficult to apply theoretical approaches to the antenna analysis including the plasma kinetic effects and the complex structure of such instruments. For the self-consistent antenna analysis, we have developed a new electromagnetic (EM) particle simulation code named EMSES. The code is based on the particle-in-cell technique and also supports a treatment of inner boundaries describing spacecraft conductive surfaces. This enables us to naturally include the effects of the inhomogeneous plasma environment such as a plasma and photoelectron sheaths created around the antenna. The support of the full EM treatment is also important to apply our tool to antenna properties for not only electrostatic (ES) but also EM plasma waves. In the current study, we particularly focus on an electric field instrument MEFISTO, which is designed for BepiColombo/MMO to the Mercury orbit. For the practical analysis of MEFISTO electric properties, it is important to consider an ES environment affected by the instrument body potential and the photoelectron distribution. We present numerical simulations on an ES structure around MEFISTO as well as current-voltage characteristic of the instrument. We have also started numerical modeling of a photoelectron guard electrode, which is one of key technologies for producing an optimal condition of plasma environment around the instrument. We have modeled a pre-amplifier housing called “puck”, the surface of which functions as the electrode. The photoelectron guard

  3. The incomplete plasma dispersion function: properties and application to waves in bounded plasmas

    CERN Document Server

    Baalrud, Scott D

    2013-01-01

    The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near boundary sheaths or double layers, where the passing interval can be modeled as Maxwellian with a lower temperature than the trapped interval. The depleted Maxwellian is used as an example to demonstrate the utility of using the incomplete plasma dispersion function for calculating modifications to wave dispersion relations.

  4. The Nonlinear Landau Damping Rate of a Driven Plasma Wave

    Energy Technology Data Exchange (ETDEWEB)

    Benisti, D; Strozzi, D J; Gremillet, L; Morice, O

    2009-08-04

    In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.

  5. Ladder Climbing and Autoresonant Acceleration of Plasma Waves

    CERN Document Server

    Barth, Ido; Fisch, Nathaniel J

    2015-01-01

    Classical plasma waves are predicted to exhibit quantumlike ladder climbing, which is achieved by chirped modulations of the background density. An equivalence with the quantum particle in a box is identified and used to calculate the efficiency and the rate of this effect. In the limit of densely spaced spectrum, ladder climbing transforms into continuous autoresonance; plasmons may then be manipulated by chirped background modulations much like electrons are autoresonantly manipulated by chirped fields. Such ladder climbing and autoresonance effects are also predicted for other classical waves by means of a unifying Lagrangian theory.

  6. Optical Multi-hysteresises and "Rogue Waves" in Nonlinear Plasma

    CERN Document Server

    Kaplan, A E

    2010-01-01

    An overdense plasma layer irradiated by an intense light can exhibit dramatic nonlinear-optical effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and transition, and emergence of gigantic "rogue waves". Those are trapped quasi-soliton field spikes inside the layer, sustained by an incident radiation with a tiny fraction of their peak intensity once they have been excited by orders of magnitude larger pumping. The phenomenon persists even in the layers with "soft" boundaries, as well as in a semi-infinite plasma with low absorption.

  7. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    Science.gov (United States)

    Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.

    2011-10-01

    In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  8. Kinetic theory of twisted waves: Application to space plasmas having superthermal population of species

    Science.gov (United States)

    Arshad, Kashif; Poedts, Stefaan; Lazar, Marian

    2017-04-01

    Nowadays electromagnetic (EM) fields have various applications in fundamental research, communication, and home appliances. Even though, there are still some subtle features of electromagnetic field known to us a century ago, yet to be utilized. It is because of the technical complexities to sense three dimensional electromagnetic field. An important characteristic of electromagnetic field is its orbital angular momentum (OAM). The angular momentum consists of two distinct parts; intrinsic part associated with the wave polarization or spin, and the extrinsic part associated with the orbital angular momentum (OAM). The orbital angular momentum (OAM) is inherited by helically phased light or helical (twisted) electric field. The investigations of Allen on lasers carrying orbital angular momentum (OAM), has initiated a new scientific and technological advancement in various growing fields, such as microscopy and imaging, atomic and nano-particle manipulation, ultra-fast optical communications, quantum computing, ionospheric radar facility to observe 3D plasma dynamics in ionosphere, photonic crystal fibre, OAM entanglement of two photons, twisted gravitational waves, ultra-intense twisted laser pulses and astrophysics. Recently, the plasma modes are also investigated with orbital angular momentum. The production of electron vortex beams and its applications are indicated by Verbeeck et al. The magnetic tornadoes (rotating magnetic field structures) exhibit three types of morphology i.e., spiral, ring and split. Leyser pumped helical radio beam carrying OAM into the Ionospheric plasma under High Frequency Active Auroral Research Program (HAARP) and characteristic ring shaped morphology is obtained by the optical emission spectrum of pumped plasma turbulence. The scattering phenomenon like (stimulated Raman and Brillouin backscattering) is observed to be responsible for the interaction between electrostatic and electromagnetic waves through orbital angular momentum. The

  9. Electric Field and Plasma Density Observations of Irregularities and Plasma Instabilities in the Low Latitude Ionosphere Gathered by the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.

    2012-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field

  10. Second harmonic wave generation from a nonlinear combination of volume wave and overdense plasma in negative permeability space

    Science.gov (United States)

    Iwai, Akinori; Nakamura, Yoshihiro; Sakai, Osamu

    2016-09-01

    We clarify the relation between second harmonic wave (SH wave) and plasma generation in various experimental conditions by detecting properties of propagating electromagnetic waves (EM waves). Plasma has a nonlinear reaction against EM wave, generating harmonic waves which depends on electron density ne. In the case with increased ne, EM wave comes to be prevented from going into plasma with negative permittivity ɛp. Double-split-ring resonators (DSRRs), one of metamaterials, make permeability μD negative. We have shown that EM wave being volume wave can propagate into the combination of overdense plasma and DSRRs because of real negative value refractive index N. In our previous paper, we have confirmed enhanced SH wave (4.9 GHz) generation in the composite with 2.45-GHz input. In this report, we show the dependence of the SH wave emission with plasma generation on plasma parameters and gas conditions of plasma. Furthermore, we show the phase change with N variation of the composite space in the case with various input power as the proof of the negative index state.

  11. Turbulence in tokamak plasmas. Effect of a radial electric field shear; Turbulence dans les plasmas de tokamaks. Effet d`un cisaillement de champ electrique radial

    Energy Technology Data Exchange (ETDEWEB)

    Payan, J.

    1994-05-01

    After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs.

  12. Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions

    CERN Document Server

    Gong, Jingyu; Du, Jiulin

    2012-01-01

    The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.

  13. Dust acoustic waves in strongly coupled dissipative plasmas

    Science.gov (United States)

    Xie, B. S.; Yu, M. Y.

    2000-12-01

    The theory of dust acoustic waves is revisited in the frame of the generalized viscoelastic hydrodynamic theory for highly correlated dusts. Physical processes relevant to many experiments on dusts in plasmas, such as ionization and recombination, dust-charge variation, elastic electron and ion collisions with neutral and charged dust particles, as well as relaxation due to strong dust coupling, are taken into account. These processes can be on similar time scales and are thus important for the conservation of particles and momenta in a self-consistent description of the system. It is shown that the dispersion properties of the dust acoustic waves are determined by a sensitive balance of the effects of strong dust coupling and collisional relaxation. The predictions of the present theory applicable to typical parameters in laboratory strongly coupled dusty plasmas are given and compared with the experiment results. Some possible implications and discrepanies between theory and experiment are also discussed.

  14. Nonlinear electrostatic wave equations for magnetized plasmas - II

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....

  15. Material measurement method based on femtosecond laser plasma shock wave

    Science.gov (United States)

    Zhong, Dong; Li, Zhongming

    2017-03-01

    The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.

  16. Drift waves and chaos in a LAPTAG plasma physics experiment

    Science.gov (United States)

    Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam

    2016-02-01

    In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.

  17. Ionization wave propagation on a micro cavity plasma array

    CERN Document Server

    Wollny, Alexander; Gebhardt, Markus; Brinkmann, Ralf Peter; Boettner, Henrik; Winter, Joerg; der Gathen, Volker Schulz-von; Mussenbrock, Thomas

    2011-01-01

    Microcavity plasma arrays are regular arrays of inverse pyramidal cavities created on positive doped silicon wafers. Each cavity acts as a microscopic dielectric barrier discharge. Operated at atmospheric pressure in argon and excited with high voltage at about 10 kHz frequency each cavity develops a localized microplasma. Experiments show a strong interaction of the individual cavities, leading to the propagation of wave-like emission structures along the array surface. This paper studies the ignition process of a micro cavity plasma array by means of a numerical simulation and confirms the experimental results. The propagation of an ionization wave is observed. Its propagation speed of 1 km/s matches experimental findings.

  18. Secondary fast magnetoacoustic waves trapped in randomly structured plasmas

    CERN Document Server

    Yuan, Ding; Walsh, Robert W

    2016-01-01

    Fast magnetoacoustic wave is an important tool for inferring solar atmospheric parameters. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas mimicking the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the fast wave speed, we quantify the properties of secondary waves by examining the dependence of the average temporal period ($\\bar{p}$) on the initial pulse width ($w_0$) as well as the density contrast ($\\delta_\\rho$) and correlation length ($L_c$) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, $\\delta_\\rho$ does not alter $\\bar{p}$ significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when $\\delta_\\rho$ is small but have a smoothing effect when $\\delta_\\rho$ is suffic...

  19. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    Science.gov (United States)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  20. FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma

    Science.gov (United States)

    Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun

    2016-08-01

    The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)

  1. Plasma and wave phenomena induced by neutral gas releases in the solar wind

    Directory of Open Access Journals (Sweden)

    H. Laakso

    Full Text Available We investigate plasma and wave disturbances generated by nitrogen (N2 gas releases from the cooling system of an IR-camera on board the Vega 1 and Vega 2 spacecraft, during their flybys of comet Halley in March 1986. N2 molecules are ionized by solar UV radiation at a rate of ~ 7 · 10-7 s-1 and give rise to a plasma cloud expanding around the spacecraft. Strong disturbances due to the interaction of the solar wind with the N+2 ion cloud are observed with a plasma and wave experiment (APV-V instrument. Three gas releases are accompanied by increases in cold electron density and simultaneous decreases of the spacecraft potential; this study shows that the spacecraft potential can be monitored with a reference sensor mounted on a short boom. The comparison between the model and observations suggests that the gas expands as an exhaust plume, and approximately only 1% of the ions can escape the beam within the first meters. The releases are also associated with significant increases in wave electric field emission (8 Hz–300 kHz; this phenomenon lasts for more than one hour after the end of the release, which is most likely due to the temporary contamination of the spacecraft surface by nitrogen gas. DC electric fields associated with the events are complex but interesting. No magnetic field perturbations are detected, suggesting that no significant diamagnetic effect (i.e. magnetic cavity is associated with these events.

    Key words. Ionosphere (planetary ionosphere – Space plasma physics (active perturbation experiments; instruments and techniques

  2. Nonlinear electromagnetic waves in a degenerate electron-positron plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)

    2015-08-15

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)

  3. Characteristics of Wave-Particle Interaction in a Hydrogen Plasma

    Institute of Scientific and Technical Information of China (English)

    HE Hui-Yong; CHEN Liang-Xu; LI Jiang-Fan

    2008-01-01

    We study the characteristics of cyclotron wave-particle interaction in a typical hydrogen plasma. The numerical calculations of minimum resonant energy Emin, resonant wave frequency w, and pitch angle diffusion coefficient Dαα for interactions between R-mode/L-mode and electrons/protons are presented. It is found that Emin decreases with ω for R-mode/electron, L-mode/proton and L-mode/electron interactions, but increase with w for R-mode/proton interaction. It is shown that both R-mode and L-mode waves can efficiently scatter energetic (10 keV~100 keV) electrons and protons and cause precipitation loss at L=4, indicating that perhaps waveparticle interaction is a serious candidate for the ring current decay.

  4. Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma

    Science.gov (United States)

    El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.

    2015-08-01

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.

  5. On Plasma Rotation Induced by Traveling Fast Alfvin Waves

    Energy Technology Data Exchange (ETDEWEB)

    F.W. Perkins; R.B. White; and V.S. Chan

    2001-08-09

    Absorption of fast Alfven waves by the minority fundamental ion-cyclotron resonance, coupled with finite banana width physics, generates torque distributions and ultimately rotational shear layers in the bulk plasma, even when the toroidal wavenumber k(subscript ''phi'') = n/R of the fast wave vanishes (n=0) and cyclotron absorption introduces no angular momentum nor canonical angular momentum [F.W. Perkins, R.B. White, P.T. Bonoli, and V.S. Chan, Phys. Plasmas 8 (2001) 2181]. The present work extends these results to travelling waves with non-zero n where heating directly introduces angular momentum. Since tokamak fast-wave antennas have approximately one wavelength per toroidal field coil, the toroidal mode number n lies in the range n = 10-20, independent of machine size. A zero-dimensional analysis shows that the rotation rate arising from direct torque is comparable to that of the rotational shear layer and has the same scaling. Nondimensional rotation profiles for n = (-10, 10) show modest changes from the n = 0 case in the expected direction. For a balanced antenna spectrum, the nondimensional rotational profile (averaged over n = -10, 10) lies quite close to the n = 0 profile.

  6. High harmonic fast waves in high beta plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki

    1995-04-01

    High harmonic fast magnetosonic wave in high beta/high dielectric plasmas is investigated. including the finite-Larmor-radius effects. In this regime, due to the combination of group velocity slow down and the high beta enhancement, the electron absorption via electron Landau and electron magnetic pumping becomes significant enough that one can expect a strong ({approximately} 100%) single pass absorption. By controlling the wave spectrum, the prospect of some localized electron heating and current drive appears to be feasible in high beta low-aspect-ratio tokamak regimes. Inclusion of finite-Larmor-radius terms shows an accessibility limit in the high ion beta regime ({beta}{sub i} = 50% for a deuterium plasma) due to mode-conversion into an ion Bernstein-wave-like mode while no beta limit is expected for electrons. With increasing ion beta, the ion damping can increase significantly particularly near the beta limits. The presence of energetic ion component expected during intense NBI and {alpha}-heating does not appear to modify the accessibility condition nor cause excessive wave absorption.

  7. Low frequency waves in streaming quantum dusty plasmas

    Science.gov (United States)

    Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.

    2017-09-01

    The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.

  8. Dynamic Thomson Scattering from Nonlinear Electron Plasma Waves in a Raman Plasma Amplifier

    Science.gov (United States)

    Davies, A.; Katz, J.; Bucht, S.; Haberberger, D.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2016-10-01

    Electron plasma waves (EPW's) can be used to transfer significant energy from a long-pulse laser to a short-pulse seed laser through the Raman scattering instability. Successful implementation of Raman amplification could open an avenue to producing high-intensity pulses beyond the capabilities of current laser technology ( 1022 W / cm 2). This three-wave interaction takes advantage of the plasma's ability to sustain large-amplitude plasma waves. Having complete knowledge of the EPW amplitude is essential to establishing optimal parameters for high-efficiency Raman amplification. A dynamic Thomson-scattering diagnostic is being developed to spatially and temporally resolve the amplitude of the driven and thermal EPW's. By imaging the scattered probe light onto a novel pulse-front tilt compensated streaked optical spectrometer, the diffraction efficiency of this plasma wave can be measured as a function of space and time. These data will be used in conjunction with particle-in-cell simulations to determine the EPW's spatial and temporal profile. This will allow the effect of the EPW profile on Raman scattering to be experimentally determined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  9. Analysis of Electromagnetic Wave Propagation in a Magnetized Re-Entry Plasma Sheath Via the Kinetic Equation

    Science.gov (United States)

    Manning, Robert M.

    2009-01-01

    Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that is experienced during atmospheric reentry can be mitigated through the appropriate control of an external magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and involves an analytical solution for the electric and magnetic fields within the plasma allowing for a description of the attendant transmission, reflection and absorption coefficients. The ability to transmit through the magnetized plasma is due to the magnetic windows that are created within the plasma via the well-known whistler modes of propagation. The case of 2 GHz transmission through a re-entry plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves through the re-entry phase.

  10. Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion

    Science.gov (United States)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Qiu, Aici; Ding, Weidong; Zhang, Yongmin

    2017-09-01

    An experimental study of pressure waves generated by an exploding copper wire in a water medium is performed. We examined the effects of energy deposited at different stages on the characteristics of the resulting shock waves. In the experiments, a microsecond time-scale pulsed current source was used to explode a 300-μm-diameter, 4-cm-long copper wire with initial stored energies ranging from 500 to 2700 J. Our experimental results indicated that the peak pressure (4.5-8.1 MPa) and energy (49-287 J) of the shock waves did not follow a simple relationship with any electrical parameters, such as peak voltage or deposited energy. Conversely, the impulse had a quasi-linear relationship with the parameter Π. We also found that the peak pressure was mainly influenced by the energy deposited before separation of the shock wave front and the discharge plasma channel (DPC). The decay time constant of the pressure waveform was affected by the energy injection after the separation. These phenomena clearly demonstrated that the deposited energy influenced the expansion of the DPC and affected the shock wave characteristics.

  11. A tomographic visualization of electric discharge sound fields in atmospheric pressure plasma using laser diffraction

    Science.gov (United States)

    Nakamiya, Toshiyuki; Mitsugi, Fumiaki; Iwasaki, Yoichiro; Ikegami, Tomoaki; Tsuda, Ryoichi; Sonoda, Yoshito; Danuta Stryczewska, Henryka

    2013-02-01

    The phase modulation of transparent gas can be detected using Fraunhofer diffraction technique, which we call optical wave microphone (OWM). The OWM is suitable for the detection of sonic wave from audible sound to ultrasonic wave. Because this technique has no influence on sound field or electric field during the measurement, we have applied it to the sound detection for the electric discharges. There is almost no research paper that uses the discharge sound to examine the electrical discharge phenomenon. Two-dimensional visualization of the sound field using the OWM is also possible when the computerized tomography (CT) is combined. In this work, coplanar dielectric barrier discharge sin different gases of Ar, N2, He were characterized via the OWM as well as applied voltage and discharge current. This is the first report to investigate the influence of the type of the atmospheric gas on the two-dimensional sound field distribution for the coplanar dielectric barrier discharge using the OWM with CT. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  12. Launching transverse-electric Localized Waves from a circular waveguide

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes are obtained by the method of matching, taking advantage of the modal power orthogonality relations. The necessary excitation of modes provided by a number of coaxial loop antennas inserted inside the waveguide section. The antennas currents are computed from the solution of the waveguide excitation inverse problem. The accuracy of the synthesized wave field (compared to the mathematical model) and the power efficiency of the generation technique are evaluated in order to practically realize a launcher for LWs in the microwave regime. © 2011 IEEE.

  13. Wave trains induced by circularly polarized electric fields in cardiac tissues.

    Science.gov (United States)

    Feng, Xia; Gao, Xiang; Tang, Juan-Mei; Pan, Jun-Ting; Zhang, Hong

    2015-08-25

    Clinically, cardiac fibrillation caused by spiral and turbulent waves can be terminated by globally resetting electric activity in cardiac tissues with a single high-voltage electric shock, but it is usually associated with severe side effects. Presently, a promising alternative uses wave emission from heterogeneities induced by a sequence of low-voltage uniform electric field pulses. Nevertheless, this method can only emit waves locally near obstacles in turbulent waves and thereby requires multiple obstacles to globally synchronize myocardium and thus to terminate fibrillation. Here we propose a new approach using wave emission from heterogeneities induced by a low-voltage circularly polarized electric field (i.e., a rotating uniform electric field). We find that, this approach can generate circular wave trains near obstacles and they propagate outwardly. We study the characteristics of such circular wave trains and further find that, the higher-frequency circular wave trains can effectively suppress spiral turbulence.

  14. Should electric fans be used during a heat wave?

    Science.gov (United States)

    Jay, Ollie; Cramer, Matthew N; Ravanelli, Nicholas M; Hodder, Simon G

    2015-01-01

    Heat waves continue to claim lives, with the elderly and poor at greatest risk. A simple and cost-effective intervention is an electric fan, but public health agencies warn against their use despite no evidence refuting their efficacy in heat waves. A conceptual human heat balance model can be used to estimate the evaporative requirement for heat balance, the potential for evaporative heat loss from the skin, and the predicted sweat rate, with and without an electrical fan during heat wave conditions. Using criteria defined by the literature, it is clear that fans increase the predicted critical environmental limits for both the physiological compensation of endogenous/exogenous heat, and the onset of cardiovascular strain by an air temperature of ∼3-4 °C, irrespective of relative humidity (RH) for the young and elderly. Even above these critical limits, fans would apparently still provide marginal benefits at air temperatures as high as 51.1 °C at 10%RH for young adults and 48.1 °C at 10%RH for the elderly. Previous concerns that dehydration would be exacerbated with fan use do not seem likely, except under very hot (>40 °C) and dry (conditions, when predicted sweat losses are only greater with fans by a minor amount (∼20-30 mL/h). Relative to the peak outdoor environmental conditions reported during ten of the most severe heat waves in recent history, fan use would be advisable in all of these situations, even when reducing the predicted maximum sweat output for the elderly. The protective benefit of fans appears to be underestimated by current guidelines. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Scattering of Electromagnetic Waves by Drift Vortex in Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; CHEN Yinhua; WANG Ge

    2008-01-01

    In a quasi-two-dimensional model, the scattering of incident ordinary electromag-netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia << 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approxi-mation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then ki<< 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.

  16. Decay of Langmuir wave in dense plasmas and warm dense matter

    CERN Document Server

    Son, S; Moon, Sung Joon

    2010-01-01

    The decays of the Langmuir waves in dense plasmas are computed using the dielectric function theory widely used in the solid state physics. Four cases are considered: a classical plasma, a Maxwellian plasma, a degenerate quantum plasma, and a partially degenerate plasma. The result is considerably different from the conventional Landau damping theory.

  17. On the Self-Focusing of Whistler Waves in a Radial Inhomogeneous Plasma

    DEFF Research Database (Denmark)

    Balmashnov, A. A.

    1980-01-01

    The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation...... of the latter wave is accompanied by a density modification, which leads to trapping of the whistler wave in a density trough in the center of the plasma column....

  18. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.

  19. Nonlinear processes in the strong wave-plasma interaction

    Science.gov (United States)

    Pegoraro, Francesco; Califano, Francesco; Attico, Nicola; Bulanov, Sergei

    2000-10-01

    Nonlinear interactions in hot laboratory and/or astrophysical plasmas are a very efficient mechanism able to transfer the energy from the large to the small spatial scales of the system. As a result, kinetic processes are excited and play a key role in the plasma dynamics since the typical fluid dissipative length scales (where the nonlinear cascade is stopped) are (much) smaller then the kinetic length scales. Then, the key point is the role of the kinetic effects in the global plasma dynamics, i.e. whether the kinetic effects remains confined to the small scales of the system or whether there is a significant feedback on the large scales. Here we will address this problem by discussing the nonlinear kinetic evolution of the electromagnetic beam plasma instability where phase space vortices, as well as large scale vortex like magnetic structures in the physical space, are generated by wave - particle interactions. The role and influence of kinetic effects on the large scale plasma dynamics will be also discussed by addressing the problem of collisionless magnetic reconection.

  20. Residual Bernstein-Greene-Kruskal-like waves after one-dimensional electron wave breaking in a cold plasma.

    Science.gov (United States)

    Verma, Prabal Singh; Sengupta, Sudip; Kaw, Predhiman

    2012-07-01

    A one-dimensional particle in cell simulation of large amplitude plasma oscillations is carried out to explore the physics beyond wave breaking in a cold homogeneous unmagnetized plasma. It is shown that after wave breaking, all energy of the plasma oscillation does not end up as random kinetic energy of particles, but some fraction, which is decided by Coffey's wave breaking limit in warm plasma, always remains with two oppositely propagating coherent Bernstein-Greene-Kruskal like modes with supporting trapped particle distributions. The randomized energy distribution of untrapped particles is found to be characteristically non-Maxwellian with a preponderance of energetic particles.

  1. Study of nonlinear waves in astrophysical quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M.R.; Mamun, A.A., E-mail: rasel.plasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2015-10-01

    The nonlinear propagation of the electron acoustic solitary waves (EASWs) in an unmagnetized, collisionless degenerate quantum plasma system has been investigated theoretically. Our considered model consisting of two distinct groups of electrons (one of inertial non-relativistic cold electrons and other of inertialess ultrarelativistic hot electrons) and positively charged static ions. The Korteweg-de Vries (K-dV) equation has been derived by employing the reductive perturbation method and numerically examined to identify the basic features (speed, amplitude, width, etc.) of EASWs. It is shown that only rarefactive solitary waves can propagate in such a quantum plasma system. It is found that the effect of degenerate pressure and number density of hot and cold electron fluids, and positively charged static ions, significantly modify the basic features of EASWs. It is also noted that the inertial cold electron fluid is the source of dispersion for EA waves and is responsible for the formation of solitary structures. The applications of this investigation in astrophysical compact objects (viz. non-rotating white dwarfs, neutron stars, etc.) are briefly discussed. (author)

  2. Coherent structures and transport in drift wave plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bang Korsholm, S.

    2011-12-15

    Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)

  3. The dust acoustic waves in three dimensional scalable complex plasma

    CERN Document Server

    Zhukhovitskii, D I

    2015-01-01

    Dust acoustic waves in the bulk of a dust cloud in complex plasma of low pressure gas discharge under microgravity conditions are considered. The dust component of complex plasma is assumed a scalable system that conforms to the ionization equation of state (IEOS) developed in our previous study. We find singular points of this IEOS that determine the behavior of the sound velocity in different regions of the cloud. The fluid approach is utilized to deduce the wave equation that includes the neutral drag term. It is shown that the sound velocity is fully defined by the particle compressibility, which is calculated on the basis of the scalable IEOS. The sound velocities and damping rates calculated for different 3D complex plasmas both in ac and dc discharges demonstrate a good correlation with experimental data that are within the limits of validity of the theory. The theory provides interpretation for the observed independence of the sound velocity on the coordinate and for a weak dependence on the particle ...

  4. Radio and Plasma Waves Synergistic Science Opportunities with EJSM

    Science.gov (United States)

    Cecconi, Baptiste; André, Nicolas; Bougeret, Jean-Louis

    2010-05-01

    The radio and plasma wave (RPW) diagnostics provide a unique access to critical parameters of space plasma, in particular in planetary and satellite environments. Concerning giant planets, this has been demonstrated by major results obtained by the radio investigation on the Galileo and Cassini spacecraft, but also during the Ulysses, Voyager, and Pioneer flybys of Jupiter. Several other missions, past or in flight, demonstrate the uniqueness and relevance of RPW diagnostics to basic problems of astrophysics. The EJSM mission consists of two platforms operating in the Jupiter environment: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO will execute a choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. The EJSM mission architecture hence offers unique opportunities for synergistic and complementary observations that significantly enhance the overall science return of the mission. In this paper, we will first review new and unique science aspects of the Jupiter system that may benefit from different capabilities of RPW investigations onboard JGO and/or JEO: spectral and polarization information, mapping of radio sources, measurements of in situ plasma waves, currents, thermal noise, dust and nano-particle detection and characterization. We will then illustrate unique synergistic and complementary science opportunities offered by RPW investigations onboard JGO and/or JEO, both in terms of Satellite science and in terms of Magnetospheric Science.

  5. Freak waves in a plasma having Cairns particles

    Science.gov (United States)

    El-Tantawy, S. A.; El-Awady, E. I.; Schlickeiser, R.

    2015-12-01

    The probability of the existence of the ion-acoustic rogue waves in a plasma composed of warm ions and non-Maxwellian (nonthermal or Kappa) electrons is investigated in the framework of the modified Korteweg-de Vries (mKdV) equation. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived. After numerical analysis, it is found that the present plasma system populated with nonthermal (Cairns) electrons leads to generation of compressive and rarefactive pulses, in contrast to the case of Kappa distribution. Thus, only for the nonthermal populated electrons, there is a critical value of the nonthermal parameter at which the coefficient of the nonlinear term of the KdV equation vanishes. In this case, we derived the modified KdV (mKdV) equation to describe the evolution of the system. To investigate the rogue waves propagation in our system, the mKdV equation should transfer to the nonlinear Schrödinger equation (NLSE). Our results provide a better understanding of observations in space plasmas which indicate the existence of nonthermal particles.

  6. Theory and Observations of Plasma Waves Excited Space Shuttle OMS Burns in the Ionosphere

    Science.gov (United States)

    Bernhardt, P. A.; Pfaff, R. F.; Schuck, P. W.; Hunton, D. E.; Hairston, M. R.

    2010-12-01

    Measurements of artificial plasma turbulence were obtained during two Shuttle Exhaust Ionospheric Turbulence Experiments (SEITE) conducted during the flights of the Space Shuttle (STS-127 and STS-129). Based on computer modeling at the NRL PPD and Laboratory for Computational Physics & Fluid Dynamics (LCP), two dedicated burns of the Space Shuttle Orbital Maneuver Subsystem (OMS) engines were scheduled to produce 200 to 240 kg exhaust clouds that passed over the Air Force Research Laboratory (AFRL) Communications, Navigation, and Outage Forecast System (C/NOFS) satellite. This operation required the coordination by the DoD Space Test Program (STP), the NASA Flight Dynamics Officer (FDO), the C/NOFS payload operations, and the C/NOFS instrument principal investigators. The first SEITE mission used exhaust from a 12 Second OMS burn to deposit 1 Giga-Joules of energy into the upper atmosphere at a range of 230 km from C/NOFS. The burn was timed so C/NOFS could fly though the center of the exhaust cloud at a range of 87 km above the orbit of the Space Shuttle. The first SEITE experiment is important because is provided plume detection by ionospheric plasma and electric field probes for direct sampling of irregularities that can scatter radar signals. Three types of waves were detected by C/NOFS during and after the first SEITE burn. With the ignition and termination of the pair of OMS engines, whistler mode signals were recorded at C/NOFS. Six seconds after ignition, a large amplitude electromagnetic pulse reached the satellite. This has been identified as a fast magnetosonic wave propagating across magnetic field lines to reach the electric field (VEFI) sensors on the satellite. Thirty seconds after the burn, the exhaust cloud reach C/NOFS and engulfed the satellite providing very strong electric field turbulence along with enhancements in electron and ion densities. Kinetic modeling has been used to track the electric field turbulence to an unstable velocity

  7. Cross-polarization scattering from low-frequency waves in a tandem mirror plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kogi, Yuichiro; Mase, Atsushi; Bruskin, L.G.; Oyama, Naoyuki; Tokuzawa, Tokihiko; Itakura, Akiyosi; Hojo, Hitoshi; Tamano, Teruo [Tsukuba Univ., Ibaraki (Japan). Plasma Research Center

    1997-05-01

    Cross-polarization scattering (CPS) diagnostic was applied to the central-cell plasma of the GAMMA 10 tandem mirror in order to study electromagnetic plasma waves with frequencies of less than 200 kHz. In the CPS process, an incident ordinary (extraordinary) wave is converted to an extraordinary (ordinary) wave by magnetic fluctuations in a plasma. The converted wave propagates through the cutoff layer and reaches the opposite diagnostic port. The experimental data suggest that the power spectral density of the CPS signal satisfies the Bragg condition, while the reflectometer detects the waves near the cutoff layer where the wave number cannot be resolved. (author)

  8. PIC simulations of the trapped electron filamentation instability in finite-width electron plasma waves

    Science.gov (United States)

    Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.

    2012-10-01

    We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.

  9. Plasma wave and third harmonic generation by a Gaussian electromagnetic beam in a collisionless magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Sodha, M.S.; Govind; Sharma, R.P. (Indian Inst. of Tech., New Delhi. Centre of Energy Studies)

    1981-05-01

    An investigation of the plasma wave and third harmonic generation by a Gaussian electromagnetic (em) beam, propagating in extraordinary mode in a collisionless hot magnetoplasma has been made. On account of the (VXB) force, a plasma wave at twice the pump wave frequency gets excited. The interaction of the plasma wave with the pump wave leads to third harmonic generation. By taking into account the self-focusing of the pump wave on account of non-uniform intensity distribution along the wave front, a modification is effected in the power of the plasma wave and the third harmonic em wave. The dependence of these phenomena on the strength of the static magnetic field has also been studied.

  10. Cassini Radio and Plasma Wave Observations at Saturn

    Science.gov (United States)

    Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Ceccni, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.

  11. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  12. Polarizer design for millimeter-wave plasma diagnostics.

    Science.gov (United States)

    Leipold, F; Salewski, M; Jacobsen, A S; Jessen, M; Korsholm, S B; Michelsen, P K; Nielsen, S K; Stejner, M

    2013-08-01

    Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted by birefringent windows, the microwave receivers can be designed to be more compact at lower cost. Sapphire windows (a-cut) as well as grooved high density polyethylene windows can serve this purpose. The sapphire window can be designed such that the calculated transmission of the wave energy is better than 99%, and that of the high density polyethylene can be better than 97%.

  13. ‘Magneto-elastic’ waves in an anisotropic magnetised plasma

    Science.gov (United States)

    Del Sarto, D.; Pegoraro, F.; Tenerani, A.

    2017-04-01

    The linear waves that propagate in a two fluid magnetised plasma allowing for a non-gyrotropic perturbed ion pressure tensor are investigated. For perpendicular propagation and perturbed fluid velocity a low frequency (magnetosonic) and a high frequency (ion Bernstein) branch are identified and discussed. For both branches a comparison is made with the results of a truncated Vlasov treatment. For the low frequency branch we show that a consistent expansion procedure allows us to recover the correct expression of the finite Larmor radius corrections to the magnetosonic dispersion relation.

  14. "Magneto-elastic" waves in an anisotropic magnetised plasma

    CERN Document Server

    Del Sarto, Daniele; Tenerani, Anna

    2015-01-01

    The linear waves that propagate in a two fluid magnetised plasma allowing for a non-gyrotropic perturbed ion pressure tensor are investigated. For perpendicular propagation and perturbed fluid velocity a low frequency (magnetosonic) and a high frequency (ion Bernstein) branch are identified and discussed. For both branches a comparison is made with the results of a kinetic Vlasov treatment. For the low frequency branch we show that a consistent expansion procedure allows us to recover the correct expression of the FLR corrections to the magnetosonic dispersion relation in agreement with Mikhailovskii and Smoliakov, Soviet Phys., JETP, 11, 1469 (1985).

  15. Wave Localization and Density Bunching in Pair Ion Plasmas

    CERN Document Server

    Mahajan, Swadesh M

    2008-01-01

    By investigating the nonlinear propagation of high intensity electromagnetic (EM) waves in a pair ion plasma, whose symmetry is broken via contamination by a small fraction of high mass immobile ions, it is shown that this new and interesting state of (laboratory created) matter is capable of supporting structures that strongly localize and bunch the EM radiation with density excess in the region of localization. Testing of this prediction in controlled laboratory experiments can lend credence, inter alia, to conjectures on structure formation (via the same mechanism) in the MEV era of the early universe.

  16. Broadband notch filter design for millimeter-wave plasma diagnostics

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank;

    2010-01-01

    Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼ 900 MHz, and a typical insertion loss below 2 dB in the passband...... of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode...

  17. Small amplitude electron acoustic solitary waves in a magnetized superthermal plasma

    Science.gov (United States)

    Devanandhan, S.; Singh, S. V.; Lakhina, G. S.; Bharuthram, R.

    2015-05-01

    The propagation of electron acoustic solitary waves in a magnetized plasma consisting of fluid cold electrons, electron beam and superthermal hot electrons (obeying kappa velocity distribution function) and ion is investigated in a small amplitude limit using reductive perturbation theory. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation governing the dynamics of electron acoustic solitary waves is derived. The solution of the KdV-ZK equation predicts the existence of negative potential solitary structures. The new results are: (1) increase of either the beam speed or temperature of beam electrons tends to reduce both the amplitude and width of the electron acoustic solitons, (2) the inclusion of beam speed and temperature pushes the allowed Mach number regime upwards and (3) the soliton width maximizes at certain angle of propagation (αm) and then decreases for α >αm . In addition, increasing the superthermality of the hot electrons also results in reduction of soliton amplitude and width. For auroral plasma parameters observed by Viking, the obliquely propagating electron-acoustic solitary waves have electric field amplitudes in the range (7.8-45) mV/m and pulse widths (0.29-0.44) ms. The Fourier transform of these electron acoustic solitons would result in a broadband frequency spectra with peaks near 2.3-3.5 kHz, thus providing a possible explanation of the broadband electrostatic noise observed during the Burst a.

  18. Effect of applying static electric field on the physical parameters and dynamics of laser-induced plasma

    Directory of Open Access Journals (Sweden)

    Asmaa Elhassan

    2010-04-01

    Full Text Available In order to improve the performance of the LIBS technique – in particular its sensitivity, reproducibility and limit of detection – we studied the effect of applying a static electric field with different polarities on the emission spectra obtained in a typical LIBS set-up. The physical parameters of the laser-induced plasma, namely the electron density Ne and the plasma temperature Te, were studied under such circumstances. In addition to the spectroscopic analysis of the plasma plume emission, the laser-induced shock waves were exploited to monitor the probable changes in the plasma plume dynamics due to the application of the electric field. The study showed a pronounced enhancement in the signal-to-noise (S/N ratio of different Al, neutral and ionic lines under forward biasing voltage (negative target and positive electrode. On the other hand, a clear deterioration of the emission line intensities was observed under conditions of reversed polarity. This negative effect may be attributed to the reduction in electron-ion recombinations due to the stretched plasma plume. The plasma temperature showed a constant value in the average with the increasing electric field in both directions. This effect may be due to the fact that the measured values of Te were averaged over the whole plasma emission volume. The electron density was observed to decrease slightly in the case of forward biasing while no significant effect was noticed in the case of reversed biasing. This slight decrease in Ne can be interpreted in view of the increase in the rate of electron–ion recombinations due to the presence of the electric field. No appreciable effects of the applied electric field on the plasma dynamics were noticed.

  19. Nonlinear instability and chaos in plasma wave-wave interactions. II. Numerical methods and results

    Energy Technology Data Exchange (ETDEWEB)

    Kueny, C.S.; Morrison, P.J.

    1995-05-01

    In Part I of this work and Physics of Plasmas, June 1995, the behavior of linearly stable, integrable systems of waves in a simple plasma model was described using a Hamiltonian formulation. It was shown that explosive instability arises from nonlinear coupling between modes of positive and negative energy, with well-defined threshold amplitudes depending on the physical parameters. In this concluding paper, the nonintegrable case is treated numerically. Several sets of waves are considered, comprising systems of two and three degrees of freedom. The time evolution is modelled with an explicit symplectic integration algorithm derived using Lie algebraic methods. When initial wave amplitudes are large enough to support two-wave decay interactions, strongly chaotic motion destroys the separatrix bounding the stable region for explosive triplets. Phase space orbits then experience diffusive growth to amplitudes that are sufficient for explosive instability, thus effectively reducing the threshold amplitude. For initial amplitudes too small to drive decay instability, small perturbations might still grow to arbitrary size via Arnold diffusion. Numerical experiments do not show diffusion in this case, although the actual diffusion rate is probably underestimated due to the simplicity of the model.

  20. Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma

    Science.gov (United States)

    Chang, Lei; Li, Qingchong; Zhang, Huijie; Li, Yinghong; Wu, Yun; Zhang, Bailing; Zhuang, Zhong

    2016-08-01

    The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform, parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and “bump-on-tail” profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould (TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution. supported by National Natural Science Foundation of China (No. 11405271)

  1. Nonlinear wave structures in collisional plasma of auroral E-region ionosphere

    Directory of Open Access Journals (Sweden)

    A. V. Volosevich

    Full Text Available Studies of the auroral plasma with small-scale inhomogenieties producing the VHF-radar reflections (radar aurora when observed in conditions of the saturated Farley-Buneman instability within the auroral E region, show strong nonlinear interactions and density fluctuations of 5–15%. Such nonlinearity and high fluctation amplitudes are inconsistent with the limitations of the weak turbulence theory, and thus a theory for arbitrary amplitudes is needed. To this end, a nonlinear theory is described for electrostatic MHD moving plasma structures of arbitrary amplitude for conditions throughout the altitude range of the collisional auroral E region. The equations are derived, from electron and ion motion self-consistent with the electric field, for the general case of the one-dimensional problem. They take into account nonlinearity, electron and ion inertia, diffusion, deviation from quasi-neutrality, and dynamical ion viscosity. The importance of the ion viscosity for dispersion is stressed, while deviation from the quasi-neutrality can be important only at rather low plasma densities, not typical for the auroral E region. In a small amplitude limit these equations have classical nonlinear solutions of the type of "electrostatic shock wave" or of knoidal waves. In a particular case these knoidal waves degrade to a dissipative soliton. A two-dimensional case of a quasi-neutral plasma is considered in the plane perpendicular to the magnetic field by way of the Poisson brackets, but neglecting the nonlinearity and ion inertia. It is shown that in these conditions an effective saturation can be achieved at the stationary turbulence level of order of 10%.

  2. Mechanism of laser-induced plasma shock wave evolution in air

    Institute of Scientific and Technical Information of China (English)

    Zhao Rui; Liang Zhong-Cheng; Han Bing; Zhang Hong-Chao; Xu Rong-Qing; Lu Jian; Ni Xiao-Wu

    2009-01-01

    A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track the plasma shock wave evolution process. The theoretical model and the experimental signals are found to be in good agreement with each other. It is shown that the laser-induced plasma shock wave undergoes formation, increase and decay processes; the increase and the decay processes of the laser-induced plasma shock wave result from the overlapping of the compression wave and the rarefaction wave, respectively. In addition, the laser-induced plasma shock wave speed and pressure distributions, both a function of distance, are presented.

  3. Electric plasma discharge combustion synthesis of chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, R. L.; Geren, G. W.

    1984-09-18

    A process for the production of chlorine dioxide comprises feeding an inert gas to a reaction zone and applying an electrical discharge to the inert gas to produce a high temperature plasma. Chlorine gas and oxygen gas are supplied simultaneously to the reaction zone and reacted in the plasma to produce a gaseous mixture comprised of chlorine dioxide, chlorine, oxygen and inert gas, the molar ratio of oxygen to chlorine in the reaction zone being at least about 2.5;1. The gaseous mixture is recovered from the reaction zone. Chlorine dioxide, which may be recovered as a gas or reacted to produce an alkali metal chlorite, is employed as a bleaching agent and a water treatment agent.

  4. Solitary wave solutions of two-dimensional nonlinear Kadomtsev–Petviashvili dynamic equation in dust-acoustic plasmas

    Indian Academy of Sciences (India)

    ALY R SEADAWY

    2017-09-01

    Nonlinear two-dimensional Kadomtsev–Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the twodimensional nonlinear KP equation by implementing sech–tanh, sinh–cosh, extended direct algebraic and fraction direct algebraicmethods. We found the electrostatic field potential and electric field in the form travellingwave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of $\\it{Mathematica}$ program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.

  5. Features of electromagnetic waves in a complex plasma due to surface plasmon resonances on macroparticles

    CERN Document Server

    Vladimirov, S V

    2015-01-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The results are discussed in the context of dusty plasma experiments.

  6. Visualizing a Dusty Plasma Shock Wave via Interacting Multiple-Model Mode Probabilities

    OpenAIRE

    Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Céline; Samsonov, Dmitry

    2011-01-01

    Particles in a dusty plasma crystal disturbed by a shock wave are tracked using a three-mode interacting multiple model approach. Color-coded mode probabilities are used to visualize the shock wave propagation through the crystal.

  7. Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: Electrical, optical, and mechanical characteristics

    Science.gov (United States)

    Bayoda, K. D.; Benard, N.; Moreau, E.

    2015-08-01

    Plasma actuators used for active flow control are widely studied because they could replace mechanical actuators. Industrial applications of these plasma actuators sometimes require a large surface plasma sheet in view of increasing the interaction region between the discharge and the incoming flow. Instead of using a typical two-electrode nanosecond pulsed dielectric barrier discharge for which the interaction region is limited to about 20 mm, this study proposes to characterize a nanosecond sliding discharge based on a three-electrode geometry in order to increase the extension length up to the electrode gap. This sliding discharge is compared to the typical nanosecond dielectric barrier discharge by means of electrical, optical, and mechanical diagnostics. Electrical characterization reveals that the deposited energy can be widely increased. Time-resolved Intensified Charge Coupled Device (iCCD) images of the discharge development over the dielectric surface highlight that the intensity and the propagation velocity of streamers are strongly affected by the DC voltage applied at the third electrode. Finally, qualitative and quantitative characterizations of the pressure wave due to the surrounding gas heating are proposed by means of Schlieren visualizations and high frequency pressure measurements, respectively.

  8. Self-consistent full-wave and Fokker-Planck calculations for ion cyclotron heating in non-Maxwellian plasmas

    Science.gov (United States)

    Jaeger, E. F.

    2005-10-01

    High-performance burning plasma devices such as ITER will contain significant concentrations of non-thermal plasma particles arising from fusion reactions, neutral beam injection, and wave-driven diffusion in velocity space. Initial studies in 1-D [1] and experimental results [2] show that non-thermal energetic ions can significantly alter wave propagation and absorption in the ion cyclotron range of frequencies. In addition, these ions can absorb power at high harmonics of the cyclotron frequency where conventional 2-D global-wave models are not valid. In this work, the all-orders, full-wave solver AORSA [3] is generalized to treat non-Maxwellian velocity distributions. Quasi-linear diffusion coefficients are derived directly from the global wave fields and used to calculate the energetic ion velocity distribution with the CQL3D Fokker-Planck code [4]. Alternately, the quasi-linear coefficients can be calculated numerically by integrating the Lorentz force equations along particle orbits. Self-consistency between the wave electric field and resonant ion distribution function is achieved by iterating between the full-wave and Fokker-Planck solutions.[1] R. J. Dumont, C. K. Phillips and D. N. Smithe, Phys. Plasmas 12, 042508 (2005).[2] A. L. Rosenberg, J. E. Menard, J. R. Wilson, et al., Phys. Plasmas 11, 2441(2004).[3] E. F. Jaeger, L. A. Berry, J. R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).[4] R. W. Harvey and M. G. McCoy, in Proceedings of the IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas (IAEA, Montreal, 1992).

  9. Electrical conductivity tensor of dense plasma in magnetic fields

    CERN Document Server

    Harutyunyan, Arus

    2016-01-01

    Electrical conductivity of finite-temperature plasma in neutron star crusts is studied for applications in magneto-hydrodynamical description of compact stars. We solve the Boltzmann kinetic equation in relaxation time approximation taking into account the anisotropy of transport due to the magnetic field, the effects of dynamical screening in the scattering matrix element and corre- lations among the nuclei. We show that conductivity has a minimum at a non-zero temperature, a low-temperature decrease and a power-law increase with increasing temperature. Selected numerical results are shown for matter composed of carbon, iron, and heavier nuclei present in the outer crusts of neutron star.

  10. Integrable, oblique travelling waves in quasi-charge-neutral two-fluid plasmas

    Directory of Open Access Journals (Sweden)

    G. M. Webb

    2008-02-01

    Full Text Available A Hamiltonian description of oblique travelling waves in a two-fluid, charge-neutral, electron-proton plasma reveals that the transverse momentum equations for the electron and proton fluids are exactly integrable in cases where the total transverse momentum flux integrals, Py(d and Pz(d, are both zero in the de Hoffman Teller (dHT frame. In this frame, the transverse electric fields are zero, which simplifies the transverse momentum equations for the two fluids. The integrable travelling waves for the case Py(d=Pz(d=0, are investigated based on the Hamiltonian trajectories in phase space, and also on the longitudinal structure equation for the common longitudinal fluid velocity component ux of the electron and proton fluids. Numerical examples of a variety of travelling waves in a cold plasma, including oscillitons, are used to illustrate the physics. The transverse, electron and proton velocity components ujy and ujz (j=e, p of the waves exhibit complex, rosette type patterns over several periods for ux. The role of separatrices in the phase space, the rotational integral and the longitudinal structure equation on the different wave forms are discussed.

  11. Theoretical study of nonlinear waves and shock-like phenomena in hot plasmas

    Science.gov (United States)

    Fried, B. D.; Banos, A., Jr.; Kennel, C. F.

    1973-01-01

    Summaries are presented of research in basic plasma physics. Nonlinear waves and shock-like phenomena were studied which are pertinent to space physics applications, and include specific problems of magnetospheric and solar wind plasma physics.

  12. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  13. Characterization of microwave plasma in a multicusp using 2D emission based tomography: Bessel modes and wave absorption

    Science.gov (United States)

    Rathore, Kavita; Bhattacharjee, Sudeep; Munshi, Prabhat

    2017-06-01

    A tomographic method based on the Fourier transform is used for characterizing a microwave plasma in a multicusp (MC), in order to obtain 2D distribution of plasma emissions, plasma (electron) density (Ne) and temperature (Te). The microwave plasma in the MC is characterized as a function of microwave power, gas pressure, and axial distance. The experimentally obtained 2D emission profiles show that the plasma emissions are generated in a circular ring shape. There are usually two bright rings, one at the plasma core and another near the boundary. The experimental results are validated using a numerical code that solves Maxwell's equations inside a waveguide filled with a plasma in a magnetic field, with collisions included. It is inferred that the dark and bright circular ring patterns are a result of superposition of Bessel modes (TE11 and TE21) of the wave electric field inside the plasma filled MC, which are in reasonable agreement with the plasma emission profiles. The tomographically obtained Ne and Te profiles indicate higher densities in the plasma core (˜1010 cm-3) and enhanced electron temperature in the ECR region (˜13 eV), which are in agreement with earlier results using a Langmuir probe and optical emission spectroscopy (OES) diagnostics.

  14. Quasi-periodic behavior of ion acoustic solitary waves in electron-ion quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit [Department of Mathematics, West Bengal State University Barasat, Kolkata-700126 (India); Poria, Swarup [Department of Applied Mathematics, University of Calcutta Kolkata-700009 (India); Narayan Ghosh, Uday [Department of Mathematics, Siksha Bhavana, Visva Bharati University Santiniketan (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata-700108 (India)

    2012-05-15

    The ion acoustic solitary waves are investigated in an unmagnetized electron-ion quantum plasmas. The one dimensional quantum hydrodynamic model is used to study small as well as arbitrary amplitude ion acoustic waves in quantum plasmas. It is shown that ion temperature plays a critical role in the dynamics of quantum electron ion plasma, especially for arbitrary amplitude nonlinear waves. In the small amplitude region Korteweg-de Vries equation describes the solitonic nature of the waves. However, for arbitrary amplitude waves, in the fully nonlinear regime, the system exhibits possible existence of quasi-periodic behavior for small values of ion temperature.

  15. Propagation of Surface Wave Along a Thin Plasma Column and Its Radiation Pattern

    Institute of Scientific and Technical Information of China (English)

    WANG Zhijiang; ZHAO Guowei; XU Yuemin; LIANG Zhiwei; XU Jie

    2007-01-01

    Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various plasma parameters. The radiation patterns are shown. Results show that the radiation patterns are controllable by flexibly changing the plasma length and other parameters in comparison to the metal monopole antenna. It is meaningful and instructional for the optimization of the plasma antenna design.

  16. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    Directory of Open Access Journals (Sweden)

    F Sohbatzadeh

    2017-02-01

    Full Text Available In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chemical reactive species such as Oxygen, atomic Nitrogen and OH were measured using optical emission spectroscopy. Using a simple numerical model, we showed a HV with less rise time increases electron density, therefore a cold plasma jet can be produced with a minimal consumption electrical power

  17. Electrical conductivity of a methane-air burning plasma under the action of weak electric fields

    Science.gov (United States)

    Colonna, G.; Pietanza, L. D.; D'Angola, A.; Laricchiuta, A.; Di Vita, A.

    2017-02-01

    This paper focuses on the calculation of the electrical conductivity of a methane-air flame in the presence of weak electric fields, solving the Boltzmann equation for free electrons self-consistently coupled with chemical kinetics. The chemical model GRI-Mech 3.0 has been completed with chemi-ionization reactions to model ionization in the absence of fields, and a database of cross sections for electron-impact-induced processes to account for reactions and transitions activated in the flame during discharge. The dependence of plasma properties on the frequency of an oscillating field has been studied under different pressure and gas temperature conditions. Fitting expressions of the electrical conductivity as a function of gas temperature and methane consumption are provided for different operational conditions in the Ansaldo Energia burner.

  18. Radio-frequency sheath voltages and slow wave electric field spatial structure

    Energy Technology Data Exchange (ETDEWEB)

    Colas, Laurent, E-mail: laurent.colas@cea.fr; Lu, Ling-Feng [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Křivská, Alena [LPP-ERM-KMS, TEC partner, Brussels (Belgium); Jacquot, Jonathan [Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a “wide sheaths” asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  19. Fluctuations electrical conductivity in a granular s-wave superconductor

    Science.gov (United States)

    Salehi, H.; Yousefvand, A.; Zargar Shoushtari, M.

    2017-01-01

    The present study tries to evaluate the fluctuation electrical conductivity in a granular s-wave superconductor at the temperature near to the critical temperature. The evaluation is conducted under the condition of limited tunneling conductance between the grains and small impurity concentration. All the first order fluctuation corrections, involving the nonlocal scattered electron in a granular s-wave superconductor, are calculated in three dimensions and in the limit of clean. Using Green's function theory initially, the Cooperon (impurity vertex), λ (q , ε1 , ε2) , and the fluctuation propagator, Lk (q , Ωk) , are calculated in the presence of impurities. Then, the three distinct contributions of Aslamazov-Larkin, Maki-Thompson, and Density of states are calculated by means of the Kubo formula. Analysis shows that the terms of Aslamazov-Larkin and anomalous Maki-Thompson have positive contributions to the conductivity in the clean limit, whereas the terms of Density of state and the regular Maki-Thompson have negative signs, leading to the reduction of total fluctuation conductivity.

  20. Alternating current electrical properties of Argon plasma treated jute

    Directory of Open Access Journals (Sweden)

    Md. Masroor Anwer

    2012-09-01

    Full Text Available Low temperature plasma (LTP treatment, a kind of environment friendly surface modification technique, was applied to biodegradable and environment friendly jute fibre with the use of nonpolymerizing gas, namely argon, at various discharge power levels and exposure times with a definite flow rate. Scanning electron microscopy (SEM microphotographs reveal that the roughness of the fibre surfaces increases with the increase of discharge power and exposure time. This is caused due to the bombardment of high energetic ions on the fibre surface and the fibres become sputtered. The capacitance and the electrical conductance of raw and LTP treated jute fibre were measured as a function of frequency at room temperature. The dielectric constant, conductivity, dielectric loss-tangent and the surface morphology of raw and LTP treated jute as a function of frequency were studied at room temperature. It was observed that for all the samples the dielectric constant almost constant at lower frequencies and then decreases gradually in the high frequency region. In addition, dielectric constant increases with the increase of plasma treatment time as well as discharge power. It is also observed for all the samples that the conductivity increases as the frequency increases with a lower slope in the low frequency region and with a higher slope in the higher frequency region. In addition, the conductivity decreases with the increase of plasma exposure time as well as discharge power. The conductivity increases with frequency due to the hopping mechanism of electrons. The dependence of the dielectric loss-tangent with frequency at different treatment times and discharge powers for all the jute samples show small relaxation peaks in the very low frequency region. The dielectric loss-tangent decreases with the increase of both plasma treatment time and discharge power. In addition, the relaxation peaks are shifted to the higher frequency region as the plasma treatment

  1. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    Science.gov (United States)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  2. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  3. Surface-wave capillary plasmas in helium: modeling and experiment

    Science.gov (United States)

    Santos, M.; Alves, L. L.; Noel, C.; Belmonte, T.

    2012-10-01

    In this paper we use both simulations and experiments to study helium discharges (99.999% purity) sustained by surface-waves (2.45 GHz frequency), in capillary tubes (3 mm radius) at atmospheric pressure. Simulations use a self-consistent homogeneous and stationary collisional-radiative model that solves the rate balance equations for the different species present in the plasma (electrons, the He^+ and He2^+ ions, the He(nexcimers) and the gas thermal balance equation, coupled to the two-term electron Boltzmann equation (including direct and stepwise collisions as well as electron-electron collisions). Experiments use optical emission spectroscopy diagnostics to measure the electron density (Hβ Stark broadening), the gas temperature (ro-vibrational transitions of OH, present at trace concentrations), and the populations of different excited states. Model predictions at 1.7x10^13 cm-3 electron density (within the range estimated experimentally) are in good agreement with measurements (deviations < 10%) of (i) the excitation spectrum and the excitation temperatures (2795 ± 115 K, obtained from the Boltzmann-plot of the excited state populations, with energies lying between 22.7 and 24.2 eV), (ii) the power coupled to the plasma (˜ 180 ± 10 W), and (iii) the gas temperature (˜ 1700 ± 100 K). We discuss the extreme dependence of model results (particularly the gas temperature) on the power coupled to the plasma.

  4. Plasma physics abstracts, 1 January - 31 December, 1986

    Science.gov (United States)

    Gurnett, D. A.; Dangelo, N.; Goertz, C. K.

    1987-01-01

    Topics addressed include: ion-cyclotron waves; plasma waves; solar wind lithium releases; bow shock; Pi2 wave bursts; auroral kilometric radiation; ion energization; magnetic field corrections; electric fields; magnetospheric processes; electron acceleration; inner heliosphere; nightside auroral zone; computerized simulation; plasma wave turbulence; and magnetohydrodynamic waves in plasma sheets.

  5. Cold atmospheric plasma jet in an axial DC electric field

    Science.gov (United States)

    Lin, Li; Keidar, Michael

    2016-08-01

    Cold atmospheric plasma (CAP) jet is currently intensively investigated as a tool for new and potentially transformative cancer treatment modality. However, there are still many unknowns about the jet behavior that requires attention. In this paper, a helium CAP jet is tested in an electrostatic field generated by a copper ring. Using Rayleigh microwave scattering method, some delays of the electron density peaks for different ring potentials are observed. Meanwhile, a similar phenomenon associated with the bullet velocity is found. Chemical species distribution along the jet is analyzed based on the jet optical emission spectra. The spectra indicate that a lower ring potential, i.e., lower DC background electric field, can increase the amount of excited N2, N2+, He, and O in the region before the ring, but can decrease the amount of excited NO and HO almost along the entire jet. Combining all the results above, we discovered that an extra DC potential mainly affects the temporal plasma jet properties. Also, it is possible to manipulate the chemical compositions of the jet using a ring with certain electric potentials.

  6. Generation and detection of whistler wave induced space plasma turbulence at Gakona, Alaska

    Science.gov (United States)

    Rooker, L. A.; Lee, M. C.; Pradipta, R.; Watkins, B. J.

    2013-07-01

    We report on high-frequency wave injection experiments using the beat wave technique to study the generation of very-low-frequency (VLF) whistler waves in the ionosphere above Gakona, Alaska. This work is aimed at investigating whistler wave interactions with ionospheric plasmas and radiation belts. The beat wave technique involves injecting two X-mode waves at a difference frequency in the VLF range using the High-frequency Active Auroral Research Program (HAARP) heating facility. A sequence of beat wave-generated whistler waves at 2, 6.5, 7.5, 8.5, 9.5, 11.5, 15.5, 22.5, 28.5 and 40.5 kHz were detected in our 2011 experiments. We present Modular Ultra-high-frequency Ionospheric Radar (MUIR) (446 MHz) measurements of ion lines as the primary diagnosis of ionospheric plasma effects caused by beat wave-generated whistler waves. A magnetometer and digisonde were used to monitor the background ionospheric plasma conditions throughout the experiments. Our theoretical and data analyses show that VLF whistler waves can effectively interact with ionospheric plasmas via two different four-wave interaction processes leading to energization of electrons and ions. These preliminary results support our Arecibo experiments to study NAU-launched 40.75 kHz whistler wave interactions with space plasmas.

  7. Numerical evaluation of external magnetic effect on electromagnetic wave transmission through reentry plasma layer

    Science.gov (United States)

    Zhao, Qing; Bo, Yong; Lei, Mingda; Liu, Shuzhang; Liu, Ying; Liu, Jianwei; Zhao, Yizhe

    2016-11-01

    Numerical study of electromagnetic (EM) wave transmission through the magnetized plasma layer is presented in this paper. The plasma parameters are derived from computational fluid dynamics simulation of the flow field around a blunt body flying at supersonic speed and serve as the background plasma condition in the numerical modeling for EM wave transmission. The EM wave is generated by our newly designed coaxial feed GPS patch antenna. The external magnetic field is applied and assumed to vary linearly as a function of wall distance. The effects of the external applied magnetic field and the plasma parameters on wave transmission are studied, and the results show that EM wave propagation in the non-uniformly magnetized plasma is a matter of impedance matching, and the EM wave transmission can be adjusted only when the proper strength of the magnetic field is applied.

  8. Comment on "Propagation of surface waves on a semi-bounded quantum magnetized collisional plasma" [Phys. Plasmas 20, 122106 (2013)

    Science.gov (United States)

    Moradi, Afshin

    2016-04-01

    In a recent article [Niknam et al., Phys. Plasmas 20, 122106 (2013)], Niknam et al. investigated the propagation of TM surface waves on a semi-bounded quantum magnetized collisional plasma in the Faraday configuration (in this case, the magnetic field is parallel to the both of the plasma surface and direction of propagation). Here, we present a fresh look at the problem and show that TM surface waves cannot propagate on surface of the present system. We find in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the main result of the work by Niknam et al. is incorrect.

  9. Kinetic theory of the interaction of gravitational waves with a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Galtsov, D.V.; Melkumova, E.Iu.

    1983-01-01

    The interaction of weak gravitational waves (GWs) with a plasma is described in terms of kinetic equations and is reduced to the mutual excitation and a energy exchange between the GW, plasmons, and charged particles of the plasma. The approach used is based on elementary quantum considerations, which makes it possible to obtain a closed system of balance equations for the distribution functions of plasma particles, plasmons, and gravitons. The calculation of probabilities included in the balance equations is based on the correspondence principle, which makes it necessary to consider only those processes which accompany gravitational-wave emission. Particular consideration is given to the gravitational susceptibility of the plasma, gravitational-wave generation during the merging of plasma waves, and the 'super-light-speed' Cerenkov emission of gravitational waves from a plasma filament.

  10. Oscillating two-stream instability of laser wakefield-driven plasma wave

    Indian Academy of Sciences (India)

    Nafis Ahmad; V K Tripathi; Moiz Ahmad; M Rafat

    2016-01-01

    The laser wakefield-driven plasma wave in a low-density plasma is seen to be susceptible to the oscillating two-stream instability (OTSI). The plasma wave couples to two short wavelength plasma wave sidebands. The pump plasma wave and sidebands exert a ponderomotive force on the electrons driving a low-frequency quasimode. The electron density perturbation associated with this mode couples with the pump-driven electron oscillatory velocity to produce nonlinear currents driving the sidebands. At large pump amplitude, the instability grows faster than the ion plasma frequency and ions do not play a significant role. The growth rate of the quasimode, at large pump amplitude scales faster than linear. The growth rate is maximum for an optimum wave number of the quasimode and also increases with pump amplitude. Nonlocal effects, however reduce the growth rate by about half.

  11. Relation between magnetic fields and electric currents in plasmas

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliunas

    2005-10-01

    Full Text Available Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the concentration of charged particles is high, the effect of the electromagnetic field calculated from a given J on J itself cannot be ignored. Whereas in ordinary laboratory physics one is accustomed to take J as primary and B as derived from J, it is often asserted that in plasmas B should be viewed as primary and J as derived from B simply as (c/4π∇×B. Here I investigate the relation between ∇×B and J in the same terms and by the same method as previously applied to the MHD relation between the electric field and the plasma bulk flow vmv2001: assume that one but not the other is present initially, and calculate what happens. The result is that, for configurations with spatial scales much larger than the electron inertial length λe, a given ∇×B produces the corresponding J, while a given J does not produce any ∇×B but disappears instead. The reason for this can be understood by noting that ∇×B≠4π/cJ implies a time-varying electric field (displacement current which acts to change both terms (in order to bring them toward equality; the changes in the two terms, however, proceed on different time scales, light travel time for B and electron plasma period for J, and clearly the term changing much more slowly is the one that survives. (By definition, the two time scales are equal at λe. On larger scales, the evolution of B (and hence also of ∇×B is governed by

  12. Space and Astrophysical Plasmas : Sun–Earth connection: Boundary layer waves and auroras

    Indian Academy of Sciences (India)

    G S Lakhina; B T Tsurutani; J K Arballo; C Galvan

    2000-11-01

    Boundary layers are the sites where energy and momentum are exchanged between two distinct plasmas. Boundary layers occurring in space plasmas can support a wide spectrum of plasma waves spanning a frequency range of a few mHz to 100 kHz and beyond. The main characteristics of the broadband plasma waves (with frequencies > 1 Hz) observed in the magnetopause, polar cap, and plasma sheet boundary layers are described. The rapid pitch angle scattering of energetic particles via cyclotron resonant interactions with the waves can provide sufficient precipitated energy flux to the ionosphere to create the diffused auroral oval. The broadband plasma waves may also play an important role in the processes of local heating/acceleration of the boundary layer plasma.

  13. The ''phase velocity'' of nonlinear plasma waves in the laser beat-wave accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Spence, W.L.

    1985-04-01

    A calculational scheme for beat-wave accelerators is introduced that includes all orders in velocity and in plasma density, and additionally accounts for the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which it is possible to sum up all orders of forward Raman scattering. It is found that the nonlinear plasma wave does not have simply a single phase velocity, but that the beat-wave which drives it is usefully described by a non-local ''effective phase velocity'' function. A time-space domain approach is followed. (LEW)

  14. Plasma depletion layer: the role of the slow mode waves

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding values in the upstream magnetosheath. The depletion layer usually occurs during northward (IMF conditions with low magnetic shear across the magnetopause. We have previously validated the Raeder global model by comparing the computed formation of a magnetosheath density depletion with in-situ observations. We also have performed a detailed force analysis and found the varying roles that different MHD forces play along the path of a plasma parcel flowing around the magnetopause. That study resulted in a new description of the behavior of magnetosheath magnetic flux tubes which better explains the plasma depletion along a flux tube. The slow mode waves have been observed in the magnetosheath and have been used to explain the formation of the PDL in some of the important PDL models. In this study, we extend our former work by investigating the possible role of the slow mode waves for the formation of the PDL, using global MHD model simulations. We propose a new technique to test where a possible slow mode front may occur in the magnetosheath by comparing the slow mode group velocity with the local flow velocity. We find that the slow mode fronts can exist in certain regions in the magnetosheath under certain solar wind conditions. The existence and location of such fronts clearly depend on the IMF. We do not see from our global simulation results either the sharpening of the slow mode front into a slow mode shock or noticeable changes of the flow and field in the magnetosheath across the slow mode front, which implies that the slow mode front is not likely responsible for the formation of the PDL, at least for the stable solar wind conditions used in these simulations. Also, we do not see the two-layered slow mode structures shown in some observations and proposed in certain PDL

  15. Effects of external magnetic field on oblique propagation of ion acoustic cnoidal wave in nonextensive plasma

    Science.gov (United States)

    Farhad Kiyaei, Forough; Dorranian, Davoud

    2017-01-01

    Effects of the obliqueness and the strength of external magnetic field on the ion acoustic (IA) cnoidal wave in a nonextensive plasma are investigated. The reductive perturbation method is employed to derive the corresponding KdV equation for the IA wave. Sagdeev potential is extracted, and the condition of generation of IA waves in the form of cnoidal waves or solitons is discussed in detail. In this work, the domain of allowable values of nonextensivity parameter q for generation of the IA cnoidal wave in the plasma medium is considered. The results show that only the compressive IA wave may generate and propagate in the plasma medium. Increasing the strength of external magnetic field will increase the frequency of the wave and decrease its amplitude, while increasing the angle of propagation will decrease the frequency of the wave and increase its amplitude.

  16. Shock wave interaction with a thermal layer produced by a plasma sheet actuator

    Science.gov (United States)

    Koroteeva, E.; Znamenskaya, I.; Orlov, D.; Sysoev, N.

    2017-03-01

    This paper explores the phenomena associated with pulsed discharge energy deposition in the near-surface gas layer in front of a shock wave from the flow control perspective. The energy is deposited in 200 ns by a high-current distributed sliding discharge of a ‘plasma sheet’ type. The discharge, covering an area of 100× 30 mm2, is mounted on the top or bottom wall of a shock tube channel. In order to analyse the time scales of the pulsed discharge effect on an unsteady supersonic flow, we consider the propagation of a planar shock wave along the discharge surface area 50–500 μs after the discharge pulse. The processes in the discharge chamber are visualized experimentally using the shadowgraph method and modelled numerically using 2D/3D CFD simulations. The interaction between the planar shock wave and the discharge-induced thermal layer results in the formation of a lambda-shock configuration and the generation of vorticity in the flow behind the shock front. We determine the amount and spatial distribution of the electric energy rapidly transforming into heat by comparing the calculated flow patterns and the experimental shadow images. It is shown that the uniformity of the discharge energy distribution strongly affects the resulting flow dynamics. Regions of turbulent mixing in the near-surface gas are detected when the discharge energy is deposited non-uniformly along the plasma sheet. They account for the increase in the cooling rate of the discharge-induced thermal layer and significantly influence its interaction with an incident shock wave.

  17. Full-wave Analyses of Scattering of Electromagnetic Wave from the Weakly Ionized Plasma in Plane Geometry

    Institute of Scientific and Technical Information of China (English)

    Song Falun; Cao Jinxiang; Wang Ge

    2005-01-01

    The purpose of the present work is to present a full-wave analysis of scattering from the weakly ionized plasma in the plane geometry. We have yielded an approximate solution in an analytic form to the electromagnetic wave scattering from the weakly ionizsd plasma. In the normal and oblique incidence, the analytic solution works well, as compared with the exact solution and the solution based on the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation to the uniform density profile.

  18. Wave spectra of 2D dusty plasma solids and liquids

    CERN Document Server

    Hou, Lu-Jing; Piel, Alexander; Murillo, Michael S

    2009-01-01

    Brownian dynamics simulations were carried out to study wave spectra of two-dimensional dusty plasma liquids and solids for a wide range of wavelengths. The existence of a longitudinal dust thermal mode was confirmed in simulations, and a cutoff wavenumber in the transverse mode was measured. Dispersion relations, resulting from simulations, were compared with those from analytical theories, such as the random-phase approximation (RPA), quasi-localized charged approximation (QLCA), and harmonic approximation (HA). An overall good agreement between the QLCA and simulations was found for wide ranges of states and wavelengths after taking into account the direct thermal effect in the QLCA, while for the RPA and HA good agreement with simulations were found in the high and low temperature limits, respectively.

  19. Plasma and cyclotron frequency effects on output power of the plasma wave-pumped free-electron lasers

    Science.gov (United States)

    Zolghadr, S. H.; Jafari, S.; Raghavi, A.

    2016-05-01

    Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FEL has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.

  20. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  1. Multi-instrument investigation of troposphere-ionosphere coupling through gravity waves and the role of gravity waves in the formation of equatorial plasma bubbles (EPBs)

    Science.gov (United States)

    Sivakandan, Mani; Patra, Amit; Sripathi, Samireddipelle; Thokuluwa, Ramkumar; Paulino, Igo; Taori, Alok; Kandula, Niranjan

    2016-07-01

    Equatorial plasma bubble (EPB) occurs in the equatorial ionosphere in pre-mid night (most of the time) as well as post-midnight (rarely) hours. The generation of EPBs by Rayleigh-Taylor Instability (RTI) due to seeding of gravity wave perturbation (polarization electric field) have well been explained theoretically by several authors but experimental evidence supporting this hypothesis is very limited. Using co-located observations from Gadanki (13.5oN, 79.2o E) using an all sky airglow imager and Gadanki Ionospheric Radar Interferometer (GIRI) and Ionosonde observations from Tirunelveli (8.7o N, 77.8o E), we investigate the role of gravity waves in the generation EPB during geomagnetic quiet conditions. To avoid any changes occurring in the background ionosphere owing to the large scale features (e.g., seasonal variation), we use four consecutive nights (03-06, February, 2014). Out of these four nights on two nights we have noted very strong plasma depletions in the OI 630 nm airglow emission and radar plumes. We analyse data to identify cases where, 1) EPBs occurred with large amplitudes of mesospheric gravity waves, 2) Occurrence of EPBs without large amplitudes of mesospheric gravity waves, and 3) identifiable mesospheric gravity waves without occurrence of EPBs. In order to calculate the mesospheric gravity wave parameter we used mesospheric OH airglow emission imager data, to identify their propagation to the E-region, we used E-region observations made using the MST radar which resembled the gravity wave signatures. Together with these, by using ray tracing techniques, we have identified the source region of the noted gravity wave events also. These results are discussed in detail in the present study.

  2. A Review of Nonlinear Low Frequency (LF) Wave Observations in Space Plasmas: On the Development of Plasma Turbulence

    Science.gov (United States)

    Tsurutani, Bruce T.

    1995-01-01

    As the lead-off presentation for the topic of nonlinear waves and their evolution, we will illustrate some prominent examples of waves in space plasmas. We will describe recent observations detected within planetary foreshocks, near comets and in interplanetary space. It is believed that the nonlinear LF plasma wave features discussed here are part of and may be basic to the development of plasma turbulence. In this sense, this is one area of space plasma physics that is fundamental, with applications to fusion physics and astrophysics as well. It is hoped that the reader(s) will be stimulated to study nonlinear wave development themselves, if he/she is not already involved.

  3. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, H. [Department of Space Science, Institute of Space Technology, 1-Islamabad Highway, Islamabad (Pakistan); Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); Ali, S. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Haque, Q. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2015-08-15

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  4. Generation of fast electrons by breaking of a laser-induced plasma wave

    NARCIS (Netherlands)

    Trines, Rmgm; Goloviznin, V. V.; Kamp, L. P. J.; Schep, T. J.

    2001-01-01

    A one-dimensional model for fast electron generation by an intense, nonevolving laser pulse propagating through an underdense plasma has been developed. Plasma wave breaking is considered to be the dominant mechanism behind this process, and wave breaking both in front of and behind the laser pulse

  5. geometric optics and WKB method for electromagnetic wave propagation in an inhomogeneous plasma near cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Light, Max Eugene [Los Alamos National Laboratory

    2017-04-13

    This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density ne(r), which will modify the wave propagation in the direction of the gradient rne(r).

  6. WIND observations of plasma waves inside the magnetic cloud boundary layers

    Institute of Scientific and Technical Information of China (English)

    WEI Fengsi; ZHONG Dingkun; FENG Xueshang; YANG Fang; LIU Rui

    2005-01-01

    Based on the WIND observational data for the plasma waves from thermal noise receptor (TNR) working on the frequency 4―256 kHz and the solar wind and the magnetic fields, we analyze the plasma wave activities in the 60 magnetic cloud's boundary layers (BLs) and find that there are often various plasma wave activities in the BLs, which are different from those in the adjacent solar wind (SW) and the magnetic clouds (MC). The basic characteristics are that: (1) the enhancement of the Langmuir wave near the electronic plasma frequency (fpe) is a dominant wave activity, which occupies 75% investigated samples; (2) the events enhanced both in the langmuir and ion acustic (f < fpe) waves are about 60% of investigated samples; (3) broadband, continuous enhancement events in the plasma wave activities were observed in the whole frequency band of TNR, and about 30% of the 60 samples, however, were not observed in the SW and the MC investigated events; (4) although the ratio of the temperatures between the electon and proton, Te/Tp≤1, the ion caustic wave enhancement activities are still often observed in the BLs, which makes it difficult to ex-plain them by the traditional plasma theory. New results reported in this paper further show that the magnetic cloud's BL is an important dynamic structure, which could provide useful diagnosis for understanding the cloud's BL physics and could expand a space developing space plasma wave theory.

  7. CO2 Laser Beat-Wave Experiment in an Unmagnetized Plasma

    Science.gov (United States)

    Liu, Fei; Hwang, David; Horton, Robert; Hong, Sean; Evans, Russell

    2012-10-01

    The ability to remotely generate plasma current in dense plasmas is a basic yet important investigation in experimental plasma physics and fusion energy research. It is even more advantageous if the wave penetration is independent of the electron acceleration process. Plasma current can be generated through beat-wave mixing process by launching two intense electromagnetic waves (φ>>φpe) into plasma. The beat wave formation process can be efficient if the difference frequency of the two pump waves is matched to a local resonant frequency of the medium, i.e. in this case the local plasma frequency. Beat wave can accelerate plasma electrons via quasi-linear Landau process, which has been demonstrated in a low-density plasma using microwaves.footnotetextRogers, J. H. and Hwang, D. Q., Phys. Rev. Lett. v68 p3877 (1992). The CO2 lasers provide the high tunability for the wave-particle interaction experiment at a variety of plasma densities with plasma frequency in THz range. Two sections of Lumonics TEA CO2 lasers have been modified to serve as the two pump wave sources with peak power over 100MW. The development of the tunable CO2 lasers, a high-density plasma target source and diagnostics system will be presented. The initial results of unbalanced beat-wave experiment using one high-power pulsed and one low-power CW CO2 lasers will be presented and discussed using the independent plasma source to control the φpe of the interaction region. This work is supported by U.S. DOE under Contract No. DE-FG02-10ER55083.

  8. CRRES (Combined Release and Radiation Effects Satellite) SPACERAD plasma wave experiment

    Science.gov (United States)

    Anderson, Roger R.; Gurnett, Donald A.

    1988-10-01

    This document discusses the Main Electronics Package, two Electric Field Preamps and Search Coil Magnetometer for the AFGL 701 SPACERAD instrumentation on the CRRES (Combined Release and Radiation Effects Satellite) project. This document discusses the scientific objectives and the importance of the Plasma Wave Experiment in the CRRES SPACERAD mission and describes the instrument design rational and the instrument development philosophy. This document also discusses the testing and operations of the experiment and contains a schematic drawing of the instrumentation electronics and lists of the schematics, drawings, and wiring diagrams that describe the as-built configuration of the Plasma Wave Experiment instrumentation. Problems encountered during the construction and testing of the instrument and their resolutions are discussed. Test results from already completed environmental and EMC/RFI tests have already been submitted to AFGL and to the Air Force Headquarters Space Division Space Test Program. The recertification of the calibration of the instrument is recommended in the near future under a new contract covering the re-delivery (necessitated due to the removal during the launch-delay storage period), pre-launch, and launch operations.

  9. Effective-action approach to wave propagation in scalar QED plasmas

    Science.gov (United States)

    Shi, Yuan; Fisch, Nathaniel J.; Qin, Hong

    2016-07-01

    A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we give two examples: a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasmas are cold. These waves account for cyclotron absorption features observed in spectra of x-ray pulsars. Moreover, cutoff frequencies of the two nondegenerate electromagnetic waves are red-shifted by different amounts. These corrections need to be taken into account in order to correctly interpret diagnostic results in laser plasma experiments.

  10. Low-Frequency Electrostatic Ion Surface Waves in Magnetized Electron-Positron Plasmas

    Science.gov (United States)

    Cho, Sang-Hoon; Lee, Hee J.

    The dispersion relations of a surface ion wave propagating on the interface between a warm electron-positron plasma and vacuum when a static magnetic field is directed either normal to the interface (x-wave) or parallel to the wave vector (z-wave) are solved analytically, and the influence of the magnetic field on the ion surface wave is investigated in detail using some numerical work. It is shown that ion surface waves do not exist if the magnetic field is large enough to make the ion gyrofrequency greater than the ion plasma frequency. The attenuation constant of x-waves is more attenuated than that of z-waves and the x-wave is more attenuated as the parameter normalized ion gyrofrequency ζ increases toward 1, but this tendency is reversed for the z-wave. The z-wave does not exist for k2λD2< (ζ/(1-ζ))(p + 1) while the x-wave exists over the whole range of k, where the fractional number p is the ratio between the unperturbed positron and the electron number density. Additionally, we compare the ion surface wave properties of electron-positron plasma with conventional electron-ion plasma.

  11. Electric field effects in combustion with non-thermal plasma

    Science.gov (United States)

    Casey, Tiernan Albert

    Chemically reacting zones such as flames act as sources of charged species and can thus be considered as weakly-ionized plasmas. As such, the action of an externally applied electric field has the potential to affect the dynamics of reaction zones by enhancing transport, altering the local chemical composition, activating reaction pathways, and by providing additional thermal energy through the interaction of electrons with neutral molecules. To investigate these effects, one-dimensional simulations of reacting flows are performed including the treatment of charged species transport and non-thermal electron chemistry using a modified reacting fluid solver. A particular area of interest is that of plasma assisted ignition, which is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields by applied voltages across the domain, resulting in non-thermal behavior of the electron sub-fluid formed during the discharge. Strong electric fields cause charged species to be rapidly transported from the ignition zone across the domain in opposite directions as charge fronts, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect. This phenomenon results in an increase in the energy of the electrons in the fresh mixture with increasing time, accelerating electron impact dissociation processes. A semi-analytic model to represent this dynamic electrode effect is constructed to highlight the relative simplicity of the electrodynamic problem admitted by the far more detailed chemistry and transport. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame's preheat zone. The effect of nanosecond pulses are to

  12. Study of kinetic Alfven wave (KAW) in plasma - sheet-boundary- layer

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Nidhi; Varma, P; Tiwari, M S, E-mail: tiwarims@rediffmail.co, E-mail: poornimavarma@yahoo.co, E-mail: nidhiphy.shukla@gmail.co [Department of Physics and Electronics, Dr. H. S. Gour University, Sagar (M.P.), 470003 (India)

    2010-02-01

    The effect of parallel electric field with general loss-cone distribution function on the dispersion relation and damping rate/growth rate of the kinetic Alfven wave (KAW) is evaluated by kinetic approach. The generation of KAW by the combined effect of parallel electric field and loss-cone distribution indices (J) at a particular range of k{sub p}erpendicular{rho}{sub i} (k{sub p}erpendicular{rho}{sub i} <1 and k{sub p}erpendicular{rho}{sub i} >1) is noticed, where k{sub p}erpendicular is perpendicular wave number and {rho}{sub i} is the ion-gyro radius. Thus the propagation of KAW and loss of the Poynting flux from plasma sheet boundary layer (PSBL) to the ionosphere can be explained on the basis of present investigation. It is found that the present study also shows that the loss-cone distribution index is an important parameter to study KAW in the PSBL.

  13. Ultrahigh-gradient acceleration of injected eletrons by laser-excited relativistic electron plasma waves

    Science.gov (United States)

    Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Joshi, C.

    1993-01-01

    High-gradient acceleration of externally injected 2.1-MeV electrons by a laser beat wave driven relativistic plasma wave has been demonstrated for the first time. Electrons with energies up to the detection limit of 9.1 MeV were detected when such a plasma wave was resonantly excited using a two-frequency laser. This implies a gradient of 0.7 GeV/m, corresponding to a plasma-wave amplitude of more than 8%. The electron signal was below detection threshold without injection or when the laser was operated on a single frequency.

  14. Characteristics of Plasma Shock Waves Generated in the Pulsed Laser Ablation Process

    Institute of Scientific and Technical Information of China (English)

    李智华; 张端明; 郁伯铭; 关丽

    2002-01-01

    We modify the Sedov theory to describe plasma shock waves generated in a pulsed laser ablating process. We also study the propagation characteristics of plasma shock waves during the preparation process of functional thin films deposited by a pulsed laser. In particular, we discuss in detail the temporal behaviour of energy causing the difference of the propagation characteristics between the plasma shock wave and the ideal shock wave in the point explosion model. Under the same experimental conditions, the theoretical results calculated with our modified Sedov theory are in good agreement with the existing experimental data.

  15. Impact of the Collisional Plasma on the Propagation of Millimeter Waves

    Institute of Scientific and Technical Information of China (English)

    袁忠才; 时家明; 汪家春; 许波

    2004-01-01

    The plasma generated in the low-altitude atmosphere is of high collision frequencies.In this paper, the transmission coefficients of millimeter(MM) waves normally incident upon the plasma with high collision frequencies are calculated and analyzed. The experimental results of reflection and attenuation are presented for the eight-millimeter waves propagating through the plasma. Both the calculated experimental results indicate that the MM-waves concerned are attenuated significantly and reflected weakly, when propagating through the plasma of high collision frequencies.

  16. The Nonlinear Langmuir Waves in a Multi-ion-Component Plasma

    Institute of Scientific and Technical Information of China (English)

    CHEN Yin-Hua; LU Wei; WANG Wen-Hao

    2001-01-01

    We investigated the nonlinear Langmuir waves in a multi-ion-component low-temperature plasma. Beginning with the fluid theory of plasma, and taking fully nonlinear response of the low-frequency ion motion into account, we derived a set of equations governing the nonlinear coupling of the amplitude of the Langmuir wave and the Iow-frequency perturbation density. Using the Sagdeev potential method, we analyzed the characteristics of solitary wave. In the limit of small amplitude, the envelope soliton was found. Our investigation demonstrates that the properties of soliton in a multi-ion-component plasma are different from those of soliton in an electron-ion plasma.

  17. Enhanced acceleration of injected electrons in a laser-beat-wave-induced plasma channel.

    Science.gov (United States)

    Tochitsky, S Ya; Narang, R; Filip, C V; Musumeci, P; Clayton, C E; Yoder, R B; Marsh, K A; Rosenzweig, J B; Pellegrini, C; Joshi, C

    2004-03-05

    Enhanced energy gain of externally injected electrons by a approximately 3 cm long, high-gradient relativistic plasma wave (RPW) is demonstrated. Using a CO2 laser beat wave of duration longer than the ion motion time across the laser spot size, a laser self-guiding process is initiated in a plasma channel. Guiding compensates for ionization-induced defocusing (IID) creating a longer plasma, which extends the interaction length between electrons and the RPW. In contrast to a maximum energy gain of 10 MeV when IID is dominant, the electrons gain up to 38 MeV energy in a laser-beat-wave-induced plasma channel.

  18. The effect of lower hybrid waves on JET plasma rotation

    Science.gov (United States)

    Nave, M. F. F.; Kirov, K.; Bernardo, J.; Brix, M.; Ferreira, J.; Giroud, C.; Hawkes, N.; Hellsten, T.; Jonsson, T.; Mailloux, J.; Ongena, J.; Parra, F.; Contributors, JET

    2017-03-01

    This paper reports on observations of rotation in JET plasmas with lower hybrid current drive. Lower hybrid (LH) has a clear impact on rotation. The changes in core rotation can be either in the co- or counter-current directions. Experimental features that could determine the direction of rotation were investigated. Changes from co- to counter-rotation as the q-profile evolves from above unity to below unity suggests that magnetic shear could be important. However, LH can drive either co- or counter-rotation in discharges with similar magnetic shear and at the same plasma current. It is not clear if a slightly lower density is significant. A power scan at fixed density, shows a lower hybrid power threshold around 3 MW. For smaller LH powers, counter rotation increases with power, while for larger powers a trend towards co-rotation is found. The estimated counter-torque from the LH waves, would not explain the observed angular frequencies, neither would it explain the observation of co-rotation.

  19. Possibility of internal transport barrier formation and electric field bifurcation in LHD plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sanuki, H.; Itoh, K.; Yokoyama, M.; Fujisawa, A.; Ida, K.; Toda, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, S.-I.; Yagi, M.; Fukuyama, A.

    1999-05-01

    Theoretical analysis of the electric field bifurcation is made for the LHD plasma. For given shapes of plasma profiles, a region of bifurcation is obtained in a space of the plasma parameters. In this region of plasma parameters, the electric field domain interface is predicted to appear in the plasma column. The reduction of turbulent transport is expected to occur in the vicinity of the interface, inducing a internal transport barrier. Within this simple model, the plasma with internal barriers is predicted to be realized for the parameters of T{sub e}(0) {approx} 2 keV and n(0) {approx_equal} 10{sup 18} m{sup -3}. (author)

  20. Resonant Alfven waves in partially ionized plasmas of the solar atmosphere

    CERN Document Server

    Soler, R; Goossens, M

    2011-01-01

    Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. In magnetic waveguides resonant absorption due to plasma inhomogeneity naturally transfers wave energy from large-scale motions to small-scale motions. In the cooler parts of the solar atmosphere as, e.g., the chromosphere, effects due to partial ionization may be relevant for wave dynamics and heating. Aims. We study resonant Alfven waves in partially ionized plasmas. Methods. We use the multifluid equations in the cold plasma approximation. We investigate propagating resonant MHD waves in partially ionized flux tubes. We use approximate analytical theory based on normal modes in the thin tube and thin boundary approximations along with numerical eigenvalue computations. Results. We find that the jumps of the wave perturbations across the resonant layer are the same as in fully ionized plasmas. The damping length due to resonant absorption is inversely proportional to the frequency, while that due to ion-neutral collisions is in...

  1. Vortex Lines and Monopoles in Electrically Conducting Plasmas

    Institute of Scientific and Technical Information of China (English)

    WANG Ji-Biao; REN Ji-Rong; LI Ran

    2009-01-01

    Based on the C-mapping topological current theory and the decomposition of gauge potential theory, the vortex lines and the monopoles in electrically conducting plasmas are studied.It is pointed out that these two topological structures respectively inhere in two-dimensional and three-dimensional topological currents, which can be derived from the same topological term , and both these topological structures are characterized by the φ-mapping topological numbers-Hopf indices and Brouwer degrees.Furthermore, the spatial bifurcation of vortex lines and the generation and annihilation of monopoles are also discussed.At last, we point out that the Hopf invariant is a proper topological invariant to describe the knotted solitons.

  2. Excitation of nonlinear ion acoustic waves in CH plasmas

    CERN Document Server

    Feng, Q S; Liu, Z J; Xiao, C Z; Wang, Q; He, X T

    2016-01-01

    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number $ k\\lambda_{De} $ increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of $ T_i/T_e < 0.2 $ in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with $k\\lambda_{De}$ increasing. When $k\\lambda_{De}$ is not large, such as $k\\lambda_{De}=0.1, 0.3, 0.5$, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when $k\\lambda_{De}$ is large, such as $k\\lambda_{De}=0.7$, the linear ...

  3. Power Absorption of High Frequency Electromagnetic Waves in a Partially Ionized Plasma Layer in Atmosphere Conditions

    Institute of Scientific and Technical Information of China (English)

    郭斌; 王晓钢

    2005-01-01

    We have studied the absorption, reflection, and transmission of electromagnetic waves in an unmagnetized uniform plasma layer covering a metal surface in atmosphere conditions.Instead of the absorption of the electromagnetic wave propagating only once in previous work on the plasma layer, a general formula of total power absorption by the plasma layer with an infinite time of reflections between the atmosphere-plasma interface and the metal surface has been derived for the first time. Effects of plasma parameters, especially the dependence of the fraction of positive ions, negative ions and electrons in plasmas on the power absorption processes are discussed. The results show that the existence of negative ions significantly reduces the power absorption of the electromagnetic wave. Absorptions of electromagnetic waves are calculated.

  4. Structured waves near the plasma frequency observed in three auroral rocket flights

    Directory of Open Access Journals (Sweden)

    M. Samara

    2006-11-01

    Full Text Available We present observations of waves at and just above the plasma frequency (fpe from three high frequency electric field experiments on three recent rockets launched to altitudes of 300–900 km in active aurora. The predominant observed HF waves just above fpe are narrowband, short-lived emissions with amplitudes ranging from <1 mV/m to 20 mV/m, often associated with structured electron density. The nature of these HF waves, as determined from frequency-time spectrograms, is highly variable: in some cases, the frequency decreases monotonically with time as in the "HF-chirps" previously reported (McAdams and LaBelle, 1999, but in other cases rising frequencies are observed, or features which alternately rise and fall in frequency. They exhibit two timescales of amplitude variation: a short timescale, typically 50–100 ms, associated with individual discrete features, and a longer timescale associated with the general decrease in the amplitudes of the emissions as the rocket moves away from where the condition f~fpe holds. The latter timescale ranges from 0.6 to 6.0 s, corresponding to distances of 2–7 km, assuming the phenomenon to be stationary and using the rocket velocity to convert time to distance.

  5. Deformations of charge-density wave crystals under electric field

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskii, V.Ya. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation)], E-mail: pok@cplire.ru; Zybtsev, S.G.; Loginov, V.B. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation); Timofeev, V.N. [Baikov Institute of Metallurgy of RAS, Leninsky prosp. 49, 119991 Moscow (Russian Federation); Kolesov, D.V.; Yaminsky, I.V. [Advanced Technologies Center, Department of Physics, Moscow State University, Leninskie Gori, 119991 Moscow (Russian Federation); Gorlova, I.G. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation)

    2009-03-01

    We report the effects of electric field induced deformations of quasi one-dimensional conductors with charge-density wave (CDW). The most pronounced sort of deformation is torsional strain (TS). The TS is found to comprise two contributions. The features of the 1st-the larger one-are threshold hysteretic dependence on electric field and high relaxation time {tau}: For o-TaS{sub 3}{tau}{approx}10{sup -2} s at T=80 K and falls as exp(900 K/T) with increasing T. The 2nd contribution is linear in electric field and does not drop with frequency increase. The amplitude of this contribution falls abruptly with T approaching the Peierls transition temperature T{sub P} from below. Similar features of TS are demonstrated for other CDW compounds: (TaSe{sub 4}){sub 2}I, K{sub 0.3}MoO{sub 3} and NbS{sub 3} type II, for which T{sub P}{approx}360 K. We attribute the 1st and the 2nd contributions to large (hysteretic) and small (near-equilibrium) CDW deformations, respectively, likely-shear at the surface. The TS is observed also above T{sub P}: For TaS{sub 3} and (TaSe{sub 4}){sub 2}I typical torsional amplitude is 10{sup -1} deg./V in the resonance regimes, corresponding to the piezomodulus {approx}10{sup -9} m/V. A separate study of TS was performed at room temperature with AFM technique. Apart from this ('intrinsic') effect, we observe electrostatic contribution to the TS. In contrast to the intrinsic response, the electrostatic one is proportional to the potential either over the sample, or over an additional electrode ('gate') placed nearby, but not to the difference of potentials between the sample ends. It is typically 2 orders of magnitude less. The intrinsic TS reveals a new electromechanical effect at room temperature, presumably associated with the excitations of the pinned mode of the CDW fluctuations. Its observation opens prospects for application of quasi one-dimensional conductors as micro- and nano-actuators. Basing on the electrostatic

  6. Modulational instability of ion-acoustic waves in a warm plasma

    Institute of Scientific and Technical Information of China (English)

    薛具奎; 段文山; 郎和

    2002-01-01

    Using the standard reductive perturbation technique, a nonlinear Schrodinger equation is derived to study themodulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma. It is found thatthe inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the solitonstructures. The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties areinvestigated in detail.

  7. Active Measurement of Mercury's Plasma experiment: a part of the Plasma Wave Investigation consortium aboard the BepiColombo Mercury Magnetospheric Orbiter

    Science.gov (United States)

    Trotignon, Jean Gabriel; Trotignon, Jean Gabriel; Lagoutte, Dominique; Kasaba, Yasumasa; Kojima, Hiro; Blomberg, Lars; Lebreton, Jean-Pierre

    The Active Measurement of Mercury's Plasma experiment, AM2 P, is designed to measure the thermal electron density and temperature in the environment of planet Mercury from the solar wind down to the inner magnetosphere. Detailed analyses of the returned data should also give more information on the electron distribution function itself. AM2 P as part of the Plasma Wave Investigation consortium, PWI, shall then contribute to the study of the intricate and poorly known interaction between the solar wind and the Mercury's magnetosphere, exosphere, and surface. AM2 P shall indeed give another insight into the thermal coupling between neutral and charged particles, the characterization of the spectral distribution of natural waves, the detection of plasma boundaries, and the identification of the plasma regimes inside the Hermean magnetosphere. The AM2 P basic mode is to measure the self-impedance of the MEFISTO (Mercury Electric Field In Situ TOol) double-sphere antenna in a frequency range comprising the plasma frequency which is expected to lie in the various regions encountered by the Mercury Magnetospheric Orbiter, MMO. In this mode, different operations are possible, giving complementary plasma parameter information, mainly in the vicinity of the plasma resonance: normal dipole, monopole, and mutual impedance, according to the antenna elements that are used for the transmitting and receiving functions. In the secondary MEFISTO double-wire antenna mode, the external shield of the wire-boom is used as a 2 x 15 m long dipole antenna. As the dependence upon plasma parameters of the double-wire antenna impedance differs significantly from the double-sphere one, both modes may be of great benefit for achieving reliable and complementary plasma diagnoses. This is actually very useful in the Mercury's dilute media. As a bonus, AM2 P will contribute to the onboard calibrations of the WPT wire electric-antenna and the SC-DB and SC-LF search coils (calibration signal

  8. Relativistic electron beam driven longitudinal wake-wave breaking in a cold plasma

    CERN Document Server

    Bera, Ratan Kumar; Sengupta, Sudip; Das, Amita

    2016-01-01

    Space-time evolution of relativistic electron beam driven wake-field in a cold, homogeneous plasma, is studied using 1D-fluid simulation techniques. It is observed that the wake wave gradu- ally evolves and eventually breaks, exhibiting sharp spikes in the density profile and sawtooth like features in the electric field profile [1]. It is shown here that the excited wakefield is a longitudi- nal Akhiezer-Polovin mode [2] and its steepening (breaking) can be understood in terms of phase mixing of this mode, which arises because of relativistic mass variation effects. Further the phase mixing time (breaking time) is studied as a function of beam density and beam velocity and is found to follow the well known scaling presented in ref.[3].

  9. Charge creation and nucleation of the longitudinal plasma wave in coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Hamdipour, M.

    2010-11-01

    We study the phase dynamics in coupled Josephson junctions described by a system of nonlinear differential equations. Results of detailed numerical simulations of charge creation in the superconducting layers and the longitudinal plasma wave (LPW) nucleation are presented. We demonstrate the different time stages in the development of the LPW and present the results of FFT analysis at different values of bias current. The correspondence between the breakpoint position on the outermost branch of current voltage characteristics (CVC) and the growing region in time dependence of the electric charge in the superconducting layer is established. The effects of noise in the bias current and the external microwave radiation on the charge dynamics of the coupled Josephson junctions are found. These effects introduce a way to regulate the process of LPW nucleation in the stack of IJJ.

  10. Nonlinear coupling of kinetic Alfven waves with acoustic waves in a self-gravitating dusty plasma with adiabatic trapping

    Science.gov (United States)

    Sabeen, A.; Masood, W.; Qureshi, M. N. S.; Shah, H. A.

    2017-07-01

    In this paper, linear and nonlinear coupling of kinetic Alfven and acoustic waves has been studied in a dusty plasma in the presence of trapping and self-gravitation effects. In this regard, we have derived the linear dispersion relations for positively and negatively coupled dust kinetic Alfven-acoustic waves. Stability analysis of the coupled dust kinetic Alfven-acoustic wave has also been presented. The formation of solitary structures has been investigated following the Sagdeev potential approach by using the two-potential theory. Numerical results show that the solitary structures can be obtained only for sub-Alfvenic regimes in the scenario of space plasmas.

  11. Nonlinear acoustic waves in a collisional self-gravitating dusty plasma

    Institute of Scientific and Technical Information of China (English)

    Guo Zhi-Rong; Yang Zeng-Qiang; Yin Bao-Xiang; Sun Mao-Zhu

    2010-01-01

    Using the reductive perturbation method,we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma.The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation,and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.

  12. Electrically Small Microstrip Quarter-Wave Monopole Antennas

    Science.gov (United States)

    Young, W. Robert

    2004-01-01

    Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects

  13. Stimulated Electromagnetic Emission Indicator of Glow Plasma Discharges from Ionospheric HF Wave Transmissions with HAARP

    Science.gov (United States)

    Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.

    2012-12-01

    High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.

  14. On the rogue waves propagation in non-Maxwellian complex space plasmas

    Science.gov (United States)

    El-Tantawy, S. A.; El-Awady, E. I.; Tribeche, M.

    2015-11-01

    The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.

  15. On the rogue waves propagation in non-Maxwellian complex space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    El-Tantawy, S. A., E-mail: samireltantawy@yahoo.com; El-Awady, E. I., E-mail: eielawady@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Tribeche, M., E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Physics, University of Bab-Ezzouar, USTHB, BP 32, El Alia, Algiers 16111 (Algeria)

    2015-11-15

    The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.

  16. Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube

    Science.gov (United States)

    Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.

    2003-01-01

    A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.

  17. Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode

    Directory of Open Access Journals (Sweden)

    A. Parvazian

    2008-03-01

    Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.

  18. New numerical tools to study waves and instabilities of flowing plasmas

    NARCIS (Netherlands)

    Beliën, A.J.C.; Botchev, M.A.; Goedbloed, J.P.; Holst, van der B.; Keppens, R.

    2002-01-01

    Studying plasma waves and instabilities is an indispensable part of present thermonuclear fusion and astrophysical magnetohydrodynamics (MHD). Up till recently, spectral analysis was mostly restricted to static plasmas. However, the assumption of a static plasma is unrealistic not only for astrophys

  19. Electrostatic Waves in Dense Dusty Plasmas with High Fugacity

    Science.gov (United States)

    Rao, N. N.

    Propagation of electrostatic dust modes has been reviewed in the light of the concept of dust fugacity defined by f≡4πnd0λD2R, where nd0 and R are the dust number density and the grain size (radius) while the plasma Debye length (λD) is given through λD-2=λDe-2+λDi-2. Dusty plasmas are defined to be tenuous, dilute or dense when f≪1, ˜1, or ≫1, respectively. Attention is focused on “Dust-Acoustic Waves” (DAWs) and “Dust-Coulomb Waves” (DCWs) which exist in the tenuous (f≪1) and the dense (f≫1) regimes, respectively. A simple physical picture of the DCWs has been proposed in terms of an effective pressure called “Coulomb Pressure defined by PC≡nd0qd02/R, where qd0 is the grain charge. In the lowest order, the DCW phase speed is given by ω/k=PC/ρdδ, where ρd≡nd0md is the dust mass density and δ≡ω2/ω1 is the ratio of charging frequencies. Thus, DCWs which are driven by the Coulomb pressure can be considered as the electrostatic analogue of hydromagnetic (Alfvén or magnetoacoustic) modes which are driven by magnetic field pressure. In the dilute regime, the two waves loose their identities and merge into a single mode, which may be called “Dust Charge-Density Wave” (DCDW). When the grains are closest, DCW dispersion relation is identical with that of “Dust-Lattice Waves” (DLWs). Dense dusty plasmas are governed by a new scale-length defined by λR≡1/4πnd0Rδ, which characterizes the effective shielding length due to grain collective interactions. The scale-length λR plays a fundamental role in dense dusty plasmas, which is very similar to that of the Debye length λD in the tenuous regime. The two scale-lengths are related to the fugacity through fδ≡λD2/λR2. The frequency spectrum as well as the damping rates for various dust modes have been analytically obtained, and compared with the numerical solutions of the kinetic (Vlasov) dispersion relation.

  20. Two-dimensional electric current effects on a magnetized plasma in contact with a surface

    NARCIS (Netherlands)

    Shumack, A. E.; de Blank, H. J.; Westerhout, J.; van Rooij, G. J.

    2012-01-01

    Significant electric fields both parallel and perpendicular to a magnetic field have been observed and modeled self-consistently in an ITER divertor relevant plasma–wall experiment. Due to magnetization, electric current is found to penetrate the plasma beam outside of the cascaded arc plasma source

  1. Scattering of electromagnetic waves by an non-uniform cylindrical plasma; Diffusion coherente d'une onde electromagnetique par un cylindre de plasma inhomogene

    Energy Technology Data Exchange (ETDEWEB)

    Faugeras, P.E. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires. Groupe de recherches sur la fusion controlee

    1967-07-01

    The problem of the scattering of plane electromagnetic waves from a non-uniform, cylindrically symmetrical plasma is solved analytically, by a self-consistent field method, for a wave with the electric field parallel to the cylinder axis. Numerical results for the diffracted field are plotted for interesting ranges of the parameters involved: diameter, density on the axis, radial profile of the density, and collision frequencies. The case where the incident field is cylindric (waves surfaces parallel to the cylinder axis) is examined - this permits to connect theoretical calculations and experimental diffraction patterns, and also to explain the diffraction effects observed in a classical microwave interferometry experiment. These results, and the possibility of measuring exactly the diffracted field (showed by experiments with dielectric and metallic rods) lead to a new plasma diagnostic method, based on the diffraction, which has no theoretical limitations and it usable when the classical free-space wave methods are not (plasma diameter lower than 10 wave lengths). The feasibility of this method is tested with a plasma at atmospheric pressure and a 2 mm incident wavelength. The plasma is obtained by the laminar flow of a plasma torch, with a working gas (He or Ar) seeded by potassium (density continuously variable between 10{sup 11} and 10{sup 15} e/cm{sup 3}. Some diffraction patterns by this plasma and for various incident waves, are also given and explained with theoretical calculations. (author) [French] On etudie la diffusion coherente d'une onde electromagnetique par un cylindre de plasma inhomogene par une methode de champ self-consistant, et pour une onde de vecteur electrique parallele a l'axe du cylindre. On a calcule le champ diffracte en faisant varier le diametre du cylindre, la densite sur l'axe, le profil de densite et les frequences de collisions, et on donne ici les principaux resultats. On examine ensuite le cas d'une onde

  2. Millimeter-wave receiver design for plasma diagnostics

    DEFF Research Database (Denmark)

    Leipold, Frank; Hansen, S. K.; Jacobsen, Asger Schou;

    2016-01-01

    Scattered millimeter waves entering from the collective Thomson scattering diagnostic at ASDEX Upgrade fusion device are generally elliptically polarized. In order to convert the millimeter waves to linearly polarized waves (required for the detector), birefringent window assemblies (sapphire) have...

  3. The FIELDS Instrument Suite for Solar Probe Plus. Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    Science.gov (United States)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  4. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 2.Sterilization by Electrical Discharges and Plasmas

    Science.gov (United States)

    Watanabe, Takayuki

    The use of electrical discharges and plasmas for sterilization is reviewed. Plasmas generated by a silent discharge, a pulse discharge, and a radio frequency discharge under atmospheric pressure have been used for sterilization. Furthermore, a microwave plasma, a radio frequency plasma, and a low temperature plasma with hydrogen peroxide under low pressure conditions have been also used for sterilization. Sterilization results from injury caused by the discharge current, and from the reaction of species affected by the discharge. A silent discharge with air or oxygen is most effective for the sterilization. Nitrogen discharge also has a significant effect, however, argon discharge does not have a significant effect.

  5. Plasma-Maser Instability of the Electromagnetic Radiation In The Presence Of Electrostatic Drift Wave Turbulence in Inhomogeneous Plasma

    Directory of Open Access Journals (Sweden)

    Mahinder Singh

    2016-10-01

    Full Text Available The generation mechanism of the electromagnetic radiation in case of inhomogeneous plasma on the basis of plasma-maser interaction in presence of drift wave turbulence is studied. The drift wave turbulence is taken as the low-frequency mode field and is found to be strongly in phase relation with thermal particles and may transfer its wave energy nonlinearly through a modulated field of high-frequency extraordinary mode (X-mode wave. It has been found that amplification of X-mode wave is possible at the expense of drift wave turbulent energy. This type of high-frequency instability can leads to auroral kilometric radiation (AKR. The growth rate of the X-mode wave, in the form of AKR, has been calculated with the involvement of spatial density gradient parameter. This result may be particularly important for stability of various drift modes in magnetically confined plasma as well as for transport of momentum and energy in such inhomogeneous plasma

  6. On the absence of plasma wave emissions and the magnetic field orientation in the distant magnetosheath

    Energy Technology Data Exchange (ETDEWEB)

    Coroniti, F.V.; Greenstadt, E.W.; Moses, S.L. [TRW Space and Electronics Group, Redondo Beach, CA (United States); Tsurutani, B.T.; Smith, E.J. [California Institute of Technology, Pasadena, CA (United States)

    1994-12-01

    In early September, 1983 ISEE-3 made a long traversal of the distant dawnside magnetosheath starting near x = {minus}150 R{sub E} downstream. The distant magnetosheath often contains moderately intense plasma wave emissions at frequencies from several hundred Hz to 5 kHz. However, over time scales of many days, a clear correlation exists between the occurrence of the plasma waves and the cone angle ({theta}{sub xB}) between the magnetic field and the plasma flow velocity (x-direction). For {theta}{sub xB} large (small), the plasma wave amplitudes are near background (high). Sudden (<1 minute) changes in the local magnetic field orientation produce correspondingly sudden changes in the wave amplitudes. Statistically, the wave amplitudes decrease continuously with increasing {theta}{sub xB}. 7 refs., 5 figs.

  7. Absorption of electromagnetic waves by the dust particles in a plasma

    Institute of Scientific and Technical Information of China (English)

    LI; Fang; LI; Lianlin; SUI; Qiang

    2004-01-01

    Absorption of electromagnetic waves by the dust particles in a plasma has been studied based on a Mie-Debye scattering mode. The longitudinal field of the Debye scattering has been derived and the wave energy loss from it has been calculated. It is shown that the lower the temperature of the plasma is and the higher the density of the plasma is, the larger the absorption cross section will be due to the longitudinal scattering.For the low frequency waves the electromagnetic waves scattered in a dusty plasma are mainly in the form of Debye scattering. In this case the energy loss due to the longitudinal scattering will affect the wave propagation seriously.

  8. Plasma acceleration by the interaction of parallel propagating Alfv\\'en waves

    CERN Document Server

    Mottez, Fabrice

    2014-01-01

    It is shown that two circularly polarised Alfv\\'en waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic waves. The simulations are done with monochromatic waves and with wave packets. The simulations show parallel electromagnetic fields consistent with the theory, and they show that the particle acceleration result in plasma cavities and, if the waves amplitudes are high enough, in ion beams. These acceleration processes could be relevant in space plasmas. For instance, they could be at work in the auroral zone and in the radiation belts of the Earth magnetosphere. In particular, they may explain the origin of the deep plasma...

  9. Electron trajectories and growth rates of the plasma wave pumped free-electron laser

    Science.gov (United States)

    Jafari, S.; Jafarinia, F.; Nilkar, M.; Amiri, M.

    2014-12-01

    A theory for a plasma wave wiggler has been described which employs the plasma whistler wave for producing laser radiation in a free-electron laser (FEL). While electromagnetically pumped FELs have been proven to be an effective means generating short wavelengths, practical difficulties occur in the design of these wigglers. For this reason, it is found that a plasma wave wiggler can be employed in concept with an electromagnetic wave wiggler due to both higher tunability and holding the focus of pump wave and e-beam over a significant distance to achieve a suitable amplification. Plasma in the presence of static magnetic field supports a plasma whistler wave. The plasma wiggler period can be tuned by varying the plasma density and/or ambient magnetic field. Electron trajectories have been analyzed using single particle dynamics and regimes of orbital stability have been demonstrated. A polynomial dispersion relation for electromagnetic and space-charge waves has then been derived, analytically. Numerical studies of the dispersion relation reveal that the growth rates are sensitive functions of the cyclotron frequency. It has been shown that by increasing the axial magnetic field strength (or cyclotron frequency), the growth rate for groups I and III orbits increases, while a growth decrement has been obtained for groups II and IV orbits.

  10. Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Mushtaq, A. [National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan)

    2013-07-15

    The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are strongly influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.

  11. Dust acoustic solitary and shock waves in strongly coupled dusty plasmas with nonthermal ions

    Indian Academy of Sciences (India)

    Hamid Reza Pakzad; Kurosh Javidan

    2009-11-01

    The Korteweg–de Vries–Burgers (KdV–Burgers) equation and modified Korteweg–de Vries–Burgers equation are derived in strongly coupled dusty plasmas containing nonthermal ions and Boltzmann distributed electrons. It is found that solitary waves and shock waves can be produced in this medium. The effects of important parameters such as ion nonthermal parameter, temperature, density and velocity on the properties of shock waves and solitary waves are discussed.

  12. Investigation of Ionospheric Turbulence and Whistler Wave Interactions with Space Plasmas

    Science.gov (United States)

    2012-11-21

    GeoMagnetic Observatory System ( GMO ). We then have detection of HF heater-induced large plasma sheets, using MUIR radar and GPS satellites [Cohen et al...experiments. It is found that the heat wave fronts, which occurred in US, were plausible sources of free energy generating intense gravity waves and...that the heat wave fronts, which occurred in USA, were the plausible sources of free energy, generating intense gravity waves and triggering large

  13. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    CERN Document Server

    Kómár, A; Fülöp, T

    2013-01-01

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  14. Trapped electron acceleration by a laser-driven relativistic plasma wave

    Science.gov (United States)

    Everett, M.; Lal, A.; Gordon, D.; Clayton, C. E.; Marsh, K. A.; Joshi, C.

    1994-04-01

    THE aim of new approaches for high-energy particle acceleration1 is to push the acceleration rate beyond the limit (~100 MeV m-1) imposed by radio-frequency breakdown in conventional accelerators. Relativistic plasma waves, having phase velocities very close to the speed of light, have been proposed2-6 as a means of accelerating charged particles, and this has recently been demonstrated7,8. Here we show that the charged particles can be trapped by relativistic plasma waves-a necessary condition for obtaining the maximum amount of energy theoretically possible for such schemes. In our experiments, plasma waves are excited in a hydrogen plasma by beats induced by two collinear laser beams, the difference in whose frequencies matches the plasma frequency. Electrons with an energy of 2 MeV are injected into the excited plasma, and the energy spectrum of the exiting electrons is analysed. We detect electrons with velocities exceeding that of the plasma wave, demonstrating that some electrons are 'trapped' by the wave potential and therefore move synchronously with the plasma wave. We observe a maximum energy gain of 28 MeV, corresponding to an acceleration rate of about 2.8 GeV m-1.

  15. Laser-driven Beat-Wave Current Drive in Dense Plasmas with Demo on CTIX

    Science.gov (United States)

    Liu, Fei; Horton, Robert; Hwang, David; Zhu, Ben; Evans, Russell; Hong, Sean; Hsu, Scott

    2010-11-01

    The ability to remotely generate plasma current in dense plasmas hanging freely in vacuum in voluminous amount without obstruction to diagnostics will greatly enhance our ability to study the physics of high energy density plasmas in strong magnetic fields. Plasma current can be generated through nonlinear beat-wave process by launching two intense electromagnetic waves into unmagnetized plasma. Beat-wave acceleration of electrons has been demonstrated in a low-density plasma using microwaves [1]. The proposed PLX experimental facility presently under construction at Los Alamos offers the opportunity to test the method at a density level scalable to the study of HED plasmas. For PLX beat-wave experiments, CO2 lasers will be used as pump waves due to their high power and tunability. For a typical PLX density ne=10^17cm-3, two CO2 lasers can be separately tuned to 9P(28) and 10P(20) to match the 2.84THz plasma frequency. The beat-wave demo experiment will be conducted on CTIX. The laser arrangement is being converted to two independent single lasers. Frequency-tuning methods, optics focusing system and diagnostics system will be discussed. The laser measurements and results of synchronization of two lasers will be presented, and scaling to PLX experiments will be given. [1] Rogers, J. H. and Hwang, D. Q., PRL. v68 p3877 (1992).

  16. Theoretical Computation for Non-Equilibrium Air Plasma Electrical Conductivity at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    HAN Dong; GUO Wen-Kang; XU Ping; LIANG Rong-Qing

    2007-01-01

    @@ Based on the Chapman-Enskog theory, we calculate the electrical conductivity of non-equilibrium air plasma in the two-temperature model. We consider different degrees of non-equilibrium, which is defined by the ratio of electronic temperature to heavy particles temperature. The method of computing the composition of air plasma is demonstrated. After calculating the electrical conductivity from electron temperature 1000 K to 15000K, the present result is compared with Murphy's study [Plasma Chem. Plasma Process 15 (1994) 279] for equilibrium case. All the calculation is completed at atmospheric pressure. The present results may have potential applications in numerical calculation of non-equilibrium air plasma.

  17. Microwave power coupling in a surface wave excited plasma

    CERN Document Server

    Kar, Satyananda; Kousaka, Hiroyuki

    2014-01-01

    In recent decades, different types of plasma sources have been used for various types of plasma processing, such as, etching and thin film deposition. The critical parameter for effective plasma processing is high plasma density. One type of high density plasma source is Microwave sheath-Voltage combination Plasma (MVP). In the present investigation, a better design of MVP source is reported, in which over-dense plasma is generated for low input microwave powers. The results indicate that the length of plasma column increases significantly with increase in input microwave power.

  18. Collisional effects in weakly collisional plasmas: nonlinear electrostatic waves and recurrence phenomena

    Science.gov (United States)

    Camporeale, E.; Pezzi, O.; Valentini, F.

    2015-12-01

    The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric

  19. Higher order contribution to the propagation characteristics of low frequency transverse waves in a dusty plasma

    Indian Academy of Sciences (India)

    A P Misra; A Roy Chowdhury; S N Paul

    2004-09-01

    Characteristic features of low frequency transverse wave propagating in a magnetised dusty plasma have been analysed considering the effect of dust-charge fluctuation. The distinctive behaviours of both the left circularly polarised and right circularly polarised waves have been exhibited through the analysis of linear and non-linear dispersion relations. The phase velocity, group velocity, and group travel time for the waves have been obtained and their propagation characteristics have been shown graphically with the variations of wave frequency, dust density and amplitude of the wave. The change in non-linear wave number shift and Faraday rotation angle have also been exhibited with respect to the plasma parameters. It is observed that the effects of dust particles are significant only when the higher order contributions are considered. This may be referred to as the `dust regime' in plasma.

  20. Plasma Instability and Wave Propagation in Gate-Controlled GaN Conduction Channels

    Science.gov (United States)

    Rudin, Sergey; Rupper, Greg

    2013-08-01

    The plasma wave in the conduction channel of a semiconductor heterostructure high electron mobility transistor (HEMT) can be excited at frequencies significantly higher than the cut-off frequency in a short channel device. The hydrodynamic model predicts a resonance response to applied harmonic signal at the plasma oscillation frequency. When either the ac voltage induced in the channel by the signal at the gate or the current applied at the drain or source contact are not very small, the plasma waves in the semiconductor channel will propagate as a shock wave. The device can be used either as a detector or a tunable source of terahertz range radiation. Using the parameters appropriate for the GaN channel we show that in both configurations the charge flow develops shock waves due to hydrodynamic nonlinearities. In a sufficiently wide channel the wave propagation separates into two or more different bands giving a two-dimensional structure to the waves.

  1. Solar Corona and plasma effects on Radio Frequency waves

    Science.gov (United States)

    Nkono, C.; Rosenblatt, P.; Dehant, V. M.

    2009-12-01

    Solar corona (plasma) effects on radio signal waves for three different frequency bands S (2.3 GHz), X (8.4 GHz), and Ka (32 GHz), currently used to track probes in the solar system, have been computed using different models of the total electron content (TEC) along the propagation path between the Earth and Mars. The Earth-Mars-Sun configuration has been obtained from the planetary ephemerides DE421 (using SPICE kernels) for the period from September 2004 to September 2006. This configuration is expressed as a function of the Sun-Earth-Probe (SEP) angles (the probe being in close orbit to Mars). We used the TEC values provided by the different models proposed in the literature in order to estimate the TEC along the propagation path (STEC, for Slant TEC). From these model-dependent STEC estimates, the time delay on the wave propagation as well as the associated frequency shift with a 10 seconds sampling time have been obtained for each of the three frequency bands. For the X-band mostly used in radio science, we have obtained estimates differing by up to several orders of magnitude due to the different STEC values derived from different models of TEC. For example, if the propagation path passes near the Sun such that SEP angle is 1.55° the STEC is ranging from 4.6x1020 electron/m2 to 6.07x1016 electron/m2, which corresponds to a time delay range between 0.87 μs and 1.15x10-4 μs, respectively. For SEP angles between 2° and 8°, the range of the different time delay values reduces to 2.8x10-1 μs and becomes as small as 1.6x10-2 μs for SEP angles larger than 8° (1x10-2 μs is about the order of magnitude of the radioscience instrument precision). These results show that the correction of the solar corona effect on radio frequency waves can be reliably done on usual X-band tracking data of spacecraft for SEP angles >12°, but should be use with caution for lower SEP angles, especially lower than 2°.

  2. Landau damping of the dust-acoustic surface waves in a Lorentzian dusty plasma slab

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-01-15

    Landau damping of a dust-acoustic surface wave propagating at the interfaces of generalized Lorentzian dusty plasma slab bounded by a vacuum is kinetically derived as the surface wave displays the symmetric and the anti-symmetric mode in a plasma slab. In the limiting case of small scaled wave number, we have found that Landau damping is enhanced as the slab thickness is increased. In particular, the damping of anti-symmetric mode is much stronger for a Lorentzian plasma than for a Maxwellian plasma. We have also found that the damping is more affected by superthermal particles in a Lorentzian plasma than by a Maxwellian plasma for both of the symmetric and the anti-symmetric cases. The variations of Landau damping with various parameters are also discussed.

  3. The impact of magnetic geometry on wave modes in cylindrical plasmas

    CERN Document Server

    Chang, Lei

    2015-01-01

    Both space and laboratory plasmas can be associated with static magnetic field, and the field geometry varies from uniform to non-uniform. This thesis investigates the impact of magnetic geometry on wave modes in cylindrical plasmas. The cylindrical configuration is chosen so as to explore this impact in a tractable but experimentally realisable configuration. Three magnetic geometries are considered: uniform, focused and rippled. These studies suggest suppressing drift waves in a uniformly magnetised plasma by increasing the field strength, enhancing the efficiency of helicon wave production of plasma by using a focused magnetic field, and forming a gap eigenmode on a linear plasma device by introducing a local defect to the system's periodicity, which is useful for understanding the gap-mode formation and interaction with energetic particles in fusion plasmas.

  4. Electrical discharges of plasma ozonizer and its application

    Directory of Open Access Journals (Sweden)

    Tirawanichakul, S.

    2007-05-01

    Full Text Available Ozone synthesis is one of the applications of near atmospheric plasma processing. An ozone generator in this research comprised two annular cylindrical-shaped electrodes. The inner electrode was made ofstainless steel covered with the dielectric glass and the outer electrode was also made of stainless steel. The electric spacing gap was 0.0075 m and length of ozonizer was 0.21 m. Oxygen gas passing through thedischarge gap between two electrodes supplied by an alternating current (AC high voltage power supply, frequency 50 Hz, ranging of 6-10 kVAC was used for producing ozone. The amount of ozone was determinedby the KI standard method. The result showed that the concentration of ozone is proportional to the AC applied voltage. For determining effect of purified oxygen feed rate of 6-10 L/min on quantity of ozone, theresults indicated that at the volumetric flow rate of 8 L/min produced the largest amount of ozone. In addition, ozone concentration at a flow rate of 8 L/min and an electrical discharge time of 3 minutes wasapproximately determined as 41, 60, 80 and 135 mg/L at 8, 9, 10 and 11 kVAC, respectively. Moreover, study of dye wastewater of Krajud mat was proposed and treated by three different methods. Firstly, dye wastewater was solely treated by a plasma ozonation. Secondly, a combination ofozonation and alum coagulation was used for dye wastewater treatment. Finally, the combined ozonation and activated carbon adsorption were used for dye wastewater treatment. The experimental results showedthat the percentage of light absorbance reduction of pink dyed wastewater for these three different methods was about 56%, 35% and 10%, respectively compared to the reference sample. In addition, For thesemethods, the percentage of BOD of treated dye wastewater could be reduced to 64%, 54% and 46% respectively, the percentage of COD could be reduced to approximately 78%, 62% and 27%, respectively, comparedto the reference sample. In conclusion, the

  5. Nonlocal wave turbulence in non-Abelian plasmas

    CERN Document Server

    Mehtar-Tani, Yacine

    2016-01-01

    We investigate driven wave turbulence in non-Abelian plasmas, in the framework of kinetic theory where both elastic and inelastic processes are considered in the small angle approximation. The gluon spectrum, that forms in the presence of a steady source, is shown to be controlled by nonlocal interactions in momentum space, in contrast to the universal Kolmogorov-Zakharov spectra. Assuming strongly nonlocal interactions, we show that inelastic processes are dominant in the IR and cause a thermal bath to form below the forcing scale, as a result of a detailed balance between radiation and absorption of soft gluons by the hard ones. Above the forcing scale, the inelastic collision term reduces to an inhomogeneous diffusion-like equation yielding a spectrum that spreads to the UV as $t^{1/2}$, similarly to elastic processes. Due to nonlocal interactions the non-universal turbulent spectrum is not steady and flattens when time goes on toward the thermal distribution. This analysis is complemented by numerical sim...

  6. Langmuir Wave Electric Fields Induced by Electron Beams in the Heliosphere

    CERN Document Server

    Reid, Hamish A S

    2016-01-01

    Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in-situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulates the Langmuir wave electric fields is understood only qualitatively. Using weak turbulence simulations, we investigate how solar wind density turbulence changes the probability distribution functions, mean value and variance of the beam-driven electric field distributions. Simulations show rather complicated forms of the distribution that are dependent upon how the electric fields are sampled. Generally the higher magnitude of density fluctuations reduce the mean and increase the variance of the distribution in a consistent manor to the predictions from resonance broadening by density fluctuations. We also demonstrate ...

  7. Boosting persistence time of laser-induced plasma by electric arc discharge for optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eschlböck-Fuchs, S., E-mail: simon.eschlboeck-fuchs@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Kolmhofer, P.J.; Bodea, M.A.; Hechenberger, J.G.; Huber, N. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Rössler, R. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-07-01

    Plasma induced by nanosecond laser ablation is re-excited by a pulsed electric discharge and the parameters and optical emission of the plasma are measured. The discharge is a low-voltage and high-current electric arc that is triggered by the laser-induced plasma and slowly decaying with time. The optical emission of such combined plasma lasts up to several milliseconds which is much longer than without re-excitation (μs range). The emission spectra of re-excited plasma measured on different sample materials show higher line intensities than spectra measured by conventional laser-induced breakdown spectroscopy (LIBS). Moreover, emission lines of fluorine (spectral range 683–691 nm) and sulfur (range 520–550 nm) not detected by conventional LIBS become easily detectable with the combined plasma. The concentration of major components in metallurgical slags, as determined by calibration-free LIBS, agrees very well to the reference data evaluating the spectra taken from re-excited plasma. - Highlights: • Persistence time of laser-induced plasma in air is increased from ~ 10 μs to ~ 1 ms. • Laser-induced plasma triggers an electric arc discharge that boosts the plasma. • The combined laser-arc plasma is in LTE state over very long time (ms range). • CF-LIBS method delivers accurate results evaluating spectra of combined plasma. • Emission from S and F, not detected by LIBS, is detected with combined plasma.

  8. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations

    Science.gov (United States)

    Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.

    2012-08-01

    This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the

  9. EM wave propagation analysis in plasma covered radar absorbing material

    CERN Document Server

    Singh, Hema; Rawat, Harish Singh

    2017-01-01

    This book focuses on EM propagation characteristics within multilayered plasma-dielectric-metallic media. The method used for analysis is impedance transformation method. Plasma covered radar absorbing material is approximated as a multi-layered dielectric medium. The plasma is considered to be bounded homogeneous/inhomogeneous medium. The reflection coefficient and hence return loss is analytically derived. The role of plasma parameters, such as electron density, collision frequency, plasma thickness, and plasma density profile in the absorption behavior of multi-layered plasma-RAM structure is described. This book provides a clearer picture of EM propagation within plasma. The reader will get an insight of plasma parameters that play significant role in deciding the absorption characteristics of plasma covered surfaces.

  10. Electric-Field Coupling to Spin Waves in a Centrosymmetric Ferrite

    Science.gov (United States)

    Liu, Tianyu

    A systematic control of spin waves via external electric fields has been a long standing issue for the design of magnonic devices, and is of fundamental interest. One way to attain such control is to use multiferroics, whose electric and magnetic polarizations are inherently coupled. The lack of electric polarization in a centrosymmetric ferrite, however, makes direct coupling of its magnetization to external electric fields a challenge. Indirect electric control of spin waves has been accomplished by hybridizing yttrium iron garnet (YIG), a centrosymmetric ferrite, with a piezoelectric material. Here, we predict direct control of spin waves in YIG by a flexoelectric interaction, which couples an electric field to the spatial gradient of the magnetization, and thus the spin waves. Based on a superexchange model, which describes the antiferromagnetic coupling between two nearest neighbor iron ions through an oxygen ion, including spin-orbit coupling, we estimate the coupling constant and predict a phase shift linear in the applied electric fields. The theory is then confirmed by experimental measurement of the electric-field-induced phase shift in a YIG waveguide. In addition to the flexoelectric effect, another electric effect is observed, which couples the electric field directly with the magnetization of YIG. We call this a magnetoelectric effect. By adjusting the direction of the electric field, the two effects can be well separated. Experimental results agree quantitatively with the theoretical prediction. A phenomenological coupling constant for the magnetoelectric effect is also obtained. Our findings point to an important avenue for manipulating spin waves and developing electrically tunable magnonic devices.

  11. Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7 (Canada); Chapman, T.; Berger, R. L. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Brantov, A.; Bychenkov, V. Yu. [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 119991 Russia and Center for Fundamental and Applied Research, VNIIA, ROSATOM, 127055 Moscow (Russian Federation); Winjum, B. J. [Department of Electrical Engineering, UCLA, Los Angeles, California 90095 (United States); Brunner, S. [Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Tableman, A.; Tzoufras, M. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095 (United States); Glenzer, S. [LCLS, Stanford, California 94025 (United States)

    2016-01-15

    In ignition scale hot plasmas, temperature gradients and thermal transport modify electron distributions in a velocity range resonant with Langmuir waves typical of those produced by stimulated Raman scattering. We examine the resultant changes to the Landau damping experienced by these Langmuir waves and the levels of thermal plasma fluctuations. The form factor and Thomson scattering cross-section in such plasmas display unique characteristics of the background conditions. A theoretical model and high-order Vlasov-Fokker-Planck simulations are used in our analysis. An experiment to measure changes in thermal plasma fluctuation levels due to a thermal gradient is proposed.

  12. Acceleration of energetic electrons by waves in inhomogeneous solar wind plasmas

    Science.gov (United States)

    Krafft, C.; Volokitin, A.

    2017-04-01

    The paper studies the influence of the background plasma density fluctuations on the dynamics of the Langmuir turbulence generated by electron beams, for parameters typical for solar type III beams and plasmas near 1 AU. A self-consistent Hamiltonian model based on the Zakharov and the Newton equations is used, which presents several advantages compared to the Vlasov approach. Beams generating Langmuir turbulence can be accelerated as a result of wave transformation effects or/and decay cascade processes; in both cases, the beam-driven Langmuir waves transfer part of their energy to waves of smaller wavenumbers, which can be reabsorbed later on by beam particles of higher velocities. As a consequence, beams can conserve a large part of their initial kinetic energy while propagating and radiating wave turbulence over long distances in inhomogeneous plasmas. Beam particles can also be accelerated in quasi-homogeneous plasmas due to the second cascade of wave decay, the wave transformation processes being very weak in this case. The net gains and losses of energy of a beam and the wave turbulence it radiates are calculated as a function of the average level of plasma density fluctuations and the beam parameters. The results obtained provide relevant information on the mechanism of energy reabsorption by beams radiating Langmuir turbulence in solar wind plasmas.

  13. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    Science.gov (United States)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  14. Modulational instability of plasma waves in two dimensions

    DEFF Research Database (Denmark)

    Karpman, V.I.; Lynov, Jens-Peter; Michelsen, Poul

    1996-01-01

    The nonlinear behavior of whistler waves coupled to either fast magnetosonic waves (FMS) or slow magnetosonic waves (SMS) is investigated in two spatial dimensions. For each branch our investigation is based on a numerical solution of a reduced set of equations consisting of two partial...... differential equations, of which one, describing the evolution of the whistler wave envelope, is complex of first order in time and the other, describing the slow response of the medium in which the whistler wave is propagating, is real and of second order in time. These equations were solved in a two...... of nonlinear waves in dispersive media....

  15. Kinetic full wave analyses of O-X-B mode conversion of EC waves in tokamak plasmas

    Science.gov (United States)

    Fukuyama, Atsushi; Khan, Shabbir Ahmad; Igami, Hiroe; Idei, Hiroshi

    2016-10-01

    For heating and current drive in a high-density plasma of tokamak, especially spherical tokamak, the use of electron Bernstein waves and the O-X-B mode conversion were proposed and experimental observations have been reported. In order to evaluate the power deposition profile and the current drive efficiency, kinetic full wave analysis using an integral form of dielectric tensor has been developed. The incident angle dependence of wave structure and O-X-B mode conversion efficiency is examined using one-dimensional analysis in the major radius direction. Two-dimensional analyses on the horizontal plane and the poloidal plane are also conducted, and the wave structure and the power deposition profile are compared with those of previous analyses using ray tracing method and cold plasma approximation. This work is supported by JSPS KAKENHI Grant Number JP26630471.

  16. Laser-Driven Ultra-Relativistic Plasmas - Nuclear Fusion in Coulomb Shock Waves, Rouge Waves, and Background Matter

    Science.gov (United States)

    2015-05-05

    AND SUBTITLE LASER-DRIVEN ULTRA-RELATIVISTIC PLASMAS - NUCLEAR FUSION IN COULOMB SHOCK WAVES, ROUGE WAVES, AND BACKGROUND MATTER. 5a.  CONTRACT...blackbody radiation on free electrons .........................9 2.vi. Proposal of ultimate test of laser nuclear fusion efficiency in clusters...domain of energies and temperatures, with applications in particular to controlled nuclear fusion . 2. Final technical report on the grant #F49620-11-1

  17. Plasma Membrane Permeabilization by Trains of Ultrashort Electric Pulses

    Science.gov (United States)

    2009-01-01

    REFERENCES 1. Beebe, S.J., et al., Nanosecond Pulsed Electric Field (nsPEF) Effects on Cells and Tissues: Apoptosis Induction and Tumor Growth Inhibition...nanosecond pulsed electric field Bioelectromagnetics, 2007. 28: p. 655-663. 13. Gowrishankar, T.R. and J.C. Weaver, Electrical behavior and pore... electric field (nsPEF). Bioelectromagnetics, 2007. 28: p. 655- 663. 19. Nuccitelli, R., et al., A new pulsed electric field therapy for melanoma disrupts

  18. Alfven Wave Collisions, The Fundamental Building Block of Plasma Turbulence IV: Laboratory Experiment

    CERN Document Server

    Drake, D J; Howes, G G; Kletzing, C A; Skiff, F; Carter, T A; Auerbach, D W

    2013-01-01

    Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfven waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfven waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfven wave generated nonlinearly by a collision between counterpropagating Alfven waves.

  19. Electromagnetic-wave excitation in a large laboratory beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1981-01-01

    The mechanism by which unstable electrostatic waves of a beam-plasma system are converted into observed electromagnetic waves is of current interest in space physics and in tokamak fusion research. The process involved in the conversion of electrostatic to electromagnetic waves at the critical layer is well understood. However, the radiation from uniform plasmas cannot be explained on the basis of this process. In connection with certain difficulties, it has not yet been possible to establish the involved emission processes by means of experimental observations. In the considered investigation these difficulties are overcome by employing a large laboratory plasma in a parameter range suitable for detailed diagnostics. A finite-diameter electron beam is injected into a uniform quiescent afterglow plasma of dimensions large compared with electromagnetic wavelengths. The considered generation mechanism concerning the electromagnetic waves is conclusively confirmed by observing the temporal evolution of an instability

  20. A New Look at the Landau's Theory of Spreading and Damping of Waves in Collisionless Plasmas

    CERN Document Server

    Soshnikov, V N

    2008-01-01

    The theory of plasma waves and Landau damping in Maxwellian plasmas, Landau's ``rule of pass around poles'' include doubtful statements, particularly related to an artificial ``constructing'' of the dispersion equation, what should allow the possibility of its solution otherwise not existing at all, and the possibility of analytical continuations of corresponding very specific ruptured functions in the one-dimensional Laplace transformation, used by Landau, what is the base of his theory. We represent, as an accessible variant, a more general alternative theory based on a two-dimensional Laplace transformation, leading to an asymptotical in time and space solution as a complicated superposition of coupled damping and {\\em non-damping \\/} plane waves and oscillations with different dispersion laws for every constituent mode. This theory naturally and very simply explains paradoxes of the phenomenon of plasma echo. We propose for discussion a new ideology of plasma waves (both electron and ion-acoustic waves) q...

  1. Propagation of electromagnetic waves through magnetized plasmas in arbitrary gravitational fields

    OpenAIRE

    Breuer, R; Ehlers, J.

    1981-01-01

    A generalized JWBK-method for high-frequency waves traveling through inhomogeneous, moving plasmas imbedded in arbitrary relativistic gravitational fields is reported. In particular, a generalization of the standard formula for Faraday rotation is given.

  2. Theoretical analysis of a relativistic travelling wave tube filled with plasma

    Institute of Scientific and Technical Information of China (English)

    Xie Hong-Quan; Liu Pu-Kun

    2007-01-01

    A cold and uniform plasma-filled travelling wave tube with sinusoidally corrugated slow wave structure is driven by a finite thick annular intense relal:ivistic electron beam with the entire system immersed in a strong longitudinal magnetic field.By means of the linear field theory,the dispersion relation for the relativistic travelling wave tube (RTWT) is derived.By numerical computation,the dispersion characteristics of the RTWT are analysed in difierent cases of various geometric parameters of the slow wave structure and plasma densities.Also the gain versus frequency for three difierent plasma densities and the peak gain of the tube versus plasma density are analysed.Some useful results are obtained on the basis of the discussion.

  3. Stimulated Brillouin scattering of an electromagnetic wave in weakly magnetized plasma with variably charged dust particles

    Indian Academy of Sciences (India)

    Sourabh Bal; M Bose

    2009-10-01

    We have investigated analytically the stimulated Brillouin scattering (SBS) of an electromagnetic wave in non-dissipative weakly magnetized plasma in the presence of dust particles with variable charge.

  4. Excitation of Standing Waves by an Electric Toothbrush

    Science.gov (United States)

    Cros, Ana; Ferrer-Roca, Chantal

    2006-01-01

    There are a number of ways of exciting standing waves in ropes and springs using non-commercial vibrators such as loudspeakers, jigsaws, motors, or a simple tuning fork, including the rhythmical shaking of a handheld Slinky. We have come up with a very simple and cheap way of exciting stationary waves in a string, which anyone, particularly…

  5. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)

    2012-09-15

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  6. Ion acoustic kinetic Alfvén rogue waves in two temperature electrons superthermal plasmas

    Science.gov (United States)

    Kaur, Nimardeep; Saini, N. S.

    2016-10-01

    The propagation properties of ion acoustic kinetic Alfvén (IAKA) solitary and rogue waves have been investigated in two temperature electrons magnetized superthermal plasma in the presence of dust impurity. A nonlinear analysis is carried out to derive the Korteweg-de Vries (KdV) equation using the reductive perturbation method (RPM) describing the evolution of solitary waves. The effect of various plasma parameters on the characteristics of the IAKA solitary waves is studied. The dynamics of ion acoustic kinetic Alfvén rogue waves (IAKARWs) are also studied by transforming the KdV equation into nonlinear Schrödinger (NLS) equation. The characteristics of rogue wave profile under the influence of various plasma parameters (κc, μc, σ , θ) are examined numerically by using the data of Saturn's magnetosphere (Schippers et al. 2008; Sakai et al. 2013).

  7. Microwave beatwave excitation of electron plasma wave and high energy electron production

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuzuka, M.; Obata, K.; Nobuhara, S. [Himeji Inst. of Tech., Hyogo (Japan)

    1997-12-31

    Two X-band microwave beams with a slightly different frequency and the maximum output power of 50 kW are injected into a target plasma antiparallel to each other through a standard horn. The resonant excitation of an electron plasma wave is observed when the difference in frequency between counterstreaming microwaves is equal to the electron plasma frequency. The excited wave propagates in the same direction as the higher-frequency microwave with a wave length which satisfies the resonance condition of wave number. The wave amplitude grows with an increase in incident microwave power, and reaches the density perturbation {delta}n/n{sub 0} of approximately 3.2 % at the incident microwave power of 40 kW and beat frequency of 600 MHz. A small amount of high-energy electrons with the speed of 27 eV are observed in the high-power region of incident microwave. (author)

  8. Enhanced Plasma Confinement in a Magnetic Well by Whistler Waves

    DEFF Research Database (Denmark)

    Balmashnov, A. A.; Juul Rasmussen, Jens

    1981-01-01

    The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well.......The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well....

  9. Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jian Liu and Hong Qin

    2011-11-07

    The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.

  10. Alfvén wave coupled with flow-driven fluid instability in interpenetrating plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife, Spain and Departamento de Astrofisica, Universidad de La Laguna, 38205 La Laguna, Tenerife (Spain)

    2015-05-15

    The Alfvén wave is analyzed in case of one quasineutral plasma propagating with some constant speed v{sub 0} through another static quasineutral plasma. A dispersion equation is derived describing the Alfvén wave coupled with the flow driven mode ω=kv{sub 0} and solutions are discussed analytically and numerically. The usual solutions for two oppositely propagating Alfvén waves are substantially modified due to the flowing plasma. More profound is modification of the solution propagating in the negative direction with respect to the magnetic field and the plasma flow. For a large enough flow speed (exceeding the Alfvén speed in the static plasma), this negative solution may become non-propagating, with frequency equal to zero. In this case, it represents a spatial variation of the electromagnetic field. For greater flow speed it becomes a forward mode, and it may merge with the positive one. This merging of the two modes represents the starting point for a flow-driven instability, with two complex-conjugate solutions. The Alfvén wave in interpenetrating plasmas is thus modified and coupled with the flow-driven mode and this coupled mode is shown to be growing when the flow speed is large enough. The energy for the instability is macroscopic kinetic energy of the flowing plasma. The dynamics of plasma particles caused by such a coupled wave still remains similar to the ordinary Alfvén wave. This means that well-known stochastic heating by the Alfvén wave may work, and this should additionally support the potential role of the Alfvén wave in the coronal heating.

  11. Refined Study of ECR Wave Propagation and Absorption in the Weakly Relativistic Plasma

    Institute of Scientific and Technical Information of China (English)

    SHIBingren; LONGYongxin

    2001-01-01

    The ECR wave heating is now a routine method for plasma heating and profile control in fusion devices and also in plasma applications. Theoretical study of ECR wave propagation and absorption began very early in 1950's. Basic theoretical work had accomplished in 1970~1980. For toroidal devices like the tokamak, the fundamental O-mode and X-mode with nearly perpendicular propagation were used very often. For pure O-mode and X-mode with kx=O,

  12. Study on Propagation Characteristics of Plasma Surface Wave in Medium Tube

    Institute of Scientific and Technical Information of China (English)

    WANG Shiqing; YAN Zelin; LI Wenzhong; LIU Jian; LI Jian; XU Lingfei

    2008-01-01

    Axial propagation characteristics of the axisymmetric surface wave along the plasma in the medium tube were studied. The expressions of electromagnetic field inside and outside the medium tube were deduced. Also, the impacts of several factors, such as plasma density, signal frequency, inner radius of medium tube, collision frequency, etc., on plasma surface wave propa-gation were numerically simulated. The results show that, the properties of plasma with higher density and .lower gas pressure are closer to those of metal conductor. Furthermore, larger radius of medium tube and lower signal frequency are better for surface wave propagation. However, the effect of collision frequency is not obvious. The optimized experimental parameters can be chosen as the plasma density of about 1017 m-3 and the medium radius between 11 mm and 19 mm.

  13. Propagation of ion-acoustic solitary waves in a relativistic electron-positron-ion plasma

    CERN Document Server

    Saberian, E; Akbari-Moghanjoughi, M

    2011-01-01

    Propagation of large amplitude ion-acoustic solitary waves (IASWs) in a fully relativistic plasma consisting of cold ions and ultrarelativistic hot electrons and positrons is investigated using the Sagdeev's pseudopotential method in a relativistic hydrodynamics model. Effects of streaming speed of plasma fluid, thermal energy, positron density and positron temperature on large amplitude IASWs are studied by analysis of the pseudopotential structure. It is found that in regions that the streaming speed of plasma fluid is larger than that of solitary wave, by increasing the streaming speed of plasma fluid the depth and width of potential well increases and resulting in narrower solitons with larger amplitude. This behavior is opposite for the case where the streaming speed of plasma fluid is smaller than that of solitary wave. On the other hand, increase of the thermal energy results in wider solitons with smaller amplitude, because the depth and width of potential well decreases in that case. Additionally, th...

  14. Interferometric and schlieren characterization of the plasmas and shock wave dynamics during laser-triggered discharge in atmospheric air

    Science.gov (United States)

    Wei, Wenfu; Li, Xingwen; Wu, Jian; Yang, Zefeng; Jia, Shenli; Qiu, Aici

    2014-08-01

    This paper describes our efforts to reveal the underlying physics of laser-triggered discharges in atmospheric air using a Mach-Zehnder interferometer and schlieren photography. Unlike the hemispherical shock waves that are produced by laser ablation, bell-like morphologies are observed during laser-triggered discharges. Phase shifts are recovered from the interferograms at a time of 1000 ns by the 2D fast Fourier transform method, and then the values of the refractive index are deduced using the Abel inversion. An abundance of free electrons is expected near the cathode surface. The schlieren photographs visualize the formation of stagnation layers at ˜600 ns in the interaction zones of the laser- and discharge-produced plasmas. Multiple reflected waves are observed at later times with the development of shock wave propagations. Estimations using the Taylor-Sedov self-similar solution indicated that approximately 45.8% and 51.9% of the laser and electrical energies are transferred into the gas flow motions, respectively. Finally, numerical simulations were performed, which successfully reproduced the main features of the experimental observations, and provided valuable insights into the plasma and shock wave dynamics during the laser-triggered discharge.

  15. Correlation between convection electric fields in the nightside magnetosphere and several wave and particle phenomena during two isolated substorms.

    Science.gov (United States)

    Carpenter, D. L.; Fraser-Smith, A. C.; Unwin, R. S.; Hones, E. W., Jr.; Heacock, R. R.

    1971-01-01

    Correlation of several magnetoionospheric wave and particle phenomena previously linked observationally to magnetospheric substorms and inferred to involve convection electric fields with whistler measurements of convection activity during two relatively isolated substorms. The events occurred at about 0600 UT on July 15, 1965, and about 0500 UT on Oct. 13, 1965. The correlated phenomena include cross-L inward plasma drifts near midnight within the plasmaphere, diffuse auroral radar echoes observed near the dusk meridian, IPDP micropulsations (intervals of pulsations of diminishing period) in the premidnight sector, apparent contractions and expansions of the plasma sheet at about 20 earth radii in the magnetotail, and Pc 1/Pi 1 micropulsation events near or before midnight. Two new vlf phenomena occurred during the October 13 event - a noise band within the plasmasphere associated with a convecting whistler path, and ?hisslers,' falling-tone auroral-hiss forms repeated at intervals of about 2 sec.

  16. On the frequency of oscillations in the pair plasma generated by a strong electric field

    CERN Document Server

    Benedetti, A; Ruffini, R; Vereshchagin, G V

    2011-01-01

    We study the frequency of the plasma oscillations of electron-positron pairs created by the vacuum polarization in an uniform electric field with strength E in the range 0.2 Ec 0. Thereby, we focus our attention on its evolution in time studying how this oscillation frequency approaches the plasma frequency. The time-scale needed to approach to the plasma frequency and the power spectrum of these oscillations are computed. The characteristic frequency of the power spectrum is determined uniquely from the initial value of the electric field strength. The effects of plasma degeneracy and pair annihilation are discussed.

  17. Axisymmetric Nonlinear Waves And Structures in Hall Plasmas

    CERN Document Server

    Islam, Tanim

    2011-01-01

    A Hall plasma consists of a plasma with not all species frozen into the magnetic field. In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature -- whistler drift modes that propagate along the electron drift as a Burger's shock, and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral -- are analyzed. We derive analytical and numerical solutions in an electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to electron-ion-gas Hall plasmas, in which the ions are coupled to the motion of gases in low ionized plasmas (lower ionosphere and protostellar disks), and to dusty Hall plasmas (such as molecular clouds), in which the much heavier charged dust may be collisionally coupled to the gas.

  18. Comment on "Surface electromagnetic wave equations in a warm magnetized quantum plasma" [Phys. Plasmas 21, 072114 (2014)

    Science.gov (United States)

    Moradi, Afshin

    2016-07-01

    In a recent article [C. Li et al., Phys. Plasmas 21, 072114 (2014)], Li et al. studied the propagation of surface waves on a magnetized quantum plasma half-space in the Voigt configuration (in this case, the magnetic field is parallel to the surface but is perpendicular to the direction of propagation). Here, we present a fresh look at the problem and obtain a new form of dispersion relation of surface waves of the system. We find that our new dispersion relation does not agree with the result obtained by Li et al.

  19. Nonlinear Alfvén Waves in a Vlasov Plasma

    DEFF Research Database (Denmark)

    Bell, T.F.

    1965-01-01

    Stationary solutions to the nonlinear Vlasov—Boltzmann equations are considered which represent one-dimensional electromagnetic waves in a hot magnetoplasma. These solutions appear in arbitrary reference frames as circularly polarized, sinusoidal waves of unlimited amplitude, i.e., as nonlinear...... Alfvén waves. Solutions are found implicitly by deriving a set of integral dispersion relations which link the wave characteristics with the particle distribution functions. A physical discussion is given of the way in which the Alfvén waves can trap particles, and it is shown that the presence...

  20. Observation of Hot Electrons in Surface-Wave Plasmas Excited by Surface Plasmon Polaritons

    Institute of Scientific and Technical Information of China (English)

    HU Ye-Lin; CHEN Zhao-Quan; LIU Ming-Hai; HONG Ling-Li; LI Ping; ZHENG Xiao-Liang; XIA Guang-Qing; HU Xi-Wei

    2011-01-01

    The electron energy distribution functions (EEDFs) are studied in the planar-type surface-wave plasma (SWP)caused by resonant excitation of surface plasmon polaritons (SPPs) using a single cylindrical probe.Sustained plasma characteristics can be considered as a bi-Maxwellian EEDF,which correspond to a superposition of the bulk low-temperature electron and the high-energy electron beam-like part.The beam component energy is pronounced at about 10eV but the bulk part is lower than 3.5eV.The hot electrons included in the proposed plasmas play a significant role in plasma heating and further affect the discharge chemistry.During the past several years,in the fabrication ofamorphous or crystalline silicon films,diamond film synthesis and carbon nanotube growth,the large-area overdense plasma source has been useful.In electronic device fabrication techniques such as etching,ashing or plasma chemical vapor deposition,overdense electrons and radicals are required,especially hot electrons.Among the various plasma devices,the planar-type surface-wave plasma (SWP) source is an advanced plasma source,which is a type of promising plasma source satisfying the above rigorous requirements for large-area plasma processing.%The electron energy distribution functions (EEDFs) are studied in the planar-type surface-wave plasma (SWP) caused by resonant excitation of surface plasmon polaritons (SPPs) using a single cylindrical probe. Sustained plasma characteristics can be considered as a bi-Maxwellian EEDF, which correspond to a superposition of the bulk low-temperature electron and the high-energy electron beam-like part. The beam component energy is pronounced at about 10 eV but the bulk part is lower than 3.5 eV. The hot electrons included in the proposed plasmas play a significant role in plasma heating and further affect the discharge chemistry.

  1. Enhancement of wave growth for warm plasmas with a high-energy tail distribution

    Science.gov (United States)

    Thorne, Richard M.; Summers, Danny

    1991-01-01

    The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.

  2. Plasma production by helicon waves with single mode number in low magnetic fields

    CERN Document Server

    Sato, G; Hatakeyama, R; Sato, Genta; Oohara, Wataru; Hatakeyama, Rikizo

    2004-01-01

    Radio-frequency discharges are performed in low magnetic fields (0-10 mT) using three types of helicon-wave exciting antennas with the azimuthal mode number of $|m|$ = 1. The most pronounced peak of plasma density is generated in the case of phased helical antenna at only a few mT, where the helicon wave with $|m| = 1$ is purely excited and propagates. An analysis based on the dispersion relation well explains the density-peak phenomenon in terms of the correspondence between the antenna one-wavelength and the helicon wavelength. The $m=+1$ helicon wave propagates even in high magnetic fields where the density peaks are not observed, but the $m=-1$ helicon wave disappers. It is expected theoretically that the $m=-1$ helicon wave shows cutoff behavior in a low density region, [M. Kramer, Phys. Plasmas 6, 1052 (1999)], and the cutoff of $m=-1$ helicon wave experimentally observed coincides with the calculated one.

  3. DISPERSION RELATION OF A MAGNETIZED PLASMA-FILLED BACKWARD WAVE OSCILLATOR

    Institute of Scientific and Technical Information of China (English)

    GAO HONG; LIU SHENG-GANG

    2000-01-01

    A linear theory and a more general dispersion relation of electromagnetic radiation from a magnetized plasma-filled backward wave oscillator with sinusoidally corrugated slow-wave structure driven by a solid intense relativistic electron beam have been given. The comparisons show good agreement with the previous works when B0 → ∞ and ωb = 0 from this dispersion relation.

  4. Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas

    CERN Document Server

    Nakariakov, V M; Ibáñez, M H; Nakariakov, Valery M.; Mendoza-Briceno, Cesar A.

    1999-01-01

    The evolution of quasi-isentropic magnetohydrodynamic waves of small but finite amplitude in an optically thin plasma is analyzed. The plasma is assumed to be initially homogeneous, in thermal equilibrium and with a straight and homogeneous magnetic field frozen in. Depending on the particular form of the heating/cooling function, the plasma may act as a dissipative or active medium for magnetoacoustic waves, while Alfven waves are not directly affected. An evolutionary equation for fast and slow magnetoacoustic waves in the single wave limit, has been derived and solved, allowing us to analyse the wave modification by competition of weakly nonlinear and quasi-isentropic effects. It was shown that the sign of the quasi-isentropic term determines the scenario of the evolution, either dissipative or active. In the dissipative case, when the plasma is first order isentropically stable the magnetoacoustic waves are damped and the time for shock wave formation is delayed. However, in the active case when the plasm...

  5. Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances

    Science.gov (United States)

    Villalon, Elena

    1989-03-01

    Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency.

  6. Nonlinear Alfvén wave propagating in ideal MHD plasmas

    Science.gov (United States)

    Zheng, Jugao; Chen, Yinhua; Yu, Mingyang

    2016-01-01

    The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.

  7. Electrical and spectroscopic characterization of a surgical argon plasma discharge

    Science.gov (United States)

    Keller, Sandra; Bibinov, Nikita; Neugebauer, Alexander; Awakowicz, Peter

    2013-01-01

    For electrosurgical procedures, the argon plasma coagulation (APC) discharge is a well-established atmospheric-pressure plasma tool for thermal haemostasis and devitalization of biological tissue. To characterize this plasma source, voltage-current measurements, microphotography, optical emission spectroscopy and numerical simulation are applied. Two discharge modes are established during the operation of the APC plasma source. A short transient spark discharge is ignited within the positive half period of the applied high voltage after a streamer channel connects the APC probe and the counter-electrode. During the second phase, which continues under negative high voltage, a glow discharge is stabilized in the plasma channel.

  8. Status and challenges in electrical diagnostics of processing plasmas

    DEFF Research Database (Denmark)

    Stamate, Eugen

    2014-01-01

    Dry processing based on reactive plasmas was the main driven force for micro- and recently nano-electronic industry. Once with the increasing in plasma complexity new diagnostics methods have been developed to ensure a proper process control during etching, thin film deposition, ion implantation...... or other steps in device fabrication. This work reviews some of the unconventional methods developed in the last two decays to measure the parameters of reactive plasmas including, the test function method, thermal probes, and plasma-sheath-lens probes. The negative ion detection and surface contamination...... in plasmas with a high degree of contamination are also addressed. (C) 2014 Elsevier B.V. All rights reserved....

  9. Observation of Thomson Scattering off Entropy Waves in a Laser-Produced Plasma

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jian; BAI Bo; LIU Wan-Dong; YU Chang-Xuan; JIANG Xiao-Hua; YUAN Xiao-Dong; LI Wen-Hong; ZHENG Zhi-Jian

    2001-01-01

    A new feature in the Thomson scattering spectrum is observed from a laser-produced aluminium plasma, which may be the Thomson scattering off entropy waves in the plasma. Such a feature is only observable when the energy of the heater beam is low enough.

  10. Dispersion relation for electromagnetic wave propagation in a strongly magnetized plasma

    CERN Document Server

    Marklund, G B M; Shukla, P K

    2006-01-01

    A dispersion relation for electromagnetic wave propagation in a strongly magnetized cold plasma is deduced, taking photon-photon scattering into account. It is shown that the combined plasma and quantum electrodynamic effect is important for understanding the mode-structures in magnetar and pulsar atmospheres. The implications of our results are discussed.

  11. A flowing plasma model to describe drift waves in a cylindrical helicon discharge

    CERN Document Server

    Chang, L; Cormac, C S

    2011-01-01

    A two-fluid model developed originally to describe wave oscillations in the vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature and confined plasma column, is applied to interpret plasma oscillations in a RF generated linear magnetised plasma (WOMBAT), with similar density and field strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower normalised rotation frequency, lower temperature and lower axial velocity. Despite these differences, the two-fluid model provides a consistent description of the WOMBAT plasma configuration and yields qualitative agreement between measured and predicted wave oscillation frequencies with axial field strength. In addition, the radial profile of the density perturbation predicted by this model is consistent with the data. Parameter scans show that the dispersion curve is sensitive to the axial field strength and the electron temperature, and the dependence of oscillation frequency with electron temperature matches the experiment. These r...

  12. Modulational Instability of Dust Ion Acoustic Waves in a Collisional Dusty Plasma

    Institute of Scientific and Technical Information of China (English)

    XUEJu-Kui

    2003-01-01

    The modulational instability of dust ion accoustic waves in a dust plasma with ion-dust collision effects is studied.Using the perturbation method,a modified nonlinear Schroedinger equation contains a damping term that comes from the effect of the ion-dust collision is derived.It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.

  13. On the high frequency perpendicular propagating waves in ultra-relativistic fully degenerate electron plasma

    Science.gov (United States)

    Noureen, S.; Abbas, G.; Farooq, H.

    2017-09-01

    Using Vlasov-Maxwell's equations, the spectra of the perpendicular propagating Bernstein wave and Extraordinary wave in ultra-relativistic fully degenerate electron plasma are studied. The equilibrium particle distribution function is assumed to be isotropic Fermian. The analysis of high frequency spectra of the waves is carried out in the weak propagation limit Ω≫k .v and in the weak magnetic field limit |ω-k .v | ≫Ω and graphically observed.

  14. The Mathematical Analysis of Electrical and Optical Wave-Motion

    Science.gov (United States)

    Bateman, H.

    2016-10-01

    1. Fundamental ideas; 2. General survey of the different methods of solving the wave-equation; 3. Polar coordinates; 4. Cylindrical coordinates; 5. The problem of diffraction; 6. Transformations of coordinates appropriate for the treatment of problems connected with a surface of revolution; 7. Homogeneous solutions of the wave-equation; 8. Electromagnetic fields with moving singularities; 9. Miscellaneous theories; List of authors quoted; Index.

  15. Electrical description of N2 capacitively coupled plasmas with the global model

    Science.gov (United States)

    Cao, Ming-Lu; Lu, Yi-Jia; Cheng, Jia; Ji, Lin-Hong; Engineering Design Team

    2016-10-01

    N2 discharges in a commercial capacitively coupled plasma reactor are modelled by a combination of an equivalent circuit and the global model, for a range of gas pressure at 1 4 Torr. The ohmic and inductive plasma bulk and the capacitive sheath are represented as LCR elements, with electrical characteristics determined by plasma parameters. The electron density and electron temperature are obtained from the global model in which a Maxwellian electron distribution is assumed. Voltages and currents are recorded by a VI probe installed after the match network. Using the measured voltage as an input, the current flowing through the discharge volume is calculated from the electrical model and shows excellent agreement with the measurements. The experimentally verified electrical model provides a simple and accurate description for the relationship between the external electrical parameters and the plasma properties, which can serve as a guideline for process window planning in industrial applications.

  16. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-09-15

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  17. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-09-01

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  18. Possibility of electric field bifurcation and internal transport barrier formation in LHD plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sanuki, Heiji; Itoh, Kimitaka; Yokoyama, Masayuki; Fujisawa, Akihide; Ida, Katsumi; Toda, Shin-ichiro [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Fukuyama, Atsushi [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2000-02-01

    Theoretical analysis of the electric field bifurcation is made for the LHD plasma. For given shapes of plasma profiles, a region of bifurcation is obtained in a space of the plasma parameters. In this region of plasma parameters, the electric field domain interface is predicted to appear in the plasma column. The reduction of turbulent transport is expected to occur in the vicinity of the interface, inducing internal transport barrier. Within the present simple model, the electric field bifurcation associated with the internal transport barrier is predicted to be realized for the parameter of T{sub e}(0) {approx_equal} 2 keV and n(0) {approx_equal} 10{sup 18} (m{sup -3}). The boundary of the region of multiple solution is characterized by a scaling T{sub e}(0) {approx} [n(0)]{sup 0.4}. (author)

  19. Theoretical and experimental studies of space-related plasma wave propagation and resonance phenomena

    Science.gov (United States)

    Crawford, F. W.

    1975-01-01

    A ten year summary was given of university research on the nature and characteristics of space related plasma resonance phenomena, whistler propagation in laboratory plasmas, and theoretical and experimental studies of plasma wave propagation. Data are also given on long delayed echoes, low frequency instabilities, ionospheric heating, and backscatter, and pulse propagation. A list is included of all conference papers, publications, and reports resulting from the study.

  20. Comment on Weakly dissipative dust-ion acoustic wave modulation (J. Plasma Phys. 82, 905820104, 2016)

    Science.gov (United States)

    Kourakis, I.; Elkamash, I. S.

    2016-10-01

    In a recent article (J. Plasma Phys., vol. 82, 2009, 905820104), weakly dissipative dust-ion acoustic wave modulation in dusty plasmas was considered. It is shown in this Comment that the analysis therein involved severe fallacies, and is in fact based on an erroneous plasma fluid model, which fails to satisfy an equilibrium condition, among other shortcomings. The subsequent analysis therefore is dubious and of limited scientific value.