WorldWideScience

Sample records for plasma vertical velocity

  1. Velocity Field in a Vertical Foam Film

    Science.gov (United States)

    Seiwert, Jacopo; Kervil, Ronan; Nou, Soniraks; Cantat, Isabelle

    2017-01-01

    The drainage of vertical foam films governs their lifetime. For a foam film supported on a rectangular solid frame, when the interface presents a low resistance to shear, the drainage dynamics involves a complex flow pattern at the film scale, leading to a drainage time proportional to the frame width. Using an original velocimetry technique, based on fluorescent foam films and photobleaching, we measure the horizontal and vertical components of the velocity in a draining film, thus providing the first quantitative experimental evidence of this flow pattern. Upward velocities up to 10 cm /s are measured close to the lateral menisci, whereas a slower velocity field is obtained in the center of the film, with comparable downwards and horizontal components. Scaling laws are proposed for all characteristic velocities, coupling gravitational effects, and capillary suction.

  2. An optimal real-time controller for vertical plasma stabilization

    CERN Document Server

    Cruz, N; Coda, S; Duval, B P; Le, H B; Rodrigues, A P; Varandas, C A F; Correia, C M B A; Goncalves, B S

    2014-01-01

    Modern Tokamaks have evolved from the initial axisymmetric circular plasma shape to an elongated axisymmetric plasma shape that improves the energy confinement time and the triple product, which is a generally used figure of merit for the conditions needed for fusion reactor performance. However, the elongated plasma cross section introduces a vertical instability that demands a real-time feedback control loop to stabilize the plasma vertical position and velocity. At the Tokamak \\`a Configuration Variable (TCV) in-vessel poloidal field coils driven by fast switching power supplies are used to stabilize highly elongated plasmas. TCV plasma experiments have used a PID algorithm based controller to correct the plasma vertical position. In late 2013 experiments a new optimal real-time controller was tested improving the stability of the plasma. This contribution describes the new optimal real-time controller developed. The choice of the model that describes the plasma response to the actuators is discussed. The ...

  3. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  4. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    CERN Document Server

    Dufour, G.; Lambrecht, A.; Nesvizhevsky, V.V.; Reynaud, S.; Voronin, A.Yu.

    2014-01-30

    GBAR is a project aiming at measuring the free fall acceleration of gravity for antimatter, namely antihydrogen atoms ($\\overline{\\mathrm{H}}$). Precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution. We propose to use a new method for shaping the distribution of vertical velocities of $\\overline{\\mathrm{H}}$, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing $\\overline{\\mathrm{H}}$ with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk. We estimate statistical and systematic uncertainties, and show that the accuracy for measuring the free fall acceleration $\\overline{g}$ of $\\overline{\\mathrm{H}}$ could be pushed below $10^{-3}$ under realistic experimental conditions.

  5. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    Science.gov (United States)

    Dufour, G.; Debu, P.; Lambrecht, A.; Nesvizhevsky, V. V.; Reynaud, S.; Voronin, A. Yu.

    2014-01-01

    GBAR is a project aiming at measuring the free-fall acceleration of gravity for antimatter, namely antihydrogen atoms (). The precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution. We propose to use a new method for shaping the distribution of the vertical velocities of , which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk. We estimate statistical and systematic uncertainties, and we show that the accuracy for measuring the free fall acceleration of could be pushed below under realistic experimental conditions.

  6. ITRF2014 GNSS vertical velocities and global Earth figure variations

    Science.gov (United States)

    Métivier, Laurent; Rouby, Hélène; Rebischung, Paul; Altamimi, Zuheir

    2016-04-01

    We investigate the GNSS station vertical velocities provided by the new solution of the International Terrestrial Reference Frame, the ITRF2014. Constructed from a global network of approximately 1500 stations of the different space geodetic techniques, this new solution provides two times more GNSS station velocities than the ITRF2008, and shows a global pattern of vertical velocities very homogeneous regionally. As in the ITRF2008 solution, large vertical velocities can be seen over North America, Northern Europe, or Antarctica, probably induced predominantly by the Glacial Isostatic Adjustment (GIA) still occurring today since the last deglaciation. But the ITRF2014 solution shows also large vertical velocities over regions such as Greenland and Alaska clearly larger than in the ITRF2008, probably related to last decadal ice melting and its possible acceleration. We investigate different methods to calculate low degree spherical harmonics coefficient from ITRF2014 GNSS vertical velocities. We particularly focus on the components related to the geocenter motion, the ellipticity of the solid Earth, and the J2 rate, and we present time tendencies with respect to different GIA and recent ice melting models.

  7. Muscle activation history at different vertical jumps and its influence on vertical velocity

    NARCIS (Netherlands)

    Kopper, Bence; Csende, Zsolt; Safar, Sandor; Hortobagyi, Tibor; Tihanyi, Jozsef

    In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps

  8. Muscle activation history at different vertical jumps and its influence on vertical velocity

    NARCIS (Netherlands)

    Kopper, Bence; Csende, Zsolt; Safar, Sandor; Hortobagyi, Tibor; Tihanyi, Jozsef

    2013-01-01

    In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps (D

  9. Vertical velocity variances and Reynold stresses at Brookhaven

    DEFF Research Database (Denmark)

    Busch, Niels E.; Brown, R.M.; Frizzola, J.A.

    1970-01-01

    Results of wind tunnel tests of the Brookhaven annular bivane are presented. The energy transfer functions describing the instrument response and the numerical filter employed in the data reduction process have been used to obtain corrected values of the normalized variance of the vertical wind v...... velocity component....

  10. The vertical velocity dispersion profile of the Galactic thick disk

    CERN Document Server

    Bidin, C Moni; Carraro, G; Méndez, R A; Van Altena, W F; Korchagin, V I; Casetti-Dinescu, D I

    2007-01-01

    We present the results of radial velocity measurements of 770 thick disk red giants toward the South Galactic Pole, vertically distributed from 0.5 kpc to 5 kpc with respect to the Galactic plane. We find a small gradient in the vertical velocity dispersion (sigma_W) of 3.8+/-0.8 km/s kpc. Even more noteworthy, our values of $\\sigma_W$ are small compared to literature values: in the middle of the vertical height range we find sigma_W(z=2kpc)=30 km/s. We found no possible explanation for this small value of sigma_W in terms of sample contamination by thin disk stars, nor by wrong assumptions regarding the metallicity distribution and the derived distances.

  11. THE VERTICAL VELOCITY DISPERSION PROFILE OF THE GALACTIC THICK DISK

    Directory of Open Access Journals (Sweden)

    C. Moni Bidin

    2009-01-01

    Full Text Available We present the results of radial velocity measurements of 770 thick disk red giants toward the South Galactic Pole, vertically distributed from 0.5 kpc to 5 kpc with respect to the Galactic plane. We nd a small gradient in the vertical velocity dispersion (W of 3.8 0.8 km s-1 kpc-1. Even more noteworthy, our values of W are small compared to literature values: in the middle of the vertical height range we nd W;z=2kpc=30 km s-1. We found no possible explanation for this small value oW in terms of sample contamination by thin disk stars, nor by wrong assumptions regarding the metallicity distribution and the derived distances.

  12. Principle of Cross Coupling Between Vertical Heat Turbulent Transport and Vertical Velocity and Determination of Cross Coupling Coefficient

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It has been proved that there exists a cross coupling between vertical heat turbulent transport and vertical velocity by using linear thermodynamics. This result asserts that the vertical component of heat turbulent transport flux is composed of both the transport of the vertical potential temperature gralient and the coupling transport of the vertical velocity. In this paper, the coupling effect of vertical velocity on vertical heat turbulent transportation is validated by using observed data from the atmospheric boundary layer to determine cross coupling coefficients, and a series of significant properties of turbulent transportation are opened out. These properties indicate that the cross coupling coefficient is a logarithm function of the dimensionless vertical velocity and dimensionless height, and is not only related to the friction velocity u*,but also to the coupling roughness height zwo and the coupling temperature Two of the vertical velocity.In addition, the function relations suggest that only when the vertical velocity magnitude conforms to the limitation |W/u* | ≠ 1, and is above the level zwo, then the vertical velocity leads to the cross coupling effect on the vertical heat turbulent transport flux. The cross coupling theory and experimental results provide a challenge to the traditional turbulent K closure theory and the Monin-Obukhov similarity theory.

  13. Minimum slugging velocity in fluidized beds containing vertical rods

    Energy Technology Data Exchange (ETDEWEB)

    Coronella, C.J.; Lee, S.Y.; Seader, J.D. (University of Utah, Salt Lake City, UT (United States). Dept. of Chemical Engineering)

    1994-09-01

    A new method for determining the onset of slugging in fluidized beds is presented. Pressure-drop fluctuations, measured from below the distributor to the gas exit line, are transformed to the frequency domain by the power spectral desity function (PSDF). The dominant frequency of the PSDF corresponds to the eruption frequency of bubbles or slugs. A fluidized bed is in the slugging regime when this dominant frequency, f[sub d], remains constant with changing gas velocity. This method is an improvement over previous methods because of the simple nature of the apparatus required, and because it is possible to locate the pressure probes so that they do not interfere with the fluidization or undergo rapid wear from the constant particle movement. This method was used to determine the gas velocity corresponding to the transition from the bubbling to the slugging regime for a 10cm diameter bed of sand fluidized with air and containing three 1.9cm diameter vertical rods at 5.2cm centre-to-centre triangular spacing and extending the length of the bed, and to compare the results with those from the same bed without any internal rods. The presence of the vertical rods inhibited the onset of the slugging regime, and significantly extended the bubbling regime to higher gas velocities. 32 refs., 12 figs.

  14. Patterns and velocity field in vertically vibrated granular materials

    Science.gov (United States)

    Ansari, Istafaul H.; Alam, Meheboob

    2013-06-01

    We report experimental results on pattern formation in vertically vibrated granular materials confined in a quasitwo-dimensional container. For a deep bed of mono-disperse particles, we uncovered a new transition from the bouncing bed to an f/4-wave (f is the frequency of shaking) which eventually gives birth to an f/2-undulation wave, with increasing shaking intensity. Other patterned states for mono-disperse particles and their transition-route are compared with previous experiments. The coarse-grained velocity field for each patterned state has been obtained which helped to characterize convective rolls as well as synchronous and sub-harmonic waves in this system.

  15. Orthogonal Vertical Velocity Dispersion Distributions Produced by Bars

    Science.gov (United States)

    Du, Min; Shen, Juntai; Debattista, Victor P.; de Lorenzo-Cáceres, Adriana

    2017-02-01

    In barred galaxies, the contours of stellar velocity dispersions (σ) are generally expected to be oval and aligned with the orientation of bars. However, many double-barred (S2B) galaxies exhibit distinct σ peaks on the minor axis of the inner bar, which we termed “σ-humps,” while two local σ minima are present close to the ends of inner bars, i.e., “σ-hollows.” Analysis of numerical simulations shows that {σ }z-humps or hollows should play an important role in generating the observed σ-humps+hollows in low-inclination galaxies. In order to systematically investigate the properties of {σ }z in barred galaxies, we apply the vertical Jeans equation to a group of well-designed three-dimensional bar+disk(+bulge) models. A vertically thin bar can lower {σ }z along the bar and enhance it perpendicular to the bar, thus generating {σ }z-humps+hollows. Such a result suggests that {σ }z-humps+hollows can be generated by the purely dynamical response of stars in the presence of a sufficiently massive, vertically thin bar, even without an outer bar. Using self-consistent N-body simulations, we verify the existence of vertically thin bars in the nuclear-barred and S2B models that generate prominent σ-humps+hollows. Thus, the ubiquitous presence of σ-humps+hollows in S2Bs implies that inner bars are vertically thin. The addition of a bulge makes the {σ }z-humps more ambiguous and thus tends to somewhat hide the {σ }z-humps+hollows. We show that {σ }z may be used as a kinematic diagnostic of stellar components that have different thicknesses, providing a direct perspective on the morphology and thickness of nearly face-on bars and bulges with integral field unit spectroscopy.

  16. Fine velocity structures collisional dissipation in plasmas

    Science.gov (United States)

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2016-04-01

    In a weakly collisional plasma, such as the solar wind, collisions are usually considered far too weak to produce any significant effect on the plasma dynamics [1]. However, the estimation of collisionality is often based on the restrictive assumption that the particle velocity distribution function (VDF) shape is close to Maxwellian [2]. On the other hand, in situ spacecraft measurements in the solar wind [3], as well as kinetic numerical experiments [4], indicate that marked non-Maxwellian features develop in the three-dimensional VDFs, (temperature anisotropies, generation of particle beams, ring-like modulations etc.) as a result of the kinetic turbulent cascade of energy towards short spatial scales. Therefore, since collisional effects are proportional to the velocity gradients of the VDF, the collisionless hypothesis may fail locally in velocity space. Here, the existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can increase locally due to the velocity space deformation of the particle velocity distribution. In particular, by means of Eulerian simulations of collisional relaxation of a spatially homogeneous force-free plasma, in which collisions among particles of the same species are modeled through the complete Landau operator, we show that the system entropy growth occurs over several time scales, inversely proportional to the steepness of the velocity gradients in the VDF. We report clear evidences that fine velocity structures are dissipated by collisions in a time much shorter than global non-Maxwellian features, like, for example, temperature anisotropies. Moreover we indicate that, if small-scale structures

  17. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  18. Non-axisymmetric vertical velocity dispersion distributions produced by bars

    CERN Document Server

    Du, Min; Debattista, Victor P

    2016-01-01

    In barred galaxies, the contours of stellar velocity dispersions ($\\sigma$) are generally expected to be oval and aligned with the orientation of bars. However, many double-barred (S2B) galaxies exhibit distinct $\\sigma$ peaks on the minor axis of inner bar, which we termed "$\\sigma$-humps," while two local $\\sigma$ minima are present close to the ends of inner bars, i.e., "$\\sigma$-hollows." Analysis of numerical simulations shows that $\\sigma_z$-humps or hollows should play an important role in generating the observed $\\sigma$-humps+hollows in low-inclination galaxies. In order to systematically investigate the properties of $\\sigma_z$ in barred galaxies, we apply the vertical Jeans equation to a group of well-designed three-dimensional bar+disk(+bulge) models. A vertically thin bar can lower $\\sigma_z$ along the bar and enhance it perpendicular to the bar, thus generating $\\sigma_z$-humps+hollows. Such a result suggests that $\\sigma_z$-humps+hollows can be generated by the purely dynamical response of star...

  19. Vertical velocities from proper motions of red clump giants

    Science.gov (United States)

    López-Corredoira, M.; Abedi, H.; Garzón, F.; Figueras, F.

    2014-12-01

    Aims: We derive the vertical velocities of disk stars in the range of Galactocentric radii of R = 5 - 16 kpc within 2 kpc in height from the Galactic plane. This kinematic information is connected to dynamical aspects in the formation and evolution of the Milky Way, such as the passage of satellites and vertical resonance and determines whether the warp is a long-lived or a transient feature. Methods: We used the PPMXL survey, which contains the USNO-B1 proper motions catalog cross-correlated with the astrometry and near-infrared photometry of the 2MASS point source catalog. To improve the accuracy of the proper motions, the systematic shifts from zero were calculated by using the average proper motions of quasars in this PPMXL survey, and we applied the corresponding correction to the proper motions of the whole survey, which reduces the systematic error. From the color-magnitude diagram K versus (J - K) we selected the standard candles corresponding to red clump giants and used the information of their proper motions to build a map of the vertical motions of our Galaxy. We derived the kinematics of the warp both analytically and through a particle simulation to fit these data. Complementarily, we also carried out the same analysis with red clump giants spectroscopically selected with APOGEE data, and we predict the improvements in accuracy that will be reached with future Gaia data. Results: A simple model of warp with the height of the disk zw(R,φ) = γ(R - R⊙)sin(φ - φw) fits the vertical motions if dot {γ }/γ = -34±17 Gyr-1; the contribution to dot {γ } comes from the southern warp and is negligible in the north. If we assume this 2σ detection to be real, the period of this oscillation is shorter than 0.43 Gyr at 68.3% C.L. and shorter than 4.64 Gyr at 95.4% C.L., which excludes with high confidence the slow variations (periods longer than 5 Gyr) that correspond to long-lived features. Our particle simulation also indicates a probable abrupt decrease

  20. Simulation of air velocity in a vertical perforated air distributor

    Science.gov (United States)

    Ngu, T. N. W.; Chu, C. M.; Janaun, J. A.

    2016-06-01

    Perforated pipes are utilized to divide a fluid flow into several smaller streams. Uniform flow distribution requirement is of great concern in engineering applications because it has significant influence on the performance of fluidic devices. For industrial applications, it is crucial to provide a uniform velocity distribution through orifices. In this research, flow distribution patterns of a closed-end multiple outlet pipe standing vertically for air delivery in the horizontal direction was simulated. Computational Fluid Dynamics (CFD), a tool of research for enhancing and understanding design was used as the simulator and the drawing software SolidWorks was used for geometry setup. The main purpose of this work is to establish the influence of size of orifices, intervals between outlets, and the length of tube in order to attain uniformity of exit flows through a multi outlet perforated tube. However, due to the gravitational effect, the compactness of paddy increases gradually from top to bottom of dryer, uniform flow pattern was aimed for top orifices and larger flow for bottom orifices.

  1. Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler

    Directory of Open Access Journals (Sweden)

    J. Bühl

    2015-01-01

    Full Text Available Case studies of combined vertical-velocity measurements of Doppler lidar, cloud radar and wind profiler are presented. The measurements were taken at the Meteorological Observatory Lindenberg, Germany. Synergistic products are presented that are derived from the vertical-velocity measurements of the three instruments: A comprehensive classification mask of vertically moving atmospheric targets and the terminal fall velocity of water droplets and ice crystals corrected for vertical air motion. It is shown that the measurements of the Doppler lidar can extent the view of the cloud radar and the wind profiler, especially when observing clouds.

  2. Contribution of Sub-Mesoscales to the Vertical Velocity: The Omega-Equation

    Science.gov (United States)

    Canuto, V. M.; Cheng, Y.

    2017-01-01

    The oceans ability to regulate carbon dioxide depends on biogeochemical processes that are influenced strongly by eddies. Eddy-resolving simulations have shown that sub-mesoscales (SM) (110 km) generate the highest magnitude vertical velocity and that mesoscales (M) also enhance their contribution to the vertical velocity but to a lesser extent. In this study, we consider the question: can analogous results be obtained using the less numerically demanding -equation? Previously, this question has not been answered because of two reasons: 1) the canonical Hoskins form of the - equation does not include the buoyancy vertical fluxes caused by M and SM; and 2) Giordani et al. (2016) showed how to include an arbitrary vertical buoyancy flux, but no parameterizations were available for the M and SM vertical fluxes. How- ever, the latter are now available together with their assessments, so we consider SM because they make the largest contribution to the vertical velocity. The resulting vertical velocity depends on the extent of the SM regime, the horizontal buoyancy gradient (representing baroclinic instabilities), and the SM eddy kinetic energy. The vertical velocity depends in a linear manner on the wind stress and it may exhibit seasonal variations. The wind stress has two effects on the -equation: indirectly via its contribution to the sub-mesoscale buoyancy flux and directly through the wind stress itself. The results of our sensitivity analysis highlight the range of SM-induced vertical velocities obtained using different input data.

  3. Vertical Velocity Retrievals using the ARM Heterogeneous Radar Network at SGP

    Science.gov (United States)

    North, Kirk; Collis, Scott; Kollias, Pavlos

    2013-04-01

    The representation of convective clouds in numerical models underlines one of the most challenging problems to date faced by the modeling community. Since the dynamical, thermodynamical, and microphysical processes of convective systems occur at spatial and temporal scales not resolved by large-scale models, parameterization schemes must be implemented in order to represent these processes. A key component in these parameterizations is vertical velocity, since many of these schemes rely on mass-flux closure: a model grid cell is decomposed into an updraft region within the cloud layer, compensated by both a downdraft which is part of the convective system as well as slow subsidence of the environment. Despite this, observations of vertical velocity are sparse, either from aircraft studies or vertically-pointing radars, both of which cover a limited area. As a result, evaluation of large-scale models is primarily done with other, small-scale models, not observations. Scanning Doppler radars, though unable to directly measure vertical velocity, are able to observe mesoscale convective systems at high spatial resolution. Utilizing the unprecedented observing infrastructure at ARM's Southern Great Plains (SGP) site, we retrieve vertical velocity from multiple Doppler radars using a 3D-VAR technique. Multiple convective events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E) provides an appropriate dataset to study the statistical properties of vertical velocity as well as draft morphology in convective clouds. Furthermore, these retrievals are evaluated by comparing them with independent vertical velocity retrievals from vertically-pointing UHF radars.

  4. Creating Non-Maxwellian Velocity Distributions in Ultracold Plasmas

    CERN Document Server

    Castro, J; McQuillen, P; Pohl, T; Killian, T C

    2011-01-01

    We present techniques to perturb, measure and model the ion velocity distribution in an ultracold neutral plasma produced by photoionization of strontium atoms. By optical pumping with circularly polarized light we promote ions with certain velocities to a different spin ground state, and probe the resulting perturbed velocity distribution through laser-induced fluorescence spectroscopy. We discuss various approaches to extract the velocity distribution from our measured spectra, and assess their quality through comparisons with molecular dynamic simulations

  5. Estimates of vertical velocities and eddy coefficients in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Sastry, J.S.

    Vertical velocities and eddy coefficients in the intermediate depths of the Bay of Bengal are calculated from mean hydrographic data for 300 miles-squares. The linear current density (sigma- O) versus log-depth plots show steady balance between...

  6. Determination of vertical velocities in the equatorial part of the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Varadachari, V.V.R.

    Using steady state two-dimensional turbulent diffusion equations of salt and heat some important characteristics of vertical circulation in the equatorial part of the Indian Ocean have been evaluated and discussed. Upwelling and sinking velocities...

  7. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5: VERTICAL VELOCITY GOAMAZON2014/5

    Energy Technology Data Exchange (ETDEWEB)

    Giangrande, Scott E. [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Toto, Tami [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Jensen, Michael P. [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Bartholomew, Mary Jane [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Feng, Zhe [Pacific Northwest National Laboratory, Richland Washington USA; Protat, Alain [Centre for Australian Weather and Climate Research, Melbourne Victoria Australia; Williams, Christopher R. [University of Colorado Boulder and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder Colorado USA; Schumacher, Courtney [Texas A& M University, College Station Texas USA; Machado, Luiz [National Institute for Space Research, Sao Jose dos Campos Brazil

    2016-11-15

    A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, and mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.

  8. Imaging thermal plasma mass and velocity analyzer

    Science.gov (United States)

    Yau, Andrew W.; Howarth, Andrew

    2016-07-01

    We present the design and principle of operation of the imaging ion mass and velocity analyzer on the Enhanced Polar Outflow Probe (e-POP), which measures low-energy (1-90 eV/e) ion mass composition (1-40 AMU/e) and velocity distributions using a hemispherical electrostatic analyzer (HEA), a time-of-flight (TOF) gate, and a pair of toroidal electrostatic deflectors (TED). The HEA and TOF gate measure the energy-per-charge and azimuth of each detected ion and the ion transit time inside the analyzer, respectively, providing the 2-D velocity distribution of each major ionospheric ion species and resolving the minor ion species under favorable conditions. The TED are in front of the TOF gate and optionally sample ions at different elevation angles up to ±60°, for measurement of 3-D velocity distribution. We present examples of observation data to illustrate the measurement capability of the analyzer, and show the occurrence of enhanced densities of heavy "minor" O++, N+, and molecular ions and intermittent, high-velocity (a few km/s) upward and downward flowing H+ ions in localized regions of the quiet time topside high-latitude ionosphere.

  9. Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    Directory of Open Access Journals (Sweden)

    L. Patara

    2008-08-01

    Full Text Available This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are higher than 200 m day−1. The current vertical velocity field is computed from a high resolution Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day−1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However, we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. By analyzing the delayed effects of ocean vertical velocities on deep particle fluxes we envisage a spectrum of particle sinking speeds ranging from about 100 m day−1 to more than 200 m day−1. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.

  10. Turbulence velocity profiling for high sensitivity and vertical-resolution atmospheric characterization with Stereo-SCIDAR

    Science.gov (United States)

    Osborn, J.; Butterley, T.; Townson, M. J.; Reeves, A. P.; Morris, T. J.; Wilson, R. W.

    2017-02-01

    As telescopes become larger, into the era of ˜40 m Extremely Large Telescopes, the high-resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmospheric optical turbulence is an important parameter for several applications including astronomical adaptive optics systems. Here, we compare the vertical profile of the velocity of the atmospheric wind above La Palma by means of a comparison of Stereo-SCIntillation Detection And Ranging (Stereo-SCIDAR) with the Global Forecast System models and nearby balloon-borne radiosondes. We use these data to validate the automated optical turbulence velocity identification from the Stereo-SCIDAR instrument mounted on the 2.5 m Isaac Newton Telescope, La Palma. By comparing these data we infer that the turbulence velocity and the wind velocity are consistent and that the automated turbulence velocity identification of the Stereo-SCIDAR is precise. The turbulence velocities can be used to increase the sensitivity of the turbulence strength profiles, as weaker turbulence that may be misinterpreted as noise can be detected with a velocity vector. The turbulence velocities can also be used to increase the altitude resolution of a detected layer, as the altitude of the velocity vectors can be identified to a greater precision than the native resolution of the system. We also show examples of complex velocity structure within a turbulent layer caused by wind shear at the interface of atmospheric zones.

  11. Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    Directory of Open Access Journals (Sweden)

    L. Patara

    2009-03-01

    Full Text Available This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are more than 200 m day−1. The current vertical velocity field is computed from a 1/16°×1/16° Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day−1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.

  12. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    Science.gov (United States)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  13. Using smartphones' pressure sensors to measure vertical velocities in elevators, stairways and drones

    CERN Document Server

    Monteiro, Martin

    2016-01-01

    By means of smartphones' pressure sensors we measure vertical velocities of elevators, pedestrians climbing stairways and flying unmanned aerial vehicles (or \\textit{drones}). The barometric pressure obtained with the smartphone is related, thanks to the hydrostatic approximation, to the altitude of the device. From the altitude values, the vertical velocity is accordingly derived. The approximation considered is valid in the first hundreds meters of the inner layers of the atmosphere. Simultaneously to the pressure, the acceleration values, reported by the buit-in accelerometers, are also recorded. Integrating numerically the acceleration, vertical velocity and altitude are also obtained. We show that data obtained with the pressure sensor is considerable less noisy than that obtained with the accelerometer in the experiments proposed here. Accumulatioin of errors are also evident in the numerical integration of the acceleration values. The comparison with reference values taken from the architectural plans ...

  14. Continuous, saturation, and discontinuous tokamak plasma vertical position control systems

    Energy Technology Data Exchange (ETDEWEB)

    Mitrishkin, Yuri V., E-mail: y_mitrishkin@hotmail.com [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Pavlova, Evgeniia A., E-mail: janerigoler@mail.ru [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Kuznetsov, Evgenii A., E-mail: ea.kuznetsov@mail.ru [Troitsk Institute for Innovation and Fusion Research, Moscow 142190 (Russian Federation); Gaydamaka, Kirill I., E-mail: k.gaydamaka@gmail.com [V. A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences, Moscow 117997 (Russian Federation)

    2016-10-15

    Highlights: • Robust new linear state feedback control system for tokamak plasma vertical position. • Plasma vertical position relay control system with voltage inverter in sliding mode. • Design of full models of multiphase rectifier and voltage inverter. • First-order unit approximation of full multiphase rectifier model with high accuracy. • Wider range of unstable plant parameters of stable control system with multiphase rectifier. - Abstract: This paper is devoted to the design and comparison of unstable plasma vertical position control systems in the T-15 tokamak with the application of two types of actuators: a multiphase thyristor rectifier and a transistor voltage inverter. An unstable dynamic element obtained by the identification of plasma-physical DINA code was used as the plasma model. The simplest static feedback state space control law was synthesized as a linear combination of signals accessible to physical measurements, namely the plasma vertical displacement, the current, and the voltage in a horizontal field coil, to solve the pole placement problem for a closed-loop system. Only one system distinctive parameter was used to optimize the performance of the feedback system, viz., a multiple real pole. A first-order inertial unit was used as the rectifier model in the feedback. A system with a complete rectifier model was investigated as well. A system with the voltage inverter model and static linear controller was brought into a sliding mode. As this takes place, real time delays were taken into account in the discontinuous voltage inverter model. The comparison of the linear and sliding mode systems showed that the linear system enjoyed an essentially wider range of the plant model parameters where the feedback system was stable.

  15. Vertical Sound Velocity Transition in the Coral Reef Core and its Significance of Indicating Facies

    Institute of Scientific and Technical Information of China (English)

    Li Ganxian; Lu Bo

    2002-01-01

    On the basis of the sound velocity measurements of the coral reef core from Nanyong No. 1 Well of Yongshu Reef in the Nansha Islands, the paper studies the relations between the vertical sound velocity transition features in the coral reef core and the corresponding stratigraphic depositional facies change as well as stratigraphic gap of erosion,analyses the cause of the sound velocity transition, expounds the concrete process of the sea level change resulting in the stratigraphic gap of erosion and facies change in the coral reef and explains the relations between the vertical sound velocity transition in the coral reef core and the corresponding stratigraphic paleoclimate and the sea level change. This study is of important practical value and theoretical significance to the island and reef engineering construction and the acoustic logging for oil exploration in the reef limestone area as well as the paleoceanographic study of the marginal sea in the western Pacific Ocean.

  16. Driven phase space vortices in plasmas with nonextensive velocity distribution

    Science.gov (United States)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2017-03-01

    The evolution of chirp-driven electrostatic waves in unmagnetized plasmas is numerically investigated by using a one-dimensional (1D) Vlasov-poisson solver with periodic boundary conditions. The initial velocity distribution of the 1D plasma is assumed to be governed by nonextensive q distribution [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]. For an infinitesimal amplitude of an external drive, we investigate the effects of chirp driven dynamics that leads to the formation of giant phase space vortices (PSV) for both Maxwellian (q = 1) and non-Maxwellian ( q ≠ 1 ) plasmas. For non-Maxwellian plasmas, the formation of giant PSV with multiple extrema and phase velocities is shown to be dependent on the strength of "q". Novel features such as "shark"-like and transient "honeycomb"-like structures in phase space are discussed. Wherever relevant, we compare our results with previous work.

  17. Vertical Electron Cyclotron Emission Diagnostic for TCV Plasmas

    Directory of Open Access Journals (Sweden)

    Goodman T. P.

    2012-09-01

    Full Text Available Electron cyclotron resonance heating (ECRH and electron cyclotron current drive (ECCD are used to heat the plasma, to tailor the current profiles and to achieve different operating regimes of tokamak plasmas. Plasmas with ECRH/ECCD are characterized by non-thermal electrons, which cannot be described by a Maxwellian distribution. Non-thermal electrons are also generated during MHD activity, like sawteeth crashes. Quantifying the non-thermal electron distribution is therefore a key for understanding EC heated fusion plasmas. For this purpose a vertical electron cyclotron emission (V-ECE diagnostic is being installed at TCV. The diagnostic layout, the calibration, the analysis technique for data interpretation, the physics potentials and limitations are discussed.

  18. Radial variation of refractive index, plasma frequency and phase velocity in laser induced air plasma

    CSIR Research Space (South Africa)

    Mathuthu, M

    2006-12-01

    Full Text Available induced air plasma to study the spatial variation of plasma parameters in the axial direction of the laser beam. In this paper, the authors report investigation on the radial variation of the refractive index, plasma frequency, and phase velocity of a...

  19. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    Science.gov (United States)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  20. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible...

  1. Middle cerebral artery blood velocity and plasma catecholamines during exercise

    DEFF Research Database (Denmark)

    Pott, F; Jensen, K; Hansen, H;

    1996-01-01

    During dynamic exercise, mean blood velocity (Vmean) in the middle cerebral artery (MCA) demonstrates a graded increase to work rate and reflects regional cerebral blood flow. At a high work rate, however, vasoactive levels of plasma catecholamines could mediate vasoconstriction of the MCA...

  2. Numerical simulation of temperature and velocity fields in plasma spray

    Institute of Scientific and Technical Information of China (English)

    FAN Qun-bo; WANG Lu; WANG Fu-chi

    2007-01-01

    Based on the turbulence jet model, with respect to Ar-He mixture plasma gas injecting to ambient atmosphere, the temperature filed and velocity field under typical working conditions were investigated. Given the conditions of I=900 A, FAr=1.98 m3/h, FHe=0.85 m3/h, it is found that both the temperature and the velocity undergo a plateau region near the nozzle exit (0-10 mm) at the very first stage, then decrease abruptly from initial 13 543 K and 778.2 m/s to 4 000 K and 260.0 m/s, and finally decrease slowly again. Meanwhile, the radial temperature and radial velocity change relatively slow. The inner mechanism for such phenomena is due to the complex violent interaction between the high-temperature and high-velocity turbulent plasma jet and the ambient atmosphere. Compared with traditional methods, the initial working conditions can be directly related to the temperature and velocity fields of the plasma jet by deriving basic boundary conditions.

  3. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    Science.gov (United States)

    Bâki Iz, H.; Shum, C. K.; Zhang, C.; Kuo, C. Y.

    2017-02-01

    This study demonstrates that relative sea level trends calculated from long-term tide gauge records can be used to estimate relative vertical crustal velocities in a region with high accuracy. A comparison of the weighted averages of the relative sea level trends estimated at six tide gauge stations in two clusters along the Eastern coast of United States, in Florida and in Maryland, reveals a statistically significant regional vertical crustal motion of Maryland with respect to Florida with a subsidence rate of -1.15±0.15 mm/yr identified predominantly due to the ongoing glacial isostatic adjustment process. The estimate is a consilience value to validate vertical crustal velocities calculated from GPS time series as well as towards constraining predictive GIA models in these regions.

  4. Vertical jumping height and horizontal overhead throwing velocity in young male athletes.

    Science.gov (United States)

    Viitasalo, J T; Rahkila, P; Osterback, L; Alén, M

    1992-10-01

    The purpose of this study was to examine the effects of calendar and skeletal age, anthropometric dimensions, training history and their interactions on vertical jumping height and horizontal overhead throwing velocity in a cross-section of 318 young male athletes (age range 9-16 years) participating in cross-country skiing (n = 70), basketball (n = 40), apparatus gymnastics (n = 19), ice hockey (n = 50), track and field (n = 89) and wrestling (n = 50). Vertical jumping height was measured with four different loads held on the shoulders and then interpolated for loads representing 0 and 40% body mass. Horizontal overhead throwing velocity using both hands was determined for seven balls of different weights and then interpolated for weights representing 1 and 5% body mass. Both vertical jumping height and overhead throwing velocity were found to increase (P < 0.01) from the skeletally youngest to the oldest cohort when the effects of body height and mass were controlled. The inter-event comparisons did not reveal statistically significant differences in respect of vertical jumping height. Also in the overhead throwing tests, the inter-event differences were small, although the analysis of variance revealed statistically significant (P < 0.001) differences for the skeletal age cohorts of 13 and 14 years. While the quantity of training had no effect on vertical jumping height, it explained the results in the overhead throwing test. The effects of training on vertical jumping and horizontal overhead throwing among adolescent athletes were considered to be small, while maturational processes and anthropometric development followed by increase in calendar age were deemed to be of greater importance.

  5. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Tammen, H.F.

    1995-01-10

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics `Rijnhuizen`, was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL).

  6. Using smartphone pressure sensors to measure vertical velocities of elevators, stairways, and drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are derived. The approximation considered is valid in the first hundred meters of the inner layers of the atmosphere. In addition to pressure, acceleration values were also recorded using the built-in accelerometer. Numerical integration was performed, obtaining both vertical velocity and altitude. We show that data obtained using the pressure sensor is significantly less noisy than that obtained using the accelerometer. Error accumulation is also evident in the numerical integration of the acceleration values. In the proposed experiments, the pressure sensor also outperforms GPS, because this sensor does not receive satellite signals indoors and, in general, the operating frequency is considerably lower than that of the pressure sensor. In the cases in which it is possible, comparison with reference values taken from the architectural plans of buildings validates the results obtained using the pressure sensor. This proposal is ideally performed as an external or outreach activity with students to gain insight about fundamental questions in mechanics, fluids, and thermodynamics.

  7. The Effect of Atmospheric Cooling on Vertical Velocity Dispersion and Density Distribution of Brown Dwarfs

    Science.gov (United States)

    Ryan, Russell E., Jr.; Thorman, Paul A.; Schmidt, Sarah J.; Cohen, Seth H.; Hathi, Nimish P.; Holwerda, Benne W.; Lunine, Jonathan I.; Pirzkal, Nor; Windhorst, Rogier A.; Young, Erick

    2017-09-01

    We present a Monte Carlo simulation designed to predict the vertical velocity dispersion of brown dwarfs in the Milky Way. We show that since these stars are constantly cooling, the velocity dispersion has a noticeable trend with the spectral type. With realistic assumptions for the initial mass function, star formation history, and the cooling models, we show that the velocity dispersion is roughly consistent with what is observed for M dwarfs, decreases to cooler spectral types, and increases again for the coolest types in our study (∼T9). We predict a minimum in the velocity dispersions for L/T transition objects, however, the detailed properties of the minimum predominately depend on the star formation history. Since this trend is due to brown dwarf cooling, we expect that the velocity dispersion as a function of spectral type should deviate from the constancy around the hydrogen-burning limit. We convert from velocity dispersion to vertical scale height using standard disk models and present similar trends in disk thickness as a function of spectral type. We suggest that future, wide-field photometric and/or spectroscopic missions may collect sizable samples of distant (∼ 1 kpc) dwarfs that span the hydrogen-burning limit. As such, we speculate that such observations may provide a unique way of constraining the average spectral type of hydrogen burning. Support for program #13266 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.

  8. Vertical velocity of mantle flow of East Asia and adjacent areas

    Institute of Scientific and Technical Information of China (English)

    CHENG Xianqiong; ZHU Jieshou; CAI Xuelin

    2007-01-01

    Based on the high-resolution body wave tomo- graphic image and relevant geophysical data, we calculated the form and the vertical and tangential velocities of mantle flow. We obtained the pattern of mantle convection for East Asia and the West Pacific. Some important results and under- standings are gained from the images of the vertical velocity of mantle flow for East Asia and the West Pacific. There is an upwelling plume beneath East Asia and West Pacific, which is the earth's deep origin for the huge rift valley there. We have especially outlined the tectonic features of the South China Sea, which is of the "工" type in the upper mantle shield type in the middle and divergent in the lower; the Siberian clod downwelling dives from the surface to near Core and mantle bounary (CMB), which is convergent in the upper mantle and divergent in the lower mantle; the Tethyan subduction region, centered in the Qinghai-Tibet plateau, is visible from 300 to 2 000 km, which is also convergent in the upper mantle and divergent in the lower mantle. The three regions of mantle convection beneath East Asia and the West Pacific are in accordance with the West Pacific, Ancient Asia and the Tethyan structure regions. The mantle upwelling orig- inates from the core-mantle boundary and mostly occurs in the middle mantle and the lower part of the upper mantle. The velocities of the vertical mantle flow are about 1-4 cm per year and the tangential velocities are 1-10 cm per year. The mantle flow has an effect on controlling the movement of plates and the distributions of ocean ridges, subduction zones and collision zones. The mantle upwelling regions are clearly related with the locations ofhotspots on the earth's surface.

  9. Maps of Annual Velocities of Vertical Movements At The Territory of The Czech Republic

    Science.gov (United States)

    Vyskocil, P.

    In addition to the Austro-Hungarian levelling of second half of 19. century {a}, the following precise levellings were performed at the territory of Czech Republic, in the periods:1920-1938 {b}; 1939-1954{c}; 1960-1973{d}; 1974- 1989{e}; and addition- ally after 1990 especially along the border with Germany {Bavaria} and Austria. All these {repeated} levellings were capable for studies of vertical movements. But qual- itatively better benchmarks were introduced to the levellings performed after 1960 {drilled benchmarks, rod benchmarks} which improved the quality the determination of vertical movements. The first estimations of vertical movements were performed by comparison of adjusted altitudes of levelling {a} and {b}, and {b} and {c} by KRUIS in 1954- 1960. Nevertheless, the disadvantage of these studies was the fact that levellings {a} and {b} followed the railways, the levelling {c} followed usual roads. Moreover the results of direct measurements by levellings {a} and {b} were not complete available.. Then the first levelling of higher quality was the levelling {c} which was used as initial epoch for construction of the maps from levelling {c} and {d} in 1971 and later on from levelling {c} and {e}in 1985. The benchmarks of higher quality, introduced after 1960 were used only in special networks in mining areas of Upper Silesian basin and Sokolov, Most and Kladno coal areas. The vertical move- ments {annual velocities in mm per annum} were determined by adjustment of annual heigh changes between junction benchmarks, reduced cosequently by the actual time interval of measurements along actual levelling line. Finally, the map for levellings {d} and {e} in 2001, using the new benchmarks, was constructed. The properties of the maps 1971, 1985 and 2001 as well as the map of annual velocities of vertical move- ments at the territory of a part of Central Europe are discussed in the paper, using the corresponding maps available.

  10. Effects of walking velocity on vertical head and body movements during locomotion

    Science.gov (United States)

    Hirasaki, E.; Moore, S. T.; Raphan, T.; Cohen, B.

    1999-01-01

    Trunk and head movements were characterized over a wide range of walking speeds to determine the relationship between stride length, stepping frequency, vertical head translation, pitch rotation of the head, and pitch trunk rotation as a function of gait velocity. Subjects (26-44 years old) walked on a linear treadmill at velocities of 0.6-2.2 m/s. The head and trunk were modeled as rigid bodies, and rotation and translation were determined using a video-based motion analysis system. At walking speeds up to 1.2 m/s there was little head pitch movement in space, and the head pitch relative to the trunk was compensatory for trunk pitch. As walking velocity increased, trunk pitch remained approximately invariant, but a significant head translation developed. This head translation induced compensatory head pitch in space, which tended to point the head at a fixed point in front of the subject that remained approximately invariant with regard to walking speed. The predominant frequency of head translation and rotation was restricted to a narrow range from 1.4 Hz at 0.6 m/s to 2.5 Hz at 2.2 m/s. Within the range of 0.8-1.8 m/s, subjects tended to increase their stride length rather than step frequency to walk faster, maintaining the predominant frequency of head movement at close to 2.0 Hz. At walking speeds above 1.2 m/s, head pitch in space was highly coherent with, and compensatory for, vertical head translation. In the range 1.2-1.8 m/s, the power spectrum of vertical head translation was the most highly tuned, and the relationship between walking speed and head and trunk movements was the most linear. We define this as an optimal range of walking velocity with regard to head-trunk coordination. The coordination of head and trunk movement was less coherent at walking velocities below 1.2 m/s and above 1.8 m/s. These results suggest that two mechanisms are utilized to maintain a stable head fixation distance over the optimal range of walking velocities. The relative

  11. Effects of walking velocity on vertical head and body movements during locomotion

    Science.gov (United States)

    Hirasaki, E.; Moore, S. T.; Raphan, T.; Cohen, B.

    1999-01-01

    Trunk and head movements were characterized over a wide range of walking speeds to determine the relationship between stride length, stepping frequency, vertical head translation, pitch rotation of the head, and pitch trunk rotation as a function of gait velocity. Subjects (26-44 years old) walked on a linear treadmill at velocities of 0.6-2.2 m/s. The head and trunk were modeled as rigid bodies, and rotation and translation were determined using a video-based motion analysis system. At walking speeds up to 1.2 m/s there was little head pitch movement in space, and the head pitch relative to the trunk was compensatory for trunk pitch. As walking velocity increased, trunk pitch remained approximately invariant, but a significant head translation developed. This head translation induced compensatory head pitch in space, which tended to point the head at a fixed point in front of the subject that remained approximately invariant with regard to walking speed. The predominant frequency of head translation and rotation was restricted to a narrow range from 1.4 Hz at 0.6 m/s to 2.5 Hz at 2.2 m/s. Within the range of 0.8-1.8 m/s, subjects tended to increase their stride length rather than step frequency to walk faster, maintaining the predominant frequency of head movement at close to 2.0 Hz. At walking speeds above 1.2 m/s, head pitch in space was highly coherent with, and compensatory for, vertical head translation. In the range 1.2-1.8 m/s, the power spectrum of vertical head translation was the most highly tuned, and the relationship between walking speed and head and trunk movements was the most linear. We define this as an optimal range of walking velocity with regard to head-trunk coordination. The coordination of head and trunk movement was less coherent at walking velocities below 1.2 m/s and above 1.8 m/s. These results suggest that two mechanisms are utilized to maintain a stable head fixation distance over the optimal range of walking velocities. The relative

  12. Velocity of large bubble in liquid-solid mixture in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, H.; Sakaguchi, T. [Kobe Univ., Kobe (Japan)

    1995-09-01

    The upward movement of a large bubble in a stationary mixture of liquid and solid is one of the most fundamental phenomena of gas-liquid-solid three phase slug flow in a vertical tube. The purpose of this study is to make clear the characteristic of the rising velocity of this fundamental flow experimentally. The rising velocity of a large bubble V in a liquid-solid mixture was measured and compared with the velocity V{sub o} in a liquid (without solid). The experimental results were correlated using a non-dimensional velocity V{sup *}(=V/V{sub o}), and the following results were obtained. It was found that the characteristic of the rising velocity differs according to the tube diameter and the liquid viscosity, or the Galileo number in the non-dimensional expression. It can be classified into two regimes. (i) When the liquid viscosity is large (or the tube diameter is small), V{sup *} decreases linearly against the volumetric solid fraction {epsilon} of the mixture. (ii) When the viscosity is small, on the other hand, the relation between V{sup *} and {epsilon} is not linear. This classification can be explained by the results in the previous papers by the authors dealing with a large bubble in a liquid.

  13. Mean vertical velocities and flow tilt angles at a fetch-limited forest site in the context of carbon dioxide vertical advection

    Directory of Open Access Journals (Sweden)

    E. Dellwik

    2009-08-01

    Full Text Available An analysis of flow angles from a fetch-limited beech forest site with clearings is presented. Flow angles and vertical velocities from two types of sonic anemometers as well as a ground based remote sensing lidar were analysed. Instead of using rotations, where zero-flow angles were assumed for neutral flow, the data from the instruments were interpreted in relation to the terrain.

    Uncertainties regarding flow distortion and limited sampling time (statistical uncertainty were evaluated and found to be significant. Especially for one of the sonic anemometers, relatively small changes in the flow distortion correction could change the sign of mean vertical velocities taken during stable atmospheric stratification relative to the neutral flow. Despite the uncertainties, it was possible to some extent to relate both positive and negative mean flow angles to features in the terrain.

    Conical and linear scans with a remote sensing lidar were evaluated for estimation of vertical velocities and flow angles. The results of the vertical conical scans were promising, and yielded negative flow angles for a sector where the forest is fetch-limited. However, more data and analysis is needed for a complete evaluation of the technique. The horizontal linear scans showed the variability of the mean wind speed field. A vertical velocity was calculated from different focusing distances, but this estimate yielded unrealistically high vertical velocities, due to neglect of the transversal wind component.

    The vertical advection term was calculated using the measured mean flow angles at the mast and profile measurements of carbon dioxide, but it is not recommended to use in relation with the flux measurement as the vertical velocity measured at the mast is most likely not representative for the whole forest.

  14. Long velocity tails in plasmas and gravitational systems

    CERN Document Server

    Brenig, L; Filho, T M Rocha

    2016-01-01

    Long tails in the velocity distribution are observed in plasmas and gravitational systems. Some experiments and observations in far-from-equilibrium conditions show that these tails behave as 1/v^(5/2). We show here that such heavy tails are due to a universal mechanism related to the fluctuations of the total force field. Owing to the divergence in 1/r^2 of the binary interaction force, these fluctuations can be very large and their probability density exhibits a similar long tail. They induce large velocity fluctuations leading to the 1/v^(5/2) tail. We extract the mechanism causing these properties from the BBGKY hierarchy representation of Statistical Mechanics. This leads to a modification of the Vlasov equation by an additional term. The novel term involves a fractional power 3/4 of the Laplacian in velocity space and a fractional iterated time integral. Solving the new kinetic equation for a uniform system, we retrieve the observed 1/v^(5/2) tail for the velocity distribution. These results are confirm...

  15. Three dimensional MHD Modeling of Vertical Kink Oscillations in an Active Region Plasma Curtain

    CERN Document Server

    Ofman, Leon; Srivastava, Abhishek K

    2015-01-01

    Observations on 2011 August 9 of an X6.9-class flare in active region (AR) 11263 by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO), were followed by a rare detection of vertical kink oscillations in a large-scale coronal active region plasma curtain in EUV coronal lines. The damped oscillations with periods in the range 8.8-14.9 min were detected and analyzed recently. Our aim is to study the generation and propagation of the MHD oscillations in the plasma curtain taking into account realistic 3D magnetic and density structure of the curtain. We also aim at testing and improving coronal seismology for more accurate determination of the magnetic field than with standard method. We use the observed morphological and dynamical conditions, as well as plasma properties of the coronal curtain based on Differential Emission Measure (DEM) analysis to initialize a 3D MHD model of its vertical and transverse oscillations by implementing the impulsively excited velocity pulse mimick...

  16. Velocity storage in the human vertical rotational vestibulo-ocular reflex.

    Science.gov (United States)

    Bertolini, G; Ramat, S

    2011-03-01

    Human horizontal rotational vestibulo-ocular reflex (rVOR) has been extensively investigated: the horizontal semicircular canals sense yaw rotations with high-pass filter dynamics and a time constant (TC) around 5 s, yet the rVOR response shows a longer TC due to a central processing stage, known as velocity storage mechanism (VSM). It is generally assumed that the vertical rVOR behaves similarly to the horizontal one; however, VSM processing of the human vertical rVOR is still to be proven. We investigated the vertical rVOR in eight healthy human subjects using three experimental paradigms: (1) per- and post-rotatory around an earth-vertical axis (ear down rotations, EDR), (2) post-rotatory around an earth-horizontal axis with different stopping positions (static otolith stimulation), (3) per-rotatory around an earth-horizontal axis (dynamic otolith stimulation). We found that the TC of vertical rVOR responses ranged 3-10 s, depending both on gravity and on the direction of rotation. The shortest TC were found in response to post-rotatory earth-horizontal stimulation averaging 3.6 s, while they were prolonged in EDR stimulation, i.e. when the head angular velocity vector is aligned with gravity, with a mean value of about 6.0 s. Overall, the longest TC were observed in per-rotatory earth-horizontal stimulation, averaging 7.8 s. The finding of longer TC in EDR than in post-rotatory earth-horizontal stimulation indicates a role for the VSM in the vertical rVOR, although its contribution appears to be weaker than on the horizontal rVOR and may be directionally asymmetric. The results from per-rotatory earth-horizontal stimulation, instead, imply a role for the otoliths in controlling the duration of the vertical rVOR response. We found no reorientation of the response toward earth horizontal, indicating a difference between human and monkey rVOR.

  17. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    Directory of Open Access Journals (Sweden)

    Yong Yuan

    2011-11-01

    Full Text Available Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by means of a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if the fish become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS in the gate wells at the Bonneville Dam second powerhouse (B2 were intended to increase the guidance of juvenile salmonids into the juvenile bypass system but have resulted in higher mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters in the gate well slots at turbine units 12A and 14A of B2. From the measurements collected, the average approach velocity, sweep velocity, and the root mean square value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS were variable and typically less than 0.3 m/s, but fewer than 50% were less than or equal to 0.12 m/s. There was also large variance in sweep velocities across the face of the VBS with most measurements recorded at less than 1.5 m/s. Results of this study revealed that the approach velocities in the gate wells exceeded criteria intended to improve fish passage conditions that were recommended by National Marine Fisheries Service and the Washington State Department of Fish and Wildlife. The turbulence measured in the gate well may also result in suboptimal fish passage conditions but no established guidelines to contrast those results have been published.

  18. VELOCITY SHEAR INSTABILITY IN DUSTY PLASMAS OF COMET

    Institute of Scientific and Technical Information of China (English)

    Lu Li; Li Zhongyuan

    2000-01-01

    The velocity shear instability in a magnetized, three-component dusty plasma is investigated for both positively and negatively charged dust particles. The critical shears as a function of the relative charge of dust grains for both positively and negatively charged dust grains are in the same form. The instability excitation is easier in colder proton's environment for positively charged dust, and so also in colder electron's environment for negatively charged dust. For a certain flow pattern, the instability excites in different direction for different sign of charged dust grains. This conclusion may be helpful in interpreting the helical structures and streamer splitted phenomena in a cometary tail.

  19. Force-velocity relationship and maximal power on a cycle ergometer. Correlation with the height of a vertical jump.

    Science.gov (United States)

    Vandewalle, H; Peres, G; Heller, J; Panel, J; Monod, H

    1987-01-01

    The force-velocity relationship on a Monark ergometer and the vertical jump height have been studied in 152 subjects practicing different athletic activities (sprint and endurance running, cycling on track and/or road, soccer, rugby, tennis and hockey) at an average or an elite level. There was an approximately linear relationship between braking force and peak velocity for velocities between 100 and 200 rev.min-1. The highest indices of force P0, velocity V0 and maximal anaerobic power (Wmax) were observed in the power athletes. There was a significant relationship between vertical jump height and Wmax related to body mass.

  20. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  1. Suppression of vertical instability in elongated current-carrying plasmas by applying stellarator rotational transform

    Energy Technology Data Exchange (ETDEWEB)

    ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Maurer, D. A.; Pandya, M. D.; Traverso, P. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)

    2014-05-15

    The passive stability of vertically elongated current-carrying toroidal plasmas has been investigated in the Compact Toroidal Hybrid, a stellarator/tokamak hybrid device. In this experiment, the fractional transform f, defined as the ratio of the imposed external rotational transform from stellarator coils to the total rotational transform, was varied from 0.04 to 0.50, and the elongation κ was varied from 1.4 to 2.2. Plasmas that were vertically unstable were evidenced by motion of the plasma in the vertical direction. Vertical drifts are measured with a set of poloidal field pickup coils. A three chord horizontally viewing interferometer and a soft X-ray diode array confirmed the drifts. Plasmas with low fractional transform and high elongation are the most susceptible to vertical instability, consistent with analytic predictions that the vertical mode in elongated plasmas can be stabilized by the poloidal field of a relatively weak stellarator equilibrium.

  2. Three-dimensional MHD modeling of vertical kink oscillations in an active region plasma curtain

    Science.gov (United States)

    Ofman, L.; Parisi, M.; Srivastava, A. K.

    2015-10-01

    Context. Observations on 2011 August 9 of an X 6.9-class flare in active region (AR) 11263 by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), were followed by a rare detection of vertical kink oscillations in a large-scale coronal active region plasma curtain in extreme UV coronal lines with periods in the range 8.8-14.9 min. Aims: Our aim is to study the generation and propagation of the magnetohydrodynamic (MHD) oscillations in the plasma curtain taking the realistic 3D magnetic and the density structure of the curtain into account. We also aim to test and improve coronal seismology for a more accurate determination of the magnetic field than with the standard method. Methods: We use the observed morphological and dynamical conditions, as well as plasma properties of the coronal curtain, to initialize a 3D MHD model of the observed vertical and transverse oscillations. To accomplish this, we implemented the impulsively excited velocity pulse mimicking the flare-generated nonlinear fast magnetosonic propagating disturbance interacting obliquely with the curtain. The model is simplified by utilizing an initial dipole magnetic field, isothermal energy equation, and gravitationally stratified density guided by observational parameters. Results: Using the 3D MHD model, we are able to reproduce the details of the vertical oscillations and study the process of their excitation by a nonlinear fast magnetosonic pulse, propagation, and damping, finding agreement with the observations. Conclusions: We estimate the accuracy of simplified slab-based coronal seismology by comparing the determined magnetic field strength to actual values from the 3D MHD modeling results, and demonstrate the importance of taking more realistic magnetic geometry and density for improving coronal seismology into account. A movie associated to Fig. 1 is available in electronic form at http://www.aanda.org

  3. A comparison of vertical velocity variance measurements from wind profiling radars and sonic anemometers

    Science.gov (United States)

    McCaffrey, Katherine; Bianco, Laura; Johnston, Paul; Wilczak, James M.

    2017-03-01

    Observations of turbulence in the planetary boundary layer are critical for developing and evaluating boundary layer parameterizations in mesoscale numerical weather prediction models. These observations, however, are expensive and rarely profile the entire boundary layer. Using optimized configurations for 449 and 915 MHz wind profiling radars during the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA), improvements have been made to the historical methods of measuring vertical velocity variance through the time series of vertical velocity, as well as the Doppler spectral width. Using six heights of sonic anemometers mounted on a 300 m tower, correlations of up to R2 = 0. 74 are seen in measurements of the large-scale variances from the radar time series and R2 = 0. 79 in measurements of small-scale variance from radar spectral widths. The total variance, measured as the sum of the small and large scales, agrees well with sonic anemometers, with R2 = 0. 79. Correlation is higher in daytime convective boundary layers than nighttime stable conditions when turbulence levels are smaller. With the good agreement with the in situ measurements, highly resolved profiles up to 2 km can be accurately observed from the 449 MHz radar and 1 km from the 915 MHz radar. This optimized configuration will provide unique observations for the verification and improvement to boundary layer parameterizations in mesoscale models.

  4. Monitoring of the velocity field of the plasma motion under sounding of F ionospheric region by the probe waves

    Science.gov (United States)

    Sergeev, Evgeny; Komrakov, G. P.; Smyshlyaev, Sergey E.

    Results of investigations of the motions in F region of the ionosphere by means of the method of the space-frequency diversity reception are presented. Measurements of the vertical and horizontal plasma drift velocities have been performed over SURA facility (Russia) using of multifrequency dopler station for vertical sounding and diversity three point reception of the reflected radiosignals. Possibilities of a day (15 hours) monitoring of the drift velocity space at different altitudes were studied by using of the three fixed probe frequencies 4353 kHz, 5853 kHz and 7353 kHz. For another experimental series complex investigations of the pumped ionospheric volume were performed by its diagnostics at different frequencies with the short (¡ 200 mks) wide frequency band (˜ 500 kHz) and powerful (˜ 20 - 150 MW ERP) pulses. Data about a fine distribution structure of the vertical and horizontal plasma drift velocities in the turbulence plasma range were first obtained with a high frequency (˜ 1 kHz) and temporal (˜ 20 ms) resolution. The work was supported by RFBR grants 07-02-00464 and 06-02-17334.

  5. One-dimensional ocean model with three types of vertical velocities: a case study in the South China Sea

    Science.gov (United States)

    Lu, Wenfang; Yan, Xiao-Hai; Han, Lu; Jiang, Yuwu

    2017-01-01

    In this research, three vertical velocities were included in a one-dimensional (1D) ocean model for a case study of the SouthEast Asian Time-Series Study station in the South China Sea. The vertical velocities consisted three processes, i.e., Ekman pumping (WEK), Eddy pumping (WEP), and the background upwelling (WBK). The quantification of WEK followed the classical Ekman pumping theory. The WEP, whose underlying mechanism was consistent with the baroclinic modes (dominated by the first mode), was quantified by Argo observation and altimetry data. The WBK, related with the background circulation, was estimated from the long-term heat budget balance. The skill assessment indicated that the case with all three processes performed best. The study confirmed the capability of the 1D model with three types of vertical velocities, which can reproduce the general structure and variation of temperature in vertical direction.

  6. Relative ion expansion velocity in laser-produced plasmas

    Science.gov (United States)

    Goldsmith, S.; Moreno, J. C.; Griem, H. R.; Cohen, Leonard; Richardson, M. C.

    1988-01-01

    The spectra of highly ionized titanium, Ti XIII through Ti XXI, and C VI Lyman lines were excited in laser-produced plasmas. The plasma was produced by uniformly irradiating spherical glass microballoons coated with thin layers of titanium and parylene. The 24-beam Omega laser system produced short, 0.6 ns, and high-intensity, 4 x 10 to the 14th W/sq cm, laser pulses at a wavelength of 351 nm. The measured wavelength for the 2p-3s Ti XIII resonance lines had an average shift of + 0.023 A relative to the C VI and Ti XX spectral lines. No shift was found between the C VI, Ti XIX, and Ti XX lines. The shift is attributed to a Doppler effect, resulting from a difference of (2.6 + or - 0.2) x 10 to the 7th cm/s in the expansion velocities of Ti XIX and Ti XX ions compared to Ti XIII ions.

  7. Equatorial nighttime vertical f-region plasma drifts during disturbed-time in the african sector

    Science.gov (United States)

    Oyekola, O. S.; Ojo, A.; Akinrimisi, J.

    The terrestrial ionosphere deals with the basic structure and variability of plasma within the upper atmosphere of the Earth Furthermore the ionosphere comprises less than one percent of the mass of the upper atmosphere yet it has a significant influence on advanced communication and navigation systems both have important economic consequences As society beings to rely on more complex technologies those systems become more susceptible to environmental effects However there is still considerable difficulty in the understanding of the equatorial ionospheric phenomena under different solar and geomagnetic conditions despite all extensive studies in the middle and high latitudes and in equatorial and low latitude American and Indian sectors By contrast there is a remarkably sparse database at equatorial African continent of the globe Consequently we infer F-region vertical plasma drifts at the magnetic equatorial station Ibadan 7 4 o N 3 9 o E 6 o S dip from the time variation of the hourly recorded ionosonde virtual height of F layer h F data obtained during 1957-58 International Geophysical Year IGY period corresponding to a year of high solar flux under geomagnetic disturbed night hours 1800-0600 LT The results show a strong geomagnetic control of ionospheric plasma drifts velocities variability in month-to-month and at three different seasonal conditions The largest random fluctuations are observed in June solstice months The evening and morning reversal times are highly variable The average magnitude of the downward

  8. Comprehensive simulation of vertical plasma instability events and their serious damage to ITER plasma facing components

    Science.gov (United States)

    Hassanein, A.; Sizyuk, T.

    2008-11-01

    Safe and reliable operation is still one of the major challenges in the development of the new generation of ITER-like fusion reactors. The deposited plasma energy during major disruptions, edge-localized modes (ELMs) and vertical displacement events (VDEs) causes significant surface erosion, possible structural failure and frequent plasma contamination. While plasma disruptions and ELM will have no significant thermal effects on the structural materials or coolant channels because of their short deposition time, VDEs having longer-duration time could have a destructive impact on these components. Therefore, modelling the response of structural materials to VDE has to integrate detailed energy deposition processes, surface vaporization, phase change and melting, heat conduction to coolant channels and critical heat flux criteria at the coolant channels. The HEIGHTS 3D upgraded computer package considers all the above processes to specifically study VDE in detail. Results of benchmarking with several known laboratory experiments prove the validity of HEIGHTS implemented models. Beryllium and tungsten are both considered surface coating materials along with copper structure and coolant channels using both smooth tubes with swirl tape insert. The design requirements and implications of plasma facing components are discussed along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components.

  9. Anthropometric profile, vertical jump, and throwing velocity in elite female handball players by playing positions.

    Science.gov (United States)

    Vila, Helena; Manchado, Carmen; Rodriguez, Nuria; Abraldes, José Arturo; Alcaraz, Pedro Emilio; Ferragut, Carmen

    2012-08-01

    Women's handball is a sport, which has seen an accelerated development over the last decade. Although anthropometric and physical characteristics have been studied for male sports teams, in women's handball, studies are scarce. The aim of this study was twofold: first, to describe the anthropometric characteristics, throwing velocity, hand grip, and muscular power of the lower limbs in female handball players and second, to identify the possible differences in these parameters in terms of individual playing positions (center, back, wing, pivot, and goalkeeper). A total of 130 elite female Spanish handball players participated in the study (age 25.74 ± 4.84 years; playing experience 14.92 ± 4.88 years). Anthropometric assessment was performed for all the subjects following the International Society for the Advancement of Kinanthropometry protocols. Furthermore, all the subjects performed a vertical jump test (squat jump and countermovement jump). Hand grip and throwing velocity in several situations were also assessed. A 1-way analysis of variance and a Tukey post hoc test were used to study the differences among individual playing positions. Wings were less heavy, shorter, and showed a smaller arm span than did goalkeepers, backs and pivots (p ≤ 0.001). Additionally, pivots were heavier than centers. Backs and pivots exhibited higher muscular mass than did wings. Total players' somatotype was mesomorphy endomorphy (3.89-4.28-2.29). Centers showed higher throwing velocity levels than did wings in 9-m throws from just behind the line, with a goalkeeper. Backs exhibited higher hand-grip values than did wings. Statistical differences have been established between wings and other specific playing positions, especially with pivot and backs. Coaches can use this information to select players for the different specific positions.

  10. Far-Field and Middle-Field Vertical Velocities Associated with Megathrust Earthquakes

    Science.gov (United States)

    Fleitout, L.; Trubienko, O.; Klein, E.; Vigny, C.; Garaud, J.; Shestakov, N.; Satirapod, C.; Simons, W. J.

    2013-12-01

    The recent megathrust earthquakes (Sumatra, Chili and Japan) have induced far-field postseismic subsidence with velocities from a few mm/yr to more than 1cm/yr at distances from 500 to 1500km from the earthquake epicentre, for several years following the earthquake. This subsidence is observed in Argentina, China, Korea, far-East Russia and in Malaysia and Thailand as reported by Satirapod et al. ( ASR, 2013). In the middle-field a very pronounced uplift is localized on the flank of the volcanic arc facing the trench. This is observed both over Honshu, in Chile and on the South-West coast of Sumatra. In Japan, the deformations prior to Tohoku earthquake are well measured by the GSI GPS network: While the East coast was slightly subsiding, the West coast was raising. A 3D finite element code (Zebulon-Zset) is used to understand the deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes. The meshes designed for each region feature a broad spherical shell portion with a viscoelastic asthenosphere. They are refined close to the subduction zones. Using these finite element models, we find that the pattern of the predicted far-field vertical postseismic displacements depends upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. A low viscosity asthenosphere at shallow depth, just below the lithosphere is required to explain the subsidence at distances from 500 to 1500km. A thick (for example 600km) asthenosphere with a uniform viscosity predicts subsidence too far away from the trench. Slip on the subduction interface is unable tot induce the observed far-field subsidence. However, a combination of relaxation in a low viscosity wedge and slip or relaxation on the bottom part of the subduction interface is necessary to explain the observed postseismic uplift in the middle-field (volcanic arc area). The creep laws of the various zones used to explain the postseismic data can be injected in

  11. Vertical Profiles of the 3-D Wind Velocity Retrieved from Multiple Wind Lidars Performing Triple Range-Height-Indicator Scans

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; Brewer, W. Alan; Choukulkar, Aditya; Delgado, Ruben; Lundquist, Julie K.; Shaw, William J.; Wilczak, James M.; Wolfe, Daniel

    2017-02-06

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.

  12. First plasma operation of the enhanced JET vertical stabilisation system

    NARCIS (Netherlands)

    Rimini, F. G.; Crisanti, F.; Albanese, R.; Ambrosino, G.; Ariola, M.; Artaserse, G.; Bellizio, T.; Coccorese, V.; De Tommasi, G.; P. de Vries,; Lomas, P. J.; Maviglia, F.; Neto, A.; Nunes, I.; Pironti, A.; Ramogida, G.; Sartori, F.; Shaw, S. R.; Tsalas, M.; Vitelli, R.; Zabeo, L.

    2011-01-01

    A project dedicated to the enhancement of the JET vertical stabilization system was launched in 2006, including an upgrade of the Power Supply of the Radial Field Amplifier, of hardware and software of the vertical stabilization control system. The main aim was to double the JET capability in stabil

  13. Plasma flow velocity measurements using a modulated Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. [Australian National Univ., Canberra, ACT (Australia). Plasma Research Lab.; Meijer, F.G. [FOM-Instituut voor Plasmafysica `Rijnhuizen`, Association Euratom-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands)]|[Physics Faculty, University of Amsterdam, Amsterdam (Netherlands)

    1997-03-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.) 1 refs.

  14. Velocity Diagnosis of Critical Surface at Microwave Band in Laser-Induced Plasma

    Institute of Scientific and Technical Information of China (English)

    WU Ying; WANG Junyan; BAI Shunbo; CHEN Jianping; CHU Ran; YUN Xiaohua; NI Xiaowu

    2008-01-01

    The velocity of critical surface at microwave band in laser-induced plasma was mea-sured and the results are presented. The results indicate that the velocity of critical surface with low electron density is larger than that with the high one; and the velocity of critical surface increases with the laser power density.

  15. Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    Science.gov (United States)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-12-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2 ≈ 0.95 - 0.98) with those calculated from sonic anemometer measurements.

  16. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  17. Horizontal and vertical velocities derived from the IDS contribution to ITRF2014, and comparisons with geophysical models

    Science.gov (United States)

    Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaría-Gómez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.

    2016-10-01

    In the context of the 2014 realization of the International Terrestrial Reference Frame, the International DORIS (Doppler Orbitography Radiopositioning Integrated by Satellite) Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS combination centre estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time-series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm yr-1. For five of the sites (Arequipa, Dionysos/Gavdos, Manila and Santiago) with horizontal velocity differences with respect to these models larger than 10 mm yr-1, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm yr-1 at 23 percent of the sites. At Thule, the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time-series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.

  18. Divertor plasma conditions and neutral dynamics in horizontal and vertical divertor configurations in JET-ILW low confinement mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Groth, M., E-mail: mathias.groth@aalto.fi [Aalto University, Association EURATOM-Tekes, Otakaari 4, Espoo (Finland); Brezinsek, S. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); Belo, P. [Institute of Plasmas and Nuclear Fusion, Association EURATOM/IST, Lisbon (Portugal); Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Brix, M. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Calabro, G. [Association EURATOM-ENEA, Frascati (Italy); Chankin, A. [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Clever, M.; Coenen, J.W. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); Corrigan, G. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Drewelow, P. [Max-Planck-Institute for Plasma Physics, EURATOM Association, Greifswald (Germany); Guillemaut, C. [Association EURATOM CEA, CEA/DSM/IRFM, Cadarache (France); Harting, D. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Huber, A. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); Jachmich, S. [Association ‘Euratom-Belgian state’, Ecole Royale Militaire, Brussels (Belgium); Järvinen, A. [Aalto University, Association EURATOM-Tekes, Otakaari 4, Espoo (Finland); Kruezi, U.; Lawson, K.D. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Lehnen, M. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); ITER Organisation, 13115 Saint-Paul-Lez-Durance (France); and others

    2015-08-15

    Measurements of the plasma conditions at the low field side target plate in JET ITER-like wall ohmic and low confinement mode plasmas show minor differences in divertor plasma configurations with horizontally and vertically inclined targets. Both the reduction of the electron temperature in the vicinity of the strike points and the rollover of the ion current to the plates follow the same functional dependence on the density at the low field side midplane. Configurations with vertically inclined target plates, however, produce twice as high sub-divertor pressures for the same upstream density. Simulations with the EDGE2D-EIRENE code package predict significantly lower plasma temperatures at the low field side target in vertical than in horizontal target configurations. Including cross-field drifts and imposing a pumping by-pass leak at the low-field side plate can still not recover the experimental observations.

  19. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    Model of vertical plasma motion during the current quench

    Science.gov (United States)

    Kiramov, D. I.; Breizman, B. N.

    2017-10-01

    Tokamak disruptions impair plasma position control, which allows the plasma column to move and hit the wall. These detrimental events enhance thermal and mechanical loads due to halo currents and runaway electron losses. Their fundamental understanding and prevention is one of the high-priority items for ITER.

  1. Effects of beam velocity and density on an ion-beam pulse moving in magnetized plasmas

    CERN Document Server

    Zhao, Xiao-ying; Zhao, Yong-tao; Qi, Xin; Yang, Lei

    2016-01-01

    The wakefield and stopping power of an ion-beam pulse moving in magnetized plasmas are investigated by particle-in-cell (PIC) simulations. The effects of beam velocity and density on the wake and stopping power are discussed. In the presence of magnetic field, it is found that beside the longitudinal conversed V-shaped wakes, the strong whistler wave are observed when low-density and low-velocity pulses moving in plasmas. The corresponding stopping powers are enhanced due to the drag of these whistler waves. As beam velocities increase, the whistler waves disappear, and only are conversed V-shape wakes observed. The corresponding stopping powers are reduced compared with these in isotropic plasmas. When high-density pulses transport in the magnetized plasmas, the whistler waves are greatly inhibited for low-velocity pulses and disappear for high-velocity pulses. Additionally, the magnetic field reduces the stopping powers for all high-density cases.

  2. Plasma flow velocity measurements using a modulated Michelson interferometer

    NARCIS (Netherlands)

    Howard, J.; Meijer, F. G.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (C) 1997 Elsevier Science S.A.

  3. On vertical velocity fluctuations and internal tides in an upwelling region off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Antony, M.K.

    of flow and wind and temperature oscillations at a mooring site in the shelf waters off the west coast of India are discussed. The vertical velocities were computed from a time series of vertical temperature profiles assuming that horizontal advection... of tem- perature is negligible. The computed values at a depth of 40 m during the 72-h period of observation were of the order of 10-l to lo-* cm s-i, with a mean value of - 2.77 x lo-* cm s-i indicating a net upward movement of water. The com- puted...

  4. Fluid approach to evaluate sound velocity in Yukawa systems (complex plasmas)

    CERN Document Server

    Khrapak, Sergey

    2015-01-01

    The conventional fluid description of multi-component plasma, supplemented by an appropriate equation of state for the macroparticle component, is used to evaluate the longitudinal sound velocity of Yukawa fluids. The obtained results are in very good agreement with those obtained earlier employing the quasi-localized charge approximation and molecular dynamics simulations in a rather broad parameter regime. Thus, a simple yet accurate tool to estimate the sound velocity across coupling regimes is proposed, which can be particularly helpful in estimating the dust-acoustic velocity in strongly coupled dusty (complex) plasmas. It is shown that, within the present approach, the sound velocity is completely determined by particle-particle correlations and the neutralizing medium (plasma), apart from providing screening of the Coulomb interaction, has no other effect on the sound propagation. The ratio of the actual sound velocity to its "ideal gas" (weak coupling) scale only weakly depends on the coupling strengt...

  5. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  6. Particle position and velocity measurement in dusty plasmas using particle tracking velocimetry

    Science.gov (United States)

    Feng, Yan; Goree, J.; Haralson, Zach; Wong, Chun-Shang; Kananovich, A.; Li, Wei

    2016-06-01

    > Methods of imaging and image analysis are presented for dusty plasma experiments. Micron-sized polymer spheres, electrically suspended in a partially ionized gas, are illuminated by a sheet of laser light and imaged by video cameras. Image analysis methods yield particle positions and velocities of individual particles in each video image. Methods to minimize errors in the particle positions and velocities, which are now commonly used in the dusty plasma community, are described.

  7. Experiment study of edge localized mode with plasma vertical jogging in HL-2A tokamak

    Science.gov (United States)

    Wu, N.; Chen, S. Y.; Song, X. M.; Mou, M. L.; Huang, J.; Wang, Z. T.; Tang, C. J.; Song, X.; Xia, F.; Jiang, M.; HL-2A Team

    2017-09-01

    The effect of plasma vertical jogging on edge localized modes (ELMs) is investigated in HL-2A tokamak. During the experiment, plasma jogging with a period of about 75 ms is performed, and the results show that both the ELM amplitude and period decrease when the plasma moves upward, which are qualitatively explained by the simulation based on the theory of peeling-ballooning mode including the resistivity effect. The upward movement of plasma causes a change in pedestal parameters, and then the dominant toroidal mode shifts to a relatively high-n mode with the effects of resistivity and diamagnetic, which lead to smaller ELM amplitudes.

  8. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2015-01-01

    , gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius...... of the conducting zone of the plasma column. © 2015 AIP Publishing LLC....

  9. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    DEFF Research Database (Denmark)

    Olsen, Jeppe Miki Busk; Madsen, Jens; Nielsen, Anders Henry

    2016-01-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocit...

  10. Agyrotropic pressure tensor induced by the plasma velocity shear

    Science.gov (United States)

    Pegoraro, Francesco; Del Sarto, Danele; Califano, Francesco

    2016-10-01

    We show that the spatial inhomogeneity of a shear flow in a fluid plasma is transferred to a pressure anisotropy that has both a gyrotropic and a non gyrotropic component. We investigate this process both analytically and numerically by including the full pressure tensor dynamics. We determine the time evolution of the pressure agyrotropy and in general of the pressure tensor anisotropization which arise from the action of both the magnetic eld and the flow strain tensor. This mechanism can affect the onset and development of shear-induced fluid instabilities in plasmas and is relevant to the understanding of the origin of some of the non-Maxwellian distribution functions evidenced both in Vlasov simulations and in space plasma measurements that exhibit pressure agyrotropy.

  11. H∞ Loop Shaping Control for Plasma Vertical Position Instability on QUEST

    Science.gov (United States)

    Liu, Xiaolong; Kazuo, Nakamura; Tatsuya, Yoshisue; Osamu, Mitarai; Makoto, Hasegawa; Kazutoshi, Tokunaga; Xue, Erbing; Hideki, Zushi; Kazuaki, Hanada; Akihide, Fujisawa; Hiroshi, Idei; Shoji, Kawasaki; Hisatoshi, Nakashima; Aki, Higashijima; Kuniaki, Araki

    2013-03-01

    QUEST has a divertor configuration with a high and a negative n-index, and the problem of plasma vertical position instability control in QUEST is still under extensive study for achieving high efficiency plasma. The instability we considered is that the toroidal plasma moves either up or down in the vacuum chamber until it meets the vessel wall and is extinguished. The actively controlled coils (HCU and HCL) outside the vacuum vessel are serially connected in feedback with a measurement of the plasma vertical position to provide stabilizing control. In this work, a robust controller is employed by using the loop synthesis method, and provides robust stability over a wide range of n-index. Moreover, the gain of the robust controller is lower than that of a typical proportional derivative (PD) controller in the operational frequency range; it indicates that the robust controller needs less power consumption than the PD controller does.

  12. Measurements of the fluctuating liquid velocity of a bidisperse suspension of bubbles rising in a vertical channel

    Science.gov (United States)

    Serrano, Juan Carlos; Mendez, Santos; Zenit, Roberto

    2009-11-01

    Experiments were performed in a vertical channel to study the behaviour of a bidisperse suspension of bubbles. Bubbles were produced using capillaries of two distinct inner diameters. The capillaries are small enough to generate bubbles in the range of 1 to 6 mm in diameter. Using water and water-glycerin mixtures, the vertical component of the fluctuating liquid velocity was obtained using a flying hot wire anemometer technique. The system is characterized by the dimensionless Reynolds and Weber numbers in the range of 22velocity variance increases with bubble concentration. We also found that the variance, normalized with the mean bubble velocity squared, Tf% =Uf^^'2/Ub^2, increased as the Reynolds number decreased. Bidisperse flows, in general, show larger values of fluctuation.

  13. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  14. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldén, Marcus; Li, Zhongshan, E-mail: zhongshan.li@forbrf.lth.se, E-mail: alpers@ma.tum.de [Division of Combustion Physics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Moseev, Dmitry [Max-Planck-Institut für Plasmaphysik, D-85748 Garching bei München (Germany); FOM Institute DIFFER, 3430 BE Nieuwegein (Netherlands); Kusano, Yukihiro [Department of Wind Energy, Section for Composites and Materials Mechanics, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Salewski, Mirko [Department of Physics, Section for Plasma Physics and Fusion Energy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Alpers, Andreas, E-mail: zhongshan.li@forbrf.lth.se, E-mail: alpers@ma.tum.de; Gritzmann, Peter; Schwenk, Martin [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany)

    2015-01-26

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the single camera image), we provide here a 3D data analysis that includes 3D reconstructions of the plasma column and 3D particle tracking velocimetry based on discrete tomography methods. The 3D analysis, in particular, the determination of the 3D slip velocity between the plasma column and the gas flow, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius of the conducting zone of the plasma column.

  15. Identification and control of plasma vertical position using neural network in Damavand tokamak.

    Science.gov (United States)

    Rasouli, H; Rasouli, C; Koohi, A

    2013-02-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  16. Determination of the Ion Velocity Distribution in a Rotating Plasma from Measurements of Doppler Broadening

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    The Doppler-broadened profile of the He II 4685.75 AA line was measured along a chord in a rotating plasma, transverse to the magnetic field. Using a single-particle orbit picture, the corresponding velocity spectrum of ions confirm the measurements, so it can be concluded that the single......-particle orbit picture is valid for the discharge period under investigation, except for the first few microseconds during breakdown when a strong interaction between plasma and remaining neutral gas takes place by Alfvens critical velocity mechanism. A simple relation is given between the measured half......-width and shift of the Doppler profile and the macroscopic quantities of ion velocity and energy. Several Doppler-broadened profiles are shown for different plasma parameters....

  17. Differences in vertical jumping and mae-geri kicking velocity between international and national level karateka

    Directory of Open Access Journals (Sweden)

    Carlos Balsalobre-Fernández

    2013-04-01

    Full Text Available Aim: Lower limb explosive strength and mae-geri kicking velocity are fundamental in karate competition; although it is unclear whether these variables could differentiate the high-level athletes. The objective of this research is to analyze the differences in the mae-geri kicking velocity and the counter-movement jump (CMJ between a group of international top level karateka and another group of national-level karateka.Methods: Thirteen international-level karateka and eleven national-level karateka participated in the study. After a standard warm-up, CMJ height (in cm and mae-geri kicking velocity (in m/s was measured using an IR-platform and a high-speed camera, respectively.Results: Proceeding with MANCOVA to analyze the differences between groups controlling the effect of age, the results show that the international-level karateka demonstrated significantly higher levels of CMJ than national-level competitors (+22.1%, F = 9.47, p = 0.006, η2 = 0.311. There were no significant differences between groups in the mae-geri kicking velocity (+5,7%, F=0.80; p=0.38; η2=0.03.Conclusion: Our data shows, first, the importance of CMJ assessment as a tool to detect talent in karate and, second, that to achieve international-level in karate it may be important to increase CMJ levels to values ​​similar to those offered here.

  18. Velocity statistics in holographic fluids: magnetized quark-gluon plasma and superfluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Areán, Daniel [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805, Munich (Germany); Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Department of Physics, University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Patiño, Leonardo; Villasante, Mario [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México,A.P. 70-542, México D.F. 04510 (Mexico)

    2016-10-28

    We study the velocity statistics distribution of an external heavy particle in holographic fluids. We argue that when the dual supergravity background has a finite temperature horizon the velocity statistics goes generically as 1/v, compatible with the jet-quenching intuition from the quark-gluon plasma. A careful analysis of the behavior of the classical string whose apparent world sheet horizon deviates from the background horizon reveals that other regimes are possible. We numerically discuss two cases: the magnetized quark-gluon plasma and a model of superfluid flow. We explore a range of parameters in these top-down supergravity solutions including, respectively, the magnetic field and the superfluid velocity. We determine that the velocity statistics goes largely as 1/v, however, as we leave the non-relativistic regime we observe some deviations.

  19. Monte Carlo-based subgrid parameterization of vertical velocity and stratiform cloud microphysics in ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2013-08-01

    Full Text Available A new method for parameterizing the subgrid variations of vertical velocity and cloud droplet number concentration (CDNC is presented for general circulation models (GCMs. These parameterizations build on top of existing parameterizations that create stochastic subgrid cloud columns inside the GCM grid cells, which can be employed by the Monte Carlo independent column approximation approach for radiative transfer. The new model version adds a description for vertical velocity in individual subgrid columns, which can be used to compute cloud activation and the subgrid distribution of the number of cloud droplets explicitly. Autoconversion is also treated explicitly in the subcolumn space. This provides a consistent way of simulating the cloud radiative effects with two-moment cloud microphysical properties defined at subgrid scale. The primary impact of the new parameterizations is to decrease the CDNC over polluted continents, while over the oceans the impact is smaller. Moreover, the lower CDNC induces a stronger autoconversion of cloud water to rain. The strongest reduction in CDNC and cloud water content over the continental areas promotes weaker shortwave cloud radiative effects (SW CREs even after retuning the model. However, compared to the reference simulation, a slightly stronger SW CRE is seen e.g. over mid-latitude oceans, where CDNC remains similar to the reference simulation, and the in-cloud liquid water content is slightly increased after retuning the model.

  20. Evidence for thermospheric gravity waves in the southern polar cap from ground-based vertical velocity and photometric observations

    Directory of Open Access Journals (Sweden)

    J. L. Innis

    Full Text Available Zenith-directed Fabry-Perot Spectrometer (FPS and 3-Field Photometer (3FP observations of the λ630 nm emission (~240 km altitude were obtained at Davis station, Antarctica, during the austral winter of 1999. Eleven nights of suitable data were searched for significant periodicities common to vertical winds from the FPS and photo-metric variations from the 3FP. Three wave-like events were found, each of around one or more hours in duration, with periods around 15 minutes, vertical velocity amplitudes near 60 ms–1 , horizontal phase velocities around 300 ms–1 , and horizontal wavelengths from 240 to 400 km. These characteristics appear consistent with polar cap gravity waves seen by other workers, and we conclude this is a likely interpretation of our data. Assuming a source height near 125 km altitude, we determine the approximate source location by calculating back along the wave trajectory using the gravity wave property relating angle of ascent and frequency. The wave sources appear to be in the vicinity of the poleward border of the auroral oval, at magnetic local times up to 5 hours before local magnetic midnight.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics; waves and tides

  1. Estimation of the Vertical Velocity Leading to the Formation of Cirrus Using Ultra-High Resolution Global Simulations

    Science.gov (United States)

    Barahona, D.; Molod, A.; Putman, W.; Suarez, M.

    2014-12-01

    Cirrus clouds significantly impact the radiative and transport processes of the upper troposphere and the lower stratosphere. State-of-the-art global models parameterize the formation of cirrus explicitly linking ice nucleation events to the aerosol properties and the cloud-scale dynamics. However most GCMs cannot resolve the scale at which cloud formation occurs. Thus subgrid scale dynamics is typically parameterized by relating the vertical velocity variance, σw, to grid-scale fields. These parameterizations are typically validated against field campaign data for specific locations. However an assessment of the global spatial distribution of σw is lacking, limiting the ability of GCMs to describe cirrus formation. Here the non-hydrostatic version of the NASA Goddard Earth Observing System model (GEOS-5) is used to estimate the variance of vertical velocity in GCMs. GEOS-5 was run at cloud-resolving resolutions (~7 km), allowing the explicit calculation of σw. Our results indicate that σw is determined by orographic drag and local convection, and higher over the continents than over the ocean. A recently developed parameterization of σw is also evaluated. Compared to the model results the parameterization is able to reproduce the global distribution of σw for warm cirrus clouds but tends to overestimate σw near the tropopause. Our work provides for the first time an assessment of the global variability in the subgrid scale dynamics leading to the formation of cirrus.

  2. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Newsom, Rob K. [Pacific Northwest National Laboratory, Richland, Washington; Turner, David D. [Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

    2017-09-01

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.

  3. Quantum Effects on Rayleigh-Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    G.A.Hoshoudy

    2010-01-01

    @@ Quantum effects on Rayleigh-Taylor instability of a stratified incompressible plasmas layer under the influence of vertical magnetic field are investigated.The solutions of the linearized equations of motion together with the boundary conditions lead to deriving the relation between square normalized growth rate and square normalized wawe number in two algebraic equations and are numerically analyzed.In the case of the real solution of these two equations,they can be combined to generate a single equation.The results show that the presence of vertical magnetic field beside the quantum effect will bring about more stability on the growth rate of unstable configuration.

  4. The density and velocity of plasma bullets propagating along one dielectric tube

    Directory of Open Access Journals (Sweden)

    Longfei Ji

    2015-08-01

    Full Text Available This study shows that the propagation of plasma bullets along one dielectric tube is strongly affected by many discharge parameters, such as the waveform of applied voltage (AC or pulsed DC, peak voltage, He flow rate, and the frequency of AC voltage. Analysis indicates that the density and velocity of plasma bullets are mainly determined by the electric field at the front of plasma bullets. These discharge parameters may significantly influence the distribution of plasma potential along the tube, thus control the electric field at the front of plasma bullets and their propagation. An increase in the pulsed DC voltage with its rise time of <40-50 ns can lead to an obvious improvement in the electric field at the front of plasma bullets, resulting in generation of a plasma in the high density gas and a fast propagation of plasma bullets. He flowing through the tube can contribute to the surface diffusion of charged species, and greatly increase the electric field at the front of plasma bullets. During the propagation of plasma bullets, their density is decreased due to the surface recombination of charged species, such as electrons and ions.

  5. Reynolds shear-stress and velocity: positive biological response of neotropical fishes to hydraulic parameters in a vertical slot fishway

    Directory of Open Access Journals (Sweden)

    Bernardo Alan de Freitas Duarte

    Full Text Available The barriers created by dams can cause negative impacts to aquatic communities, and migratory fish species are directly affected. Fishways have been developed to allow the upstream passage of fishes through dams. In Brazil, after the implementation of environmental laws, these structures have been built based on European and American fishway designs. Studies have shown selectivity for different neotropical fishes in some Brazilian fishways, and the main challenge has been to promote upstream passage of a large number of diverse fish species. The patterns of flow circulation within the fish ladder may explain fish selectivity although few studies detail the fish response to hydraulic characteristics of fish ladder flow. This paper presents a laboratory study, where a vertical slot fishway was built in a hydraulic flume and the behavior of two neotropical fish species (Leporinus reinhardti and Pimelodus maculatus were analyzed. The structure of flow was expressed in terms of mean velocity, Reynolds shear-stress and velocity fluctuation fields. The individuals of Leporinus reinhardti had higher passage success than Pimelodus maculatus in the laboratory flume. Both species preferred areas of low to zero Reynolds shear-stress values. In addition, different preferences were observed for these species concerning the horizontal components of velocity fluctuation.

  6. A discrete adaptive near-time optimum control for the plasma vertical position in a Tokamak

    CERN Document Server

    Scibile, L

    2001-01-01

    A nonlinear controller for the plasma vertical position in a Tokamak, based on a discrete-time adaptive near time optimum control algorithm (DANTOC) is designed to stabilize the system and to maximize the state-space region over which stability can be guaranteed. The controller is also robust to the edge localized modes (ELMs) and the 600 Hz noise from the thyristor power supplies that are the primary source of disturbances and measurement noise. The controller is tested in simulation for the JET Tokamak and the results confirm its efficacy in controlling the vertical position for different plasma configurations. The controller is also tested experimentally on a real Tokamak, COMPASS-D, and the results demonstrate the improvement with respect to a simple linear PD controller in the presence of disturbances and measurement noise. The emphasis of the is on the development of the design methodology. (38 refs).

  7. Associations between plasma fibulin-1, pulse wave velocity and diabetes in patients with coronary heart disease

    DEFF Research Database (Denmark)

    Hansen, Maria Lyck; Rasmussen, Lars Melholt

    2015-01-01

    BACKGROUND: Diabetes is related to increased risk of cardiovascular disease, and arterial stiffness and its consequences may be the factor connecting the two. Arterial stiffness is often measured by carotid-femoral pulse wave velocity (cf-PWV), but no plasma biomarker reflecting arterial stiffnes...

  8. Building a Dispersion Relation Solver for Hot Plasmas with Arbitrary Non-relativistic Parallel Velocity Distributions

    Science.gov (United States)

    Fu, X.; Waters, T.; Gary, S. P.

    2014-12-01

    Collisionless space plasmas often deviate from Maxwellian-like velocity distributions. To study kinetic waves and instabilities in such plasmas, the dispersion relation, which depends on the velocity distribution, needs to be solved numerically. Most current dispersion solvers (e.g. WHAMP) take advantage of mathematical properties of the Gaussian (or generalized Lorentzian) function, and assume that the velocity distributions can be modeled by a combination of several drift-Maxwellian (or drift-Lorentzian) components. In this study we are developing a kinetic dispersion solver that admits nearly arbitrary non-relativistic parallel velocity distributions. A key part of any dispersion solver is the evaluation of a Hilbert transform of the velocity distribution function and its derivative along Landau contours. Our new solver builds upon a recent method to compute the Hilbert transform accurately and efficiently using the fast Fourier transform, while simultaneously treating the singularities arising from resonances analytically. We have benchmarked our new solver against other codes dealing with Maxwellian distributions. As an example usage of our code, we will show results for several instabilities that occur for electron velocity distributions observed in the solar wind.

  9. Electromagnetic thin-wall model for simulations of plasma wall-touching kink and vertical modes

    Science.gov (United States)

    Zakharov, Leonid E.; Atanasiu, Calin V.; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika

    2015-12-01

    > The understanding of plasma disruptions in tokamaks and predictions of their effects require realistic simulations of electric current excitation in three-dimensional vessel structures by the plasma touching the walls. As discovered at JET in 1996 (Litunovski JET Internal Report contract no. JQ5/11961, 1995; Noll et al., Proceedings of the 19th Symposium on Fusion Technology, Lisbon (ed. C. Varandas & F. Serra), vol. 1, 1996, p. 751. Elsevier) the wall-touching kink modes are frequently excited during vertical displacement events and cause large sideways forces on the vacuum vessel which are difficult to withstand in large tokamaks. In disruptions, the sharing of electric current between the plasma and the wall plays an important role in plasma dynamics and determines the amplitude and localization of the sideways force (Riccardo et al., Nucl. Fusion, vol. 40, 2000, p. 1805; Riccardo & Walker, Plasma Phys. Control. Fusion, vol. 42, 2000, p. 29; Zakharov, Phys. Plasmas, vol. 15, 2008, 062507; Riccardo et al., Nucl. Fusion, vol. 49, 2009, 055012; Bachmann et al., Fusion Engng Des., vol. 86, 2011, pp. 1915-1919). This paper describes a flat triangle representation of the electric circuits of a thin conducting wall of arbitrary three-dimensional geometry. Implemented into the shell simulation code (SHL) and the source sink current code (SSC), this model is suitable for modelling the electric currents excited in the wall inductively and through current sharing with the plasma.

  10. Investigation on in-flight particle velocity in supersonic plasma spraying

    Institute of Scientific and Technical Information of China (English)

    Li Changqing; Ma Shining; Ye Xionglin

    2005-01-01

    In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al203-TiO2 feed stocks. According to the results of particle flux measurement, the largest radian of the divergent particle stream is about 0. 2. Within the measuring range, top speed of inflight particles reached 800 m/s. Particle acceleration was accomplished within 4 cm down stream of the nozzle. Average particle velocity ( about 450 m/s) exceeded local sound speed (340 m/s) even at a mean standoff distance of 17 cm. With increasing mean standoff distance, average velocity of in-flight particle decreased according to a parabolic rule approximately.Image diagnosis showed that the result of in-flight particle velocity measurement is credible.

  11. Developing a 3D constrained variational analysis method to obtain accurate gridded atmospheric vertical velocity and horizontal advections

    Science.gov (United States)

    Tang, S.; Zhang, M.

    2013-12-01

    Based on the constrained variational analysis (CVA) algorithm developed by Zhang and Lin (1997), a 3-dimensional (3D) version of CVA is developed. The new algorithm used gridded surface and TOA observations as constraints to adjust atmospheric state variables in each grid point to satisfy column-integrated mass, moisture and static energy conservation. From the process of adjustment a set of high-quality 3D large-scale forcing data (vertical velocity and horizontal advections) can be derived to drive Single-Column models (SCM), Cloud-Resolving Models (CRM) and Large-Eddy Simulations (LES) to evaluate and improve parameterizations. Since the 3D CVA can adjust gridded state variables from any data source with observed precipitation, radiation and surface fluxes, it also gives a potential possibility to use this algorithm in data assimilation system to assimilate precipitation and radiation data.

  12. The Interparticle Interaction Between a Vertically Aligned Dust Particle Pair in a Complex Plasma

    Science.gov (United States)

    Qiao, Ke; Ding, Zhiyue; Kong, Jie; Matthews, Lorin; Hyde, Truell

    2016-10-01

    The interaction between dust particles is a fundamental topic in complex plasma. In experiments on earth, the interparticle interaction in the horizontal direction (i.e., perpendicular to the gravitational force) is generally recognized to be a Yukawa potential. However, the interaction in the vertical direction is much more complicated, primarily due to the ion flow in the plasma sheath. In this research, we introduce a non-intrusive method to study the interaction between a vertically aligned dust particle pair confined in a glass box placed on the lower powered electrode within a GEC reference cell. This system is investigated for varying rf powers to obtain the trend of the interparticle interaction strength, which is contrasted with theoretical results. Using spontaneous thermal fluctuations of the neutral gas as the only driving force, we obtain the normal mode spectra of the dust pair, revealing not only the oscillation frequencies, but also the vibration amplitudes of the normal modes. The interaction strength between the upper and lower particle is obtained quantitatively from these mode spectra, showing strong nonreciprocity in both the vertical and horizontal directions. It will also be shown that the resulting horizontal attractive force of the upper particle on the lower particle can be larger than the horizontal confinement produced by the glass box alone. NSF / DOE funding is gratefully acknowledged - PHY1414523 & PHY1262031.

  13. Hole boring velocity measurements in near critical density plasmas by a CO2 laser pulse

    Science.gov (United States)

    Gong, Chao; Tochitsky, Sergei; Pigeon, Jeremy; Joshi, Chan

    2014-10-01

    Measurements of plasma dynamics during the interaction of a high-power laser pulse with an above critical density plasma is important for understanding absorption, transport and particle acceleration mechanisms. An important process that affects these mechanisms is hole boring occurring at the critical density because of the radiation pressure of the laser pulse. Yet, no systematic measurements of the hole boring velocity's (vhb) dependence on laser intensity (I) have been made. In this talk, we present experimental results of vhb in near critical density plasmas produced by CO2 laser as a function of I in the range of 1*1015 to 1.6*1016 W/cm2. A novel four frame Mach-Zehnder interferometer using a 1 ps, 532 nm probe laser pulse was developed to record the evolution of the plasma density profile and the motion of the near critical density layer. Using this diagnostic, we observed the motion of the steepened plasma profile due to the incident, time-structured CO2 laser pulse. Experimental results show the hole boring velocity increases from 0.004c to 0.007c as the laser intensity is increased from 1*1015 to 1.6*1016 W/cm2. This work is supported by DOE grant DE-FG02-92-ER40727, NSF grant PHY-0936266 at UCLA.

  14. Time window for magnetic reconnection in plasma configurations with velocity shear.

    Science.gov (United States)

    Faganello, M; Califano, F; Pegoraro, F

    2008-10-24

    It is shown that the rate of magnetic field line reconnection can be clocked by the evolution of the large-scale processes that are responsible for the formation of the current layers where reconnection can take place. In unsteady plasma configurations, such as those produced by the onset of the Kelvin-Helmholtz instability in a plasma with a velocity shear, qualitatively different magnetic structures are produced depending on how fast the reconnection process develops on the external clock set by the evolving large-scale configuration.

  15. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  16. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    Science.gov (United States)

    Olsen, Jeppe; Madsen, Jens; Nielsen, Anders Henry; Rasmussen, Jens Juul; Naulin, Volker

    2016-04-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocity scaling, which is proportional to the ion acoustic speed times the square root of the filament particle density times the sum of the electron and ion temperature perturbations. Only for small blobs the cross field convection does not follow this scaling. The influence of finite Larmor radius effects on the cross-field blob convection is shown not to depend strongly on the dynamical ion temperature field. The blob dynamics of constant finite and dynamical ion temperature blobs is similar. When the blob size is on the order of 10 times the ion Larmor radius the blobs stay coherent and decelerate slowly compared to larger blobs which dissipate faster due to fragmentation and turbulent mixing.

  17. Velocity-space tomography of fusion plasmas by collective Thomson scattering of gyrotron radiation

    DEFF Research Database (Denmark)

    Salewski, Mirko; Jacobsen, A.S.; Jensen, Thomas;

    2016-01-01

    We propose a diagnostic capable of measuring 2D fast-ion velocity distribution functions 푓2퐷푣 in the MeV-range in magnetized fusion plasmas. Today velocity-space tomography based on fast-ion D훼 spectroscopy is regularly used to measure 푓2퐷푣 for ion energies below 100 keV. Unfortunately, the signal......-tonoise ratio becomes fairly low for MeV-range ions. Ions at any energy can be detected well by collective Thomson scattering of mm-wave radiation from a high-power gyrotron. We demonstrate how collective Thomson scattering can be used to measure 푓2퐷푣 in the MeV-range in reactor relevant plasmas...

  18. Control of highly vertically unstable plasmas in TCV with internal coils and fast power supply

    Energy Technology Data Exchange (ETDEWEB)

    Favre, A.; Moret, J.M.; Chavan, R.; Fasel, D.; Hofmann, F.; Lister, J.B.; Mayor, J.M.; Perez, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Elkjaer, A. [Danfysik A/S, Jyllinge (Denmark)

    1996-10-01

    The goal of TCV (Tokamak a Configuration Variable) is to investigate effects of plasma shape, in particular high elongation (up to 3), on tokamak physics. Such elongated configurations (I{sub p}{approx_equal}1 MA) are highly vertically unstable with growth rates up to {gamma}=4000 s{sup -1}. Control of the vertical position using the poloidal coils located outside the vessel is limited to {gamma}{<=}1000 s{sup -1} because of the shielding effect of the conductive vessel and because of the relative slow time response of their power supplies (0.8 ms thyristor 12 pulse switching at 120 Hz). This dictated the necessity to install a coil set inside the vacuum vessel fed with a Fast Power Supply (FPS). The choice and design of the system with a special attention to the mechanical and electrical constraints in TCV tokamak, as the results and real performances, will be presented. (author) 3 figs., 2 tabs., 2 refs.

  19. Convective modes in plasma with the strong shear of ExB drift velocity

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, A.V. [RRC ' Kurchatov Institute' , Moscow, Russia 123182 (Russian Federation)

    2001-05-01

    The convective modes of an inhomogeneously drifting plasma in a shear magnetic field (a generalization of Suydam's problem) is considered. It is shown that a sufficiently great shear of ExB velocity drift suppresses the instability in the case of an arbitrary 'magnetic hill'. This result can be considered again as a Rayleigh theorem analogue. (author). Letter-to-the-editor.

  20. An experimental study of wave propagation and velocity distributions in a vertically driven time-dependent granular gas

    Science.gov (United States)

    Perez, John Anthony

    Averaged over appropriate space and time scales the dynamics of highly fluidized granular systems are often reminiscent of molecular fluid flows. As a result, theoretical efforts to describe these systems have borrowed heavily from continuum mechanics, particularly hydrodynamics. This has led to various proposed granular hydrodynamic theories which have been used to simulate granular materials in various states of confinement and excitation. These studies suggest that a continuum model for granular gasses can accurately reproduce the mean density, velocity and temperature profiles for an experimental granular gas. This thesis contributes to this body of work by presenting an experimental study of the hydrodynamic fields and velocity distributions within a vertically driven quasi-2D granular gas. We have taken pictures as fast as possible of a time-dependent granular gas using a high-speed CCD camera. We have extracted the positions and velocities of 57-564 particles per frame over 400 GB of raw images collected at 3700 fps. We used this data to compute the density, velocity and temperature fields as functions of time and space to a very high resolution. This approach led to the discovery of novel substructures within the hydrodynamic fields which would have been overlooked had we chosen to average over a drive cycle as earlier studies have done. In particular, the high spatial resolution available from our measurements reveals a serrated substructure in the shock waves which has not been reported before. This substructure is the result of collisional momentum transport . One of the current issues in formulating a granular continuum model is how to incorporate local and non-local dependencies between stress and strain correctly. In this thesis we demonstrate that the collisional transfer of momentum produces a non-local effect in the stress tensor which plays a major role in determining the mean flow. Current models have incorporated only the collisional or

  1. A Study of DC Surface Plasma Discharge in Absence of Free Airflow: Ionic Wind Velocity Profile

    Directory of Open Access Journals (Sweden)

    M. Rafika

    2009-01-01

    Full Text Available In our study we are interested with the DC (Direct Current electric corona discharge created between two wire electrodes. We present experimental results related to some electroaerodynamic actuators based on the DC corona discharge at the surface of a dielectric material. We used different geometrical forms of dielectric surface such as a plate, a cylinder and a wing of aircraft of type NACA 0015. We present the current density-electric filed characteristics for different cases in order to determine the discharge regimes. The corona discharge produces non-thermal plasma so that it is called plasma discharge. Plasma discharge creates a tangential ionic wind above the surface at the vicinity of the wall. We have measured the ionic wind induced by the corona discharge in absence of free external airflow, we give the ionic wind velocity profiles for different surface forms and we compare the actuators effect based on the span of the ionic wind velocity values. We notice that the maximum ionic wind velocity is obtained with the NACA profile, which shows the effectiveness of this actuator for the airflow control.

  2. An experimental study of a plasma actuator in absence of free airflow: Ionic wind velocity profile

    Science.gov (United States)

    Mestiri, R.; Hadaji, R.; Ben Nasrallah, S.

    2010-08-01

    In this study, we are interested in the direct current electrical corona discharge created between two wire electrodes. The experimental results are related to some electroaerodynamic actuators based on the direct current corona discharge at the surface of a dielectric material. Several geometrical forms are selected for the dielectric surface, such as a plate, a cylinder, and a NACA 0015 aircraft wing. The current density-electric field characteristics are presented for different cases in order to determine the discharge regimes. The corona discharge produces nonthermal plasma, so it is called plasma discharge. Plasma discharge creates a tangential ionic wind above the surface at the vicinity of the wall. The ionic wind induced by the corona discharge is measured in absence of free external airflow. The ionic wind velocity profiles and the maximum induced tangential force are given for different surface forms, so it is possible to compare the actuators effect based on the span of the ionic wind velocity and thrust values. The higher ionic wind velocity is obtained with the NACA profile, which shows the effectiveness of this actuator for the airflow control.

  3. Design concept of conducting shell and in-vessel components suitable for plasma vertical stability and remote maintenance scheme in DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Utoh, Hiroyasu, E-mail: uto.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Takase, Haruhiko [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Sakamoto, Yoshiteru; Tobita, Kenji [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); Mori, Kazuo; Kudo, Tatsuya [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Someya, Youji; Asakura, Nobuyuki; Hoshino, Kazuo; Nakamura, Makoto; Tokunaga, Shinsuke [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan)

    2016-02-15

    Highlights: • Conceptual design of in-vessel component including conducting shell has been investigated. • The conducting shell design for plasma vertical stability was clarified from the plasma vertical stability analysis. • The calculation results showed that the double-loop shell has the most effect on plasma vertical stability. - Abstract: In order to realize a feasible DEMO, we designed an in-vessel component including the conducting shell. The project is affiliated with the broader approach DEMO design activities and is conceptualized from a plasma vertical stability and engineering viewpoint. The dependence of the plasma vertical stability on the conducing shell parameters and the electromagnetic force at plasma disruption were investigated in numerical simulations (programmed in the 3D eddy current analysis code and a plasma position control code). The simulations assumed the actual shape and position of the vacuum vessel and in-vessel components. The plasma vertical stability was most effectively maintained by the double-loop shell.

  4. Aerosynthesis: Growth of Vertically-aligned Carbon Nanofibres with Air DC Plasma

    Directory of Open Access Journals (Sweden)

    A. Kodumagulla

    2014-03-01

    Full Text Available Vertically-aligned carbon nanofibres (VACNFs have been synthesized in a mixture of acetone and air using catalytic DC plasma-enhanced chemical vapour deposition. Typically, ammonia or hydrogen is used as an etchant gas in the mixture to remove carbon that otherwise passivates the catalyst surface and impedes growth. Our demonstration of the use of air as the etchant gas opens up the possibility that ion etching could be sufficient to maintain the catalytic activity state during synthesis. It also demonstrates a path toward growing VACNFs in the open atmosphere.

  5. Ion rotational velocity of a field-reversed configuration plasma measured by neutral beam probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y.; Tanjyo, M.; Ohi, S.; Goto, S.; Ishimura, T.

    1987-01-01

    The ion rotational angular velocity ..cap omega.. and the ion temperature T/sub i/ of a translated field-reversed configuration (FRC) plasma are measured using neutral beam probe spectroscopy. The value of ..cap omega.. is --(1.0--1.2) x ..cap omega..* at the onset time of the n = 2 rotational instability, where ..cap omega..* is the ion diamagnetic frequency for a rigid-rotor equilibrium. The ion rotational direction is the same as the ion diamagnetic direction. The value of ..cap omega.. is smaller than the angular frequency ..omega../sub re/ of the n = 2 instability, which can yield experimental evidence of the ion kinetic effects on the n = 2 instability in the FRC plasma. When the octupole field is applied to the plasma in order to suppress the n = 2 deformation, ..cap omega.. is slightly reduced. The ion temperature T/sub i/ is --70 eV at the onset time of the n = 2 instability.

  6. Full-Particle Simulations on Electrostatic Plasma Environment near Lunar Vertical Holes

    Science.gov (United States)

    Miyake, Y.; Nishino, M. N.

    2015-12-01

    The Kaguya satellite and the Lunar Reconnaissance Orbiter have observed a number of vertical holes on the terrestrial Moon [Haruyama et al., GRL, 2009; Robinson et al., PSS, 2012], which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure gives an important clue to the complex volcanic history of the Moon. The holes also have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only interesting in selenology, but are also significant from the viewpoint of electrostatic environments. The subject can also be an interesting resource of research in comparative planetary science, because hole structures have been found in other solar system bodies such as the Mars. The lunar dayside electrostatic environment is governed by electrodynamic interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. We use the three-dimensional, massively-parallelized, particle-in-cell simulation code EMSES [Miyake and Usui, POP, 2009] to simulate the near-hole plasma environment on the Moon [Miyake and Nishino, Icarus, 2015]. We took into account the solar wind plasma downflow, photoelectron emission from the sunlit part of the lunar surface, and plasma charge deposition on the surface. The simulation domain consists of 400×400×2000 grid points and contains about 25 billion plasma macro-particles. Thus, we need to use supercomputers for the simulations. The vertical wall of the hole introduces a new boundary for both photo and solar wind electrons. The current balance condition established at a hole bottom is altered by the limited solar wind electron penetration into the hole and complex photoelectron current paths inside the hole. The self

  7. A Study of Three Dimensional Bubble Velocities at Co-current Gas-liquid Vertical Upward Bubbly Flows

    CERN Document Server

    Kuntoro, Hadiyan Yusuf; Deendarlianto,

    2015-01-01

    Recently, experimental series of co-current gas-liquid upward bubbly flows in a 6 m-height and 54.8 mm i.d. vertical titanium pipe had been conducted at the TOPFLOW thermal hydraulic test facility, Helmholtz-Zentrum Dresden-Rossendorf, Germany. The experiments were initially performed to develop a high quality database of two-phase flows as well as to validate new CFD models. An ultrafast dual-layer electron beam X-ray tomography, named ROFEX, was used as measurement system with high spatial and temporal resolutions. The gathered cross sectional grey value image results from the tomography scanning were reconstructed, segmented and evaluated to acquire gas bubble parameters for instance bubble position, size and holdup. To assign the correct paired bubbles from both measurement layers, a bubble pair algorithm was implemented on the basis of the highest probability values of bubbles in position, volume and velocity. Hereinafter, the individual characteristics of bubbles were calculated include instantaneous th...

  8. Sheared velocity flows as a source of pressure anisotropy in low collisionality plasmas

    Science.gov (United States)

    Del Sarto, Daniele; Pegoraro, Francesco; Cerri, Silvio Sergio; Califano, Francesco; Tenerani, Anna

    2015-04-01

    Non-Maxwellian metaequilibrium states may exist in low-collisionality plasmas as evidenced by direct (particle distributions) and indirect (e.g., instabilities driven by pressure anisotropy) satellite and laboratory measurements. These are directly observed in the solar wind (e.g. [1]), in magnetospheric reconnection events [2], in magnetically confined plasmas [3] or in simulations of Vlasov turbulence [4]. By including the full pressure tensor dynamics in a fluid plasma model, we show that a sheared velocity field can provide an effective mechanism that makes an initial isotropic state anisotropic. We discuss how the propagation of "magneto-elastic" waves can affect the pressure tensor anisotropization and the small scale formation that arise from the interplay between the gyrotropic terms due to the magnetic field and flow vorticity, and the non-gyropropic effect of the flow strain tensor. We support this analysis by a numerical integration of the nonlinear equations describing the pressure tensor evolution. This anisotropization mechanism might provide a good candidate for the understanding of the observed correlation between the presence of a sheared velocity flow and the signature of pressure anisotropies which are not yet explained within the standard models based e.g. on the CGL paradigm (see also [5]). Examples of these signatures are provided by the threshold lowering of ion-Weibel instabilities in the geomagnetic tail, observed in concomitance to the presence of a velocity shear in the near-earth plasma profile [6], or by the relatively stronger anisotropization measured for core protons in the fast solar wind [4,7] or in "space simulation" laboratory plasma experiments [3]. 1] E. Marsch et al., Journ. Geophys. Res. 109, A04120 (2004); Yu. V. Khotyainstev at el., Phys. Rev. Lett. 106, 165001 (2011). [2] N. Aunai et al., Ann. Geophys. 29, 1571 (2011); N. Aunai et al., Journ. Geophys. Res. 116, A09232 (2011). [3] E.E. Scime et al., Phys. Plasmas 7, 2157

  9. Vertical flow in the Thermoelectric Liquid Metal Plasma Facing Structures (TELS) facility at Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Fiflis, P., E-mail: fiflis1@illinois.edu [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Szott, M.; Kalathiparambil, K.; Jung, S.; Christenson, M.; Haehnlein, I.; Kapat, A. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Andruczyk, D. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); PPPL (United States); Curreli, D.; Ruzic, D.N. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States)

    2015-08-15

    Flowing liquid metal PFCs may offer a solution to the issues faced by solid divertor materials in tokamak plasmas. The Liquid–Metal Infused Trenches (LiMIT) concept of Illinois Ruzic et al. (2011) is a liquid metal plasma facing structure which employs thermoelectric magnetohydrodynamic (TEMHD) effects to self-propel lithium through a series of trenches. The combination of an incident heat flux and a magnetic field provide the driving mechanism. Tests have yielded experimental lithium velocities under different magnetic fields, which agree well with theoretical predictions Xu et al. (2013). The thermoelectric force is expected to overcome gravity and be able to drive lithium flow along an arbitrary direction and the strong surface tension of liquid lithium is believed to maintain the surface when Li flows in open trenches. This paper discusses the behavior of the LiMIT structure when inclined to an arbitrary angle with respect to the horizontal.

  10. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Bai, Zhibin [State Grid Yulin Electric Power Supply Company, Shaanxi 719000 (China)

    2016-05-15

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  11. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    Science.gov (United States)

    Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun

    2016-05-01

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  12. The ''phase velocity'' of nonlinear plasma waves in the laser beat-wave accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Spence, W.L.

    1985-04-01

    A calculational scheme for beat-wave accelerators is introduced that includes all orders in velocity and in plasma density, and additionally accounts for the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which it is possible to sum up all orders of forward Raman scattering. It is found that the nonlinear plasma wave does not have simply a single phase velocity, but that the beat-wave which drives it is usefully described by a non-local ''effective phase velocity'' function. A time-space domain approach is followed. (LEW)

  13. Measurements of the ion velocity distribution in an ultracold neutral plasma derived from a cold, dense Rydberg gas

    OpenAIRE

    S. D. Bergeson; Lyon, M

    2016-01-01

    We report measurements of the ion velocity distribution in an ultracold neutral plasma derived from a dense, cold Rydberg gas in a MOT. The Rydberg atoms are excited using a resonant two-step excitation pathway with lasers of 4 ns duration. The plasma forms spontaneously and rapidly. The rms width of the ion velocity distribution is determined by measuring laser-induced fluorescence (LIF) of the ions. The measured excitation efficiency is compared with a Monte-Carlo wavefunction calculation, ...

  14. Gyrokinetic simulations of fusion plasmas using a spectral velocity space representation

    CERN Document Server

    Parker, Joseph Thomas

    2016-01-01

    Magnetic confinement fusion reactors suffer severely from heat and particle losses through turbulent transport, which has inspired the construction of ever larger and more expensive reactors. Numerical simulations are vital to their design and operation, but particle collisions are too infrequent for fluid descriptions to be valid. Instead, strongly magnetised fusion plasmas are described by the gyrokinetic equations, a nonlinear integro-differential system for evolving the particle distribution functions in a five-dimensional position and velocity space, and the consequent electromagnetic field. Due to the high dimensionality, simulations of small reactor sections require hundreds of thousands of CPU hours on High Performance Computing platforms. We develop a Hankel-Hermite spectral representation for velocity space that exploits structural features of the gyrokinetic system. The representation exactly conserves discrete free energy in the absence of explicit dissipation, while our Hermite hypercollision ope...

  15. Structure of parallel-velocity-shear driven mode in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J.Q.; Xu, W.B.; Zhang, Y.Z. [Southwestern Inst. of Physics, Chengdu (China); Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies

    1998-09-15

    It is shown that the Fourier-ballooning representation is appropriate for the study of short wavelength drift-like perturbation in toroidal plasmas with a parallel velocity shear (PVS). The radial structure of the mode driven by a PVS is investigated in a torus. The Reynolds stress created by PVS turbulence and proposed as one of the sources for a sheared poloidal plasma rotation is analyzed. It is demonstrated that a finite ion temperature may strongly enhance the Reynolds stress creation ability from PVS driven turbulence. The correlation of this observation with the requirement that ion heating power be higher than a threshold value for the formation of an internal transport barrier is discussed.

  16. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.

    Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  17. A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures

    Science.gov (United States)

    Kang, Tae Goo; Yoon, Yong-Jin; Ji, Hongmiao; Lim, Pei Yi; Chen, Yu

    2014-08-01

    This work demonstrates a continuous flow plasma/blood separator using a vertical submicron pillar gap structure. The working principle of the proposed separator is based on size exclusion of cells through cross-flow filtration, in which only plasma is allowed to pass through submicron vertical pillars located tangential to the main flow path of the blood sample. The maximum filtration efficiency of 99.9% was recorded with a plasma collection rate of 0.67 µl min-1 for an input blood flow rate of 12.5 µl min-1. The hemolysis phenomenon was observed for an input blood flow rate above 30 µl min-1. Based on the experimental results, we can conclude that the proposed device shows potential for the application of on-chip plasma/blood separation as a part of integrated point-of-care (POC) diagnostics systems.

  18. Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma.

    Science.gov (United States)

    Peeters, A G; Angioni, C; Strintzi, D

    2007-06-29

    In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.

  19. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)

    2015-10-15

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  20. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N. [Laboratoire des Technologies de la Microélectronique, CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2016-02-29

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a “minor” effect on the ion flux and the shape of the IVDF.

  1. A one-dimensional numerical model for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft

    Science.gov (United States)

    Choi, Y.; Leon, A.; Apte, S.

    2015-12-01

    The presence of pressurized air pockets in combined sewer systems is argued to produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows through vertical shafts. A 1D numerical model is developed for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft which in turn attempts to simulate geyser like flows. The vertical shaft is closed at the bottom and open to ambient pressure at the top. Initially, the lower section of the vertical shaft is filled with compressed air and the upper section with water. The interaction between the pressurized air pocket and the water column in the vertical shaft exhibits an oscillatory motion of the water column that decays over time. The model accounts for steady and unsteady friction to estimate the energy dissipation. The model also includes the falling flow of water around the external perimeter of the pressurized air pocket by assuming that any expansion in the pressurized air pocket would result in the falling volume of water. The acceleration of air-water interface is predicted through a force balance between the pressurized air pocket and the water column combined with the Method of Characteristics that resolves pressure and velocity within the water column. The expansion and compression of the pressurized air pocket is assumed to follow either isothermal process or adiabatic process. Results for both assumptions; isothermal and adiabatic processes, are presented. The performance of the developed 1D numerical model is compared with that of a commercial 3D CFD model. Overall, a good agreement between both models is obtained for pressure and velocity oscillations. The paper will also present a sensitivity analysis of the 3D CFD model.

  2. A method for calculating active feedback system to provide vertical position control of plasma in a tokamak

    Indian Academy of Sciences (India)

    Nizami Gasilov

    2007-04-01

    In designing tokamaks, the maintenance of vertical stability of plasma is one of the most important problems. Systems of the passive and active feedbacks are applied for this purpose. Role of the passive system consisting of a vacuum vessel and passive coils is to suppress fast MHD (magnetohydrodynamic) instabilities. The active feedback system is applied to control slow motions of plasma. The objective of the paper is to investigate two successive problems, solution of which allows to determine the possibility of controlling plasma motions. One of these is the problem of vertical stability under the assumption of ideal conductivity of plasma and passive stabilizing elements. The problem is solved analytically and on the basis of the obtained solution a criterion of MHD-stability is formulated. The other problem is connected with the control of plasma vertical position with active feedback system. Calculation of feedback control parameters is formulated as an optimization problem and an approximate method to solve the problem is suggested. Numerical simulations are performed with parameters of the T-15M tokamak in order to justify the suggested method.

  3. Characterization of High-Velocity Single Particle Impacts on Plasma-Sprayed Ceramic Coatings

    Science.gov (United States)

    Kiilakoski, Jarkko; Lindroos, Matti; Apostol, Marian; Koivuluoto, Heli; Kuokkala, Veli-Tapani; Vuoristo, Petri

    2016-08-01

    High-velocity impact wear can have a significant effect on the lifetime of thermally sprayed coatings in multiple applications, e.g., in the process and paper industries. Plasma-sprayed oxide coatings, such as Cr2O3- and TiO2-based coatings, are often used in these industries in wear and corrosion applications. An experimental impact study was performed on thermally sprayed ceramic coatings using the High-Velocity Particle Impactor (HVPI) at oblique angles to investigate the damage, failure, and deformation of the coated structures. The impact site was characterized by profilometry, optical microscopy, and scanning electron microscopy (SEM). Furthermore, the connection between the microstructural details and impact behavior was studied in order to reveal the damage and failure characteristics at a more comprehensive level. Differences in the fracture behavior were found between the thermally sprayed Cr2O3 and TiO2 coatings, and a concept of critical impact energy is presented here. The superior cohesion of the TiO2 coating inhibited interlamellar cracking while the Cr2O3 coating suffered greater damage at high impact energies. The HVPI experiment has proven to be able to produce valuable information about the deformation behavior of coatings under high strain rates and could be utilized further in the development of wear-resistant coatings.

  4. The characteristics of the ion temperature and toroidal rotation velocity in the KSTAR plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Ha; Lee, Hyung Ho; Oh, Seung Tae [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Charge exchange spectroscopy (CES) is one of the important diagnostics on the Korea Superconducting Tokamak Advanced Research (KSTAR) to get ion temperature and toroidal rotation velocity. We describe the current status and the improvements made over the last two years. The current system upgraded from a Czerny-Turner spectrometer consists of two spectroscopic systems looking at the KSTAR neutral beam which is modulated 5 Hz for special period. One system has a DS spectrometer (f/2.8) lent from NIFS with pitch-controlled double slit fiber bundle with back- illuminated CCD and the other system has Kspectrometer (F/2.0) made by NFRI with intensified CCD. The K-spectrometer has a grating number of 2400 g/mm, focal length of 200 mm. The upgrade of two high throughput spectrometers enables to improve the time resolution from 200 msec to around 10 msec. This article focuses on improved edge spatial interval from increasing of plasma viewing channels to 5 mm and enhanced time resolution from a high throughput spectrometer with back-illuminated CCD. The upgrade has allowed to measure pedestal ion temperature and toroidal rotation velocity profiles in KSTAR H-mode

  5. Scaling of X-ray emission and ion velocity in laser produced Cu plasmas

    Science.gov (United States)

    Prasad, Y. B. S. R.; Senecha, V. K.; Pant, H. C.; Kamath, M. P.; Solanki, G. S.; Tripathi, P. K.; Kulkarni, A. P.; Gupta, S.; Pareek, R.; Joshi, A. S.; Sreedhar, N.; Nigam, Sameer; Navathe, C. P.

    2000-11-01

    The x-ray emission from slab targets of copper irradiated by Nd:glass laser (1.054 m m, 5 and 15 ns) at intensities between 1012 and 1014 W/cm2 has been studied. The x-ray emissions were monitored with the help of high quantum efficiency x-ray silicon photo diodes and vacuum photo diodes, all covered with aluminium filters of different thickness. The x-ray intensity vs the laser intensity has a scaling factor of (1.2--1.92). The relative x-ray conversion efficiency follows an empirical relationship which is in close agreement with the one reported by Babonneau et al. The ion velocities were monitored using Langmuir probes placed at different angles and radial distances from the target position. The variation of the ion velocity with the laser intensity follows a scaling of the form Fb where b ~ 0.22 which is in good agreement with the reported scaling factor values. The results on the x-ray emission from Cu plasma are reported.

  6. Scaling of x-ray emission and ion velocity in laser produced Cu plasmas

    Indian Academy of Sciences (India)

    Y B S R Prasad; V K Senecha; H C Pant; M P Kamath; G S Solanki; P K Tripathi; A P Kulkarni; S Gupta; R Pareek; A S Joshi; N Sreedhar; Sameer Nigam; C P Navathe

    2000-11-01

    The x-ray emission from slab targets of copper irradiated by Nd:glass laser (1.054 m, 5 and 15 ns) at intensities between 1012 and 1014W/cm2 has been studied. The x-ray emissions were monitored with the help of high quantum efficiency x-ray silicon photo diodes and vacuum photo diodes, all covered with aluminium filters of different thickness. The x-ray intensity vs the laser intensity has a scaling factor of (1.2–1.92). The relative x-ray conversion efficiency follows an empirical relationship which is in close agreement with the one reported by Babonneau et al. The ion velocities were monitored using Langmuir probes placed at different angles and radial distances from the target position. The variation of the ion velocity with the laser intensity follows a scaling of the form where ∼ 0.22 which is in good agreement with the reported scaling factor values. The results on the x-ray emission from Cu plasma are reported.

  7. Multiwavelength Observations of Supersonic Plasma Blob Triggered by Reconnection Generated Velocity Pulse in AR10808

    CERN Document Server

    Srivastava, A K; Murawski, K; Kumar, Pankaj

    2012-01-01

    Using multi-wavelength observations of Solar and Heliospheric Observatory (SoHO)/Michelson Doppler Imager (MDI), Transition Region and Coronal Explorer (TRACE) 171 \\AA, and H$\\alpha$ from Culgoora Solar Observatory at Narrabri, Australia, we present a unique observational signature of a propagating supersonic plasma blob before an M6.2 class solar flare in AR10808 on 9th September 2005. The blob was observed between 05:27 UT to 05:32 UT with almost a constant shape for the first 2-3 minutes, and thereafter it quickly vanished in the corona. The observed lower bound speed of the blob is estimated as $\\sim$215 km s$^{-1}$ in its dynamical phase. The evidence of the blob with almost similar shape and velocity concurrent in H$\\alpha$ and TRACE 171 \\AA\\ supports its formation by multi-temperature plasma. The energy release by a recurrent 3-D reconnection process via the separator dome below the magnetic null point, between the emerging flux and pre-existing field lines in the lower solar atmosphere, is found to be...

  8. A generalized AZ-non-Maxwellian velocity distribution function for space plasmas

    Science.gov (United States)

    Abid, A. A.; Khan, M. Z.; Lu, Quanming; Yap, S. L.

    2017-03-01

    A more generalized form of the non-Maxwellian distribution function, i.e., the AZ-distribution function is presented. Its fundamental properties are numerically observed by the variation of three parameters: α (rate of energetic particles on the shoulder), r (energetic particles on a broad shoulder), and q (superthermality on the tail of the velocity distribution curve of the plasma species). It has been observed that (i) the A Z - distribution function reduces to the ( r , q ) - distribution for α → 0 ; (ii) the A Z - distribution function reduces to the q - distribution for α → 0 , and r → 0 ; (iii) the A Z -distribution reduces to Cairns-distribution function for r → 0 , and q → ∞ ; (iv) the AZ-distribution reduces to Vasyliunas Cairns distribution for r → 0 , and q = κ + 1 ; (v) the AZ-distribution reduces to kappa distribution for α → 0 , r → 0 , and q = κ + 1 ; and (vi) finally, the AZ-distribution reduces to Maxwellian distribution for α → 0 , r → 0 , and q → ∞ . The uses of this more generalized A Z - distribution function in various space plasmas are briefly discussed.

  9. Application of Radar Reflectivity Factor in Initializing Cloud-Resolving Mesoscale Model. Part Ⅰ: Retrieval of Microphysical Elements and Vertical Velocity

    Institute of Scientific and Technical Information of China (English)

    LIU Hongya; XU Haiming; HU Zhijin; XUE Jishan; SHEN Tongli

    2008-01-01

    Assuming that cloud reaches static state in the warm microphysical processes, water vapor mixing ratio(qv), cloud water mixing ratio (qc), and vertical velocity (w) can be calculated from rain water mixing ratio (qr)- Through relation of Z-qr, qr can be retrieved by radar reflectivity factor (Z). Retrieval results indicate that the distributions of mixing ratios of vapor, cloud, rain, and vertical velocity are consistent with radar images, and the three-dimensional spatial structure of the convective cloud is presented. Treating q,v saturated at the echo area, the retrieved qr is about 0.1 g kg-1, qc is always less than 0.3 g kg-1, w is usually below 0.5 m s-1, and rain droplet terminal velocity (vr) is around 5.0 m s-1 in the place where radar reflectivity factor is about 25 dBz; in the place where echo is 45 dBz, the retrieved qr and qc are always about 3.0 g kg-1, w is greater than 5.0 m s-1, and vr is around 7.0 m s-1. In the vertical, the maximum updraft velocity is greater than 3.0 m s-1 at the height of around 5.0 kin, the maximum cloud water content is about 3.0 g kg-1 above 5 km and the maximum rain water content is about 3.0 g kg-1 below 6 kin. Due to the assumption that the cloud is in static state, there will be some errors in the retrieved variables within the clouds which axe rapidly growing or dying-out, and in such cases, more sophisticated radar data control technique will help to improve the retrieval results.

  10. Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods.

    Science.gov (United States)

    Tice, Daniel B; Li, Shi-Qiang; Tagliazucchi, Mario; Buchholz, D Bruce; Weiss, Emily A; Chang, Robert P H

    2014-03-12

    Light-matter interaction at the nanoscale is of particular interest for future photonic integrated circuits and devices with applications ranging from communication to sensing and imaging. In this Letter a combination of transient absorption (TA) and the use of third harmonic generation as a probe (THG-probe) has been adopted to investigate the response of the localized surface plasmon resonances (LSPRs) of vertically aligned indium tin oxide rods (ITORs) upon ultraviolet light (UV) excitation. TA experiments, which are sensitive to the extinction of the LSPR, show a fluence-dependent increase in the frequency and intensity of the LSPR. The THG-probe experiments show a fluence-dependent decrease of the LSPR-enhanced local electric field intensity within the rod, consistent with a shift of the LSPR to higher frequency. The kinetics from both TA and THG-probe experiments are found to be independent of the fluence of the pump. These results indicate that UV excitation modulates the plasma frequency of ITO on the ultrafast time scale by the injection of electrons into, and their subsequent decay from, the conduction band of the rods. Increases to the electron concentration in the conduction band of ∼13% were achieved in these experiments. Computer simulation and modeling have been used throughout the investigation to guide the design of the experiments and to map the electric field distribution around the rods for interpreting far-field measurement results.

  11. Increase of the Density, Temperature and Velocity of Plasma Jets driven by a Ring of High Energy Laser Beams

    OpenAIRE

    Fu, Wen; Liang, Edison P.; Fatenejad, Milad; Lamb, Donald Q.; Grosskopf, Michael; Park, Hye-Sook; Remington, Bruce; Spitkovsky, Anatoly

    2012-01-01

    Supersonic plasma outflows driven by multi-beam, high-energy lasers, such as Omega and NIF, have been and will be used as platforms for a variety of laboratory astrophysics experiments. Here we propose a new way of launching high density and high velocity, plasma jets using multiple intense laser beams in a hollow ring formation. We show that such jets provide a more flexible and versatile platform for future laboratory astrophysics experiments. Using high resolution hydrodynamic simulations,...

  12. Effect of source parameters on forward-directivity velocity pulse for vertical strike slip fault in half space

    Institute of Scientific and Technical Information of China (English)

    Liu Qifang; Yuan Yifan; Jin Xing

    2006-01-01

    It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler ( 2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period of a forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault,rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.

  13. Effect of source parameters on forward-directivity velocity pulse for vertical strike slip fault in half space

    Science.gov (United States)

    Liu, Qifang; Yuan, Yifan; Jin, Xing

    2006-06-01

    It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler (2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period of a forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault, rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.

  14. Acute Effect of Biomechanical Muscle Stimulation on the Counter-Movement Vertical Jump Power and Velocity in Division I Football Players.

    Science.gov (United States)

    Jacobson, Bert H; Monaghan, Taylor P; Sellers, John H; Conchola, Eric C; Pope, Zach K; Glass, Rob G

    2017-05-01

    Jacobson, BH, Monaghan, TP, Sellers, JH, Conchola, EC, Pope, ZK, and Glass, RG. Acute effect of biomechanical muscle stimulation on the counter-movement vertical jump power and velocity in division I football players. J Strength Cond Res 31(5): 1259-1264, 2017-Research regarding whole body vibration (WBV) largely supports such training augmentation in attempts to increase muscle strength and power. However, localized biomechanical vibration has not received the same attention. The purpose of this study was to assess peak and average power before and after acute vibration of selected lower-body sites in division I athletes. Twenty-one subjects were randomly assigned to 1 of 2 conditions using a cross-over design. Pretest consisted of a counter-movement vertical jump (VJ) followed by either localized vibration (30 Hz) to 4 selected lower-body areas or 4 minutes of moderately low-resistance stationary cycling (70 rpm). Vibration consisted of 1 minute bouts at each lower-leg site for a total of 4 minutes followed by an immediate post-test VJ. Repeated measures analysis of variance yielded no significant differences (p > 0.05) in either peak power or peak velocity. Similarly, no significant differences were found for average power and velocity between conditions. It should be noted that, while not significant, the vibration condition demonstrated an increase in peak power and velocity while the bike condition registered slight decreases. Comparing each of the post-VJ repetitions (1, 2, and 3) the vibration condition experienced significantly greater peak power and velocity from VJ 1 to VJ 3 compared with the bike condition which demonstrated no significant differences among the post-test VJs. These results yielded similar, although not statistically significant outcomes to previous studies using WBV. However, the novelty of selected site biomechanical vibration merits further investigation with respect to frequency, magnitude, and duration of vibration.

  15. Case studies of the impact of orbital sampling on stratospheric trend detection and derivation of tropical vertical velocities: solar occultation vs. limb emission sounding

    Science.gov (United States)

    Millán, Luis F.; Livesey, Nathaniel J.; Santee, Michelle L.; Neu, Jessica L.; Manney, Gloria L.; Fuller, Ryan A.

    2016-09-01

    This study investigates the representativeness of two types of orbital sampling applied to stratospheric temperature and trace gas fields. Model fields are sampled using real sampling patterns from the Aura Microwave Limb Sounder (MLS), the HALogen Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The MLS sampling acts as a proxy for a dense uniform sampling pattern typical of limb emission sounders, while HALOE and ACE-FTS represent coarse nonuniform sampling patterns characteristic of solar occultation instruments. First, this study revisits the impact of sampling patterns in terms of the sampling bias, as previous studies have done. Then, it quantifies the impact of different sampling patterns on the estimation of trends and their associated detectability. In general, we find that coarse nonuniform sampling patterns may introduce non-negligible errors in the inferred magnitude of temperature and trace gas trends and necessitate considerably longer records for their definitive detection. Lastly, we explore the impact of these sampling patterns on tropical vertical velocities derived from stratospheric water vapor measurements. We find that coarse nonuniform sampling may lead to a biased depiction of the tropical vertical velocities and, hence, to a biased estimation of the impact of the mechanisms that modulate these velocities. These case studies suggest that dense uniform sampling such as that available from limb emission sounders provides much greater fidelity in detecting signals of stratospheric change (for example, fingerprints of greenhouse gas warming and stratospheric ozone recovery) than coarse nonuniform sampling such as that of solar occultation instruments.

  16. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    NARCIS (Netherlands)

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.

    1996-01-01

    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of t

  17. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    NARCIS (Netherlands)

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.

    1996-01-01

    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of t

  18. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    CERN Document Server

    Auluck, S K H

    2014-01-01

    Experimental data compiled over five decades of dense plasma focus research is consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and wind pressure resisting its motion. The resulting sheath velocity, or the numerically proportional drive parameter, is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  19. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    Science.gov (United States)

    Auluck, S. K. H.

    2014-09-01

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and "wind pressure" resisting its motion. The resulting sheath velocity, or the numerically proportional "drive parameter," is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  20. Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities.

    Science.gov (United States)

    Cayzac, W; Bagnoud, V; Basko, M M; Blažević, A; Frank, A; Gericke, D O; Hallo, L; Malka, G; Ortner, A; Tauschwitz, An; Vorberger, J; Roth, M

    2015-11-01

    The energy loss of light ions in dense plasmas is investigated with special focus on low to medium projectile energies, i.e., at velocities where the maximum of the stopping power occurs. In this region, exceptionally large theoretical uncertainties remain and no conclusive experimental data are available. We perform simulations of beam-plasma configurations well suited for an experimental test of ion energy loss in highly ionized, laser-generated carbon plasmas. The plasma parameters are extracted from two-dimensional hydrodynamic simulations, and a Monte Carlo calculation of the charge-state distribution of the projectile ion beam determines the dynamics of the ion charge state over the whole plasma profile. We show that the discrepancies in the energy loss predicted by different theoretical models are as high as 20-30%, making these theories well distinguishable in suitable experiments.

  1. Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

    CERN Document Server

    Anderson, D; Chau, J; Yumoto, K; Bhattacharya, A; Alex, S

    2006-01-01

    Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

  2. The Step-wise Velocity of an Air Bubble Rising in a Vertical Tube Filled with a Liquid Dispersion of Nanoparticles.

    Science.gov (United States)

    Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T

    2017-03-02

    The motion of air bubbles in tubes filled with aqueous suspensions of nanoparticles (nanofluids) is of practical interest for bubblejets, lab-on-a-chip, and transporting media. Therefore, the focus of this study is the dynamics of air bubbles rising in a tube in a nanofluid. Many authors experimentally and analytically proposed that the velocity of rising air bubbles is constant for long air bubbles suspended in a vertical tube in common liquids (e.g. an aqueous glycerol solution) when the capillary number is larger than 10-4. For the first time, we report here a systematic study of an air bubble rising in a vertical tube in a nanofluid (e.g. an aqueous silica dioxide nanoparticle suspension, nominal particle size, 19nm). We varied the bubble length scaled by the diameter of the tubes (L/D), the concentration of the nanofluid (10, and 12.5 v%) and the tube diameter (0.45cm, 0.47cm, and 0.50cm). The presence of the nanoparticles creates a significant change in the bubble velocity compared with the bubble rising in the common liquid with the same bulk viscosity. We observed a novel phenomenon of a step-wise increase in the air bubble rising velocity vs. bubble length for small capillary numbers less than 10-7. This step-wise velocity increase vs. the bubble length was not observed in a common fluid. The step-wise velocity increase is attributed to the nanoparticle self-layering phenomenon in the film adjacent to the tube wall. In order to elucidate the role of the nanoparticle film self-layering on the bubble rising velocity, the effect of the capillary number, the tube diameter (e.g, the capillary pressure), and nanofilm viscosity are investigated. We propose a model that takes into consideration the nanoparticle layering in the film confinement to explain the step-wise velocity phenomenon versus the length of the bubble. The oscillatory film interaction energy isotherm is calculated and the Frenkel approach is used to estimate the film viscosity.

  3. Measurement of oil volume fraction and velocity distributions in vertical oil-in-water flows using ERT and a local probe

    Institute of Scientific and Technical Information of China (English)

    LI Hua; WANG Mi; WU Ying-xiang; MA Yi-xin; WILLIAMS Richard

    2005-01-01

    This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%.A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT technique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.

  4. Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time measurements of distance and radial velocity

    Science.gov (United States)

    Kakuma, Seiichi

    2017-02-01

    A frequency-modulated continuous-wave (FMCW) laser radar capable of real-time displaying the distance to a target object and its radial velocity as their corresponding frequency spectra is developed. The system employs a pair of oppositely frequency-swept vertical-cavity surface-emitting laser diodes (VCSELs). This makes possible simultaneous detection of beat signals induced by the increment (up-ramp) and decrement (down-ramp) in laser frequencies. By mixing these two beat signals, their sum and difference frequencies are directly obtained without arithmetic processing such as averaging and subtraction. Results of the test experiments adopting axially moving block gauges as target objects show that both the distance and given velocities are accurately determined from the spectrum of the frequency mixer.

  5. Measurement and interpretation of the velocity space correlation of a laboratory plasma fluctuation with laser induced fluorescence

    Science.gov (United States)

    Mattingly, S. W.; Berumen, J.; Chu, F.; Hood, R.; Skiff, F.

    2013-11-01

    A technique for probing velocity space correlations has been developed using laser-induced fluorescence. In this paper, a description of the experimental setup is given, with results to follow in a later publication. The experiment consists of a cylindrical plasma column 3 m long and radius ~ 0.25 cm, holding singly-charged argon ions (Ar II) with density n ~ 109 cm-3, Te ~ 5 eV, Ti,|| ~ .06 eV, and a 1 kG axial magnetic field. Two separate metastable lines are excited by single frequency lasers at 611 nm and 668 nm. These lasers may tune with a precision of .01 pm. The separate lasers are used to measure independent slices of the velocity distribution function. To confirm the velocity distribution and magnetic field, the Doppler-broadened, sigma-polarized Zeeman line for each transition is measured. With this, the absolute parallel component of ion velocity subject to LIF can be determined. The two separate lasers then give us a signal as a function of two separate parallel ion velocities. Two point correlation is used to reduce the noise floor on the plasma fluctuation. This fluctuation is then investigated as a function of the difference in velocity.

  6. Estimates of Vertical Velocity Errors for IGS ITRF2014 Stations by Applying the Improved Singular Spectrum Analysis Method and Environmental Loading Models

    Science.gov (United States)

    Klos, Anna; Gruszczynska, Marta; Bos, Machiel Simon; Boy, Jean-Paul; Bogusz, Janusz

    2017-02-01

    A reliable subtraction of seasonal signals from the Global Positioning System (GPS) position time series is beneficial for the accuracy of derived velocities. In this research, we propose a two-stage solution of the problem of a proper determination of seasonal changes. We employ environmental loading models (atmospheric, hydrological and ocean non-tidal) with a dominant annual signal of amplitudes in their superposition of up to 12 mm and study the seasonal signal (annual and semi-annual) estimates that change over time using improved singular spectrum analysis (ISSA). Then, this deterministic model is subtracted from GPS position time series. We studied data from 376 permanent International GNSS Service (IGS) stations, derived as the official contribution to International Terrestrial Reference Frame (ITRF2014) to measure the influence of applying environmental loading models on the estimated vertical velocity. Having removed the environmental loadings directly from the position time series, we noticed the evident change in the power spectrum for frequencies between 4 and 80 cpy. Therefore, we modelled the seasonal signal in environmental models using the ISSA approach and subtracted it from GPS vertical time series to leave the noise character of the time series intact. We estimated the velocity dilution of precision (DP) as a ratio between classical Weighted Least Squares and ISSA approach. For a total number of 298 out of the 376 stations analysed, the DP was lower than 1. This indicates that when the ISSA-derived curve was removed from the GPS data, the error of velocity becomes lower than it was before.

  7. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control☆

    Science.gov (United States)

    Pescini, E.; Martínez, D.S.; De Giorgi, M.G.; Francioso, L.; Ficarella, A.

    2015-01-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled “Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields” by Pescini et al. [6]. PMID:26425667

  8. Laser-optical measurements of the velocities of the plasma jets formed from different gases in a kilojoule-range plasma focus facility

    Energy Technology Data Exchange (ETDEWEB)

    Polukhin, S. N., E-mail: snpol@lebedev.ru; Dzhamankulov, A. M.; Gurei, A. E.; Nikulin, V. Ya., E-mail: vnik@lebedev.ru; Peregudova, E. N.; Silin, P. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-12-15

    The velocities of the plasma jets formed from Ne, N{sub 2}, Ar, and Xe gases in plasma focus facilities were determined by means of laser-optical shadowgraphy of the shock waves generated at the jet leading edge. In spite of the almost tenfold ratio between the atomic weights of these gases, the outflow velocities of the plasma jets formed in experiments with these gases differ by less than twice, in the range of (0.7–1.1) × 10{sup 7} cm/s under similar discharge conditions. The energies of the jet ions were found to vary from 0.7 keV for nitrogen to 4 keV for xenon.

  9. Possible relationship between the equatorial electrojet (EEJ) and daytime vertical E × B drift velocities in F region from ROCSAT observations

    Science.gov (United States)

    Kumar, Sandeep; Veenadhari, B.; Tulasi Ram, S.; Su, S.-Y.; Kikuchi, T.

    2016-10-01

    The vertical E × B drift is very important parameter as its day to day variability has great influence on the variability in the low latitude F-region ion and electron density distributions. The measurements of vertical ion velocity from the first Republic of China Satellite (ROCSAT-1) provide a unique data base for the development of possible relationship between vertical E × B drifts and ground based magnetometer observation. An attempt has been made to derive quantitative relationship between F-region vertical E × B drifts measured by ROCSAT-1 (600 km) and ground measured equatorial electrojet for the solar maximum period 2001-2003 for Indian and Japanese sectors. The results consistently indicate existence of linear relationship between the measured vertical E × B drifts at topside F-region and EEJ for both the sectors, with a moderate to high correlation coefficients. The linear relationship between ROCSAT-1 measured E × B drifts and EEJ for Indian and Japanese sectors has been compared with a similar relationship with Jicamarca Unattended Long-term Ionosphere Atmosphere Radar (JULIA) measured E × B drifts (150 km echos) and EEJ strength from Peruvian sector during 2003. It has been found that ROCSAT-1 measured E × B drifts shows linear relationship with EEJ, however, exhibits a larger scatter unlike JULIA radar observed E × B drifts. This may be attributed to the large height difference as ROCSAT-1 measures E × B drifts at 600 km altitude and the EEJ is E-region (110 km) phenomenon.

  10. A bayesian approach for determining velocity and uncertainty estimates from seismic cone penetrometer testing or vertical seismic profiling data

    Science.gov (United States)

    Pidlisecky, A.; Haines, S.S.

    2011-01-01

    Conventional processing methods for seismic cone penetrometer data present several shortcomings, most notably the absence of a robust velocity model uncertainty estimate. We propose a new seismic cone penetrometer testing (SCPT) data-processing approach that employs Bayesian methods to map measured data errors into quantitative estimates of model uncertainty. We first calculate travel-time differences for all permutations of seismic trace pairs. That is, we cross-correlate each trace at each measurement location with every trace at every other measurement location to determine travel-time differences that are not biased by the choice of any particular reference trace and to thoroughly characterize data error. We calculate a forward operator that accounts for the different ray paths for each measurement location, including refraction at layer boundaries. We then use a Bayesian inversion scheme to obtain the most likely slowness (the reciprocal of velocity) and a distribution of probable slowness values for each model layer. The result is a velocity model that is based on correct ray paths, with uncertainty bounds that are based on the data error. ?? NRC Research Press 2011.

  11. Fabry-Perot spectroscopy for kinetic temperature and velocity measurements of a high enthalpy air plasma flow

    Science.gov (United States)

    Zander, Fabian; Löhle, Stefan; Hermann, Tobias; Fulge, Hannes

    2017-08-01

    The atomic translational temperatures and velocities of a low pressure, high enthalpy air plasma are measured using Fabry-Perot spectroscopy. The measurements presented here are the first measurements using this system at this enthalpy level. The sub-picometre resolution of the unique system has allowed accurate translational temperature and velocity measurements of the atomic species in the plasma. The detection system allows the Doppler broadening of multiple atomic nitrogen and oxygen lines to be measured simultaneously. Additionally, having two optical paths, one perpendicular to the flow and one at 45 deg. allows the Doppler shift to be measured. Measurements were taken during three different plasma wind tunnel tests. Mean atomic nitrogen temperatures of 1.08+/- 0.11 × 104 K and atomic oxygen translational temperatures of 1.23+/- 0.12 ×104 K were measured. The thermal non-equilibrium determined verified earlier measurements of the same phenomena, however, the mechanism behind this has not yet been determined. The mean measured flow velocity was 3350+/- 840~m~s-1 and was consistent between the atomic species. The translational temperature and velocity contribute approximately 35% of the local enthalpy of the flow. The direct measurement of these parameters, removing previously required assumptions, increases the fidelity of the flow characterisation significantly. This allows high quality testing to be conducted in this flow field.

  12. EVIDENCE OF HOT HIGH VELOCITY PHOTOIONIZED PLASMA FALLING ON ACTIVELY ACCRETING T TAURI STARS

    Energy Technology Data Exchange (ETDEWEB)

    Gómez de Castro, Ana Ines [Grupo de Investigación Complutense AEGORA and S.D. Astronomía y Geodesia, Fac. de CC Matemáticas, Universidad Complutense, E-28040 Madrid (Spain)

    2013-10-01

    The He II (1640 Å) line and the resonance doublet of N V (UV1) provide a good diagnostic tool to constrain the excitation mechanism of hot (T{sub e} > 40,000 K) atmospheric/magnetospheric plasmas in T Tauri stars (TTSs). Making use of the data available in the Hubble Space Telescope archive, this work shows that there are at least two distinct physical components contributing to the radiation in these tracers: the accretion flow sliding on the magnetosphere and the atmosphere. The N V profiles in most sources are symmetric and at rest with respect to the star. The velocity dispersion of the profile increases from non-accreting (σ = 40 km s{sup –1}) to accreting (σ = 120 km s{sup –1}) TTSs, suggesting that the macroturbulence field in the line formation region decreases as the stars approach the main sequence. Evidence of the N V line being formed in a hot solar-like wind has been found in RW Aur, HN Tau, and AA Tau. The He II profile has a strong narrow component that dominates the line flux; the dispersion of this component ranges from 20 to 60 km s{sup –1}. Current data suggest that both accretion shocks and atmospheric emission might contribute to the line flux. In some sources, the He II line shows a broad and redward-shifted emission component often accompanied by semiforbidden O III] emission that has a critical electron density of ∼3.4 × 10{sup 10} cm{sup 3}. In spite of their different origins (inferred from the kinematics of the line formation region), N V and He II fluxes are strongly correlated, with only the possible exception of some of the heaviest accretors.

  13. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Yoshioka, M.; Saito, T. [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  14. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Yoshioka, M.; Saito, T. [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  15. Increase of the Density, Temperature and Velocity of Plasma Jets driven by a Ring of High Energy Laser Beams

    CERN Document Server

    Fu, Wen; Fatenejad, Milad; Lamb, Donald Q; Grosskopf, Michael; Park, Hye-Sook; Remington, Bruce; Spitkovsky, Anatoly

    2012-01-01

    Supersonic plasma outflows driven by multi-beam, high-energy lasers, such as Omega and NIF, have been and will be used as platforms for a variety of laboratory astrophysics experiments. Here we propose a new way of launching high density and high velocity, plasma jets using multiple intense laser beams in a hollow ring formation. We show that such jets provide a more flexible and versatile platform for future laboratory astrophysics experiments. Using high resolution hydrodynamic simulations, we demonstrate that the collimated jets can achieve much higher density, temperature and velocity when multiple laser beams are focused to form a hollow ring pattern at the target, instead of focused onto a single spot. We carried out simulations with different ring radii and studied their effects on the jet properties. Implications for laboratory collisionless shock experiments are discussed.

  16. Measurements of the ion velocity distribution in an ultracold neutral plasma derived from a cold, dense Rydberg gas

    Science.gov (United States)

    Bergeson, Scott; Lyon, Mary

    2016-05-01

    We report measurements of the ion velocity distribution in an ultracold neutral plasma derived from a dense, cold Rydberg gas in a MOT. The Rydberg atoms are excited using a resonant two-step excitation pathway with lasers of 4 ns duration. The plasma forms spontaneously and rapidly. The rms width of the ion velocity distribution is determined by measuring laser-induced fluorescence (LIF) of the ions. The measured excitation efficiency is compared with a Monte-Carlo wavefunction calculation, and significant differences are observed. We discuss the conditions for blockaded Rydberg excitation and the subsequent spatial ordering of Rydberg atom domains. While the blockade interaction is greater than the Rabi frequency in portions of the atomic sample, no evidence for spatial ordering is observed. This research is supported in part by the Air Force Office of Scientific Research (Grant No. FA9950-12- 0308) and by the National Science Foundation (Grant No. PHY-1404488).

  17. Measurements of the ion velocity distribution in an ultracold neutral plasma derived from a cold, dense Rydberg gas

    CERN Document Server

    Bergeson, S D

    2016-01-01

    We report measurements of the ion velocity distribution in an ultracold neutral plasma derived from a dense, cold Rydberg gas in a MOT. The Rydberg atoms are excited using a resonant two-step excitation pathway with lasers of 4 ns duration. The plasma forms spontaneously and rapidly. The rms width of the ion velocity distribution is determined by measuring laser-induced fluorescence (LIF) of the ions. The measured excitation efficiency is compared with a Monte-Carlo wavefunction calculation, and significant differences are observed. We discuss the conditions for blockaded Rydberg excitation and the subsequent spatial ordering of Rydberg atom domains. While the blockade interaction is greater than the Rabi frequency in portions of the atomic sample, no evidence for spatial ordering is observed.

  18. Comparison of H-mode plasma simulations using toroidal velocity models depending on plasma current density and ion temperature in presence of an ITB

    Directory of Open Access Journals (Sweden)

    Boonyarit Chatthong

    2014-06-01

    Full Text Available Two different approaches for predicting plasma toroidal velocity (v are developed and used in self-consistent simulations of H-mode plasmas with the presence of ITB using BALDUR integrated predictive modelling code. In the first approach, the toroidal velocity depends on the plasma current density; while in the second approach the toroidal velocity is directly proportional to the ion temperature. The profile of v is used to calculate the ExB flow shear which is a main mechanism for plasma transport suppression, leading to the ITB formation. In all simulations, the core transport model is a combination of NCLASS neoclassical transport and semi-empirical Mixed Bohm/gyro-Bohm model that includes the ITB effects. The boundary condition is set at top of the pedestal and is estimated using a pedestal model based on a combination of magnetic and flow shear stabilization pedestal width scaling and an infinite-n ballooning pressure gradient. Two toroidal velocity models are used to simulate the time evolution of plasma temperature and density profiles of 10 JET discharges. The root mean square error (RMSE is used to compare simulation results of those 10 JET discharges with experimental data. It is found that RMSE of Ti , Te , ne are 28.1%, 31.8%, and 15.0% for the first toroidal velocity model and 25.5%, 30.2%, and 15.1% for the second toroidal velocity model, respectively. Furthermore, this suite of codes is used to predict the ITER performance under standard type I ELMy H-mode. It is found that the simulation yields formation of a narrow ITB near r/a = 0.7 in the simulation using the current density dependent model and a wide ITB from r/a = 0.5 to 0.8 in the simulation using the ion temperature dependent model. The average of central ion temperature, total fusion power output and alpha power are predicted to be 36 keV, 159 MW and 492 MW for the current density dependent model and 49 keV, 218 MW and 786 MW for the ion temperature dependent

  19. Number-conserving linear response study of low-velocity ion stopping in a collisional magnetized classical plasma

    Directory of Open Access Journals (Sweden)

    Nersisyan Hrachya B.

    2013-11-01

    Full Text Available The low-velocity stopping power of ions in a magnetized collisional plasma is studied through the linear response theory. The collisions are taken into account through a number-conserving relaxation time approximation. One of the major objectives of this study is to compare and contrast our theoretical results with those obtained through a diffusion coefficient formulation based on Dufty-Berkovsky relation.

  20. Modifications to the pulsar kick velocity due to magnetic interactions in dense plasma

    Science.gov (United States)

    Adhya, S. P.; Roy, P. K.; Dutt-Mazumder, A. K.

    2014-02-01

    In this work we calculate the pulsar kick velocity of a magnetized neutron star (NS) composed of a degenerate quark matter core with non-Fermi liquid (NFL) correction. Both the leading order (LO) and next to LO (NLO) corrections to the kick velocity have been incorporated. In addition, the NFL corrections to the specific heat of magnetized quark matter have been presented. This has been taken into account to calculate the kick velocity of the NS. The results show a significant departure from the normal Fermi liquid estimates. The relation between radius and temperature has been shown with a kick velocity of 100 km s-1 with and without NFL corrections.

  1. Controllability study of EAST plasma vertical instability and improvement in future

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L., E-mail: liulei@ipp.ac.cn [University of Science and Technology of China, Hefei (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J., E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Humphreys, D.A., E-mail: dave.humphreys@gat.com [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Luo, Z.P., E-mail: zhpluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Chen, S.L., E-mail: slchen@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2014-05-15

    Highlights: • The discontinuous passive plate model is developed and verified by experiment. • The power supply upgrade requirements for VDE control are evaluated. • We investigate efficacy of internal control coil location for VDE control. • Maximum controllable vertical displacement experiments are done. • EAST VDE controllability is roughly given by VDE experiments. - Abstract: In order to enhance control speed, each up/down Cu passive plate in EAST is cut into 8 pieces. These discontinuous plate segments are still connected to the inner vacuum vessel by steel supporting legs. A model of this plate segments-vessel-supporting leg loop is developed and verified by EAST vertical displacement event (VDE) experiments. The internal coil (IC) power supply requirements for VDE control are also evaluated. In particularly, we investigate the efficacy of internal control coil location to minimize the power supply capability. The IC power supply upgrade requirements for the optimized location and actual location are discussed. VDE experiments to evaluate maximum controllable vertical displacement (dZmax) were done with varying elongation and resulting EAST vertical controllability estimates are summarized here. These experimental results verified previous simulation results that present IC power supply capacity cannot provide robust vertical control.

  2. Cytocompatibility studies of vertically-aligned multi-walled carbon nanotubes: Raw material and functionalized by oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, A.O., E-mail: loboao@yahoo.com [Laboratorio Associado de Sensores e Materiais, INPE, Sao Jose dos Campos/SP (Brazil); Instituto Tecnologico de Aeronautica, ITA, Sao Jose dos Campos/SP (Brazil); Laboratorio de Nanotecnologia Biomedica, Universidade do Vale do Paraiba, Sao Jose dos Campos/SP (Brazil); Corat, M.A.F. [Centro Multidisciplinar para Investigacao Biologica na Area da Ciencia em Animais de Laboratorio, CEMIB, UNICAMP, Campinas/SP (Brazil); Antunes, E.F. [Laboratorio Associado de Sensores e Materiais, INPE, Sao Jose dos Campos/SP (Brazil); Instituto Tecnologico de Aeronautica, ITA, Sao Jose dos Campos/SP (Brazil); Ramos, S.C. [Instituto Tecnologico de Aeronautica, ITA, Sao Jose dos Campos/SP (Brazil); Pacheco-Soares, C. [Laboratorio de Dinamica de Compartimentos Celulares, UNIVAP, Sao Jose dos Campos/SP (Brazil); and others

    2012-05-01

    It was presented a strong difference on cell adhesion and proliferation of functionalized vertically-aligned multi-walled carbon nanotube (VACNT) scaffolds compared to raw-VACNT. Biocompatibility in vitro tests were performed on raw-VACNT after superficial modification by oxygen plasma, which changes its superhydrophobic character to superhydrophilic. Two cytocompatibility tests were applied: 1) total lactate dehydrogenase colorimetric assay for the study of proliferating cells; and 2) cellular adhesion by scanning electron microscopy. Results showed that superhydrophilic VACNT scaffolds stimulate cell growth with proliferation up to 70% higher than normal growth of cell culture.

  3. The effect of velocity slip and multiple convective boundary conditions in a Darcian porous media with microorganism past a vertical stretching/shrinking sheet

    Science.gov (United States)

    Latiff, Nur Amalina Abdul; Yahya, Elisa; Ismail, Ahmad Izani Md.; Amirsom, Ardiana; Basir, Faisal

    2017-08-01

    An analysis is carried out to study the steady mixed convective boundary layer flow of a nanofluid in a Darcian porous media with microorganisms past a vertical stretching/shrinking sheet. Heat generation/absorption and chemical reaction effects are incorporated in the model. The partial differential equations are transformed into a system of ordinary differential equations by using similarity transformations generated by scaling group transformations. The transformed equations with boundary conditions are solved numerically. The effects of controlling parameters such as velocity slip, Darcy number, heat generation/absorption and chemical reaction on the skin friction factor, heat transfer, mass transfer and microorganism transfer are shown and discuss through graphs. Comparison of numerical solutions in the present study with the previous existing results in literature are made and comparison results are in very good agreement.

  4. Inversion methods for fast-ion velocity-space tomography in fusion plasmas

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Stagner, L.; Salewski, Mirko

    2016-01-01

    Velocity-space tomography has been used to infer 2D fast-ion velocity distribution functions. Here we compare the performance of five different tomographic inversion methods: truncated singular value decomposition, maximum entropy, minimum Fisher information and zeroth and first-order Tikhonov re...

  5. Deposition and properties of high-velocity-oxygen-fuel and plasma-sprayed Mo-Mo2C composite coatings

    Science.gov (United States)

    Prchlik, L.; Gutleber, J.; Sampath, S.

    2001-12-01

    Molybdenum thermal-spray coatings, dispersion strengthened by molybdenum oxides and molybdenum carbides, play an important role in industrial tribological applications. Traditionally, they have been prepared by plasma and wire flame spraying. High porosity and lower cohesion strength limit their application in situations where both galling and abrasion wear is involved. In this study, high-velocity-oxygen-fuel (HVOF) deposition of molybdenum and molybdenum carbide coatings was attempted. Deposition was achieved for all powders used. Composition, microstructure, mechanical, and wear properties of the HVOF synthesized coatings were evaluated and compared with plasma-sprayed counterparts. The HVOF coatings possessed a very good abrasion resistance, whereas plasma deposits performed better in dry sliding tests. Measurements showed a close relationship between the coating surface hardness and its abrasion resistance. Results also suggested correlation between molybdenum carbide distribution in the molybdenum matrix and the sliding friction response of Mo-Mo2C coatings.

  6. Particle Hopping within an Extended Vertical Chain in a Complex Plasma

    Science.gov (United States)

    Chen, Mudi; Kong, Jie; Qiao, Ke; Carmona-Reyes, Jorge; Harris, Brandon; Matthews, Lorin; Hyde, Truell

    2012-10-01

    Research into the micro-excitations of dust in vertical chain bundles has recently increased due to interest in the generic micro-behaviors of other 2+1 D liquids sharing similar characteristics. This is particularly true for systems providing external field alignment (for example, due to the ion wakefield) of the chain bundle. Most such chain motion is created due to (a) strong vertical interparticle coupling creating particle alignment within the chain, (b) topological constraints arising from the structure of the confinement which can ``cage'' the motion of the particle, and (c) thermal perturbations and/or local strain-induced stresses which can induce particle hopping and overall chain motion. This paper will discuss the third of these, i.e., the manner in which thermal perturbations and/or local strain-induced stresses can induce particle hopping and overall chain motion. Using a glass box placed on the lower powered electrode of a GEC rf reference cell to provide strong horizontal confinement, a vertical dust chain will be perturbed employing a diode pumped solid state laser (Coherent VERDI). The resulting particle hopping and overall chain motion will be examined theoretically and the manner in which the vertical interparticle force and the overall confinement impacts the underlying physics will be discussed.

  7. Vertical and bevel-structured SiC etching techniques incorporating different gas mixture plasmas for various microelectronic applications.

    Science.gov (United States)

    Sung, Ho-Kun; Qiang, Tian; Yao, Zhao; Li, Yang; Wu, Qun; Lee, Hee-Kwan; Park, Bum-Doo; Lim, Woong-Sun; Park, Kyung-Ho; Wang, Cong

    2017-06-20

    This study presents a detailed fabrication method, together with validation, discussion, and analysis, for state-of-the-art silicon carbide (SiC) etching of vertical and bevelled structures by using inductively coupled plasma reactive ion etching (ICP-RIE) for microelectronic applications. Applying different gas mixtures, a maximum bevel angle of 87° (almost vertical), large-angle bevels ranging from 40° to 80°, and small-angel bevels ranging from 7° to 17° were achieved separately using distinct gas mixtures at different ratios. We found that SF6 with additive O2 was effective for vertical etching, with a best etching rate of 3050 Å/min. As for the large-angle bevel structures, BCl3 + N2 gas mixtures show better characteristics, exhibiting a controllable and large etching angle range from 40° to 80° through the adjustment of the mixture ratio. Additionally, a Cl2 + O2 mixture at different ratios is applied to achieve a small-angel bevels ranging from 7° to 17°. A minimum bevel angel of approximately 7° was achieved under the specific volume of 2.4 sccm Cl2 and 3.6 sccm O2. These results can be used to improve performance in various microelectronic applications including MMIC via holes, PIN diodes, Schottky diodes, JFETs' bevel mesa, and avalanche photodiode fabrication.

  8. Temporal and spatial resolved SuperDARN line of sight velocity measurements corrected for plasma index of refraction using Bayesian inference

    Science.gov (United States)

    Spaleta, J.; Bristow, W. A.; Klein, J.

    2015-04-01

    Recent work by Gillies et al. (2012, 2009, 2010) has sought an explanation for the SuperDARN line-of-sight velocity underestimate of ionospheric plasma velocity. The reason for the underestimation is thought to be from the modification of the measured Doppler shift of the backscattered signal due to phase refractive index of the ionospheric plasma in the scattering region. Presented here is an analysis technique to estimate the plasma drift velocity, correcting for the index of the refraction of the scattering medium. The technique requires dual frequency SuperDARN observations and calculates velocity from the phase of the SuperDARN autocorrelation function (ACF). Both plasma velocity and plasma density are treated as independent unknowns, and self-consistent error estimates are generated for each. This new technique was employed at the McMurdo radar, resulting in estimates of plasma velocity on scales relevant to existing SuperDARN data products. The McMurdo dual frequency analysis also provides a new SuperDARN data product, an estimate for the plasma density in the ionospheric region derived wholly from SuperDARN backscatter.

  9. Velocity-space sensitivities of neutron emission spectrometers at the tokamaks JET and ASDEX Upgrade in deuterium plasmas

    Science.gov (United States)

    Jacobsen, A. S.; Binda, F.; Cazzaniga, C.; Eriksson, J.; Hjalmarsson, A.; Nocente, M.; Salewski, M.; Tardini, G.

    2017-07-01

    Future fusion reactors are foreseen to be heated by the energetic alpha particles produced in fusion reactions. For this to happen, it is important that the energetic ions are sufficiently confined. In present day fusion experiments, energetic ions are primarily produced using external heating systems such as neutral beam injection and ion cyclotron resonance heating. In order to diagnose these fast ions, several different fast-ion diagnostics have been developed and implemented in the various experiments around the world. The velocity-space sensitivities of fast-ion diagnostics are given by so-called weight functions. Here instrument-specific weight functions are derived for neutron emission spectrometry detectors at the tokamaks JET and ASDEX Upgrade for the 2.45 MeV neutrons produced in deuterium-deuterium reactions in deuterium plasmas. Using these, it is possible to directly determine which part of velocity space each detector observes.

  10. Interference effects in the long-time tail of the velocity auto-correlation function for a dense one-component plasma in a magnetic field

    NARCIS (Netherlands)

    Suttorp, L.G.; Schoolderman, A.J.

    1987-01-01

    The long-time behaviour of the velocity autocorrelation function that describes the motion of a tagged particle through a one-component plasma in a uniform magnetic field has been determined with the use of mode-coupling theory. The long-time tail depends on the orientation of the velocity with resp

  11. On the theory of MHD modes driven by strong ExB velocity shear in tokamaks. Addendum. 2000 Plasma Phys. Control. Fusion 42 57

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailovskii, A.B.; Sharapov, S.E.; Timofeev, A.V. [JET Joint Undertaking, Abingdon, Oxfordshire OX14 3EA (United Kingdom)

    2000-07-01

    The theory of MHD modes driven by strong ExB velocity shear in tokamaks given by Mikhailovskii and Sharapov (2000 Plasma Phys. Control. Fusion 42 57) is revised. It is suggested that, in the approximations taken by these authors, there are no MHD eigenmodes if the cross-field velocity shear is larger then the Alfven frequency shear. (author)

  12. The relationship between latent heating, vertical velocity, and precipitation processes: The impact of aerosols on precipitation in organized deep convective systems

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen

    2016-06-01

    A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updrafts/downdrafts in the middle/lower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.

  13. Measurement of Plasma Ion Temperature and Flow Velocity from Chord-Averaged Emission Line Profile

    Indian Academy of Sciences (India)

    Xu Wei

    2011-03-01

    The distinction between Doppler broadening and Doppler shift has been analysed, the differences between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. Local ion temperature and flow velocity have been derived from the chord-averaged emission line profile by a chosen-point Gaussian fitting technique.

  14. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas

    Science.gov (United States)

    Chow, V. W.; Mendis, D. A.; Rosenberg, M.

    1993-01-01

    By virtue of being generally immersed in a plasma environment, cosmic dust is necessarily electrically charged. The fact that secondary emission plays an important role in determining the equilibrium grain potential has long been recognized, but the fact that the grain size plays a crucial role in this equilibrium potential, when secondary emission is important, has not been widely appreciated. Using both conducting and insulating spherical grains of various sizes and also both Maxwellian and generalized Lorentzian plasmas (which are believed to represent certain space plasmas), we have made a detailed study of this problem. In general, we find that the secondary emission yield delta increases with decreasing size and becomes very large for grains whose dimensions are comparable to the primary electron penetration depth, such as in the case of the very small grains observed at comet Halley and inferred in the interstellar medium. Moreover, we observed that delta is larger for insulators and equilibrium potentials are generally more positive when the plasma has a broad non-Maxwellian tail. Interestingly, we find that for thermal energies that are expected in several cosmic regions, grains of different sizes can have opposite charge, the smaller ones being positive while the larger ones are negative. This may have important consequences for grain accretion in polydisperse dusty space plasmas.

  15. Acute elevation of plasma non-esterified fatty acids increases pulse wave velocity and induces peripheral vasodilation in humans in vivo

    NARCIS (Netherlands)

    Riksen, Niels P.; Bosselaar, Marlies; Bakker, Stephan J. L.; Heine, Robert J.; Rongen, Gerard A.; Tack, Cees J.; Smits, Paul

    2007-01-01

    Plasma NEFA (non-esterified fatty acid) concentrations are elevated in patients with obesity. In the present study we first aimed to provide an integral haemodynamic profile of elevated plasma NEFAs by the simultaneous assessment of blood pressure, pulse wave velocity, FBF (forearm blood flow) and s

  16. Simulation of open-loop plasma vertical movement response in the Damavand tokamak using closed-loop subspace system identification

    Science.gov (United States)

    Darestani Farahani, N.; Abbasi Davani, F.

    2016-02-01

    The formulation of a multi-input single-output closed-loop subspace method for system identification has been employed for the purpose of obtaining control-relevant model of the open loop response for plasma vertical movement in the Damavand tokamak. Such a model is particularly well suited for the robust controller design. The method described in this paper is a kind of worst-case identification technique, aiming to minimize the error between the identified model and the true plant. The accuracy of the estimation of the plant dynamics has been tested by different experiments. The fitness of the identified model around the defined operating point has been more than 90%, and compared to the physical-based model, it has better root mean squared error (RMSE) measure of the goodness of fitting.

  17. Effects of Thermal Diffusion and Viscous Dissipation on Unsteady MHD Free Convection Flow Past a Vertical Porous Plate Under Oscillatory Suction Velocity with Heat Sink

    Directory of Open Access Journals (Sweden)

    Prabhakar Reddy B.

    2014-05-01

    Full Text Available The thermal diffusion and viscous dissipation effects on an unsteady MHD free convection heat and mass transfer flow of an incompressible, electrically conducting, fluid past an infinite vertical porous plate embedded in a porous medium of time dependent permeability under oscillatory suction velocity in the presence of a heat absorbing sink have been studied. It is considered that the influence of a uniform magnetic field acts normal to the flow and the permeability of the porous medium fluctuates with time. The dimensionless governing equations for this investigation have been solved numerically by using the efficient Galerkin finite element method. The numerical results obtained have been presented through graphs and tables for the thermal Grashof number (Gr > 0 corresponding to the cooling of the porous plate and (Gr < 0 corresponding to heating of the porous plate to observe the effects of various material parameters encountered in the problem under investigation. Numerical data for skin-friction, Nusselt and Sherwood numbers are tabulated and then discussed.

  18. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    NARCIS (Netherlands)

    Zhu, J.; Gao, J.; Ehn, A.; Alden, M.; Li, Z.; Moseev, D.; Kusano, Y.; Salewski, M.; Alpers, A.; Gritzmann, P.; Schwenk, M.

    2015-01-01

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized highspeed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the singl

  19. Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul

    2005-01-01

    The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...

  20. Light scattering by a dense ionization plasma wave with a tunable velocity

    Science.gov (United States)

    Zhidkov, Alexei; Fujii, Takashi; Esirkepov, Timur; Koga, James; Nemoto, Koshichi; Bulanov, Sergei

    2009-11-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. We study the conversion of a coherent light to x-rays by means of particle-in-cell simulation and by solution of continuous equation with the correct current. The x-ray spectra of a converted, lower frequency coherent light change from the monochromatic to a high order harmonic-like with the duration of ionizing pulses and the intensity of scattered pulses; the spectrum are not symmetrical at Vc.

  1. Electrical conductivity and velocity of highly ionized plasma flows - Theory and experiment.

    Science.gov (United States)

    Vendell, E. W.; Park, C.; Posch, R. E.

    1972-01-01

    Use of an immersible, three-coil, magnetic-induction probe, previously tested in a low-density supersonic argon jet, to measure electrical conductivity and velocity profiles of a highly ionized high-density nitrogen jet in the continuum flow regime where effects due to probe bow shocks and boundary layers might not be negligible. Measured centerline values of electrical conductivity and velocity were compared with predictions based on a theoretical analysis previously developed to study the gas as it expanded adiabatically and inviscidly from an equilibrium sonic state to the nozzle exit. The resulting numerical exit plane values for electron density and electron temperature were then substituted into the Spitzer-Haerm conductivity formula to compute a theoretical conductivity which agreed within 40% of the measured conductivity, while the calculated and experimental velocity values differed by as much as 50%. The lack of agreement was attributed to the possible use of invalid assumptions and boundary conditions in the computer analysis or to the unknown effects of shocks on the probe data.

  2. Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae

    Science.gov (United States)

    Wood, Tamara M.; Gartner, Jeffrey W.

    2010-01-01

    Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and

  3. Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen plasma etching.

    Science.gov (United States)

    Terashima, Chiaki; Arihara, Kazuki; Okazaki, Sohei; Shichi, Tetsuya; Tryk, Donald A; Shirafuji, Tatsuru; Saito, Nagahiro; Takai, Osamu; Fujishima, Akira

    2011-02-01

    Conductive diamond whiskers were fabricated by maskless oxygen plasma etching on highly boron-doped diamond substrates. The effects of the etching conditions and the boron concentration in diamond on the whisker morphology and overall substrate coverage were investigated. High boron-doping levels (greater than 8.4 × 10(20) cm(-3)) are crucial for the formation of the nanosized, densely packed whiskers with diameter of ca. 20 nm, length of ca. 200 nm, and density of ca. 3.8 × 10(10) cm(-2) under optimal oxygen plasma etching conditions (10 min at a chamber pressure of 20 Pa). Confocal Raman mapping and scanning electron microscopy illustrate that the boron distribution in the diamond surface region is consistent with the distribution of whisker sites. The boron dopant atoms in the diamond appear to lead to the initial fine column formation. This simple method could provide a facile, cost-effective means for the preparation of conductive nanostructured diamond materials for electrochemical applications as well as electron emission devices.

  4. Reflection of electromagnetic radiation from plasma with an anisotropic electron velocity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vagin, K. Yu., E-mail: vagin@sci.lebedev.ru; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-08-15

    The reflection of a test electromagnetic pulse from the plasma formed as a result of tunnel ionization of atoms in the field of a circularly polarized high-power radiation pulse is analyzed using the kinetic approach to describe electron motion. It is shown that the reflected pulse is significantly amplified due to the development of Weibel instability. The amplification efficiency is determined by the maximum value of the instability growth rate, which depends on the degree of anisotropy of the photoelectron distribution function.

  5. Wave solutions of ion cyclotron heated plasmas with self-consistent velocity distributions in a tokamak

    Science.gov (United States)

    Lee, Jungpyo; Wright, John; Bonoli, Paul; Harvey, Robert

    2015-11-01

    We describe a numerical model for the propagation and absorption of ion cyclotron waves in a tokamak with a non-Maxwellian velocity space distribution function. The non-Maxwellian distribution is calculated by solving Maxwell's equations and the Fokker-Plank equation self-consistently. This approach will be useful to interpret measurements of minority hydrogen tail formation during ICRF heating experiments in Alcator C-Mod. To couple the Maxwell equation solver with Fokker-Plank equation solver, the quasilinear diffusion coefficients for the fundamental ion cyclotron absorption and the first harmonic absorption are calculated. In a previous study, the all-orders spectral algorithm wave solver (AORSA) was coupled with the Fokker-Plank code (CQL3D) to find the self-consistent non-Maxwellian distribution. We derive the modified quasilinear diffusion coefficients for the finite Larmor radius (FLR) approximation using a significantly faster wave solver (TORIC) following the approach by Jaeger. The coupled TORIC-CQL3D model will be compared against results from AORSA-CQL3D in order to verify the accuracy of the reduced FLR physics in TORIC. Work supported by US Department of Energy Contract No. DE-FC02-01ER54648.

  6. Vertical and Smooth, etching of InP by Cl2/CH4/Ar Inductively Coupled Plasma at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    孙长征; 周进波; 熊兵; 王健; 罗毅

    2003-01-01

    We study the room-temperature dry, etching of InP by inductively coupled plasma (ICP) using Cl2/CH4/Ar mixtures. Etches were characterized in terms of anisotropy and surface roughness by scanning electron microscopy and atomic force microscopy, respectively. It is found that the flow ratio between Cl2 and CH4, ICP power, rf chuck power, and table temperature can greatly influence the, etching results. By adjusting, etching parameters,vertical sidewall and smooth surface can be obtained simultaneously, together with a moderate, etch rate and a good select ratio. The root-mean-square surface roughness is measured to be as low as 0.27nm. To the best of our knowledge, this is the best result for InP to date. The, etch rate is 855 nm/min, and the selectivity ratio over SiO2 is estimated to be higher than 15:1. The stoichiometry of the, etched surface has also been investigated by Auger electron spectroscopy. The, etched surface is found to manifest a slight P deficiency, and the ratio between P and In reaches the stoichiometric value within about 0.75nm depth into the surface.

  7. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    OpenAIRE

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan; Zhang, Minghua; Schumacher, Courtney; Upton, Hannah; Jensen, Michael P.; Johnson, Karen L.; Wang, Meng; Ahlgrimm, Maike; Feng, Zhe; Minnis, Patrick; Thieman, Mandana

    2016-01-01

    This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1) and apparent moisture sink (Q2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The...

  8. Effect of Plasma, RF, and RIE Treatments on Properties of Double-Sided High Voltage Solar Cells with Vertically Aligned p-n Junctions

    Directory of Open Access Journals (Sweden)

    Mykola O. Semenenko

    2016-01-01

    Full Text Available Si-based solar cells with vertically aligned p-n junctions operating at high voltage were designed and fabricated. The plasma treatments and antireflection coating deposition on the working surfaces of both single- and multijunction cells were made using the special holders. It was shown that additional treatment of solar cells in argon plasma prior to hydrogen plasma treatment and deposition of diamond-like carbon antireflection films led to the improvement of the cell efficiency by up to 60%. Radio frequency waves support plasma generation and improve photoelectric conversion mainly due to reduction of internal stresses at the interfaces. Application of reactive ion etching technique removes the broken layer, reduces elastic strain in the wafer, decreases recombination of charge carriers in the bulk, and provides cell efficiency increase by up to ten times.

  9. Axis and velocity determination for quasi two-dimensional plasma/field structures from Faraday's law: A second look

    Science.gov (United States)

    Sonnerup, Bengt U. Ö.; Denton, Richard E.; Hasegawa, Hiroshi; Swisdak, M.

    2013-05-01

    We re-examine the basic premises of a single-spacecraft data analysis method, developed by Sonnerup and Hasegawa (2005), for determining the axis orientation and proper frame velocity of quasi two-dimensional, quasi-steady structures of magnetic field and plasma. The method, which is based on Faraday's law, makes use of magnetic and electric field data measured by a single spacecraft traversing the structure, although in many circumstances the convection electric field, - v × B, can serve as a proxy for E. It has been used with success for flux ropes observed at the magnetopause but has usually failed to provide acceptable results when applied to real space data from reconnection events as well as to virtual data from numerical MHD simulations of such events. In the present paper, the reasons for these shortcomings are identified, analyzed, and discussed in detail. Certain basic properties of the method are presented in the form of five theorems, the last of which makes use of singular value decomposition to treat the special case where the magnetic variance matrix is non-invertible. These theorems are illustrated using data from analytical models of flux ropes and also from MHD simulations as well as a 2-D kinetic simulation of reconnection. The results make clear that the method requires the presence of a significant, non-removable electric field distribution in the plane transverse to the invariant direction and that it is sensitive to deviations from strict two-dimensionality and strict time stationarity.

  10. Development of a compact thermal lithium atom beam source for measurements of electron velocity distribution function anisotropy in electron cyclotron resonance plasmas.

    Science.gov (United States)

    Nishioka, T; Shikama, T; Nagamizo, S; Fujii, K; Zushi, H; Uchida, M; Iwamae, A; Tanaka, H; Maekawa, T; Hasuo, M

    2013-07-01

    The anisotropy of the electron velocity distribution function (EVDF) in plasmas can be deduced from the polarization of emissions induced by anisotropic electron-impact excitation. In this paper, we develop a compact thermal lithium atom beam source for spatially resolved measurements of the EVDF anisotropy in electron cyclotron resonance (ECR) plasmas. The beam system is designed such that the ejected beam has a slab shape, and the beam direction is variable. The divergence and flux of the beam are evaluated by experiments and calculations. The developed beam system is installed in an ECR plasma device with a cusp magnetic field, and the LiI 2s-2p emission (670.8 nm) is observed in low-pressure helium plasma. The two-dimensional distributions of the degree and direction of the polarization in the LiI emission are measured by a polarization imaging system. The evaluated polarization distribution suggests the spatial variation of the EVDF anisotropy.

  11. 水浮莲型生态河道水流纵向流速垂线分布规律%Vertical profiles of longitudinal velocity in ecological channel flow with water lettuce

    Institute of Scientific and Technical Information of China (English)

    王洁琼; 槐文信; 李志伟

    2011-01-01

    通过物理模型试验、理论分析和数值模拟的方法,研究了有水浮莲覆盖水流的纵向流速垂线分布规律.在水浮莲全覆盖条件下,初步对比分析了3种不同工况下水流纵向时均流速的变化趋势和垂线分布特点.通过"双层边壁"假设,以最大流速线(点)为界将流动沿水深方向分成两层等效明渠流流动层:植被下层和床面上层,并假定上下两层互不影响,即分别只受植被底部和床面粗糙程度影响;利用混合长度模型简化时均动量方程,推导出有水浮莲覆盖水流在恒定均匀流下的纵向时均流速对数分布公式;根据实测数据对公式进行了验证分析.水浮莲对水流影响的数值模拟主要利用计算流体力学软件FLUENT,结合可实现双方程紊流模型,对有水浮莲覆盖的水槽二维两相流场作了数值模拟,并采用多孔介质域模拟水浮莲覆盖区域,将数值计算得到的流速分布与试验实测结果进行了比对,两者吻合较好.%The determination of vertical profiles of stream wise velocities in a vegetated channel is a difficult task due to the complex effects of the vegetation cover that involve anisotropic turbulence.To study the vertical velocity distribution in flows through water lettuce,this paper adopts physical experiments,theoretical analysis and numerical simulation methods.According to the physical model experiments,three groups of data about stream wise velocities are obtained.An initial analysis of the characteristics of longitudinal velocity distribution in a full-vegetated channel has been given.The proposed hypothesis of "double-layer wall" means the flow can be divided into two layers that consist of near-bed area and vegetation-below area by the maximum flow velocity line(point) and one flow layer is equal to an open channel without influencing on the other one.A mixing-length model for predicting vertical velocity distribution in flows through emergent

  12. Effect of combining platelet-rich plasma with anorganic bovine bone on vertical bone regeneration: early healing assessment in rabbit calvariae.

    Science.gov (United States)

    Torres, Jesus; Tamimi, Faleh; Tresguerres, Isabel F; Alkhraisat, Mohammad H; Khraisat, Ameen; Blanco, Luis; Lopez-Cabarcos, Enrique

    2010-01-01

    The purpose of this study was to evaluate the combination of anorganic bovine bone allograft (ABB) with platelet-rich plasma (PRP) when used in vertical bone augmentation. Sixteen healthy 6-month-old female New Zealand rabbits were used in this study. Rabbits were randomly divided into two groups of eight animals each. Created calvarial defects were grafted with ABB or PRP in the first group whereas, in the second group, one cylinder was filled with PRP+ABB and the contralateral cylinder was left ungrafted to be filled by autologous blood (control cylinder). Six weeks after intervention, animals were sacrificed and biopsies were taken. Densitometric, histologic, and histomorphometric analyses were performed to evaluate bone mineral density, vertical bone augmentation, and remaining graft volume, respectively. Statistical analyses were performed with the Mann-Whitney test, using a significance level of P < .05. Six weeks after rabbit calvariae were augmented, data analysis revealed that the mixture of PRP and ABB produced twice the vertical bone volume of ABB alone (P < .0001). Based upon this study of 16 rabbits, it appears that the combination of ABB with PRP resulted in increased vertical bone augmentation when compared with autologous blood in similarly sized created defects.

  13. Particle-in-cell Simulations of Waves in a Plasma Described by Kappa Velocity Distribution as Observed in the Saturńs Magnetosphere

    Science.gov (United States)

    Alves, M. V.; Barbosa, M. V. G.; Simoes, F. J. L., Jr.

    2016-12-01

    Observations have shown that several regions in space plasmas exhibit non-Maxwellian distributions with high energy superthermal tails. Kappa velocity distribution functions can describe many of these regions and have been used since the 60's. They suit well to represent superthermal tails in solar wind as well as to obtain plasma parameters of plasma within planetary magnetospheres. A set of initial velocities following kappa distribution functions is used in KEMPO1 particle simulation code to analyze the normal modes of wave propagation. Initial conditions are determined using observed characteristics for Saturńs magnetosphere. Two electron species with different temperatures and densities and ions as a third species are used. Each electron population is described by a different kappa index. Particular attention is given to perpendicular propagation, Bernstein modes, and parallel propagation, Langmuir and electron-acoustic modes. The dispersion relation for the Bernstein modes is strongly influenced by the shape of the velocity distribution and consequently by the value of kappa index. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.

  14. Usefulness of early diastolic mitral annular velocity to predict plasma levels of brain natriuretic peptide and transient heart failure development after device closure of atrial septal defect.

    Science.gov (United States)

    Masutani, Satoshi; Taketazu, Mio; Mihara, Chihiro; Mimura, Yuko; Ishido, Hirotaka; Matsunaga, Tamotsu; Kobayashi, Toshiki; Senzaki, Hideaki

    2009-12-15

    Device closure of atrial septal defect (ASD) is sometimes followed by elevation of plasma brain natriuretic peptide (BNP), a marker of heart failure, and progression to heart failure. This study tested the hypothesis that the underlying diastolic dysfunction, assessed on tissue Doppler images (TDI) before device closure, can predict BNP level after ASD closure. The study subjects were 39 consecutive patients (age 27.5 +/- 16.3 years, range 5 to 63) who underwent device closure for ASD. Echocardiographic evaluation using TDI and 2-dimensional and pulse wave Doppler were performed, together with plasma BNP measurement 1 day before and 2 days after ASD closure. Before ASD closure, an age-dependent decrease was noted in left ventricular relaxation, assessed by early diastolic mitral annular velocity. ASD closure resulted in a decrease in early diastolic mitral annular velocity (from 14.7 to 12.3 cm/s, p linear regression identified early diastolic mitral annular velocity before ASD closure and age as independent predictors of BNP levels after ASD closure (p annular velocity developed exertional dyspnea after the procedure. In conclusion, our results indicate that TDI measurements could be useful to detect underlying diastolic dysfunction that can potentially cause heart failure after ASD closure and emphasize the importance of ASD closure at a young age before impairment of left ventricular relaxation.

  15. Modification of Plasma-sprayed TiO2 Coatings Characteristics via Controlling the In-flight Temperature and Velocity of the Powder Particles

    Science.gov (United States)

    Cizek, Jan; Dlouhy, Ivo; Siska, Filip; Khor, Khiam Aik

    2014-12-01

    The study presents a comprehensive research on the plasma spray fabrication of TiO2 coatings with microstructural properties adjustable via controlling the respective in-flight properties of the feedstock particles. The in-flight properties can be, in return, governed by tuning the plasma system spray parameters. By determining and linking the two interrelationships, a connection between the important coating characteristics (composition, microstructure, surface and mechanical properties) to the plasma system settings was established. It was shown that by changing the values of six parameters representing the flexibility of the plasma system, the temperatures and velocities of the particles within the jet can be altered from 2125 to 2830 K and 137 to 201 m s-1, respectively. The values of the in-flight temperature critically influenced the efficiency of the coating build-up (values ranging from 8 to 84 μm per 1 torch pass) and the content of anatase phase in the fabricated coatings (0-5.8%), while the in-flight velocity of the TiO2 particles was found to be connected to the porosity of the coatings (ranging from 14.4 to 26.2%) and the adhesion strength at the coating-substrate interface (2.6 × difference).

  16. Plasma levels of the arterial wall protein fibulin-1 are associated with carotid-femoral pulse wave velocity

    DEFF Research Database (Denmark)

    Laugesen, Esben; Høyem, Pernille; Christiansen, Jens Sandahl;

    2013-01-01

    -associated extracellular matrix protein, fibulin-1, was recently found in higher concentrations in the arterial wall and in plasma in patients with long duration type 2 diabetes. Furthermore, plasma fibulin-1 independently predicted total mortality and was associated with pulse pressure, an indirect measure of arterial...

  17. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  18. Vertical stability of ITER plasmas with 3D passive structures and a double-loop control system

    Energy Technology Data Exchange (ETDEWEB)

    Portone, A. [EFDA-CSU, Max Planck Institute for Plasmaphysics, Boltzmannstrasse 2, D-85748 Garching (Germany)]. E-mail: alfredo.portone@tech.efda.org; Albanese, R. [Assoc. Euratom-ENEA-CREATE, University Mediterranea RC, Loc. Feo di Vito, I-89060, RC (Italy); Fresa, R. [DIFA, University della Bastilicata, Contrada Macchia Romana I-85100, Potenza (Italy); Mattei, M. [Assoc. Euratom-ENEA-CREATE, University Mediterranea RC, Loc. Feo di Vito, I-89060, RC (Italy); Rubinacci, G. [Assoc. Euratom-ENEA-CREATE, University Cassino, Via Di Biasio 43, I-03043, Cassino (FR) (Italy); Villone, F. [Assoc. Euratom-ENEA-CREATE, University Cassino, Via Di Biasio 43, I-03043, Cassino (FR) (Italy)

    2005-11-15

    In this study we derive linear models describing the dynamics of the n 0 plasma displacements around the main ITER equilibrium configurations. The models derived are consistent with the MHD equilibrium constraint as well as with the 3D geometry of the vacuum vessel and blanket outer triangular support where the main eddy currents flow takes place. Particular emphasis is placed on the analysis of the stability margin, growth time and minimum stabilization voltage. The performances of the present ITER control system (single loop) are compared to those of an upgraded system (double-loop) that is here proposed to improve the stability domain of the ITER plasmas forecast.

  19. Effect of Gas Velocity on the Dust Sediment Layer in the Coupled Field of Corona Plasma and Cyclone

    Science.gov (United States)

    Wei, Mingshan; Ma, Chaochen; Li, Minghua; S, N. Danish

    2006-09-01

    A dust sediment layer was found on the outer tube wall when the ESCP (electrostatic centrifugal precipitator) trapped diesel particulates or ganister sand. The Compton back scatter method was used to measure the sediment thickness during the experiment. The effect of the inlet gas velocity on the dust sediment layer was investigated. PIV (Particle Image Velocimetry) was used to measure the velocity field between the inner barb tube wall and the outer tube wall. Experiments showed that the thickness of the sediment increased with time, and the sediment layer at the lower end was much thicker than that at the upper end. The agglomeration on the outer tube wall could be removed when the inlet gas velocity was increased to a certain value.

  20. 基于ICP工艺的垂直微小硅镜的加工%Fabrication of Micro Vertical Mirrors on Silicon Using Inductively Coupled Plasma (ICP) Etching

    Institute of Scientific and Technical Information of China (English)

    单学传; 前田龙太郎; 池原毅

    2005-01-01

    In silicon deep reactive ion etching (DRIE) using inductively coupled plasma (ICP) etcher,a narrow trench with a width of several micrometers usually shows positively tapered profile, which means that the width of the etched trench decreases with the progress of etching depth. However, for a wide trench, the width of etched profile will increase with the increase of its depth since the deformation of boundary layer in plasma. Verticality of sidewalls of etched profiles on silicon will be a critical problem in many applications. In this paper, the fabrication of isolated vertical mirrors is reported. With the introduction of multi-steps recipes and optimization of source power, substrate bias power and process pressure, the deformation in the plasma boundary layer was minimized and the etched profiles were improved. As the results, micro vertical mirrors of 120 μm high with a perpendicularity of 89.7° and mirrors of 200 μm high with 89.3° were realized.%利用自感应耦合等离子(ICP)蚀刻机进行硅深层反应离子刻蚀,得到了几微米宽的狭槽,其轮廓通常为正锥形,即蚀刻槽的宽度随着蚀刻深度的增大而减小.然而,对一个宽槽来说,由于等离子区内边界层的变形,其蚀刻宽度会随着蚀刻深度的增加而增加.在许多应用中,硅蚀刻轮廓侧面的垂直状况是一个关键性问题.叙述了分离式垂直镜的加工过程;研究了影响蚀刻轮廓的各种重要参数.经过引入多步制法与优化激励源、基底偏压源及加工压力,减小了等离子区边界层内的变形,改善了轮廓的蚀刻状况.得到的结果为:120μm高垂直微镜垂直度为89.7°,200μm高垂直微镜垂直度为89.3°.

  1. Modulational instability of ion-acoustic waves in plasma with a q-nonextensive nonthermal electron velocity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bouzit, Omar, E-mail: omar.bouzit@yahoo.fr; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, U.S.T.H.B, B.P. 32, El Alia, Algiers 16111 (Algeria); Bains, A. S., E-mail: bainsphysics@yahoo.co.in [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2 (Canada)

    2015-08-15

    Modulation instability of ion-acoustic waves (IAWs) is investigated in a collisionless unmagnetized one dimensional plasma, containing positive ions and electrons following the mixed nonextensive nonthermal distribution [Tribeche et al., Phys. Rev. E 85, 037401 (2012)]. Using the reductive perturbation technique, a nonlinear Schrödinger equation which governs the modulation instability of the IAWs is obtained. Valid range of plasma parameters has been fixed and their effects on the modulational instability discussed in detail. We find that the plasma supports both bright and dark solutions. The valid domain for the wave number k where instabilities set in varies with both nonextensive parameter q as well as non thermal parameter α. Moreover, the analysis is extended for the rational solutions of IAWs in the instability regime. Present study is useful for the understanding of IAWs in the region where such mixed distribution may exist.

  2. Direct Measurements of the Spatial and Velocity Dependence of the Ion Density Fluctuation Spectrum of a Laboratory Plasma with Two Independent LIF Schemes

    Science.gov (United States)

    Mattingly, Sean; Berumen, Jorge; Chu, Feng; Hood, Ryan; Skiff, Fred

    2014-10-01

    By using two independently tunable lasers, each with its own collection optics and Ar II LIF transition scheme, we are able to investigate plasma ion density fluctuations as a function of not only spatial scales but also as a function of ion velocities as sampled on different points of a single Doppler-broadened spectral emission line. We do this by measuring the two point correlation C (x , v ,x' ,v' , τ) = t . With the current system, the two carriages determine x and x', while the velocities selected by each laser determine v and v'. Using the two lasers to make two point correlations in phase space demonstrates effects that are not fully understood. In this experiment, we explore the striking difference in correlations when, in the past, the particle orbits overlap in space versus when they do not overlap. This is performed on a small cylindrical laboratory plasma with n ~109 cm-3 , Te ~ 5 eV, Ti ~ 0 . 06 , and a 1 kG axial magnetic field. LIF is performed on ions at two locations aligned with the magnetic field line with a viewing volume comparable to the size of the Larmor radius. Results and interpretations from these experiments are presented and discussed. DOE Grant DE-FG02-99ER54543.

  3. Velocity shear, turbulent saturation, and steep plasma gradients in the scrape-off layer of inner-wall limited tokamaks

    Science.gov (United States)

    Halpern, F. D.; Ricci, P.

    2017-03-01

    The narrow power decay-length ({λq} ), recently found in the scrape-off layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two-fluid turbulence simulations. The formation of the steep plasma profiles is found to arise due to radially sheared \\mathbf{E}× \\mathbf{B} poloidal flows. A complex interaction between sheared flows and parallel plasma currents outflowing into the sheath regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. Analytical calculations suggest that the IWL {λq} is roughly equal to the turbulent correlation length.

  4. Velocity shear, turbulent saturation, and steep plasma gradients in the scrape-off layer of inner-wall limited tokamaks

    CERN Document Server

    Halpern, Federico D

    2016-01-01

    The narrow power decay-length ($\\lambda_q$), recently found in the scrape-off layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two-fluid turbulence simulations. The formation of the steep plasma profiles measured is found to arise due to radially sheared $\\vec{E}\\times\\vec{B}$ poloidal flows. A complex interaction between sheared flows and outflowing plasma currents regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. Analytical calculations suggest that the IWL $\\lambda_q$ is roughly equal to the turbulent correlation length.

  5. Plasma Renalase is Not Associated with Blood Pressure and Brachial-Ankle Pulse Wave Velocity in Chinese Adults With Normal Renal Function

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2016-11-01

    Full Text Available Background/Aims: This study aimed to investigate the association of renalase with blood pressure (BP and brachial-ankle pulse wave velocity (baPWV in order to better understand the role of renalase in the pathogenesis of hypertension and atherosclerosis. Methods: A total of 344 subjects with normal kidney function were recruited from our previously established cohort in Shaanxi Province, China. They were divided into the normotensive (NT and hypertensive (HT groups or high baPWV and normal baPWV on the basis of BP levels or baPWV measured with an automatic waveform analyzer. Plasma renalase was determined through an enzyme-linked immunosorbent assay. Results: Plasma renalase did not significantly differ between HT and NT groups (3.71 ± 0.69 µg/mL vs. 3.72 ± 0.73 μg/mL, P = 0.905 and between subjects with and without high baPWV (3.67 ± 0.66 µg/mL vs. 3.73 ± 0.74 µg/mL, P = 0.505. However, baPWV was significantly higher in the HT group than in the NT group (1460.4 ± 236.7 vs. 1240.7 ± 174.5 cm/s, P Conclusion: Plasma renalase may not be associated with BP and baPWV in Chinese subjects with normal renal function.

  6. Simulation of Open-loop Plasma Vertical Movement Response in Damavand Tokamak Using Closed-loop Subspace System Identification

    CERN Document Server

    Farahania, N Darestani

    2015-01-01

    A formulation of a multi-input single-output closed-loop subspace system identification method is employed for the purpose of obtaining control-relevant model of the vacuum-plasma response in Damavand tokamak. Such a model is particularly well suited for robust controller design. The accuracy of the estimate of the plant dynamics is estimated by different experiments. The method described in this paper is a worst-case identification technique, in that it aims to minimize the error between the identified model and the true plant. The identified model fitness around defined operating point is more than 90% and with comparison by physical-based model it has better root mean square measure of the goodness of the fit.

  7. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    Science.gov (United States)

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan; Zhang, Minghua; Schumacher, Courtney; Upton, Hannah; Jensen, Michael P.; Johnson, Karen L.; Wang, Meng; Ahlgrimm, Maike; Feng, Zhe; Minnis, Patrick; Thieman, Mandana

    2016-11-01

    This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1) and apparent moisture sink (Q2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wet seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia - i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems - is also conducted to investigate the variability of the large-scale environment with different types of convective systems.

  8. High-transmission 20-channel polychromator for observing non-Maxwellian electron velocity distributions in plasmas by Thomson scattering.

    Science.gov (United States)

    Barth, C J

    1988-07-15

    A high-transmission (~45%) twenty-channel polychromator equipped with near-infrared sensitive photomultipliers has been constructed to record Thomson scattering spectra at the TORTUR tokamak. The high transmission was achieved by the use of mirrors instead of fiber optics to guide the spectrally resolved light to a set of photomultipliers. Spectral analysis is performed with a holographically ruled concave grating. Acceptable dimensions of the wavelength selection mirrors were obtained by magnifying the spectral image by a factor of 5 with a Mangin mirror. Electron temperatures up to 1000 eV at a density of 5 x 10(19) m(-3) can be measured with an accuracy of approximately l%. Both high sensitivity and high resolution enable the detection of irregularities in the velocity distribution. For example, satellites corresponding to partial densities of (5 +/- 1) x 10(17) m(-3) were found at 23 nm from the laser wavelength.

  9. Magnetic Diagnostics For Equilibrium Reconstruction And Realtime Plasma Control In NSTX-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Stefan P. [PPPL; Erickson, Keith [PPPL; Kaita, Robert [PPPL; Lawson, John [PPPL; Mozulay, Robert [PPPL; Mueller, Dennis [PPPL; Que, Weiguo [PPPL; Rahman, Nabidur [PPPL; Schneider, Hans [PPPL; Smalley, Gustav [PPPL; Tresemer, Kelsey [PPPL

    2014-06-01

    This paper describes aspects of magnetic diagnostics for realtime control in NSTX-U. The sensor arrangement on the upgraded center column is described. New analog and digital circuitry for processing the plasma current rogowski data are presented. An improved algorithm for estimating the plasma vertical velocity for feedback control is presented.

  10. Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide

    Science.gov (United States)

    Saint-Cast, Pierre; Kania, Daniel; Hofmann, Marc; Benick, Jan; Rentsch, Jochen; Preu, Ralf

    2009-10-01

    Aluminum oxide layers can provide excellent passivation for lowly and highly doped p-type silicon surfaces. Fixed negative charges induce an accumulation layer at the p-type silicon interface, resulting in very effective field-effect passivation. This paper presents highly negatively charged (Qox=-2.1×1012 cm-2) aluminum oxide layers produced using an inline plasma-enhanced chemical vapor deposition system, leading to very low effective recombination velocities (˜10 cm s-1) on low-resistivity p-type substrates. A minimum static deposition rate (100 nm min-1) at least one order of magnitude higher than atomic layer deposition was achieved on a large carrier surfaces (˜1 m2) without significantly reducing the resultant passivation quality.

  11. Numerical Study of Velocity Shear Stabilization of 3D and Theoretical Considerations for Centrifugally Confined Plasmas and Other Interchange-Limited Fusion Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Hassam, Adil [Univ. of Maryland, College Park, MD (United States)

    2015-09-21

    We studied the feasibility of resonantly driving GAMs in tokamaks. A numerical simulation was carried out and showed the essential features and limitations. It was shown further that GAMs can damp by phase-mixing, from temperature gradients, or nonlinear detuning, thus broadening the resonance. Experimental implications of this were quantified. Theoretical support was provided for the Maryland Centrifugal Experiment, funded in a separate grant by DOE. Plasma diamagnetism from supersonic rotation was established. A theoretical model was built to match the data. Additional support to the experiment in terms of numerical simulation of the interchange turbulence was provided. Spectra from residual turbulence on account of velocity shear suppression were obtained and compared favorably to experiment. A new drift wave, driven solely by the thermal force, was identified.

  12. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  13. Parallel velocity diffusion and slowing-down rate from long-range collisions in a magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)

    2014-05-15

    This paper derives an expression for the rate of collisional slowing of charges in a magnetized plasma for which r{sub c} < λ{sub D}, where r{sub c} is the mean thermal cyclotron radius and λ{sub D} is the Debye length. The rate depends on a new fundamental length scale d that separates collisions into two impact parameter ranges that yield different slowing rates: a Boltzmann rate due to isolated binary collisions for impact parameters ρ < d and a Fokker-Planck rate due to multiple small scatterings for ρ > d. Slowing due to Boltzmann collisions is also shown to depend on the sign of the Coulomb interaction: for repulsive interactions, the slowing is enhanced by “collisional caging,” while for attractive interactions the Boltzmann slowing rate is zero.

  14. Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model

    Science.gov (United States)

    Wang, Yuming; Zhou, Zhenjun; Shen, Chenglong; Liu, Rui; Wang, S.

    2015-03-01

    Magnetic clouds (MCs) are the interplanetary counterparts of coronal mass ejections (CMEs), and usually modeled by a flux rope. By assuming the quasi-steady evolution and self-similar expansion, we introduce three types of global motion into a cylindrical force-free flux rope model and developed a new velocity-modified model for MCs. The three types of the global motion are the linear propagating motion away from the Sun, the expanding, and the poloidal motion with respect to the axis of the MC. The model is applied to 72 MCs observed by Wind spacecraft to investigate the properties of the plasma motion of MCs. First, we find that some MCs had a significant propagation velocity perpendicular to the radial direction, suggesting the direct evidence of the CME's deflected propagation and/or rotation in interplanetary space. Second, we confirm the previous results that the expansion speed is correlated with the radial propagation speed and most MCs did not expand self-similarly at 1 AU. In our statistics, about 62%/17% of MCs underwent a underexpansion/overexpansion at 1 AU and the expansion rate is about 0.6 on average. Third, most interestingly, we find that a significant poloidal motion did exist in some MCs. Three speculations about the cause of the poloidal motion are therefore proposed. These findings advance our understanding of the MC's properties at 1 AU and the dynamic evolution of CMEs from the Sun to interplanetary space.

  15. Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model

    CERN Document Server

    Wang, Yuming; Shen, Chenglong; Liu, Rui; Wang, S

    2015-01-01

    Magnetic clouds (MCs) are the interplanetary counterparts of coronal mass ejections (CMEs), and usually modeled by a flux rope. By assuming the quasi-steady evolution and self-similar expansion, we introduce three types of global motion into a cylindrical force-free flux rope model, and developed a new velocity-modified model for MCs. The three types of the global motion are the linear propagating motion away from the Sun, the expanding and the poloidal motion with respect to the axis of the MC. The model is applied to 72 MCs observed by Wind spacecraft to investigate the properties of the plasma motion of MCs. First, we find that some MCs had a significant propagation velocity perpendicular to the radial direction, suggesting the direct evidence of the CME's deflected propagation and/or rotation in interplanetary space. Second, we confirm the previous results that the expansion speed is correlated with the radial propagation speed and most MCs did not expand self-similarly at 1 AU. In our statistics, about 6...

  16. Vertical Bisimulation

    NARCIS (Netherlands)

    Rensink, Arend; Gorrieri, Roberto

    We investigate criteria to relate specifications and implementations belonging to conceptually different abstraction levels, and propose vertical bisimulation as a candidate relation for this purpose. Vertical bisimulation is indexed by a function mapping abstract actions onto concrete processes,

  17. Vertically stabilized elongated cross-section tokamak

    Science.gov (United States)

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  18. Evaluation of arterial stiffness with plasma GGT levels and pulse wave velocity measurement in patients with FMF.

    Science.gov (United States)

    Yılmaz, Filiz; Ulu, Sena; Akcı, Önder; Ahsen, Ahmet; Demir, Kasım; Yüksel, Şeref

    2014-03-01

    Pulse wave velocity (PWV) is a non-invasive technique used to evaluate the arterial elasticity, which is an early indicator of atherosclerosis. Lately, gamma glutamyl transferase (GGT) is considered a determiner of arterial stiffness (AS). In this study, we aimed to evaluate the relationship between GGT levels and AS with PWV in patients with Familial Mediterranean fever (FMF). The study was conducted with 60 patients with FMF and 40 controls. Genetic analysis of the patients were performed. AS was assessed by PWV and, after the measurement of PWV, the presence of AS was determined. Mean PWV values and AS frequency were significantly higher in patients with FMF compared with the control group (pFMF patients were higher than in the control group but the difference was not statistically different. In the correlation analysis, PWV and AS were positively correlated with FMF (r=0349, pFMF duration and FMF were associated with GGT (r=0.300, p=0.02; r=0199, p=0.047, respectively). Increased PWV values in FMF patients may indicate arterial stiffness. These patients may be followed closely with PWV as an early indicator of atherosclerosis. Therefore, the cardiovascular risk can be determined in the early stages of disease and it may be possible to take necessary precautions.

  19. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    Energy Technology Data Exchange (ETDEWEB)

    Winske, D., E-mail: winske@lanl.gov; Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-15

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (β{sub e} = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with T{sub i} = T{sub e}. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (β{sub i} = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.

  20. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    Science.gov (United States)

    Winske, D.; Daughton, W.

    2015-02-01

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.

  1. Energy velocity and group velocity

    Institute of Scientific and Technical Information of China (English)

    陈宇

    1995-01-01

    A new Lagrangian method for studying the relationship between the energy velocity and the group velocity is described. It is proved that under the usual quasistatic electric field, the energy velocity is identical to the group velocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.

  2. 微小碎片加速器同轴枪内等离子体轴向速度研究%Research on plasma axial velocity generated by small debris accelerator coaxial gun

    Institute of Scientific and Technical Information of China (English)

    高著秀; 冯春华; 杨宣宗; 黄建国; 韩建伟

    2012-01-01

    等离子体驱动微小碎片加速器是地面模拟空间微小碎片超高速撞击实验的装置,决定其加速效果的是加速器同轴枪内等离子体轴向速度.采用发射光谱法研究等离子体轴向速度随放电电压和工作气体压强的变化关系.实验结果揭示:轴向速度随着放电电压的增大线性增加,随工作气压的增大而缓慢减小,与数值模拟结果符合.为进一步提高等离子体轴向速度,优化加速器提供了可靠依据.%"Plasma driven micro-particle accelerator" is a ground device for simulating impact effects of small debris in space.The particle velocity is determined mainly by axial velocity of plasma in a coaxial gun.Emission spectrometry is used to study the plasma axial velocity at different voltages and gas pressures.The experimental results indicate that axial velocity increases with the increase of discharging voltage,and doesn't change significantly with the pressure of working gas,which is consistent with the result of numerical simulation.This result is useful to improve the plasma axial velocity further,and provides an experimental basis for optimizing the accelerator.

  3. THE VERTICAL

    Science.gov (United States)

    Albert, Stephen L.; Spencer, Jeffrey B.

    1994-01-01

    'THE VERTICAL' computer keyboard is designed to address critical factors which contribute to Repetitive Motion Injuries (RMI) (including Carpal Tunnel Syndrome) in association with computer keyboard usage. This keyboard splits the standard QWERTY design into two halves and positions each half 90 degrees from the desk. In order to access a computer correctly. 'THE VERTICAL' requires users to position their bodies in optimal alignment with the keyboard. The orthopaedically neutral forearm position (with hands palms-in and thumbs-up) reduces nerve compression in the forearm. The vertically arranged keypad halves ameliorate onset occurrence of keyboard-associated RMI. By utilizing visually-reference mirrored mylar surfaces adjustable to the user's eye, the user is able to readily reference any key indicia (reversed) just as they would on a conventional keyboard. Transverse adjustability substantially reduces cumulative musculoskeletal discomfort in the shoulders. 'THE VERTICAL' eliminates the need for an exterior mouse by offering a convenient finger-accessible curser control while the hands remain in the vertically neutral position. The potential commercial application for 'THE VERTICAL' is enormous since the product can effect every person who uses a computer anywhere in the world. Employers and their insurance carriers are spending hundreds of millions of dollars per year as a result of RMI. This keyboard will reduce the risk.

  4. Emergence of high peaks in the axial velocity for an ideal magnetohydrodynamic disk configuration.

    Science.gov (United States)

    Montani, Giovanni; Carlevaro, Nakia

    2010-08-01

    We study the profile of a thin disk configuration as described by an axisymmetric ideal magnetohydrodynamics steady equilibrium. We consider the disk like a differentially rotating system dominated by the Keplerian term, but allowing for a nonzero radial and vertical matter flux. As a result, the steady state allows for the existence of local peaks for the vertical velocity of the plasma particles, though it prevents the radial matter accretion rate. This ideal magnetohydrodynamics scheme is therefore unable to solve the angular momentum-transport problem, but we suggest that it provides a mechanism for the generation of matter-jet seeds.

  5. Vertical Implementation

    NARCIS (Netherlands)

    Rensink, Arend; Gorrieri, Roberto

    2001-01-01

    We investigate criteria to relate specifications and implementations belonging to conceptually different levels of abstraction. For this purpose, we introduce the generic concept of a vertical implementation relation, which is a family of binary relations indexed by a refinement function that maps

  6. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  7. Convective dust clouds in a complex plasma

    CERN Document Server

    Mitic, S; Ivlev, A V; Hoefner, H; Thoma, M H; Zhdanov, S; Morfill, G E

    2008-01-01

    The plasma is generated in a low frequency glow discharge within an elongated glass tube oriented vertically. The dust particles added to the plasma are confined above the heater and form counter-rotating clouds close to the tube centre. The shape of the clouds and the velocity field of the conveying dust particles are determined. The forces acting on the particles are calculated. It is shown that convection of the dust is affected by the convective gas motion which is triggered, in turn, by thermal creep of the gas along the inhomogeneously heated walls of the tube.

  8. 正离子初速度对电负性等离子体磁鞘结构的影响%Effects of Positive Ion Initial Velocity on Electronegative Plasma Sheath Structure in a Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    刘惠平; 邹秀; 邱明辉; 张志华; 何明

    2011-01-01

    Using a fluid model, the Bohm criterion is obtained for the electronegative plasma sheath in a magnetic field by theoretical deduction, and the effects of positive ion initial velocity into the sheath on the charged particle density and electric potential distributions in electronegative plasma sheath in the presence of a magnetic field are numerically investigated. The results reveal that the initial velocity of positive ion in the y axis direction has greater effects on the charged particle density and electric potential distributions , while the influence of positive ion initial velocity in z axis on the charged particle density distributions is unconspicuous.%采用流体模型经过理论推导得到了电负性等离子体磁鞘的玻姆判据,并数值研究了正离子进入鞘层时的初速度对电负性等离子体磁鞘中带电粒子密度及电势分布的影响.研究结果表明:正离子进入鞘层时y方向的初速度对磁鞘中带电粒子的密度和电势分布有较大的影响,而其z方向的初速度对磁鞘中带电粒子密度分布的影响很小.

  9. Spectra of Velocity components over Complex Terrain

    DEFF Research Database (Denmark)

    Panofsky, H. A.; Larko, D.; Lipschut, R.

    1982-01-01

    Spectra have been measured over a variety of types of complex terrain: on tops of hills and escarpments, over land downstream of a water surface, and over rolling terrain. Differences between spectra over many types of complex terrain, and over uniform terrain, can be explained by these hypotheses...... is horizontal, and decrease when the flow is uphill, for the longitudinal velocity component only. Since vertical-velocity spectra contain relatively less low wavenumber energy than horizontal-velocity spectra, energetic vertical-velocity fluctuations tend to be in equilibrium with local terrain....

  10. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  11. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.;

    2015-01-01

    Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  12. Cirrus Crystal Terminal Velocities.

    Science.gov (United States)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    replicator were acquired at the same time and close to measurements from a vertically pointing Doppler radar. The calculated and measured reflectivity-weighted terminal velocities and the radar reflectivities compare favorably, providing some indication that the approach developed in this study is appropriate for cirrus crystals. The utility of the approach developed in this study is further demonstrated through a series of sensitivity studies involving the replicator size spectra for this case. Aspect ratio and density are varied, and the corresponding changes in radar reflectivity, mean reflectivity-weighted velocity, and ice water content are derived.

  13. 大气压介质阻挡射流放电离子速度分布的测量%Measurement of ion velocity distribution in plasma jet with dielectric barrier geometry at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    熊莉; 齐冰

    2016-01-01

    A new method based on fast Fourier transform, is presented to calculate ion velocity distribution by analyzing electromagnetic radiation signal from atmospheric nonequilibrium plasma. This method is based on a dipole model. Results show that the ion velocity distribution deviates from Maxwell distribution over time. The ion velocity and relative ion number fluctuate regularly with time.%通过测量大气压介质阻挡放电等离子体辐射信号,建立偶极子辐射模型,利用快速傅立叶变换,计算了大气压介质阻挡放电等离子体中离子速度分布。计算结果表明,速度分布偏离麦克斯韦分布,并且随着放电过程的进行,离子速度及相对离子数进行有规律的变化。

  14. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition.

    Science.gov (United States)

    Cojocaru, C S; Senger, A; Le Normand, F

    2006-05-01

    Carbon nanofibers are grown by direct current and hot filaments-activated catalytic chemical vapor deposition while varying the power of the hot filaments. Observations of these carbon nanofibers vertically oriented on a SiO2 (8 nm thick)/Si(100) substrate covered with Co nanoparticles (10-15 nm particle size) by Scanning Electron and Transmission Electron Microscopies show the presence of a graphitic "nest" either on the surface of the substrate or at the end of the specific nanofiber that does not encapsulate the catalytic particle. Strictly in our conditions, the activation by hot filaments is required to grow nanofibers with a C2H2 - H2 gas mixture, as large amounts of amorphous carbon cover the surface of the substrate without using hot filaments. From these observations as well as data of the literature, it is proposed that the nucleation of carbon nanofibers occurs through a complex process involving several steps: carbon concentration gradient starting from the catalytic carbon decomposition and diffusion from the surface of the catalytic nanoparticles exposed to the activated gas and promoted by energetic ionic species of the gas phase; subsequent graphitic condensation of a "nest" at the interface of the Co particle and substrate. The large concentration of highly reactive hydrogen radicals mainly provided by activation with hot filaments precludes further spreading out of this interfacial carbon nest over the entire surface of the substrate and thus selectively orientates the growth towards the condensation of graphene over facets that are perpendicular to the surface. Carbon nanofibers can then be grown within the well-known Vapor-Liquid-Solid process. Thus the effect of energetic ions and highly reactive neutrals like atomic hydrogen in the preferential etching of carbon on the edge of graphene shells and on the broadening of the carbon nanofiber is underlined.

  15. Convection in a vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, J-C; Creyssels, M; Gibert, M; Castaing, B; Chilla, F, E-mail: Francesca.Chilla@ens-lyon.f [Universite de Lyon, ENS Lyon, UMR 5672 CNRS, 46 Allee d' Italie, 69364 Lyon Cedex 7 (France)

    2010-07-15

    The flow generated by heat convection in a long, vertical channel is studied by means of particle imagery velocimetry techniques, with the help of the thermal measurements from a previous paper (Gibert et al 2009 Phys. Fluids 21 035109). We analyse the mean velocity profiles and the Reynolds stresses, and compare the present results with the previous ones obtained in a larger cell and at a larger Reynolds number. We calculate the horizontal temperature profile and the related horizontal heat flux. The pertinence of effective turbulent diffusivity and viscosity is confirmed by the low value of the associated mixing length. We study the one-point and two-point statistics of both velocity components. We show how the concept of turbulent viscosity explains the relations between the local probability density functions (pdf) of fluctuations for temperature, vertical and horizontal velocity components. Despite the low Reynolds number values explored, some conclusions can be drawn about the small scale velocity differences and the related energy cascade.

  16. Vertical sleeve gastrectomy

    Science.gov (United States)

    ... sleeve; Gastrectomy - greater curvature; Gastrectomy - parietal; Gastric reduction; Vertical gastroplasty ... together using surgical staples. This creates a long vertical tube or banana-shaped stomach. The surgery does ...

  17. Simulation of EAST vertical displacement events by tokamak simulation code

    Science.gov (United States)

    Qiu, Qinglai; Xiao, Bingjia; Guo, Yong; Liu, Lei; Xing, Zhe; Humphreys, D. A.

    2016-10-01

    Vertical instability is a potentially serious hazard for elongated plasma. In this paper, the tokamak simulation code (TSC) is used to simulate vertical displacement events (VDE) on the experimental advanced superconducting tokamak (EAST). Key parameters from simulations, including plasma current, plasma shape and position, flux contours and magnetic measurements match experimental data well. The growth rates simulated by TSC are in good agreement with TokSys results. In addition to modeling the free drift, an EAST fast vertical control model enables TSC to simulate the course of VDE recovery. The trajectories of the plasma current center and control currents on internal coils (IC) fit experimental data well.

  18. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    ) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  19. Are tornado-like magnetic structures able to support solar prominence plasma?

    CERN Document Server

    Luna, Manuel; Priest, Eric

    2015-01-01

    Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominence plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloida...

  20. Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing

    Science.gov (United States)

    Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.

    2004-01-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…

  1. Reevaluation of the Braginskii viscous force for toroidal plasma

    Science.gov (United States)

    Johnson, Robert W.

    2011-12-01

    The model by Braginskii [1] (Braginskii, S. I. 1965 Transport processes in plasma. In: Review of Plasma Physics, Vol. 1 (ed. M.A. Leontovich). New York, NY: Consultants Bureau, pp. 205-311) for the viscous stress tensor is used to determine the shear and gyroviscous forces acting within a toroidally confined plasma. Comparison is made to a previous evaluation, which contains an inconsistent treatment of the radial derivative and neglects the effect of the pitch angle. Parallel viscosity contributes a radial shear viscous force, which may develop for sufficient vertical asymmetry to the ion velocity profile. An evaluation is performed of this radial viscous force for a tokamak near equilibrium, which indicates qualitative agreement between theory and measurement for impure plasma discharges with strong toroidal flow.

  2. Decoration of vertical graphene with aerosol nanoparticles for gas sensing

    Science.gov (United States)

    Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong

    2015-08-01

    A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor.

  3. On the excess energy of nonequilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, A. V. [National Research Centre Kurchatov Institute, Institute of Hydrogen Power Engineering and Plasma Technologies (Russian Federation)

    2012-01-15

    The energy that can be released in plasma due to the onset of instability (the excess plasma energy) is estimated. Three potentially unstable plasma states are considered, namely, plasma with an anisotropic Maxwellian velocity distribution of plasma particles, plasma with a two-beam velocity distribution, and an inhomogeneous plasma in a magnetic field with a local Maxwellian velocity distribution. The excess energy can serve as a measure of the degree to which plasma is nonequilibrium. In particular, this quantity can be used to compare plasmas in different nonequilibrium states.

  4. Vertical distribution of sediment concentration

    Institute of Scientific and Technical Information of China (English)

    Sai-hua HUANG; Zhi-lin SUN; Dan XU; Shan-shan XIA

    2008-01-01

    A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow.The proposed formula significantly improves the well-known Rouse formula where sediment concentration has an infinitely large value at the channel bottom and a zero value at the water surface.Based on this formula and the logarithmic ve-locity profile,a theoretical elementary function for the transport rate of a suspended load is developed.This equation improves the Einstein equation in which the unit-width suspended sediment discharge must be solved by numerical integration and a contra-diction between the lower limit of the integral and that of velocity distribution exists.

  5. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  6. Horizontal versus vertical plate motions

    Directory of Open Access Journals (Sweden)

    M. Cuffaro

    2006-07-01

    Full Text Available We review both present and past motions at major plate boundaries, which have the horizontal component in average 10 to 100 times faster (10–100 mm/yr than the vertical component (0.01–1 mm/yr in all geodynamic settings. The steady faster horizontal velocity of the lithosphere with respect to the upward or downward velocities at plate boundaries supports dominating tangential forces acting on plates. This suggests a passive role of plate boundaries with respect to far field forces determining the velocity of plates. The forces acting on the lithosphere can be subdivided in coupled and uncoupled, as a function of the shear at the lithosphere base. Higher the asthenosphere viscosity, more significant should be the coupled forces, i.e., the mantle drag and the trench suction. Lower the asthenosphere viscosity, more the effects of uncoupled forces might result determinant, i.e., the ridge push, the slab pull and the tidal drag. Although a combination of all forces acting on the lithosphere is likely, the decoupling between lithosphere and mantle suggests that a torque acts on the lithosphere independently of the mantle drag. Slab pull and ridge push are candidates for generating this torque, but, unlike these boundary forces, the advantage of the tidal drag is to be a volume force, acting simultaneously on the whole plates, and being the decoupling at the lithosphere base controlled by lateral variations in viscosity of the low-velocity layer.

  7. Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes

    Directory of Open Access Journals (Sweden)

    Tianchen Li

    2017-09-01

    Full Text Available In the present research, the spherical FeCoCrNiMo0.2 high entropy alloy (HEA powders with a single FCC solid solution structure were prepared by gas atomization. Subsequently, the FeCoCrNiMo0.2 coatings with a different content of oxide inclusions were prepared by air plasma spraying (APS and high-velocity oxy-fuel spraying (HVOF, respectively. The microstructure, phase composition, mechanical properties, and tribological behaviors of these HEA coatings were investigated. The results showed that both HEA coatings showed a typical lamellar structure with low porosity. Besides the primary FCC phase, a mixture of Fe2O3, Fe3O4, and AB2O4 (A = Fe, Co, Ni, and B = Fe, Cr was identified as the oxide inclusions. The oxide content of the APS coating and HVOF coating was calculated to be 47.0% and 12.7%, respectively. The wear resistance of the APS coating was approximately one order of magnitude higher than that of the HVOF coating. It was mainly attributed to the self-lubricated effect caused by the oxide films. The mass loss of the APS coating was mainly ascribed to the breakaway of the oxide film, while the main wear mechanism of the HVOF coating was the abrasive wear.

  8. Dissociated Vertical Deviation

    Science.gov (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Dissociated Vertical Deviation En Español Read in Chinese What is Dissociated Vertical Deviation (DVD)? DVD is a condition in which ...

  9. New Large Diameter RF Complex Plasma Device

    Science.gov (United States)

    Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus

    2016-10-01

    The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.

  10. On the velocity field of sunspot penumbrae - I. A global view

    CERN Document Server

    Franz, Morten

    2009-01-01

    We investigated the vertical penumbral plasma flow on small spatial scales using data recorded by the spectropolarimeter of the solar optical telescope onboard Hinode. To this end we computed maps of apparent Doppler velocities by comparing the spectral position of the Fe I 630.15 nm & Fe I 630.25 nm lines with the averaged line profiles of the quiet Sun. To visualize the flow pattern in the low photosphere, we used a bisector of the wing of the absorption lines. Due to the small heliocentric angle (3 0.6 km/s down-flows prevail. Additionally, the maximal up-flow velocity in penumbrae is smaller, while the maximal down-flow velocity is larger with respect to the QS velocities. Furthermore, on a spatial average, the penumbra shows a red-shift, corresponding to a down-flow of more than 0.1 km/s. Up-flows are elongated and appear predominately in the inner penumbra. Strong down-flows with velocities of up to 9 km/s are concentrated at the penumbra-QS boundary. They are magnetized and are rather round in sha...

  11. Vertical bounce of two vertically aligned balls

    Science.gov (United States)

    Cross, Rod

    2007-11-01

    When a tennis ball rests on top of a basketball and both drop to the floor together, the tennis ball is projected vertically at high speed. A mass-spring model of the impact, as well as air track data, suggest that the tennis ball should be projected at relatively low speed. Measurements of the forces on each ball and the bounce of vertically aligned superballs are used to resolve the discrepancy.

  12. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  13. Magnetohydrodynamically generated velocities in confined plasma

    Science.gov (United States)

    Morales, Jorge A.; Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.

    2015-04-01

    We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.

  14. The 300 km threshold value for vertical drifts inferred from F-region heights: Past observations, present developments, and future works

    Science.gov (United States)

    Adebesin, B. O.

    2016-06-01

    The variability of the quiet time F-region vertical plasma drift in the low latitude region if well understood forms an essential subject in the equatorial ionosphere-thermosphere environment. Vertical drift velocities obtained from the time rate of change of the F-layer height have been adjudged a realistic representation of the true velocities when the F-layer altitudes are greater than a threshold value of 300 km. In this light, the sufficiency of this threshold value of some outstanding past results was discussed in relation to some present observations, especially in the African sector where there is paucity of data, and a new direction for future developments was suggested.

  15. Purification process for vertically aligned carbon nanofibers

    Science.gov (United States)

    Nguyen, Cattien V.; Delziet, Lance; Matthews, Kristopher; Chen, Bin; Meyyappan, M.

    2003-01-01

    Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.

  16. Velocity anticipation in the optimal velocity model

    Institute of Scientific and Technical Information of China (English)

    DONG Li-yun; WENG Xu-dan; LI Qing-ding

    2009-01-01

    In this paper,the velocity anticipation in the optimal velocity model (OVM) is investigated.The driver adjusts the velocity of his vehicle by the desired headway,which depends on both instantaneous headway and relative velocity.The effect of relative velocity is measured by a sensitivity function.A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data.It is shown that inclusion of velocity anticipation enhances the stability of traffic flow.Numerical simulations show a good agreement with empirical data.This model provides a better description of real traffic,including the acceleration process from standing states and the deceleration process approaching a stopped car.

  17. Basic investigations of electrostatic turbulence and its interaction with plasma and suprathermal ions in a simple magnetized toroidal plasma

    Science.gov (United States)

    Fasoli, A.; Avino, F.; Bovet, A.; Furno, I.; Gustafson, K.; Jolliet, S.; Loizu, J.; Malinverni, D.; Ricci, P.; Riva, F.; Theiler, C.; Spolaore, M.; Vianello, N.

    2013-06-01

    Progress in basic understanding of turbulence and its influence on the transport both of the plasma bulk and of suprathermal components is achieved in the TORPEX simple magnetized torus. This configuration combines a microwave plasma production scheme with a quasi-equilibrium generated by a toroidal magnetic field, onto which a small vertical component is superimposed, simulating a simplified form of tokamak scrape-off layers. After having clarified the formation of blobs in ideal interchange turbulence, TORPEX experiments elucidated the mechanisms behind the blob motion, with a general scaling law relating their size and speed. The parallel currents associated with the blobs, responsible for the damping of the charge separation that develops inside them, hence determining their cross-field velocity, have been measured. The blob dynamics is influenced by creating convective cells with biased electrodes, arranged in an array on a metal limiter. Depending on the biasing scheme, radial and vertical blob velocities can be varied. Suprathermal ion transport in small-scale turbulence is also investigated on TORPEX. Suprathermal ions are generated by a miniaturized lithium source, and are detected using a movable double-gridded energy analyser. We characterize vertical and radial spreading of the ion beam, associated with the ideal interchange-dominated plasma turbulence, as a function of the suprathermal ion energy and the plasma temperature. Experimental results are in good agreement with global fluid simulations, including in cases of non-diffusive behaviour. To investigate the interaction of plasma and suprathermal particles with instabilities and turbulence in magnetic configurations of increasing complexity, a closed field line configuration has recently been implemented on TORPEX, based on a current-carrying wire suspended in the vacuum chamber. First measurements indicate the creation of circular symmetric profiles centred on the magnetic axis, and instabilities

  18. Relation of zonal plasma drift and wind in the equatorial F region as derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    J. Park

    2013-06-01

    Full Text Available In this paper we estimate zonal plasma drift in the equatorial ionospheric F region without counting on ion drift meters. From June 2001 to June 2004 zonal plasma drift velocity is estimated from electron, neutral, and magnetic field observations of Challenging Mini-satellite Payload (CHAMP in the 09:00–20:00 LT sector. The estimated velocities are validated against ion drift measurements by the Republic of China Satellite-1/Ionospheric Plasma and Electrodynamics Instrument (ROCSAT-1/IPEI during the same period. The correlation between the CHAMP (altitude ~ 400 km estimates and ROCSAT-1 (altitude ~ 600 km observations is reasonably high (R ≈ 0.8. The slope of the linear regression is close to unity. However, the maximum westward drift and the westward-to-eastward reversal occur earlier for CHAMP estimates than for ROCSAT-1 measurements. In the equatorial F region both zonal wind and plasma drift have the same direction. Both generate vertical currents but with opposite signs. The wind effect (F region wind dynamo is generally larger in magnitude than the plasma drift effect (Pedersen current generated by vertical E field, thus determining the direction of the F region vertical current.

  19. Signatures of Currency Vertices

    Science.gov (United States)

    Holme, Petter

    2009-03-01

    Many real-world networks have broad degree distributions. For some systems, this means that the functional significance of the vertices is also broadly distributed, in other cases the vertices are equally significant, but in different ways. One example of the latter case is metabolic networks, where the high-degree vertices — the currency metabolites — supply the molecular groups to the low-degree metabolites, and the latter are responsible for the higher-order biological function, of vital importance to the organism. In this paper, we propose a generalization of currency metabolites to currency vertices. We investigate the network structural characteristics of such systems, both in model networks and in some empirical systems. In addition to metabolic networks, we find that a network of music collaborations and a network of e-mail exchange could be described by a division of the vertices into currency vertices and others.

  20. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1998-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  1. Space, composition, vertical wall ...

    OpenAIRE

    Despot, Katerina; Sandeva, Vaska

    2016-01-01

    The space in which it is an integral segment of our life is nourished with many functional and decorative elements. One aspect for consideration of vertical walls or The vertical gardens and their aesthetic impact in space called function. Vertical gardens bordering the decoration to totally functional garden in areas where there is little oxygen and space, ideal for residential buildings and public spaces where missing greenery, special place occupies in interior design where their expres...

  2. Effects of running velocity on running kinetics and kinematics.

    Science.gov (United States)

    Brughelli, Matt; Cronin, John; Chaouachi, Anis

    2011-04-01

    Sixteen semiprofessional Australian football players performed running bouts at incremental velocities of 40, 60, 80, and 100% of their maximum velocity on a Woodway nonmotorized force treadmill. As running velocity increased from 40 to 60%, peak vertical and peak horizontal forces increased by 14.3% (effect size [ES] = 1.0) and 34.4% (ES = 4.2), respectively. The changes in peak vertical and peak horizontal forces from 60 to 80% were 1.0% (ES = 0.05) and 21.0% (ES = 2.9), respectively. Finally, the changes in peak vertical and peak horizontal forces from 80% to maximum were 2.0% (ES = 0.1) and 24.3% (ES = 3.4). In addition, both stride frequency and stride length significantly increased with each incremental velocity (p velocity (p velocity (r = 0.47). For the kinematic variables, only stride length was found to have a significant positive correlation with maximum running velocity (r = 0.66). It would seem that increasing maximal sprint velocity may be more dependent on horizontal force production as opposed to vertical force production.

  3. Correlative velocity fluctuations over a gravel river bed

    Science.gov (United States)

    Dinehart, R.L.

    1999-01-01

    Velocity fluctuations in a steep, coarse-bedded river were measured in flow depths ranging from 0.8 to 2.2 m, with mean velocities at middepth from 1.1 to 3.1 m s−1. Analyses of synchronous velocity records for two and three points in the vertical showed a broad range of high coherence for wave periods from 10 to 100 s, centering around 10–30 s. Streamwise correlations over distances of 9 and 14 m showed convection velocities near mean velocity for the same wave periods. The range of coherent wave periods was a small multiple of predicted “boil” periods. Correlative fluctuations in synchronous velocity records in the vertical direction suggested the blending of short pulses into longer wave periods. The highest spectral densities were measured beyond the range of coherent wave periods and were probably induced by migration of low-relief bed forms.

  4. HYDRAULIC CHARACTERISTICS OF VERTICAL VORTEX AT HYDRAULIC INTAKES

    Institute of Scientific and Technical Information of China (English)

    CHEN Yun-liang; WU Chao; YE Mao; JU Xiao-ming

    2007-01-01

    The trace of vertical vortex flow at hydraulic intakes is of the shape of spiral lines, which was observed in the presented experiments with the tracer technique. It represents the fluid particles flow spirally from the water surface to the underwater and rotate around the vortex-axis multi-cycle. This process is similar to the movement of screw. To describe the multi-circle spiral characteristics under the axisymmetric condition, the vertical vortex would change not only in the radial direction but also in the axial direction. The improved formulae for three velocity components for the vertical vortex flow were deduced by using the method of separation of variables in this article. In the improved formulae, the velocity components are the functions of the radial and axial coordinates, so the multi-circle spiral flow of vertical vortex could be simulated. The calculated and measured results for the vertical vortex flow were compared and the causes of errors were analyzed.

  5. ITER-like vertical stabilization system for the east Tokamak

    Science.gov (United States)

    Albanese, R.; Ambrosino, R.; Castaldo, A.; De Tommasi, G.; Luo, Z. P.; Mele, A.; Pironti, A.; Xiao, B. J.; Yuan, Q. P.

    2017-08-01

    A ITER-like vertical stabilization (VS) algorithm has been successfully deployed and commissioned at EAST. The proposed algorithm decouples the VS from the plasma shape control, while the algorithms previously implemented to stabilize the EAST plasma exhibit a strong coupling with plasma shape control system. As a consequence, the VS algorithms previously implemented at EAST prevent the deployment of advanced multi-input-multi-output (MIMO) plasma shape control schemes, such as the ones proposed in Albanese et al 2016 (Proc. 2016 IEEE Multi-Conf. System Control (Buenos Aires, Argentina) pp 611-6) and Kolemen et al (2015 J. Nucl. Mater. 463 1186). Indeed, such MIMO controllers rely on the decoupling with the VS system. The proposed ITER-like stabilizes the plasma column (i.e. it controls to zero the plasma vertical speed) on the fastest possible time scale, while leaves the control of the plasma vertical position to the plasma shape controller. Thanks to this frequency separation approach, the plasma shape controller can than be designed starting from the stabilized system, without explicitly taking the VS into account. In this paper we present the implementation details of the adopted solution for the EAST vertical stabilization, together with the results obtained during the 2016 experimental campaign.

  6. Laminar Plasma Dynamos

    CERN Document Server

    Wang, Z; Barnes, C W; Barnes, D C; Wang, Zhehui; Pariev, Vladimir I.; Barnes, Cris W.; Barnes, Daniel C.

    2002-01-01

    A new kind of dynamo utilizing flowing laboratory plasmas has been identified. Conversion of plasma kinetic energy to magnetic energy is verified numerically by kinematic dynamo simulations for magnetic Reynolds numbers above 210. As opposed to intrinsically-turbulent liquid-sodium dynamos, the proposed plasma dynamos correspond to laminar flow topology. Modest plasma parameters, 1-20 eV temperatures, 10^{19}-10^{20} m^{-3} densities in 0.3-1.0 m scale-lengths driven by velocities on the order of the Alfven Critical Ionization Velocity (CIV), self-consistently satisfy the conditions needed for the magnetic field amplication. Growth rates for the plasma dynamos are obtained numerically with different geometry and magnetic Reynolds numbers. Magnetic-field-free coaxial plasma guns can be used to sustain the plasma flow and the dynamo.

  7. Reevaluation of the Braginskii viscous force for toroidal plasma

    CERN Document Server

    Johnson, Robert W

    2009-01-01

    The model by Braginskii for the viscous stress tensor is used to determine the shear and gyroviscous forces acting within a toroidally confined plasma. Comparison is made to previous evaluations which contain an inconsistent treatment of the radial derivative and neglect the effect of the pitch angle. A radial gyroviscous force is found to survive the limit of constant density and rigid toroidal rotation of the flux surface, and a radial shear viscous force may develop for sufficient vertical asymmetry to the ion velocity profile.

  8. Traumatic vertical atlantoaxial dislocation.

    Science.gov (United States)

    Payer, M; Wetzel, S; Kelekis, A; Jenny, B

    2005-08-01

    We present a case of traumatic vertical atlantoaxial dislocation of 16 millimetres with a fatal outcome. We hypothesize that this extremely rare traumatic vertical atlantoaxial dislocation results from insufficiency of the C1/C2 facet capsules after rupture of the tectorial membrane and the alar ligaments.

  9. The sound velocity structure of the shelf waters off Visakhapatnam

    Directory of Open Access Journals (Sweden)

    J. Sivarama Sastry

    1957-04-01

    Full Text Available The vertical structure of sound velocity has been presented. The depth-sound velocity curves are drawn. The sound velocity is found to vary considerably in the surface waters during the period from November 1995 to April 1956. The variations in sound velocity have been discussed in relation to (1sinking, (2upwelling (3advection and (4diurnal and seasonal variation in temperature and salinity. The sound velocity in surface waters shows a general increase with the advance of upwelling season. The sound velocity decreases with depth in the surface layers in the upwelling seasons. In contrast; the sound velocity increases with depth in the surface layers during sinking season. At greater depths the sound velocity is found not to vary much during the entire period (November to April.

  10. Two dimensional velocity distribution in open channels using Renyi entropy

    Science.gov (United States)

    Kumbhakar, Manotosh; Ghoshal, Koeli

    2016-05-01

    In this study, the entropy concept is employed for describing the two-dimensional velocity distribution in an open channel. Using the principle of maximum entropy, the velocity distribution is derived by maximizing the Renyi entropy by assuming dimensionless velocity as a random variable. The derived velocity equation is capable of describing the variation of velocity along both the vertical and transverse directions with maximum velocity occurring on or below the water surface. The developed model of velocity distribution is tested with field and laboratory observations and is also compared with existing entropy-based velocity distributions. The present model has shown good agreement with the observed data and its prediction accuracy is comparable with the other existing models.

  11. High-velocity clouds

    NARCIS (Netherlands)

    Wakker, BP; vanWoerden, H

    1997-01-01

    High-velocity clouds (HVCs) consist of neutral hydrogen (HI) at velocities incompatible with a simple model of differential galactic rotation; in practice one uses \\v(LSR)\\ greater than or equal to 90 km/s to define HVCs. This review describes the main features of the sky and velocity distributions,

  12. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex...

  13. (AJST) ON THE PRESSURE VELOCITY AND TEMPERATURE ...

    African Journals Online (AJOL)

    the pressure and fluid velocity are average over the ... describing the flow are sets of nonlinear first-order ... resemble those of the one-dimensional gas dynamics. [5]. .... blood constituents (solid corpuscles and plasma) flow ... where ρ is the varying fluid density, u axial fluid ..... (1989): Biofluid mechanics, Annual review fluid.

  14. Precursor wave structure, prereversal vertical drift, and their relative roles in the development of post sunset equatorial spread-F

    Science.gov (United States)

    Abdu, Mangalathayil; Sobral, José; alam Kherani, Esfhan; Batista, Inez S.; Souza, Jonas

    2016-07-01

    The characteristics of large-scale wave structure in the equatorial bottomside F region that are present during daytime as precursor to post sunset development of the spread F/plasma bubble irregularities are investigated in this paper. Digisonde data from three equatorial sites in Brazil (Fortaleza, Sao Luis and Cachimbo) for a period of few months at low to medium/high solar activity phases are analyzed. Small amplitude oscillations in the F layer true heights, representing wave structure in polarization electric field, are identified as upward propagating gravity waves having zonal scale of a few hundred kilometers. Their amplitudes undergo amplification towards sunset, and depending on the amplitude of the prereversal vertical drift (PRE) they may lead to post sunset generation of ESF/plasma bubble irregularities. On days of their larger amplitudes they appear to occur in phase coherence on all days, and correspondingly the PRE vertical drift velocities are larger than on days of the smaller amplitudes of the wave structure that appear at random phase on the different days. The sustenance of these precursor waves structures is supported by the relatively large ratio (approaching unity) of the F region-to- total field line integrated Pedersen conductivities as calculated using the SUPIM simulation of the low latitude ionosphere. This study examines the role of the wave structure relative to that of the prereversal vertical drift in the post sunset spread F irregularity development.

  15. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi [Department of Engineering Physics and Mechanics, Graduate School of Engineering, Kyoto University, Kyoto (Japan)

    2000-03-01

    Polarization of radiation emitted from a plasma reflects the anisotropic properties of the plasma, especially the angular anisotropic distribution of electron velocities. Polarization has been observed on impurity ion lines from the WT-3 tokamak and the GAMMA-10 tandem mirror machines. The soft x-ray laser line from the neonlike germanium was also found polarized. (author)

  16. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iwamae, Atsushi; Inoue, Takeru; Tanaka, Akihiro; Kawakami, Kazuki; Fujimoto, Takashi [Kyoto Univ., Dept. of Engineering Physics, Kyoto (Japan)

    2000-03-01

    Polarization of radiation emitted from plasma reflects the anisotropic properties of the plasma, especially the angular isotropic distribution of electron velocities. Polarization has been observed on impurity ion lines from the WT-3 tokamak and GAMMA 10 tandem mirror device. (author)

  17. Intuitive Mechanics: Inferences of Vertical Projectile Motion

    Directory of Open Access Journals (Sweden)

    Milana Damjenić

    2016-07-01

    Full Text Available Our intuitive knowledge of physics mechanics, i.e. knowledge defined through personal experience about velocity, acceleration, motion causes, etc., is often wrong. This research examined whether similar misconceptions occur systematically in the case of vertical projectiles launched upwards. The first experiment examined inferences of velocity and acceleration of the ball moving vertically upwards, while the second experiment examined whether the mass of the thrown ball and force of the throw have an impact on the inference. The results showed that more than three quarters of the participants wrongly assumed that maximum velocity and peak acceleration did not occur at the initial launch of the projectile. There was no effect of object mass or effect of the force of the throw on the inference relating to the velocity and acceleration of the ball. The results exceed the explanatory reach of the impetus theory, most commonly used to explain the naive understanding of the mechanics of object motion. This research supports that the actions on objects approach and the property transmission heuristics may more aptly explain the dissidence between perceived and actual implications in projectile motion.

  18. Empirical study of vertical pneumatic conveying

    Energy Technology Data Exchange (ETDEWEB)

    Rautiainen, A.; Poikolainen, V.; Stewart, G.; Sarkomaa, P.

    1998-11-01

    A comprehensive description of vertical gas/solid two-phase flow using an elementary equation system and experimental techniques is presented. The equation system was derived from first principles and is presented in its entirety. The results from non- accelerating flow experiments conducted using a riser tube of bore 192 mm and height 16.2 m using spherical glass beads of average diameter 64{mu}m are presented graphically. These include, among others, results for total pressure drop, solids volume fraction, solids friction factor and particle slip velocity. Several instances of highly negative friction factors have been calculated. These were due to the internal recirculation of the solids at low superficial gas velocities. Under these conditions the flow of the suspension was often very spatially and temporally heterogeneous compared to the homogeneous flow field observed at high superficial gas velocities. All the presented results agree well qualitatively with those found in literature. (orig.) 23 refs.

  19. Composition of vertical gardens

    OpenAIRE

    Sandeva, Vaska; Despot, Katerina

    2013-01-01

    Vertical gardens are fully functional gardens in areas where there is less oxygen and space, ideal for residential and urban cities where there is no vegetation; occupy a special place in interiors furniture. The gardens occupy an important aesthetic problem. Aesthetic task in vertical gardens can be achieved by forming sectors of identification in the urban landscape through the choice of a particular plant spatial composition and composition, to create comfort and representation in commu...

  20. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  1. Observations of nightside auroral plasma upflows in the F-region and topside ionosphere

    Directory of Open Access Journals (Sweden)

    C. Foster

    Full Text Available Observations from the special UK EISCAT program UFIS are presented. UFIS is a joint UHF-VHF experiment, designed to make simultaneous measurements of enhanced vertical plasma flows in the F-region and topside ionospheres. Three distinct intervals of upward ion flow were observed. During the first event, upward ion fluxes in excess of 1013 m–2 s–1 were detected, with vertical ion velocities reaching 300 m s–1 at 800 km. The upflow was associated with the passage of an auroral arc through the radar field of view. In the F-region, an enhanced and sheared convection electric field on the leading edge of the arc resulted in heating of the ions, whilst at higher altitudes, above the precipitation region, strongly enhanced electron temperatures were observed; such features are commonly associated with the generation of plasma upflows. These observations demonstrate some of the acceleration mechanisms which can exist within the small-scale structure of an auroral arc. A later upflow event was associated with enhanced electron temperatures and only a moderate convection electric field, with no indication of significantly elevated ion tem- peratures. There was again some evidence of F-region particle precipitation at the time of the upflow, which exhibited vertical ion velocities of similar magnitude to the earlier upflow, suggesting that the behaviour of the electrons might be the dominant factor in this type of event. A third upflow was detected at altitudes above the observing range of the UHF radar, but which was evident in the VHF data from 600 km upwards. Smaller vertical velocities were observed in this event, which was apparently uncorrelated with any features observed at lower altitudes. Limitations imposed by the experimental conditions inhibit the interpretation of this event, although the upflow was again likely related to topside plasma heating.

  2. Analytical Study on Wave Diffraction from a Vertical Circular Cylinder in Front of Orthogonal Vertical Walls

    Institute of Scientific and Technical Information of China (English)

    NING Dezhi; TENG Bin; SONG Xiangqun

    2005-01-01

    In this paper, the principle of mirror image is used to transform the problem of wave diffraction from a circular cylinder in front of orthogonal vertical walls into the problem of diffraction of four symmetric incident waves from four symmetrically arranged circular cylinders, and then the eigenfunction expansion of velocity potential and Grafs addition theorem are used to give the analytical solution to the wave diffraction problem. The relation of the total wave force on cylinder to the distance between the cylinder and orthogonal vertical walls and the incidence angle of wave is also studied by numerical computation.

  3. Magnetogenesis through Relativistic Velocity Shear

    Science.gov (United States)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  4. Vertical spectral representation in primitive equation models of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Mizzi, A.; Tribbia, J. [National Center for Atmospheric Research, Boulder, CO (United States); Curry, J. [Univ. of Colorado, Boulder, CO (United States)

    1995-08-01

    Attempts to represent the vertical structure in primitive equation models of the atmosphere with the spectral method have been unsuccessful to date. Linear stability analysis showed that small time steps were required for computational stability near the upper boundary with a vertical spectral representation and found it necessary to use an artificial constraint to force temperature to zero when pressure was zero to control the upper-level horizontal velocities. This ad hoc correction is undesirable, and an analysis that shows such a correction is unnecessary is presented. By formulating the model in terms of velocity and geopotential and then using the hydrostatic equation to calculate temperature from geopotential, temperature is necessarily zero when pressure is zero. The authors applied this technique to the dry-adiabatic primitive equations on the equatorial {beta} and tropical f planes. Vertical and horizontal normal modes were used as the spectral basis functions. The vertical modes are based on vertical normal modes, and the horizontal modes are normal modes for the primitive equations on a {beta} or f plane. The results show that the upper-level velocities do not necessarily increase, total energy is conserved, and kinetic energy is bounded. The authors found an upper-level temporal oscillation in the horizontal domain integral of the horizontal velocity components that is related to mass and velocity field imbalances in the initial conditions or introduced during the integration. Through nonlinear normal-mode initialization, the authors effectively removed the initial condition imbalance and reduced the amplitude of this oscillation. It is hypothesized that the vertical spectral representation makes the model more sensitive to initial condition imbalances, or it introduces imbalance during the integration through vertical spectral truncation. 20 refs., 12 figs.

  5. Velocity selective optical pumping

    OpenAIRE

    Aminoff, C. G.; Pinard, M.

    1982-01-01

    We consider optical pumping with a quasi monochromatic tunable light beam, in the low intensity limit where a rate equation regime is obtained The velocity selective optical pumping (V.S.O.P.) introduces a correlation between atomic velocity and internal variables in the ground (or metastable) state. The aim of this article is to evaluate these atomic observables (orientation, alignment, population) as a function of velocity, using a phenomenological description of the relaxation effect of co...

  6. Vertical heat and salt fluxes induced by inertia-gravity internal waves on sea shelf

    Science.gov (United States)

    Slepyshev, A. A.; Vorotnikov, D. I.

    2017-07-01

    Free inertia-gravity internal waves are considered in a two-dimensional vertically nonuniform flow in the Boussinesq approximation. The equation for vertical velocity amplitude includes complex factors caused by the gradient of the flow velocity component transverse to the wave-propagation direction; therefore, the eigenfunction and wave frequency are complex. It is shown that the decrement of damping (imaginary correction to the frequency) of 15-min internal waves is two orders of magnitude smaller than the wave frequency; i.e., the waves weakly damp. Vertical wave fluxes of heat and salt are nonzero due to the phase shift between fluctuations of the vertical velocity and temperature (salinity) different from π 2. The vertical component of the Stokes drift speed is also nonzero and contributed into the vertical transport.

  7. Geotail observations of FTE velocities

    Directory of Open Access Journals (Sweden)

    G. I. Korotova

    2009-01-01

    Full Text Available We discuss the plasma velocity signatures expected in association with flux transfer events (FTEs. Events moving faster than or opposite the ambient media should generate bipolar inward/outward (outward/inward flow perturbations normal to the nominal magnetopause in the magnetosphere (magnetosheath. Flow perturbations directly upstream and downstream from the events should be in the direction of event motion. Flows on the flanks should be in the direction opposite the motion of events moving at subsonic and subAlfvénic speeds relative to the ambient plasma. Events moving with the ambient flow should generate no flow perturbations in the ambient plasma. Alfvén waves propagating parallel (antiparallel to the axial magnetic field of FTEs may generate anticorrelated (correlated magnetic field and flow perturbations within the core region of FTEs. We present case studies illustrating many of these signatures. In the examples considered, Alfvén waves propagate along event axes away from the inferred reconnection site. A statistical study of FTEs observed by Geotail over a 3.5-year period reveals that FTEs within the magnetosphere invariably move faster than the ambient flow, while those in the magnetosheath move both faster and slower than the ambient flow.

  8. Dense Hypervelocity Plasma Jets

    Science.gov (United States)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  9. The Velocity Campaign for Ignition on NIF

    Science.gov (United States)

    Callahan, Debra

    2011-10-01

    Achieving ignition requires a high velocity implosion since the energy required for ignition scales like 1/v8. Beyond ignition, a higher velocity produces more robust performance, which will be useful for applications of ignition. In the velocity campaign, we will explore three methods for increasing implosion velocity: increased laser power and energy, optimized hohlraum and capsule materials, and optimized capsule thickness. The main issue with increasing the laser power and energy is the way in which LPI (laser plasma interactions) and hot electron preheat will change as we increase the laser power. Based on scalings from previous data and theory, we expect to couple 80-85% of 1.5 MJ at 475-500 TW. We can also increase the velocity by optimizing the hohlraum and capsule materials. In this campaign, we will explore depleted uranium hohlraums to reduce wall loss and optimize the capsule dopant by replacing the germanium dopant with silicon. Those two changes are expected to increase velocity by 6-7%. Finally, we will optimize the capsule thickness. The optimal capsule thickness is a trade-off between velocity and mix. A thinner capsule has higher velocity, but is more susceptible to mix of the ablator material into the hotspot due to hydrodynamic instabilities seeded by ablation surface imperfections. Once we have achieved adequate capsule areal density, we will optimize the velocity/mix trade off by varying the capsule thickness. We will also make direct measure of Rayleigh-Taylor instability growth by backlighting the growth of engineered features on the surface of the capsule. This will allow us to benchmark our models of mix. In this paper, we will describe the designs and experimental results of the velocity campaign. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  10. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  11. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  12. First Frequency-Domain Interferometry Observations of Large-Scale Vertical Motion in the Atmosphere.

    Science.gov (United States)

    Muschinski, Andreas; Chilson, Phillip B.; Kern, Stefan; Nielinger, Jost; Schmidt, Gerhard; Prenosil, Thomas

    1999-05-01

    The spatiotemporal distribution of the vertical velocity at synoptic and subsynoptic scales is key to the patterns of weather and climate on earth. On these scales, the vertical velocity is on the order of one to a few centimeters per second, typically about three orders of magnitude smaller than typical horizontal wind velocities. Because of the smallness of large-scale vertical velocities relative to typical horizontal velocities, a direct observation of the large-scale vertical air velocity is extremely difficult.In a case study on observational material obtained during a 68-h experiment using the SOUSY very high frequency (VHF) radar in the Harz Mountains in Germany, the authors present the first intercomparison between three different sources of physical information that can provide large-scale vertical wind velocities: (i) the Doppler shifts observed with a vertically pointing VHF radar; (ii) the rates of change of the altitudes of refractive-index discontinuities as identified with frequency-domain interferometry (FDI), which is still a relatively unexplored technique in meteorology; and (iii) the output of a regional numerical weather prediction model (NWPM), which has been set up to model the meteorological situation during the observational period.There are several phenomena that have been known to possibly cause significant biases in mean vertical velocities retrieved from the Doppler shifts measured with vertically pointing clear-air VHF radars: (i) stationary or nonstationary gravity waves with vertical-velocity amplitudes up to the order of 1 m s1; (ii) stationary or horizontally advected tilted refractive-index discontinuities that are aspect sensitive in the VHF regime; and (iii) a correlation between the radar-reflectivity fluctuations and the vertical-velocity fluctuations within a vertically propagating gravity wave.On the basis of an intercomparison between the vertical velocities retrieved from (i) `standard Doppler' VHF radar observations, (ii

  13. [Duane vertical surgical treatment].

    Science.gov (United States)

    Merino, M L; Gómez de Liaño, P; Merino, P; Franco, G

    2014-04-01

    We report 3 cases with a vertical incomitance in upgaze, narrowing of palpebral fissure, and pseudo-overaction of both inferior oblique muscles. Surgery consisted of an elevation of both lateral rectus muscles with an asymmetrical weakening. A satisfactory result was achieved in 2 cases, whereas a Lambda syndrome appeared in the other case. The surgical technique of upper-insertion with a recession of both lateral rectus muscles improved vertical incomitance in 2 of the 3 patients; however, a residual deviation remains in the majority of cases. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  14. Investigation of plasma motion in the equatorial ionosphere

    Science.gov (United States)

    Oyekola, Oyedemi S.

    2016-07-01

    The structure of evening and nighttime F-region vertical drift component of is vital for understanding the physics of the development of the occurrence of equatorial irregularities. In addition, postsunset ionospheric height has also been attributed as one of the most important factors for the occurrence of equatorial irregularities. We report vertical plasma drift velocities derived from the base (h'F) and the peak height (hmF2) of F-layer using 1-year of data obtained at Ibadan (Geog Long 3.9oE) during International Geophysical Year (1957-58) period for geomagnetic quiet-time and high solar activity conditions. We compared our results with International Reference Ionosphere 2012 model (IRI-2012). The results of this investigation include: (a) overall local- time characteristics of vertical drift between 1800 LT and 0600 LT are in good agreement for equinoxes, December, and June; (b) annual vertical drift derived from time variation of h'F and hmF2 and the corresponding annual variation of h'F and hmF2 variation indicate low correlation (R = 0.30), while IRI-2012 model vertical drift and IRI-2012 model of hmF2 show fairly good correlation ( R = 0.67); (c) regression analysis between time variation of h'F and Scherliess / Fejer model demonstrate correlation coefficient of approximately 0.74 (equinox), 0.85 (December), 0.57 (June) and 0.74 (all-year), while that of time variation of hmF2 and IRI-2012 vertical velocities show 0.95 (equinox), 0.74 (December), 0.43 (June), and 0.74 (all-year); (d) plasma motion derived from the time rate of change of h'F and those of hmF2 are correlated at 0.94, 0.88, 0.63, and 0.90 for equinoxes, December, June, and all-year, respectively; (e) the evening prereversal vertical drifts enhancement rage between ~20 - 45 m/s, ~18 - 46 m/s, ~20 - 50 m/s for time variation of h'F, hmF2, and Scherliess / Fejer model, respectively; (f) the corresponding peak altitudes vary between 430 - 540 km (h'F), 560 - 740 km ( hmF2), and 570 - 620 km (IRI

  15. Vertical cross-spectral phases in atmospheric flow

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2014-01-01

    . The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases increase with stream-wise wavenumber and vertical separation distance......, but there is no significant change in the phase angle of vertical velocity. The phase angles for all atmospheric stabilities show similar order in phasing. The phase angles from the Høvsøre observations under neutral condition are compared with a rapid distortion theory model which show similar order in phase shift....

  16. Prestack migration velocity analysis based on simplifi ed two-parameter moveout equation

    Institute of Scientific and Technical Information of China (English)

    Chen Hai-Feng; Li Xiang-Yang; Qian Zhong-Ping; Song Jian-Jun; Zhao Gui-Ling

    2016-01-01

    Stacking velocityVC2, vertical velocity ratioγ0, effective velocity ratioγef, and anisotropic parameterχef are correlated in the PS-converted-wave (PS-wave) anisotropic prestack Kirchhoff time migration (PKTM) velocity model and are thus difficult to independently determine. We extended the simplified two-parameter (stacking velocity VC2 and anisotropic parameterkef) moveout equation from stacking velocity analysis to PKTM velocity model updating and formed a new four-parameter (stacking velocityVC2, vertical velocity ratioγ0, effective velocity ratioγef, and anisotropic parameterkef) PS-wave anisotropic PKTM velocity model updating and processfl ow based on the simplifi ed two-parameter moveout equation. In the proposed method, first, the PS-wave two-parameter stacking velocity is analyzed to obtain the anisotropic PKTM initial velocity and anisotropic parameters; then, the velocity and anisotropic parameters are corrected by analyzing the residual moveout on common imaging point gathers after prestack time migration. The vertical velocity ratioγ0 of the prestack time migration velocity model is obtained with an appropriate method utilizing the P- and PS-wave stacked sections after level calibration. The initial effective velocity ratioγef is calculated using the Thomsen (1999) equation in combination with the P-wave velocity analysis; ultimately, the final velocity model of the effective velocity ratioγef is obtained by percentage scanning migration. This method simplifi es the PS-wave parameter estimation in high-quality imaging, reduces the uncertainty of multiparameter estimations, and obtains good imaging results in practice.

  17. Vertical Protocol Composition

    DEFF Research Database (Denmark)

    Groß, Thomas; Mödersheim, Sebastian Alexander

    2011-01-01

    The security of key exchange and secure channel protocols, such as TLS, has been studied intensively. However, only few works have considered what happens when the established keys are actually used—to run some protocol securely over the established “channel”. We call this a vertical protocol com...

  18. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index...

  19. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen

    1998-01-01

    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra...... this strategic behavior, yields better market performance than Cournot beliefs...

  20. Turbulence in vertical axis wind turbine canopies

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-11-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the importance of vertical transport for large array configurations. Quadrant-hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT arrays. The results show a striking similarity between the flows in the VAWT arrays and the adjustment region of canopies. Namely, an increase in ejections and sweeps and decrease in inward and outward interactions occur inside the turbine array. Ejections are the strongest contributor, which is in agreement with the literature on evolving and sparse canopy flows. The influence of the turbine array size on the power output of the downstream turbines is examined by comparing a streamwise row of four single turbines with square arrays of nine turbine pairs. The results suggest that a new boundary layer forms on top of the larger turbine arrays as the flow adjusts to the new roughness length. This increases the turbulent energy transport over the whole planform area of the turbine array. By contrast, for the four single turbines, the vertical energy transport due to turbulent fluctuations is only increased in the near wake of the turbines. These findings add to the knowledge of energy transport in turbine arrays and therefore the optimization of the turbine spacing in wind farms.

  1. Indirect determination of the turbulent velocity profile origin

    OpenAIRE

    Lukerchenko, N.; Vlasák, P. (Pavel)

    2012-01-01

    The vertical co-ordinate of the logarithmic turbulent velocity profile origin yo is an important characteristic of turbulent flow in conduit with rough walls. Because length and height of saltation depend strongly on the position of the velocity profile origin, it can be determined by comparison of experimental values of particle saltation and their numerical simulation. The parameter y0 can be expressed as function of saltation length or height, or the boundary Reynolds number, and it was sh...

  2. Vertical deformation at western part of Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Febriyani, Caroline, E-mail: caroline.fanuel@students.itb.ac.id; Prijatna, Kosasih, E-mail: prijatna@gd.itb.ac.id; Meilano, Irwan, E-mail: irwan.meilano@gd.itb.ac.id

    2015-04-24

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  3. Validation of the iPhone app using the force platform to estimate vertical jump height.

    Science.gov (United States)

    Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge

    2016-09-22

    Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate the iPhone app, My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4 ± 1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the mobile application My Jump. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC = 1.000, P vertical velocity at take-off was also very high (ICC = 0.996, P vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.

  4. Analytic expression for poloidal flow velocity in the banana regime

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, M. [College of Industrial Technology, Nihon University, Narashino 275-8576 (Japan)

    2013-01-15

    The poloidal flow velocity in the banana regime is calculated by improving the l = 1 approximation for the Fokker-Planck collision operator [M. Taguchi, Plasma Phys. Controlled Fusion 30, 1897 (1988)]. The obtained analytic expression for this flow, which can be used for general axisymmetric toroidal plasmas, agrees quite well with the recently calculated numerical results by Parker and Catto [Plasma Phys. Controlled Fusion 54, 085011 (2012)] in the full range of aspect ratio.

  5. Superluminal Recession Velocities

    CERN Document Server

    Davis, T M; Davis, Tamara M.; Lineweaver, Charles H.

    2000-01-01

    Hubble's Law, v=HD (recession velocity is proportional to distance), is a theoretical result derived from the Friedmann-Robertson-Walker metric. v=HD applies at least as far as the particle horizon and in principle for all distances. Thus, galaxies with distances greater than D=c/H are receding from us with velocities greater than the speed of light and superluminal recession is a fundamental part of the general relativistic description of the expanding universe. This apparent contradiction of special relativity (SR) is often mistakenly remedied by converting redshift to velocity using SR. Here we show that galaxies with recession velocities faster than the speed of light are observable and that in all viable cosmological models, galaxies above a redshift of three are receding superluminally.

  6. Anisotropic parameter estimation using velocity variation with offset analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A. [Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, 40132 (Indonesia)

    2013-09-09

    Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ε and δ, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter δ. The second method is inversion method using linear approach where vertical velocity, δ, and ε is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that δ value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ε value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.

  7. Extreme Velocity Wind Sensor

    Science.gov (United States)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  8. Experimental Study on Vertical Dilute Phase Gas Conveying

    Institute of Scientific and Technical Information of China (English)

    景山; 王金福; 等

    2003-01-01

    An experimental study of vertical gas conveying Geldart-D powder as a dilute phase is performed in a pipe of length 22m and internal diameter 0.05m using a fluidized blow tank at gas velocity ranging from 5m ·s-1 to 13m·s-1 and loading ratio up to about 30.The characteristics of gas conveying,such as pressure drop,the choking velocity and the minimum primary velocity of the fluidized blow tank,are discussed in detail.

  9. On the distribution of sound velocity in a section of Vzag in the Bay of Bengal

    Directory of Open Access Journals (Sweden)

    J.Siva Rama Sastry

    1956-04-01

    Full Text Available The vertical sound velocity distribution in a section of Visakhapatnam in the Bay of Bengal has been computed making use of Kuwahara's tables. In an attempt to find out the corrections to the echo-sounder readings the average sound velocity distribution is computed together with the sound velocity profiles taking the spot values only. The physical oceanography of the area in relation to the sound velocity distribution is discussed.

  10. Multilayer graphene under vertical electric field

    OpenAIRE

    Kumar, S. Bala; GUO, Jing

    2011-01-01

    We study the effect of vertical electric field (E-field) on the electronic properties of multilayer graphene. We show that the effective mass, electron velocity and density-of-state of a bilayer graphene are modified under the E-field. We also study the transformation of the band structure of multilayer graphenes. E-field induces finite (zero) bandgap in the even (odd)-layer ABA-stacking graphene. On the other hand, finite bandgap is induced in all ABC-stacking graphene. We also identify the ...

  11. Theoretic base of Edge Local Mode triggering by vertical displacements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. T. [Southwestern Institute of Physics, Chengdu 610041 (China); College of Physics Science and Technology, Sichuan University, Chengdu 610065 (China); He, Z. X.; Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China); Wu, N.; Tang, C. J. [College of Physics Science and Technology, Sichuan University, Chengdu 610065 (China)

    2015-05-15

    Vertical instability is studied with R-dependent displacement. For Solovev's configuration, the stability boundary of the vertical instability is calculated. The pressure gradient is a destabilizing factor which is contrary to Rebhan's result. Equilibrium parallel current density, j{sub //}, at plasma boundary is a drive of the vertical instability similar to Peeling-ballooning modes; however, the vertical instability cannot be stabilized by the magnetic shear which tends towards infinity near the separatrix. The induced current observed in the Edge Local Mode (ELM) triggering experiment by vertical modulation is derived. The theory provides some theoretic explanation for the mitigation of type-I ELMS on ASDEX Upgrade. The principle could be also used for ITER.

  12. Vertical orbital dystopia.

    Science.gov (United States)

    Tan, S T; Ashworth, G; Czypionka, S; Poole, M D; Briggs, M

    1996-06-01

    Many pathologic processes may lead to vertical orbital dystopia. We reviewed 47 consecutive cases seen over a 13-year period. Twenty-nine patients underwent eye leveling procedures to improve cosmesis, 2 of these by camouflage procedures and 27 by orbital translocation. Ten patients had 16 secondary operations. There was one death, serious complications occurred in 3 patients, and nuisance complications occurred in 20 others. Seven patients developed diplopia postoperatively, and in 6 patients it was troublesome. In these, it resolved fully in 2 patients, improved to be of no consequence in 2, and in the remaining 2 troublesome symptoms persisted requiring inferior oblique muscle recession in 1. Binocular vision was never restored when not present preoperatively, and in 3 patients temporary loss occurred. There was an overall modest but significant improvement in appearance after surgery. It is concluded that vertical orbital translocation is rewarding and worthwhile.

  13. An explanation for salinity- and SPM-induced vertical countergradient buoyancy fluxes

    NARCIS (Netherlands)

    De Nijs, M.A.J.; Pietrzak, J.D.

    2011-01-01

    Measurements of turbulent fluctuations of velocity, salinity, and suspended particulate matter (SPM) are presented. The data show persistent countergradient buoyancy fluxes. These countergradient fluxes are controlled by the ratio of vertical turbulent kinetic energy (VKE) and available potential

  14. Optical properties of cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yasuaki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Downer, M.C.

    1998-03-01

    It is shown that unlike a gas plasma or an electron plasma in a metal, an ionized clustered material (`cluster plasma`) permits propagation below the plasma cut-off of electromagnetic (EM) waves whose phase velocity is close to but below the speed of light. This results from the excitation of a plasma oscillation mode (and/or polarization mode) through the cluster surface which does not exist in usual gaseous plasma. The existence of this new optical mode, cluster mode, is confirmed via numerical simulation. (author)

  15. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    The present study covers both a numerical and experimental investigation of the processes in the oscillatory boundary layer. In the first part a direct numerical simulation (DNS) is conducted to study the vertical pressure gradient, and its role in relation to laminar to turbulent transition...... and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... This is in contrast to velocity fluctuations that are diffusive, so they can also contain residual turbulence from the previous half cycle until they are dissipated. Furthermore, the magnitude of the mean value of conditionally averaged vertical pressure gradient (for −∂p∗/∂x∗ 2 > 0) is compared to the submerged...

  16. Vertical cross-spectral phases in neutral atmospheric flow

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2012-01-01

    The cross-spectral phases between velocity components at two heights are analyzed from observations at the Hovsore test site and from the field experiments under the Cooperative Atmosphere-Surface Exchange Study in 1999. These phases represent the degree to which turbulence sensed at one height...... leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases...... increase with stream-wise wavenumber and vertical separation distance, but there is no significant change in the phase angle of vertical velocity, which remains close to zero. The phases are also calculated using a rapid distortion theory model and large-eddy simulation. The results from the models show...

  17. 5-foot Vertical Wind Tunnel

    Science.gov (United States)

    1932-01-01

    spin of an airplane. Satisfactory air flow has been attained with a velocity that is uniform over the jet to within 0.5 per cent. The turbulence present in the tunnel has been compared with that of several other tunnels by means of the results of sphere drag tests and was found to average well with the values of those tunnels. Included also in the report are comparisons of results of stable autorotation and of rolling-moment tests obtained both in the vertical tunnel and in the old horizontal 5-foot atmospheric tunnel.' The design of a vertical tunnel having a 5-foot diameter jet was accordingly started by the National Advisory Committee for Aeronautics in 1928. Actual construction of the new tunnel was completed in 1930, and the calibration tests were then made.'

  18. Kinematic determination of Electron-Hole velocities

    Science.gov (United States)

    Hutchinson, Ian H.; Zhou, C.

    2016-10-01

    Coherent self-sustaining BGK potential structures, like the electron holes that often form during nonlinear electrostatic instabilities and are frequently observed in space plasmas, have ``kinematic'' momentum conservation properties that determine their velocity. The electron and ion momentum, both internal and external to the hole, must be included. Momentum changes arise from hole acceleration and from hole depth growth, by energization processes we call jetting; and these must balance any additional external forces on the particles. Comprehensive analytic expressions for the contributions have been calculated for holes of arbitrary localized potential form. Using these, we can deduce velocity changes in various interesting situations such as the self-acceleration of electron holes during formation, the circumstances under which holes accelerate at the rate of the electrons in a background electric field, the influence of the ion stream pushing and pulling holes to higher or lower speeds, and the trapping of hole velocity between the velocity of two ion streams. The predictions are in excellent quantitative agreement with targeted PIC simulations. The kinematic theory thus explains why isolated holes behave the way they do. Partially supported by NSF/DOE Basic Plasma Grant DE-SC0010491.

  19. Isokinetic knee extension and vertical jumping: are they related?

    Science.gov (United States)

    Iossifidou, Anna; Baltzopoulos, Vasilios; Giakas, Giannis

    2005-10-01

    The aim of this study was to examine joint power generation during a concentric knee extension isokinetic test and a squat vertical jump. The isokinetic test joint power was calculated using four different methods. Five participants performed concentric knee extensions at 0.52, 1.57, 3.14 and 5.23 rad x s(-1) on a Lido isokinetic dynamometer. The squat vertical jump was performed on a Kistler force plate. Kinematic data from both tests were collected and analysed using an ELITE optoelectronic system. An inverse dynamics model was applied to measure knee joint moment in the vertical jump. Knee angular position data from the kinematic analysis in the isokinetic test were used to derive the actual knee angular velocity and acceleration, which, in turn, was used to correct the dynamometer moment for inertial effects. Power was measured as the product of angular velocity and moment at the knee joint in both tests. Significant differences (P knee joint power in the two tests (squat vertical jump: 2255 +/- 434 W; isokinetic knee extension: 771 +/- 81 W). Correlation analysis revealed that there is no relationship between the peak knee joint power during the vertical jump and the slow velocity isokinetic tests. Higher isokinetic velocity tests show better relationships with the vertical jump but only if the correct method for joint power calculation is used in the isokinetic test. These findings suggest that there are important differences in muscle activation and knee joint power development that must be taken into consideration when isokinetic tests are used to predict jumping performance.

  20. Measurement of velocity field in parametrically excited solitary waves

    CERN Document Server

    Gordillo, Leonardo

    2014-01-01

    Paramerically excited solitary waves emerge as localized structures in high-aspect-ratio free surfaces subject to vertical vibrations. Herein, we provide the first experimental characterization of the hydrodynamics of thess waves using Particle Image Velocimetry. We show that the underlying velocity field of parametrically excited solitary waves is mainly composed by an oscillatory velocity field. Our results confirm the accuracy of Hamiltonian models with added dissipation in describing this field. Remarkably, our measurements also uncover the onset of a streaming velocity field which is shown to be as important as other crucial nonlinear terms in the current theory. The observed streaming pattern is particularly interesting due to the presence of oscillatory meniscii.

  1. Rotating optical tubes for vertical transport of atoms

    Science.gov (United States)

    Al Rsheed, Anwar; Lyras, Andreas; Aldossary, Omar M.; Lembessis, Vassilis E.

    2016-12-01

    The classical dynamics of a cold atom trapped inside a vertical rotating helical optical tube (HOT) is investigated by taking also into account the gravitational field. The resulting equations of motion are solved numerically. The rotation of the HOT induces a vertical motion for an atom initially at rest. The motion is a result of the action of two inertial forces, namely, the centrifugal force and the Coriolis force. Both inertial forces force the atom to rotate in a direction opposite to that of the angular velocity of the HOT. The frequency and the turning points of the atom's global oscillation can be controlled by the value and the direction of the angular velocity of the HOT. However, at large values of the angular velocity of the HOT the atom can escape from the global oscillation and be transported along the axis of the HOT. In this case, the rotating HOT operates as an optical Archimedes' screw for atoms.

  2. Vertical air motions over the Tropical Western Pacific for validating cloud resolving and regional models

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Christopher R. [Univ. of Colorado, Boulder, CO (United States)

    2015-03-16

    The objective of this project was to estimate the vertical air motion using Doppler velocity spectra from two side-by-side vertically pointing radars. The retrieval technique was applied to two different sets of radars. This first set was 50- and 920-MHz vertically pointing radars near Darwin, Australia. The second set was 449-MHz and 2.8-GHz vertically pointing radars deployed at SGP for MC3E. The retrieval technique uses the longer wavelength radar (50 or 449 MHz) to observe both the vertical air motion and precipitation motion while the shorter wavelength radar (920 MHz or 2.8 GHz) observes just the precipitation motion. By analyzing their Doppler velocity spectra, the precipitation signal in the 920 MHz or 2.8 GHz radar is used to mask-out the precipitation signal in the 50 or 449 MHz radar spectra, leaving just the vertical air motion signal.

  3. Conventional Point-Velocity Records and Surface Velocity Observations for Estimating High Flow Discharge

    Directory of Open Access Journals (Sweden)

    Giovanni Corato

    2014-10-01

    Full Text Available Flow velocity measurements using point-velocity meters are normally obtained by sampling one, two or three velocity points per vertical profile. During high floods their use is inhibited due to the difficulty of sampling in lower portions of the flow area. Nevertheless, the application of standard methods allows estimation of a parameter, α, which depends on the energy slope and the Manning roughness coefficient. During high floods, monitoring of velocity can be accomplished by sampling the maximum velocity, umax, only, which can be used to estimate the mean flow velocity, um, by applying the linear entropy relationship depending on the parameter, M, estimated on the basis of historical observed pairs (um, umax. In this context, this work attempts to analyze if a correlation between α and M holds, so that the monitoring for high flows can be addressed by exploiting information from standard methods. A methodology is proposed to estimate M from α, by coupling the “historical” information derived by standard methods, and “new” information from the measurement of umax surmised at later times. Results from four gauged river sites of different hydraulic and geometric characteristics have shown the robust estimation of M based on α.

  4. Ultracold Neutral Plasmas

    CERN Document Server

    Killian, T C; Gupta, P; Laha, S; Martinez, Y N; Mickelson, P G; Nagel, S B; Saenz, A D; Simien, C E; Killian, Thomas C.

    2005-01-01

    Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1-1000 K and the ion temperature is around 1 K. The density can approach $10^{11}$ cm$^{-3}$. Fundamental interest stems from the possibility of creating strongly-coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr$^+$ ${^2S_{1/2}} -> {^2P_{1/2}}$ transition at 422 nm, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photoionization.

  5. Quantitative velocity modulation spectroscopy

    Science.gov (United States)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  6. Scaling of granular convective velocity and timescale of asteroidal resurfacing

    Science.gov (United States)

    Yamada, Tomoya; Ando, Kousuke; Morota, Tomokatsu; Katsuragi, Hiroaki

    Granular convection is one of the well-known phenomena observed in a vertically vibrated granular bed. Recently, the possbile relation between granular convection and asteroidal surface processes has been discussed. The granular convection on the surface of small asteroids might be induced by seismic vibration resulting from meteorite impacts. To quantitatively evaluate the timescale of asteroidal resurfacing by granular convection, the granular convective velocity under various conditions must be revealed. As a first step to approach this problem, we experimentally study the velocity scaling of granular convection using a vertically vibrated glass-beads layer. By systematic experiments, a scaling form of granular convective velocity has been obtained. The obtained scaling form implies that the granular convective velocity can be written by a power-law product of two characteristic velocity components: vibrational and gravitational velocities. In addition, the system size dependence is also scaled. According to the scaling form, the granular convective velocity is almost proportional to gravitatinal acceleration. Using this scaling form, we have estimated the resurfacing timescale on small asteroid surface.

  7. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...... description of this momentum flow. The Prescribed Velocity Method is a practical method for the description of an Air Terminal Device which will save grid points close to the opening and ensure the right level of the momentum flow....

  8. GPS, su datum vertical.

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available La introducción de la metodología GPS en aplicaciones topográficas y geodésicas pone en notoria evidencia la clásica separación de sistemas de referencia en horizontal y vertical. Con GPS el posicionamiento es tridimensional, pero el concepto de altura difiere del clásico. Si se desea utilizar la información altimétrica debe contemplarse la ondulación del geoide.

  9. Modeling Terminal Velocity

    Science.gov (United States)

    Brand, Neal; Quintanilla, John A.

    2013-01-01

    Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…

  10. Wind speed vertical distribution at Mt. Graham

    CERN Document Server

    Hagelin, S; Lascaux, F

    2010-01-01

    The characterization of the wind speed vertical distribution V(h) is fundamental for an astronomical site for many different reasons: (1) the wind speed shear contributes to trigger optical turbulence in the whole troposphere, (2) a few of the astroclimatic parameters such as the wavefront coherence time (tau_0) depends directly on V(h), (3) the equivalent velocity V_0, controlling the frequency at which the adaptive optics systems have to run to work properly, depends on the vertical distribution of the wind speed and optical turbulence. Also, a too strong wind speed near the ground can introduce vibrations in the telescope structures. The wind speed at a precise pressure (200 hPa) has frequently been used to retrieve indications concerning the tau_0 and the frequency limits imposed to all instrumentation based on adaptive optics systems, but more recently it has been proved that V_200 (wind speed at 200 hPa) alone is not sufficient to provide exhaustive elements concerning this topic and that the vertical d...

  11. Theory of nonaxisymmetric vertical displacement events in tokamaks

    Science.gov (United States)

    Fitzpatrick, R.

    2011-05-01

    A semi-analytic sharp-boundary model of a nonaxisymmetric vertical displacement event (VDE) in a large aspect-ratio, high-beta (i.e. β ~ epsilon), vertically elongated tokamak plasma is developed. The model is used to simulate nonaxisymmetric VDEs with a wide range of different plasma equilibrium and vacuum vessel parameters. These simulations yield poloidal halo current fractions and toroidal peaking factors whose magnitudes are similar to those seen in experiments, and also reproduce the characteristic inverse scaling between the halo current fraction and the toroidal peaking factor. Moreover, the peak poloidal halo current density in the vacuum vessel is found to correlate strongly with the reciprocal of the minimum edge safety factor attained during the VDE. In addition, under certain circumstances, the ratio of the net sideways force acting on the vacuum vessel to the net vertical force is observed to approach unity. Finally, the peak vertical force per unit area acting on the vessel is found to have a strong correlation with the equilibrium toroidal plasma current at the start of the VDE, but is also found to increase with increasing vacuum vessel resistivity relative to the scrape-off layer plasma.

  12. Experimental investigation of particle velocity distributions in windblown sand movement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the PDPA(Phase Doppler Particle Analyzer) measurement technology,the probability distributions of particle impact and lift-off velocities on bed surface and the particle velocity distributions at different heights are detected in a wind tunnel. The results show that the probability distribution of impact and lift-off velocities of sand grains can be expressed by a log-normal function,and that of impact and lift-off angles complies with an exponential function. The mean impact angle is between 28° and 39°,and the mean lift-off angle ranges from 30° to 44°. The mean lift-off velocity is 0.81-0.9 times the mean impact velocity. The proportion of backward-impacting particles is 0.05-0.11,and that of backward-entrained particles ranges from 0.04 to 0.13. The probability distribution of particle horizontal velocity at 4 mm height is positive skew,the horizontal velocity of particles at 20 mm height varies widely,and the variation of the particle horizontal velocity at 80 mm height is less than that at 20 mm height. The probability distribution of particle vertical velocity at different heights can be described as a normal function.

  13. The vertical fingerprint of earthquake cycle loading in southern California

    Science.gov (United States)

    Howell, Samuel; Smith-Konter, Bridget; Frazer, Neil; Tong, Xiaopeng; Sandwell, David

    2016-08-01

    The San Andreas Fault System, one of the best-studied transform plate boundaries on Earth, is well known for its complex network of locked faults that slowly deform the crust in response to large-scale plate motions. Horizontal interseismic motions of the fault system are largely predictable, but vertical motions arising from tectonic sources remain enigmatic. Here we show that when carefully treated for spatial consistency, global positioning system-derived vertical velocities expose a small-amplitude (+/-2 mm yr-1), but spatially considerable (200 km), coherent pattern of uplift and subsidence straddling the fault system in southern California. We employ the statistical method of model selection to isolate this vertical velocity field from non-tectonic signals that induce velocity variations in both magnitude and direction across small distances (less than tens of kilometres; ref. ), and find remarkable agreement with the sense of vertical motions predicted by physical earthquake cycle models spanning the past few centuries. We suggest that these motions reveal the subtle, but identifiable, tectonic fingerprint of far-field flexure due to more than 300 years of fault locking and creeping depth variability. Understanding this critical component of interseismic deformation at a complex strike-slip plate boundary will better constrain regional mechanics and crustal rheology, improving the quantification of seismic hazards in southern California and beyond.

  14. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  15. Observation of picometer vertical emittance with a vertical undulator.

    Science.gov (United States)

    Wootton, K P; Boland, M J; Dowd, R; Tan, Y-R E; Cowie, B C C; Papaphilippou, Y; Taylor, G N; Rassool, R P

    2012-11-09

    Using a vertical undulator, picometer vertical electron beam emittances have been observed at the Australian Synchrotron storage ring. An APPLE-II type undulator was phased to produce a horizontal magnetic field, which creates a synchrotron radiation field that is very sensitive to the vertical electron beam emittance. The measured ratios of undulator spectral peak heights are evaluated by fitting to simulations of the apparatus. With this apparatus immediately available at most existing electron and positron storage rings, we find this to be an appropriate and novel vertical emittance diagnostic.

  16. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 ± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  17. Influence of gravity on cat vertical vestibulo-ocular reflex

    Science.gov (United States)

    Tomko, D. L.; Wall, C., III; Robinson, F. R.; Staab, J. P.

    1988-01-01

    The vertical vestibulo-ocular reflex (VOR) was recorded in cats using electro-oculography during sinusoidal angular pitch. Peak stimulus velocity was 50 deg/s over a frequency range from 0.01 to 4.0 Hz. To test the effect of gravity on the vertical VOR, the animal was pitched while sitting upright or lying on its side. Upright pitch changed the cat's orientation relative to gravity, while on-side pitch did not. The cumulative slow component position of the eye during on-side pitch was less symmetric than during upright pitch. Over the mid-frequency range (0.1 to 1.0 Hz), the average gain of the vertical VOR was 14.5 percent higher during upright pitch than during on-side pitch. At low frequencies (less than 0.05 Hz) changing head position relative to gravity raised the vertical VOR gain and kept the reflex in phase with stimulus velocity. These results indicate that gravity-sensitive mechanisms make the vertical VOR more compensatory.

  18. ARE TORNADO-LIKE MAGNETIC STRUCTURES ABLE TO SUPPORT SOLAR PROMINENCE PLASMA?

    Energy Technology Data Exchange (ETDEWEB)

    Luna, M.; Moreno-Insertis, F. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Priest, E. [Mathematics Institute, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2015-07-20

    Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominence plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloidal flows are present.

  19. Tokamak Plasmas : Plasma position control in SST1 tokamak

    Indian Academy of Sciences (India)

    I Bandyopadhyay; S P Deshpande

    2000-11-01

    For long duration steady state operation of SST1, it would be very crucial to maintain the plasma radial and vertical positions accurately. For designing the position controller in SST1 we have adopted the simple linear RZIP control model. While the vertical position instability is slowed down by a set of passive stabilizers placed closed to the plasma edge, a pair of in-vessel active feedback coils can adequately control vertical position perturbations of up to 1 cm. The shifts in radial position arising due to minor disruptions would be controlled by a separate pair of poloidal field (PF) coils also placed inside the vessel, however the controller would ignore fast but insignificant changes in radius arising due to edge localised modes. The parameters of both vertical and radial position control coils and their power supplies are determined based on the RZIP simulations.

  20. On the nature of the plasma sheet boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Hones, E.W. Jr. (Mission Research Corp., Los Alamos, NM (USA) Los Alamos National Lab., NM (USA))

    1990-01-01

    The regions of the plasma sheet adjacent to the north and south lobes of the magnetotail have been described by many experimenters as locations of beams of energetic ions and fast-moving plasma directed primarily earthward and tailward along magnetic field lines. Measurements taken as satellites passed through one or the other of these boundary layers have frequently revealed near-earth mirroring of ions and a vertical segregation of velocities of both earthward-moving and mirroring ions with the fastest ions being found nearest the lobe-plasma sheet interface. These are features expected for particles from a distant tail source {bar E} {times} {bar B} drifting in a dawn-to-dusk electric field and are consistent with the source being a magnetic reconnection region. The plasma sheet boundary layers are thus understood as separatrix layers, bounded at their lobeward surfaces by the separatrices from the distant neutral line. This paper will review the observations that support this interpretation. 10 refs., 7 figs.

  1. Radial Velocities with PARAS

    Science.gov (United States)

    Roy, Arpita; Mahadevan, S.; Chakraborty, A.; Pathan, F. M.; Anandarao, B. G.

    2010-01-01

    The Physical Research Laboratory Advanced Radial-velocity All-sky Search (PARAS) is an efficient fiber-fed cross-dispersed high-resolution echelle spectrograph that will see first light in early 2010. This instrument is being built at the Physical Research laboratory (PRL) and will be attached to the 1.2m telescope at Gurushikhar Observatory at Mt. Abu, India. PARAS has a single-shot wavelength coverage of 370nm to 850nm at a spectral resolution of R 70000 and will be housed in a vacuum chamber (at 1x10-2 mbar pressure) in a highly temperature controlled environment. This renders the spectrograph extremely suitable for exoplanet searches with high velocity precision using the simultaneous Thorium-Argon wavelength calibration method. We are in the process of developing an automated data analysis pipeline for echelle data reduction and precise radial velocity extraction based on the REDUCE package of Piskunov & Valenti (2002), which is especially careful in dealing with CCD defects, extraneous noise, and cosmic ray spikes. Here we discuss the current status of the PARAS project and details and tests of the data analysis procedure, as well as results from ongoing PARAS commissioning activities.

  2. Study on Performance Parameters of the Plasma Source for a Short-Conduction-Time Plasma Opening Switch

    Institute of Scientific and Technical Information of China (English)

    LUO Weixi; ZENG Zhengzhong; WANG Liangping; LEI Tianshi; HU Yixiang; HUANG Tao; SUN Tieping

    2012-01-01

    Plasma source performance parameters, including plasma ejection density and velocity, greatly affect the operation of a short-conduction-time plasma opening switch (POS). In this paper, the plasma source used in the POS of Qiangguang I generator is chosen as the study object. At first the POS working process is analyzed. The result shows that the opening performance of the POS can be improved by increasing the plasma ejection velocity and decreasing the plasma density. The influence of the cable plasma gun structure and number on the plasma ejection parameters is experimentally investigated with two charge collectors. Finally a semi-empirical model is proposed to describe the experimental phenomenon.

  3. Radius model of convex vertical curve of freeway based on attachment coefficient

    Institute of Scientific and Technical Information of China (English)

    LI Song-ling; PEI Yu-long

    2008-01-01

    A longitudinal slope brake model was established for the radius calculation of vertical curve of free-way through analyzing the dynamics of brake-running of vehicles running on the longitudinal slope road section. To satisfy the requirement of sight distance, a relation model was established for the attachment coefficient and the convex vertical curve radius. Using MATLAB simulation technique, the convex vertical curve radius at different attachment conditions was calculated accurately and a three-dimensional figure was drawn to describe the relation between the adhesive coefficient, the driving velocity and the radius of vertical curve. The correlation between the convex vertical curve radius and the adhesive coefficient was further analyzed and compared with National Technical Standards. The suggested radius of vertical curve was then put forward to provide a theoretical platform for the security design of the convex vertical curve.

  4. On the efficiency and correction of vertically oriented blunt bioaerosol samplers in moving air

    Science.gov (United States)

    Michel, Dominik; Rotach, Mathias W.; Gehrig, Regula; Vogt, Roland

    2012-11-01

    The aspiration efficiency of vertical and wind-oriented Air-O-Cell samplers was investigated in a field study using the pollen of hazel, sweet chestnut and birch. Collected pollen numbers were compared to measurements of a Hirst-type Burkard spore trap. The discrepancy between pollen counts is substantial in the case of vertical orientation. The results indicate a strong influence of wind velocity and inlet orientation relative to the freestream on the aspiration efficiency. Various studies reported on inertial effects on aerosol motion as function of wind velocity. The measurements were compared to a physically based model for the limited case of vertical blunt samplers. Additionally, a simple linear model based on pollen counts and wind velocity was developed. Both correction models notably reduce the error of vertically oriented samplers, whereas only the physically based model can be used on independent datasets. The study also addressed the precision error of the instruments used, which was substantial for both sampler types.

  5. Erosion patterns on a granular bed around a vertical cylinder

    Directory of Open Access Journals (Sweden)

    Lachaussée Florent

    2017-01-01

    Full Text Available We report on two different patterns that can be observed at the bed surface close to a vertical cylinder when submitted to a strong enough steady water flow. The classical scour pattern observed at the cylinder foot and due to the “horseshoe” vortex around occurs at a critical velocity Uc1 below the critical velocity Uc0 for erosion without any cylinder, thus under clear-water conditions. But we observe also another pattern downstream the cylinder which consists of two symmetrical ovoid holes that look like “bunny ears”. This new scour pattern referred as BES can be observed at lower velocities that the horseshoe scour (HSS, above a critical velocity Uc2 < Uc1 , with a timescale formation much higher that the one of HSS.

  6. Turbulent natural and mixed convection along a vertical plate

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Mulaweh, H.I.; Armaly, B.F.; Chen, T.S.; Zhao, J.Z.

    1997-07-01

    Measurements of turbulent boundary-layer air flow in natural and mixed convection adjacent to an isothermal vertical flat plate are reported. Laser-Doppler velocimeter and cold wire anemometer were used, respectively, to measure simultaneously the mean turbulent velocity and temperature distributions were measured for a temperature difference, {Delta}T, of 30 C between the heated wall and the free stream air at a fixed location x = 3 m (with a corresponding Grashof number Gr{sub x} = 8.55 x 10{sup 10}), and for a range of free stream velocities 0 m/s {le} U{sub {infinity} } {le} 0.41 m/s. The effect of small free stream velocity on the turbulent natural convection is examined. These results reveal that the introduction of small free stream velocity on turbulent natural convection flow suppresses turbulence and decreases the heat transfer rate from the heated wall.

  7. Stationary bottom generated velocity fluctuations in one-dimensional open channel flow

    NARCIS (Netherlands)

    Jong, de Bartele

    1993-01-01

    Statistical characteristics are calculated for stationary velocity fluctuations in a one-dimensional open channel flow with a given vertical velocity profile and with one-dimensional irregular bottom waves, characterized by a spectral density function. The calculations are based on an approximate ca

  8. Micro manometer and pitot tube for measuring the velocity distribution in a natural convection water stream between two vertical parallel plates (1961); Micromano metre et tube de pitot destines a l'exploration du profil de vitesse dans un ecoulement d'eau de convection naturelle entre deux plaques verticales paralleles (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Santon, L.; Vernier, Ph. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-07-01

    For heat transfer studies in certain cases of cooling in swimming-pool type nuclear reactors, a knowledge of the distribution of the velocities between two heating elements is of prime importance. A Pitot tube and a micro-manometer have been developed for making these measurements on an experimental model. (authors) [French] Pour l'etude du transfert de chaleur dans certains cas de refroidissement des reacteurs nucleaires du type piscine, la connaissance de la repartition des vitesses entre deux elements chauffants est primordiale. On a mis au point un tube de Pitot et un micromanometre pour effectuer ces mesures sur une maquette experimentale. (auteurs)

  9. Vertical flow of a multiphase mixture in a channel

    Directory of Open Access Journals (Sweden)

    Mehrdad Massoudi

    2001-01-01

    Full Text Available The flow of a multiphase mixture consisting of a viscous fluid and solid particles between two vertical plates is studied. The theory of interacting continua or mixture theory is used. Constitutive relations for the stress tensor of the granular materials and the interaction force are presented and discussed. The flow of interest is an ideal one where we assume the flow to be steady and fully developed; the mixture is flowing between two long vertical plates. The non-linear boundary value problem is solved numerically, and the results are presented for the dimensionless velocity profiles and the volume fraction as functions of various dimensionless numbers.

  10. Coupled resonator vertical cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Chow, W.W.; Hou, H.Q.; Geib, K.M.; Hammons, B.E.

    1998-01-01

    The monolithic integration of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. The authors report the first electrically injected coupled resonator vertical-cavity laser diode and demonstrate novel characteristics arising from the cavity coupling, including methods for external modulation of the laser. A coupled mode theory is used model the output modulation of the coupled resonator vertical cavity laser.

  11. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders

    -good producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all...... increasing when intermediate-input or final-goods trade is liberalised and when the fixed cost of vertical integration is reduced. At the same time, one observes firms that shift away from either vertical integration, offshoring, or exporting. Further, we provide guidance for testing the open...

  12. Vertical allometry: fact or fiction?

    Science.gov (United States)

    Mahmood, Iftekhar; Boxenbaum, Harold

    2014-04-01

    In pharmacokinetics, vertical allometry is referred to the clearance of a drug when the predicted human clearance is substantially higher than the observed human clearance. Vertical allometry was initially reported for diazepam based on a 33-fold higher human predicted clearance than the observed human clearance. In recent years, it has been found that many other drugs besides diazepam, can be classified as drugs which exhibit vertical allometry. Over the years, many questions regarding vertical allometry have been raised. For example, (1) How to define and identify the vertical allometry? (2) How much difference should be between predicted and observed human clearance values before a drug could be declared 'a drug which follows vertical allometry'? (3) If somehow one can identify vertical allometry from animal data, how this information can be used for reasonably accurate prediction of clearance in humans? This report attempts to answer the aforementioned questions. The concept of vertical allometry at this time remains complex and obscure but with more extensive works one can have better understanding of 'vertical allometry'. Published by Elsevier Inc.

  13. Experimental comparison of methods for estimation of the observed velocity of the vehicle in video stream

    Science.gov (United States)

    Konovalenko, Ivan; Kuznetsova, Elena

    2015-02-01

    In this paper, we consider the problem of object's velocity estimation via video stream by comparing three new methods of velocity estimation named as vertical edge algorithm, modified Lucas-Kanade method, and feature points algorithm. As an applied example the task of automatic evaluation of vehicles' velocity via video stream on toll roads is chosen. We took some videos from cameras mounted on the toll roads and marked them out to determine true velocity. Comparison is carried out of performance in the correct velocity detection of the proposed methods with each other. The relevance of this paper is practical implementation of these methods overcoming all the difficulties of realization.

  14. A comprehensive study of electrostatic turbulence and transport in the laboratory basic plasma device TORPEX

    Science.gov (United States)

    Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.

    2012-04-01

    TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and

  15. Vertical and Interfacial Transport in Wetlands (Invited)

    Science.gov (United States)

    Variano, E. A.

    2010-12-01

    The objective of this work is to understand the fluxes connecting the water column, substrate, and atmosphere in wetland environments. To do this, analytical, numerical, and laboratory models have been used to quantify the hydrodynamic contributions to vertical fluxes. A key question is whether the hydrodynamic transport can be modeled as a diffusivity, and, if so, what the vertical structure of this diffusivity is. This question will be addressed in a number of flow types and for a number of fluxes. The fluxes of interest are heat, sediment, dissolved gases (such as methane and oxygen) and other dissolved solutes (such as nutrients and pollutants). The flows of interest include: unidirectional current, reversing flow (under waves, seiches, and tides), wind-sheared surface flows, and thermal convection. Rain and bioturbation can be important, but are not considered in the modeling work discussed herein. Specifically, we will present results on gas transport at wind-sheared free surface, sediment transport in unidirectional flow, and heat transfer in an oscillating flow cause by a seiche. All three of these will be used to consider the question of appropriate analytical models for vertical transport. The analytic models considered here are all 1D models that assume homogeneity in the horizontal plane. The numerical models use finite element methods and resolve the flow around individual vegetation stems in an idealized geometry. Laboratory models discussed herein also use an idealized geometry. Vegetation is represented by an array of cylinders, whose geometry is modeled after Scirpus spp. wetlands in Northern California. The laboratory model is constructed in a way that allows optical access to the flow, even in dense vegetation and far from boundaries. This is accomplished by using fluoropolymer plastics to construct vegetation models. The optical access allows us to employ particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) to measure

  16. Numerical Simulation and Vertical Motion Control of Rolls for Variable Gauge Rolling

    Institute of Scientific and Technical Information of China (English)

    Yu ZHANG; Jian TAN

    2015-01-01

    The vertical motion control of the roll was studied in order to improve the accuracy in simulation of variable gauge rolling. The discretization was carried out in the transition zone of TRB according to the principle of volume invariance. Based on this assumption, the formula for time step of vertical motion of rolls was proposed and the time-displacement curve of the verti-cal motion of rolls was established. In the preliminary simulation, the time-displacement curve was used as an initial method to control the vertical motion of rolls. Based on the simulation result, the formula for vertical velocity of roll in variable gauge rolling was derived from the common rolling principle. According to the formula, reasonable vertical velocity of rolls in the subsequent simulation was determined. It can accurately control the motion of rolls along the vertical direction. The desired thickness and out-line proifle of transition zone were acquired and the formula proved effective by the simulation. Further analysis shows that the di fference of thickness in the thick zone and the thin zone of TRB, length of the transition zone of TRB, radius of work rolls and rota-tion speed of rolls have a signiifcant effect on the vertical velocity of rolls.

  17. UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers

    Science.gov (United States)

    Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    This paper documents a study that drove the development of a mathematical expression in the minimum operational performance standards (MOPS) of detect-and-avoid (DAA) systems for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance could be provided during recovery of well clear separation with a non-cooperative VFR aircraft in addition to horizontal maneuver guidance. Although suppressing vertical maneuver guidance in these situations increased the minimum horizontal separation from 500 to 800 feet, the maximum severity of loss of well clear increased in about 35 of the encounters compared to when a vertical maneuver was preferred and allowed. Additionally, analysis of individual cases led to the identification of a class of encounter where vertical rate error had a large effect on horizontal maneuvers due to the difficulty of making the correct left-right turn decision: crossing conflict with intruder changing altitude. These results supported allowing vertical maneuvers when UAS vertical performance exceeds the relative vertical position and velocity accuracy of the DAA tracker given the current velocity of the UAS and the relative vertical position and velocity estimated by the DAA tracker. Looking ahead, these results indicate a need to improve guidance algorithms by utilizing maneuver stability and near mid-air collision risk when determining maneuver guidance to regain well clear separation.

  18. Transverse velocity shifts in protostellar jets: rotation or velocity asymmetries?

    CERN Document Server

    De Colle, Fabio; Riera, Angels

    2016-01-01

    Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction, which have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these velocity shifts, and show that they could be originated by rotation in the flow, or by side to side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (~ 100-200 km/s), an asymmetry >~ 10% can produce velocity shifts comparable to those observed. We also present three dimensional numerical simulations of rotating, precessing and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts. Our analysis indicate that side to side velocities asymmetries could ...

  19. Analysis of vertical projectile penetration in granular soils

    Science.gov (United States)

    Boguslavskii, Yu; Drabkin, S.; Salman, A.

    1996-03-01

    A model of vertical dynamic penetration of projectiles in granular soils was developed based on known experiments and the theory of dimensions. The depth of penetration is derived as a function of initial velocity and material properties. Velocity and acceleration are obtained as functions of time and depth of penetration. Under certain conditions two acceleration peaks are observed, an initial one due to dynamic and a second one due to static characteristics of penetration. Static properties of soils are derived using dynamic measurements. Numerical examples are provided. Theoretical and experimental results coincide reasonably well.

  20. Axisymmetric Waves in Isothermal Accretion Discs with Vertical Self-Gravity

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Ci; YANG Lan-Tian; WU Shao-Ping; DING Shi-Xue

    2001-01-01

    We extend the research of axisymmetric waves in accretion discs with three-dimensional structure to the case that vertical self-gravity of the discs is included. We derive and analyze the dispersion relation and solve the eigenfunctions numerically. The following results have been reached: vertical self-gravity expands the forbidden region of the wave propagation. As the influence of the vertical self-gravity increases, the group velocities of the waves get smaller and the vertical nodes of the wave shrink to the middle plane of the disc.

  1. Dark Matter Velocity Spectroscopy.

    Science.gov (United States)

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  2. Minimum Length - Maximum Velocity

    CERN Document Server

    Panes, Boris

    2011-01-01

    We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example we can predict the ratio between the minimum lengths in space and time using the results from OPERA about superluminal neutrinos.

  3. Dark Matter Velocity Spectroscopy

    CERN Document Server

    Speckhard, Eric G; Beacom, John F; Laha, Ranjan

    2016-01-01

    Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming and proposed experiments will make significant improvements. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  4. VELOCITY AND SUSPENSION CONCENTRATION IN SEDIMENT-MIXED FLUID

    Institute of Scientific and Technical Information of China (English)

    B.S.MAZUMDER; K.GHOSHAL

    2002-01-01

    The present paper is focussed on the effects of viscous and turbulent shear stresses on both vertical velocity and concentration distributions in large suspension of sands. When the flow carries large amount of sediments in suspension,the properties of fluid mixture are changed in terms of modified viscosity,density and fall velocity,and hence the flow characteristics. Theoretical models have been developed for both velocity and concentration profiles,taking into account the viscous and turbulent shear stresses,which are the function of volumetric concentration. Comparison of theoretical models with experimental data reveals that (i) the modified velocity and concentration profiles agree well with the observed data for high suspension,(ii) the higher the sediment suspension,the smaller the vonKarman constant,and (iii) sediment diffusion coefficient is less than momentum diffusion coefficient for fine sands in suspension.

  5. Critical velocity of floatables in combined sewer overflow (CSO) chambers.

    Science.gov (United States)

    Cigana, J; Lefebvre, G; Marche, C

    2001-01-01

    Although the efficiency of underflow baffles has never been clearly proven, these underflow baffles have gained in popularity over the last few years as a viable means to intercept floatables in Combined Sewer Overflows (CSOs). These pilot scale essays, performed in a 17.0 metres basin at various flowrates, show that a critical horizontal velocity (V(CR)) may develop in the overflow chamber. Whenever this critical velocity is exceeded, floatables that would normally rise to the surface are kept within the flow and never intercepted, thus rendering the underflow baffle ineffective. The equation relating the critical horizontal velocity to the vertical velocity is found to be: V(CR) = 16 w R(H) 1/6.

  6. The School Library Vertical File.

    Science.gov (United States)

    Smallwood, Carol

    1990-01-01

    Discusses the maintenance of vertical files in the school library. Topics covered include circulation, weeding, using materials for special displays, acquiring materials, policies on advertising and controversial issues, cross-references, subject headings, introducing students to vertical files, beginning a collection, and preservation. (MES)

  7. Premixed flame propagation in vertical tubes

    CERN Document Server

    Kazakov, Kirill A

    2015-01-01

    Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...

  8. Velocity centroids as tracers of the turbulent velocity statistics

    CERN Document Server

    Lazarian, A E A

    2004-01-01

    We use the results of magnetohydrodynamic (MHD) simulations to emulate spectroscopic observations, and produce maps of variations of velocity centroids to study their scaling properties. We compare them with those of the underlying velocity field, and analytic predictions presented in a previous paper (Lazarian & Esquivel 2003). We tested, with success, a criteria for recovering velocity statistics from velocity centroids derived in our previous work. That is, if >> (where S is a 2D map of ``unnormalized'', v velocity, and I integrated intensity map -column density-), then the structure function of the centroids is dominated by the structure function of velocity. We show that it is possible to extract the velocity statistics using centroids for subsonic and mildly supersonic turbulence (e.g. Mach numbers ~2.5). While, towards higher Mach numbers other effects could affect significantly the statistics of centroids.

  9. Statistics of Velocity from Spectral Data Modified Velocity Centroids

    CERN Document Server

    Lazarian, A

    2003-01-01

    We address the problem of studying interstellar (ISM) turbulence using spectral line data. We construct a measure that we term modified velocity centroids (MVCs) and derive an analytical solution that relates the 2D spectra of the modified centroids with the underlying 3D velocity spectrum. We test our results using synthetic maps constructed with data obtained through simulations of compressible MHD turbulence. We prove that the MVCs are able to restore the underlying spectrum of turbulent velocity. We show that the modified velocity centroids (MVCs) are complementary to the the Velocity Channel Analysis (VCA) technique that we introduced earlier. Employed together they make determining of the velocity spectral index more reliable. At the same time we show that MVCs allow to determine velocity spectra when the underlying statistics is not a power law and/or the turbulence is subsonic.

  10. STARE velocities: 2. Evening westward electron flow

    Directory of Open Access Journals (Sweden)

    M. Uspensky

    2004-04-01

    Full Text Available Four evening events and one morning event of joint EISCAT/STARE observations during ~22h are considered and the differences between observed STARE line-of-sight (l-o-s velocities and EISCAT electron drift velocities projected onto the STARE beams are studied. We demonstrate that the double-pulse technique, which is currently in use in the STARE routine data handling, typically underestimates the true phase velocity as inferred from the multi-pulse STARE data. We show that the STARE velocities are persistently smaller (1.5–2 times than the EISCAT velocities, even for the multi-pulse data. The effect seems to be more pronounced in the evening sector when the Finland radar observes at large flow angles. We evaluate the performance of the ion-acoustic approach (IAA, Nielsen and Schlegel, 1985 and the off-orthogonal fluid approach (OOFA, Uspensky et al., 2003 techniques to predict the true electron drift velocity for the base event of 12 February 1999. The IAA technique predicts the convection reasonably well for enhanced flows of >~1000m/s, but not so well for slower ones. By considering the EISCAT N(h profiles, we derive the effective aspect angle and effective altitude of backscatter, and use this information for application of the OOFA technique. We demonstrate that the OOFA predictions for the base event are superior over the IAA predictions and thus, we confirm that OOFA predicts the electron velocities reasonably well in the evening sector, in addition to the morning sector, as concluded by Uspensky et al. (2003. To check how "robust" the OOFA model is and how successful it is for convection estimates without the EISCAT support, we analysed three additional evening events and one additional morning event for which information on N(h profiles was intentionally ignored. By accepting the mean STARE/EISCAT velocity ratio of 0.55 and the mean azimuth rotation of 9° (derived for the basic event, we show that the OOFA performs

  11. Velocity profiles inside volcanic clouds from three-dimensional scanning microwave dual-polarization Doppler radars

    Science.gov (United States)

    Montopoli, Mario

    2016-07-01

    In this work, velocity profiles within a volcanic tephra cloud obtained by dual-polarization Doppler radar acquisitions with three-dimensional (3-D) mechanical scanning capability are analyzed. A method for segmenting the radar volumes into three velocity regimes: vertical updraft, vertical fallout, and horizontal wind advection within a volcanic tephra cloud using dual-polarization Doppler radar moments is proposed. The horizontal and vertical velocity components within the regimes are retrieved using a novel procedure that makes assumptions concerning the characteristics of the winds inside these regimes. The vertical velocities retrieved are combined with 1-D simulations to derive additional parameters including particle fallout, mass flux, and particle sizes. The explosive event occurred on 23 November 2013 at the Mount Etna volcano (Sicily, Italy), is considered a demonstrative case in which to analyze the radar Doppler signal inside the tephra column. The X-band radar (3 cm wavelength) in the Catania, Italy, airport observed the 3-D scenes of the Etna tephra cloud ~32 km from the volcano vent every 10 min. From the radar-derived vertical velocity profiles of updraft, particle fallout, and horizontal transportation, an exit velocity of 150 m/s, mass flux rate of 1.37 • 107 kg/s, particle fallout velocity of 18 m/s, and diameters of precipitating tephra particles equal to 0.8 cm are estimated on average. These numbers are shown to be consistent with theoretical 1-D simulations of plume dynamics and local reports at the ground, respectively. A thickness of 3 ± 0.36 km for the downwind ash cloud is also inferred by differentiating the radar-derived cloud top and the height of transition between the convective and buoyancy regions, the latter being inferred by the estimated vertical updraft velocity profile. The unique nature of the case study as well as the novelty of the segmentation and retrieval methods presented potentially give new insights into the

  12. The Relationship Between Plasma Homocysteine and Pulse Wave Velocity in a Community-Based Healthy Subject Group%社区健康人群血浆同型半胱氨酸水平与脉搏波速度的相关性研究

    Institute of Scientific and Technical Information of China (English)

    张明华; 叶平; 骆雷鸣; 肖文凯; 吴红梅; 刘德军; 刘国树

    2013-01-01

    目的:研究血浆同型半胱氨酸(Hcy)水平与不同动脉节段脉搏波速度(PWV)之间的关系.方法:一项北京市海淀区社区调查研究的亚组人群,常规体检健康者250例,男112例,女138例,平均年龄(54.7±12.9)岁.血浆Hcy、血糖、血脂、尿酸等血液生化指标采用全自动生化分析仪检测.应用自动分析仪(Complior)测定颈-股动脉脉搏波传导速度(CF-PWV)、颈-桡动脉脉搏波传导速度(CR-PWV)以及颈-踝动脉脉搏波传导速度(CA-PWV).入选者以血浆Hcy≥15 μmol/L为标准,分为高Hcy组(n=122 )和正常对照组(n= 128).结果:与正常对照组比较,高Hcy组年龄(P=0.001)、肌酐(P=0.003) 、尿酸(P<0.001)、CF-PWV(P=0.008)、CR-PWV(P=0.008)和CA-PWV(P<0.001) 均增高;肾小球滤过率降低(P<0.001).多因素逐步回归分析显示:Lg(CF-PWV)的独立相关因素是年龄(β=0.148,P=0.032)、脉压(β=0.168,P=0.013)和高Hcy血症(β=0.137,P=0.029).CR-PWV的独立相关因素是血尿酸(β=0.171,P=0.007).CA-PWV的独立相关因素是高Hcy血症(β=0.247,P<0.001)和收缩压(β=0.219,P<0.001).结论:在健康人群中,Hcy水平与动脉僵硬度相关.%Objective: To investigate the relationship between plasma homocysteine (Hcy) and pulse wave velocity (PWV) in a community-based healthy subject group. Methods: A total of 250 heathy subjects were selected from a community-based routine physical check-up in Haidian District, Beijing. There were 112 male and 138 female with the mean age of (54.7 ± 12.9) years. The recruited subjects were divided into 2 groups, High Hcy group, n=122, the subjects with plasma Hcy ≥ 15μmol/L, and Normal control group, n=128. Plasma Hcy and other biochemical parameters were determined by automatic analysis devices. Carotid-femoral pulse wave velocity (CF-PWV), carotid-radial pulse wave velocity (CR-PWV) and carotid-ankle pulse wave velocity (CA-PWV) were measured by Complior device. The above indexes were compared between 2 groups. Result

  13. A Tall-Tower Instrument for Mean and Fluctuating Velocity, Fluctuating Temperature and Sensible Heat Flux Measurements

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Thomson, D. W.

    1979-01-01

    For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor. The tem......For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor...

  14. Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia

    Directory of Open Access Journals (Sweden)

    K. Ramachandran

    2012-02-01

    Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.

  15. VERTICAL STRUCTURE OF SECOND-MOMENT TURBULENT VARIABLES

    Institute of Scientific and Technical Information of China (English)

    AL-JIBOORI,M.H; 徐玉貌; 钱永甫

    2001-01-01

    Two kinds of observational data, fluctuation and mean profile measurements, from a 325 m meteorological tower in Beijing, China, are used to evaluate local scales of velocity and temperature for higher heights by flux-gradient mean profiles and eddy-correlation techniques. A comparison of these methods each other was made in terms of vertical turbulence fluxes for momentum and heat at the same height. The vertical profiles of non-dimensional second moments,such as vertical turbulent fluxes of momentum and heat, velocity and temperature standard deviations, were derived by local similarity theory. The local similarity relations expressed that the vertical distributions of non-dimensional second-moment variables were found to be functions of z/A and z/h in the stable boundary layer and the function of z/Zi for the convective boundary layer, where A the local Monin-Obukhov (M-O) length, h the height of stable boundary layer and Zi the height of mixed-layer. These relations are shown to agree well with the observational data.

  16. Minimal information in velocity space

    CERN Document Server

    Evrard, Guillaume

    1995-01-01

    Jaynes' transformation group principle is used to derive the objective prior for the velocity of a non-zero rest-mass particle. In the case of classical mechanics, invariance under the classical law of addition of velocities, leads to an improper constant prior over the unbounded velocity space of classical mechanics. The application of the relativistic law of addition of velocities leads to a less simple prior. It can however be rewritten as a uniform volumetric distribution if the relativistic velocity space is given a non-trivial metric.

  17. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  18. Effects of isometric scaling on vertical jumping performance.

    Science.gov (United States)

    Bobbert, Maarten F

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  19. A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole

    Science.gov (United States)

    Li, Guozhan; Yu, Jianyang; Liu, Huaping; Chen, Fu; Song, Yanping

    2017-08-01

    This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration (cylindrical hole without the saw-tooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair (CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed. Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc = 1 case, which is 80% bigger than that in the Fan-Dc = 0 case and 288% bigger than that in the Cyl-Dc = 0 case.

  20. Vertical Motions in Convective Clouds Over Darwin, Australia

    Science.gov (United States)

    Mallinson, H.; Schumacher, C.; Ahmed, F.

    2015-12-01

    Vertical motions are essential in parameterizing convection in large-scale models. Yet in tropical systems vertical motions are difficult to obtain, especially in areas of active convection. This study uses three months of profiler data from Darwin, Australia to directly compare vertical velocity and spectrum width with reflectivity at a height of 1 km (a near-surface rain proxy) for shallow, mid-level, and deep convective clouds. Vertical velocities for all convective clouds were also compared to echo-top heights of varying reflectivities to better understand convective cloud dynamics in relation to their vertical structure. In shallow convective clouds (tops 40 dBz). These regimes could represent different stages in the convective cloud life cycle with strong updrafts and moderate reflectivity occurring in the growing phase and strong downdrafts and large reflectivity occurring in the mature phase. The weak up-and downdraft couplet and low reflectivities suggest a dissipating phase. Mid-level convective clouds (tops 4-8 km) also show three distinct regimes: moderate updrafts at low reflectivities (possible growing phase), a weak up-and downdraft couplet at moderate reflectivities (possible dissipating phase), and strong up-and downdrafts at large reflectivities (mature phase). Deep convective clouds (tops >8 km) show strong updrafts above 4 km for all reflectivities with the strongest downdrafts occurring at large reflectivities. While maximum updrafts vary in height and occur at different reflectivities among cloud types, mean downdraft depth never exceeds 3 km and is always strongest at large reflectivities, which may allow better characterization of cold pool properties. Throughout all convective cloud types, spectrum width has the highest values at lower heights than where the strongest up-and downdrafts occur while also showing a maximum value core around the transition height. In addition, maximum vertical motions occur at or just beneath the 30-dBz echo

  1. Visual control of walking velocity.

    Science.gov (United States)

    François, Matthieu; Morice, Antoine H P; Bootsma, Reinoud J; Montagne, Gilles

    2011-06-01

    Even if optical correlates of self-motion velocity have already been identified, their contribution to the control of displacement velocity remains to be established. In this study, we used a virtual reality set-up coupled to a treadmill to test the role of both Global Optic Flow Rate (GOFR) and Edge Rate (ER) in the regulation of walking velocity. Participants were required to walk at a constant velocity, corresponding to their preferred walking velocity, while eye height and texture density were manipulated. This manipulation perturbed the natural relationship between the actual walking velocity and its optical specification by GOFR and ER, respectively. Results revealed that both these sources of information are indeed used by participants to control walking speed, as demonstrated by a slowing down of actual walking velocity when the optical specification of velocity by either GOFR or ER gives rise to an overestimation of actual velocity, and vice versa. Gait analyses showed that these walking velocity adjustments result from simultaneous adaptations in both step length and step duration. The role of visual information in the control of self-motion velocity is discussed in relation with other factors.

  2. Vertical Collective Action: Addressing Vertical Asymmetries in Watershed Management

    OpenAIRE

    2015-01-01

    Watersheds and irrigation systems have the characteristic of connecting people vertically by water flows. The location of users along these systems defines their role in the provision and appropriation of water which adds complexity to the potential for cooperation. Verticality thus imposes a challenge to collective action. This paper presents the results of field experiments conducted in four watersheds of Colombia (South America) and Kenya (East Africa) to study the role that location plays...

  3. [Vertical control and orthopedic therapy].

    Science.gov (United States)

    Bardinet, E; Bazert, C; Boileau, M J; Carat, T; Darqué, F; de Brondeau, F; Dorignac, D; Duhart, A M; El Amrani Darqué, K; Pujol, A; Rzadkiewicz, A; Sampeur, M

    2003-09-01

    Control of the vertical development of the face is a key element in assuring the success of orthopedic treatment, as much for its effects on anterior vertical dimension as for its influence on correction of the sagittal discrepancy between the jaws. An effective management of this control demands respect for the equilibrium between posterior and anterior face, as described by Schudy. The authors review the details of the application of orthopedic therapy on the different elements of this equilibrium and then, present the modalities of vertical control appropriate to each appliance.

  4. Ultracold neutral plasmas

    Science.gov (United States)

    Lyon, M.; Rolston, S. L.

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  5. Mudflow rheology in a vertically rotating flume

    Science.gov (United States)

    Holmes, Jr., Robert R.; Westphal, Jerome A.; Jobson, Harvey E.; ,

    1990-01-01

    Joint research by the U.S. Geological Survey and the University of Missouri-Rolla currently (1990) is being conducted on a 3.05 meters in diameter vertically rotating flume used to simulate mudflows under steady-state conditions. Observed mudflow simulations indicate flow patterns in the flume are similar to those occurring in natural mudflows. Variables such as mean and surface velocity, depth, and average boundary shear stress can be measured in this flume more easily than in the field or in a traditional tilting flume. Sensitive variables such as sediment concentration, grain-size distribution, and Atterberg limits also can be precisely and easily controlled. A known Newtonian fluid, SAE 30 motor oil, was tested in the flume and the computed value for viscosity was within 12.5 percent of the stated viscosity. This provided support that the data from the flume can be used to determine the rheological properties of fluids such as mud. Measurements on mud slurries indicate that flows with sediment concentrations ranging from 81 to 87 percent sediment by weight can be approximated as Bingham plastic for strain rates greater than 1 per second. In this approximation, the yield stress and Bingham viscosity were extremely sensitive to sediment concentration. Generally, the magnitude of the yield stress was large relative to the change in shear stress with increasing mudflow velocity.

  6. First observation of ELM pacing with vertical jogs in a spherical torus

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, S.P. [Princeton Plasma Physics Laboratory (PPPL); Ahn, Joon-Wook [Oak Ridge National Laboratory (ORNL); Canik, John [ORNL; Maingi, R. [Oak Ridge National Laboratory (ORNL); Bell, R. [Princeton Plasma Physics Laboratory (PPPL); Gates, D. [Princeton Plasma Physics Laboratory (PPPL); Goldston, R. [Princeton Plasma Physics Laboratory (PPPL); Hawryluk, R. [Princeton Plasma Physics Laboratory (PPPL); Le Blanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Menard, J. [Princeton Plasma Physics Laboratory (PPPL); Sontag, Aaron C [ORNL; Sabbagh, S. A. [Columbia University; Tritz, K. [Johns Hopkins University

    2010-01-01

    Experiments in a number of conventional aspect ratio tokamaks have been successful in pacing edge localized modes (ELMs) by rapid vertical jogging of the plasma. This paper demonstrates the first pacing of ELMs in a spherical torus plasma. Applied 30 Hz vertical jogs synchronized the ELMs with the upward motion of the plasma. 45 Hz jogs also lead to an increase in the ELM frequency, though the synchronization of the ELMs and jogs was unclear. A reduction in the ELM energy was observed at the higher driven ELM frequencies.

  7. First observation of ELM pacing with vertical jogs in a spherical torus

    Science.gov (United States)

    Gerhardt, S. P.; Ahn, J.-W.; Canik, J. M.; Maingi, R.; Bell, R.; Gates, D.; Goldston, R.; Hawryluk, R.; Le Blanc, B. P.; Menard, J.; Sontag, A. C.; Sabbagh, S.; Tritz, K.

    2010-06-01

    Experiments in a number of conventional aspect ratio tokamaks have been successful in pacing edge localized modes (ELMs) by rapid vertical jogging of the plasma. This paper demonstrates the first pacing of ELMs in a spherical torus plasma. Applied 30 Hz vertical jogs synchronized the ELMs with the upward motion of the plasma. 45 Hz jogs also lead to an increase in the ELM frequency, though the synchronization of the ELMs and jogs was unclear. A reduction in the ELM energy was observed at the higher driven ELM frequencies.

  8. First Observation Of ELM Pacing With Vertical Jogs In A Spherical Torus

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, S P; Canik, J M; Maingi, R; Bell, R; Gates, d; Goldston, R; Hawryluk, R; Le Blanc, B P; Menard, J; Sontag, A C; Sabbagh, S

    2010-07-15

    Experiments in a number of conventional aspect ratio tokamaks have been successful in pacing edge localized modes (ELMs) by rapid vertical jogging of the plasma. This paper demonstrates the first pacing of ELMs in a spherical torus plasma. Applied 30 Hz vertical jogs synchronized the ELMs with the upward motion of the plasma. 45 Hz jogs also lead to an increase in the ELM frequency, though the synchronization of the ELMs and jogs was unclear. A reduction in the ELM energy was observed at the higher driven ELM frequencies. __________________________________________________

  9. Time of relaxation in dusty plasma model

    Science.gov (United States)

    Timofeev, A. V.

    2015-11-01

    Dust particles in plasma may have different values of average kinetic energy for vertical and horizontal motion. The partial equilibrium of the subsystems and the relaxation processes leading to this asymmetry are under consideration. A method for the relaxation time estimation in nonideal dusty plasma is suggested. The characteristic relaxation times of vertical and horizontal motion of dust particles in gas discharge are estimated by analytical approach and by analysis of simulation results. These relaxation times for vertical and horizontal subsystems appear to be different. A single hierarchy of relaxation times is proposed.

  10. A contoured gap coaxial plasma gun with injected plasma armature

    Science.gov (United States)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 μg of plasma with density above 1017 cm-3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 μg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  11. A contoured gap coaxial plasma gun with injected plasma armature.

    Science.gov (United States)

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  12. Modelling the Plasma Jet in Multi-Arc Plasma Spraying

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C.

    2016-08-01

    Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.

  13. DC Electric Fields, Associated Plasma Drifts, and Irregularities Observed on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.

    2011-01-01

    Results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics

  14. Vertical Beam Polarization at MAMI

    Science.gov (United States)

    Schlimme, B. S.; Achenbach, P.; Aulenbacher, K.; Baunack, S.; Bender, D.; Beričič, J.; Bosnar, D.; Correa, L.; Dehn, M.; Distler, M. O.; Esser, A.; Fonvieille, H.; Friščić, I.; Gutheil, B.; Herrmann, P.; Hoek, M.; Kegel, S.; Kohl, Y.; Kolar, T.; Kreidel, H.-J.; Maas, F.; Merkel, H.; Mihovilovič, M.; Müller, J.; Müller, U.; Nillius, F.; Nuck, A.; Pochodzalla, J.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Spruck, B.; Štajner, S.; Thiel, M.; Tioukine, V.; Tyukin, A.; Weber, A.

    2017-04-01

    For the first time a vertically polarized electron beam has been used for physics experiments at MAMI in the energy range between 180 and 855 MeV. The beam-normal single-spin asymmetry An, which is a direct probe of higher-order photon exchange beyond the first Born approximation, has been measured in the reaction 12C (e → , e ‧)12C . Vertical polarization orientation was necessary to measure this asymmetry with the existing experimental setup. In this paper we describe the procedure to orient the electron polarization vector vertically, and the concept of determining both its magnitude and orientation with the available setup. A sophisticated method has been developed to overcome the lack of a polarimeter setup sensitive to the vertical polarization component.

  15. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  16. Horizontal and Vertical Line Designs.

    Science.gov (United States)

    Johns, Pat

    2003-01-01

    Presents an art lesson in which students learn about the artist Piet Mondrian and create their own abstract artworks. Focuses on geometric shapes using horizontal and vertical lines. Includes background information about the artist. (CMK)

  17. Droplet sizes, dynamics and deposition in vertical annular flow

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  18. A probability density function of liftoff velocities in mixed-size wind sand flux

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the discrete element method(DEM) ,employing the diameter distribution of natural sands sampled from the Tengger Desert,a mixed-size sand bed was produced and the particle-bed collision was simulated in the mixed-size wind sand movement. In the simulation,the shear wind velocity,particle diameter,incident velocity and incident angle of the impact sand particle were given the same values as the experimental results. After the particle-bed collision,we collected all the initial velocities of rising sand particles,including the liftoff angular velocities,liftoff linear velocities and their horizontal and vertical components. By the statistical analysis on the velocity sample for each velocity component,its probability density functions were obtained,and they are the functions of the shear wind velocity. The liftoff velocities and their horizontal and vertical components are distributed as an exponential density function,while the angular velocities are distributed as a normal density function.

  19. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  20. Verification of the plasma diffusion-wave propagation in an atmospheric-pressure plasma jet with the solution of a diffusion equation

    Science.gov (United States)

    Cho, Guangsup; Uhm, Han Sup

    2016-10-01

    The time-dependent solution of diffusion equation by the Fourier integration provides the axial diffusion velocity of a plasma packet, which is a key element of the plasma propagation in a plasma jet operated by the several tens of kHz. The plasma diffusion velocity is higher than the order of un ˜ 10 m/s at a high electric-field region of plasma generation and it is about the order of un ˜ 10 m/s at the plasma column of a low field region in a jet-nozzle inside. Meanwhile, the diffusion velocity is slower than the order of un ˜ 10 m/s in the open-air space where the plasma density flattens due to its radial expansion. Using these diffusion velocity data, the group-velocity of plasma diffusion wave-packet is given by ug ˜ cs2/un, a combination of the diffusion velocity un and the acoustic velocity cs. The experimental results of the plasma propagation can be verified with the plasma propagation in a form of the wave-packet whose propagation velocity is 104 m/s in a tube inside and is as fast as 105 m/s in the open-air space, thereby reconfirming that the theory of a plasma diffusion-wave is the origin of the plasma propagation in a plasma jet.

  1. Autonomous Observations of the Upper Ocean Stratification and Velocity Fields About the Seasonally-Retreating Marginal Ice Zone

    Science.gov (United States)

    2015-09-30

    with vertical profiles of upper- ocean temperature , salinity and horizontal velocity at 3-hour resolution, as well as direct vertical turbulent flux...3,840 fixed depth records were obtained over a total of 1,150 instrument-days of sampling. Temperature , salinity and absolute ocean velocity profiles...GOALS The PI group seeks to observe the upper Arctic Ocean using autonomous instrumentation and build understanding of the physical processes

  2. Velocity dependant splash behaviour

    Science.gov (United States)

    Hamlett, C. A. E.; Shirtcliffe, N. J.; McHale, G.; Ahn, S.; Doerr, S. H.; Bryant, R.; Newton, M. I.

    2012-04-01

    Extreme soil water repellency can occur in nature via condensation of volatile organic compounds released during wildfires and can lead to increased erosion rate. Such extreme water repellent soil can be classified as superhydrophobic and shares similar chemical and topographical features to specifically designed superhydrophobic surfaces. Previous studies using high speed videography to investigate single droplet impact behaviour on artificial superhydrophobic have revealed three distinct modes of splash behaviour (rebound, pinned and fragmentation) which are dependent on the impact velocity of the droplet. In our studies, using high-speed videography, we show that such splash behaviour can be replicated on fixed 'model' water repellent soils (hydrophobic glass beads/particles). We show that the type of splash behaviour is dependent on both the size and chemical nature of the fixed particles. The particle shape also influences the splash behaviour as shown by drop impact experiments on fixed sand samples. We have also studied soil samples, as collected from the field, which shows that the type of droplet splash behaviour can lead to enhanced soil particle transport.

  3. Mechanism of proton anisotropic velocity distribution in the solar wind

    Institute of Scientific and Technical Information of China (English)

    AO; Xianzhi(敖先志); SHEN; Ji(沈迹); TU; Chuanyi(涂传诒)

    2003-01-01

    Although it has been long that spacecraft observed the anisotropy of velocity protons in the solar wind, there is still not a reasonable explanation. In this paper we try to give an explanation from the diffusion plateau of protoncyclotron resonance predicted by the quasi-linear theory for the resonance between the protons and the parallel propagating waves. We consider the effect of dispersion relation on diffusion plateau and notice that the diffusion plateau we have got by using cold plasma dispersion relation accords with the density contours in the velocity phase space detected at 0.3 AU in fast solar wind. For explaining proton distributions obtained in the fast solar wind from 0.7 AU to 1 AU hot plasma dispersion relation should be considered. We also give a theoretical relation of proton thermal anisotropy A and plasma parameter β.

  4. A real-time velocity diagnostic for NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Podesta, M.; Bell, R. E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-03-15

    A new system for fast measurements of the plasma toroidal velocity has been installed on the National Spherical Torus Experiment, NSTX [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The diagnostic, based on active charge-exchange recombination spectroscopy, can measure at up to six radial locations with maximum sampling rate of 5 kHz. The system is interfaced in real time with the NSTX plasma control system, in order to feed back on plasma velocity by means of actuators such as neutral beams and external coils. The paper describes the design criteria and implementation of the diagnostic. Examples from the initial tests of the system during neon glows are also discussed.

  5. Macroparticle Movement Velocity in Dusty Structures of Various Compositions

    CERN Document Server

    Khakhaev, A D; Podryadchikov, S F

    2012-01-01

    The results of experimental investigations of the movement velocity of a macroparticle in the dusty structures of various physicalchemical compositions formed in a stratified column of a dc glow discharge, are presented. The macroparticle substances are alumina (r = 10 - 35 microns), polydisperse Zn (r = 1 - 20 microns) and Zn0 (r = 20 - 35 microns). Plasma-forming gases are inert gases (Ne, Ar). The inverse relation between the velocity and the gas pressure (in the range 40-400 Pa) is found and, for the same material of macroparticles in different gas plasmas, is confirmed by theory and does not contradict observations. But, to explain a difference of quantitative data for macroparticles made from different materials in Ar plasma, the additional research is required.

  6. Method of fabricating vertically aligned group III-V nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  7. Horizontal eye position affects measured vertical VOR gain on the video Head Impulse Test

    Directory of Open Access Journals (Sweden)

    Leigh A. McGarvie

    2015-03-01

    Full Text Available Background/Hypothesis. With the video Head Impulse Test (vHIT, the vertical VOR gain is defined as (vertical eye velocity/vertical head velocity, but compensatory eye movements to vertical canal stimulation usually have a torsional component. To minimize the contribution of torsion to the eye movement measurement, the horizontal gaze direction should be directed 40º from straight ahead so it is in the plane of the stimulated canal plane pair. Hypothesis: as gaze is systematically moved horizontally away from canal plane alignment, the measured vertical VOR gain should decrease.Study Design. 10 healthy subjects, with vHIT measuring vertical eye movement to head impulses in the plane of the left anterior-right posterior (LARP canal plane, with gaze at one of 5 horizontal gaze positions (40º (aligned with the LARP plane, 20º, 0º, -20º, -40º.Methods. Every head impulse was in the LARP plane. The compensatory eye movement was measured by the vHIT prototype system. The one operator delivered every impulse. Results. The canal stimulus remained identical across trials, but the measured vertical VOR gain decreased as horizontal gaze angle was shifted away from alignment with the LARP canal plane.Conclusion. In measuring vertical VOR gain with vHIT the horizontal gaze angle should be aligned with the canal plane under test.

  8. Effects of Foam Rolling on Vertical Jump Performance

    Directory of Open Access Journals (Sweden)

    Andrew Jones

    2015-07-01

    Full Text Available Background: Foam rolling is a popular activity utilized by strength and conditioning coaches as it is believed to increase muscle length and break up fibrous adhesions located in connective tissue. However, there is little research investigating the effects of foam rolling on athletic performance. Objective: The purpose of this study was to investigate the effects of lower body foam rolling on vertical jump performance. Methods: Twenty males (age 24.05 ± 2.02 years; height 177.43 ± 6.31 cm; mass 81.41 ± 8.76 kg volunteered to participate. Subjects completed three days of testing, separated by at least twenty-four hours. Day one consisted of baseline vertical jumps on a force plate, followed by familiarization with foam rolling and control protocols. Subjects returned on days two and three and performed 30-second bouts of lower body foam rolling or mimicked foam rolling movements on a skateboard followed by vertical jumps on a force plate. The highest jump from each day was used for statistical analyses. Results: Repeated measures ANOVAs revealed no significant differences in Jump height, impulse, relative ground reaction force, or take-off velocity between conditions. Conclusion: 30-second bouts of lower body foam rolling do not improve vertical jump performance. Keywords: Dynamic Warm-Up, Foam Rolling, Vertical Jump

  9. Experimental analysis of turbulence effect in settling velocity of suspended sediments

    Directory of Open Access Journals (Sweden)

    H. Salinas–Tapia

    2008-01-01

    Full Text Available Settling velocities of sediment particles for different size ranges were measured in this work using PIV with the help of discriminatory filters. An experimental channel 10x15 cm cross section was used in order to obtain two set of turbulent characteristics corresponding with two different flow rates. The purpose was to analyze the effect of turbulence on the solids settling velocity. The technique allowed us to measure the individual settling velocity of the particles and the flow velocity field of the fluid. Capture and image analysis was performed with digital cameras (CCD using the software Sharp–provision PIV and the statistical cross correlation technique. Results showed that settling velocity of particles is affected by turbulence which enhances the fluid drag coefficient. Physical explanation of this phenomenon is related with the magnitude of the vertical fluctuating velocity of the fluid. However, more research is needed in order to define settling velocity formulas that takes into account this effect

  10. Waveform inversion of lateral velocity variation from wavefield source location perturbation

    KAUST Repository

    Choi, Yun Seok

    2013-09-22

    It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance, with well log data can be used to update the deep part of the velocity model more precisely. We develop a waveform inversion algorithm to obtain the lateral velocity variation by inverting the wavefield variation associated with the lateral shot location perturbation. The gradient of the new waveform inversion algorithm is obtained by the adjoint-state method. Our inversion algorithm focuses on resolving the lateral changes of the velocity model with respect to a fixed reference vertical velocity profile given by a well log. We apply the method on a simple-dome model to highlight the methods potential.

  11. Off-vertical axis rotation: a test of the otolith-ocular reflex

    Science.gov (United States)

    Furman, J. M.; Schor, R. H.; Schumann, T. L.

    1992-01-01

    The vestibulo-ocular reflex was studied via off-vertical axis rotation (OVAR) in the dark. The axis of the turntable could be tilted from vertical by up to 30 degrees. Eye movements were measured with electro-oculography. Results from healthy asymptomatic subjects indicated that 1) a reliable otolith-induced response could be obtained during constant velocity OVAR using a velocity of 60 degrees/s with a tilt of 30 degrees; 2) constant velocity OVAR rotation was nausea-producing and, especially if subjects were rotated in the dark about an earth-vertical axis prior to being tilted, disorienting; and 3) sinusoidal OVAR produced minimal nausea; the eye movement response appeared to be the result of a combination of semicircular canal and otolith components. We conclude that OVAR has the potential of becoming a useful method for clinically assessing both the otolith-ocular reflex and semicircular canal-otolith interaction.

  12. Finite Difference Analysis of Radiative Free Convection Flow Past an Impulsively Started Vertical Plate with Variable Heat and Mass Flux

    Directory of Open Access Journals (Sweden)

    V. Ramachandra Prasad

    2011-01-01

    Full Text Available A numerical solution of the unsteady radiative free convection flow of an incompressible viscous fluid past an impulsively started vertical plate with variable heat and mass flux is presented here. This type of problem finds application in many technological and engineering fields such as rocket propulsion systems, spacecraft re-entry aerothermodynamics, cosmical flight aerodynamics, plasma physics, glass production and furnace engineering. The fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing non-linear, coupled equations are solved using an implicit finite difference scheme. Numerical results for the velocity, temperature, concentration, the local and average skinfriction, the Nusselt and Sherwood number are shown graphically, for different values of Prandtl number, Schmidt number, thermal Grashof number, mass Grashof number, radiation parameter, heat flux exponent and the mass flux exponent. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer. The local and average skin-friction increases with the increase in radiation parameter. For increasing values of radiation parameter the local as well as average Nusselt number increases.

  13. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...... with a 90° angle on the vessel. Moreover secondary flow in the abdominal aorta is illustrated by scanning on the transversal axis....

  14. Persistent Longitudinal Variations of Plasma Density and DC Electric Fields in the Low Latitude Ionosphere Observed with Probes on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Rowland, D.; Liebrecht, C.; Bromund, K.; Roddy, P.

    2010-01-01

    Continuous measurements using in situ probes on consecutive orbits of the C/N0FS satellite reveal that the plasma density is persistently organized by longitude, in both day and night conditions and at all locations within the satellite orbit, defined by its perigee and apogee of 401 km and 867 km, respectively, and its inclination of 13 degrees. Typical variations are a factor of 2 or 3 compared to mean values. Furthermore, simultaneous observations of DC electric fields and their associated E x B drifts in the low latitude ionosphere also reveal that their amplitudes are also strongly organized by longitude in a similar fashion. The drift variations with longitude are particularly pronounced in the meridional component perpendicular to the magnetic field although they are also present in the zonal component as well. The longitudes of the peak meridional drift and density values are significantly out of phase with respect to each other. Time constants for the plasma accumulation at higher altitudes with respect to the vertical drift velocity must be taken into account in order to properly interpret the detailed comparisons of the phase relationship of the plasma density and plasma velocity variations. Although for a given period corresponding to that of several days, typically one longitude region dominates the structuring of the plasma density and plasma drift data, there is also evidence for variations organized about multiple longitudes at the same time. Statistical averages will be shown that suggest a tidal "wave 4" structuring is present in both the plasma drift and plasma density data. We interpret the apparent association of the modulation of the E x B drifts with longitude as well as that of the ambient plasma density as a manifestation of tidal forces at work in the low latitude upper atmosphere. The observations demonstrate how the high duty cycle of the C/NOFS observations and its unique orbit expose fundamental processes at work in the low latitude

  15. Investigation of dielectric barrier discharge plasma flow control

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Effects of plasma flow control are researched on the basis of plasma exciting flow experiments and numerical simulations. Turbulent model is more effective than laminar model in plasma numerical simulation as results showed. Both plasma exciting effects of acceleration and flow separation suppression are investigated through experiments carried on the flat plate and the compressor cascades. The results demonstrate that boundary layer characteristic is modified by plasma exciting. Distributions of total pressure and velocity in the wake are improved notably for 20 m/s coming velocity and the effect of plasma can still be observed while velocity is increased to 50 m/s. For low velocity flow, plasma exciting is effective in flow separation suppression.

  16. The dependence of sheet erosion velocity on slope angle

    Directory of Open Access Journals (Sweden)

    Chernyshev Sergey Nikolaevich

    2014-09-01

    Full Text Available The article presents a method for estimating the erosion velocity on forested natural area. As a research object for testing the methodology the authors selected Neskuchny Garden - a city Park on the Moskva river embankment, named after the cognominal Palace of Catherine's age. Here, an almost horizontal surface III of the Moskva river terrace above the flood-plain is especially remarkable, accentuated by the steep sides of the ravine parallel to St. Andrew's, but short and nameless. The crests of the ravine sides are sharp, which is the evidence of its recent formation, but the old trees on the slopes indicate that it has not been growing for at least 100 years. Earlier Russian researchers defined vertical velocity of sheet erosion for different regions and slopes with different parent (in relation to the soil rocks. The comparison of the velocities shows that climatic conditions, in the first approximation, do not have a decisive influence on the erosion velocity of silt loam soils. The velocities on the shores of Issyk-Kul lake and in Moscow proved to be the same. But the composition of the parent rocks strongly affects the sheet erosion velocity. Even low-strength rock material reduces the velocity by times. Phytoindication method gives a real, physically explainable sheet erosion velocities. The speed is rather small but it should be considered when designing long-term structures on the slopes composed of dispersive soils. On the slopes composed of rocky soils sheet erosion velocity is so insignificant that it shouldn't be taken into account when designing. However, there may be other geological processes, significantly disturbing the stability of slopes connected with cracks.

  17. Plasma Anemometer Measurements and Optimization

    Science.gov (United States)

    Marshall, Curtis; Matlis, Eric; Corke, Thomas; Gogineni, Sivaram

    2013-11-01

    Velocity measurements using a constant-current plasma anemometer were performed in a Mach 0.4 jet in order to further optimize the anemometer design. The plasma anemometer uses an AC glow discharge (plasma) formed in the air gap between two protruding low profile electrodes as the flow sensing element. The output from the anemometer is an amplitude modulated version of the AC voltage input that contains information about the mean fluctuating velocity components. Experiments were performed to investigate the effect of the electrode gap, AC current, and AC frequency on the mean and fluctuating velocity sensitivity and repeatability of the sensor. This involved mean velocity calibrations from 0 to 140 m/s and mean and fluctuating velocity profiles through the shear layer of the jet. Measurements with a constant temperature hot-wire anemometer were used for reference. The results showed an improvement in performance with increasing AC frequency that was attributed a more stable glow discharge. The agreement with the hot-wire were good, with the advantage of the plasma anemometer being its 100-times higher frequency response. Supported by Air Force SBIR Phase II FA8650-11-C-2199.

  18. Experimental characterization of an argon laminar plasma jet at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Langlois-Bertrand, Emilie; De Izarra, Charles, E-mail: charles.de_izarra@univ-orleans.fr [Groupe de Recherche sur l' Energetique des Milieux Ionises, UMR6606 Universite d' Orleans - CNRS, Faculte des Sciences, Site de Bourges, rue Gaston Berger, BP 4043, 18028 BOURGES Cedex (France)

    2011-10-19

    This paper deals with a dc laminar pure argon plasma jet operating at atmospheric pressure in ambient air that was experimentally studied in order to obtain temperature and velocity. Plasma jet temperature was evaluated by optical emission spectroscopy and the plasma jet velocity was determined by various methods using a pressure sensor. It is shown that the maximum plasma jet temperature is 15 000 K and the maximum plasma jet velocity is 250 m s{sup -1} at the plasma jet centre. Finally, a study of the ambient air amount entrained into the plasma jet is presented.

  19. Behaviour of ion velocity distributions for a simple collision model

    Science.gov (United States)

    St-Maurice, J.-P.; Schunk, R. W.

    1974-01-01

    Calculation of the ion velocity distributions for a weakly ionized plasma subjected to crossed electric and magnetic fields. An exact solution to Boltzmann's equation has been obtained by replacing the Boltzmann collision integral with a simple relaxation model. At altitudes above about 150 km, where the ion collision frequency is much less than the ion cyclotron frequency, the ion distribution takes the shape of a torus in velocity space for electric fields greater than 40 mV/m. This shape persists for one to two hours after application of the electric field. At altitudes where the ion collision and cyclotron frequencies are approximately equal (about 120 km), the ion velocity distribution is shaped like a bean for large electric field strengths. This bean-shaped distribution persists throughout the lifetime of ionospheric electric fields. These highly non-Maxwellian ion velocity distributions may have an appreciable affect on the interpretation of ion temperature measurements.

  20. Simulation of VDE under intervention of vertical stability control and vertical electromagnetic force on the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, S., E-mail: miyamoto.seiji@jaea.go.jp [Naka Fusion Institute, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Sugihara, M., E-mail: Masayoshi.Sugihara@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Shinya, K. [Toshiba Nuclear Engineering Service, 8 Shin-sugita, Isogo-ku, Yokohama 235-8523 (Japan); Nakamura, Y. [Nippon Advanced Technology, 3129-45 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1112 (Japan); Toshimitsu, S. [Naka Fusion Institute, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Lukash, V.E.; Khayrutdinov, R.R. [NRC ' Kurchatov Institute' , Institute of Tokamak Physics, 123182 Moscow (Russian Federation); Sugie, T.; Kusama, Y. [Naka Fusion Institute, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Yoshino, R. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Taking account of intervention of VS control, VDE simulations were carried out. Black-Right-Pointing-Pointer Malfunctioning of VS circuit (positive feedback) enhances the vertical force. Black-Right-Pointing-Pointer The worst case was explored for vertical force on the ITER vacuum vessel. Black-Right-Pointing-Pointer We confirmed the force is still within the design margin even if the worst case. - Abstract: Vertical displacement events (VDEs) and disruptions usually take place under intervention of vertical stability (VS) control and the vertical electromagnetic force induced on vacuum vessels is potentially influenced. This paper presents assessment of the force that arises from the VS control in ITER VDEs using a numerical simulation code DINA. The focus is on a possible malfunctioning of the ex-vessel VS control circuit: radial magnetic field is unintentionally applied to the direction of enhancing the vertical displacement further. Since this type of failure usually causes the largest forces (or halo currents) observed in the present experiments, this situation must be properly accommodated in the design of the ITER vacuum vessel. DINA analysis shows that although the ex-vessel VS control modifies radial field, it does not affect plasma motion and current quench behavior including halo current generation because the vacuum vessel shields the field created by the ex-vessel coils. Nevertheless, the VS control modifies the force on the vessel by directly acting on the eddy current carried by the conducting structures of the vessel. Although the worst case was explored in a range of plasma inductance and pattern of VS control in combination with the in-vessel VS control circuit, the result confirmed that the force is still within the design margin.

  1. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  2. Soil-Pile Interaction in the Pile Vertical Vibration Based on Fictitious Soil-Pile Model

    OpenAIRE

    Guodong Deng; Jiasheng Zhang; Wenbing Wu; Xiong Shi; Fei Meng

    2014-01-01

    By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solu...

  3. Magnetic Field Fluctuations Due to Diel Vertical Migrations of Zooplankton

    Science.gov (United States)

    Dean, C.; Soloviev, A.

    2016-12-01

    Dean et al. (2016) have indicated that at high zooplankton concentrations, diel vertical migrations (DVM) cause velocity fluctuations and a respective increase of the dissipation rate of turbulent kinetic energy (TKE). In this work, we used a 3D non-hydrostatic computational fluid dynamics model with Lagrangian particle injections (a proxy for migrating organisms) via a discrete phase model to simulate the effect of turbulence generation by DVM. We tested a range of organism concentrations from 1000 to 10,000 organisms/m3. The simulation at an extreme concentration of zooplankton showed an increase in dissipation rate of TKE by two to three orders of magnitude during DVM over background turbulence, 10-8 W kg-1. At lower concentrations (migration times averaged over 11 months of observations (though interpretation of the current velocity measurements is complicated by physical factors such as tides, Florida current meandering, etc.). The deviations in the velocity profiles can in principle be explained by the increase in turbulent mixing during vertical migration periods. In addition, seawater is an electric conductor. Water movements in the magnetic field of the Earth induce electrical currents and, as a result, secondary magnetic fluctuations. The velocity fluctuations produced by DVM are, therefore, supposed to have a magnetic signature. In order to test this hypothesis, we have applied a magnetohydrodnamics add-on module to the hydrodynamic model. The model results indicate that DVM of an extreme concentration of zooplankton may create fluctuations of the total magnetic field on the order of 1 nT, which are comparable to the magnetic signature of surface or internal waves. These are relatively small magnetic fluctuations, compared to the Earth's magnetic field, but are well within the range of modern magnetometers. Dean, C., A. Soloviev, A. Hirons, T. Frank, J. Wood, 2016: Biomixing due to diel vertical migrations of zooplankton. Ocean Modelling 98, 51-64.

  4. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

    2010-05-17

    Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

  5. Three Kinds of Velocity Structure Function in Turbulent Flows

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; JIANG Nan

    2004-01-01

    Based on the local multi-scale eddy structures in turbulent flows, we elucidate the essential difference between the real turbulent field with a finite Reynolds number and the Kolmogorov fully developed random field. The motion of fluid particles in the real turbulent field is not fully random. There exist multi-scale structures due to the effect of viscosity. Actually the movements of fluid particles in the turbulent field are restricted by such eddy structures. Furthermore, concept of the locally averaged velocity structure function is put forward to describe the relative strain distortion of two adjacent turbulent eddy structures at a certain scale. The time sequence of the longitudinal velocity component at different vertical locations in turbulent boundary layer has been elaborately measured by the constant temperature anemometry of model IFA-300 in a wind tunnel. The experiment proves that the locally averaged velocity structure function is in agreement with the wavelet-coefficient structure function.

  6. Velocity Profiles between Two Baffles in a Horizontal Circular Tube

    Institute of Scientific and Technical Information of China (English)

    Tae-Hyun Chang; Hae-Soo Lee; Keon-Je Oh; Doeg Hee Doh; Chang-Hoan Lee

    2014-01-01

    The shell and tube heat exchanger is an essential part of a power plant for recovering heat transfer between the feed water of a boiler and the wasted heat.The baffles are also an important element inside the heat exchanger.Internal materials influence the flow pattern in the bed.The influence of baffles in the velocity profiles was observed using a three-dimensional particle image velocimetry around baffles in a horizontal circular tube.The velocity of the particles was measured before the baffle and between them in the test tube.Results show that the flows near the front baffle flow were parallel to the vertical wall,and then concentrate on the upper opening of the front baffle.The flows circulate in the front and rear baffles.These flow profiles are related to the Reynolds number (Re) or the flow intensity.The velocity profiles at lower Re number showed a complicated mixing,concentrating on the lower opening of the rear baffle as front wall.Swirling flow was employed in this study,which was produced using tangential velocities at the inlet.At the entrance of the front baffle,the velocity vector profiles with swirl were much different from that without swirl.However,velocities between two baffles are not much different from those without swirl.

  7. Velocity profiles between two baffles in a horizontal circular tube

    Science.gov (United States)

    Chang, Tae-Hyun; Lee, Hae-Soo; Oh, Keon-Je; Doh, Doeg Hee; Lee, Chang-Hoan

    2014-12-01

    The shell and tube heat exchanger is an essential part of a power plant for recovering heat transfer between the feed water of a boiler and the wasted heat. The baffles are also an important element inside the heat exchanger. Internal materials influence the flow pattern in the bed. The influence of baffles in the velocity profiles was observed using a three-dimensional particle image velocimetry around baffles in a horizontal circular tube. The velocity of the particles was measured before the baffle and between them in the test tube. Results show that the flows near the front baffle flow were parallel to the vertical wall, and then concentrate on the upper opening of the front baffle. The flows circulate in the front and rear baffles. These flow profiles are related to the Reynolds number (Re) or the flow intensity. The velocity profiles at lower Re number showed a complicated mixing, concentrating on the lower opening of the rear baffle as front wall. Swirling flow was employed in this study, which was produced using tangential velocities at the inlet. At the entrance of the front baffle, the velocity vector profiles with swirl were much different from that without swirl. However, velocities between two baffles are not much different from those without swirl.

  8. Expansion of a plasma cloud in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorbachev, L.P.

    1984-10-01

    The last stage of the expansion of a plasma in vacuum in the presence of a uniform magnetic field is investigated. The velocity of plasma expansion and the electrical conductivity of the plasma are such that the Reynolds number is considered to be small; under these conditions the induced magnetic field is neglected. By assuming that the density of the plasma and its electrical conductivity are functions of time alone, the expansion velocity of the plasma, the shape of the boundary, and the magnetic moment of the plasma cloud are determined from equations of magnetogasdynamics. 8 references.

  9. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  10. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    Science.gov (United States)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  11. Vertical flows and structures excited by magnetic activity in the Galactic center region

    CERN Document Server

    Kakiuchi, Kensuke; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji

    2016-01-01

    The vertical flow structure in the galactic center region remains poorly understood. We analyzed the MHD simulation data by Suzuki et al. (2015) for better understanding. As a result, we found the fast downflows with a speed of ~100 km/s near the foot-points of magnetic loops. These downflows are flowing along a magnetic field line and accelerated by the gravity. The direction of the fast flows is changed by the magnetic loop geometry, as it moves. As a result, not only vertical motions but also azimuthal and radial motions are excited. This feature could be relevant to the observed high velocity dispersion in the position-velocity diagram.

  12. Measuring Kinetic Plasma Eigenmodes

    Science.gov (United States)

    Mattingly, Sean; Berumen, Jorge; Chu, Feng; Hood, Ryan; Skiff, Fred

    2015-11-01

    We present a method for measuring kinetic plasma eigenmodes of a cylindrical axially magnetized (1 kG) laboratory plasma (n ~109cm-3 , Te ~ 5eV , Ti ~ 0 . 06eV) by measuring velocity space correlation functions. This method simultaneously observes two separate laser induced fluorescence schemes. Each scheme has its own indepedently tunable laser and its own set of collection optics. With this setup, we are able to measure the time - averaged correlation function as a function of position on the cylindrical axis parallel to the magnetic field (z) and velocity on the deconvolved ion velocity distribution function (v) : C (z , v ,z' ,v' , τ) = t. The freedom of two lasers allows us to measure a two dimensional velocity correlation matrix. This matrix is investigated with the Vlasov equation in the collisionless and weakly collisional regime. The former case, which is continuous, is diagonalized with an integral transform defined by P. J. Morrison while the latter case, which is discrete, is diagonalized through the use of Hermite polynomials.

  13. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov;

    Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making...

  14. Instantaneous Velocity Using Photogate Timers

    Science.gov (United States)

    Wolbeck, John

    2010-01-01

    Photogate timers are commonly used in physics laboratories to determine the velocity of a passing object. In this application a card attached to a moving object breaks the beam of the photogate timer providing the time for the card to pass. The length L of the passing card can then be divided by this time to yield the average velocity (or speed)…

  15. Kriging Interpolating Cosmic Velocity Field

    CERN Document Server

    Yu, Yu; Jing, Yipeng; Zhang, Pengjie

    2015-01-01

    [abridge] Volume-weighted statistics of large scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of uncertainties of galaxy density bias entangled in mass-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number $n_k$ of the nearby particles to interpolate and the density $n_P$ of the observed sample are investigated. (1) We find that Kriging induces $1\\%$ and $3\\%$ systematics at $k\\sim 0.1h{\\rm Mpc}^{-1}$ when $n_P\\sim 6\\times 10^{-2} ({\\rm Mpc}/h)^{-3}$ and $n_P\\sim 6\\times 10^{-3} ({\\rm Mpc...

  16. Combination of fast-ion diagnostics in velocity-space tomographies

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Nielsen, Stefan Kragh

    2013-01-01

    Fast-ion Dα (FIDA) and collective Thomson scattering (CTS) diagnostics provide indirect measurements of fast-ion velocity distribution functions in magnetically confined plasmas. Here we present the first prescription for velocity-space tomographic inversion of CTS and FIDA measurements that can ...

  17. Verticality Perception During Off-Vertical Axis Rotation

    NARCIS (Netherlands)

    Vingerhoets, R.A.A.; Gisbergen, J.A.M. van; Medendorp, W.P.

    2007-01-01

    During prolonged rotation about a tilted yaw axis, often referred to as off-vertical axis rotation (OVAR), a percept of being translated along a conical path slowly emerges as the sense of rotation subsides. Recently, we found that these perceptual changes are consistent with a canal-otolith interac

  18. Verticality perception during off-vertical axis rotation

    NARCIS (Netherlands)

    Vingerhoets, R.A.A.; Gisbergen, J.A.M. van; Medendorp, W.P.

    2007-01-01

    During prolonged rotation about a tilted yaw axis, often referred to as off-vertical axis rotation (OVAR), a percept of being translated along a conical path slowly emerges as the sense of rotation subsides. Recently, we found that these perceptual changes are consistent with a canal-otolith interac

  19. Dynamical evolution of high velocity clouds in the intergalactic medium

    CERN Document Server

    Konz, C; Birk, G T

    2002-01-01

    HI observations of high-velocity clouds (HVCs) indicate, that they are interacting with their ambient medium. Even clouds located in the very outer Galactic halo or the intergalactic space seem to interact with their ambient medium. In this paper, we investigate the dynamical evolution of high velocity neutral gas clouds moving through a hot magnetized ambient plasma by means of two-dimensional magnetohydrodynamic plasma-neutral gas simulations. This situation is representative for the fast moving dense neutral gas cloudlets in the Magellanic Stream as well as for high velocity clouds in general. The question on the dynamical and thermal stabilization of a cold dense neutral cloud in a hot thin ambient halo plasma is numerically investigated. The simulations show the formation of a comet-like head-tail structure combined with a magnetic barrier of increased field strength which exerts a stabilizing pressure on the cloud and hinders hot plasma from diffusing into the cloud. The simulations can explain both the...

  20. Rising motion of a bubble layer near a vertical wall

    Science.gov (United States)

    Dabiri, Sadegh; Bhuvankar, Pramod

    2015-11-01

    Bubbly flows in vertical pipes and channels form a wall-peak distribution of bubbles under certain conditions. The dynamics of the bubbles near the wall is different than in an unbounded liquid. Here we report the rising motion of bubbles in a liquid near a vertical wall. In a simulation of a bubbly flow in a periodic domain with a vertical wall on one side, an average pressure gradient is applied to the domain that balances the weight of the liquid phase. The upward flow is created by the rising motion of the bubbles. The bubbles are kept near the wall by the lateral lift force acting on them as a result of rising in a shear flow which is in turn generated by rising motion of bubbles. The rise velocity of the bubbles on the wall and the average rise velocity of the liquid depend on three dimensionless parameters, Archimedes number, Eotvos number, and the average volume fraction of bubbles near the wall. In the limit of small Eo, bubbles are nearly spherical and the dependency on Eo becomes negligible. In this limit, the scaling of the liquid Reynolds number with Archimedes number and the void fraction is presented.

  1. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  2. EFFECTS OF OPERATING CONDITIONS ON THE DEPOSITION OF GaAs IN A VERTICAL CVD REACTOR

    OpenAIRE

    JAE-SANG BAEK; JIN-HYO BOO; YOUN-JEA KIM

    2008-01-01

    A numerical study is needed to gain insight into the growth mechanism and improve the reactor design or optimize the deposition condition in chemical vapor deposition (CVD). In this study, we have performed a numerical analysis of the deposition of gallium arsenide (GaAs) from trimethyl gallium (TMG) and arsine in a vertical CVD reactor. The effects of operating parameters, such as the rotation velocity of susceptor, inlet velocity, and inlet TMG fraction, are investigated and presented. The ...

  3. Analysis of thin film flow over a vertical oscillating belt with a second grade fluid

    Directory of Open Access Journals (Sweden)

    Taza Gul

    2015-06-01

    Full Text Available An analysis is performed to study the unsteady thin film flow of a second grade fluid over a vertical oscillating belt. The governing equation for velocity field with appropriate boundary conditions is solved analytically using Adomian decomposition method (ADM. Expressions for velocity field have been obtained. Optimal asymptotic method (OHAM has also been used for comparison. The effects of Stocks number, frequency parameter and pressure gradient parameters have been sketched graphically and discussed.

  4. Alligning vertical collection relevance with user intent

    NARCIS (Netherlands)

    Zhou, Ke; Demeester, Thomas; Nguyen, Dong; Hiemstra, Djoerd; Trieschnigg, Dolf

    2014-01-01

    Selecting and aggregating different types of content from multiple vertical search engines is becoming popular in web search. The user vertical intent, the verticals the user expects to be relevant for a particular information need, might not correspond to the vertical collection relevance, the vert

  5. Alligning Vertical Collection Relevance with User Intent

    NARCIS (Netherlands)

    Zhou, Ke; Demeester, Thomas; Nguyen, Dong-Phuong; Hiemstra, Djoerd; Trieschnigg, Rudolf Berend

    Selecting and aggregating different types of content from multiple vertical search engines is becoming popular in web search. The user vertical intent, the verticals the user expects to be relevant for a particular information need, might not correspond to the vertical collection relevance, the

  6. Dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fortov, Vladimir E; Khrapak, Aleksei G; Molotkov, Vladimir I; Petrov, Oleg F [Institute for High Energy Densities, Associated Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Khrapak, Sergei A [Max-Planck-Institut fur Extraterrestrische Physik, Garching (Germany)

    2004-05-31

    The properties of dusty plasmas - low-temperature plasmas containing charged macroparticles - are considered. The most important elementary processes in dusty plasmas and the forces acting on dust particles are investigated. The results of experimental and theoretical investigations of different states of strongly nonideal dusty plasmas - crystal-like, liquid-like, gas-like - are summarized. Waves and oscillations in dusty plasmas, as well as their damping and instability mechanisms, are studied. Some results on dusty plasma investigated under microgravity conditions are presented. New directions of experimental research and potential applications of dusty plasmas are discussed. (reviews of topical problems)

  7. Clustering of vertically constrained passive particles in homogeneous isotropic turbulence

    Science.gov (United States)

    De Pietro, Massimo; van Hinsberg, Michel A. T.; Biferale, Luca; Clercx, Herman J. H.; Perlekar, Prasad; Toschi, Federico

    2015-05-01

    We analyze the dynamics of small particles vertically confined, by means of a linear restoring force, to move within a horizontal fluid slab in a three-dimensional (3D) homogeneous isotropic turbulent velocity field. The model that we introduce and study is possibly the simplest description for the dynamics of small aquatic organisms that, due to swimming, active regulation of their buoyancy, or any other mechanism, maintain themselves in a shallow horizontal layer below the free surface of oceans or lakes. By varying the strength of the restoring force, we are able to control the thickness of the fluid slab in which the particles can move. This allows us to analyze the statistical features of the system over a wide range of conditions going from a fully 3D incompressible flow (corresponding to the case of no confinement) to the extremely confined case corresponding to a two-dimensional slice. The background 3D turbulent velocity field is evolved by means of fully resolved direct numerical simulations. Whenever some level of vertical confinement is present, the particle trajectories deviate from that of fluid tracers and the particles experience an effectively compressible velocity field. Here, we have quantified the compressibility, the preferential concentration of the particles, and the correlation dimension by changing the strength of the restoring force. The main result is that there exists a particular value of the force constant, corresponding to a mean slab depth approximately equal to a few times the Kolmogorov length scale η , that maximizes the clustering of the particles.

  8. Vertical variations of wave-induced radiation stress tensor

    Institute of Scientific and Technical Information of China (English)

    Zheng Jinhai; Yan Yixin

    2001-01-01

    The distributions of the wave-induced radiation stress tensor over depth are studied by using the linear wave theory, which are divided into three regions, i.e., above the mean water level, below the wave trough level, and between these two levels. The computational expressions of the wave-induced radiation stress tensor at the arbitrary wave angle are established by means of the Eulerian coordinate transformation, and the asymptotic forms for deep and shallow water are also presented. The vertical variations of a 30° incident wave-induced radiation stress tensor in deep water, intermediate water and shallow water are calculated respectively. The following conclusions are obtained from computations.The wave-induced radiation stress tensor below the wave trough level is induced by the water wave particle velocities only, whereas both the water wave particle velocities and the wave pressure contribute to the tensor above the wave trough level. The vertical variations of the wave-induced radiation stress tensor are influenced substantially by the velocity component in the direction of wave propagation. The distributions of the wave-induced radiation stress tensor over depth are nonuniform and the proportion of the tensor below the wave trough level becomes considerable in the shallow water. From the water surface to the seabed, the reversed variations occur for the predominant tensor components.

  9. Mixed Convection in a Composite System Bounded by Vertical Walls

    Directory of Open Access Journals (Sweden)

    N. Srivastava

    2010-01-01

    Full Text Available A combined convection process between two parallel vertical infinite walls, containing an incompressible viscous fluid layer and a fluid saturated porous layer has been presented analytically. There is a vertical axial variation of temperature in the upward direction along the walls. The Brinkman extended Darcy model is applied to describe the momentum transfer in the porous region. The viscosity of the fluid layer and the effective viscosity of the porous layer are assumed to be different. Also the thermal conductivities of both fluid and porous layers are assumed to be different. The graphs and tables have been used to distinguish the influence of distinct parameters on the velocity and skin-friction. It is determined that the velocity is intensified on making greater the temperature difference between the walls while increment in the viscosity ratio (porous/fluid parameter diminishes the velocity of the fluid. It has been observed that the numerical values of the skin-frictions have an increasing tendency with the increment in the values of temperature difference between the walls while decreasing tendency with the increment in the viscosity ratio parameter (porous/fluid.

  10. Suppression of phase mixing in drift-kinetic plasma turbulence

    CERN Document Server

    Parker, J T; Schekochihin, A A; Dellar, P J

    2016-01-01

    Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to "anti-phase-mixing" modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.

  11. Effects of asymmetric vertical disruptions on ITER components

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Carpentieri, B. [Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen (Netherlands); Cavinato, M. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Minucci, S. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Palmaccio, R. [Associazione EURATOM/ENEA/CREATE, DIEI, Università di Cassino e del Lazio Meridionale, Cassino, FR (Italy); Portone, A. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Rubinacci, G. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Testoni, P., E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Ventre, S.; Villone, F. [Associazione EURATOM/ENEA/CREATE, DIEI, Università di Cassino e del Lazio Meridionale, Cassino, FR (Italy)

    2015-05-15

    Highlights: • Halo current analysis of AVDEs (asymmetric VDEs) is performed. • Both resistive and inductive effects are considered. • Suitable compression techniques and supercomputing resources are used. • The vertical force on the sectors is nearly uniform. • The radial loads on the various sectors are very different. - Abstract: This paper deals with the halo current distribution due to asymmetric vertical displacement events (VDEs) and the subsequent force distributions on the conducting structures in the ITER tokamak. Both the eddy and halo current analyses have been carried out using the 3D code CARIDDI, based on an integral formulation in the conducting region. The plasma plays the role of a source term. The axisymmetric time evolution of the plasma is taken by 2D axisymmetric simulations. The most critical case is a slow VDE downward combined with an n = 1 kink, which may yield large horizontal forces and peaking factors. A simplified n = 1, m = 1 kink model is taken, given by a rigid horizontal displacement accompanied by a tilt. The halo currents are treated as injected currents on the faces of the first wall hit by the plasma. To take into account the inductive effects, which are important especially in the transient phases, suitable compression techniques and supercomputing resources have been utilized. In the worst case the total vertical force on the structure due to the halo currents is about 90 MN downwards (about 30 of which on the divertor); the horizontal force is about 4 MN (about half of which on the divertor); the distribution of the vertical force on the sectors is nearly uniform, whereas the radial loads on the various sectors are very different from each other.

  12. Electric rail gun projectile acceleration to high velocity

    Science.gov (United States)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  13. Impact of vertical structure on water mass circulation in a tropical lagoon (Ebrié, Ivory Coast)

    Science.gov (United States)

    Brenon, Isabelle; Audouin, Olivier; Pouvreau, Nicolas; Maurin, Jean-Christophe

    2009-09-01

    A one-dimensional vertical model has been developed to simulate the water mass circulation along the vertical structure in all deep coastal areas. The model has hydrodynamic and transport components solved using finite difference scheme. The one-dimensional vertical model results are coupled to the vertically averaged two-dimensional model results at each point of a horizontal grid. A theoretical salinity profile is introduced for each vertically integrated value obtained from the 2DH model results. A viscosity profile, simulating a viscosity value close to zero at the surface and with large viscosity gradients, is applied along the water column. The model is applied to the Vridi channel, connecting the Ebrié lagoon to the sea (Ivory Coast). The response of the Ebrié lagoon is studied in terms of inflow and outflow of water in the system through the Vridi channel. Due to the abrupt variation of the surface slope, vertical velocities along the water column show an anticlockwise spiral from bottom to surface during a tidal cycle. Due to the bottom friction and to the vertical viscosity profile, velocities decrease from surface to bottom. However, the freshwater inflow slows down the tidal propagation during the flood and causes the surface velocity to be smaller than the bottom velocity at mid-tide. Close to the bottom, velocities follow an anticlockwise movement due to the tidal propagation. At the water surface, velocities follow only an alternative movement of either ebb or flood, along the channel direction. No cross shore velocities can develop at the surface in the channel.

  14. Instability Caused by Dissipation in Plasmas Carrying Negative Energy Waves

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Adopting the well-known simplified picture of Landau damping, the authors expect longitudinal plasma oscillations with phase velocity Vp to be damped when there are more particles with velocities slightly below Vp than there are particles with velocities slightly above....

  15. Spatial Distribution of Vertical Shear

    Science.gov (United States)

    1981-03-01

    Gulf Stream ring. The dotted line is at 150 dbars ... A-31 V’ i LIST OF FIGURES (Continued) Page Figure A.31 As in Figure A.. except for YVETE sta...of mean N(solid lne) and mean S 2 ’(+ marks) for selected YVETE stations. The indvidual points represent non- ?verlap ing 50in vertical a~erages of the

  16. Multiservice Vertical Handoff Decision Algorithms

    Directory of Open Access Journals (Sweden)

    Zhu Fang

    2006-01-01

    Full Text Available Future wireless networks must be able to coordinate services within a diverse-network environment. One of the challenging problems for coordination is vertical handoff, which is the decision for a mobile node to handoff between different types of networks. While traditional handoff is based on received signal strength comparisons, vertical handoff must evaluate additional factors, such as monetary cost, offered services, network conditions, and user preferences. In this paper, several optimizations are proposed for the execution of vertical handoff decision algorithms, with the goal of maximizing the quality of service experienced by each user. First, the concept of policy-based handoffs is discussed. Then, a multiservice vertical handoff decision algorithm (MUSE-VDA and cost function are introduced to judge target networks based on a variety of user- and network-valued metrics. Finally, a performance analysis demonstrates that significant gains in the ability to satisfy user requests for multiple simultaneous services and a more efficient use of resources can be achieved from the MUSE-VDA optimizations.

  17. Autonomous vertical profiler data management

    Digital Repository Service at National Institute of Oceanography (India)

    Afzulpurkar, S.; Navelkar, G.S.; Desa, E.S.; Madhan, R.; Dabholkar, N.; Prabhudesai, S.P.; Mascarenhas, A.A.M.Q.

    The Autonomous Vertical Profiler (AVP), developed at NIO [1] [2], collects position and water column data over a period of 3 days and transmits through a satellite modem which is collated and stored on a PC. Data includes GPS positions, water column...

  18. Vertical integration and market power

    Energy Technology Data Exchange (ETDEWEB)

    Maddigan, R.J.

    1980-01-01

    One of the continuing debates of industrial organization surrounds the importance of market structure in determining a firm's performance. This controversy develops naturally from the difficulties in measuring the relevant variables and the hazards of statistical analysis. The focus of this empirical study is the relationship between vertical integration, as an element of market structure, and market power, as a component of a firm's performance. The model presented in this paper differs from previous efforts because vertical integration is measured by the Vertical Industry Connections (VIC) index. VIC is defined as a function of the relative net interactions among the industries in which a firm operates, and is calculated by use of the national input-output tables. A linear regression model is estimated by means of a random sample of firms selected from the Standard and Poor's COMPUSTAT data base for 1963, 1967, and 1972. Combined cross-sectional, time-series methods are employed. The dependent variable is the price-cost margin; the independent variables include not only VIC, but also the concentration ratio, diversification index, value of assets, capital-output ratio, and sales growth. The results indicate that VIC is significant in increasing the price-cost margin, and thus support the hypothesis that vertical integration is a strategy to enhance market power. 1 figure, 3 tables.

  19. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...

  20. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders Rosenstand

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between four different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor (headquarter) intensity. Final-go...

  1. Vertical Motion Determined Using Satellite Altimetry and Tide Gauges

    Directory of Open Access Journals (Sweden)

    Chung-Yen Kuo

    2008-01-01

    Full Text Available A robust method to estimate vertical crustal motions by combining geocentric sea level measurements from decadal (1992 - 2003 TOPEX/POSEIDON satellite altimetry and long-term (> 40 years relative sea level records from tide gauges using a novel Gauss-Markov stochastic adjustment model is presented. These results represent an improvement over a prior study (Kuo et al. 2004 in Fennoscandia, where the observed vertical motions are primarily attributed to the incomplete Glacial Isostatic Adjustment (GIA in the region since the Last Glacial Maximum (LGM. The stochastic adjustment algorithm and results include a fully-populated a priori covariance matrix. The algorithm was extended to estimate vertical motion at tide gauge locations near open seas and around semi-enclosed seas and lakes. Estimation of nonlinear vertical motions, which could result from co- and postseismic deformations, has also been incorporated. The estimated uncertainties for the vertical motion solutions in coastal regions of the Baltic Sea and around the Great Lakes are in general < 0.5 mm yr-1, which is a significant improvement over existing studies. In the Baltic Sea, the comparisons of the vertical motion solution with 10 collocated GPS radial rates and with the BIFROST GIA model show differences of 0.2 ¡_ 0.9 and 1.6 ¡_ 1.8 mm yr-1, respectively. For the Great Lakes region, the comparisons with the ICE-3G model and with the relative vertical motion estimated using tide gauges only (Mainville and Craymer 2005 show differences of -0.2 ¡_ 0.6 and -0.1 ¡_ 0.5 mm yr-1, respectively. The Alaskan vertical motion solutions (linear and nonlinear models have an estimated uncertainty of ~1.2 - 1.6 mm yr-1, which agree qualitatively with GPS velocity and tide gauge-only solutions (Larsen et al. 2003. This innovative technique could potentially provide improved estimates of the vertical motion globally where long-term tide gauge records exist.

  2. Three-dimensional glacier surface velocities of the Storstrømmen glacier, Greenland derived from radar interferometry and ice-sounding radar measurements

    OpenAIRE

    Reeh, N; Mohr, J. J.; Madsen, S.N.; Oerter, Hans; Gundestrup, N.

    2003-01-01

    Non-steady-state vertical velocities of up to 5 m y-1 exceed the vertical surface-parallel-flow components over much of the ablation area of Storstrømmen, a large outlet glacier from the East Greenland ice sheet. Neglecting a contribution to the vertical velocity of this magnitude, results in substantial errors (up to 20%) also on the south north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments t...

  3. LDA Characterization of the Velocity Field around a Growing and Rising Bubble in Shear-thinning Fluid

    OpenAIRE

    2014-01-01

    Laser Doppler anemometry (LDA) has been employed to quantify the liquid velocity field around a single bubble in its generating and accelerating stage in carboxymethylcellulose (CMC) aqueous solution. The instantanoues velocities were treated by Reynolds time-averaged method, and mean velocities and its contours in both axial and radial directions were investigated. The results show that in vertical direction, the flow field characteristics of the liquids around the bubble are determined by b...

  4. Characteristics of Plasma Spraying Torch with a Hollow Cathode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A kind of plasma spraying torch with a hollow cathode is described in this paper.The plasma torch can be used for axial powder injection in plasma spray studies. The arc characteristics of the plasma torch with various gas flowrates, different gas media, are presented. The mathematical modeling and computational method are developed for predicting the temperature and velocity field inside the plasma torch.

  5. Velocity distribution measurements in a fishway like open channel by Laser Doppler Anemometry (LDA)

    Science.gov (United States)

    Sayeed-Bin-Asad, S. M.; Lundström, T. S.; Andersson, A. G.; Hellström, J. G. I.

    2016-03-01

    Experiments in an open channel flume with placing a vertical half cylinder barrier have been performed in order to investigate how the upstream velocity profiles are affected by a barrier. An experimental technique using Laser Doppler Velocimetry (LDV) was adopted to measure these velocity distributions in the channel for four different discharge rates. Velocity profiles were measured very close to wall and at 25, 50 and 100 mm upstream of the cylinder wall. For comparing these profiles with well-known logarithmic velocity profiles, velocity profiles were also measured in smooth open channel flow for all same four discharge rates. The results indicate that regaining the logarithmic velocity profiles upstream of the half cylindrical barrier occurs at 100 mm upstream of the cylinder wall.

  6. Velocity distribution measurements in a fishway like open channel by Laser Doppler Anemometry (LDA

    Directory of Open Access Journals (Sweden)

    Sayeed-Bin-Asad S.M.

    2016-01-01

    Full Text Available Experiments in an open channel flume with placing a vertical half cylinder barrier have been performed in order to investigate how the upstream velocity profiles are affected by a barrier. An experimental technique using Laser Doppler Velocimetry (LDV was adopted to measure these velocity distributions in the channel for four different discharge rates. Velocity profiles were measured very close to wall and at 25, 50 and 100 mm upstream of the cylinder wall. For comparing these profiles with well-known logarithmic velocity profiles, velocity profiles were also measured in smooth open channel flow for all same four discharge rates. The results indicate that regaining the logarithmic velocity profiles upstream of the half cylindrical barrier occurs at 100 mm upstream of the cylinder wall.

  7. Numerical Simulation of Basic Parameters in Plasma Spray

    Institute of Scientific and Technical Information of China (English)

    范群波; 王鲁; 王富耻

    2004-01-01

    On the basis of energy balance in the plasma gas, a new, simplified but effective mathematical model is developed to predict the temperature, velocity and ionization degrees of different species at the torch exit, which can be directly calculated just by inputting the general spraying parameters, such as current, voltage, flow rates of gases, etc. Based on this method, the effects of plasma current and the flow rate of Ar on the basic parameters at the torch exit are discussed. The results show that the temperature, velocity and ionization degrees of gas species will increase with increasing the plasma current; while increasing Ar flow rate can increase the velocity at the exit but decrease the temperature and ionization degrees of plasma species. The method would be helpful to predict the temperature and velocity fields in a plasma jet in future, and direct the practical plasma spray operations.

  8. Stable discrete representation of relativistically drifting plasmas

    CERN Document Server

    Kirchen, Manuel; Godfrey, Brendan B; Dornmair, Irene; Jalas, Soeren; Peters, Kevin; Vay, Jean-Luc; Maier, Andreas R

    2016-01-01

    Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-in-Cell algorithm that is intrinsically free of the Numerical Cherenkov Instability, for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.

  9. Transport studies in fusion plasmas: Perturbative experiments

    NARCIS (Netherlands)

    Cardozo, N. L.

    1998-01-01

    By inducing in a small temperature perturbation in a plasma in a steady state one can determine the conductive and convective components of the heat flux, and the associated thermal diffusivity and convection velocity. The same can be done for the density, and in principle also other plasma paramete

  10. High-Resolution Seismic Velocity and Attenuation Models of Eastern Tibet and Adjacent Regions (Post Print)

    Science.gov (United States)

    2012-06-04

    mantle in this region. Similarly, a high velocity and high Q block in southeastern Tibet around eastern Bangong-Nujiang Suture and Eastern Himalaya ...Similarly, a high velocity and high Q block in southeastern Tibet around eastern Bangong-Nujiang Suture and Eastern Himalaya Syntaxis correlates well...underthrusting Indian plate. Azimuthal fast directions are consistent at all depths up to approximately 200 km, which suggests a vertical coherent

  11. Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

    DEFF Research Database (Denmark)

    Reeh, Niels; Mohr, Johan Jacob; Madsen, Søren Nørvang

    2003-01-01

    Non-steady-state vertical velocities of up to 5 m a(-1) exceed the vertical surface-parallel flow (SPF) components over much of the ablation area of Storstrommen, a large outlet glacier from the East Greenland ice sheet. Neglecting a contribution to the vertical velocity of this magnitude results......) or more. This indicates that the SPF assumption may be problematic also for glaciers in steady state. Here we derive the three-dimensional surface velocity distribution of Storstrommen by using the principle of mass conservation (MC) to combine InSAR measurements from ascending and descending satellite...... tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle...

  12. Streaming instability in negative ion plasma

    Science.gov (United States)

    Kumar, Ajith; Mathew, Vincent

    2017-09-01

    The streaming instability in an unmagnetized negative ion plasma has been studied by computational and theoretical methods. A one dimensional electrostatic Particle In Cell Simulation and fluid dynamical description of negative ion plasma showed that, if the positive ions are having a relative streaming velocity, four different wave modes corresponding to Langmuir wave, fast and slow ion waves and ion acoustic waves are produced. Below a critical wave number, instead of two distinct fast and slow ion waves, we observed a coupled wave mode. The value of the critical wave number is strongly determined by the ion streaming velocity. The thermal velocities of electrons and ions influence the growth rate of instability.

  13. Renormalized dissipation in plasmas with finite collisionality

    Energy Technology Data Exchange (ETDEWEB)

    Parker, S.E. [Princeton Plasma Physics Lab., NJ (United States); Carati, D. [Universite Libre de Bruxelles (Belgium). Service de Physique Statistique

    1995-05-01

    A nonlinear truncation procedure for Fourier-Hermite expansion of Boltzmann-type plasma equations is presented which eliminates fine velocity scale, taking into account its effect on coarser scales. The truncated system is then transformed back to (x, v) space which results in a renormalized Boltzmann equation. The resulting equation may allow for coarser velocity space resolution in kinetic simulations while reducing to the original Boltzmann equation when fine velocity scales are resolved. To illustrate the procedure, renormalized equations are derived for one dimensional electrostatic plasmas in which collisions are modeled by the Lenard-Bernstein operator.

  14. A VERTICAL 2-D NUMERICAL SIMULATION OF SUSPENDED SEDIMENT TRANSPORT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-xin; LIU Hua

    2007-01-01

    Numerical simulation of sediment transport and bed evolution has become an important technique in the sediment research. In this article, a numerical model of suspended sediment transport was proposed, which was established in the vertical coordinate for fitting the free surface and bottom. In the research of the sediment transport, the predominant factors were found to be the eddy diffusion, the settling velocity, the bed condition and so on. By the aid of the model in the article, the contribution of the Rouse parameter to the vertical profile of sediment concentration was clarified, which was identical to the theoretical results. In the comparison of the numerical results with laboratory data, the agreement between experimental data and numerical results was reached except for some data. And the possible reasons for the disagreement were discussed.

  15. Pressure Relations and Vertical Equilibrium in the Turbulent, Multiphase ISM

    CERN Document Server

    Koyama, H

    2008-01-01

    We use numerical simulations of turbulent, multiphase, self-gravitating gas orbiting in model disk galaxies to study the relationships among pressure, the vertical gas distribution, and the ratio of dense to diffuse gas. We show that the disk height and mean midplane pressure are consistent with effective hydrostatic equilibrium, provided that the turbulent vertical velocity dispersion and gas self-gravity are included. Mass-weighted pressures are an order of magnitude higher than the midplane pressure because self-gravity concentrates gas and increases the pressure in clouds. We also investigate the ratio Rmol=M(H2)/M(HI) for our simulations. Blitz and Rosolowsky (2006) showed that Rmol is proportional to the estimated midplane pressure. For model series in which the epicyclic frequency, kappa, and gas surface density, Sigma, are proportional, we recover the empirical relation. For other model series in which kappa and Sigma are independent, the midplane pressure and Rmol are not well correlated. We conclude...

  16. ISAL experiment documentation of vertical tail and OMS pods

    Science.gov (United States)

    1983-01-01

    Investigation of Space Transportation System (STS) Atmospheric Luminosities (ISAL) experiment documentation includes vertical tail and orbital maneuvering system (OMS) pods with surface glow against the blackness of space. This glowing scene was provided by a long duration exposure with a 35mm camera aimed toward the tail of the Earth-orbiting Challenger, Orbiter Vehicle (OV) 099. OV-099 was maneuvered to a 120-nautical-mile altitude and flown with open payload bay (PLB) in the velocity vector for the conducting of a test titled, 'Evaluation of Oxygen Interaction with Materials (EOIM)'. Atomic oxygen within the low orbital environment is known to be extremely reactive when in contact with solid surfaces. In the darkened area between the camera and the glowing OMS pods and vertical stabilizer are two trays of test materials.

  17. Pressure anisotropy and small spatial scales induced by velocity shear

    CERN Document Server

    Del Sarto, Daniele; Califano, Francesco

    2015-01-01

    Non-Maxwellian metaequilibria can exist in low-collisionality plasmas as evidenced by satellite and laboratory measurements. By including the full pressure tensor dynamics in a fluid plasma model, we show that a sheared velocity field can provide an effective mechanism that makes an initial isotropic state anisotropic and agyrotropic. We discuss how the propagation of magneto-elastic waves can affect the pressure tensor anisotropization and its spatial filamentation which are due to the action of both the magnetic field and flow strain tensor. We support this analysis by a numerical integration of the nonlinear equations describing the pressure tensor evolution.

  18. Neutrino Velocity and Neutrino Oscillations

    CERN Document Server

    Minakata, H

    2012-01-01

    We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $\

  19. Statistics of Centroids of Velocity

    CERN Document Server

    Esquivel, A

    2009-01-01

    We review the use of velocity centroids statistics to recover information of interstellar turbulence from observations. Velocity centroids have been used for a long time now to retrieve information about the scaling properties of the turbulent velocity field in the interstellar medium. We show that, while they are useful to study subsonic turbulence, they do not trace the statistics of velocity in supersonic turbulence, because they are highly influenced by fluctuations of density. We show also that for sub-Alfv\\'enic turbulence (both supersonic and subsonic) two-point statistics (e.g. correlation functions or power-spectra) are anisotropic. This anisotropy can be used to determine the direction of the mean magnetic field projected in the plane of the sky.

  20. Intermittency and velocity fluctuations in hopper flows prone to clogging

    Science.gov (United States)

    Thomas, C. C.; Durian, D. J.

    2016-08-01

    We study experimentally the dynamics of granular media in a discharging hopper. In such flows, there often appears to be a critical outlet size Dc such that the flow never clogs for D >Dc . We report on the time-averaged velocity distributions, as well as temporal intermittency in the ensemble-averaged velocity of grains in a viewing window, for both D Dc , near and far from the outlet. We characterize the velocity distributions by the standard deviation and the skewness of the distribution of vertical velocities. We propose a measure for intermittency based on the two-sample Kolmogorov-Smirnov DKS statistic for the velocity distributions as a function of time. We find that there is no discontinuity or kink in these various measures as a function of hole size. This result supports the proposition that there is no well-defined Dc and that clogging is always possible. Furthermore, the intermittency time scale of the flow is set by the speed of the grains at the hopper exit. This latter finding is consistent with a model of clogging as the independent sampling for stable configurations at the exit with a rate set by the exiting grain speed [C. C. Thomas and D. J. Durian, Phys. Rev. Lett. 114, 178001 (2015), 10.1103/PhysRevLett.114.178001].