An introduction to the theory of plasma turbulence
Tsytovich, V N
1972-01-01
An Introduction to the Theory of Plasma Turbulence is a collection of lectures given by the author at Culham laboratory. The book deals with developments on the theory of plasma turbulence. The author describes plasma properties in the turbulent regions as mostly non-linear in nature, and notes that these properties can be regarded as a universal spectrum independent of any type of instability. The text then discusses the general problems of the theory of plasma turbulence. The author also shows that elementary excitation of """"dressed"""" particles have a finite lifetime associated with non
Resonance broadening modification of weak plasma turbulence theory
Energy Technology Data Exchange (ETDEWEB)
Hanssen, A. (Max-Planck-Inst. fuer Aeronomie, Katlenburg-Lindau (West Germany))
1991-02-01
The author examines the effects on energy spectra of weak Langmuir turbulence when he includes a nonlinear damping due to the perturbation of electron orbits. The physical mechanism under consideration is usually known as a resonance broadening effect. The calculations show that the inclusion of this additional damping reduces the number of cascades predicted from weak turbulence theory for waves detectable with the EISCAT UHF (933 MHz) radar in Tromso, Norway, during RF modification of the ionospheric plasma.
Toward the Theory of Turbulence in Magnetized Plasmas
Energy Technology Data Exchange (ETDEWEB)
Boldyrev, Stanislav [University of Wisconsin - Madison
2013-07-26
The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.
Turbulence theories and modelling of fluids and plasmas
Energy Technology Data Exchange (ETDEWEB)
Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2001-04-01
Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)
Turbulence theories and modelling of fluids and plasmas
Energy Technology Data Exchange (ETDEWEB)
Yoshizawa, Akira; Yokio, Nobumitsu [Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Itoh, Sanae-I [Research Institute for Applied Mechanics, Kyushu University, 87, Kasuga 816-8580 (Japan); Itoh, Kimitaka [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)
2001-03-01
Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is placed on understanding of effects on turbulence characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)
Energy Technology Data Exchange (ETDEWEB)
Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.
Plasma instabilities and turbulence in non-Abelian gauge theories
Energy Technology Data Exchange (ETDEWEB)
Scheffler, Sebastian Herwig Juergen
2010-02-17
Several aspects of the thermalisation process in non-Abelian gauge theories are investigated. Both numerical simulations in the classical statistical approximation and analytical computations in the framework of the two-particle-irreducible effective action are carried out and their results are compared to each other. The physical quantities of central importance are the correlation functions of the gauge field in Coulomb and temporal axial gauge as well as the gauge invariant energy-momentum tensor. Following a general introduction, the theoretical framework of the ensuing investigations is outlined. In doing so, the range of validity of the employed approximation schemes is discussed as well. The first main part of the thesis is concerned with the early stage of the thermalisation process where particular emphasis is on the role of plasma instabilities. These investigations are relevant to the phenomenological understanding of present heavy ion collision experiments. First, an ensemble of initial conditions motivated by the ''colour glass condensate'' is developed which captures characteristic properties of the plasma created in heavy ion collisions. Here, the strong anisotropy and the large occupation numbers of low-momentum degrees of freedom are to be highlighted. Numerical calculations demonstrate the occurrence of two kinds of instabilities. Primary instabilities result from the specific initial conditions. Secondary instabilities are caused by nonlinear fluctuation effects of the preceding primary instabilities. The time scale associated with the instabilities is of order 1 fm/c. It is shown that the plasma instabilities isotropize the initially strongly anisotropic ensemble in the domain of low momenta (
Theory of self-sustained turbulence in confined plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi
1996-02-01
This article overviews some aspect of the recent theoretical activities in Japan on the problem of turbulent transport in confined plasmas. The method of self-sustained turbulence is discussed. The process of the renormalization is shown and the turbulent Prandtl number is introduced. Nonlinear destabilization by the electron momentum diffusion is explained. The nonlinear eigenmode equation is derived for the dressed-test-mode for the inhomogeneous plasma in the shear magnetic field. The eigenvalue equation is solved, and the least stable mode determines the anomalous transport coefficient. Formula of thermal conductivity is presented for the system of bad average magnetic curvature (current diffusive interchange mode (CDIM) turbulence) and that for the average good magnetic curvature (current diffusive ballooning mode (CDBM) turbulence). The transport coefficient, scale length of fluctuations and fluctuation level are shown to be the increasing function of the pressure gradient. Verification by use of the nonlinear simulation is shown. The bifurcation of the electric field and improved confinement is addressed, in order to explain the H-mode physics. Improved confinement and the dynamics such as ELMs are explained. Application to the transport analysis of tokamaks is also presented, including the explanations of the L-mode confinement, internal transport barrier as well as the role of current profile control. (author). 102 refs.
Energy Technology Data Exchange (ETDEWEB)
Krommes, J.A.
2000-01-18
Recent results and future challenges in the systematic analytical description of plasma turbulence are described. First, the importance of statistical realizability is stressed, and the development and successes of the Realizable Markovian Closure are briefly reviewed. Next, submarginal turbulence (linearly stable but nonlinearly self-sustained fluctuations) is considered and the relevance of nonlinear instability in neutral-fluid shear flows to submarginal turbulence in magnetized plasmas is discussed. For the Hasegawa-Wakatani equations, a self-consistency loop that leads to steady-state vortex regeneration in the presence of dissipation is demonstrated and a partial unification of recent work of Drake (for plasmas) and of Waleffe (for neutral fluids) is given. Brief remarks are made on the difficulties facing a quantitatively accurate statistical description of submarginal turbulence. Finally, possible connections between intermittency, submarginal turbulence, and self-organized criticality (SOC) are considered and outstanding questions are identified.
Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas. IV
Energy Technology Data Exchange (ETDEWEB)
Itoh, Sanae-I.; Itoh, Kimitaka [Max-Planck-Institut fuer Plasmaphysik, Garching bei Muenchen (Germany)
2000-02-01
A statistical theory of nonlinear-nonequilibrium plasma state with strongly developed turbulence and with strong inhomogeneity of the system has been developed. A Fokker-Planck equation for the probability distribution function of the magnitude of turbulence is deduced. In the statistical description, both the contributions of thermal excitation and turbulence are kept. From the Fokker-Planck equation, the transition probability between the thermal fluctuation and turbulent fluctuation is derived. With respect to the turbulent fluctuations, the coherent part to a certain test mode is renormalized as the drag to the test mode, and the rest, the incoherent part, is considered to be a random noise. The renormalized operator includes the effect of nonlinear destabilization as well as the decorrelation by turbulent fluctuations. The equilibrium distribution function describes the thermal fluctuation, self-sustained turbulence and the hysteresis between them as a function of the plasma gradient. The plasma inhomogeneity is the controlling parameter that governs time turbulence. The formula of transition probability recovers the Arrhenius law in the thermodynamical equilibrium limit. In the presence of self-noise, the transition probability deviates form the exponential law and provides a power law. Application is made to the submarginal interchange mode turbulence, being induced by the turbulent current-diffusivity, in inhomogeneous plasmas. The power law dependence of the transition probability is obtained on the distance between the pressure gradient and the critical gradient for linear instability. Thus a new type of critical exponent is explicitly deduced in the phenomena of subcritical excitation of turbulence. The method provides an extension of the nonequilibrium statistical physics to the far-nonequilibrium states. (author)
Krommes, John A.
2015-12-01
> In honour of the 50th anniversary of the influential review/monograph on plasma turbulence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock on resonance-broadening theory, an introductory tutorial is given about some highlights of the statistical-dynamical description of turbulent plasmas and fluids, including the ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric response. The statistical closure problem is introduced. Incoherent noise and coherent damping are illustrated with a solvable model of passive advection. Self-consistency introduces turbulent polarization effects that are described by the dielectric function . Dupree's method of using to estimate the saturation level of turbulence is described; then it is explained why a more complete theory that includes nonlinear noise is required. The general theory is best formulated in terms of Dyson equations for the covariance and an infinitesimal response function , which subsumes . An important example is the direct-interaction approximation (DIA). It is shown how to use Novikov's theorem to develop an -space approach to the DIA that is complementary to the original -space approach of Kraichnan. A dielectric function is defined for arbitrary quadratically nonlinear systems, including the Navier-Stokes equation, and an algorithm for determining the form of in the DIA is sketched. The independent insights of Kadomtsev and Kraichnan about the problem of the DIA with random Galilean invariance are described. The mixing-length formula for drift-wave saturation is discussed in the context of closures that include nonlinear noise (shielded by ). The role of in the calculation of the symmetry-breaking (zonostrophic) instability of homogeneous turbulence to the generation of inhomogeneous mean flows is addressed. The second-order cumulant expansion and the stochastic structural stability theory are also discussed in that context. Various historical
Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas. III
Energy Technology Data Exchange (ETDEWEB)
Itoh, Sanae-I.; Itoh, Kimitaka [Max-Planck-Institut fuer Plasmaphysik, Garching bei Muenchen (Germany)
2000-02-01
A statistical theory of nonlinear-nonequilibrium plasma state with strongly developed turbulence and with strong inhomogeneity of the system has been developed. A unified theory for both the thermally excited fluctuations and the strongly turbulent fluctuations is presented. With respect to the turbulent fluctuations, the coherent part to a certain test mode is renormalized as the drag to the test mode, and the rest, the incoherent part, is considered to be a random noise. The renormalized operator includes the effect of nonlinear destabilization as well as the decorrelation by turbulent fluctuations. Formulation is presented by deriving an Fokker-Planck equation for the probability distribution function. Equilibrium distribution function of fluctuations is obtained. Transition from the thermal fluctuations, that is governed by the Boltzmann distribution, to the turbulent fluctuation is clarified. The distribution function for the turbulent fluctuation has tail component and the width of which is in the same order as the mean fluctuation level itself. The Lyapunov function is constructed for the strongly turbulent plasma, and it is shown that an approach to a certain equilibrium distribution is assured. The result for the most probable state is expressed in terms of 'minimum renormalized dissipation rate', which is given by the ratio of the nonlinear decorrelation rate of fluctuation energy and the random excitation rate which includes both the thermal noise and turbulent self-noise effects. Application is made for example to the current-diffusive interchange mode turbulence in inhomogeneous plasmas. The applicability of this method covers plasma turbulences in much wider circumstance as well as neutral fluid turbulence. This method of analyzing strong turbulence has successfully extended the principles of statistical physics, i.e., Kubo-formula, Prigogine's principle of minimum entropy production rate. The condition for the turbulence transition is
Statistical theory and transition in multiple-scale-lengths turbulence in plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2001-06-01
The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but suppressed level. New type of turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. Finally, the nonlocal heat transport due to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length ones, is analyzed and the impact on transient transport problems is discussed. (author)
Statistical theory and transition in multiple-scale-length turbulence in plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Sanae-I [Research Institute for Applied Mechanics, Kyushu University, Kasuga (Japan); Itoh, Kimitaka [National Institute for Fusion Science, Toki (Japan)
2001-08-01
The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for the micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but at a suppressed level. A new type of turbulence transition is obtained, and a cusp-type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. The influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of the internal transport barrier. Finally, the non-local heat transport due to the long-wavelength fluctuations, which are noise-pumped by shorter-wavelength fluctuations, is analysed and its impact on transient transport problems is discussed. (author)
Turbulence measurements in fusion plasmas
Conway, G. D.
2008-12-01
Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence—the microscopic random fluctuations in particle density, temperature, potential and magnetic field—is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.
Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas. V
Energy Technology Data Exchange (ETDEWEB)
Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-10-01
A statistical theory of strong plasma turbulence in nonlinear-nonequilibrium state is extended. By use of the spectral decomposition method, the renormalized propagator is decomposed into the projection operators. The decomposition of fluctuation fields into the least stable branch and other branches is explicitly made. The extended fluctuation dissipation theorem is derived for each decomposed renormalized mode. The decorrelation rate, eddy damping rate, fluctuation level and correlation functions are obtained even in the case that the cross-correlation functions and auto-correlation functions are of the same order of magnitude. The Fokker-Planck equation is reformulated for fluctuation components of each branch. These results are generalization of the previous result. It is confirmed that the solutions, probability distribution function and related transition probability which have been obtained in previous analyses are found valid apart from a numerical coefficient of the order of unity. In order to show the wider applicability, a case of plasma turbulence which is described by the four-field reduced set of equations is also discussed. (author)
Turbulent transport in magnetized plasmas
Horton, Wendell
2012-01-01
This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.
Subcritical excitation of plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Itoh, K.; Itoh, S.; Yagi, M.; Fukuyama, A.
1996-01-01
Theory of current-diffusive interchange mode turbulence in plasmas is developed in the presence of collisional transport. Double-valued amplitude of stationary fluctuations is expressed in terms of the pressure gradient. The backward bifurcation is shown to appear near the linear stability boundary. The subcritical nature of the turbulence is explicitly illustrated. Critical pressure gradient at which the transition from collisional transport to the turbulent one is to occur is predicted. This provides a prototype of the transport theory for nonlinear-non-equilibrium systems. (author).
Subcritical excitation of plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Itoh, Sanae; Yagi, Masatoshi; Fukuyama, Atsushi
1996-09-01
Theory of current-diffusive interchange mode turbulence in plasmas in the presence of collisional transport is developed. Amplitude of stationary fluctuations is expressed in terms of the double-valued function of the pressure gradient. The backward bifurcation is shown to appear near the linear stability boundary. The subcritical nature of the turbulence is explicitly illustrated. The critical pressure gradient at which the transition from collisional transport to the turbulent one is to occur is predicted. This work provides a prototype of the transport theory for nonlinear-nonequilibrium systems. (author)
Scaling theory of relative diffusion of charged particles in a weakly magneto-turbulent plasma
Energy Technology Data Exchange (ETDEWEB)
Haida Wang (University of Science and Technology of China, Hefei, Anhui. Dept. of Modern Physics); Xiaoming Qui (Southwest Inst. of Physics, Leshan, SC (China))
1989-02-01
Stochastic motion of charged particles in a magneto-turbulent plasma is studied for the whole time region. A set of nonlinear differential equations for describing relative spatial diffusion of charged particles is derived and some explicit results are obtained in the case of a weak magnetic field. It is found that, for the diffusion in the present system there are some new and interesting properties which do not exist in an unmagnetized plasma. The clump effect is also discussed. (author).
Turbulent complex (dusty) plasma
Zhdanov, Sergey; Schwabe, Mierk
2017-04-01
As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.
Energy Technology Data Exchange (ETDEWEB)
Kolesnikov, R.A.; Krommes, J.A.
2005-09-22
The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.
Statistical turbulence theory and turbulence phenomenology
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
Scaling laws in magnetized plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Boldyrev, Stanislav [Univ. of Wisconsin, Madison, WI (United States)
2015-06-28
Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Recent developments in plasma turbulence and turbulent transport
Energy Technology Data Exchange (ETDEWEB)
Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)
1997-09-22
This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.
Conditional Eddies in Plasma Turbulence
DEFF Research Database (Denmark)
Johnsen, Helene; Pécseli, Hans; Trulsen, J.
1986-01-01
Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...
Turbulent thermalization of the Quark Gluon Plasma
Berges, J; Schlichting, S; Venugopalan, R
2013-01-01
Classical-statistical lattice gauge theory simulations are employed to demonstrate the existence of a nonthermal fixed point in the space-time evolution of heavy ion collisions at ultrarelativistic energies. After an initial transient regime dominated by plasma instabilities and free streaming, the ensuing overpopulated non-Abelian plasma exhibits the universal self-similar dynamics characteristic of wave turbulence observed in a large variety of physical systems across different energy scales.
Global scale-invariant dissipation in collisionless plasma turbulence.
Kiyani, K H; Chapman, S C; Khotyaintsev, Yu V; Dunlop, M W; Sahraoui, F
2009-08-14
A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The observations, spanning five decades in temporal scales, show a crossover from multifractal intermittent turbulence in the inertial range to non-Gaussian monoscaling in the dissipation range. This presents a strong observational constraint on theories of dissipation mechanisms in turbulent collisionless plasmas.
Conditional Eddies in Plasma Turbulence
DEFF Research Database (Denmark)
Johnsen, H.; Pécseli, H.L.; Trulsen, J.
1987-01-01
Low‐frequency electrostatic turbulence generated by the ion–ion beam instability was investigated experimentally in a double‐plasma device. Real time signals were recorded and examined by a conditional statistical analysis. Conditionally averaged potential distributions reveal the formation...... and propagation of structures with a relatively long lifetime. Various methods for making a conditional analysis are discussed and compared. The results are discussed with reference to ion phase space vortices and clump formation in collisionless plasmas....
Generalized Heisenberg theory of turbulence
Uberoi, M. S.; Narain, J. P.
1974-01-01
Solutions of the generalized theory are obtained which are consistent with the previous work on energy transfer measurements. They also agree with the measurements of turbulent energy spectrum for wave numbers in the universal equilibrium range.
Energy Technology Data Exchange (ETDEWEB)
Bershadskii, A.G.
1985-06-01
An exact solution for the nonlinear problem of the spectral energy function of a homogeneous turbulence is derived under the assumption that energy transfer under the effect of inertial forces is determined mainly by the interactions among vortices whose wavenumbers are only slightly different from each other. The results are experimentally verified for turbulence behind grids. Similar problems are solved for MHD turbulence and for a nonstationary spectral energy function. It is shown that at the initial stage of degeneration, the spectral energy function is little influenced by the Stewart number; this agrees with experimental data for the damping of longitudinal velocity pulsations behind a grid in a longitudinal magnetic field. 15 references.
Theory of strong turbulence by renormalization
Tchen, C. M.
1981-01-01
The hydrodynamical equations of turbulent motions are inhomogeneous and nonlinear in their inertia and force terms and will generate a hierarchy. A kinetic method was developed to transform the hydrodynamic equations into a master equation governing the velocity distribution, as a function of the time, the position and the velocity as an independent variable. The master equation presents the advantage of being homogeneous and having fewer nonlinear terms and is therefore simpler for the investigation of closure. After the closure by means of a cascade scaling procedure, the kinetic equation is derived and possesses a memory which represents the nonMarkovian character of turbulence. The kinetic equation is transformed back to the hydrodynamical form to yield an energy balance in the cascade form. Normal and anomalous transports are analyzed. The theory is described for incompressible, compressible and plasma turbulence. Applications of the method to problems relating to sound generation and the propagation of light in a nonfrozen turbulence are considered.
Interpreting Power Anisotropy Measurements in Plasma Turbulence
Chen, C H K; Horbury, T S; Schekochihin, A A
2009-01-01
A relationship between power anisotropy and wavevector anisotropy in turbulent fluctuations is derived. This can be used to interpret plasma turbulence measurements, for example in the solar wind. If fluctuations are anisotropic in shape then the ion gyroscale break point in spectra in the directions parallel and perpendicular to the magnetic field would not occur at the same frequency, and similarly for the electron gyroscale break point. This is an important consideration when interpreting solar wind observations in terms of anisotropic turbulence theories. Model magnetic field power spectra are presented assuming a cascade of critically balanced Alfven waves in the inertial range and kinetic Alfven waves in the dissipation range. The variation of power anisotropy with scale is compared to existing solar wind measurements and the similarities and differences are discussed.
Turbulent thermal diffusion in strongly stratified turbulence: theory and experiments
Amir, G; Eidelman, A; Elperin, T; Kleeorin, N; Rogachevskii, I
2016-01-01
Turbulent thermal diffusion is a combined effect of the temperature stratified turbulence and inertia of small particles. It causes the appearance of a non-diffusive turbulent flux of particles in the direction of the turbulent heat flux. This non-diffusive turbulent flux of particles is proportional to the product of the mean particle number density and the effective velocity of inertial particles. The theory of this effect has been previously developed only for small temperature gradients and small Stokes numbers (Phys. Rev. Lett. {\\bf 76}, 224, 1996). In this study a generalized theory of turbulent thermal diffusion for arbitrary temperature gradients and Stokes numbers has been developed. The laboratory experiments in the oscillating grid turbulence and in the multi-fan produced turbulence have been performed to validate the theory of turbulent thermal diffusion in strongly stratified turbulent flows. It has been shown that the ratio of the effective velocity of inertial particles to the characteristic ve...
Strong plasma turbulence and anomalous diffusion in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Okuda, H.
1979-04-01
Plasma diffusion in the presence of strong turbulence has been studied by means of analytic theory and numerical simulations. First, diffusion and turbulent fluctuation spectrum in the presence of convective cells are studied using a two-dimensional guiding center model and a two-fluid model keeping the ion inertia. Second, particle diffusion associated with drift wave turbulence using full dynamic ions and Debye shielding electrons is considered.
Parallel plasma fluid turbulence calculations
Energy Technology Data Exchange (ETDEWEB)
Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.
1994-12-31
The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center`s CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated.
Turbulence introduction to theory and applications of turbulent flows
Westerweel, Jerry; Nieuwstadt, Frans T M
2016-01-01
This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.
Shear Viscosity of Turbulent Chiral Plasma
Kumar, Avdhesh; Das, Amita; Kaw, P K
2016-01-01
It is well known that the difference between the chemical potentials of left-handed and right-handed particles in a parity violating (chiral) plasma can lead to an instability. We show that the chiral instability may drive turbulent transport. Further we estimate the anomalous viscosity of chiral plasma arising from the enhanced collisionality due to turbulence.
Turbulence modelling of thermal plasma flows
Shigeta, Masaya
2016-12-01
This article presents a discussion of the ideas for modelling turbulent thermal plasma flows, reviewing the challenges, efforts, and state-of-the-art simulations. Demonstrative simulations are also performed to present the importance of numerical methods as well as physical models to express turbulent features. A large eddy simulation has been applied to turbulent thermal plasma flows to treat time-dependent and 3D motions of multi-scale eddies. Sub-grid scale models to be used should be able to express not only turbulent but also laminar states because both states co-exist in and around thermal plasmas which have large variations of density as well as transport properties under low Mach-number conditions. Suitable solution algorithms and differencing schemes must be chosen and combined appropriately to capture multi-scale eddies and steep gradients of temperature and chemical species, which are turbulent features of thermal plasma flows with locally variable Reynolds and Mach numbers. Several simulations using different methods under different conditions show commonly that high-temperature plasma regions exhibit less turbulent structures, with only large eddies, whereas low-temperature regions tend to be more turbulent, with numerous small eddies. These numerical results agree with both theoretical insight and photographs that show the characteristics of eddies. Results also show that a turbulence transition of a thermal plasma jet through a generation-breakup process of eddies in a torch is dominated by fluid dynamic instability after ejection rather than non-uniform or unsteady phenomena.
Energy Technology Data Exchange (ETDEWEB)
Garbet, X
2001-06-01
The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)
Statistical properties of transport in plasma turbulence
DEFF Research Database (Denmark)
Naulin, V.; Garcia, O.E.; Nielsen, A.H.;
2004-01-01
The statistical properties of the particle flux in different types of plasma turbulence models are numerically investigated using probability distribution functions (PDFs). The physics included in the models range from two-dimensional drift wave turbulence to three-dimensional MHD dynamics...
Boundary Plasma Turbulence Simulations for Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Xu, X; Umansky, M; Dudson, B; Snyder, P
2008-05-15
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
Transition in multiple-scale-lengths turbulence in plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2001-05-01
Statistical theory of strong turbulence in inhomogeneous plasmas is extended to the state where fluctuations with different scale lengths, micro and semi-micro modes, coexist. Their nonlinear interactions give several states of turbulence: in one state, the micro mode is excited while the semi-micro mode is quenched; in another state, the latter is excited while the micro mode is suppressed. A new turbulence transition with a hard bifurcation was obtained. A phase diagram was obtained. A new insight is given for the physics of internal transport barrier. (author)
Kinetic Alfven wave turbulence in space plasmas
Energy Technology Data Exchange (ETDEWEB)
Sharma, R.P. [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India); Kumar, Sachin, E-mail: dynamicalfven@gmail.co [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India)
2010-07-26
This work presents the derivation of nonlinear coupled equations for the evolution of solar wind turbulence. These equations are governing the coupled dynamics of kinetic Alfven wave and ion acoustic wave. Numerical simulation of these equations is also presented. The ponderomotive nonlinearity is incorporated in the wave dynamics. Filamentation of kinetic Alfven wave and the turbulent spectra are presented in intermediate-{beta} plasmas at heliocentric distances (0.3 AU{<=}r<1.0 AU). The growing filaments and steeper turbulent spectra (of power law k{sup -S}, 5/3{<=}S{<=}3) can be responsible for plasma heating and particle acceleration in solar wind.
Smolyakov, A. I.; Chapurin, O.; Frias, W.; Koshkarov, O.; Romadanov, I.; Tang, T.; Umansky, M.; Raitses, Y.; Kaganovich, I. D.; Lakhin, V. P.
2017-01-01
Partially-magnetized plasmas with magnetized electrons and non-magnetized ions are common in Hall thrusters for electric propulsion and magnetron material processing devices. These plasmas are usually in strongly non-equilibrium state due to presence of crossed electric and magnetic fields, inhomogeneities of plasma density, temperature, magnetic field and beams of accelerated ions. Free energy from these sources make such plasmas prone to various instabilities resulting in turbulence, anomalous transport, and appearance of coherent structures as found in experiments. This paper provides an overview of instabilities that exist in such plasmas. A nonlinear fluid model has been developed for description of the Simon-Hoh, lower-hybrid and ion-sound instabilities. The model also incorporates electron gyroviscosity describing the effects of finite electron temperature. The nonlinear fluid model has been implemented in the BOUT++ framework. The results of nonlinear simulations are presented demonstrating turbulence, anomalous current and tendency toward the formation of coherent structures.
Turbulent Equipartition Theory of Toroidal Momentum Pinch
Energy Technology Data Exchange (ETDEWEB)
T.S. Hahm, P.H. Diamond, O.D. Gurcan, and G. Rewaldt
2008-01-31
The mode-independet part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14,072302 (2007)] which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmi U|| R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustratd that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.
Turbulent equipartition theory of toroidal momentum pincha)
Hahm, T. S.; Diamond, P. H.; Gurcan, O. D.; Rewoldt, G.
2008-05-01
The mode-independent part of the magnetic curvature driven turbulent convective (TurCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14, 072302 (2007)], which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmiU∥R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms that exist in a simpler geometry.
Turbulence spreading in gyro-kinetic theory
Migliano, P.; Buchholz, R.; Grosshauser, S. R.; Hornsby, W. A.; Peeters, A. G.; Stauffert, O.
2016-01-01
In this letter a new operative definition for the turbulence intensity in connection with magnetized plasmas is given. In contrast to previous definitions the new definition satisfies a Fisher-Kolmogorov-Petrovskii-Piskunov type equation. Furthermore, explicit expressions for the turbulence intensity and the turbulence intensity flux, that allow for the first time direct numerical evaluation, are derived. A carefully designed numerical experiment for the case of a tokamak is performed to study the impact of turbulence spreading. The effective turbulence diffusion coefficient is measured to be smaller than the heat conduction coefficient and the turbulence spreading length is found to be of the order of the turbulence correlation length. The results show that turbulence spreading can play a role in the non-local flux gradient relation, or in the scaling of transport coefficients with the normalized Larmor radius, only over lengths scale of the order of the turbulence correlation length. A new turbulence convection mechanism, due to the drift connected with the magnetic field inhomogeneities, is described. The convective flux integrates to zero under the flux surface average unless there is an up-down asymmetry in the tubulence intensity. The latter asymmetry can be generated through a radial inhomogeneity or plasma rotation. It is shown that the turbulence convection can lead to a spreading of the order of the correlation length.
Energy transfer and dual cascade in kinetic magnetized plasma turbulence.
Plunk, G G; Tatsuno, T
2011-04-22
The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.
Turbulent transport and structural transition in confined plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi
1996-10-01
Theory of the far-nonequilibrium transport of plasmas is described. Analytic as well as simulation studies are developed. The subcritical nature of turbulence and the mechanism for self-sustaining are discussed. The transport coefficient is obtained. The pressure gradient is introduced as an order parameter, and the bifurcation from the collisional transport to the turbulent one is shown. The generation of the electric field and its influence on the turbulent transport are analyzed. The bifurcation of the radial electric field structure is addressed. The hysteresis appears in the flux-gradient relation. This bifurcation causes the multifold states in the plasma structure, driving the transition in transport coefficient or the self-generating oscillations in the flux. Structural formation and dynamics of plasma profiles are explained. (author)
Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma
Osman, K T; Hnat, B; Chapman, S C
2012-01-01
A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 AU. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are non-uniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3--4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.
Kinetic signatures and intermittent turbulence in the solar wind plasma.
Osman, K T; Matthaeus, W H; Hnat, B; Chapman, S C
2012-06-29
A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 A.U. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are nonuniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3-4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.
Global variation of meteor trail plasma turbulence
Directory of Open Access Journals (Sweden)
L. P. Dyrud
2011-12-01
Full Text Available We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere, will the resulting trail become plasma turbulent? What are the factors influencing the development of turbulence? and how do these trails vary on a global scale? Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars. Turbulence also influences the evolution of specular radar meteor trails; this fact is important for the inference of mesospheric temperatures from the trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and ionospheric plasma density have on the variability of meteor trail evolution and on the observation of non-specular meteor trails. We demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends for non-specular and specular meteor trails.
Turbulence evolution in MHD plasmas
Wisniewski, M; Spanier, F
2013-01-01
Turbulence in the interstellar medium has been an active field of research in the last decade. Numerical simulations are the tool of choice in most cases. But while there are a number of simulations on the market some questions have not been answered finally. In this paper we are going to examine the influence of compressible and incompressible driving on the evolution of turbulent spectra in a number of possible interstellar medium scenarios. We conclude that the driving not only has an influence on the ratio of compressible to incompressible component but also on the anisotropy of turbulence.
Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence
Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.
2017-02-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.
Influence of plasma turbulence on microwave propagation
Köhn, Alf; Leddy, Jarrod; Thomas, Matthew B; Vann, Roddy G L
2016-01-01
It is not fully understood how electromagnetic waves propagate through plasma fluctuations when the size of the fluctuations is comparable with the wavelength of the incident radiation. In this paper, the perturbing effect of a turbulent plasma density layer on a traversing microwave beam is simulated with full-wave simulations. The deterioration of the microwave beam is calculated as a function of the characteristic turbulence structure size, the turbulence amplitude, the depth of the interaction zone and the size of the waist of the incident beam. The maximum scattering is observed for a structure size on the order of half the vacuum wavelength. The scattering and beam broadening was found to increase linearly with the depth of the turbulence layer and quadratically with the fluctuation strength. Consequences for experiments and 3D effects are considered.
Mathematical and physical theory of turbulence
Cannon, John
2006-01-01
Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...
Origin and turbulence spreading of plasma blobs
Energy Technology Data Exchange (ETDEWEB)
Manz, P.; Birkenmeier, G.; Stroth, U. [Physik-Department E28, Technische Universität München, James-Franck. Str. 1, Garching (Germany); Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Ribeiro, T. T.; Scott, B. D.; Carralero, D.; Müller, S. H.; Müller, H. W.; Wolfrum, E. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Fuchert, G. [IJL, Université de Lorraine, CNRS (UMR 7198), BP 40239, Vandoeuvre-lès-Nancy (France)
2015-02-15
The formation of plasma blobs is studied by analyzing their trajectories in a gyrofluid simulation in the vicinity of the separatrix. Most blobs arise at the maximum radial electric field outside the separatrix. In general, blob generation is not bound to one particular radial position or instability. A simple model of turbulence spreading for the scrape-off layer is derived. The simulations show that the blob dynamics can be represented by turbulence spreading, which constitutes a substantial energy drive for far scrape-off layer turbulence and is a more suitable quantity to study blob generation compared to the skewness.
Strong Turbulence in Low-beta Plasmas
DEFF Research Database (Denmark)
Tchen, C. M.; Pécseli, Hans; Larsen, Søren Ejling
1980-01-01
An investigation of the spectral structure of turbulence in a plasma confined by a strong homogeneous magnetic field was made by means of a fluid description. The turbulent spectrum is divided into subranges. Mean gradients of velocity and density excite turbulent motions, and govern the production......-3/2 for the potential fluctuations in the production, coupling and inertia subranges, respectively. The coefficient of Bohm diffusion is reproduced, and its role in electrostatic coupling is derived. Comparison is made with measured power laws reported in the literature, from Q-devices, hot...
Spectral properties of electromagnetic turbulence in plasmas
Directory of Open Access Journals (Sweden)
D. Shaikh
2009-03-01
Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.
Neutrino oscillations in a turbulent plasma
Energy Technology Data Exchange (ETDEWEB)
Mendonça, J. T. [Instituto de Física, Universidade de São Paulo, São Paulo, SP, CEP 05508-090 Brazil and IPFN, Instituto Superior Técnico, 1049-001 Lisboa (Portugal); Haas, F. [Departamento de Física, Universidade Federal do Paraná, Curitiba PR, CEP 81531-990 (Brazil)
2013-07-15
A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.
Stochastic transition between turbulent branch and thermodynamic branch of an inhomogeneous plasma
Energy Technology Data Exchange (ETDEWEB)
Kawasaki, Mitsuhiro; Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2002-05-01
Transition phenomena between thermodynamic branch and turbulent branch in submarginal turbulent plasma are analyzed with statistical theory. Time-development of turbulent fluctuation is obtained by numerical simulations of Langevin equation which contains submarginal characteristics. Probability density functions and transition rates between two states are analyzed. Transition from turbulent branch to thermodynamic branch occurs in almost entire region between subcritical bifurcation point and linear stability boundary. (author)
The Zero Turbulence Manifold in Fusion Plasmas
Highcock, E G
2012-01-01
The transport of heat that results from turbulence is a major factor limiting the temperature gradient, and thus the performance, of fusion devices. We use nonlinear simulations to show that a toroidal equilibrium scale sheared flow can completely suppress the turbulence across a wide range of flow gradient and temperature gradient values. We demonstrate the existence of a bifurcation across this range whereby the plasma may transition from a low flow gradient and temperature gradient state to a higher flow gradient and temperature gra- dient state. We show further that the maximum temperature gradient that can be reached by such a transition is limited by the existence, at high flow gradient, of subcritical turbulence driven by the parallel velocity gradient (PVG). We use linear simulations and analytic calculations to examine the properties of the transiently growing modes which give rise to this subcritical turbulence, and conclude that there may be a critical value of the ratio of the PVG to the suppressi...
Hermes: Global plasma edge fluid turbulence simulations
Dudson, Ben
2016-01-01
The transport of heat and particles in the relatively collisional edge regions of magnetically confined plasmas is a scientifically challenging and technologically important problem. Understanding and predicting this transport requires the self-consistent evolution of plasma fluctuations, global profiles and flows, but the numerical tools capable of doing this in realistic (diverted) geometry are only now being developed. Here a 5-field reduced 2-fluid plasma model for the study of instabilities and turbulence in magnetised plasmas is presented, built on the BOUT++ framework. This cold ion model allows the evolution of global profiles, electric fields and flows on transport timescales, with flux-driven cross-field transport determined self-consistently by electromagnetic turbulence. Developments in the model formulation and numerical implementation are described, and simulations are performed in poloidally limited and diverted tokamak configurations.
The theory of gyrokinetic turbulence: A multiple-scales approach
Plunk, Gabriel G
2009-01-01
Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of magnetically confined fusion devices. The second project presents gyrokinetic secondary instability theory as a mechanism to bring about saturation of the basic instabilities that drive gyrokinetic turbulence. Emphasis is put on the ability for this analytic theory to predict basic properties of the nonlinear state, which can be applied to a mixing length phenomenology of transport. The final project is an application of the methods from inertial range understanding of fluid turbulence, to describe the stationary state of fully developed two-dimensional ...
Turbulent transport and structural transition in confined plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Itoh, Sanae-I; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Fukuyama, Atsushi [Okayama Univ. (Japan). School of Engineering
1997-05-01
The theory of far-nonequilibrium transport of plasmas is described. Analytic as well as simulation studies are developed. The subcritical nature coefficient is obtained. The pressure gradient is introduced as an order parameter, and the bifurcation from collisional to turbulent transport is shown. The generation of the electric field and its influence on the turbulent transport are analysed. The bifurcation of the radial electric field structure is addressed. Hysteresis appears in the flux-gradient relation. This bifurcation causes the multifold states in the plasma structure, driving the transition in the transport coefficient or the self-generating oscillations in the flux. The structural formation and dynamics of plasma profiles are explained. (Author).
Structure of nonlocality of plasma turbulence
Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team
2013-07-01
Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.
Explosive Particle Dispersion in Plasma Turbulence
Servidio, S; Matthaeus, W H; Burgess, D; Carbone, V; Veltri, P
2016-01-01
Particle dynamics are investigated in plasma turbulence, using self-consistent kinetic simulations, in two dimensions. In steady state, the trajectories of single protons and proton-pairs are studied, at different values of plasma "beta" (ratio between kinetic and magnetic pressure). For single-particle displacements, results are consistent with fluids and magnetic field line dynamics, where particles undergo normal diffusion for very long times, with higher "beta" being more diffusive. In an intermediate time range, with separations lying in the inertial range, particles experience an explosive dispersion in time, consistent with the Richardson prediction. These results, obtained for the first time with a self-consistent kinetic model, are relevant for astrophysical and laboratory plasmas, where turbulence is crucial for heating, mixing and acceleration processes.
Magnetic curvature effects on plasma interchange turbulence
Li, B.; Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.
2016-06-01
The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.
Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas
Energy Technology Data Exchange (ETDEWEB)
H. R. Strauss
2012-11-27
The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.
Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
John A. Krommes
2001-02-16
A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations
Guertler, Niels
2011-01-01
Turbulence driven zonal flows play an important role in fusion devices since they improve plasma confinement by limiting the level of anomalous transport. Current theories mostly focus on flow excitation but do not self-consistently describe the nearly stationary zonal flow turbulence equilibrium state. First-principles two-fluid turbulence studies are used to construct a Reynolds stress response functional from observations in turbulent states. This permits, for the first time, a reliable charting of zonal flow turbulence equilibria.
Turbulent dynamo in a collisionless plasma.
Rincon, François; Califano, Francesco; Schekochihin, Alexander A; Valentini, Francesco
2016-04-12
Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.
Causality detection and turbulence in fusion plasmas
van Milligen, B Ph; Ramisch, M; Estrada, T; Hidalgo, C; Alonso, A
2013-01-01
This work explores the potential of an information-theoretical causality detection method for unraveling the relation between fluctuating variables in complex nonlinear systems. The method is tested on some simple though nonlinear models, and guidelines for the choice of analysis parameters are established. Then, measurements from magnetically confined fusion plasmas are analyzed. The selected data bear relevance to the all-important spontaneous confinement transitions often observed in fusion plasmas, fundamental for the design of an economically attractive fusion reactor. It is shown how the present method is capable of clarifying the interaction between fluctuating quantities such as the turbulence amplitude, turbulent flux, and Zonal Flow amplitude, and uncovers several interactions that were missed by traditional methods.
Turbulent relaxation and meta-stable equilibrium states of an electron plasma
Rodgers, Douglas J.
A Malmberg-Penning electron trap allows for the experimental study of nearly ideal, two-dimensional (2D) inviscid (Euler) hydrodynamics. This is perhaps the simplest case of self organizing nonlinear turbulence, and is therefore a paradigm for dynamo theory, Taylor relaxation, selective decay and other nonlinear fluid processes. The dynamical relaxation of a pure electron plasma in the guiding-center-drift approximation is studied, comparing experiments, numerical simulations and statistical theories of weakly-dissipative 2D turbulence. The nonuniform metastable equilibrium states resulting from turbulent evolution are examined, and are well-described by a maximum entropy principle for constrained circulation, energy, and angular momentum. The turbulent decay of the system is also examined, and a similarity decay law is proposed which incorporates the substantial enstrophy trapped in the metastable equilibrium. This law approaches Batchelor's t-2 self-similar decay in the limit of strong turbulence, and is verified in turbulent evolution in the electron plasma experiment.
The theory of gyrokinetic turbulence: A multiple-scales approach
Plunk, Gabriel G.
2009-01-01
Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of magnetically confined fusion devi...
Magnetic field amplification in turbulent astrophysical plasmas
Federrath, Christoph
2016-01-01
Magnetic fields play an important role in astrophysical accretion discs, and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here I start by reviewing recent advances in the numerical and theoretical modelling of the 'turbulent dynamo', which may explain the origin of galactic and inter-galactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simu...
Transport Bifurcation in Plasma Interchange Turbulence
Li, Bo
2016-10-01
Transport bifurcation and mean shear flow generation in plasma interchange turbulence are explored with self-consistent two-fluid simulations in a flux-driven system with both closed and open field line regions. The nonlinear evolution of interchange modes shows the presence of two confinement regimes characterized by the low and high mean flow shear. By increasing the input heat flux above a certain threshold, large-amplitude oscillations in the turbulent and mean flow energy are induced. Both clockwise and counter-clockwise types of oscillations are found before the transition to the second regime. The fluctuation energy is decisively transferred to the mean flows by large-amplitude Reynolds power as turbulent intensity increases. Consequently, a transition to the second regime occurs, in which strong mean shear flows are generated in the plasma edge. The peak of the spectrum shifts to higher wavenumbers as the large-scale turbulent eddies are suppressed by the mean shear flow. The transition back to the first regime is then triggered by decreasing the input heat flux to a level much lower than the threshold for the forward transition, showing strong hysteresis. During the back transition, the mean flow decreases as the energy transfer process is reversed. This transport bifurcation, based on a field-line-averaged 2D model, has also been reproduced in our recent 3D simulations of resistive interchange turbulence, in which the ion and electron temperatures are separated and the parallel current is involved. Supported by the MOST of China Grant No. 2013GB112006, US DOE Contract No. DE-FC02-08ER54966, US DOE by LLNL under Contract DE-AC52-07NA2734.
A kinetic model of plasma turbulence
Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.
2015-01-01
A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature
Drake, D J; Howes, G G; Kletzing, C A; Skiff, F; Carter, T A; Auerbach, D W
2013-01-01
Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfven waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfven waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfven wave generated nonlinearly by a collision between counterpropagating Alfven waves.
Coherent structures in two-dimensional plasma turbulence
DEFF Research Database (Denmark)
Huld, T.; Nielsen, A.H.; Pécseli, H.L.;
1991-01-01
-band turbulent fluctuations is demonstrated by a conditional sampling technique. Depending on plasma parameters, the dominant structures can appear as monopole or multipole vortices, dipole vortices in particular. The importance of large structures for the turbulent plasma diffusion is discussed. A statistical...... analysis of the randomly varying plasma flux is presented....
Turbulent Boundary Layers - Experiments, Theory and Modelling
1980-01-01
DEVELOPMENT (ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD ) AGARD Conference Proceedings No.271 TURBULENT BOUNDARY LAYERS - EXPERIMENTS, THEORY AND...photographs of Figures 21 and 22. In this case, the photographs are taken with a single flash strobe and thus yield the instantaneous positions of the
Kinetic intermittency in magnetized plasma turbulence
Teaca, Bogdan; Told, Daniel; Jenko, Frank
2016-01-01
We employ magnetized plasma turbulence, described by a gyrokinetic formalism in an interval ranging from the end of the fluid scales to the electron gyroradius, to introduce the first study of kinetic intermittency, in which nonlinear structures formed directly in the distribution functions are analyzed by accounting for velocity space correlations generated by linear (Landau resonance) and nonlinear phase mixing. Electron structures are found to be strongly intermittent and dominated by linear phase mixing, while nonlinear phase mixing dominates the weakly intermittent ions. This is the first time spatial intermittency and linear phase mixing are shown to be self-consistently linked for the electrons and, as the magnetic field follows the intermittency of the electrons at small scales, explain why magnetic islands are places dominated by Landau damping in steady state turbulence.
Magnetohydrodynamic simulation of reconnection in turbulent astrophysical plasmas
Energy Technology Data Exchange (ETDEWEB)
Widmer, Fabien
2016-07-19
Turbulence is ubiquitous at large-Reynolds-number astrophysical plasmas like in the Solar corona. In such environments, the turbulence is thought to enhance the energy conversion rate by magnetic reconnection above the classical model predictions. Since turbulence cannot be simulated together with the large scale behaviour of the plasma, magnetic reconnection is studied through the average properties of turbulence. A Reynolds-averaged turbulence model is explored in which turbulence is self-sustained and -generated by the large scales (mean-) field inhomogeneities. Employing that model, the influence of turbulence is investigated by large-scale MHD numerical simulations solving evolution equations of the energy and cross-helicity of the turbulence together with the MHD equations. Magnetic reconnection is found to be either rapidly enhanced or suppressed by turbulence depending on the turbulence timescale. If the turbulence timescale is self-consistently calculated, reconnection is always strongly enhanced. Since the solar corona bears strong guide magnetic fields perpendicular to the reconnecting magnetic fields, the influences of a strong guide field on turbulent reconnection is separately investigated. A slow down of reconnection, obtained in the presence of a finite guide field, can be understood by a finite residual helicity working against the enhancement of reconnection by the turbulence. The influence of turbulence on magnetic reconnection is further studied by means of high resolution simulations of plasmoid-unstable current sheets. These simulations revealed the importance of turbulence for reaching fast reconnection.
The Quasilinear Premise for the Modeling of Plasma Turbulence
Howes, Gregory G; TenBarge, Jason M
2014-01-01
The quasilinear premise is a hypothesis for the modeling of plasma turbulence in which the turbulent fluctuations are represented by a superposition of randomly-phased linear wave modes, and energy is transferred among these wave modes via nonlinear interactions. We define specifically what constitutes the quasilinear premise, and present a range of theoretical arguments in support of the relevance of linear wave properties even in a strongly turbulent plasma. We review evidence both in support of and in conflict with the quasilinear premise from numerical simulations and measurements of plasma turbulence in the solar wind. Although the question of the validity of the quasilinear premise remains to be settled, we suggest that the evidence largely supports the value of the quasilinear premise in modeling plasma turbulence and that its usefulness may also be judged by the insights gained from such an approach, with the ultimate goal to develop the capability to predict the evolution of any turbulent plasma syst...
Coherent structure and Intermittent Turbulence in the Solar Wind Plasma
Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar
2016-07-01
We analyze the coherent structures and intermittent turbulence in the solar wind plasma using measurements from the Wind spacecraft. Previously established novel wavelet and higher order statistics are used in this work. We analyze the wavelet power spectrum of various solar wind plasma parameters. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data. We analyze each wavelet power spectra for transient coherency, and global periodicities resulting from the superposition of repeating coherent structures. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. These results offer a new understanding of various processes in a turbulent regime. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field. Keywords: Wavelet Power Spectrum, Coherent structure and Solar wind plasma
The theory of gyrokinetic turbulence: A multiple-scales approach
Plunk, Gabriel Galad
Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics -- such as turbulence, universality, self-organization and dynamic criticality -- which are found in physical systems that are driven far from thermodynamic equilibrium. One such system is of particular importance, as it is central in the development of fusion energy -- this system is the turbulent plasma found in magnetically confined fusion device. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I present three projects, based on the work of me and my collaborators, which take a tour of different aspects and approaches to the gyrokinetic turbulence problem. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of Magnetically confined fusion devices. The results of this work include (1) the equations of evolution for the mean scale (equilibrium) density, temperature and magnetic field of the plasma, (2) a detailed Poynting's theorem for the energy balance and (3) the entropy balance equations. The second project presents gyrokinetic secondary instability theory as a mechanism to bring about saturation of the basic instabilities that drive gyrokinetic turbulence. Emphasis is put on the ability for this analytic theory to predict basic properties of the nonlinear state, which can be applied to a mixing length phenomenology of transport. The results of this work include (1) an integral equation for the calculation of the growth rate of the fully gyrokinetic secondary instability with finite Larmor radius (FLR) affects included exactly, (2) the demonstration of the robustness of the secondary instability at fine scales (krhoi for ion temperature gradient (ITG) turbulence and krhoe ≪ 1 for electron temperature
Validation metrics for turbulent plasma transport
Holland, C.
2016-06-01
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnostics to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.
Validation metrics for turbulent plasma transport
Energy Technology Data Exchange (ETDEWEB)
Holland, C., E-mail: chholland@ucsd.edu [Center for Energy Research, University of California, San Diego, La Jolla, California 92093-0417 (United States)
2016-06-15
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnostics to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.
Plasma Beta Dependence of Magnetic Compressibility in Solar Wind Turbulence
Chapman, S. C.; Hnat, B.; Kiyani, K. H.; Sahraoui, F.
2014-12-01
The turbulent signature of MHD scales in the near-Earth solar wind are known to be primarily incompressible which manifests itself in magnetic field fluctuation vector components to be aligned primarily perpendicular to the background magnetic field -- so-called "Variance Anisotropy". This, and other facts, have been seen as evidence for a majority Alfvenic turbulence cascade; with a small component (10%) of compressible fluctuations. When one approaches scales on the order of the ion-inertial length and the Larmor radius, this behaviour changes and it is now becoming increasingly evident that the spectral break at these scales is also accompanied by an increase in magnetic compressibility. This has been attributed to a phase change in the physics at these scales -- from fluid to kinetic -- and in particular to the dominant role of the Hall-effect at sub-ion scales. We will be presenting results from the Cluster mission to show how this increase in the compressibility is dependent on the ion plasma beta and what implications this has for the physics at sub-ion scales in the context of prominent theories and models for kinetic plasma turbulence.
Statistical theory of turbulent incompressible multimaterial flow
Energy Technology Data Exchange (ETDEWEB)
Kashiwa, B.
1987-10-01
Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of kappa-epsilon modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy kappa, and the rate of fluctuational energy dissipation epsilon, for each material. Hence a set of kappa and epsilon equations must be solved, together with mean mass and momentum conservation equations, for each material. Both kappa and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a
The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence
Howes, Gregory G
2016-01-01
Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfven waves, or strong Alfven wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear...
Transition to subcritical turbulence in a tokamak plasma
van Wyk, F; Schekochihin, A A; Roach, C M; Field, A R; Dorland, W
2016-01-01
Unstable perturbations driven by the pressure gradient and other sources of free energy in tokamak plasmas can grow exponentially and eventually saturate nonlinearly, leading to turbulence. Recent work has shown that in the presence of sheared flows, such systems can be subcritical. This means that all perturbations are linearly stable and a transition to a turbulent state only occurs if large enough initial perturbations undergo sufficient transient growth to allow nonlinear interaction. There is, however, currently very little known about a subcritical transition to turbulence in fusion-relevant plasmas. Here we use first-principles gyrokinetic simulations of a turbulent plasma in the outer core of the Mega-Ampere Spherical Tokamak (MAST) to demonstrate that the experimentally observed state is near the transition threshold, that the turbulence in this state is subcritical, and that transition to turbulence occurs via accumulation of very long-lived, intense, finite-amplitude coherent structures, which domi...
Anisotropy in solar wind plasma turbulence.
Oughton, S; Matthaeus, W H; Wan, M; Osman, K T
2015-05-13
A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters.
Interplay between fast ions and turbulence in magnetic fusion plasmas
Dumont, R. J.; Zarzoso, D.; Sarazin, Y.; Garbet, X.; Strugarek, A.; Abiteboul, J.; Cartier-Michaud, T.; Dif-Pradalier, G.; Ghendrih, Ph; Girardo, J.-B.; Grandgirard, V.; Latu, G.; Passeron, C.; Thomine, O.
2013-12-01
Evidence for the impact of energetic particles (EPs) on turbulence is given in this paper. Firstly, the excitation of electrostatic instabilities in linear gyrokinetic simulations performed with the global GYSELA code by introducing distribution functions typical of fast ions in tokamak plasmas is presented. The obtained mode is unambiguously characterized as an EGAM, i.e. a geodesic acoustic mode (GAM) excited by EPs. The influence of EGAMs on turbulence and associated transport is then analyzed by implementing a source adapted to the inclusion of fast particle populations in non-linear simulations. This source successfully excites EGAMs in the presence of turbulence, which leads to a drastic reduction of the turbulent transport. However, this reduction is only transient; it is followed by an increase of the turbulent activity, characterized by a complex interaction between the EGAMs and the turbulence. In the subsequent steady-state regime, turbulent transport appears to be modulated at the EGAM frequency.
Institute of Scientific and Technical Information of China (English)
Z. Lin; R.E. Waltz
2007-01-01
@@ Turbulent transport driven by plasma pressure gradients [Tangl978] is one of the most important scientific challenges in burning plasma experiments since the balance between turbulent transport and the self-heating by the fusion products (a-particles) determines the performance of a fusion reactor like ITER.
A dynamical model of plasma turbulence in the solar wind.
Howes, G G
2015-05-13
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.
Coherent vortical structures in two-dimensional plasma turbulence
DEFF Research Database (Denmark)
Pécseli, H.L.; Coutsias, E.A.; Huld, T.;
1992-01-01
A laboratory experiment was carried out in order to study the nonlinear saturated stage of the cross-field electrostatic Kelvin-Helmholtz instability in a strongly magnetized plasma. The presence of large vortex-like structures in a background of wide-band turbulent fluctuations was demonstrated...... simulations. The importance of the large scale structures for the turbulent plasma transport across magnetic field lines was analyzed in detail....
Magnetic turbulence in the plasma sheet
Vörös, Z; Nakamura, R; Runov, A; Zhang, T L; Eichelberger, H U; Treumann, R A; Georgescu, E; Balogh, A; Klecker, B; R`eme, H
2004-01-01
Small-scale magnetic turbulence observed by the Cluster spacecraft in the plasma sheet is investigated by means of a wavelet estimator suitable for detecting distinct scaling characteristics even in noisy measurements. The spectral estimators used for this purpose are affected by a frequency dependent bias. The variances of the wavelet coefficients, however, match the power-law shaped spectra, which makes the wavelet estimator essentially unbiased. These scaling characteristics of the magnetic field data appear to be essentially non-steady and intermittent. The scaling properties of bursty bulk flow (BBF) and non-BBF associated magnetic fluctuations are analysed with the aim of understanding processes of energy transfer between scales. Small-scale ($\\sim 0.08-0.3$ s) magnetic fluctuations having the same scaling index $\\alpha \\sim 2.6$ as the large-scale ($\\sim 0.7-5$ s) magnetic fluctuations occur during BBF-associated periods. During non-BBF associated periods the energy transfer to small scales is absent, ...
Exploring Plasma Turbulence in the Kronian Magnetosheath Using Cassini Data
Hadid, L.; Sahraoui, F.; Kiyani, K. H.; Modolo, R.; Retino, A.; Canu, P.; Masters, A.; Dougherty, M. K.
2014-12-01
The shocked solar wind plasma upstream of the bowshock forms the magnetosheath. Through this region energy, mass and momentum are transported from the solar wind into the planet's magnetosphere, playing a crucial role in the solar-planet interactions. Hence, the planets' magnetosheath present a high level of turbulence, with a rich variety of wave and stochastic phenomena. While the magnetic turbulence of the terrestrial magnetosheath has been extensively studied, not so much work has been done regarding the planets magnetosheaths. Therefore, and in order to expand our knowledge on plasma turbulence, we investigate here the main properties of the plasma turbulence in the magnetosheath of Saturn using the Cassini spacecraft data and compare it with the well-explored terrestrial solar wind turbulence. These properties include the magnetic field energy spectra, the magnetic compressibility and intermittency, at both MHD and kinetic scales. The analysis is based on in-situ data provided by the Fluxgate Magnetometer of the MAG instrument, which measures the magnetic field data with 32ms time resolution and the plasma data from the CAPS/IMS (Cassini Plasma Spectrometer) and the Electron Spectrometer (ELS), during 39 shock-crossings between 2004 and 2005. Similarities and differences were found between the different media, in particular about the nature of the turbulence and its scaling laws. These finding will be discussed along with theoretical implications on the modeling of space plasma.
Final Report on The Theory of Fusion Plasmas
Energy Technology Data Exchange (ETDEWEB)
Steven C. Cowley
2008-06-17
Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research -- some were funded under the grant.
Recent progress in astrophysical plasma turbulence from solar wind observations
Chen, C H K
2016-01-01
This paper summarises some of the recent progress that has been made in understanding astrophysical plasma turbulence in the solar wind, from in situ spacecraft observations. At large scales, where the turbulence is predominantly Alfvenic, measurements of critical balance, residual energy, and 3D structure are discussed, along with comparison to recent models of strong Alfvenic turbulence. At these scales, a few percent of the energy is also in compressive fluctuations, and their nature, anisotropy, and relation to the Alfvenic component is described. In the small scale kinetic range, below the ion gyroscale, the turbulence becomes predominantly kinetic Alfven in nature, and measurements of the spectra, anisotropy, and intermittency of this turbulence are discussed with respect to recent cascade models. One of the major remaining questions is how the turbulent energy is dissipated, and some recent work on this question, in addition to future space missions which will help to answer it, are briefly discussed.
TURBULENT RECONNECTION IN RELATIVISTIC PLASMAS AND EFFECTS OF COMPRESSIBILITY
Energy Technology Data Exchange (ETDEWEB)
Takamoto, Makoto [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Inoue, Tsuyoshi [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Lazarian, Alexandre, E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: tsuyoshi.inoue@nao.ac.jp, E-mail: alazarian@facstaff.wisc.edu [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)
2015-12-10
We report on the turbulence effects on magnetic reconnection in relativistic plasmas using three-dimensional relativistic resistive magnetohydrodynamics simulations. We found that the reconnection rate became independent of the plasma resistivity due to turbulence effects similarly to non-relativistic cases. We also found that compressible turbulence effects modified the turbulent reconnection rate predicted in non-relativistic incompressible plasmas; the reconnection rate saturates, and even decays, as the injected velocity approaches to the Alfvén velocity. Our results indicate that compressibility cannot be neglected when a compressible component becomes about half of the incompressible mode, occurring when the Alfvén Mach number reaches about 0.3. The obtained maximum reconnection rate is around 0.05–0.1, which will be able to reach around 0.1–0.2 if injection scales are comparable to the sheet length.
Nonlocal wave turbulence in non-Abelian plasmas
Mehtar-Tani, Yacine
2016-01-01
We investigate driven wave turbulence in non-Abelian plasmas, in the framework of kinetic theory where both elastic and inelastic processes are considered in the small angle approximation. The gluon spectrum, that forms in the presence of a steady source, is shown to be controlled by nonlocal interactions in momentum space, in contrast to the universal Kolmogorov-Zakharov spectra. Assuming strongly nonlocal interactions, we show that inelastic processes are dominant in the IR and cause a thermal bath to form below the forcing scale, as a result of a detailed balance between radiation and absorption of soft gluons by the hard ones. Above the forcing scale, the inelastic collision term reduces to an inhomogeneous diffusion-like equation yielding a spectrum that spreads to the UV as $t^{1/2}$, similarly to elastic processes. Due to nonlocal interactions the non-universal turbulent spectrum is not steady and flattens when time goes on toward the thermal distribution. This analysis is complemented by numerical sim...
Inertial-Range Kinetic Turbulence in Pressure-Anisotropic Astrophysical Plasmas
Kunz, M W; Chen, C H K; Abel, I G; Cowley, S C
2015-01-01
A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al. 2009) for pressure-anisotropic plasmas, allowing for species drifts---a situation routinely encountered in the solar wind and presumably ubiquitous in hot dilute astrophysical plasmas (e.g. intracluster medium). Two main objectives are achieved. First, in a non-Maxwellian plasma, the relationships between fluctuating fields (e.g., the Alfven ratio) are order-unity modified compared to the more commonly considered Maxwellian case, and so a quantitative theory is developed to support quantitative measurements now possible in the solar wind. The main physical feature of low-frequency plasma turbulence survives the generalisation to non-Maxwellian distributions: Alfvenic and compressive fluctuations are energetically decoupled, with the latter passively advected by the former; the...
Theory of gas discharge plasma
Smirnov, Boris M
2015-01-01
This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.
Coherent Structures in Numerically Simulated Plasma Turbulence
DEFF Research Database (Denmark)
Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.
1989-01-01
Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...
Theoretical study of inhomogeneous plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Yagi, Masatoshi; Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Fukuyama, Atsushi [Kyoto Univ. (Japan). Dept. of Nuclear Engineering
2000-07-01
A hierarchy of models, i.e., (1) a model with many degrees of freedom, (2) a model with intermediate degrees of freedom, (3) a model with a few degrees of freedom is considered to understand the nature of turbulence. Results obtained from models of different levels are compared and characteristics of the interchange mode turbulence such as chaotic nature, cascade and statistical expression are discussed. (author)
Model of strong stationary vortex turbulence in space plasmas
Directory of Open Access Journals (Sweden)
G. D. Aburjania
2009-01-01
Full Text Available This paper investigates the macroscopic consequences of nonlinear solitary vortex structures in magnetized space plasmas by developing theoretical model of plasma turbulence. Strongly localized vortex patterns contain trapped particles and, propagating in a medium, excite substantial density fluctuations and thus, intensify the energy, heat and mass transport processes, i.e., such vortices can form strong vortex turbulence. Turbulence is represented as an ensemble of strongly localized (and therefore weakly interacting vortices. Vortices with various amplitudes are randomly distributed in space (due to collisions. For their description, a statistical approach is applied. It is supposed that a stationary turbulent state is formed by balancing competing effects: spontaneous development of vortices due to nonlinear twisting of the perturbations' fronts, cascading of perturbations into short scales (direct spectral cascade and collisional or collisionless damping of the perturbations in the short-wave domain. In the inertial range, direct spectral cascade occurs through merging structures via collisions. It is shown that in the magneto-active plasmas, strong turbulence is generally anisotropic Turbulent modes mainly develop in the direction perpendicular to the local magnetic field. It is found that it is the compressibility of the local medium which primarily determines the character of the turbulent spectra: the strong vortex turbulence forms a power spectrum in wave number space. For example, a new spectrum of turbulent fluctuations in k^{−8/3} is derived which agrees with available experimental data. Within the framework of the developed model particle diffusion processes are also investigated. It is found that the interaction of structures with each other and particles causes anomalous diffusion in the medium. The effective coefficient of diffusion has a square root dependence on the stationary level of noise.
Coherent structures and transport in drift wave plasma turbulence
DEFF Research Database (Denmark)
Korsholm, Søren Bang
for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa- Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa......-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron......Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important...
On the statistical theory of turbulence
Heisenberg, W
1958-01-01
A study is made of the spectrum of isotropic turbulence with the aid of the customary method of Fourier analysis. The spectrum of the turbulent motion is derived to the smallest wave lengths, that is, into the laminar region, and correlation functions and pressure fluctuations are calculated. A comparison with experimental results is included. Finally, an attempt is made to derive the numerical value of a constant characteristic of the energy dissipation in isotropic turbulence.
Kinetic theory and turbulent discontinuities. [shock tube flow
Johnson, J. A., III; I, L.; Li, Y.; Ramaian, R.; Santigo, J. P.
1981-01-01
Shock tube discontinuities were used to test and extend a kinetic theory of turbulence. In shock wave and contact surface fluctuations, coherent phenomena were found which provide new support for the microscopic nonempirical approach to turbulent systems, especially those with boundary layer-like instabilities.
Turbulent Mixing Layer Control using Ns-DBD Plasma Actuators
Singh, Ashish; Little, Jesse
2016-11-01
A low speed turbulent mixing layer (Reθo =1282, U1 /U2 = 0 . 28 and U2 = 11 . 8 m / s) is subject to nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuation. The forcing frequency corresponds to a Strouhal number (St) of 0.032 which is the most amplified frequency based on stability theory. Flow response is studied as a function of the pulse energy, the energy input time scale (carrier frequency) and the duration of actuation (duty cycle). It is found that successful actuation requires a combination of forcing parameters. An evaluation of the forcing efficacy is achieved by examining different flow quantities such as momentum thickness, vorticity and velocity fluctuations. In accordance with past work, a dependence is found between the initial shear layer thickness and the energy coupled to the flow. More complex relationships are also revealed such as a limitation on the maximum pulse energy which yields control. Also, the pulse energy and the carrier frequency (inverse of period between successive pulses) are interdependent whereby an optimum exists between them and extreme values of either parameter is inconsonant with the control desired. These observations establish a rich and complex process behind ns-DBD plasma actuation. Air Force Office of Scientific Research (FA9550-12-1-0044).
3D electron fluid turbulence at nanoscales in dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Shaikh, Dastgeer [Center for Space Plasma and Aeronomy Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shukla, P K [Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)], E-mail: dastgeer@cspar.uah.edu, E-mail: ps@tp4.rub.de
2008-08-15
We have performed three-dimensional (3D) nonlinear fluid simulations of electron fluid turbulence at nanoscales in an unmagnetized warm dense plasma in which mode coupling between wave function and electrostatic (ES) potential associated with underlying electron plasma oscillations (EPOs) lead to nonlinear cascades in inertial range. While the wave function cascades towards smaller length scales, ES potential follows an inverse cascade. We find from our simulations that the quantum diffraction effect associated with a Bohm potential plays a critical role in determining the inertial range turbulent spectrum and the subsequent transport level exhibited by the 3D EPOs.
3D Electron Fluid Turbulence at Nanoscales in Dense Plasmas
Shaikh, Dastgeer
2008-01-01
We have performed three dimensional nonlinear fluid simulations of electron fluid turbulence at nanoscales in an unmagnetized warm dense plasma in which mode coupling between wave function and electrostatic potential associated with underlying electron plasma oscillations (EPOs) lead to nonlinear cascades in inertial range. While the wave function cascades towards smaller length scales, electrostatic potential follows an inverse cascade. We find from our simulations that quantum diffraction effect associated with a Bohm potential plays a critical role in determining the inertial range turbulent spectrum and the subsequent transport level exhibited by the 3D EPOs.
Local kinetic effects in two-dimensional plasma turbulence.
Servidio, S; Valentini, F; Califano, F; Veltri, P
2012-01-27
Using direct numerical simulations of a hybrid Vlasov-Maxwell model, kinetic processes are investigated in a two-dimensional turbulent plasma. In the turbulent regime, kinetic effects manifest through a deformation of the ion distribution function. These patterns of non-Maxwellian features are concentrated in space nearby regions of strong magnetic activity: the distribution function is modulated by the magnetic topology, and can elongate along or across the local magnetic field. These results open a new path on the study of kinetic processes such as heating, particle acceleration, and temperature anisotropy, commonly observed in astrophysical and laboratory plasmas.
Magnetohydrodynamic dynamo: global flow generation in plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Yokoi, Nobumitsu; Yoshizawa, Akira [Tokyo Univ. (Japan). Inst. of Industrial Science; Itoh, Kimitaka; Itoh, Sanae-I.
1999-07-01
Generation mechanism of the spontaneous plasma rotation observed in an improved confinement mode in tokamak's is examined from the viewpoint of the turbulent magnetohydrodynamic (MHD) dynamo. A dynamo model, where the concept of cross helicity (velocity/magnetic-field correlation) plays a key role, is applied to the reversed shear (RS) modes. The concave electric-current profile occurred in the RS modes is shown to be a cause of the global plasma rotation through a numerical simulation of the cross-helicity turbulence model. (author)
A comparison of weak-turbulence and PIC simulations of weak electron-beam plasma interaction
Ratcliffe, Heather; Rozenan, Mohammed B Che; Nakariakov, Valery
2014-01-01
Quasilinear theory has long been used to treat the problem of a weak electron beam interacting with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats resonant interactions of these Langmuir waves with other plasma wave modes, in particular ion-sound waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak damping limit, with a term describing ion-sound wave damping then added. In this paper we use the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of electron-ion temperature ratios. We find that in the cold ion limit the results agree well, but increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-sound wave damping rate. This may be important in, for example, the theory of solar radio bursts, where the spectrum of Langmuir waves is critical. Additionally we establish...
The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description
Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.
2017-09-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar
1982-12-31
expan- sion of a warm plasma; launching and propagation and decay of very large amplitude waves (8GK, solitons, etc.); thermal barriers (really...25.373.1981. ION-10N TWO-STREAM IN THERMAL BARRIERS : Vincent-lhonal,U.C.Berkeley. We present stu- dies or the eleclroTatic ion-ion two-stream instability as
1980-09-30
William Nevins L439 LLL (422-7032) Lecturers , UCB; Physicists -LLL Dr. William Fawley Guest, UCB; Physicist LLL L321 LLL (422-9272) Yu-Jiuan Chen, Douglas... MHD - Particle Codes." Three abstracts of papers prepared for the APS Division of Plasma Physics Meeting, November 10-14, 1980, at San Diego, follow
Suppression of phase mixing in drift-kinetic plasma turbulence
Parker, J T; Schekochihin, A A; Dellar, P J
2016-01-01
Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to "anti-phase-mixing" modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.
Scattering of radio frequency waves by turbulence in fusion plasmas
Ram, Abhay K.
2016-10-01
In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments and incoherent fluctuations due to turbulence are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on RF waves has not been quantified experimentally, there are telltale signs, arising from differences between results from simulations and from experiments, that fluctuations can modify the spectrum of RF waves. Any effect on RF waves in the scrape-off layer can have important experimental consequences. For example, electron cyclotron waves are expected to stabilize the deleterious neoclassical tearing mode (NTM) in ITER. Spectral and polarization changes due to scattering will modify the spatial location and profile of the current driven by the RF waves, thereby affecting the control of NTMs. Pioneering theoretical studies and complementary computer simulations have been pursued to elucidate the impact of fluctuations on RF waves. From the full complement of Maxwell's equations for cold, magnetized plasmas, it is shown that the Poynting flux in the wake of filaments develops spatial structure due to diffraction and shadowing. The uniformity of power flow into the plasma is affected by side-scattering, modifications to the wave spectrum, and coupling to plasma waves other than the incident RF wave. The Snell's law and the Fresnel equations have been reformulated within the context of magnetized plasmas. They are distinctly different from their counterparts in scalar dielectric media, and reveal new and important physical insight into the scattering of RF waves. The Snell's law and Fresnel equations are the basis for the Kirchhoff approximation necessary to determine properties of the scattered waves. Furthermore, this theory is also relevant for studying back
Zonal Flows and Turbulence in Fluids and Plasmas
Parker, Jeffrey B
2015-01-01
In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking `zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flow...
On the interaction of turbulence and flows in toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Stroth, U; Manz, P; Ramisch, M [Institut fuer Plasmaforschung, Universitaet Stuttgart, 70569 Stuttgart (Germany)
2011-02-15
In toroidally confined plasmas, background E x B flows, microturbulence and zonal flows constitute a tightly coupled dynamic system and the description of confinement transitions needs a self-consistent treatment of these players. The background radial electric field, linked to neoclassical ambipolar transport, has an impact on the interaction between zonal flows and turbulence by tilting and anisotropization of turbulent eddies. Zonal-flow drive is shown to be non-local in wavenumber space and is described as a straining-out process instead as a local inverse cascade. The straining-out process is also discussed as an option to explain turbulence suppression in sheared flows and could be the cause of predator-prey oscillations in the turbulence zonal-flow system.
RF wave propagation and scattering in turbulent tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Horton, W., E-mail: wendell.horton@gmail.com; Michoski, C. [Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78654 (United States); Peysson, Y.; Decker, J. [CEA, IRFM, 13108, Saint-Paul, Durance Cedex (France)
2015-12-10
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
Simultaneous Multi-angle Measurements of Plasma Turbulence at HAARP
Watanabe, Naomi; Golkowski, Mark; Sheerin, James; University of Colorado Denver Team
2013-10-01
We report the results from a recent series of experiments employing the HAARP HF transmitter to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) located at HAARP, the Super DARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Short pulse, low duty cycle experiments demonstrate control and suppression of artificial field-aligned irregularities (AFAI). This allows the isolation of ponderomotive plasma turbulence effects. For the first time, plasma line spectra measured simultaneously in different spots of the interaction region displayed marked but contemporaneous differences dependent on the aspect angle of the HF pump beam and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Line (OPL) spectra, rarely observed in past experiments, occurred with sufficient regularity for experimentation. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.
Dynamos and MHD theory of turbulence suppression
Energy Technology Data Exchange (ETDEWEB)
Yoshizawa, Akira [Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Itoh, Sanae-I [Research Institute for Applied Mechanics, Kyushu University, 87, Kasuga 810- 8580 (Japan); Itoh, Kimitaka [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yokoi, Nobumitsu [Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)
2004-03-01
Characteristics of electrically conducting media are reviewed from the macroscopic viewpoint based on mean-field magnetohydrodynamics, while being compared using the methodology and knowledge in fluid mechanics. The themes covered in this review range from the mechanism of generating stellar magnetic fields (dynamo) to transport properties in fusion. The primary concern here is to see the characteristics common to these apparently different phenomena, within the framework of the mean-field theory. Owing to the intrinsic limitation of the approach, the present discussions are limited more or less to specific aspects of phenomena. They are supplemented with reference to theoretical, numerical, and observational approaches intrinsic to each theme. In the description of dynamo phenomena, emphasis is laid on the cross helicity dynamo. Features common to stellar magnetic-field generation and the rotational-motion drive in toroidal plasmas are illustrated on this basis. (topical review)
Turbulence in laboratory and natural plasmas: Connecting the dots
Jenko, Frank
2015-11-01
It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.
Fusion Plasma Theory project summaries
Energy Technology Data Exchange (ETDEWEB)
1993-10-01
This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.
Role of Plasma Elongation on Turbulent Transport in Magnetically Confined Plasmas
Angelino, P.; Garbet, X.; Villard, L.; Bottino, A.; Jolliet, S.; Ghendrih, Ph.; Grandgirard, V.; McMillan, B. F.; Sarazin, Y.; Dif-Pradalier, G.; Tran, T. M.
2009-05-01
The theoretical study of plasma turbulence is of central importance to fusion research. Experimental evidence indicates that the confinement time results mainly from the turbulent transport of energy, the magnitude of which depends on the turbulent state resulting from nonlinear saturation mechanisms, in particular, the self-generation of coherent macroscopic structures and large scale flows. Plasma geometry has a strong impact on the structure and magnitude of these flows and also modifies the mode linear growth rates. Nonlinear global gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria show how plasma shape can control the turbulent transport. Results are best described in terms of an effective temperature gradient. With increasing plasma elongation, the nonlinear critical effective gradient is not modified while the stiffness of transport is decreasing.
Chaos control and taming of turbulence in plasma devices
DEFF Research Database (Denmark)
Klinger, T.; Schröder, C.; Block, D.;
2001-01-01
Chaos and turbulence are often considered as troublesome features of plasma devices. In the general framework of nonlinear dynamical systems, a number of strategies have been developed to achieve active control over complex temporal or spatio-temporal behavior. Many of these techniques apply to p...
Statistical characterization of turbulence in the boundary plasma of EAST
DEFF Research Database (Denmark)
Yan, Ning; Nielsen, Anders Henry; Xu, G.S.
2013-01-01
In Ohmic heated low confinement mode (L-mode) discharges, the intermittent statistical characteristics of turbulent fluctuations have been investigated in the edge and the scrape-off layer (SOL) plasma on EAST (the experimental advanced superconducting tokamak) by fast reciprocating Langmuir probe...
Drift wave turbulence in low-β plasmas
DEFF Research Database (Denmark)
Mikkelsen, Torben; Larsen, Søren Ejling; Pécseli, Hans
1983-01-01
Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms...
ECRH microwave beam broadening in the edge turbulent plasma
Energy Technology Data Exchange (ETDEWEB)
Sysoeva, E. V.; Gusakov, E. Z.; Popov, A. Yu. [Ioffe Institute, St. Petersburg, Russia and RL PAT SPbSPU, St. Petersburg (Russian Federation); Silva, F. da [Institute of Plasmas and Nuclear Fusion, IST, Lisbon (Portugal); Heuraux, S. [IJL UMR-7198 CNRS-Université de Lorraine, BP70239, 54506 Vandoeuvre Cedex (France)
2014-02-12
The influence of turbulent plasma density fluctuations on angular and spatial beam width is treated analytically in the framework of WKB based eikonal method. Reasonable agreement of analytical and numerical treatment results is demonstrated within the domain of quasi-optical approximation validity. Significant broadening of microwave beams is predicted for future ECRH experiments at ITER.
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of)
2016-07-15
The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find that the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.
Electrostatic fluctuations and turbulent plasma transport in low-β plasmas
DEFF Research Database (Denmark)
Nielsen, A.H.; Pécseli, H.L.; Juul Rasmussen, J.
1995-01-01
Low frequency electrostatic fluctuations are studied experimentally in a low-beta plasma, with particular attention to their importance for the anomalous plasma transport across magnetic field lines. The presence of large coherent structures in a turbulent background is demonstrated by a conditio......Low frequency electrostatic fluctuations are studied experimentally in a low-beta plasma, with particular attention to their importance for the anomalous plasma transport across magnetic field lines. The presence of large coherent structures in a turbulent background is demonstrated...
Strong Langmuir turbulence in Kappa distributed plasmas
Energy Technology Data Exchange (ETDEWEB)
Liu Sanqiu [Department of Physics and School of Materials Science and Engineering, Nanchang University, Nanchang, 330047 (China); Chen Hui [School of Materials Science and Engineering, Nanchang University, Nanchang 330047 (China)
2012-01-15
Superthermal electrons are often observed in space and astrophysics and can be appropriate modeled by the family of Kappa distribution functions. Taking the nonlinear wave-wave, wave-particle interactions and the effect of superthermal electrons into account, the strong Langmuir turbulence is investigated in kinetic regime. The modified Zakharov equations are obtained for the case of no damping or driving terms. On the basis of these equations, dynamics of collapse have been studied by the means of the general virial theorem, and the collapse thresholds which are strong modified by superthermal index {kappa}{sub e} are given.
On turbulent transport in burning plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Yagi, M.; Itoh, S.-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Fukuyama, A. [Kyoto Univ. (Japan). Dept. of Nuclear Engineering
2000-03-01
The change of the transport coefficient due to the fusion energy source is studied. The scale invariance property of the reduced set of equations is investigated in the presence of the self-heating term due to the fusion reaction. The pressure gradient as well as the fusion power are the free energy sources that dictate the turbulent transport. It is shown that the burning transport coefficient can have a form with much wider variety, and that the transport property could be different owing to the self-heating by the fusion reactions. (author)
Instability wave control in turbulent jet by plasma actuators
Kopiev, V. F.; Akishev, Y. S.; Belyaev, I. V.; Berezhetskaya, N. K.; Bityurin, V. A.; Faranosov, G. A.; Grushin, M. E.; Klimov, A. I.; Kopiev, V. A.; Kossyi, I. A.; Moralev, I. A.; Ostrikov, N. N.; Taktakishvili, M. I.; Trushkin, N. I.; Zaytsev, M. Yu
2014-12-01
Instability waves in the shear layer of turbulent jets are known to be a significant source of jet noise, which makes their suppression important for the aviation industry. In this study we apply plasma actuators in order to control instability waves in the shear layer of a turbulent air jet at atmospheric pressure. Three types of plasma actuators are studied: high-frequency dielectric barrier discharge, slipping surface discharge, and surface barrier corona discharge. Particle image velocimetry measurements of the shear layer demonstrate that the plasma actuators have control authority over instability waves and effectively suppress the instability waves artificially generated in the shear layer. It makes these actuators promising for application in active control systems for jet noise mitigation.
Plasma shaping effects on tokamak scrape-off layer turbulence
Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo
2017-03-01
The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\
Fractional Transport in Strongly Turbulent Plasmas
Isliker, Heinz; Vlahos, Loukas; Constantinescu, Dana
2017-07-01
We analyze statistically the energization of particles in a large scale environment of strong turbulence that is fragmented into a large number of distributed current filaments. The turbulent environment is generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on test-particle simulations, we estimate the transport coefficients in energy space for use in the classical Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights, and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the specific form of a fractional transport equation (FTE), we determine its parameters and the order of the fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high energy part of the simulation data very well. The procedure for determining the FTE parameters also makes clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP equation or a FTE is appropriate.
Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas
Predebon, I
2015-01-01
Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.
Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas
Directory of Open Access Journals (Sweden)
G. G. Howes
2009-03-01
Full Text Available The limitations of Hall MHD as a model for turbulence in weakly collisional plasmas are explored using quantitative comparisons to Vlasov-Maxwell kinetic theory over a wide range of parameter space. The validity of Hall MHD in the cold ion limit is shown, but spurious undamped wave modes exist in Hall MHD when the ion temperature is finite. It is argued that turbulence in the dissipation range of the solar wind must be one, or a mixture, of three electromagnetic wave modes: the parallel whistler, oblique whistler, or kinetic Alfvén waves. These modes are generally well described by Hall MHD. Determining the applicability of linear kinetic damping rates in turbulent plasmas requires a suite of fluid and kinetic nonlinear numerical simulations. Contrasting fluid and kinetic simulations will also shed light on whether the presence of spurious wave modes alters the nonlinear couplings inherent in turbulence and will illuminate the turbulent dynamics and energy transfer in the regime of the characteristic ion kinetic scales.
Current filaments in turbulent magnetized plasmas
DEFF Research Database (Denmark)
Martines, E.; Vianello, N.; Sundkvist, D.;
2009-01-01
Direct measurements of current density perturbations associated with non-linear phenomena in magnetized plasmas can be carried out using in situ magnetic measurements. In this paper we report such measurements for three different kinds of phenomena. Current density fluctuations in the edge density...... gradient region of a fusion plasma confined in reversed field pinch configuration and in a density gradient region in the Earth magnetosphere are measured and compared, showing that in both environments they can be attributed to drift-Alfvén vortices. Current structures associated with reconnection events...
Fractal tracer distributions in turbulent field theories
DEFF Research Database (Denmark)
Hansen, J. Lundbek; Bohr, Tomas
1998-01-01
We study the motion of passive tracers in a two-dimensional turbulent velocity field generated by the Kuramoto-Sivashinsky equation. By varying the direction of the velocity-vector with respect to the field-gradient we can continuously vary the two Lyapunov exponents for the particle motion and t...
A basic plasma test for gyrokinetics: GDC turbulence in LAPD
Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.
2017-02-01
Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.
Turbulent transport of alpha particles in tokamak plasmas
Croitoru, A.; Palade, D. I.; Vlad, M.; Spineanu, F.
2017-03-01
We investigate the \\boldsymbol{E}× \\boldsymbol{B} diffusion of fusion born α particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron mode (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the α particles. According to our results, significant turbulent transport of the α particles can appear only at energies of the order of 100 KeV. We determine the corresponding conditions.
The Turbulent Dynamo in Highly Compressible Supersonic Plasmas
Federrath, Christoph; Bovino, Stefano; Schleicher, Dominik R G
2014-01-01
The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly-compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early Universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024^3 cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = nu/eta = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm >= 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm_crit = 129 (+43, -31), showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present a...
Analysis of chaos in plasma turbulence
DEFF Research Database (Denmark)
Pedersen, T.S.; Michelsen, Poul; Juul Rasmussen, J.
1996-01-01
A two-dimensional slab model for resistive drift waves in plasmas consisting of two coupled nonlinear partial differential equations for the density perturbation n and the electrostatic potential perturbation phi is investigated. The drift waves are linearly unstable, and a quasi...
New Theories on Boundary Layer Transition and Turbulence Formation
Directory of Open Access Journals (Sweden)
Chaoqun Liu
2012-01-01
Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.
Altitude characteristics of plasma turbulence excited with the Tromso superheater
Energy Technology Data Exchange (ETDEWEB)
Djuth, F.T.; Elder, J.H. (Geospace Research Inc., El Segundo, CA (United States)); Stubbe, P.; Kohl, H. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany)); Sulzer, M.P. (Arecibo Observatory (Puerto Rico)); Rietveld, M.T. (EISCAT Scientific Association, Ramfjordbotn (Norway))
1994-01-01
Langmuir/ion turbulence excited with the upgraded high-power (1.2-GW effective radiated power) HF heating facility at Tromso, Norway, has been recently studied with the European Incoherent Scatter VHF and UHF incoherent scatter radars. In this report the authors focus on the altitudinal development of the turbulence observed at the highest HF power levels available. Quite remarkably, the observed plasma turbulence plunges downward in altitude over timescales of tens of seconds following HF beam turn-on; the bottom altitude is generally reached after [approximately]30 s. This phenomenon has a well-defined HF power threshold. It is most likely caused by changes in the electron density profile brought about by HF heating of the electron gas. If this is the case, then the heat source must be nonlinearly dependent on HF power. Overall, the characteristics of the Tromso turbulence are quite distinctive when compared to similar high-resolution measurements made at Arecibo Observatory, Puerto Rico. After HF transmissions have been made for tens of seconds at Tromso, billowing altitude structures are often seen, in sharp contrast to layers of turbulence observed at Arecibo. 17 refs., 3 figs.
Energy Technology Data Exchange (ETDEWEB)
Dubuit, N
2006-10-15
This work deals with the transport of impurities in magnetically confined thermonuclear plasmas. The accumulation of impurities in the core of the plasma would imply dramatic losses of energy that may lead to the extinction of the plasma. On the opposite, the injection of impurities in the plasma edge is considered as an efficient means to extract heat without damaging the first wall. The balance between these 2 contradictory constraints requires an accurate knowledge of the impurity transport inside the plasma. The effect of turbulence, the main transport mechanism for impurities is therefore a major issue. In this work, the complete formula of a turbulent flow of impurities for a given fluctuation spectrum has been inferred. The origin and features of the main accumulation processes have been identified. The main effect comes from the compressibility of the electrical shift speed in a plane perpendicular to the magnetic field. This compressibility appears to be linked to the curvature of the magnetic field. A less important effect is a thermal-diffusion process that is inversely proportional to the number of charges and then disappears for most type of impurities except the lightest. This effect implies an impurity flux proportional to the temperature gradient and its direction can change according to the average speed of fluctuations. A new version of the turbulence code TRB has been developed. This new version allows the constraints of the turbulence not by the gradients but by the flux which is more realistic. The importance of the processes described above has been confirmed by a comparison between calculation and experimental data from Tore-supra and the Jet tokamak. The prevailing role of the curvature of the magnetic field in the transport impurity is highlighted. (A.C.)
Coherent structures and transport in drift wave plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Bang Korsholm, S.
2011-12-15
Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)
Yoon, Peter H.
2015-09-01
A previous paper [P. H. Yoon, "Kinetic theory of turbulence for parallel propagation revisited: Formal results," Phys. Plasmas 22, 082309 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field, in which the original work according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] was refined, following the paper by Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)]. The main finding involved the dimensional correction pertaining to discrete-particle effects in Yoon and Fang's theory. However, the final result was presented in terms of formal linear and nonlinear susceptibility response functions. In the present paper, the formal equations are explicitly written down for the case of low-to-intermediate frequency regime by making use of approximate forms for the response functions. The resulting equations are sufficiently concrete so that they can readily be solved by numerical means or analyzed by theoretical means. The derived set of equations describe nonlinear interactions of quasi-parallel modes whose frequency range covers the Alfvén wave range to ion-cyclotron mode, but is sufficiently lower than the electron cyclotron mode. The application of the present formalism may range from the nonlinear evolution of whistler anisotropy instability in the high-beta regime, and the nonlinear interaction of electrons with whistler-range turbulence.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Peter H., E-mail: yoonp@umd.edu [University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2015-09-15
A previous paper [P. H. Yoon, “Kinetic theory of turbulence for parallel propagation revisited: Formal results,” Phys. Plasmas 22, 082309 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field, in which the original work according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] was refined, following the paper by Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)]. The main finding involved the dimensional correction pertaining to discrete-particle effects in Yoon and Fang's theory. However, the final result was presented in terms of formal linear and nonlinear susceptibility response functions. In the present paper, the formal equations are explicitly written down for the case of low-to-intermediate frequency regime by making use of approximate forms for the response functions. The resulting equations are sufficiently concrete so that they can readily be solved by numerical means or analyzed by theoretical means. The derived set of equations describe nonlinear interactions of quasi-parallel modes whose frequency range covers the Alfvén wave range to ion-cyclotron mode, but is sufficiently lower than the electron cyclotron mode. The application of the present formalism may range from the nonlinear evolution of whistler anisotropy instability in the high-beta regime, and the nonlinear interaction of electrons with whistler-range turbulence.
Phase space structures in gyrokinetic simulations of fusion plasma turbulence
Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure
2014-10-01
Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference
A unified theory for wall turbulence via a symmetry approach
She, Zhen-Su; Chen, Xi; Hussain, Fazle
2014-11-01
First principle based prediction of mean flow quantities of wall-bounded turbulent flows (channel, pipe, and turbulent boundary layer - TBL) remains a great challenge from both physics and engineering standpoints. Physically, a non-equilibrium physical principle governing mean properties in turbulent flows is yet unknown. Here, we outline a recently developed symmetry-based approach which derives analytic expressions governing the mean velocity profile (MVP) from an innovative Lie-group analysis. In analogy to the order parameter in Landau's (1937) mean-field theory, we develop a concept of order functions which are assumed to satisfy a dilation group invariance - representing the effects of the wall on fluctuations - allowing us to construct a set of new invariant solutions of the (unclosed) mean momentum equation (MME). The theory is validated by recent experimental and numerical data, and identifies a universal bulk flow constant 0.45 for all three canonical wall-bounded flows, which asymptotes to the true Karman constant at large Reynolds numbers. The theory equally applies to the quantification of the effects of roughness (She et al. 2012), pressure gradient, compressibility, and buoyancy, and to the study of Reynolds-averaged Navier-Stokes (RANS) models, such as k- ωmodel, with significant improvement of the prediction accuracy. These results affirm that a simple and unified theory of wall-bounded turbulence is viable with appropriate symmetry considerations.
Detonability of white dwarf plasma: turbulence models at low densities
Fenn, D.; Plewa, T.
2017-06-01
We study the conditions required to produce self-sustained detonations in turbulent, carbon-oxygen degenerate plasma at low densities. We perform a series of three-dimensional hydrodynamic simulations of turbulence driven with various degrees of compressibility. The average conditions in the simulations are representative of models of merging binary white dwarfs. We find that material with very short ignition times is abundant in case turbulence is driven compressively. This material forms contiguous structures that persist over many ignition times, and that we identify as prospective detonation kernels. Detailed analysis of prospective kernels reveals that these objects are centrally condensed and their shape is characterized by low curvature, supportive of self-sustained detonations. The key characteristic of the newly proposed detonation mechanism is thus high degree of compressibility of turbulent drive. The simulated detonation kernels have sizes notably smaller than the spatial resolution of any white dwarf merger simulation performed to date. The resolution required to resolve kernels is 0.1 km. Our results indicate a high probability of detonations in such well-resolved simulations of carbon-oxygen white dwarf mergers. These simulations will likely produce detonations in systems of lower total mass, thus broadening the population of white dwarf binaries capable of producing Type Ia supernovae. Consequently, we expect a downward revision of the lower limit of the total merger mass that is capable of producing a prompt detonation. We review application of the new detonation mechanism to various explosion scenarios of single, Chandrasekhar-mass white dwarfs.
Turbulent energy transfer in electromagnetic turbulence: hints from a Reversed Field Pinch plasma
Vianello, N.; Bergsaker, H.
2005-10-01
The relationship between electromagnetic turbulence and sheared plasma flow in a Reversed Field Pinch is addressed. ExB sheared flows and turbulence at the edge tends to organize themeselves near marginal stability, suggesting an underlying energy exchange process between turbulence and mean flow. In MHD this process is well described through the quantity P which represents the energy transfer (per mass and time unit) from turbulence to mean fields. In the edge region of RFP configuration, where magnetic field is mainly poloidal and the mean ExB is consequently toroidal, the quantity P results: P =[ -ρμ0 + ]Vφr where Vφ is the mean ExB toroidal flow, ρ the mean mass density and b and v the fluctuations of velocity and magnetic field respectively. Both the radial profiles and the temporal evolution of P have been measured in the edge region of Extrap-T2R Reversed Field Pinch experiment. The results support the existence of oscillating energy exchange process between fluctuations and mean flow.
Diffusion of Energetic Electrons in Turbulent Plasmas of the Solar Wind
Volokitin, A. S.; Krafft, C.
2016-12-01
A method of calculation of the diffusion coefficients { D }(v) of particles in velocity space, based on the statistical analysis of the motion of a great number of test electrons, is proposed. In the case of Langmuir turbulence developing in plasmas with fluctuating density inhomogeneities such as the solar wind, simulations provide coefficients { D }(v) which mainly depend on the Langmuir wave spectra and agree well with the analytical predictions {{ D }}{th}(v) of the quasilinear theory of weak turbulence. Nevertheless, some noticeable differences exist with this theory: in the range of phase velocity of the short waves where the main part of the wave energy is concentrated, { D }(v) is noticeably smaller than {{ D }}{th}(v), due to the scattering, the reflection, and the focusing effects encountered by the Langmuir waves when they interact with the plasma density inhomogeneities. Moreover, the probability of large velocity jumps in the particles’ trajectories essentially exceeds the probability of a Gaussian distribution. These large jumps, which are connected with the waves’ transformation processes, modify the nature of the particle diffusion, which is no more classical. These higher order effects cause the discrepancies observed with the quasilinear theory, which does not take them into account in its perturbative approach. The solar wind plasmas, which present fluctuating density inhomogeneities of noticeable average levels, are a very good laboratory to study such diffusion processes, which can eventually influence significantly on the development of essential physical phenomena, as electromagnetic radio emissions by type III solar radio bursts, for example.
Strong Turbulence in Alkali Halide Negative Ion Plasmas
Sheehan, Daniel
1999-11-01
Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 Fusion 4, 91 (1978).
Nonlinear instability in simulations of Large Plasma Device turbulence
Friedman, B; Umansky, M V; Schaffner, D; Joseph, I
2013-01-01
Several simulations of turbulence in the Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Inst. 62, 2875 (1991)] are energetically analyzed and compared with each other and with the experiment. The simulations use the same model, but different axial boundary conditions. They employ either periodic, zero-value, zero-derivative, or sheath axial boundaries. The linear stability physics is different between the scenarios because the various boundary conditions allow the drift wave instability to access different axial structures, and the sheath boundary simulation contains a conducting wall mode instability which is just as unstable as the drift waves. Nevertheless, the turbulence in all the simulations is relatively similar because it is primarily driven by a robust nonlinear instability that is the same for all cases. The nonlinear instability preferentially drives $k_\\parallel = 0$ potential energy fluctuations, which then three-wave couple to $k_\\parallel \
Magnetorotational Turbulence and Dynamo in a Collisionless Plasma
Kunz, Matthew W; Quataert, Eliot
2016-01-01
We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disc. The kinetic magnetorotational instability grows from a subthermal magnetic field having zero net flux over the computational domain to generate self-sustained turbulence and outward angular-momentum transport. Significant Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is biased with respect to the magnetic-field direction and spatio-temporally variable. Energy spectra suggest an Alfv\\'en-wave cascade at large scales and a kinetic-Alfv\\'en-wave cascade at small scales, with strong small-scale density fluctuations and weak non-axisymmetric density waves. Ions undergo n...
Consistent theory of turbulent transport in two-dimensional magnetohydrodynamics.
Kim, Eun-jin
2006-03-03
A theory of turbulent transport is presented in two-dimensional magnetohydrodynamics with background shear and magnetic fields. We provide theoretical predictions for the transport of magnetic flux, momentum, and particles and turbulent intensities, which show stronger reduction compared with the hydrodynamic case, with different dependences on shearing rate, magnetic field, and values of viscosity, Ohmic diffusion, and particle diffusivity. In particular, particle transport is more severely suppressed than momentum transport, effectively leading to a more efficient momentum transport. The role of magnetic fields in quenching transport without altering the amplitude of flow velocity and in inhibiting the generation of shear flows is elucidated. Implications of the results are discussed.
Solar system plasma Turbulence: Observations, inteRmittency and Multifractals
Echim, Marius M.
2016-04-01
The FP7 project STORM is funded by the European Commission to "add value to existing data bases through a more comprehensive interpretation". STORM targets plasma and magnetic field databases collected in the solar wind (Ulysses and also some planetary missions), planetary magnetospheres (Venus Express, Cluster, a few orbits from Cassini), cometary magnetosheaths (e.g. Haley from Giotto observations). The project applies the same package of analysis methods on geomagnetic field observations from ground and on derived indices (e.g. AE, AL, AU, SYM-H). The analysis strategy adopted in STORM is built on the principle of increasing complexity, from lower (like, e.g., the Power Spectral Density - PSD) to higher order analyses (the Probability Distribution Functions - PDFs, Structure Functions - SFs, Fractals and Multifractals - MFs). Therefore STORM targets not only the spectral behavior of turbulent fluctuations but also their topology and scale behavior inferred from advanced mathematical algorithms and geometrical-like analogs. STORM started in January 2013 and ended in December 2015. We will report on a selection of scientific and technical achievements and will highlight: (1) the radial evolution of solar wind turbulence and intermittency based on Ulysses data with some contributions from Venus Express and Cluster; (2) comparative study of fast and slow wind turbulence and intermittency at solar minimum; (3) comparative study of the planetary response (Venus and Earth magnetosheaths) to turbulent solar wind; (4) the critical behavior of geomagnetic fluctuations and indices; (5) an integrated library for non-linear analysis of time series that includes all the approaches adopted in STORM to investigate solar system plasma turbulence. STORM delivers an unprecedented volume of analysed data for turbulence. The project made indeed a systematic survey, orbit by orbit, of data available from ESA repositories and Principal Investigators and provides results ordered as a
Large deviation theory for coin tossing and turbulence.
Chakraborty, Sagar; Saha, Arnab; Bhattacharjee, Jayanta K
2009-11-01
Large deviations play a significant role in many branches of nonequilibrium statistical physics. They are difficult to handle because their effects, though small, are not amenable to perturbation theory. Even the Gaussian model, which is the usual initial step for most perturbation theories, fails to be a starting point while discussing intermittency in fluid turbulence, where large deviations dominate. Our contention is: in the large deviation theory, the central role is played by the distribution associated with the tossing of a coin and the simple coin toss is the "Gaussian model" of problems where rare events play significant role. We illustrate this by applying it to calculate the multifractal exponents of the order structure factors in fully developed turbulence.
Electromagnetic gyrokinetic turbulence in high-beta helical plasmas
Ishizawa, Akihiro
2013-10-01
Gyrokinetic simulation of electromagnetic turbulence in finite-beta plasmas is important for predicting the performance of fusion reactors. Whereas in low-beta tokamaks the zonal flow shear acts to regulate ion temperature gradient (ITG) driven turbulence, it has often been observed that the kinetic ballooning mode (KBM) and, at moderate-beta, the ITG mode continue to grow without reaching a physically relevant level of saturation. The corresponding problem in helical high-beta plasmas, the identification of a saturation mechanism for microturbulence in regimes where zonal flow generation is too weak, is the subject of the present work. This problem has not been previously explored because of numerical difficulties associated with complex three-dimensional magnetic structures as well as multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The present study identifies a new saturation process of the KBM turbulence originating from the spatial structure of the KBM instabilities in a high-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e. it has finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ITG modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing, rather than by the zonal flow shear. The mechanism is quantitatively evaluated by analysis of the nonlinear entropy transfer.
Turbulence and intermittent transport at the boundary of magnetized plasmas
DEFF Research Database (Denmark)
Garcia, O.E.; Naulin, V.; Nielsen, A.H.
2005-01-01
a forcing region with spatially localized sources of particles and heat outside which losses due to the motion along open magnetic-field lines dominate, corresponding to the edge region and the scrape-off layer, respectively. Turbulent states reveal intermittent eruptions of hot plasma from the edge region......, propagating radially far into the scrape-off layer in the form of field-aligned filaments, or blobs. This results in positively skewed and flattened single-point probability distribution functions of particle density and temperature, reflecting the frequent appearance of large fluctuations. The conditional...
Jo, Young Hyun; Lee, Hae June; Mikhailenko, Vladimir V.; Mikhailenko, Vladimir S.
2016-01-01
It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows. The levels of the drift--Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of the scattering of ions by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same effect of the scattering of ions by electromagnetic turbulence, is derived and employed for the analysis of the ion viscosity and ions heating, resulted from the interactions of ions with drift-Alfven turbulence. In the same way, the phenomena of the ion cyclotron turbulence and anomalous anisotropic heating of ions by ion cyclotron plasma turbulence has numerous practical applications in physics of the near-Earth space plasmas. Using the methodology of the shearing modes, the kinetic theory of the ion cyclotron turbulence of the plasma with transverse current with strong velocity shear has been developed.
Fusion plasma turbulence described by modified sandpile dynamics.
Ghendrih, Philippe; Ciraolo, Guido; Dif-Pradalier, Guilhem; Norscini, Claudia; Sarazin, Yanick; Abiteboul, Jérémie; Cartier-Michaud, Thomas; Garbet, Xavier; Grandgirard, Virginie; Strugarek, Antoine
2014-04-01
Transport in fusion plasmas is investigated with modified sandpile models. Based on results from more complete simulations, the sandpile model is modified in steps. Models with a constant source are obtained by coupling two sandpiles. Decoupling the mean field from the bursts allows one to develop a reduced model which captures some of the key features of flux-driven simulations. In the latter sandpile model, turbulent transport is mediated by the burst field while the mean-field gradient governs the transfer to the bursts. This allows one to investigate spreading, namely turbulent transport into stable regions, and transport barriers, regions where the transfer from the mean field to turbulence is reduced. Both cases are found to exhibit intermittent behaviors when the system undergoes spontaneous transitions between different transport regimes. Finally, one couples to the sandpile algorithm a species evolution algorithm that assigns a quality factor to each site. The latter appears to self-generate corrugations, or micro-barriers. These are found to naturally cluster radially in structures that are large enough to impact confinement. The mechanisms introduced to alleviate the clustering, destabilization of the corrugation by overloading and by secondary instabilities at critical radial extents, are shown to generate long-range relaxation events in space and in time with quasiperiodic reorganization of the corrugation pattern.
THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)
2014-12-20
The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.
Structures and turbulent relaxation in non-neutral plasmas
Romé, M.; Chen, S.; Maero, G.
2017-01-01
The transverse dynamics of a magnetized pure electron plasma confined in a Penning-Malmberg trap is analogous to that of a two-dimensional (2D) ideal fluid. The dynamics of a system in a regime of external forcing due to the application of time-dependent potentials on different azimuthal sectors of the confining circular wall is studied numerically by means of 2D particle-in-cell simulations. The evolution of turbulence starting from an annular initial density distribution is investigated for different kinds and parameters of forcing by means of wavelet-based multiresolution analysis. From an experimental point of view, the analyzed forcing technique is useful to excite or damp different diocotron perturbations and therefore for the control and manipulation of plasma evolution. Nonetheless, the numerical results indicate that even in a weak forcing regime the system evolution is sensitive to small initial density fluctuations.
Impact of plasma parameter on self-organization of electron temperature gradient driven turbulence
Kawai, C.; Idomura, Y.; Maeyama, S.; Ogawa, Y.
2017-04-01
Self-organization in the slab electron temperature gradient driven (ETG) turbulence is investigated based on gyrokinetic simulations and the Hasegawa-Mima (HM) equation. The scale and the anisotropy of self-organized turbulent structures vary depending on the Rhines scale and the characteristic scale given by the adiabatic response term in the HM equation. The former is determined by competition between the linear wave dispersion and the nonlinear turbulent cascade, while the latter is given as the scale, at which the turbulent cascade is impeded. These scales are controlled by plasma parameters such as the density and temperature gradient, and the temperature ratio of ion to electron. It is found that depending on the plasma parameters, the ETG turbulence shows either isotropic turbulence or zonal flows, which give significantly different transport levels. Although the modulational instability excites zonal modes regardless of the plasma parameters, the final turbulent structure is determined by the self-organization process.
Magnetic turbulence in space plasmas: in and around the Earth's magnetosphere
Energy Technology Data Exchange (ETDEWEB)
Zimbardo, Gaetano [Universita della Calabria, Dipartimento di Fisica, Ponte P. Bucci, Cubo 31C, I-87036 Arcavacata di Rende (Italy)
2006-12-15
In collisionless space plasmas most phenomena are governed by wave particle interaction and by the interaction with the large scale fields. Low frequency magnetic turbulence in the solar wind is relatively well characterized and understood. The situation is more complicated for magnetic turbulence in and around the Earth's magnetosphere, where the turbulence feature can vary widely with the location. Recent spacecraft observations of magnetic turbulence in the magnetosheath, in the polar cusp regions and in the magnetotail are considered. Turbulence features like the fluctuation level, the spectral power law index, the turbulence drivers and the turbulence anisotropy and intermittency are addressed. The influence of such a turbulence on the plasma transport and dynamics is briefly described, also using the results of numerical simulations.
The Application of Statistical Turbulence Theory to Convective Instabilities.
1986-11-01
1985]. Here, we shall discuss the applications of statistical turbulence theory to determine the quasi-steady-state spectral density function (SDF...follow Sudan’s prescription for deriving the form of one- dimensional spectral - density function . The main difference is that we have attempted to relax...the conservation property of the basic equations is ’V preserved in the DIA or WCA equations for the spectral density function itself. This property is
Generation of powerful terahertz emission in a beam-driven strong plasma turbulence
Arzhannikov, A.V.; Timofeev, I. V.
2012-01-01
Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps....
Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence
Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.
2016-04-01
> A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).
Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence
Schekochihin, A A; Highcock, E G; Dellar, P J; Dorland, W; Hammett, G W
2015-01-01
A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., drift-wave turbulence driven by temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. A consistent theory is constructed in which very little free energy leaks into high velocity moments of the distribution, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also i...
Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence
Rubinstein, Robert
1994-01-01
Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.
Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas
Lee, Myoung-Jae; Jung, Young-Dae
2017-02-01
The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
Energy Technology Data Exchange (ETDEWEB)
Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.
2011-09-21
The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.
Interchange turbulence model for the edge plasma in SOLEDGE2D-EIRENE
Energy Technology Data Exchange (ETDEWEB)
Bufferand, H.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Ciraolo, G.; Ghendrih, P.; Bucalossi, J.; Fedorczak, N.; Gunn, J.; Tamain, P. [CEA, IRFM, Saint-Paul-Lez-Durance (France); Colin, C.; Galassi, D.; Leybros, R.; Serre, E. [Aix-Marseille Universite, CNRS, M2P2, Marseille (France)
2016-08-15
Cross-field transport in edge tokamak plasmas is known to be dominated by turbulent transport. A dedicated effort has been made to simulate this turbulent transport from first principle models but the numerical cost to run these simulations on the ITER scale remains prohibitive. Edge plasma transport study relies mostly nowadays on so-called transport codes where the turbulent transport is taken into account using effective ad-hoc diffusion coefficients. In this contribution, we propose to introduce a transport equation for the turbulence intensity in SOLEDGE2D-EIRENE to describe the interchange turbulence properties. Going beyond the empirical diffusive model, this system automatically generates profiles for the turbulent transport and hence reduces the number of degrees of freedom for edge plasma transport codes. We draw inspiration from the k-epsilon model widely used in the neutral fluid community. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Potential landscape and flux field theory of turbulence
Wu, Wei; Wang, Jin
2016-01-01
We have established a potential landscape and flux field theory for stochastic fluid dynamical systems, turbulence systems in particular, governed by stochastically forced Navier-Stokes equations. We have found that detailed balance breaking, which characterizes the nonequilibrium nature of stochastic fluid dynamical systems, leads directly to a pair of interconnected characteristic consequences, namely, the non-Gaussian potential landscape and the nonvanishing irreversible flux. This 'nonequilibrium trinity' is manifested in various aspects and at different levels of nonequilibrium stochastic fluid dynamical systems. The nonequilibrium dynamics of stochastic fluid systems is governed by both the potential landscape and the irreversible flux, due to the potential-flux form of the irreversible driving force arising from detailed balance breaking. We have revealed a deep connection of the energy flux that is essential for turbulence energy cascade to the nonvanishing irreversible flux as well as the non-Gaussia...
Indian Academy of Sciences (India)
M Singh; P N Deka
2006-03-01
A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.
Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence
Energy Technology Data Exchange (ETDEWEB)
Belli, E. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hammett, G. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dorland, W. [Univ. of Maryland, College Park, MD (United States)
2008-08-01
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ^{-1.5} or κ^{-2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.
Magnetorotational Turbulence and Dynamo in a Collisionless Plasma
Kunz, Matthew W.; Stone, James M.; Quataert, Eliot
2016-12-01
We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disk. The kinetic magnetorotational instability grows from a subthermal magnetic field having zero net flux over the computational domain to generate self-sustained turbulence and outward angular-momentum transport. Significant Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is biased with respect to the magnetic-field direction and spatiotemporally variable. Energy spectra suggest an Alfvén-wave cascade at large scales and a kinetic-Alfvén-wave cascade at small scales, with strong small-scale density fluctuations and weak nonaxisymmetric density waves. Ions undergo nonthermal particle acceleration, their distribution accurately described by a κ distribution. These results have implications for the properties of low-collisionality accretion flows, such as that near the black hole at the Galactic center.
Nonextensive entropy approach to space plasma fluctuations and turbulence
Leubner, M P; Baumjohann, W
2006-01-01
Spatial intermittency in fully developed turbulence is an established feature of astrophysical plasma fluctuations and in particular apparent in the interplanetary medium by in situ observations. In this situation the classical Boltzmann-Gibbs extensive thermo-statistics, applicable when microscopic interactions and memory are short ranged, fails. Upon generalization of the entropy function to nonextensivity, accounting for long-range interactions and thus for correlations in the system, it is demonstrated that the corresponding probability distributions (PDFs) are members of a family of specific power-law distributions. In particular, the resulting theoretical bi-kappa functional reproduces accurately the observed global leptokurtic, non-Gaussian shape of the increment PDFs of characteristic solar wind variables on all scales. Gradual decoupling is obtained by enhancing the spatial separation scale corresponding to increasing kappa-values in case of slow solar wind conditions where a Gaussian is approached i...
Lee, Myoung-Jae; Jung, Young-Dae
2016-02-01
The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in astrophysical non-thermal Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp [National Institute for Fusion Science, Toki 509-5292 (Japan); Inagaki, S.; Sasaki, M.; Nagashima, Y.; Kasuya, N.; Fujisawa, A.; Itoh, S.-I. [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Kosuga, Y. [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Institute for Advanced Study, Kyushu University, Fukuoka 812-8581 (Japan); Arakawa, H. [Teikyo University, 6-22 Misakimachi, Omuta 836-8505 (Japan); Yamada, T. [Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Faculty of Arts and Science, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Miwa, Y. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580 (Japan); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan)
2015-11-15
Fluctuation component in the turbulence regime is found to be azimuthally localized at a phase of the global coherent modes in a linear magnetized plasma PANTA. Spatial distribution of squared bicoherence is given in the azimuthal cross section as an indicator of nonlinear energy transfer function from the global coherent mode to the turbulence. Squared bicoherence is strong at a phase where the turbulence amplitude is large. As a result of the turbulence localization, time evolution of radial particle flux becomes bursty. Statistical features such as skewness and kurtosis are strongly modified by the localized turbulence component, although contribution to mean particle flux profile is small.
Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory
Rogachevskii, Igor; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Kleeorin, Nathan; Brandenburg, Axel; Schober, Jennifer
2017-09-01
The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma (chiral magnetic effect). We present a self-consistent treatment of the chiral MHD equations, which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.
Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas
Deng, Zhao; Waltz, R. E.; Wang, Xiaogang
2016-10-01
Gyrokinetics is widely applied in plasma physics. However, this framework is limited to weak turbulence levels and low drift-wave frequencies because high-frequency gyro-motion is reduced by the gyro-phase averaging. In order to test where gyrokinetics breaks down, Waltz and Zhao developed a new theory, called cyclokinetics [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Cyclokinetics dynamically follows the high-frequency ion gyro-motion which is nonlinearly coupled to the low-frequency drift-waves interrupting and suppressing gyro-averaging. Cyclokinetics is valid in the high-frequency (ion cyclotron frequency) regime or for high turbulence levels. The ratio of the cyclokinetic perturbed distribution function over equilibrium distribution function δf/ F can approach 1. This work presents, for the first time, a numerical simulation of nonlinear cyclokinetic theory for ions, and describes the first attempt to completely solve the ion gyro-phase motion in a nonlinear turbulence system. Simulations are performed [Zhao Deng and R. E. Waltz, Phys. Plasmas 22(5), 056101 (2015)] in a local flux-tube geometry with the parallel motion and variation suppressed by using a newly developed code named rCYCLO, which is executed in parallel by using an implicit time-advanced Eulerian (or continuum) scheme [Zhao Deng and R. E. Waltz, Comp. Phys. Comm. 195, 23 (2015)]. A novel numerical treatment of the magnetic moment velocity space derivative operator guarantee saccurate conservation of incremental entropy. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the gyrokinetics breakdown condition is quantitatively tested. Gyrokinetic transport and turbulence level recover those of cyclokinetics at high relative ion cyclotron frequencies and low turbulence levels, as required. Cyclokinetic transport and turbulence level are found to be lower than those of gyrokinetics at high turbulence levels and low- Ω* values
New aspects of plasma sheet dynamics - MHD and kinetic theory
Directory of Open Access Journals (Sweden)
H. Wiechen
Full Text Available Magnetic reconnection is a process of fundamental importance for the dynamics of the Earth's plasma sheet. In this context, the development of thin current sheets in the near-Earth plasma sheet is a topic of special interest because they could be a possible cause of microscopic fluctuations acting as collective non-idealness from a macroscopic point of view. Simulations of the near-Earth plasma sheet including boundary perturbations due to localized inflow through the northern (or southern plasma sheet boundary show developing thin current sheets in the near-Earth plasma sheet about 810 R_{E} tailwards of the Earth. This location is largely independent from the localization of the perturbation. The second part of the paper deals with the problem of the macroscopic non-ideal consequences of microscopic fluctuations. A new model is presented that allows the quantitative calculation of macroscopic non-idealness without considering details of microscopic instabilities or turbulence. This model is only based on the assumption of a strongly fluctuating, mixing dynamics on microscopic scales in phase space. The result of this approach is an expression for anomalous non-idealness formally similar to the Krook resistivity but now describing the macroscopic consequences of collective microscopic fluctuations, not of collisions.
Key words. Magnetospheric physics (plasma sheet · Space plasma physics (kinetic and MHD theory; magnetic reconnection
Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T
2015-02-01
The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.
Energy Technology Data Exchange (ETDEWEB)
Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)
2017-02-05
Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Energy Technology Data Exchange (ETDEWEB)
Sarazin, Y
1997-11-21
The aim of this work is to propose a new frame to study turbulent transport in plasmas. In order to avoid the restraint of scale separability the forcing by flux is used. A critical one-dimension self-organized cellular model is developed. In keeping with experience the average transport can be described by means of diffusion and convection terms whereas the local transport could not. The instability due to interchanging process is thoroughly studied and some simplified equations are derived. The proposed model agrees with the following experimental results: the relative fluctuations of density are maximized on the edge, the profile shows an exponential behaviour and the amplitude of density fluctuations depends on ionization source strongly. (A.C.) 103 refs.
Incompressible turbulence as non-local field theory
Indian Academy of Sciences (India)
Mahendra K Verma
2005-03-01
It is well-known that incompressible turbulence is non-local in real space because sound speed is infinite in incompressible fluids. The equation in Fourier space indicates that it is non-local in Fourier space as well. However, the shell-to-shell energy transfer is local. Contrast this with Burgers equation which is local in real space. Note that the sound speed in Burgers equation is zero. In our presentation we will contrast these two equations using non-local field theory. Energy spectrum and renormalized parameters will be discussed.
Whalley, Richard D.; Walsh, James L.
2016-08-01
Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.
Whalley, Richard D; Walsh, James L
2016-08-26
Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.
Turbulence in magnetized plasmas and financial markets: comparative study of multifractal statistics
Budaev, V. P.
2004-12-01
The turbulence in magnetized plasma and financial data of Russian market have been studied in terms of the multifractal formalism revisited with wavelets. The multifractal formalism based on wavelet calculations allows one to study the scaling properties of turbulent fluctuations. It is observed that both plasma edge turbulence in fusion devices and Russian financial markets demonstrate multifractal statistics, i.e., the scaling behaviour of absolute moments is described by a convex function. Multifractality parameter defined in multiplicative cacade model, seems to be of the same magnitude for the plasma and financial time series considered in this paper.
Timofeev, I V
2012-01-01
The power of second harmonic electromagnetic emission is calculated for the case when strong plasma turbulence is excited by a powerful electron beam in a magnetized plasma. It is shown that the simple analytical model of strong plasma turbulence with the assumption of a constant pump power is able to explain experimentally observed bursts of electromagnetic radiation as a consequence of separate collapse events. It is also found that the electromagnetic emission power calculated for three-wave interaction processes occurring in the long-wavelength part of turbulent spectrum is in order-of-magnitude agreement with experimental results.
In situ observations of reconnection and associated particle energization in turbulent plasmas
Retinò, A.; Sundkvist, D.; Vaivads, A.; Sahraoui, F.
2012-04-01
Magnetic reconnection occurs in turbulent plasma within a large number of volume-filling thin current sheets. Such reconnection efficiently dissipates the magnetic energy of turbulent plasma, resulting in substantial particle heating. Turbulent reconnection is also considered to play an important role for the acceleration of supra-thermal particles. Yet the details of energy dissipation and particle energization during turbulent reconnection, as well their dependence on turbulence properties, are not completely understood from an experimental point of view due to the scarcity of in situ observations. Here we present recent Cluster spacecraft observations of reconnection in different near-Earth turbulent regions (solar wind, magnetosheath, magnetotail) and we discuss the properties of particle energization therein.
New scenario of turbulence theory and wall-bounded turbulence: Theoretical significance
Kambe, Tsutomu
2016-01-01
New general scenario of turbulence theory is proposed and applied to wall-bounded turbulence. Significance of the theory rests on a mathematical theorem closely related to the fundamental conservation law of current flux of fluid flow, expressed in a form of 4d physical space-time representation, which predicts a system of Maxwell-type equation and supports transverse waves traveling with a phase speed c_t. In streaky wall flows it is remarkable that there exist both dynamical mechanism exciting transverse waves and an energy channel of exchange between flow field and transverse wave field. In developed state of the wave field, energy is supplied from the flow field to the transverse wave field if wavelengths are sufficiently large. The waves are accompanied with a new mechanism of energy dissipation, i.e. an internal friction analogous to the Joule effect. Energy is supplied from the main flow to the wave field, and some part of the energy is dissipated into heat. Thus, there exists a sustaining mechanism, w...
First-principle description of collisional gyrokinetic turbulence in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Dif-Pradalier, G
2008-10-15
This dissertation starts in chapter 1 with a comprehensive introduction to nuclear fusion, its basic physics, goals and means. It especially defines the concept of a fusion plasma and some of its essential physical properties. The following chapter 2 discusses some fundamental concepts of statistical physics. It introduces the kinetic and the fluid frameworks, compares them and highlights their respective strengths and limitations. The end of the chapter is dedicated to the fluid theory. It presents two new sets of closure relations for fluid equations which retain important pieces of physics, relevant in the weakly collisional tokamak regimes: collective resonances which lead to Landau damping and entropy production. Nonetheless, since the evolution of the turbulence is intrinsically nonlinear and deeply influenced by velocity space effects, a kinetic collisional description is most relevant. First focusing on the kinetic aspect, chapter 3 introduces the so-called gyrokinetic framework along with the numerical solver - the GYSELA code - which will be used throughout this dissertation. Very generically, code solving is an initial value problem. The impact on turbulent nonlinear evolution of out of equilibrium initial conditions is discussed while studying transient flows, self-organizing dynamics and memory effects due to initial conditions. This dissertation introduces an operational definition, now of routine use in the GYSELA code, for the initial state and concludes on the special importance of the accurate calculation of the radial electric field. The GYSELA framework is further extended in chapter 4 to describe Coulomb collisions. The implementation of a collision operator acting on the full distribution function is presented. Its successful confrontation to collisional theory (neoclassical theory) is also shown. GYSELA is now part of the few gyrokinetic codes which can self-consistently address the interplay between turbulence and collisions. While
Theory and simulation of laser plasma coupling
Energy Technology Data Exchange (ETDEWEB)
Kruer, W.L.
1979-08-09
The theory and simulation of these coupling processes are considered. Particular emphasis is given to their nonlinear evolution. First a brief introduction to computer simulation of plasmas using particle codes is given. Then the absorption of light via the generation of plasma waves is considered, followed by a discussion of stimulated scattering of intense light. Finally these calculations are compared with experimental results.
Recent progresses in relativistic beam-plasma instability theory
Directory of Open Access Journals (Sweden)
A. Bret
2010-11-01
Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.
Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited
DEFF Research Database (Denmark)
Pécseli, H.L.; Trulsen, J.
1991-01-01
Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations, , and triple...
Turbulent acceleration and heating in toroidal magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Garbet, X.; Esteve, D.; Sarazin, Y.; Abiteboul, J.; Bourdelle, C.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G. [CEA, IRFM, F-13108 St. Paul-lez-Durance cedex (France); Smolyakov, A. [Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2 (Canada)
2013-07-15
It is shown that turbulence is responsible for a source of momentum, which cannot be recast as a divergence of a momentum flux. This process is similar to turbulent heating, with similar properties. The sum over all species vanishes up to polarization contributions. Hence, toroidal momentum is transferred from species to species, mediated by turbulence. As for momentum flux, symmetry breaking is needed. Flow shear is investigated as a source of symmetry breaking, leading to a source of momentum proportional to the shear rate. Turbulent acceleration is significant for ion species. It is found that it is proportional to the charge number Z, while turbulent heating scales as Z{sup 2}/A, where A is the mass number. It is maximum in the edge, where the E × B flow shear rate and turbulence intensity are maximum. When both are large enough, the turbulent torque may overcome the collisional friction between impurities and main ions, thus leading to different toroidal velocities.
Turbulent acceleration and heating in toroidal magnetized plasmas
Garbet, X.; Esteve, D.; Sarazin, Y.; Abiteboul, J.; Bourdelle, C.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.
2013-07-01
It is shown that turbulence is responsible for a source of momentum, which cannot be recast as a divergence of a momentum flux. This process is similar to turbulent heating, with similar properties. The sum over all species vanishes up to polarization contributions. Hence, toroidal momentum is transferred from species to species, mediated by turbulence. As for momentum flux, symmetry breaking is needed. Flow shear is investigated as a source of symmetry breaking, leading to a source of momentum proportional to the shear rate. Turbulent acceleration is significant for ion species. It is found that it is proportional to the charge number Z, while turbulent heating scales as Z2/A, where A is the mass number. It is maximum in the edge, where the E × B flow shear rate and turbulence intensity are maximum. When both are large enough, the turbulent torque may overcome the collisional friction between impurities and main ions, thus leading to different toroidal velocities.
The role of the plasma current in turbulence decrease during lower hybrid current drive
Antar, G.; Ekedahl, A.; Goniche, M.; Asghar, A.; Žàček, F.
2017-03-01
The interaction of radio frequency (RF) waves with edge turbulence has resurfaced after the results obtained on many tokamaks showing that edge turbulence decreases when the ion cyclotron frequency heating (ICRH) is switched on. Using the lower hybrid (LH) waves to drive current into tokamak plasmas, this issue presented contradicting results with some tokamaks (FTU & HT-7) showing a net decrease, similar to the ICRH results, and others (Tore Supra) did not. In this article, these apparent discrepancies among tokamaks and RF wave frequencies are removed. It is found that turbulence large-scale structures in the scrape-off layer decrease at high enough plasma currents (Ip) on the Tore Supra tokamak. We distinguish three regimes: At low Ip's, no modification is detected with statistical properties of turbulence similar to ohmic plasmas even with PLH reaching 4.8 MW. At moderate plasma currents, turbulence properties are modified only at a high LH power. At high plasma currents, turbulent large scales are reduced to values smaller than 1 cm, and this is accompanied by a net decrease in the level of turbulence of about 30% even with a moderate LH power.
Complexity methods applied to turbulence in plasma astrophysics
Vlahos, L.; Isliker, H.
2016-09-01
observed time series of the explosive events, (d) finally, when the AR reaches the turbulently reconnecting state (in the language of the SOC theory this is called SOC state) it is densely populated by UCS which can act as local scatterers (replacing the magnetic clouds in the Fermi scenario) and enhance dramatically the heating and acceleration of charged particles.
Kinetic Theory of the Inner Magnetospheric Plasma
Khazanov, George V
2011-01-01
This book provides a broad introduction to the kinetic theory of space plasma physics with the major focus on the inner magnetospheric plasma. It is designed to provide a comprehensive description of the different kinds of transport equations for both plasma particles and waves with an emphasis on the applicability and limitations of each set of equations. The major topics are: Kinetic Theory of Superthermal Electrons, Kinetic Foundation of the Hydrodynamic Description of Space Plasmas (including wave-particle interaction processes), and Kinetic Theory of the Terrestrial Ring Current. Distinguishable features of this book are the analytical solutions of simplified transport equations. Approximate analytic solutions of transport phenomena are very useful because they help us gain physical insight into how the system responds to varying sources of mass, momentum and energy and also to various external boundary conditions. They also provide us a convenient method to test the validity of complicated numerical mod...
Influence of Dupree diffusivity on the occurrence scattering time advance in turbulent plasmas
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)
2015-12-15
The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. The occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.
Turbulent transport and heating of trace heavy ions in hot, magnetized plasmas
Barnes, M; Dorland, W
2012-01-01
Scaling laws for the transport and heating of trace heavy ions in low-frequency, magnetized plasma turbulence are derived and compared with direct numerical simulations. The predicted dependences of turbulent fluxes and heating on ion charge and mass number are found to agree with numerical results for both stationary and differentially rotating plasmas. Heavy ion momentum transport is found to increase with mass, and heavy ions are found to be preferentially heated, implying a mass-dependent ion temperature for very weakly collisional plasmas and for partially-ionized heavy ions in strongly rotating plasmas.
Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection
Lazarian, A; Takamoto, M; Pino, E M de Gouveia Dal; Cho, J
2015-01-01
Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, includi...
Weak turbulence theory for rotating magnetohydrodynamics and planetary dynamos
Galtier, Sebastien
2014-01-01
A weak turbulence theory is derived for magnetohydrodynamics under rapid rotation and in the presence of a large-scale magnetic field. The angular velocity $\\Omega_0$ is assumed to be uniform and parallel to the constant Alfv\\'en speed ${\\bf b_0}$. Such a system exhibits left and right circularly polarized waves which can be obtained by introducing the magneto-inertial length $d \\equiv b_0/\\Omega_0$. In the large-scale limit ($kd \\to 0$; $k$ being the wave number), the left- and right-handed waves tend respectively to the inertial and magnetostrophic waves whereas in the small-scale limit ($kd \\to + \\infty$) pure Alfv\\'en waves are recovered. By using a complex helicity decomposition, the asymptotic weak turbulence equations are derived which describe the long-time behavior of weakly dispersive interacting waves {\\it via} three-wave interaction processes. It is shown that the nonlinear dynamics is mainly anisotropic with a stronger transfer perpendicular ($\\perp$) than parallel ($\\parallel$) to the rotating a...
Wavelet transforms and their applications to MHD and plasma turbulence: a review
Farge, Marie
2015-01-01
Wavelet analysis and compression tools are reviewed and different applications to study MHD and plasma turbulence are presented. We introduce the continuous and the orthogonal wavelet transform and detail several statistical diagnostics based on the wavelet coefficients. We then show how to extract coherent structures out of fully developed turbulent flows using wavelet-based denoising. Finally some multiscale numerical simulation schemes using wavelets are described. Several examples for analyzing, compressing and computing one, two and three dimensional turbulent MHD or plasma flows are presented.
Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence
DEFF Research Database (Denmark)
Priego, M.; Garcia, O.E.; Naulin, V.
2005-01-01
The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa-Wakatani paradigm for resistive......-diffusion analysis of the evolution of impurity puffs. Additional effects appear for inertial impurities as a consequence of compressibility. First, the density of inertial impurities is found to correlate with the vorticity of the electric drift velocity, that is, impurities cluster in vortices of a precise...
On Plasma Theory and Simulation.
2014-09-26
SHEATH REGION INCLUDING ION REFLECTION Lou Ann Schwager (Prof. C. K. Birdsall, Dr. I. Roth ) A low temperature plasma interacts with a collector plate...Hitchcock. Katz. Lankford. Nelson. Barnes. Borovsky. Forslund. Kwan. Sadowski Lindemuth. Mason . Mostrom. Nielson, Oliphant. Sgro. Thode Department of
Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.; Abarzhi, Snezhana I.
2013-07-01
companion paper Rooker et al provide a very interesting study on the generation and detection of 'whistler waves' induced space plasma turbulence at Gakona (Alaska). Physics of atmosphere. Five papers are devoted to the physics of atmosphere. Byalko presents the first experimental observation of a new hydrodynamic phenomenon, the underwater tornado. Herring and Kimura provide a review on recent results on homogeneous stably stratified turbulence. Pouquet et al use a high-resolution direct numerical simulation of rotating helical turbulence to obtain new numerical results on the inverse energy cascade in rotating flows. Tailleux discusses energy conversion and dissipation in depth in mixing flows. Zagumennyi and Chashechkin study the structure of convective flows driven by density variations in a stratified fluid by means of experiments and numerical simulations. Geophysics and Earth science. Three papers are dedicated to geophysics and Earth science. Jinadasa et al investigate small-scale and lateral intermittency of oceanic microstructure in the pycnocline. Shrira and Townsend review on a plausible mechanism of deep-ocean mixing caused by near-inertial waves in the abyssal ocean. Using numerical simulations, Imazio and Mininni study how helicity affects the spectrum of a passive scalar in rotating turbulent flows. Combustion. Two papers deal with flows with chemical reactions. Meshram used the Lewis-Kraichnan space-time version of Hopf's functional formalism to investigate turbulence with chemical reaction. Watanabe et al carry out experiments on a turbulent plane liquid jet with a second-order chemical reaction. Theoretical aspects of non-equilibrium dynamics. Six papers are devoted to fundamental aspects of non-equilibrium dynamics. Chen et al present state-of-the-art work on exact and direct derivation of macroscopic theoretical description for a flow at arbitrary Knudsen number from the Boltzmann-Bhatnagar-Gross-Krook kinetic theory with constant relaxation time
Applications of continuous and orthogonal wavelet transforms to MHD and plasma turbulence
Farge, Marie; Schneider, Kai
2016-10-01
Wavelet analysis and compression tools are presented and different applications to study MHD and plasma turbulence are illustrated. We use the continuous and the orthogonal wavelet transform to develop several statistical diagnostics based on the wavelet coefficients. We show how to extract coherent structures out of fully developed turbulent flows using wavelet-based denoising and describe multiscale numerical simulation schemes using wavelets. Several examples for analyzing, compressing and computing one, two and three dimensional turbulent MHD or plasma flows are presented. Details can be found in M. Farge and K. Schneider. Wavelet transforms and their applications to MHD and plasma turbulence: A review. Support by the French Research Federation for Fusion Studies within the framework of the European Fusion Development Agreement (EFDA) is thankfully acknowledged.
Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.
2012-04-01
TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
Energy Technology Data Exchange (ETDEWEB)
Gerbaud, T
2005-07-01
The turbulence developing in a tokamak's plasma is liable for a large transport of energy and particles, what slims the plasma magnetic confinement. This turbulence induces electromagnetic fluctuations inside the plasma, which imply local electronic density fluctuations. Using microwave reflectometers 50 - 110 GHz, operating like radars, one can probe the plasma at different depths, and then analyse the wave reflected by the plasma. Probe waves can be polarized ordinarily or extraordinarily, the difference lying in the dispersion relation of the plasma reflection index. The goal of this work is to compare density fluctuations spectrums, obtained in both polarization. Wave numbers spectrums and radials profiles of corresponding RMS values (equivalent to mean quadratic values) allow to conclude on a good agreement between the fluctuations density levels generated by measurement done in ordinary or extraordinary polarization. The comparison of wave numbers spectrums of density fluctuations underlines the growth of turbulence activity in the gradients zone. These results represent the first steps of a advanced analysis of fluctuations profiles and spectrums generated in ordinary polarization. (author)
Characteristics of Plasma Turbulence in the Mega Amp Spherical Tokamak
Ghim, Young-chul
2013-01-01
Turbulence is a major factor limiting the achievement of better tokamak performance as it enhances the transport of particles, momentum and heat which hinders the foremost objective of tokamaks. Hence, understanding and possibly being able to control turbulence in tokamaks is of paramount importance, not to mention our intellectual curiosity of it.
Stability theory of Knudsen plasma diodes
Energy Technology Data Exchange (ETDEWEB)
Kuznetsov, V. I., E-mail: victor.kuznetsov@mail.ioffe.ru; Ender, A. Ya. [Ioffe Institute, Russian Academy of Sciences (Russian Federation)
2015-11-15
A stability theory is developed for a plasma diode in which an electron beam supplied from the emitter propagates without collisions in the self-consistent electric field against the immobile ion background. An integral equation for the amplitude of the perturbed field is deduced using the Q,G method for the regime without electron reflection from a potential barrier. Analytic solutions to this equation are obtained for a number of important particular cases, and the plasma dispersion properties are examined.
Dissipation via Landau Damping in Two- and Three-Dimensional Plasma Turbulence
Li, Tak Chu; Klein, Kristopher G; TenBarge, Jason M
2015-01-01
Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms that lead to dissipation of the turbulent energy remain to be definitively identified. This work addresses the fundamental physics of turbulent dissipation by examining the velocity-space structure that develops as a result of the collisionless interaction between the turbulent electromagnetic fluctuations and the particles in a low beta plasma. Both two- and three-dimensional (2D and 3D) nonlinear gyrokinetic simulations show an electron velocity-space signature qualitatively similar to that of the linear Landau damping of Alfv\\'en waves in a 3D linear simulation. This evidence strongly suggests that the turbulent energy is transferred by Landau damping to electrons in low beta plasmas in both 2D and 3D, making possible the ultimate irreversible heating of the plasma. Although, in the 2D case with no variation along the equilibrium magnetic field, it may be expecte...
Sahraoui, Fouad; Goldstein, Melvyn
2008-01-01
Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.
Study of the turbulence in the central plasma sheet using the CLUSTER satellite data
Stepanova, M.; Arancibia Riveros, K.; Bosqued, J.; Antonova, E.
2008-05-01
Recent studies are shown that the turbulent processes in the space plasmas are very important. It includes the behavior of the plasma sheet plasma during geomagnetic substorms and storms. Study of the plasma turbulence in the central plasma sheet was made using the CLUSTER satellite mission data. For this studies we used the Cluster Ion Spectrometry experiment (CIS), and fluxgate magnetometer (FGM) data for studying fluctuations of the plasma bulk velocity and geomagnetic field fluctuations for different levels of geomagnetic activity and different locations inside the plasma sheet. Case studies for the orbits during quiet geomagnetic conditions, different phases of geomagnetic substroms and storms showed that the properties of plasma turbulence inside the sheet differ significantly for all afore mentioned cases. Variations in the probability distribution functions, flatness factors, local intermittency measure parameters, and eddy diffusion coefficients indicate that the turbulence increases significantly during substorm growth and expansion phases and decreases slowly to the initial level during the recovery phase. It became even stronger during the storm main phase.
Experimental Results on Current-Driven Turbulence in Plasmas - a Survey
Dekluiver, H.; Perepelkin, N. F.; Hirose, A.
1991-01-01
The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has
Diffusion and radiation in magnetized collisionless plasmas with small-scale Whistler turbulence
Keenan, Brett D.; Medvedev, Mikhail V.
2016-04-01
> Magnetized high-energy-density plasmas can often have strong electromagnetic fluctuations whose correlation scale is smaller than the electron Larmor radius. Radiation from the electrons in such plasmas - which markedly differs from both synchrotron and cyclotron radiation - is tightly related to their energy and pitch-angle diffusion. In this paper, we present a comprehensive theoretical and numerical study of particle transport in cold, `small-scale' Whistler-mode turbulence and its relation to the spectra of radiation simultaneously produced by these particles. We emphasize that this relation is a superb diagnostic tool of laboratory, astrophysical, interplanetary and solar plasmas with a mean magnetic field and strong small-scale turbulence.
Spectral evolution of two-dimensional kinetic plasma turbulence in the wavenumber-frequency domain
Comişel, H; Narita, Y; Motschmann, U
2013-01-01
We present a method for studying the evolution of plasma turbulence by tracking dispersion relations in the energy spectrum in the wavenumber-frequency domain. We apply hybrid plasma simulations in a simplified two-dimensional geometry to demonstrate our method and its applicability to plasma turbulence in the ion kinetic regime. We identify four dispersion relations: ion-Bernstein waves, oblique whistler waves, oblique Alfv\\'en/ion-cyclotron waves, and a zero-frequency mode. The energy partition and frequency broadening are evaluated for these modes. The method allows us to determine the evolution of decaying plasma turbulence in our restricted geometry and shows that it cascades along the dispersion relations during the early phase with an increasing broadening around the dispersion relations.
Energy Technology Data Exchange (ETDEWEB)
Chang, C S; Ku, S; Greengard, L; Park, G [Courant Institute of Mathematical Sciences, New York University, NY 10012 (United States); Diamond, P; Dif-Pradalier, G [University of California at San Diego, La Jolla, CA 92093 (United States); Adams, M; Keyes, D [Columbia University, New York, NY 10027 (United States); Barreto, R; D' Azevedo, E; Klasky, S; Podhorszki, N [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chen, Y; Parker, S [University of Colorado at Boulder, Boulder, CO 80309 (United States); Cummings, J [California Institute of Technology, Pasadena, CA 91125 (United States); Ethier, S; Hahm, T S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Hinton, F [Hinton Associates, Escondido, CA 92029 (United States); Lin, Z [University of California at Irvine, Irvine, CA 92697 (United States); Lofstead, J, E-mail: cschang@cims.nyu.ed [Georgia Institute of Technology, Atlanta, GA 30332 (United States)
2009-07-01
Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.
Energy Technology Data Exchange (ETDEWEB)
Chang, C S [New York University; Ku, Seung-Hoe [New York University; Diamond, Patrick [Columbia University; Adams, Mark [Columbia University; Tchoua, Roselyne B [ORNL; Chen, Yang [University of Colorado, Boulder; Cummings, Julian [California Institute of Technology, Pasadena; D' Azevedo, Eduardo [ORNL; Dif-Pradalier, Guilhem [University of California, San Diego; Ethier, Stephane [Princeton Plasma Physics Laboratory (PPPL); Greengard, Leslie [New York University; Hahm, Taik Soo [Princeton Plasma Physics Laboratory (PPPL); Hinton, Fred [University of California, San Diego; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Lin, Zhihong [University of California, Irvine; Lofstead, J. [Georgia Institute of Technology; Park, G. [New York University; Parker, Scott [University of Colorado, Boulder; Podhorszki, Norbert [ORNL; Schwan, Karsten [Georgia Institute of Technology; Shoshani, A. [Lawrence Berkeley National Laboratory (LBNL); Silver, D. [Rutgers University; Weitzner, Harold [New York University; Wolf, M. [Georgia Institute of Technology; Worley, Patrick H [ORNL; Yoon, E. [Princeton Plasma Physics Laboratory (PPPL); Zorin, Denis [New York University
2009-01-01
Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.
Chang, C. S.; Ku, S.; Diamond, P.; Adams, M.; Barreto, R.; Chen, Y.; Cummings, J.; D'Azevedo, E.; Dif-Pradalier, G.; Ethier, S.; Greengard, L.; Hahm, T. S.; Hinton, F.; Keyes, D.; Klasky, S.; Lin, Z.; Lofstead, J.; Park, G.; Parker, S.; Podhorszki, N.; Schwan, K.; Shoshani, A.; Silver, D.; Wolf, M.; Worley, P.; Weitzner, H.; Yoon, E.; Zorin, D.
2009-07-01
Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.
Energy Technology Data Exchange (ETDEWEB)
Chang, C S [New York University; Ku, Seung-Hoe [New York University; Diamond, P. H. [University of California, San Diego; Adams, Mark [Columbia University; Tchoua, Roselyne B [ORNL; Chen, Yang [University of Colorado, Boulder; Cummings, J. [California Institute of Technology, University of California, Davis; D' Azevedo, Ed F [ORNL; Dif-Pradalier, Guilhem [University of California, San Diego; Ethier, Stephane [Princeton Plasma Physics Laboratory (PPPL); Greengard, Leslie [New York University; Hahm, Taik Soo [Princeton Plasma Physics Laboratory (PPPL); Hinton, Fred [University of California, San Diego; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Lin, Z. [University of California, Irvine; Lofstead, J. [Georgia Institute of Technology; Park, G. [New York University; Podhorszki, Norbert [ORNL; Schwan, Karsten [Georgia Institute of Technology; Shoshani, A. [Lawrence Berkeley National Laboratory (LBNL); Silver, D. [Rutgers University; Wolf, M. [Georgia Institute of Technology; Worley, Patrick H [ORNL; Zorin, Denis [New York University
2009-01-01
Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.
Weck, Peter J; Brown, Michael R; Wicks, Robert T
2014-01-01
The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD) and fully-developed turbulent magnetic fluctuations of the solar wind taken from the WIND spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge fluctuations. The CH ...
Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma
Energy Technology Data Exchange (ETDEWEB)
Gilmore, Mark Allen [University of New Mexico
2013-07-07
A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.
Heat Transfer and Reconnection Diffusion in Turbulent Magnetized Plasmas
Lazarian, A
2011-01-01
It is well known that magnetic fields constrain motions of charged particles, impeding the diffusion of charged particles perpendicular to magnetic field direction. This modification of transport processes is of vital importance for a wide variety of astrophysical processes including cosmic ray transport, transfer of heavy elements in the interstellar medium, star formation etc. Dealing with these processes one should keep in mind that in realistic astrophysical conditions magnetized fluids are turbulent. In this review we single out a single transport process, namely, heat transfer and consider how it occurs in the presence of the magnetized turbulence. We show that the ability of magnetic field lines to constantly change topology and connectivity is at the heart of the correct description of the 3D magnetic field stochasticity in turbulent fluids. This ability is ensured by fast magnetic reconnection in turbulent fluids and puts forward the concept of reconnection diffusion at the core of the physical pictu...
A theory of fluctuations in plasmas
Felderhof, B.U.
1964-01-01
A theory of thermal fluctuations in plasmas is developed based on a probability ensemble for one-particle distribution functions ƒ(r, ν). The probability for a specific ƒ(r, ν) is obtained from the canonical ensemble with the aid of the continuum approximation. Subsequently the probability distribut
Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000000
Institute of Scientific and Technical Information of China (English)
Zhang Xin; Huang Yong; Wang Xunnian; Wang Wanbo; Tang Kun; Li Huaxing
2016-01-01
An experimental investigation was conducted to evaluate the effect of symmetrical plasma actuators on turbulent boundary layer separation control at high Reynolds number. Com-pared with the traditional control method of plasma actuator, the whole test model was made of aluminum and acted as a covered electrode of the symmetrical plasma actuator. The experimental study of plasma actuators’ effect on surrounding air, a canonical zero-pressure gradient turbulent boundary, was carried out using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) in the 0.75 m ? 0.75 m low speed wind tunnel to reveal the symmetrical plasma actuator characterization in an external flow. A half model of wing-body configuration was experimentally investigated in the £ 3.2 m low speed wind tunnel with a six-component strain gauge balance and PIV. The results show that the turbulent boundary layer separation of wing can be obviously sup-pressed and the maximum lift coefficient is improved at high Reynolds number with the symmetri-cal plasma actuator. It turns out that the maximum lift coefficient increased by approximately 8.98% and the stall angle of attack was delayed by approximately 2? at Reynolds number 2 ? 106. The effective mechanism for the turbulent separation control by the symmetrical plasma actuators is to induce the vortex near the wing surface which could create the relatively large-scale disturbance and promote momentum mixing between low speed flow and main flow regions.
Generation of a magnetic island by edge turbulence in tokamak plasmas
Poyé, A.; Agullo, O.; Muraglia, M.; Garbet, X.; Benkadda, S.; Sen, A.; Dubuit, N.
2015-03-01
We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.
Generation of a magnetic island by edge turbulence in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Poyé, A. [Aix-Marseille Université, CNRS, PIIM, UMR 7345, Marseille (France); Université de Bordeaux, CELIA Laboratory, Talence 33405 (France); Agullo, O.; Muraglia, M.; Benkadda, S.; Dubuit, N. [Aix-Marseille Université, CNRS, PIIM, UMR 7345, Marseille (France); France-Japan Magnetic Fusion Laboratory, LIA 336 CNRS, Marseille (France); Garbet, X. [IRFM, CEA, St-Paul-Lez-Durance 13108 (France); Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2015-03-15
We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.
Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves
Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.
2017-02-01
A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.
Symmetry breaking in MAST plasma turbulence due to toroidal flow shear
Fox, M. F. J.; van Wyk, F.; Field, A. R.; Ghim, Y.-c.; Parra, F. I.; Schekochihin, A. A.; the MAST Team
2017-03-01
The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up–down symmetry of the magnetic equilibrium. Using experimental beam-emission-spectroscopy measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the ‘shearing’ of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.
Symmetry breaking in MAST plasma turbulence due to toroidal flow shear
Fox, M F J; Field, A R; Ghim, Y -c; Parra, F I; Schekochihin, A A
2016-01-01
The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up-down symmetry of the magnetic equilibrium. Using experimental Beam-Emission-Spectroscopy (BES) measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the "shearing" of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.
Temporal and Spatial Turbulent Spectra of MHD Plasma and an Observation of Variance Anisotropy
Schaffner, D A; Lukin, V S
2014-01-01
The nature of MHD turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind-tunnel configuration of the Swarthmore Spheromak Experiment (SSX). The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparison amongst magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor Hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed as well as the role laboratory experiment can play in understanding turbulence typica...
Regulating drift-wave plasma turbulence into spatiotemporal patterns by pinning coupling.
Liu, Panpan; Yang, Lei; Deng, Zhigang; Wang, Xingang
2011-07-01
Using the technique of pinning coupling in chaos control, we investigate how the two-dimensional drift-wave plasma turbulence described by the Hasegawa-Mima equation can be regulated into different spatiotemporal patterns. It is shown both analytically and numerically that, depending on the pattern structure of the target, the pinning strength necessary for regulating the turbulence could have a large variation. More specifically, with the increase of the wave number of the target, the critical pinning strength is found to be increased by a power-law scaling. Moreover, in both the transition and transient process of the pinning regulation, the modes of the turbulence are found to be suppressed in a hierarchical fashion, that is, by the sequence of mode wave number. The findings give insight into the dynamics of drift-wave turbulence, as well as indicative to the design of new control techniques for real-world turbulence.
Interaction of neutral atoms and plasma turbulence in the tokamak edge region
Wersal, Christoph; Ricci, Paolo; Jorge, Rogério; Morales, Jorge; Paruta, Paola; Riva, Fabio
2016-01-01
A novel first-principles self-consistent model that couples plasma and neutral atom physics suitable for the simulation of turbulent plasma behaviour in the tokamak edge region has been developed and implemented in the GBS code. While the plasma is modelled by the drift-reduced two fluid Braginskii equations, a kinetic model is used for the neutrals, valid in short and in long mean free path scenarios. The model includes ionization, charge-exchange, recombination, and elastic collisional proc...
Plasma Turbulence in the Scrape-off Layer of the ISTTOK Tokamak
Jorge, Rogerio; Halpern, Federico D; Loureiro, Nuno F; Silva, Carlos
2016-01-01
The properties of plasma turbulence in a poloidally limited scrape-off layer (SOL) are addressed, with focus on ISTTOK, a large aspect ratio tokamak with a circular cross section. Theoretical investigations based on the drift-reduced Braginskii equations are carried out through linear calculations and non-linear simulations, in two- and three-dimensional geometries. The linear instabilities driving turbulence and the mechanisms that set the amplitude of turbulence as well as the SOL width are identified. A clear asymmetry is shown to exist between the low-field and the high-field sides of the machine. A comparison between experimental measurements and simulation results is presented.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Radiative heat transfer in turbulent combustion systems theory and applications
Modest, Michael F
2016-01-01
This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.
Effects of plasma elongation on drift wave-zonal flow turbulence
Energy Technology Data Exchange (ETDEWEB)
Angelino, P.; Garbet, X.; Grandgirard, V.; Sarazin, Y.; Ghendrih, P.; Dif-Pradalier, G.; Jolliet, S.; Bottino, A.; McMillan, B. F.; Tran, T. M.; Villard, L.
2007-07-01
The theoretical study of plasma turbulent transport is of central importance to fusion research. Experimental evidence indicates that the confinement time is in fact a consequence of the turbulent transport of energy. The magnitude of turbulent transport depends on the turbulent state resulting from nonlinear saturation mechanisms. The ion heat anomalous transport in the plasma core fusion devices seems to be dominated by a class of microinstabilities, the toroidal ion temperature gradient driven modes (ITGs). ITG turbulence is known to self organize to form coherent macroscopic structures extended in the direction perpendicular to the gradient. These structures are essentially axisymmetric flows denominated zonal flows. The amplitude of zonal flows can oscillate: these perturbations are known as Geodesic Acoustic Modes (GAMs). Zonal flows act as a regulating mechanism on plasma microturbulence, the saturated turbulent state being determined by the nonlinear interactions between ITGs, zonal flows and GAMs. We present an analytical study showing the strong impact that plasma geometry has on zonal flow collisionless linear damping. The GAM frequency is shown to scale inversely with the elongation and the aspect ratio. These results are supported by numerical linear analysis, which in addition shows that the GAM damping rate and the undamped zonal flow component are enhanced by elongation and smaller aspect ratio. The same parameters also modify the ITG linear growth rates. Therefore linear analysis suggests that geometry can play a role in the determination of the turbulent transport level. On the other hand, the extent of this action can be quantified only by means of full nonlinear calculations. We present the results of nonlinear gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria, focusing on the role of plasma elongation. The effect of the variation of this parameter on the ion heat transport and zonal flow-GAM interactions is
Kunz, M W; Cowley, S C; Binney, J J; Sanders, J S
2010-01-01
We consider the problem of self-regulated heating and cooling in galaxy clusters and the implications for cluster magnetic fields and turbulence. Viscous heating of a weakly collisional magnetised plasma is regulated by the pressure anisotropy with respect to the local direction of the magnetic field. The intracluster medium is a high-beta plasma, where pressure anisotropies caused by the turbulent stresses and the consequent local changes in the magnetic field will trigger very fast microscale instabilities. We argue that the net effect of these instabilities will be to pin the pressure anisotropies at a marginal level, controlled by the plasma beta parameter. This gives rise to local heating rates that turn out to be comparable to the radiative cooling rates. Furthermore, we show that a balance between this heating and Bremsstrahlung cooling is thermally stable, unlike the often conjectured balance between cooling and thermal conduction. Given a sufficient (and probably self-regulating) supply of turbulent ...
Sheared E×B flow and plasma turbulence viscosity in a Reversed Field Pinch
Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Regnoli, G.; Zuin, M.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.
2004-11-01
The relationship between electromagnetic turbulence and sheared plasma flow in Reversed Field Pinch configuration is addressed. The momentum balance equation for a compressible plasma is considered and the terms involved are measured in the outer region of Extrap-T2R RFP device. It results that electrostatic fluctuations determine the plasma flow through the electrostatic component of Reynolds Stress tensor. This term involves spatial and temporal scales comparable to those of MHD activity. The derived experimental perpendicular viscosity is consistent with anomalous diffusion, the latter being discussed in terms of electrostatic turbulence background and coherent structures emerging from fluctuations. The results indicate a dynamical interplay between turbulence, anomalous transport and mean E×B profiles. The momentum balance has been studied also in non-stationary condition during the application of Pulsed Poloidal Current Drive, which is known to reduce the amplitude of MHD modes.
Using Field-Particle Correlations to Diagnose the Collisionless Damping of Plasma Turbulence
Howes, Gregory; Klein, Kristropher
2016-10-01
Plasma turbulence occurs ubiquitously throughout the heliosphere, yet our understanding of how turbulence governs energy transport and plasma heating remains incomplete, constituting a grand challenge problem in heliophysics. In weakly collisional heliospheric plasmas, such as the solar corona and solar wind, damping of the turbulent fluctuations occurs due to collisionless interactions between the electromagnetic fields and the individual plasma particles. A particular challenge in diagnosing this energy transfer is that spacecraft measurements are typically limited to a single point in space. Here we present an innovative field-particle correlation technique that can be used with single-point measurements to estimate the energization of the plasma particles due to the damping of the electromagnetic fields, providing vital new information about this how energy transfer is distributed as a function of particle velocity. This technique has the promise to transform our ability to diagnose the kinetic plasma physical mechanisms responsible for not only the damping of turbulence, but also the energy conversion in both collisionless magnetic reconnection and particle acceleration. The work has been supported by NSF CAREER Award AGS-1054061, NSF AGS-1331355, and DOE DE-SC0014599.
Collisional-radiative modelling for the spectroscopic diagnostic of turbulent plasmas
Energy Technology Data Exchange (ETDEWEB)
Rosato, J.; Lefevre, T.; Escarguel, A.; Capes, H.; Catoire, F.; Marandet, Y.; Stamm, R. [PIIM, Universite de Provence, CNRS, Marseille (France); Rosmej, F.B. [Universite Pierre et Marie Curie, Paris (France)] [LULI, Palaiseau (France); Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S. [NFI, Russian Research Center, Kurchatov Institute, Moscow (Russian Federation); Bonhomme, G. [IJL, Universite de Nancy, CNRS, Vandoeuvre-les-Nancy (France)
2011-07-01
Spectroscopy is a diagnostic method widely used in plasma physics research, e.g. in laboratory experiments, in fusion devices or in astrophysics. Information on the plasma parameters (electron density, temperature etc.) can be obtained from the analysis of both line shapes and intensities through the use of suitable models. The aim of the present paper is to assess the role of turbulent fluctuations on line intensity ratios in the case of weakly radiating plasmas. This involves the use of collisional-radiative modelling. In the present work we address the radiation due to atomic lines in turbulent helium plasmas at low density/temperature. The statistical formalism previously used in line shape modelling is adapted in this way, and the atomic populations are calculated with a collisional-radiative code. Different regimes, according to the turbulence correlation time, have been considered. In the static case, which corresponds to low-frequency fluctuations, it has been shown that the turbulence can lead to an increase of the line intensities. An application to helium in realistic experimental conditions has revealed that line ratios are sensitive to the fluctuations, which offers a track to a diagnostic. In the dynamic case, the use of a reduced model in the case of an ideal two-level atom has revealed the possibility for a significant dependence of the atomic populations on the turbulence frequency
Energy Technology Data Exchange (ETDEWEB)
Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.; Lee, W. W.; Diamond, P. H.
2011-03-20
Toroidal plasma flow driven by turbulent torque associated with nonlinear residual stress generation is shown to recover the observed key features of intrinsic rotation in experiments. Specifically, the turbulence-driven intrinsic rotation scales close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing empirical scalings obtained from a large experimental data base. The effect of magnetic shear on the symmetry breaking in the parallel wavenumber spectrum is identified. The origin of the current scaling is found to be the enhanced kll symmetry breaking induced by increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic rotation on the pressure gradient comes from the fact that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving the residual stress, are increased with the strength of the turbulence drives, which are R/LTe and R/Lne for the collisionless trapped electron mode (CTEM). Highlighted results also include robust radial pinches in toroidal flow, heat and particle transport driven by CTEM turbulence, which emerge "in phase", and are shown to play important roles in determining plasma profiles. Also discussed are experimental tests proposed to validate findings from these gyrokinetic simulations.
Lee, Myoung-Jae; Jung, Young-Dae
2016-05-01
The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed. This research was supported by Nuclear Fusion Research Program through NRF funded by the Ministry of Science, ICT & Future Planning (Grant No. 2015M1A7A1A01002786).
Influence of temperature fluctuations on plasma turbulence investigations with Langmuir probes
Nold, B; Ramisch, M; Huang, Z; Müller, H W; Scott, B D; Stroth, U
2011-01-01
The reliability of Langmuir probe measurements for plasma-turbulence investigations is studied on GEMR gyro-fluid simulations and compared with results from conditionally sampled I-V characteristics as well as self-emitting probe measurements in the near scrape-off layer of the tokamak ASDEX Upgrade. In this region, simulation and experiment consistently show coherent in-phase fluctuations in density, plasma potential and also in electron temperature. Ion-saturation current measurements turn out to reproduce density fluctuations quite well. Fluctuations in the floating potential, however, are strongly influenced by temperature fluctuations and, hence, are strongly distorted compared to the actual plasma potential. These results suggest that interpreting floating as plasma-potential fluctuations while disregarding temperature effects is not justified near the separatrix of hot fusion plasmas. Here, floating potential measurements lead to corrupted results on the ExB dynamics of turbulent structures in the cont...
Characterization of radial turbulent fluxes in the Santander linear plasma machine
Mier, J. A.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Anabitarte, E.; Sentíes, J. M.; van Milligen, B. Ph.
2014-05-01
It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.
Generation of powerful terahertz emission in a beam-driven strong plasma turbulence
Arzhannikov, A V
2012-01-01
Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps. It is shown that the power density of electromagnetic emission at the second harmonic of plasma frequency in the terahertz range for these laboratory experiments can reach the level of 1 ${MW/cm}^3$ with 1% conversion efficiency of beam energy losses to electromagnetic emission.
Characterization of radial turbulent fluxes in the Santander linear plasma machine
Energy Technology Data Exchange (ETDEWEB)
Mier, J. A., E-mail: mierja@unican.es; Anabitarte, E.; Sentíes, J. M. [Departamento de Física Aplicada, Universidad de Cantabria, 39005 Santander (Spain); Sánchez, R. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés, Madrid (Spain); Newman, D. E. [Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920 (United States); Castellanos, O. F. [Instituto de Hidráulica Ambiental, Universidad de Cantabria, 39005 Santander (Spain); Milligen, B. Ph. van [Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, 28040 Madrid (Spain)
2014-05-15
It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.
Stretching vortices as a basis for the theory of turbulence
Sirota, V A
2014-01-01
Turbulent flows play an important role in many aspects of nature and technics from sea storms to transport of particles or chemicals. Transport of energy from large scales to small fluctuations is the essential feature of three-dimensional turbulence. What mechanism is responsible for this transport and how do the small fluctuations appear? The conventional conception implies a cascade of breaking vortices. But it faces crucial problems in explaining the mechanism of the breaking, and fails to explain the observed long-living structures in turbulent flows. We suggest a new concept based on recent analysis of stochastic Navier-Stokes equation: stretching of vortices instead of their breaking may be the main mechanism of turbulence. This conception is free of the disadvantages of the cascade paradigm; it also does not need finite-time singularities to explain the observed statistical properties of turbulent flows. Moreover, the introduction of the new conception allows immediately to get velocity scaling parame...
Sun, Jielun; Lenschow, Donald; LeMone, Margaret; Mahrt, Larry
2015-04-01
Turbulent fluxes from the Cooperative Atmosphere-Surface Exchange Study in 1999 (CASES-99) field experiment are further analyzed for both day- and nighttime as a follow-on to the investigation of the nighttime turbulence in Sun et al. (2012). The behavior of momentum and heat fluxes is investigated as functions of wind speed and the bulk temperature difference between observation heights and the surface. Vertical variations of momentum and heat flux at a given height z are correlated and are explained in terms of the energy and heat balance in a layer above the ground surface in which the surface heating/cooling and momentum sink need to be included. In addition, the surface also plays an important role in constraining the size of the dominant turbulent eddies, which is directly related to turbulence strength and the length scale of turbulence generation. The turbulence generation is not related to local vertical gradients especially under neutral condition as assumed in Monin-Obukhov similarity theory. Based on the observed relationships between momentum and heat fluxes, a new bulk formula for turbulence parameterization is developed to mainly examine the above-mentioned surface effects on vertical variation of turbulent momentum and heat fluxes. The new understanding of the observed relationships between these turbulent variables and mean variables explains the observed nighttime turbulence regime change observed in Sun et al. (2012) as well as the daytime momentum and heat flux variations with height up to the maximum observation height of 55 m.
Bardoczi, Laszlo
Neoclassical Tearing Modes (NTMs) are a major impediment in the development of operational scenarios of present toroidal fusion devices. The multi-scale and non-linear interaction of NTMs with turbulence has been an active field of theoretical plasma research in the past decade for its role in plasma confinement. However, little to no experimental effort has been devoted to explore this interaction. As part of this thesis, dedicated experiments were conducted utilizing the full complement of the DIII-D turbulence diagnostics to study the effect of NTM on turbulence as well as the effect of turbulence on NTM growth. The first localized measurements of long and intermediate wavelength turbulent density fluctuations and long wavelength turbulent electron temperature fluctuations modified by magnetic islands are presented. These long and intermediate wavelengths correspond to the expected Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) scales, respectively. Two regimes were observed when tracking density fluctuations during NTM evolution: (1) small islands are characterized by steep electron temperature radial profile and turbulence levels comparable to that of the background; (2) large islands have a flat electron temperature profile and reduced turbulence level at the O-point. Radially outside of the large island, the electron temperature profile is steeper and the turbulence level increased compared to the no or small island case. It was also found that turbulence is reduced in the O-point region compared to the X-point region. This helical structure of turbulence modification leads to a 15% modulation of the density fluctuation power as the island rotates in the lab frame and this modulation is nearly in phase with the electron temperature modulation. These measurements were also used to determine the turbulence penetration length scale at the island separatrix and was found that the turbulence penetration length scale is on the order of the
Kendl, Alexander
2014-01-01
Turbulent transport of trace impurities impurities in the edge and scrape-off-layer of tokamak fusion plasmas is modelled by three dimensional electromagnetic gyrofluid computations including evolution of plasma profile gradients. The source function of impurity ions is dynamically computed from pre-determined measured and calculated electron impact ionization cross section data. The simulations describe the generation and further passive turbulent E-cross-B advection of the impurities by intermittent fluctuations and coherent filamentary structures (blobs) across the scrape-off-layer.
Energy Technology Data Exchange (ETDEWEB)
Diamond, P.H.; Biglari, H.; Gang, F.Y.; Kim, Y.B.; Rosenbluth, M.N.; Wang, X.H.; Xu, X.Q. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Physics); Dominguez, N.; Carreras, B.A.; Leboeuf, J.N.; Lynch, V.E.; Charlton, L.A.; Garcia, L. (Oak Ridge National Lab., TN (USA)); Terry, P.W.; Newman, D.E. (Wisconsin Univ., Madison, WI (USA). Dept. of Physics); Koniges, A.E.; Crotinger, J.; Dannevik, W. (Lawre
1990-12-01
Recent advances in the theory of trapped particle pressure gradient driven turbulence are summarized. A novel theory of trapped ion convective cell turbulence is presented. It is shown that nonlinear transfer to small scales occurs, and that saturation levels are not unphysically large, as previously thought. As the virulent saturation mechanism of ion Compton scattering is shown to result in weak turbulence at higher frequencies, it is thus likely that trapped ion convective cells are the major agent of tokamak transport. Fluid-like trapped electron modes at short wavelengths (k{sub {theta}} {rho}{sub i} > 1) are shown to drive an inward particle pinch. The characteristics of convective cell turbulence in flat density discharges are described, as is the stability of dissipative trapped electron modes in stellarators, with flexible magnetic field structure. The role of cross-correlations in the dynamics of multi-field models of drift wave turbulence is discussed. 32 refs., 7 figs., 1 tab.
Exact kinetic theory for the instability of an electron beam in a hot magnetized plasma
Timofeev, I V
2013-01-01
Efficiency of collective beam-plasma interaction strongly depends on the growth rates of dominant instabilities excited in the system. Nevertheless, exact calculations of the full unstable spectrum in the framework of relativistic kinetic theory for arbitrary magnetic fields and particle distributions were unknown until now. In this paper we give an example of such a calculation answering the question whether the finite thermal spreads of plasma electrons are able to suppress the fastest growing modes in the beam-plasma system. It is shown that nonrelativistic temperatures of Maxwellian plasmas can stabilize only the oblique instabilities of relativistic beam. On the contrary, non-Maxwellian tails typically found in laboratory beam-plasma experiments are able to substantially reduce the growth rate of the dominant longitudinal modes affecting the efficiency of turbulent plasma heating.
Exact kinetic theory for the instability of an electron beam in a hot magnetized plasma
Energy Technology Data Exchange (ETDEWEB)
Timofeev, I. V.; Annenkov, V. V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk (Russian Federation)
2013-09-15
Efficiency of collective beam-plasma interaction strongly depends on the growth rates of dominant instabilities excited in the system. Nevertheless, exact calculations of the full unstable spectrum in the framework of relativistic kinetic theory for arbitrary magnetic fields and particle distributions were unknown until now. In this paper, we give an example of such a calculation answering the question whether the finite thermal spreads of plasma electrons are able to suppress the fastest growing modes in the beam-plasma system. It is shown that nonrelativistic temperatures of Maxwellian plasmas can stabilize only the oblique instabilities of relativistic beam. On the contrary, non-Maxwellian tails typically found in laboratory beam-plasma experiments are able to substantially reduce the growth rate of the dominant longitudinal modes affecting the efficiency of turbulent plasma heating.
Inverse scattering problem in turbulent magnetic fluctuations
Treumann, R A; Narita, Y
2016-01-01
We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gel$'$fand-Levitan-Marchenko equation of quantum mechanical scattering theory.
Suppressed ion-scale turbulence in a hot high-β plasma
Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.
2016-12-01
An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.
Theory and Simulations of Solar System Plasmas
Goldstein, Melvyn L.
2011-01-01
"Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.
Energy Technology Data Exchange (ETDEWEB)
Payan, J.
1994-05-01
After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs.
Fasoli, A.; Avino, F.; Bovet, A.; Furno, I.; Gustafson, K.; Jolliet, S.; Loizu, J.; Malinverni, D.; Ricci, P.; Riva, F.; Theiler, C.; Spolaore, M.; Vianello, N.
2013-06-01
Progress in basic understanding of turbulence and its influence on the transport both of the plasma bulk and of suprathermal components is achieved in the TORPEX simple magnetized torus. This configuration combines a microwave plasma production scheme with a quasi-equilibrium generated by a toroidal magnetic field, onto which a small vertical component is superimposed, simulating a simplified form of tokamak scrape-off layers. After having clarified the formation of blobs in ideal interchange turbulence, TORPEX experiments elucidated the mechanisms behind the blob motion, with a general scaling law relating their size and speed. The parallel currents associated with the blobs, responsible for the damping of the charge separation that develops inside them, hence determining their cross-field velocity, have been measured. The blob dynamics is influenced by creating convective cells with biased electrodes, arranged in an array on a metal limiter. Depending on the biasing scheme, radial and vertical blob velocities can be varied. Suprathermal ion transport in small-scale turbulence is also investigated on TORPEX. Suprathermal ions are generated by a miniaturized lithium source, and are detected using a movable double-gridded energy analyser. We characterize vertical and radial spreading of the ion beam, associated with the ideal interchange-dominated plasma turbulence, as a function of the suprathermal ion energy and the plasma temperature. Experimental results are in good agreement with global fluid simulations, including in cases of non-diffusive behaviour. To investigate the interaction of plasma and suprathermal particles with instabilities and turbulence in magnetic configurations of increasing complexity, a closed field line configuration has recently been implemented on TORPEX, based on a current-carrying wire suspended in the vacuum chamber. First measurements indicate the creation of circular symmetric profiles centred on the magnetic axis, and instabilities
PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
Hellinger, Petr; Trávnícek, Pavel M. [Astronomical Institute, CAS, Bocni II/1401, CZ-14100 Prague (Czech Republic); Matteini, Lorenzo [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Landi, Simone; Verdini, Andrea; Franci, Luca, E-mail: petr.hellinger@asu.cas.cz [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy)
2015-10-01
The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heated in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.
Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory
Gioia, G; Chakraborty, Pinaki
2005-01-01
The classical experiments on turbulent friction in rough pipes were performed by J. Nikuradse in the 1930's. Seventy years later, they continue to defy theory. Here we model Nikuradse's experiments using the phenomenological theory of Kolmogorov, a theory that is widely thought to be applicable only to highly idealized flows. Our results include both the empirical scalings of Blasius and Strickler, and are otherwise in minute qualitative agreement with the experiments; they suggest that the phenomenological theory may be relevant to other flows of practical interest; and they unveil the existence of close ties between two milestones of experimental and theoretical turbulence.
Turbulent momentum transport in core tokamak plasmas and penetration of scrape-off layer flows
Abiteboul, J.; Ghendrih, Ph; Grandgirard, V.; Cartier-Michaud, T.; Dif-Pradalier, G.; Garbet, X.; Latu, G.; Passeron, C.; Sarazin, Y.; Strugarek, A.; Thomine, O.; Zarzoso, D.
2013-07-01
The turbulent transport of toroidal angular momentum in the core of a tokamak plasma is investigated in global, full-f gyrokinetic simulations, performed with the GYSELA code in the flux-driven regime. During the initial turbulent phase, a front of positive Reynolds stress propagates radially, generating intrinsic toroidal rotation from a vanishing initial profile. This is also accompanied by a propagating front of turbulent heat flux. In the statistical steady-state regime, turbulent transport exhibits large-scale avalanche-like events which are found to transport both heat and momentum, and similar statistical properties are obtained for both fluxes. The impact of scrape-off layer flows is also investigated by modifying the boundary conditions in the simulations. The observed impact is radially localized for L-mode like poloidal profiles of parallel velocity at the edge, while a constant velocity at the edge can modify the core toroidal rotation profile in a large fraction of the radial domain.
Fluctuation-induced shear flow and energy transfer in plasma interchange turbulence
Energy Technology Data Exchange (ETDEWEB)
Li, B. [School of Physics, State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sun, C. K.; Wang, X. Y.; Zhou, A.; Wang, X. G. [School of Physics, State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Ernst, D. R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2015-11-15
Fluctuation-induced E × B shear flow and energy transfer for plasma interchange turbulence are examined in a flux-driven system with both closed and open magnetic field lines. The nonlinear evolution of interchange turbulence shows the presence of two confinement regimes characterized by low and high E × B flow shear. In the first regime, the large-scale turbulent convection is dominant and the mean E × B shear flow is at a relatively low level. By increasing the heat flux above a certain threshold, the increased turbulent intensity gives rise to the transfer of energy from fluctuations to mean E × B flows. As a result, a transition to the second regime occurs, in which a strong mean E × B shear flow is generated.
Interaction of neutral atoms and plasma turbulence in the tokamak edge region
Wersal, Christoph; Ricci, Paolo; Jorge, Rogerio; Morales, Jorge; Paruta, Paola; Riva, Fabio
2016-10-01
A novel first-principles self-consistent model that couples plasma and neutral atom physics suitable for the simulation of turbulent plasma behaviour in the tokamak edge region has been developed and implemented in the GBS code. While the plasma is modelled by the drift-reduced two fluid Braginskii equations, a kinetic model is used for the neutrals, valid in short and in long mean free path scenarios. The model includes ionization, charge-exchange, recombination, and elastic collisional processes. The model was used to study the transition form the sheath to the conduction limited regime, to include gas puffs in the simulations, and to investigate the interplay between neutral atoms and plasma turbulence.
Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.
Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K
2012-06-22
We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.
Methods of separation of variables in turbulence theory
Tsuge, S.
1978-01-01
Two schemes of closing turbulent moment equations are proposed both of which make double correlation equations separated into single-point equations. The first is based on neglected triple correlation, leading to an equation differing from small perturbed gasdynamic equations where the separation constant appears as the frequency. Grid-produced turbulence is described in this light as time-independent, cylindrically-isotropic turbulence. Application to wall turbulence guided by a new asymptotic method for the Orr-Sommerfeld equation reveals a neutrally stable mode of essentially three dimensional nature. The second closure scheme is based on an assumption of identity of the separated variables through which triple and quadruple correlations are formed. The resulting equation adds, to its equivalent of the first scheme, an integral of nonlinear convolution in the frequency describing a role due to triple correlation of direct energy-cascading.
Energy Dissipation and Landau Damping in Two- and Three-dimensional Plasma Turbulence
Li, Tak Chu; Howes, Gregory G.; Klein, Kristopher G.; TenBarge, Jason M.
2016-12-01
Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.
Takamoto, Makoto
2016-01-01
In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using 3-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfv\\'en) following the procedure mode decomposition in (Cho & Lazarian 2002), and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfv\\'en mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfv\\'en Mach number but with the background magnetization, which indicates a strong coupling between the fast and Alfv\\'en modes and appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfv\\'en modes strongly couples and cannot be distinguished, different from the non-relativistic MHD case. This finding will affect particle acceleration efficiency obtained by assuming Alfv\\'enic critical balan...
Global full-f gyrokinetic simulations of plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Grandgirard, V [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Sarazin, Y [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Angelino, P [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Bottino, A [Max Plank Institut fr Plasmaphysik, IPP-EURATOM AssociationGarching (Germany); Crouseilles, N [IRMA, Universite Louis Pasteur, 7, rue Rene Descartes, 67084 Strasbourg Cedex (France); Darmet, G [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Dif-Pradalier, G [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Garbet, X [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Ghendrih, Ph [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Jolliet, S [CRPP, Association Euratom-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Latu, G [LaBRI, 341 Cours Liberation, 33405 Talence Cedex (France); Sonnendruecker, E [IRMA, Universite Louis Pasteur, 7, rue Rene Descartes, 67084 Strasbourg Cedex (France); Villard, L [CRPP, Association Euratom-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland)
2007-12-15
Critical physical issues can be specifically tackled with the global full-f gyrokinetic code GYSELA. Three main results are presented. First, the self-consistent treatment of equilibrium and fluctuations highlights the competition between two compensation mechanisms for the curvature driven vertical charge separation, namely, parallel flow and polarization. The impact of the latter on the turbulent transport is discussed. In the non-linear regime, the benchmark with the Particle-In-Cell code ORB5 looks satisfactory. Second, the transport scaling with {rho}{sub *} is found to depend both on {rho}{sub *} itself and on the distance to the linear threshold. Finally, a statistical steady-state turbulent regime is achieved in a reduced version of GYSELA by prescribing a constant heat source.
Global full-f gyrokinetic simulations of plasma turbulence
Grandgirard, V.; Sarazin, Y.; Angelino, P.; Bottino, A.; Crouseilles, N.; Darmet, G.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph; Jolliet, S.; Latu, G.; Sonnendrücker, E.; Villard, L.
2007-12-01
Critical physical issues can be specifically tackled with the global full-f gyrokinetic code GYSELA. Three main results are presented. First, the self-consistent treatment of equilibrium and fluctuations highlights the competition between two compensation mechanisms for the curvature driven vertical charge separation, namely, parallel flow and polarization. The impact of the latter on the turbulent transport is discussed. In the non-linear regime, the benchmark with the Particle-In-Cell code ORB5 looks satisfactory. Second, the transport scaling with ρ* is found to depend both on ρ* itself and on the distance to the linear threshold. Finally, a statistical steady-state turbulent regime is achieved in a reduced version of GYSELA by prescribing a constant heat source.
Complexity Methods Applied to Turbulence in Plasma Astrophysics
Vlahos, Loukas
2016-01-01
In this review many of the well known tools for the analysis of Complex systems are used in order to study the global coupling of the turbulent convection zone with the solar atmosphere where the magnetic energy is dissipated explosively. Several well documented observations are not easy to interpret with the use of Magnetohydrodynamic (MHD) and/or Kinetic numerical codes. Such observations are: (1) The size distribution of the Active Regions (AR) on the solar surface, (2) The fractal and multi fractal characteristics of the observed magnetograms, (3) The Self-Organised characteristics of the explosive magnetic energy release and (4) the very efficient acceleration of particles during the flaring periods in the solar corona. We review briefly the work published the last twenty five years on the above issues and propose solutions by using methods borrowed from the analysis of complex systems. The scenario which emerged is as follows: (a) The fully developed turbulence in the convection zone generates and trans...
Kinetic theory of nonideal gases and nonideal plasmas
Klimontovich, Yu L
2013-01-01
Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a shor
Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves
Lyubchyk, O.; Kontar, E. P.; Voitenko, Y. M.; Bian, N. H.; Melrose, D. B.
2017-09-01
We study the influence of kinetic-scale Alfvénic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio β of plasma to magnetic pressure is lower than the electron-to-ion mass ratio me/mi. The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 10^{10} K for continuum emission, and can exceed 10^{11} K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfvén waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts 100% polarization in the sense of the ordinary (o-) mode of type I emission.
On the Nonlinear Conductivity Tensor for an Unmagnetized Relativistic Turbulent Plasma.
1982-02-01
New York (1977). (10) L. M. Al’tshul’ and V. I. Karpman , The Kinetics of Waves in a Weakly Turbulent Plasma, Zh. Eksp. Teor. Fiz., 47 (1964), 1552...LONTZ DEFENSE FOR RESEARCH & ENGINEERING ATTN B. D. GUENTHER DIR ENERGY TECHNOLOGY OFFICE ATTN TECH LIBRARY ATTN J. R. AIREY RESEARCH TRIANGLE PARK, NC
The shear viscosity of gauge theory plasma with chemical potentials
Benincasa, P; Naryshkin, R; Benincasa, Paolo; Buchel, Alex; Naryshkin, Roman
2007-01-01
We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.
The shear viscosity of gauge theory plasma with chemical potentials
Benincasa, Paolo; Buchel, Alex; Naryshkin, Roman
2007-02-01
We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.
Spatial variation of eddy-diffusion coefficients in the turbulent plasma sheet during substorms
Directory of Open Access Journals (Sweden)
M. Stepanova
2009-04-01
Full Text Available Study of the plasma turbulence in the central plasma sheet was performed using the Interball-Tail satellite data. Fluctuations of the plasma bulk velocity in the plasma sheet were deduced from the measurements taken by the Corall instrument for different levels of geomagnetic activity and different locations inside the plasma sheet. The events that satisfied the following criteria were selected for analysis: number density 0.1–10 cm^{−3}, ion temperature T≥0.3 keV, and average bulk velocity ≤100 km/s. It was found that the plasma sheet flow generally appears to be strongly turbulent, i.e. is dominated by fluctuations that are unpredictable. Corresponding eddy-diffusion coefficients in Y- and Z-direction in the GSM coordinate system were derived using the autocorrelation time and rms velocity. Statistical studies of variation of the eddy-diffusion coefficients with the location inside the plasma sheet showed a significant increase in these coefficients in the tailward direction. During substorms this dependence shows strong increase of eddy-diffusion in the central part of the plasma sheet at the distances of 10–30 Earth's radii. This effect is much stronger for Y-components of the eddy-diffusion coefficient, which could be related to the geometry of the plasma sheet, allowing more room for development of eddies in this direction.
Turbulence and selective decay in the SSX plasma wind tunnel
Gray, Tim; Brown, Michael; Dandurand, Dan; Fisher, Mike; Flanagan, Ken; Weinhold, Darren; Lukin, V.
2011-10-01
A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0 . 08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >= 50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti = 25 eV, ne >=1015 cm-3, and B = 0 . 25 T. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇ × B --> = λ B --> . While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β = 0 . 5) and does not have a flat λ profile. Merging with plasma plumes injected from both ends of the cylinder will be compared to the non-merging plasmas. Supported by US DOE and NSF.
Energy Technology Data Exchange (ETDEWEB)
1993-12-01
The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.
A new probability distribution model of turbulent irradiance based on Born perturbation theory
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The subject of the PDF (Probability Density Function) of the irradiance fluctuations in a turbulent atmosphere is still unsettled.Theory reliably describes the behavior in the weak turbulence regime,but theoretical description in the strong and whole turbulence regimes are still controversial.Based on Born perturbation theory,the physical manifestations and correlations of three typical PDF models (Rice-Nakagami,exponential-Bessel and negative-exponential distribution) were theoretically analyzed.It is shown that these models can be derived by separately making circular-Gaussian,strong-turbulence and strong-turbulence-circular-Gaussian approximations in Born perturbation theory,which denies the viewpoint that the Rice-Nakagami model is only applicable in the extremely weak turbulence regime and provides theoretical arguments for choosing rational models in practical applications.In addition,a common shortcoming of the three models is that they are all approximations.A new model,called the Maclaurin-spread distribution,is proposed without any approximation except for assuming the correlation coefficient to be zero.So,it is considered that the new model can exactly reflect the Born perturbation theory.Simulated results prove the accuracy of this new model.
Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000000
Directory of Open Access Journals (Sweden)
Zhang Xin
2016-10-01
Full Text Available An experimental investigation was conducted to evaluate the effect of symmetrical plasma actuators on turbulent boundary layer separation control at high Reynolds number. Compared with the traditional control method of plasma actuator, the whole test model was made of aluminum and acted as a covered electrode of the symmetrical plasma actuator. The experimental study of plasma actuators’ effect on surrounding air, a canonical zero-pressure gradient turbulent boundary, was carried out using particle image velocimetry (PIV and laser Doppler velocimetry (LDV in the 0.75 m × 0.75 m low speed wind tunnel to reveal the symmetrical plasma actuator characterization in an external flow. A half model of wing-body configuration was experimentally investigated in the ∅ 3.2 m low speed wind tunnel with a six-component strain gauge balance and PIV. The results show that the turbulent boundary layer separation of wing can be obviously suppressed and the maximum lift coefficient is improved at high Reynolds number with the symmetrical plasma actuator. It turns out that the maximum lift coefficient increased by approximately 8.98% and the stall angle of attack was delayed by approximately 2° at Reynolds number 2 × 106. The effective mechanism for the turbulent separation control by the symmetrical plasma actuators is to induce the vortex near the wing surface which could create the relatively large-scale disturbance and promote momentum mixing between low speed flow and main flow regions.
Directory of Open Access Journals (Sweden)
Mahinder Singh
2016-10-01
Full Text Available The generation mechanism of the electromagnetic radiation in case of inhomogeneous plasma on the basis of plasma-maser interaction in presence of drift wave turbulence is studied. The drift wave turbulence is taken as the low-frequency mode field and is found to be strongly in phase relation with thermal particles and may transfer its wave energy nonlinearly through a modulated field of high-frequency extraordinary mode (X-mode wave. It has been found that amplification of X-mode wave is possible at the expense of drift wave turbulent energy. This type of high-frequency instability can leads to auroral kilometric radiation (AKR. The growth rate of the X-mode wave, in the form of AKR, has been calculated with the involvement of spatial density gradient parameter. This result may be particularly important for stability of various drift modes in magnetically confined plasma as well as for transport of momentum and energy in such inhomogeneous plasma
The Aharonov-Bohm effect in a spatially confining theory based on a turbulent fluid
Antonov, Dmitri
2012-01-01
Wilson loops in a turbulent fluid are shown to respect a specific area law corresponding to the Kolmogorov scaling. This law leads to the condensation of a complex-valued scalar field minimally coupled to the velocity field. We use this finding to estimate a v.e.v. of the dual Higgs field, which appears in the hydrodynamic description of a spatially confining dual Landau-Ginzburg theory. The temperature dependence of all other parameters of this theory is found upon a comparison with the spatial string tension and the chromo-magnetic vacuum correlation length of the Yang-Mills gluon plasma. In particular, a nonperturbative contribution to the shear viscosity of the dual fluid comes out exponentially suppressed with temperature. Interactions of the dual Abrikosov vortices with excitations of the fluid yield a long-range Aharonov-Bohm effect. This effect is shown to take place for all but calculated discrete values of the product of the kinematic viscosity of the fluid to the coupling constant of the dual Higgs...
The theory of toroidally confined plasmas
White, Roscoe B
2014-01-01
This graduate level textbook develops the theory of magnetically confined plasma, with the aim of bringing the reader to the level of current research in the field of thermonuclear fusion. It begins with the basic concepts of magnetic field description, plasma equilibria and stability, and goes on to derive the equations for guiding center particle motion in an equilibrium field. Topics include linear and nonlinear ideal and resistive modes and particle transport. It is of use to workers in the field of fusion both for its wide-ranging account of tokamak physics and as a kind of handbook or formulary. This edition has been extended in a number of ways. The material on mode-particle interactions has been reformulated and much new information added, including methodology for Monte Carlo implementation of mode destabilization. These results give explicit means of carrying out mode destabilization analysis, in particular for the dangerous fishbone mode. A new chapter on cyclotron motion in toroidal geometry has ...
A Theory of Grain Clustering in Turbulence: The Origin and Nature of Large Density Fluctuations
Hopkins, Philip F
2016-01-01
We propose a theory for the density fluctuations of aerodynamic grains embedded in a turbulent, gravitating gas disk. The theory combines calculations for the average behavior of grains encountering a single turbulent eddy, with a hierarchical description of the eddy velocity statistics. We show that this makes analytic predictions for a wide range of quantities, including: the distribution of volume-average grain densities, the power spectrum and correlation functions of grain density fluctuations, and the maximum volume density of grains reached. For each, we predict how these scale as a function of grain stopping/friction time (t_stop), spatial scale, grain-to-gas mass ratio, strength of the turbulence (alpha), and detailed disk properties (orbital frequency, sound speed). We test these against numerical simulations and find good agreement over a huge parameter space. Results from 'turbulent concentration' simulations and laboratory experiments are also predicted as a special case. We predict that vortices...
Dust particle spin-up caused by cross-field plasma flow and turbulence.
Shukla, P. K.; Shevchenko, V. I.; Krasheninnikov, S. I.
2006-10-01
Spinning of dust particles adds new interesting features to dust particle dynamics and to the dusty plasma physics. Several reasons for dust particle spin-up have been suggested (e.g. Ref. 1): i) sheared flow of plasmas around charge dust particles, ii) dust particle surface irregularities, and iii) sheath effects resulting from the interactions of a charge dipole of a dust particle (caused by plasma flows into the sheath) with the sheath electric field. Here we present a novel mechanism for charged dust particle spin-up. The physics of the present mechanism is simple and robust, and is associated with the interaction of a charge dipole of a dust particle, D, induced by the ExB cross-field flow of a magnetized plasma (D ExB), where E and B are the electric and ambient magnetic fields. Since the resulting torque is proportional to | E |^2, the presented mechanism of charged dust particle spin-up works for both stationary and non-stationary (turbulent in particular) electric fields. In many cases the turbulent electric field stremgth is much larger than the laminar one so that the impact of turbulence can be dominant. We present theoretical analyses for charged dust particle spin-up and estimate the maximum value for the angular velocity charged dust particle can acquire due to our new spin-up mechanism. [1] N. Sato ``Spinning Motion of Fine Particles in Plasmas'', AIP Conference Proceedings No. 799, p. 97; AIP, New York, 2005.
Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-β Plasmas
Energy Technology Data Exchange (ETDEWEB)
Lin, Zhihong
2014-03-13
Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.
Keenan, Brett D
2015-01-01
Magnetized high-energy-density plasmas can often have strong electromagnetic fluctuations whose correlation scale is smaller than the electron Larmor radius. Radiation from the electrons in such plasmas, which markedly differs from both synchrotron and cyclotron radiation, and their energy and pitch-angle diffusion are tightly related. In this paper, we present a comprehensive theoretical and numerical study of the particles' transport in both cold, "small-scale" Langmuir and Whistler-mode turbulence and its relation to the spectra of radiation simultaneously produced by these particles. We emphasize that this relation is a superb diagnostic tool of laboratory, astrophysical, interplanetary, and solar plasmas with a mean magnetic field and strong small-scale turbulence.
A Signature of Self-Organized Criticality in the HT-6M Edge Plasma Turbulence
Institute of Scientific and Technical Information of China (English)
WANG Wen-Hao; YU Chang-Xuan; WEN Yi-Zhi; XU Yu-Hong; LING Bi-Li; GONG Xian-Zu; LIU Bao-Hua; WAN Bao-Nian
2001-01-01
ower spectra of electron density and floating potential fluctuations in the velocity shear layer of the HT-6M edge region have been measured and analysed. All the spectra have three distinct frequency regions with the spectral decay indices typical of self-organized criticality systems (0, -1 and -4) when Doppler shift effects induced by the plasma E × B flow velocity have been taken into account. These results are consistent with the predictions of the self-organized criticality models, which may be an indication of edge plasma turbulence in the HT-6M tokamak evolving into a critical state independent of local plasma parameters.
Role of nonlinear localized structures and turbulence in magnetized plasma
Pathak, Neha; Yadav, Nitin; Uma, R.; Sharma, R. P.
2016-09-01
In the present study, we have analyzed the field localization of kinetic Alfvén wave (KAW) due to the presence of background density perturbation, which are assumed to be originated by the three dimensionally propagating low frequency KAW. These localized structures play an important role for energy transportation at smaller scales in the dispersion range of magnetic power spectrum. For the present model, governing dynamic equations of high frequency pump KAW and low frequency KAW has been derived by considering ponderomotive nonlinearity. Further, these coupled equations have been numerically solved to analyze the resulting localized structures of pump KAW and magnetic power spectrum in the magnetopause regime. Numerically calculated spectrum exhibits inertial range having spectral index of -3/2 followed by steeper scaling; this steepening in the turbulent spectrum is a signature of energy transportation from larger to smaller scales. In this way, the proposed mechanism, which is based on nonlinear wave-wave interaction, may be useful for understanding the particle acceleration and turbulence in magnetopause.
Sugama, H.; Nunami, M.; Nakata, M.; Watanabe, T.-H.
2017-02-01
A novel gyrokinetic formulation is presented by including collisional effects into the Lagrangian variational principle to yield the governing equations for background and turbulent electromagnetic fields and gyrocenter distribution functions, which can simultaneously describe classical, neoclassical, and turbulent transport processes in toroidal plasmas with large toroidal flows on the order of the ion thermal velocity. Noether's theorem modified for collisional systems and the collision operator given in terms of Poisson brackets are applied to derivation of the particle, energy, and toroidal momentum balance equations in the conservative forms, which are desirable properties for long-time global transport simulation.
On the validity of the local diffusive paradigm in turbulent plasma transport
Dif-Pradalier, G.; Diamond, P. H.; Grandgirard, V.; Sarazin, Y.; Abiteboul, J.; Garbet, X.; Ghendrih, Ph.; Strugarek, A.; Ku, S.; Chang, C. S.
2010-08-01
A systematic, constructive and self-consistent procedure to quantify nonlocal, nondiffusive action at a distance in plasma turbulence is exposed and applied to turbulent heat fluxes computed from the state-of-the-art full- f , flux-driven gyrokinetic GYSELA and XGC1 codes. A striking commonality is found: heat transport below a dynamically selected mesoscale has the structure of a Lévy distribution, is strongly nonlocal, nondiffusive, scale-free, and avalanche mediated; at larger scales, we report the observation of a self-organized flow structure which we call the “ E×B staircase” after its planetary analog.
Directory of Open Access Journals (Sweden)
R. A. Treumann
2004-01-01
Full Text Available Mirror mode turbulence is the lowest frequency perpendicular magnetic excitation in magnetized plasma proposed already about half a century ago by Rudakov and Sagdeev (1958 and Chandrasekhar et al. (1958 from fluid theory. Its experimental verification required a relatively long time. It was early recognized that mirror modes for being excited require a transverse pressure (or temperature anisotropy. In principle mirror modes are some version of slow mode waves. Fluid theory, however, does not give a correct physical picture of the mirror mode. The linear infinitesimally small amplitude physics is described correctly only by including the full kinetic theory and is modified by existing spatial gradients of the plasma parameters which attribute a small finite frequency to the mode. In addition, the mode is propagating only very slowly in plasma such that convective transport is the main cause of flow in it. As the lowest frequency mode it can be expected that mirror modes serve as one of the dominant energy inputs into plasma. This is however true only when the mode grows to large amplitude leaving the linear stage. At such low frequencies, on the other hand, quasilinear theory does not apply as a valid saturation mechanism. Probably the dominant processes are related to the generation of gradients in the plasma which serve as the cause of drift modes thus transferring energy to shorter wavelength propagating waves of higher nonzero frequency. This kind of theory has not yet been developed as it has not yet been understood why mirror modes in spite of their slow growth rate usually are of very large amplitudes indeed of the order of |B/B0|2~O(1. It is thus highly reasonable to assume that mirror modes are instrumental for the development of stationary turbulence in high temperature plasma. Moreover, since the magnetic field in mirror turbulence forms extended though slightly oblique magnetic bottles, low parallel energy particles can be trapped
On Conditional Statistics in Scalar Turbulence Theory vs. Experiment
Ching, E S C; Podivilov, E V; Procaccia, I; Ching, Emily S.C.; L'vov, Victor S.; Podivilov, Evgeni; Procaccia, Itamar
1996-01-01
We consider turbulent advection of a scalar field $T(\\B.r)$, passive or active, and focus on the statistics of gradient fields conditioned on scalar differences $\\Delta T(R)$ across a scale $R$. In particular we focus on two conditional averages $\\langle\
Experimental Investigation of Turbulent-driven Sheared Parallel Flows in the CSDX Plasma Device
Tynan, George; Hong, Rongjie; Li, Jiacong; Thakur, Saikat; Diamond, Patrick
2016-10-01
Parallel velocity and its radial shear is a key element for both accessing improved confinement regimes and controlling the impurity transport in tokamak devices. In this study, the development of radially sheared parallel plasma flows in plasmas without magnetic shear is investigated using laser induced fluorescence, multi-tip Langmuir and Mach probes in the CSDX helicon linear plasma device. Results show that a mean parallel velocity shear grows as the radial gradient of plasma density increased. The sheared flow onset corresponds to the onset of a finite parallel Reynolds stress that acts to reinforce the flow. As a result, the mean parallel flow gains energy from the turbulence that, in turn, is driven by the density gradient. This results in a flow away from the plasma source in the central region of the plasma and a reverse flow in far-peripheral region of the plasma column. The results motivate a model of negative viscosity induced by the turbulent stress which may help explain the origin of intrinsic parallel flow in systems without magnetic shear.
Energy Technology Data Exchange (ETDEWEB)
B. A. Kashiwa; W. B. VanderHeyden
2000-12-01
A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients.
Interstellar Turbulent Magnetic Field Generation by Plasma Instabilities
Tautz, R C
2013-01-01
The maximum magnetic field strength generated by Weibel-type plasma instabilities is estimated for typical conditions in the interstellar medium. The relevant kinetic dispersion relations are evaluated by conducting a parameter study both for Maxwellian and for suprathermal particle distributions showing that micro Gauss magnetic fields can be generated. It is shown that, depending on the streaming velocity and the plasma temperatures, either the longitudinal or a transverse instability will be dominant. In the presence of an ambient magnetic field, the filamentation instability is typically suppressed while the two-stream and the classic Weibel instability are retained.
Ricci, P.; Halpern, F. D.; Jolliet, S.; Loizu, J.; Mosetto, A.; Fasoli, A.; Furno, I.; Theiler, C.
2012-12-01
Based on the drift-reduced Braginskii equations, the Global Braginskii Solver, GBS, is able to model the scrape-off layer (SOL) plasma turbulence in terms of the interplay between the plasma outflow from the tokamak core, the turbulent transport, and the losses at the vessel. Model equations, the GBS numerical algorithm, and GBS simulation results are described. GBS has been first developed to model turbulence in basic plasma physics devices, such as linear and simple magnetized toroidal devices, which contain some of the main elements of SOL turbulence in a simplified setting. In this paper we summarize the findings obtained from the simulation carried out in these configurations and we report the first simulations of SOL turbulence. We also discuss the validation project that has been carried out together with the GBS development.
Investigation of turbulent transport and shear flows in the Edge of toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Birkenmeier, G.; Koehn, A.; Manz, P.; Nold, B.; Stroth, U. [Institut fuer Plasmaforschung, Universitaet Stuttgart, Stuttgart (Germany); Happel, T. [Lab. Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid (Spain); Mahdizadeh, N. [ABB Switzerland Ltd. Corporate Research, Baden-Daettwil (Switzerland); Wilcox, R.; Anderson, D.T. [HSX Plasma Lab., University of Wisconsin, Madison, Wisconsin (United States); Ramisch, M.
2010-08-15
Intense Langmuir-probe measurements were carried out in the toroidal low-temperature plasma of the torsatron TJ-K in order to investigate the origin and dynamics of intermittent transport events, so-called blobs, at the transition from closed to open field lines. The statistical properties of the fluctuations at the plasma boundary agree with observations made in fusion edge plasmas. Blobs were found to be generated locally through a change in turbulence drive across the separatrix. The non-linear spectral energy transfer from small-scale fluctuations into large-scale flows was measured with a 128-probe array. The results point to the transfer being a key loss channel for turbulence energy leading to a reduction in turbulent transport. Earlier observations[M.A. Pedrosa et al., Phys. Rev. Lett. 100, 215003 (2008)] of enhanced long-range correlations in the plasma potential through externally induced shear flows in TJ-II stellarator were verified. The newly measured correlation of zonal vorticity and Reynolds stress at induced flow shear indicates an enhancement of zonal-flow drive (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Dissipation in PIC simulations of moderate to low \\b{eta} plasma turbulence
Makwana, Kirit; Guo, Fan; Li, Xiaocan
2016-01-01
We simulate decaying turbulence in electron-positron pair plasmas using a fully- kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma beta. The energy decay rate is found to be similar in both the cases. The perpendicular wave-number spectrum of magnetic energy shows a slope of k^-1.3 in both the cases. The particle energy distribution function shows the formation of a non-thermal feature in the case of lower plasma beta, with a slope close to E^-1. The role of thin turbulent current sheets in this process is investigated. The heating by E_{\\parallel}.J_{\\parallel} term dominates the E_{\\perp}.J_{\\perp} term. Regions of strong E_{\\parallel}.J_{\\parallel} are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E_{\\parallel} in the low beta simulation, suggesting an important role of magnetic reconnection in the dissipation of low beta plasma turbulence.
Self-regulation of E x B flow shear via plasma turbulence.
Vianello, N; Spada, E; Antoni, V; Spolaore, M; Serianni, G; Regnoli, G; Cavazzana, R; Bergsåker, H; Drake, J R
2005-04-08
The momentum balance has been applied to the ExB flow in the edge region of a reversed field pinch (RFP) configuration. All terms, including those involving fluctuations, have been measured in stationary condition in the edge region of the Extrap-T2R RFP experiment. It is found that the component of the Reynolds stress driven by electrostatic fluctuations is the term playing the major role in driving the shear of the ExB flow to a value marginal for turbulent suppression, so that the results are in favor of a turbulence self-regulating mechanism underlying the momentum balance at the edge. Balancing the sheared flow driving and damping terms, the plasma viscosity is found anomalous and consistent with the diffusivity due to electrostatic turbulence.
Kinetic turbulence in relativistic plasma: from thermal bath to non-thermal continuum
Zhdankin, Vladimir; Uzdensky, Dmitri A; Begelman, Mitchell C
2016-01-01
We present results from particle-in-cell simulations of driven turbulence in collisionless, relativistic pair plasma. We find that turbulent fluctuations are consistent with the classical $k_\\perp^{-5/3}$ magnetic energy spectrum at fluid scales and a steeper $k_\\perp^{-4}$ spectrum at sub-Larmor scales, where $k_\\perp$ is the wavevector perpendicular to the mean field. We demonstrate the development of a non-thermal, power-law particle energy distribution, $f(E) \\sim E^{-\\alpha}$, with index well fit by $\\alpha \\sim 1 + C_0 (\\sigma \\rho_e/L)^{-1/2}$, where $C_0$ is a constant, $\\sigma$ is magnetization, and $\\rho_e/L$ is the ratio of characteristic Larmor radius to system size. In the absence of asymptotic system-size independent scalings, our results challenge the viability of turbulent particle acceleration in high-energy astrophysical systems such as pulsar wind nebulae.
Falceta-Goncalves, D
2015-01-01
In this work we report a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that i) amplification of magnetic field was efficient in firehose unstable turbulent regimes, but not in the mirror unstable models, ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo, iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales with pressure anisotropy ratio is confirmed by the numerical simulations. These results reinforce the idea that pres...
Numerical Study of Microwave Reflectometry in Plasmas with 2D Turbulent Fluctuations
Energy Technology Data Exchange (ETDEWEB)
E. Mazzucato
1998-02-01
This paper describes a numerical study of the role played by 2D turbulent fluctuations in microwave reflectometry -- a radar technique for density measurements using the reflection of electromagnetic waves from a plasma cutoff. The results indicate that, if the amplitude of fluctuations is below a threshold which is set by the spectrum of poloidal wavenumbers, the measured backward field appears to originate from a virtual location behind the reflecting layer, and to arise from the phase modulation of the probing wave, with an amplitude given by 1D geometric optics. These results suggest a possible scheme for turbulence measurements in tokamaks, where the backward field is collected with a wide aperture antenna, and the virtual reflecting layer is imaged onto the plane of an array of detectors. Such a scheme should be capable of providing additional information on the nature of the short-scale turbulence observed in tokamaks, which still remains one of the unresolved issues in fusion research.
Self-Regulation of E×B Flow Shear via Plasma Turbulence
Vianello, N.; Spada, E.; Antoni, V.; Spolaore, M.; Serianni, G.; Regnoli, G.; Cavazzana, R.; Bergsåker, H.; Drake, J. R.
2005-04-01
The momentum balance has been applied to the E×B flow in the edge region of a reversed field pinch (RFP) configuration. All terms, including those involving fluctuations, have been measured in stationary condition in the edge region of the Extrap-T2R RFP experiment. It is found that the component of the Reynolds stress driven by electrostatic fluctuations is the term playing the major role in driving the shear of the E×B flow to a value marginal for turbulent suppression, so that the results are in favor of a turbulence self-regulating mechanism underlying the momentum balance at the edge. Balancing the sheared flow driving and damping terms, the plasma viscosity is found anomalous and consistent with the diffusivity due to electrostatic turbulence.
Tsurutani, Bruce T.
1995-01-01
As the lead-off presentation for the topic of nonlinear waves and their evolution, we will illustrate some prominent examples of waves in space plasmas. We will describe recent observations detected within planetary foreshocks, near comets and in interplanetary space. It is believed that the nonlinear LF plasma wave features discussed here are part of and may be basic to the development of plasma turbulence. In this sense, this is one area of space plasma physics that is fundamental, with applications to fusion physics and astrophysics as well. It is hoped that the reader(s) will be stimulated to study nonlinear wave development themselves, if he/she is not already involved.
Turbulence in Wendelstein 7-AS plasmas measured by collective light scattering
Energy Technology Data Exchange (ETDEWEB)
Basse, Nils Plesner
2002-08-01
This Ph.D. thesis contains theoretical and experimental work on plasma turbulence measurements using collective light scattering. The motivation for measuring turbulence in hot fusion plasmas is, along with the method used and results obtained, the subject of chapter 1. The theoretical part is divided into three chapters. Chapter 2 contains a full analytical derivation of the expected dependency of the detected signal on plasma parameters. Thereafter, spatial resolution of the measurements using different methods is treated in chapter 3. Finally, the spectral analysis tools used later in the thesis are described and illustrated in chapter 4. The experimental part is divided into four chapters. In chapter 5 transport concepts relevant to the thesis are outlined. Main parameters of the Wendelstein 7-AS (W7-AS) stellarator in which measurements were made are collected in chapter 6. The setup used to study fluctuations in the electron density of W7-AS plasmas is covered in chapter 7. This localised turbulence scattering (LOTUS) diagnostic is based on a CO{sub 2} laser radiating at a wavelength of 10.59 {mu}m. Fast, heterodyne, dual volume detection at variable wavenumbers between 14 and 62 cm{sup -1} is performed. The central chapter of the thesis, chapter 8, contains an analysis of the measured density fluctuations before, during and after several confinement transition types. The aim was to achieve a better understanding of the connection between turbulence and the confinement quality of the plasma. Conclusions and suggestions for further work are summarised in chapter 9. (au)
Development of a long pulse plasma gun discharge for magnetic turbulence studies
Schaffner, David
2016-10-01
A long pulse ( 300 μs) plasma gun discharge is in development at the Bryn Mawr College Plasma Laboratory for the production of sustained magnetized plasma injection for magnetohydrodynamic (MHD) turbulence studies. An array of eight 0.5mF parallel capacitors are used to create a pulse-forming-network (PFN) with a plateaued current output of 50kA for at least 200 of the 300 μs pulse. A 24cm inner diameter plasma gun provides stuffing flux fields at the stuffing threshold in order to allow for the continuous injection of magnetic helicity. Plasma is injected into a 24cm diameter flux-conserving aluminum chamber with a high density port array for fine spatial resolution diagnostic access. Fluctuations of magnetic field and saturation current are measured using pickup probes and Langmuir probes respectively.
Theoretical and Numerical Study of Anomalous Turbulent Transport in Plasmas
1991-02-05
1983). CONFERENCE RECORD - ABSTRACTS 1067 IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE June 1-3, 1987 Aifington, Virginia 2X5 Real Space Difusion ...disuibution. The effect of aon-GaussWa tubulent fields on dte pautile difusion coeffickat is discussed in deaiL To examine the long behavior of th
Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.
2016-11-01
We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.
Synergistic cross-scale coupling of turbulence in a tokamak plasma
Energy Technology Data Exchange (ETDEWEB)
Howard, N. T., E-mail: nthoward@psfc.mit.edu [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37831 (United States); Holland, C. [University of California - San Diego, La Jolla, California 92093 (United States); White, A. E.; Greenwald, M. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Candy, J. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)
2014-11-15
For the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((m{sub D}∕m{sub e}){sup 1∕2 }= 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (k{sub θ}ρ{sub s}∼O(1.0)) and electron-scale (k{sub θ}ρ{sub e}∼O(1.0)) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-prediction of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (k{sub r} ≪ k{sub θ}) “streamers” are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρ{sub i} scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.
The first turbulent combustion
Gibson, C H
2005-01-01
The first turbulent combustion arises in a hot big bang cosmological model Gibson (2004) where nonlinear exothermic turbulence permitted by quantum mechanics, general relativity, multidimensional superstring theory, and fluid mechanics cascades from Planck to strong force freeze out scales with gravity balancing turbulent inertial-vortex forces. Interactions between Planck scale spinning and non-spinning black holes produce high Reynolds number turbulence and temperature mixing with huge Reynolds stresses driving the rapid inflation of space. Kolmogorovian turbulent temperature patterns are fossilized as strong-force exponential inflation stretches them beyond the scale of causal connection ct where c is light speed and t is time. Fossil temperature turbulence patterns seed nucleosynthesis, and then hydro-gravitational structure formation in the plasma epoch, Gibson (1996, 2000). Evidence about formation mechanisms is preserved by cosmic microwave background temperature anisotropies. CMB spectra indicate hydr...
Quantum kinetic theories in degenerate plasmas
Brodin, Gert; Ekman, Robin; Zamanian, Jens
2017-01-01
In this review we give an overview of the recent work on quantum kinetic theories of plasmas. We focus, in particular, on the case where the electrons are fully degenerate. For such systems, perturbation methods using the distribution function can be problematic. Instead we present a model that considers the dynamics of the Fermi surface. The advantage of this model is that, even though the value of the distribution function can be greatly perturbed outside the equilibrium Fermi surface, deformation of the Fermi surface is small up to very large amplitudes. Next, we investigate the short-scale dynamics for which the Wigner-Moyal equation replaces the Vlasov equation. In particular, we study wave-particle interaction, and deduce that new types of wave damping can occur due to the simultaneous absorption (or emission) of multiple wave quanta. Finally, we consider exchange effects within a quantum kinetic formalism to find a model that is more accurate than those using exchange potentials from density functional theory. We deduce the exchange corrections to the dispersion relations for Langmuir and ion-acoustic waves. In comparison to results based on exchange potentials deduced from density functional theory we find that the latter models are reasonably accurate for Langmuir waves, but rather inaccurate for ion acoustic waves.
Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.
2015-10-01
Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E ×B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs˜0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E ×B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E ×B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in advanced ST
On-Off intermittency detected at the onset of turbulence in a magnetized plasma column
Pierre, Thiery
2016-10-01
The transition to turbulence is investigated in a rotating linear magnetized plasma column (MISTRAL device) and the role of the noise is emphasized. The destabilization is induced by injection of electrons on the axis of the device biasing the anode of the source plasma. Starting from a rotating plasma, that can be compared to a laminar regime in fluid dynamics, the slight increase of the potential of the source plasma leads to the onset of intermittent bursts in the edge corresponding to the expulsion of plasma blobs and to the transient destruction of the stable rotating plasma column. The statistical analysis of the time series of the density at the onset of the intermittency is performed. The distribution of the recurrence time of the turbulent bursts and the distribution of the duration of the laminar phases are analyzed. At the threshold, a power law is found for the distribution of the laminar duration with critical exponent -3/2. This dynamical behavior is similar to On-off intermittency (Platt, Spiegel, Tresser, PRL 70, 279,1993) induced by Gaussian noise superimposed on the control parameter. When the control parameter is increased, the distribution evolves towards an exponential decay law.
Energy Technology Data Exchange (ETDEWEB)
Leconte, M.
2008-11-15
The H confinement regime is set when the heating power reaches a threshold value P{sub c} and is linked to the formation of a transport barrier in the edge region of the plasma. Such a barrier is characterized by a high pressure gradient and is submitted to ELM (edge localized mode) instabilities. ELM instabilities trigger violent quasi-periodical ejections of matter and heat that induce quasi-periodical relaxations of the transport barrier called relaxation oscillations. In this work we studied the interaction between sheared flows and turbulence in fusion plasmas. In particular, we studied the complex dynamics of a transport barrier and we show through a simulation that resonant magnetic perturbations could control relaxation oscillations without a significant loss of confinement
Energy Technology Data Exchange (ETDEWEB)
Colas, L
1996-09-23
Internal small-scale magnetic turbulence is a serious candidate to explain the anomalous heat transport in tokamaks. This turbulence is badly known in the gradient region of large machines. In this work internal magnetic fluctuations are measured on Tore Supra with an original diagnostic : Cross Polarization Scattering (CPS). This experimental tool relies on the Eigenmode change of a probing polarised microwave beam scattered by magnetic fluctuations, close to a cut-off layer for the incident wave. In this work, the diagnostic is first qualified to assess its sensitivity to magnetic fluctuations, and the spatial localisation for its measurements. The magnetic fluctuation behaviour is then analysed over a wide range of plasma current, density and additional power, and interpreted with a simple 1-D scattering model. A scan of the plasma density or magnetic field is used to move the CPS measurement location from r/a = 0.3 to r/a = 0.75. A fluctuation radial profile is obtained by two means. In L-mode discharges, the relation between magnetic fluctuations, temperature profiles and local heat diffusivities is investigated. With all measurements, it is also possible to look for a local parameter correlated to the turbulence in a large domain of plasma conditions. The fluctuation-induced local heat diffusivity expected from the measured fluctuations is estimated using the non-collisional quasi-linear formula: X{sup mag}{sub e} = {pi}qRV{sub te}({delta}B / B){sup 2}. Both the absolute values and the parametric dependence of calculated X{sup mag}{sub e} are close to the electron thermal diffusivities Xe determined by transport analysis. In particular, a threshold is evidenced in the dependence of fluctuation-induced heat fluxes on local {nabla}T{sub e}, which is analogous to the critical gradient for measured heat fluxes. The experimental setup is also sensitive to the Thomson scattering of the probing wave by density fluctuations. Its measurements are analysed as the
DEFF Research Database (Denmark)
Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.
2017-01-01
A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using...... the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...... separation. Finally, it is shown that the RDT output can deviate from Monin-Obukhov similarity theory....
Sahraoui, F.; Huang, S.; Goldstein, M. L.
2013-12-01
Recent studies of kinetic scales solar wind turbulence have revealed new features of the processes of energy cascade and dissipation at electron scales. However, several instrumental limitations have been found and shown to prevent one from deducing firm conclusions about the nature of the turbulence (e.g., scaling, anisotropy) at those scales. These limitations stem in particular from the low SNR (Signal-to-Noise-Ratio) in the solar wind due to the small amplitude of the electric and magnetic field fluctuations. To overcome this difficulty, we study the turbulence in the terrestrial magnetosheath (i.e., the region of the solar wind that is downstream of the Earth's bow shock), where the turbulent fluctuations become enhanced, which yields a higher SNR. We have performed a statistical study using the Cluster wave data (1Hz
Kowal, Grzegorz; Lazarian, A
2010-01-01
In the past years we have experienced an increasing interest in understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments, e.g. the intracluster medium (ICM), containing magnetic fields which are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions a new class of kinetic instabilities arises, such as firehose and mirror ones, which were extensively studied in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work we present the first statistical analysis of turbulence in collisionless plasmas using three dimensional double isothermal magnetohydrodynamical with the Chew-Goldberger-Low closure (CGL-MHD) numerical simulations. We study models with different initial conditions to account for th...
MMS observations of ion-scale magnetic island in the magnetosheath turbulent plasma
Huang, S. Y.; Sahraoui, F.; Retino, A.; Le Contel, O.; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.; Fu, H. S.; Pang, Y.; Wang, D. D.; Torbert, R. B.; Goodrich, K. A.; Ergun, R. E.; Khotyaintsev, Y. V.; Lindqvist, P.-A.; Russell, C. T.; Strangeway, R. J.; Magnes, W.; Bromund, K.; Leinweber, H.; Plaschke, F.; Anderson, B. J.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Burch, J. L.
2016-08-01
In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma.
Linear vs. nonlinear acceleration in plasma turbulence. I. Global versus local measures
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Sanjoy [Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723 (United States); Parashar, Tulasi N. [University of Delaware, Newark, Delaware 19716 (United States)
2015-04-15
Magnetized turbulent plasmas are generally characterized as strongly or weakly turbulent based on the average relative strengths of the linear and nonlinear terms. While this description is useful, it does not represent the full picture and can be misleading. We study the variation of linear and nonlinear accelerations in the Fourier space of a magnetohydrodynamic system with a mean magnetic field and broad selection of initial states and plasma parameters. We show that the local picture can show significant departures from what is expected from the general global picture. We find that high cross helicity systems that are traditionally believed to have relatively weaker nonlinearities, compared to low cross helicity systems, can show strong nonlinearities in parts of the Fourier space that are orthogonal to the mean magnetic field direction. In some cases, these nonlinearities can exceed in strength the level of nonlinearities recovered from low cross helicity systems.
THIN CURRENT SHEETS AND ASSOCIATED ELECTRON HEATING IN TURBULENT SPACE PLASMA
Energy Technology Data Exchange (ETDEWEB)
Chasapis, A.; Retinò, A.; Sahraoui, F.; Canu, P. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau, F-91128 (France); Vaivads, A.; Khotyaintsev, Yu. V. [Swedish Institute of Space Physics, Uppsala (Sweden); Sundkvist, D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Greco, A. [Dipartimento di Fisica, Universita della Calabria (Italy); Sorriso-Valvo, L., E-mail: alexandros.chasapis@lpp.polytechnique.fr [IMIP-CNR, U.O.S. LICRYL di Cosenza (Italy)
2015-05-01
Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.
Thin Current Sheets and Associated Electron Heating in Turbulent Space Plasma
Chasapis, A.; Retinò, A.; Sahraoui, F.; Vaivads, A.; Khotyaintsev, Yu. V.; Sundkvist, D.; Greco, A.; Sorriso-Valvo, L.; Canu, P.
2015-05-01
Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.
On the role of ion-scale whistler waves in space and astrophysical plasma turbulence
Comişel, Horia; Nariyuki, Yasuhiro; Narita, Yasuhito; Motschmann, Uwe
2016-11-01
Competition of linear mode waves is studied numerically to understand the energy cascade mechanism in plasma turbulence on ion-kinetic scales. Hybrid plasma simulations are performed in a text">3-D simulation box by pumping large-scale Alfvén waves on the fluid scale. The result is compared with that from our earlier text">2-D simulations. We find that the whistler mode is persistently present both in the text">2-D and text">3-D simulations irrespective of the initial setup, e.g., the amplitude of the initial pumping waves, while all the other modes are excited and damped such that the energy is efficiently transported to thermal energy over non-whistler mode. The simulation results suggest that the whistler mode could transfer the fluctuation energy smoothly from the fluid scale down to the electron-kinetic scale, and justifies the notion of whistler turbulence.
Plasma turbulence calculations on the Intel iPSC/860 (rx) hypercube
Energy Technology Data Exchange (ETDEWEB)
Lynch, V.E. (Oak Ridge National Lab., TN (USA). Computing and Telecommunications Div.); Carreras, B.A.; Drake, J.B.; Leboeuf, J.N. (Oak Ridge National Lab., TN (USA)); Ruiter, J.R. (Albion Coll., MI (USA))
1990-01-01
One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A serial algorithm used for plasma turbulence calculations was modified to allocate a radial region in each node. In this way, convolutions at a fixed radius are performed in parallel, and communication is limited to boundary values for each radial region. For a semi-implicity numerical scheme (tridiagonal matrix solver), there is a factor of 3 improvement in efficiency with the Intel iPSC/860 machine using 64 processors over a single-processor Cray-II. For block-tridiagonal matrix cases (fully implicit code), a second parallelization takes place. The Fourier components are distributed in nodes. In each node, the block-tridiagonal matrix is inverted for each of allocated Fourier components. The algorithm for this second case has not yet been optimized. 10 refs., 4 figs.
Turbulence theory and infrared images falsify the 2011 Nobel Prize in Physics
Gibson, Carl
2012-11-01
Turbulence defined by the inertial vortex force explains Planck scale big bang processes as temporary, rendering a permanent Einstein cosmological constant Λ and a positive expansion rate of the universe driven by anti-gravitational dark energy forces unnecessary. Large kinematic viscosity stresses during the plasma epoch from 1011 s to 1013 s cause fragmentation by proto-super-cluster-voids at 1012 s and proto-galaxies at the 1013 s transition to gas. Fragmentation of gas proto-galaxies is at Earth-mass planet viscous scales in Jeans mass clumps of a trillion planets. These Proto-Globular-star-Clusters (PGCs) freeze to form the dark matter of galaxies according to the Gibson (1996) Hydro-Gravitational-Dynamics (HGD) theory, and as observed by Schild (1996) by quasar microlensing. White dwarf carbon stars explode as Supernovae Ia events (SNeIa) when their mass increases to 1.44 solar, providing the standard candles used to justify the Nobel Prize claim of a positive expansion rate. However, if all stars form from primordial planet mergers in PGC clumps as claimed by HGD cosmology, the SNeIa become subject to a systematic dimming error depending on the line of sight to the event. New space telescope infrared images strongly support HGD cosmology.
Organised structures in wall turbulence as deduced from stability theory-based methods
Indian Academy of Sciences (India)
P K Sen; S V Veeravalli; P W Carpenter; G Joshi; P S Josan
2007-02-01
In earlier work, we have explored the relevance of hydrodynamic stability theory to fully developed turbulent wall ﬂows. Using an extended Orr-Summerfeld Equation, based on an anisotropic eddy-viscosity model, it was shown that there exists a wide range of unstable wave numbers (wall modes), which mimic some of the key features of turbulent wall ﬂows. Here we present experimental conﬁrmation for the same. There is good qualitative and quantitative agreement between theory and experiment. Once the dominant coherent structure is obtained from stability theory, control of turbulence would be the next logical step. As shown, the use of a compliant wall shows considerable promise. We also present some theoretical work for bypass transition (Klebanoff/K-modes), wherein the receptivity of a laminar boundary layer to a vortex sheet in the freestream has been studied. Further, it is shown that triadic interaction between K-modes, 2D TS waves and 3D TS waves can lead to rapid algebraic growth. A similar mechanism seems to carry over to inner wall structures in wall turbulence and perhaps this is the “root cause” for sustenance of turbulence.
Williams, Pd; Knox, Ja; McCann, Dw
2009-09-01
A new method of clear-air turbulence (CAT) forecasting based on the Lighthill-Ford theory of spontaneous imbalance and emission of inertia-gravity waves has been derived and applied on episodic and seasonal time scales. A scale analysis of this shallow-water theory for midlatitude synoptic-scale flows identifies advection of relative vorticity as the leading-order source term. Examination of leading- and second-order terms elucidates previous, more empirically inspired CAT forecast diagnostics. Application of the Lighthill-Ford theory to the Upper Mississippi and Ohio Valleys CAT outbreak of 9 March 2006 results in good agreement with pilot reports of turbulence. Application of Lighthill-Ford theory to CAT forecasting for the 3 November 2005-26 March 2006 period using 1-h forecasts of the Rapid Update Cycle (RUC) 2 1500 UTC model run leads to superior forecasts compared to the current operational version of the Graphical Turbulence Guidance (GTG1) algorithm, the most skillful operational CAT forecasting method in existence. The results suggest that major improvements in CAT forecasting could result if the methods presented herein become operational. Reference Knox, J.A., D.W. McCann, and P.D. Williams, 2008: Application of the Lighthill-Ford Theory of Spontaneous Imbalance to Clear-Air Turbulence Forecasting. J. Atmos. Sci., 65, 3292-3304.
Heavy ion beam probing—diagnostics to study potential and turbulence in toroidal plasmas
Melnikov, A. V.; Krupnik, L. I.; Eliseev, L. G.; Barcala, J. M.; Bravo, A.; Chmyga, A. A.; Deshko, G. N.; Drabinskij, M. A.; Hidalgo, C.; Khabanov, P. O.; Khrebtov, S. M.; Kharchev, N. K.; Komarov, A. D.; Kozachek, A. S.; Lopez, J.; Lysenko, S. E.; Martin, G.; Molinero, A.; de Pablos, J. L.; Soleto, A.; Ufimtsev, M. V.; Zenin, V. N.; Zhezhera, A. I.; T-10 Team; TJ-II Team
2017-07-01
Heavy ion beam probing (HIBP) is a unique diagnostics to study the core plasma potential and turbulence. Advanced HIBPs operate in the T-10 tokamak and TJ-II flexible heliac with fine focused (magnetic configurations with ECR and neutral beam injection (NBI) heating at TJ-II. Time evolution of the radial profiles and/or local values of plasma parameters from high field side (HFS) to low field side (LFS), -1 magnetic field B pol (by the beam toroidal shift), poloidal electric filed E pol that allows one to derive the electrostatic turbulent particle flux ΓE×B. The cross-phase of density oscillations produces the phase velocity of their poloidal propagation or rotation; also it gives the poloidal mode number. Dual HIBP, consisting of two identical HIBPs located ¼ torus apart provide the long-range correlations of core plasma parameters. Low-noise high-gain electronics allows us to study broadband turbulence and quasi-coherent modes like geodesic acoustic modes and Alfvén eigenmodes.
Kelvin-Helmholtz turbulence associated with collisionless shocks in laser produced plasmas.
Kuramitsu, Y; Sakawa, Y; Dono, S; Gregory, C D; Pikuz, S A; Loupias, B; Koenig, M; Waugh, J N; Woolsey, N; Morita, T; Moritaka, T; Sano, T; Matsumoto, Y; Mizuta, A; Ohnishi, N; Takabe, H
2012-05-11
We report the experimental results of a turbulent electric field driven by Kelvin-Helmholtz instability associated with laser produced collisionless shock waves. By irradiating an aluminum double plane target with a high-power laser, counterstreaming plasma flows are generated. As the consequence of the two plasma interactions, two shock waves and the contact surface are excited. The shock electric field and transverse modulation of the contact surface are observed by proton radiography. Performing hydrodynamic simulations, we reproduce the time evolutions of the reverse shocks and the transverse modulation driven by Kelvin-Helmholtz instability.
The shear viscosity of gauge theory plasma with chemical potentials
Energy Technology Data Exchange (ETDEWEB)
Benincasa, Paolo [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Buchel, Alex [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada) and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9 (Canada)]. E-mail: abuchel@perimeterinstitute.ca; Naryshkin, Roman [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Physics Department, Taras Shevchenko Kiev National University, Prosp. Glushkova 6, Kiev 03022 (Ukraine)
2007-02-08
We consider strongly coupled gauge theory plasma with conserved global charges that allow for a dual gravitational description. We study the shear viscosity of the gauge theory plasma in the presence of chemical potentials for these charges. Using gauge theory/string theory correspondence we prove that at large 't Hooft coupling the ratio of the shear viscosity to the entropy density is universal.
Evidence of low-dimensional chaos in magnetized plasma turbulence
Zivkovic, Tatjana
2008-01-01
We analyze probe data obtained from a toroidal magnetized plasma configuration suitable for studies of low-frequency gradient-driven instabilities. These instabilities give rise to field-aligned convection rolls analogous to Rayleigh-Benard cells in neutral fluids, and may theoretically develop similar routes to chaos. When using mean-field dimension analysis, we observe low dimensionality, but this could originate from either low-dimensional chaos, periodicity or quasi-periodicity. Therefore, we apply recurrence plot analysis as well as estimation of the largest Lyapunov exponent. These analyses provide evidence of low-dimensional chaos, in agreement with theoretical predictions.
A general Reynolds analogy theory for the compressible wall-bounded turbulence
Zhang, You-sheng; Husain, Fazle; Li, Xin-liang; She, Zhen-su
2012-01-01
A general Reynolds analogy (GRA) theory is proposed for the mean and fluctuating velocity and temperature in compressible wall-bounded turbulent flows. In particular, an exact analogy solution is derived for compressible turbulent pipe and channel flows and an approximate analogy solution is derived for compressible turbulent boundary layers (CTBL), both of which are independent of fluid Prandtl number and wall temperature condition. The analogy solutions are in excellent agreement with direct numerical simulation data, able to reproduce empirical relations, and can be viewed as extensions of existing theories. In contrast to Walz's equation for adiabatic CTBL, the mean temperature-velocity relation derived by GRA can be applied to different wall-bounded flows in non-adiabatic wall condition, which is achieved by extending Walz's adiabatic recovery factor to a heat flux dependent one. The fluctuation temperature-velocity relations derived by GRA are slightly different from the modified strong Reynolds analogy...
Towards a collisionless fluid closure in plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Dif Pradalier, G
2005-07-01
In this work 2 generic possible descriptions of a plasma have been compared namely the kinetic and the fluid approaches. The latter focuses on the successive moments (n, u, p, q,...) of the distribution function, whereas the former describes the time-evolution in phase space of this distribution function, both being based on the Vlasov equation. The fluid description is attractive for the Vlasov equation is tractable with great difficulties. Nevertheless it rests on a major difficulty: as the set of fluid equations constitute an infinite hierarchy, a closure equation must be chosen. The first chapter details physical characteristics of a fundamental kinetic interaction mechanism between waves and particles. In chapter 2 we propose a fluid closure that allows analytic comparison with a linear fully kinetic result, near an homogeneous, electrostatic, Maxwellian equilibrium. This approach consists in adjusting chosen parameters in order to minimize the discrepancies between fluid and kinetic linear response functions. In chapter 3 we present a general frame for a fluid closure in a magnetized plasma. This is attempted in a linear, simplified model with low dimensionality.
Dynamics of Turbulence-generated E × B Flows: Simulation and Theory
Hahm, T. S.
1998-11-01
Many magnetic confinement experiments have indicated that E × B shear can suppress turbulence and consequently lead to significant reduction of plasma transport.^1 It has been observed in flux-tube gyrofluid^2,3 and gyrokinetic^4 simulations that small radial scale fluctuating E × B flows driven by turbulence (often called radial modes,^3 or zonal flows) play a dominant role in regulating toroidal ITG (ion temperature gradient) turbulence. Furthermore, the radial modes with similar characteristics and significant impact on transport have been also observed in the recent global gyrokinetic simulations with improved numerical capabilities^5 as well as in edge turbulence simulations with a collisional poloidal flow damping.^6 In this work, we analyze turbulence and flow statistics from gyrofluid and gyrokinetic simulations and compare to various theoretical predictions. The observed radial modes contain significant components with radial scales and frequencies comparable to those of turbulence. While the fast time varying components (including Geodesic Acoustic Modes) contribute the most to the instantaneous E × B shearing rate, they are less influential in suppressing turbulence. The effective E × B shearing rate capturing this important physics is analytically derived and evaluated from the recent nonlinear simulation results. Its magnitude is much smaller than the instantaneous E × B shearing rate, but typically of the order of the decorrelation rate of the ambient turbulence. This is consistent with the reduced, not completely stabilized level of turbulence with broadened kr spectrum observed in simulations. Zonal flows are linearly stable, but can be generated either by incoherent emission of turbulence or by inverse cascade of spectrum yielding negative turbulent viscosity which is related to the Reynolds' stress.^7 Various analytical calculations and proposed mechanisms for zonal flow generation and saturation^7,8 will be tested numerically. Finally, the
Angioni, C.; Bilato, R.; Casson, F. J.; Fable, E.; Mantica, P.; Odstrcil, T.; Valisa, M.; ASDEX Upgrade Team; Contributors, JET
2017-02-01
In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.
A theory of turbulence based on scale relativity
de Montera, Louis
2013-01-01
The internal interactions of fluids occur at all scales therefore the resulting force fields have no reason to be smooth and differentiable. The release of the differentiability hypothesis has important mathematical consequences, like scale dependence and the use of a higher algebra. The law of mechanics transfers directly these properties to the velocity of fluid particles whose trajectories in velocity space become fractal and non-deterministic. The principle of relativity is used to find the form of the equation governing velocity in scale space. The solution of this equation contains a fractal and a non-fractal term. The fractal part is shown to be equivalent to the Lagrangian version of the Kolmogorov law of fully-developed and isotropic turbulence. It is therefore associated with turbulence, whereas the non-fractal deterministic term is associated with a laminar behavior. These terms are found to be balanced when the typical velocity reaches a level at which the Reynolds number is equal to one, in agree...
SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
Energy Technology Data Exchange (ETDEWEB)
Lin, Zhihong [Univ. of California, Irvine, CA (United States)
2013-12-18
During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.
Efimov, Anatoly
2015-03-01
A partially coherent beam generated by coupling the output of a superluminescent diode to a multimode optical fiber is propagated through a stationary laboratory turbulence. Statistical quantities are measured as a function of propagation distance and coherence radius of the beam and are compared to existing theories in the regime of weak fluctuations.
Xiao, Xifeng; Voelz, David G; Toselli, Italo; Korotkova, Olga
2016-05-20
Experimental and theoretical work has shown that atmospheric turbulence can exhibit "non-Kolmogorov" behavior including anisotropy and modifications of the classically accepted spatial power spectral slope, -11/3. In typical horizontal scenarios, atmospheric anisotropy implies that the variations in the refractive index are more spatially correlated in both horizontal directions than in the vertical. In this work, we extend Gaussian beam theory for propagation through Kolmogorov turbulence to the case of anisotropic turbulence along the horizontal direction. We also study the effects of different spatial power spectral slopes on the beam propagation. A description is developed for the average beam intensity profile, and the results for a range of scenarios are demonstrated for the first time with a wave optics simulation and a spatial light modulator-based laboratory benchtop counterpart. The theoretical, simulation, and benchtop intensity profiles show good agreement and illustrate that an elliptically shaped beam profile can develop upon propagation. For stronger turbulent fluctuation regimes and larger anisotropies, the theory predicts a slightly more elliptical form of the beam than is generated by the simulation or benchtop setup. The theory also predicts that without an outer scale limit, the beam width becomes unbounded as the power spectral slope index α approaches a maximum value of 4. This behavior is not seen in the simulation or benchtop results because the numerical phase screens used for these studies do not model the unbounded wavefront tilt component implied in the analytic theory.
Mackler, D. A.; Avanov, L. A.; Boardsen, S. A.; Giles, B. L.; Pollock, C.; Smith, S. E.; Uritsky, V. M.
2016-12-01
Magnetic reconnection, a process in which the magnetic topology undergoes multi-scale changes, is a significant mechanism for particle energization as well as energy dissipation. Reconnection is observed to occur in thin current sheets generated between two regions of magnetized plasma merging with a non-zero shear angle. Within a thinning current sheet, the dominant scale size approaches first the ion and then electron kinetic scale. The plasma becomes demagnetized, field lines transform, then once again the plasma becomes frozen-in. The reconnection process accelerates particles, leading to heated jets of plasma. Turbulence is another fundamental process in collisionless plasmas. Despite decades of turbulence studies, an essential science question remains as to how turbulent energy dissipates at small scales by heating and accelerating particles. Turbulence in both plasmas and fluids has a fundamental property in that it follows an energy cascade into smaller scales. Energy introduced into a fluid or plasma can cause large scale motion, introducing vorticity, which merge and interact to make increasingly smaller eddies. It has been hypothesized that turbulent energy in magnetized plasmas may be dissipated by magnetic reconnection, just as viscosity dissipates energy in neutral fluid turbulence. The focus of this study is to use the new high temporal resolution suite of instruments on board the Magnetospheric MultiScale (MMS) mission to explore this hypothesis. An observable feature of the energy cascade in a turbulent magnetized plasma is its similarity to classical hydrodynamics in that the Power Spectral Density (PSD) of turbulent fluctuations follows a Kolmogorov-like power law (f -5/3). We use highly accurate (0.1 nT) Flux Gate Magnetometer (FGM) data to derive the PSD as a function of frequency in the magnetic fluctuations. Given that we are able to confirm the turbulent nature of the flow field; we apply the method of Partial Variance of Increments (PVI) to
Ristorcelli, J. R.
1995-01-01
The mathematical consequences of a few simple scaling assumptions about the effects of compressibility are explored using a simple singular perturbation idea and the methods of statistical fluid mechanics. Representations for the pressure-dilation and dilatational dissipation covariances appearing in single-point moment closures for compressible turbulence are obtained. While the results are expressed in the context of a second-order statistical closure they provide some interesting and very clear physical metaphors for the effects of compressibility that have not been seen using more traditional linear stability methods. In the limit of homogeneous turbulence with quasi-normal large-scales the expressions derived are - in the low turbulent Mach number limit - asymptotically exact. The expressions obtained are functions of the rate of change of the turbulence energy, its correlation length scale, and the relative time scale of the cascade rate. The expressions for the dilatational covariances contain constants which have a precise and definite physical significance; they are related to various integrals of the longitudinal velocity correlation. The pressure-dilation covariance is found to be a nonequilibrium phenomena related to the time rate of change of the internal energy and the kinetic energy of the turbulence. Also of interest is the fact that the representation for the dilatational dissipation in turbulence, with or without shear, features a dependence on the Reynolds number. This article is a documentation of an analytical investigation of the implications of a pseudo-sound theory for the effects of compressibility.
Energy Technology Data Exchange (ETDEWEB)
Sugama, H.; Okamoto, M.; Horton, W.; Wakatani, M.
1996-01-01
Transport processes and resultant entropy production in magnetically confined plasmas are studied in detail for toroidal systems with gyrokinetic electromagnetic turbulence. The kinetic equation including the turbulent fluctuations are double-averaged over the ensemble and the gyrophase. The entropy balance equation is derived from the double-averaged kinetic equation with the nonlinear gyrokinetic equation for the fluctuating distribution function. The result clarifies the spatial transport and local production of the entropy due to the classical, neoclassical and anomalous transport processes, respectively. For the anomalous transport process due to the electromagnetic turbulence as well as the classical and neoclassical processes, the kinetic form of the entropy production is rewritten as the thermodynamic form, from which the conjugate pairs of the thermodynamic forces and the transport fluxes are identified. The Onsager symmetry for the anomalous transport equations is shown to be valid within the quasilinear framework. The complete energy balance equation, which takes account of the anomalous transport and exchange of energy due to the fluctuations, is derived from the ensemble-averaged kinetic equation. The intrinsic ambipolarity of the anomalous particle fluxes is shown to hold for the self-consistent turbulent electromagnetic fields satisfying Poisson`s equation and Ampere`s law. (author).
Self-sustained turbulence and H-mode confinement in toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Fukuyama, Atsushi [Okayama Univ. (Japan). School of Engineering
1996-10-01
The method of self-sustained turbulence is applied to the tokamak plasma, incorporating the effect of an inhomogeneous radial electric field. The transport coefficient is derived, making a bridge between L- and H-phase plasmas. It is possible to construct a unified transport model of the L- and H-mode phases. The anomalous transport coefficients are obtained in a unified and explicit form in terms of profile parameters such as the plasma pressure gradient, the magnetic shear, the shear and curvature of the radial electric field. Strong reductions of the thermal conductivity, {chi}, the electron and ion viscosities, {mu}{sub e}, and {mu}, and the turbulent level in the H-phase plasma are explained. Furthermore, an additional stability window due to E`{sub r} is discovered in the higher pressure-gradient regime. The anomalous ion viscosity determines {Delta}, the typical scale length or E{sub r}. Self-consistent solutions of {Delta} and {mu} are discussed. (author).
CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop
Garbet, X.; Sauter, O.
2010-12-01
The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)
Weak turbulence theory and simulation of the gyro-water-bag model.
Besse, Nicolas; Bertrand, Pierre; Morel, Pierre; Gravier, Etienne
2008-05-01
The thermal confinement time of a magnetized fusion plasma is essentially determined by turbulent heat conduction across the equilibrium magnetic field. To achieve the study of turbulent thermal diffusivities, Vlasov gyrokinetic description of the magnetically confined plasmas is now commonly adopted, and offers the advantage over fluid models (MHD, gyrofluid) to take into account nonlinear resonant wave-particle interactions which may impact significantly the predicted turbulent transport. Nevertheless kinetic codes require a huge amount of computer resources and this constitutes the main drawback of this approach. A unifying approach is to consider the water-bag representation of the statistical distribution function because it allows us to keep the underlying kinetic features of the problem, while reducing the Vlasov kinetic model into a set of hydrodynamic equations, resulting in a numerical cost comparable to that needed for solving multifluid models. The present paper addresses the gyro-water-bag model derived as a water-bag-like weak solution of the Vlasov gyrokinetic models. We propose a quasilinear analysis of this model to retrieve transport coefficients allowing us to estimate turbulent thermal diffusivities without computing the full fluctuations. We next derive another self-consistent quasilinear model, suitable for numerical simulation, that we approximate by means of discontinuous Galerkin methods.
Reactive Control of Boundary Layer Streaks Induced by Freestream Turbulence Using Plasma Actuators
Gouder, Kevin; Naguib, Ahmed; Lavoie, Philippe; Morrison, Jonathan
2015-11-01
Over the past few years we have carried out a systematic series of investigations aimed at evaluating the capability of a plasma-actuator-based feedforward-feedback control system to weaken streaks induced ``synthetically'' in a Blasius boundary layer via dynamic roughness elements. This work has been motivated by the delay of bypass boundary layer transition in which the streaks form stochastically beneath a freestream with turbulence of intensity of more than approximately 1%. In the present work, we carry forward the knowhow from our previous research in a first attempt to control such naturally occurring streaks. The experimental setup consists of a turbulence-generating grid upstream of a flat plate with a sharp leading edge. At the freestream velocity of the experiment, turbulent spot formation is observed to start at a streamwise location of x ~ 350 mm from the leading edge. The control system is implemented within a streamwise domain stretching from x = 150 mm to 300mm, where the streaks exhibit linear growth. At the upstream and downstream end of the domain a feedforward and a feedback wall-shear-stress sensors are utilized. The output from the sensors is fed to appropriately designed controllers which drive two plasma actuators providing positive and negative wall-normal forcing to oppose naturally occurring high- and low-speed streaks respectively. The results provide an assessment of the viability of the control approach to weaken the boundary layer streaks and to delay transition.
Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.
1990-01-01
The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.
Exact collisional moments for plasma fluid theories
Pfefferlé, D.; Hirvijoki, E.; Lingam, M.
2017-04-01
The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rates.
On the consistency of Reynolds stress turbulence closures with hydrodynamic stability theory
Speziale, Charles G.; Abid, Ridha; Blaisdell, Gregory A.
1995-01-01
The consistency of second-order closure models with results from hydrodynamic stability theory is analyzed for the simplified case of homogeneous turbulence. In a recent study, Speziale, Gatski, and MacGiolla Mhuiris showed that second-order closures are capable of yielding results that are consistent with hydrodynamic stability theory for the case of homogeneous shear flow in a rotating frame. It is demonstrated in this paper that this success is due to the fact that the stability boundaries for rotating homogeneous shear flow are not dependent on the details of the spatial structure of the disturbances. For those instances where they are -- such as in the case of elliptical flows where the instability mechanism is more subtle -- the results are not so favorable. The origins and extent of this modeling problem are examined in detail along with a possible resolution based on rapid distortion theory (RDT) and its implications for turbulence modeling.
Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind.
Matthaeus, W H; Weygand, J M; Dasso, S
2016-06-17
Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.
The Structure of Plasma Heating in Gyrokinetic Alfv\\'enic Turbulence
Navarro, A B; Told, D; Groselj, D; Crandall, P; Jenko, F
2016-01-01
We analyze plasma heating in weakly collisional kinetic Alfv\\'en wave (KAW) turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.e. $\\mathbf{J} \\!\\cdot\\! (\\mathbf{E} + \\mathbf{v}_e\\times\\mathbf{B})$, as a proxy for turbulent dissipation to argue that heating follows the intermittent spatial structure of the electric current. Furthermore, we show that electrons are dominated by parallel heating while the ions prefer the perpendicular heating route. We comment on the implications of the results presented here.
Energy Technology Data Exchange (ETDEWEB)
Spolaore, M., E-mail: monica.spolaore@igi.cnr.it; Vianello, N.; Agostini, M.; Cavazzana, R.; De Masi, G.; Martines, E.; Momo, B.; Scaggion, A.; Scarin, P.; Spagnolo, S.; Spizzo, G.; Zuin, M. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Furno, I.; Avino, F.; Fasoli, A.; Theiler, C. [Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Carralero, D. [Laboratorio Nacional de Fusion, CIEMAT, Avda. Complutense, 40 28040 Madrid (Spain); Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Alonso, J. A.; Hidalgo, C. [Laboratorio Nacional de Fusion, CIEMAT, Avda. Complutense, 40 28040 Madrid (Spain)
2015-01-15
Electromagnetic features of turbulent filaments, emerging from a turbulent plasma background, have been studied in four different magnetic configurations: the stellarator TJ-II, the Reversed Field Pinch RFX-mod, a device that can be operated also as a ohmic tokamak, and the Simple Magnetized Torus, TORPEX. By applying an analogous diagnostic concept in all cases, direct measurements of both field-aligned current density and vorticity were performed inside the filament. The inter-machine comparison reveals a clear dependence of the filament vorticity upon the local time-averaged E × B flow shear. Furthermore, a wide range of local beta was explored allowing concluding that this parameter plays a fundamental role in the appearance of filament electromagnetic features.
Vlasov simulations of multi-ion plasma turbulence in the solar wind
Perrone, Denise; Servidio, Sergio; Dalena, Serena; Veltri, Pierluigi
2012-01-01
Hybrid Vlasov-Maxwell simulations are employed to investigate the role of kinetic effects in a two-dimensional turbulent multi-ion plasma, composed of protons, alpha particles and fluid electrons. In the typical conditions of the solar-wind environment, and in situations of decaying turbulence, the numerical results show that the velocity distribution functions of both ion species depart from the typical configuration of thermal equilibrium. These non-Maxwellian features are quantified through the statistical analysis of the temperature anisotropy, for both protons and alpha particles, in the reference frame given by the local magnetic field. Anisotropy is found to be higher in regions of high magnetic stress. Both ion species manifest a preferentially perpendicular heating, although the anisotropy is more pronounced for the alpha particles, according with solar wind observations. Anisotropy of the alpha particle, moreover, is correlated to the proton anisotropy, and also depends on the local differential flo...
Schekochihin, A A; Cowley, S C
2011-01-01
Differential rotation is known to suppress linear instabilities in fusion plasmas. However, even in the absence of growing eigenmodes, subcritical fluctuations that grow transiently can lead to sustained turbulence. Here transient growth of electrostatic fluctuations driven by the parallel velocity gradient (PVG) and the ion temperature gradient (ITG) in the presence of a perpendicular ExB velocity shear is considered. The maximally simplified case of zero magnetic shear is treated in the framework of a local shearing box. There are no linearly growing eigenmodes, so all excitations are transient. The maximal amplification factor of initial perturbations and the corresponding wavenumbers are calculated as functions of q/\\epsilon (=safety factor/aspect ratio), temperature gradient and velocity shear. Analytical results are corroborated and supplemented by linear gyrokinetic numerical tests. For sufficiently low values of q/\\epsilon (<7 in our model), regimes with fully suppressed ion-scale turbulence are po...
Turbulent chromo-fields and thermal particle production in quark-gluon plasma medium
Chandra, Vinod
2016-01-01
The Weibel type instabilities appear in the expanding quark-gluon plasma (QGP) in relativistic heavy-ion collisions, due to the presence of momentum-space anisotropy, are responsible for the generation of the turbulent color fields. The ensemble averaged (ensemble of the turbulent fields) effective diffusive Vlasov equation, for the modified momentum distribution functions of the quarks and gluons encodes the physics of such instability and leads to the anomalous transport process in the QGP medium. In the present case, the solution of the linearized transport equation for the modified momentum distribution functions has been served as the modeling for the non-equilibrium momentum distribution functions for the QGP degrees of freedom. The strength of anisotropy has been related to a phenomenologically obtained jet-quenching parameter, $\\hat{q}$. We have computed the contribution of these anisotropic terms to the thermal dilepton production rates. The production rate has been seen to be appreciably sensitive t...
The troublesome birth of hydrodynamic stability theory: Sommerfeld and the turbulence problem
Eckert, M.
2010-07-01
More than a hundred years ago William McFadden Orr and Arnold Sommerfeld conceived an approach to account for the transition from laminar to turbulent flow in terms of hydrodynamic stability theory. But the “turbulence problem”, as this challenge became notoriously famous, could not be solved by this method. By 1920, it was widely recognized as an outstanding riddle. Although famous theoretical physicists like Werner Heisenberg dedicated a considerable effort to this problem, the “Orr-Sommerfeld method” has never found the attention of historians of science. This article describes its early perception and development in Germany, and how the “turbulence problem” reached center stage after the First World war as a major challenge for theorists with different perspectives.
Directory of Open Access Journals (Sweden)
D. Schertzer
1996-01-01
. It had an appropriate editorial structure, in particular a large number of editors covering a wide range of methodologies, expertises and schools. At least two of its sections (Scaling and Multifractals, Turbulence and Diffusion were directly related to the topics of the workshop, in any case contributors were invited to choose their editor freely. 2 Goals of the Workshop The objective of this meeting was to enhance the confrontation between turbulence theories and empirical data from geophysics and astrophysics fluids with very high Reynolds numbers. The importance of these data seems to have often been underestimated for the evaluation of theories of fully developed turbulence, presumably due to the fact that turbulence does not appear as pure as in laboratory experiments. However, they have the great advantage of giving access not only to very high Reynolds numbers (e.g. 1012 for atmospheric data, but also to very large data sets. It was intended to: (i provide an overview of the diversity of potentially available data, as well as the necessary theoretical and statistical developments for a better use of these data (e.g. treatment of anisotropy, role of processes which induce other nonlinearities such as thermal instability, effect of magnetic field and compressibility ... , (ii evaluate the means of discriminating between different theories (e.g. multifractal intermittency models or to better appreciate the relevance of different notions (e.g. Self-Organized Criticality or phenomenology (e.g. filaments, structures, (iii emphasise the different obstacles, such as the ubiquity of catastrophic events, which could be overcome in the various concerned disciplines, thanks to theoretical advances achieved. 3 Outlines of the Workshop During the two days of the workshop, the series of presentations covered many manifestations of turbulence in geophysics, including: oceans, troposphere, stratosphere, very high atmosphere, solar wind, giant planets, interstellar clouds
Turbulent Dynamo Amplification of Magnetic Fields in Laser-Produced Plasmas
Tzeferacos, Petros
2016-10-01
Magnetic fields are ubiquitous in the Universe, as revealed by diffuse radio-synchrotron emission and Faraday rotation observations, with strengths from a few nG to tens of μG. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter in the Universe. The standard model for the origin of these intergalactic magnetic fields is through the amplification of seed fields via turbulent dynamo to the level consistent with current observations. We have conceived and conducted a series of experiments using high-power laser facilities to study the amplification of magnetic fields via turbulence. In these experiments, we characterize the properties of the fluid and the magnetic field turbulence using a comprehensive suite of plasma and magnetic field diagnostics. We describe the large-scale 3D simulations we performed with the radiation-MHD code FLASH on ANL's Mira to help design and interpret the experiments. We then discuss the results of the experiments, which indicate magnetic Reynolds numbers above the expected dynamo threshold are achieved and seed magnetic fields produced by the Biermann battery mechanism are amplified by turbulent dynamo. We relate our findings to processes occurring in galaxy clusters. We acknowledge funding and resources from the ERC (FP7/2007-2013, no. 256973 and 247039), and the U.S. DOE, Contract No. B591485 to LLNL, FWP 57789 to ANL, Grant No. DE-NA0002724 to the University of Chicago, and contract DE-AC02-06CH11357 to ALCF at ANL.
A Similarity Theory of the Tropospheric Turbulence Energy Spectrum.
Gifford, F. A.
1988-04-01
A three-range model is proposed for the energy spectrum of tropospheric turbulence in which the range-I spectrum is governed by the cascade of eddy enstrophy, that of range-II by the cascade of eddy kinetic energy, and that of range-III by viscous dissipation. Values of the spectral densities in ranges-I and -II, as well as wavenumbers of transition from range-I to -II to -III, are determined in terms of the integrated values of the energy spectrum, V2¯, and the dissipation spectrum, , of range-II. The resulting spectra for ranges-I and -II are shown to agree well with the recent GASP data on atmospheric spectra covering wave-lengths of from less than 3 km to 10000 km. A property of this model is that /V2¯ = f, the Coriolis parameter. This is shown to give very close agreement with the observed latitude variation of the GASP-Spectrum in range-II, to correctly indicate that this variation is much greater in range-I, and to explain why the atmosphere's eddy viscosity, K, is more variable over the globe than the energy-dissipation rate, . The observed seasonal variation of spectra is explained by the hemispheric variation of due to the seasonal change in the pole-equator temperature gradient.
Langmuir turbulence in the auroral ionosphere 1: Linear theory
Newman, D. L.; Goldman, M. V.; Ergun, R. E.; Boehm, M. H.
1994-01-01
Intense bursts of Langmuir waves with electric fields of 50 to 500 mV / m have been frequently observed at altitudes greater than 500 km in the auroral ionosphere. These bursts are driven by 20 eV to 4 keV field-aligned electrons, which are embedded in an approximately isotropic nonthermal tail of scattered electrons. The Langmuir bursts are often observed at altitudes where the ionosphere is moderately magnetized (OMEGA (sub e) approximately equals omega (sub pe)). Both the moderate magnetization and the scattered electrons have a major influence on the linear dispersion and damping of Langmuir waves. In particular, the linear dispersion is topologically different depending on whether the magnetic field is subcritical (OMEGA (sub e) less than omega (sub pe)) or supercritical (OMEGA (sub e) greater than omega (sub pe)). The correct dispersion and damping can account for the observed polarization of the Langmuir waves, which is very nearly parallel to the geomagnetic field. Inferred properties of the linear instability driven by the field-aligned electrons are discussed. The linear dispersion and damping derived here provide the basis for a nonlinear turbulence study described in a companion paper (Newman et al., this issue).
Tiwary, PremPyari; Sharma, Swati; Sharma, Prachi; Singh, Ram Kishor; Uma, R.; Sharma, R. P.
2016-12-01
This paper presents the spatio-temporal evolution of magnetic field due to the nonlinear coupling between fast magnetosonic wave (FMSW) and low frequency slow Alfvén wave (SAW). The dynamical equations of finite frequency FMSW and SAW in the presence of ponderomotive force of FMSW (pump wave) has been presented. Numerical simulation has been carried out for the nonlinear coupled equations of finite frequency FMSW and SAW. A systematic scan of the nonlinear behavior/evolution of the pump FMSW has been done for one of the set of parameters chosen in this paper, using the coupled dynamical equations. Filamentation of fast magnetosonic wave has been considered to be responsible for the magnetic turbulence during the laser plasma interaction. The results show that the formation and growth of localized structures depend on the background magnetic field but the order of amplification does not get affected by the magnitude of the background magnetic field. In this paper, we have shown the relevance of our model for two different parameters used in laboratory and astrophysical phenomenon. We have used one set of parameters pertaining to experimental observations in the study of fast ignition of laser fusion and hence studied the turbulent structures in stellar environment. The other set corresponds to the study of magnetic field amplification in the clumpy medium surrounding the supernova remnant Cassiopeia A. The results indicate considerable randomness in the spatial structure of the magnetic field profile in both the cases and gives a sufficient indication of turbulence. The turbulent spectra have been studied and the break point has been found around k which is consistent with the observations in both the cases. The nonlinear wave-wave interaction presented in this paper may be important in understanding the turbulence in the laboratory as well as the astrophysical phenomenon.
Energy Technology Data Exchange (ETDEWEB)
Falceta-Gonçalves, D. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Kowal, G. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, 1000, São Paulo, SP 03828-000 (Brazil)
2015-07-20
In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.
Energy Technology Data Exchange (ETDEWEB)
Kowal, G [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, 05508-900, Sao Paulo (Brazil); Falceta-Goncalves, D A; Lazarian, A, E-mail: kowal@astro.iag.usp.br [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)
2011-05-15
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of
Asymptotic theory for Brownian semi-stationary processes with application to turbulence
DEFF Research Database (Denmark)
Corcuera, José Manuel; Hedevang, Emil; Pakkanen, Mikko S.;
2013-01-01
This paper presents some asymptotic results for statistics of Brownian semi-stationary (BSS) processes. More precisely, we consider power variations of BSS processes, which are based on high frequency (possibly higher order) differences of the BSS model. We review the limit theory discussed......-stationary processes. In "Prokhorov and Contemporary Probability Theory", Springer.] and present some new connections to fractional diffusion models. We apply our probabilistic results to construct a family of estimators for the smoothness parameter of the BSS process. In this context we develop estimates with gaps......, which allow to obtain a valid central limit theorem for the critical region. Finally, we apply our statistical theory to turbulence data....
Time-Dependent 2D Modeling of Magnetron Plasma Torch in Turbulent Flow
Institute of Scientific and Technical Information of China (English)
LI Lincun; XIA Weidong
2008-01-01
A theoretical model is presented to describe the electromagnetic, heat transfer and fluid flow phenomena within a magnetron plasma torch and in the resultant plume, by using a commercial computational fluid dynamics (CFD) code FLUENT. Specific calculations are pre-sented for a pure argon system (i.e., an argon plasma discharging into an argon environment), operated in a turbulent mode. An important finding of this work is that the external axial mag-netic field (AMF) may have a significant effect on the behavior of arc plasma and thus affects the resulting plume. The AMF impels the plasma to retract axially and expand radially. As a result, the plasma intensity distribution on the cross section of torch seems to be more uniform. Numerical results also show that with AMF, the highest plasma temperature decreases and the anode arc root moves upstream significantly, while the current density distribution at the anode is more concentrated with a higher peak value. In addition, the use of AMF then induces a strong backflow at the torch spout and its magnitude increases with the AMF strength but decreases with the inlet gas velocity.
Piest, Jürgen
1989-06-01
This is the first of a series of three papers which report on an theoretical turbulence investigation. In the present part, the Reynolds equation for the mean velocity field in turbulent shear flow is derived in a systematic way starting from established physical knowledge. A basic problem of contemporary turbulence theory is that, at the hydrodynamic level, there seems to be no way presently to derive systematically the initial probability distribution of the fluctuating momentum density. For this reason, N-particle statistical mechanics is employed in this investigation. The closure problem of continuum turbulence theory is avoided by this method. The technique of deriving transport equations from the Liouville equation by projection operator methods is used for the derivation. Stationary constant density/temperature processes are considered only. The dissipative term of the momemtum transport equation is analyzed in order to obtain the formulas for the laminar and turbulent friction forces. The latter is obtained as a second-order convolution in the mean velocity field. The kernel function is a time integral of an equilibrium triple correlation function; it constitutes a physical “constant” of the fluid which is needed in addition to the viscosity constant. Its calculation has been the object of a separate investigation which will be reported in the second paper. The third paper describes the numerical evaluation and comparison with experiment for the spherical case of the circular jet. In the present state, the theoretical formula does not reproduce the experimental data. This is considered a preliminary result which, in view of the systematic nature of the derivation, offers the possibility to trace it back to the spots where the theoretical structure is still not adequate.
Interplay between plasma turbulence and particle injection in 3D global simulations
Energy Technology Data Exchange (ETDEWEB)
Tamain, P.; Baudoin, C.; Ciraolo, G.; Futtersack, R.; Ghendrih, P.; Nace, N. [Association Euratom-CEA, Institut de Recherche sur la Fusion Magnetique, CEA Cadarache, St. Paul-lez-Durance (France); Bufferand, H.; Carbajal, L.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, UMR 7345, Marseille (France); Colin, C.; Galassi, D.; Schwander, F.; Serre, E. [Aix-Marseille Universite, CNRS, Ecole Centrale Marseille, M2P2, Marseille (France)
2016-08-15
The impact of a 3D localized particle source on the edge plasma in 3D global turbulence simulations is investigated using the TOKAM3X fluid code. Results apply to advanced fueling methods such as Supersonic Molecular Beam Injection (SMBI) or pellets injection. The fueling source is imposed as a volumetric particle source in the simulations so that the physics leading to the ionization of particles and its localization are not taken into account. As already observed in experiments, the localized particle source strongly perturbs both turbulence and the large scale organization of the edge plasma. The localized increase of the pressure generated by the source drives sonic parallel flows in the plasma, leading to a poloidal redistribution of the particles on the time scale of the source duration. However, the particle deposition also drives localized transverse pressure gradients which impacts the stability of the plasma with respect to interchange processes. The resulting radial transport occurs on a sufficiently fast time scale to compete with the parallel redistribution of particles, leading to immediate radial losses of a significant proportion of the injected particles. Low Field Side (LFS) and High Field Side (HFS) injections exhibit different dynamics due to their interaction with curvature. In particular, HFS particle deposition drives an inward flux leading to differences in the particle deposition efficiency (higher for HFS than LFS). These results demonstrate the importance of taking into account plasma transport in a self-consistent manner when investigating fueling methods. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Spontaneous generation of self-organized zonal flows in turbulent plasma
Trines, Raoul
2008-11-01
Drift wave turbulence is ubiquitous in magnetised plasma, in particular on density gradients that can be found in plasma edge configurations. Such configurations arise in both laboratory and space environments, while appropriate scaling the equations governing the drift waves allows them to be applied over a wide range of length and time scales. Therefore, the study of drift wave dynamics has applications ranging from the magnetosphere boundary to small laboratory plasma devices such as CSDX at UCSD [G.R. Tynan et al., J. Vac. Sci. Tech-A 15, 2885 (1997)]. Recently, it was found that the interaction between drift modes and zonal flows at a plasma edge leads to self-organisation of the drift waves and the formation of solitary zonal flow structures [R. Trines et al., Phys. Rev. Lett. 94, 165002 (2005)]. The interaction between broadband drift mode turbulence and zonal flows has been studied in numerical simulations based on the wave-kinetic approach. In these simulations, a particle-in-cell representation is used for the quasi-particles, while a fluid model is employed for the plasma. Simulation results show the development of self-organised zonal flow through the modulational instability of the drift wave distribution, as well as the existence of solitary zonal flow structures about an ion gyro-radius wide, drifting towards steeper relative density gradients. These results will be compared to observations made at the magnetopause by the Cluster satellites [R. Trines et al., Phys. Rev. Lett. 99, 205006 (2007)] and to measurements performed on CSDX. This work is supported by the STFC Accelerator Science and Technology Centre and the STFC Centre for Fundamental Physics.
Magnetic reconnection in turbulent space plasmas: null-points or pinches?
Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey
2014-05-01
We report particle-in-cell simulations of magnetic reconnection in the configuration containing both null-points and pinches. All indicators suggest that secondary magnetic reconnection driven by kinking of the pinches plays a dominant role in the energetics of the system. While there is no substantial energy dissipation in the vicinity of X-type null-points. Such reconnection results in tremendous release of magnetic energy, generation of suprathermal particles and waves. Similar scenario may take place in turbulent space plasmas, where current channels and twisted magnetic fields are detected.
Energy Technology Data Exchange (ETDEWEB)
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
PREFACE: Theory of Fusion Plasmas, 13th Joint Varenna-Lausanne International Workshop (2012)
Garbet, Xavier; Sauter, Olivier
2012-12-01
The 2012 joint Varenna-Lausanne international workshop on the theory of fusion plasmas has been very fruitful. A broad variety of topics were addressed, as usual covering turbulence, MHD, edge physic, RF wave heating and a taste of astrophysics. Moreover the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, in particular in the context of ITER construction. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may quote for instance the choice of plasma facing components or the design of control systems. Another characteristic of the meeting is the interplay between various domains of plasma physics. For instance MHD modes are now currently investigated with gyrokinetic codes, kinetic effects are more and more included in MHD stability analysis, and turbulence is now accounted for in wave propagation problems. This is the proof of cross-fertilization and it is certainly a healthy sign in our community. Finally introducing some novelty in the programme does not prevent us from respecting the traditions of the meeting. As usual a good deal of the presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne conference, which was respected again this year. The quality and size of the scientific production is illustrated by the 26 papers which appear in the present volume of Journal of Physics: Conference Series, all refereed. We would also like to mention another set of 20 papers to be published in Plasma Physics and Controlled Fusion. We hope the readers will enjoy this special issue of JPCS and the one to come in PPCF. Xavier Garbet and Olivier Sauter October 26, 2012
Plasma scattering of electromagnetic radiation theory and measurement techniques
Froula, Dustin H; Luhmann, Neville C Jr; Sheffield, John
2011-01-01
This work presents one of the most powerful methods of plasma diagnosis in exquisite detail to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of the
Choi, Jeong Ryeol
2014-11-03
Quantum dynamics of light waves traveling through a time-varying turbulent plasma is investigated via the SU(1,1) Lie algebraic approach. Plasma oscillations that accompany time-dependence of electromagnetic parameters of the plasma are considered. In particular, we assume that the conductivity of plasma involves a sinusoidally varying term in addition to a constant one. Regarding the time behavior of electromagnetic parameters in media, the light fields are modeled as a modified CK (Caldirola-Kanai) oscillator that is more complex than the standard CK oscillator. Diverse quantum properties of the system are analyzed under the consideration of time-dependent characteristics of electromagnetic parameters. Quantum energy of the light waves is derived and compared with the counterpart classical energy. Gaussian wave packet of the field whose probability density oscillates with time like that of classical states is constructed through a choice of suitable initial condition and its quantum behavior is investigated in detail. Our development presented here provides a useful way for analyzing time behavior of quantized light in complex plasma.
On the theory of weak turbulence for the nonlinear Schrödinger equation
Escobedo, M
2015-01-01
The authors study the Cauchy problem for a kinetic equation arising in the weak turbulence theory for the cubic nonlinear Schrödinger equation. They define suitable concepts of weak and mild solutions and prove local and global well posedness results. Several qualitative properties of the solutions, including long time asymptotics, blow up results and condensation in finite time are obtained. The authors also prove the existence of a family of solutions that exhibit pulsating behavior.
Theory of nonlocal heat transport in fully ionized plasma
Energy Technology Data Exchange (ETDEWEB)
Maximov, A.V. (Tesla Labs., Inc., La Jolla, CA (United States)); Silin, V.P. (P.N. Lebedev Inst., Russian Academy of Sciences, Moscow (Russia))
1993-01-25
A new analytic solution of the electron kinetic equation describing the interacting of the electromagnetic heating field with plasma is obtained in the region of plasma parameters where the Spitzer-Harm classical theory is invalid. A novel expression for the nonlocal electron thermal conductivity is derived. (orig.).
Indian Academy of Sciences (India)
P K Karmakar
2007-04-01
Application of inertia-induced acoustic excitation theory offers a new resonant excitation source channel of acoustic turbulence in the transonic domain of plasma flow. In bi-ion plasmas like colloidal plasma, two well-defined transonic points exist corresponding to the parent ion and the dust grain-associated acoustic modes. As usual, the modified ion acoustic mode (also known as dust ion-acoustic (DIA) wave) dynamics associated with parent ion inertia is excitable for both nanoscale- and micronscale-sized dust grains. It is found that the so-called (ion) acoustic mode (also known as dust-acoustic (DA) wave) associated with nanoscale dust grain inertia is indeed resonantly excitable through the active role of weak but finite parent ion inertia. It is interestingly conjectured that the same excitation physics, as in the case of normal plasma sound mode, operates through the active inertial role of plasma thermal species. Details of the nonlinear acoustic mode analyses of current interest in transonic domains of such impure plasmas in hydrodynamic flow are presented.
Favorable effects of turbulent plasma mixing on the performance of innovative tokamak divertors
Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.
2013-10-01
The problem of reducing the heat load on plasma-facing components is one of the most demanding issues for MFE devices. The general approach to the solution of this problem is the use of a specially configured poloidal magnetic field, so called magnetic divertors. In recent years, novel divertors possessing the 2-nd and 3-rd order nulls of the poloidal field (PF) have been proposed. They are called a ``snowflake'' (SF) and a ``cloverleaf'' (CL) divertor, respectively, due to characteristic shape of the magnetic separatrix. Among several beneficial features of such divertors is an effect of strong turbulent plasma mixing that is intrinsic to the zone of weak PF near the null-point. The turbulence spreads the heat flux between multiple divertor exhaust channels and increases the heat flux width within each channel. Among physical processes affecting the onset of convection the curvature-driven mode of axisymmetric rolls is most prominent. The effect is quite significant for the SF and is even stronger for the CL divertor. Projections to future ITER-scale facilities are discussed. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.
Li-BES detection system for plasma turbulence measurements on the COMPASS tokamak
Energy Technology Data Exchange (ETDEWEB)
Berta, M. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Széchenyi István University, Győr (Hungary); Anda, G.; Bencze, A.; Dunai, D. [Wigner – RCP, HAS, Budapest (Hungary); Háček, P., E-mail: hacek@ipp.cas.cz [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Hron, M. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Kovácsik, A. [Wigner – RCP, HAS, Budapest (Hungary); Department of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Krbec, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Pánek, R. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Réfy, D.; Veres, G. [Wigner – RCP, HAS, Budapest (Hungary); Weinzettl, V. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Zoletnik, S. [Wigner – RCP, HAS, Budapest (Hungary)
2015-10-15
Highlights: • Li-BES detection system on the COMPASS tokamak is optimized observation system with high temporal resolution. • High sensitivity to low level light fluctuations. • Optics and detectors with electronics are placed in thermally stabilized compact box. • Fast deflection system allows us to measure background corrected electron density profiles on microsecond time-scale. - Abstract: A new Li beam emission spectroscopy (Li-BES) diagnostic system with a ∼ cm spatial resolution, and with beam energy ranging from 10 keV up to 120 keV and a 18 channel Avalanche photo diode (APD) detector system sampled at 2 MHz has been recently installed and tested on the COMPASS tokamak. This diagnostic allows to reconstruct density profile based on directly measured light profiles, and to follow turbulent behaviour of the edge plasma. The paper reports technical capabilities of this new system designed for fine spatio-temporal measurements of plasma electron density. Focusing on turbulence-induced fluctuation measurements, we demonstrate how physically relevant information can be extracted using the COMPASS Li-BES system.
Effective potential kinetic theory for strongly coupled plasmas
Baalrud, Scott D.; Daligault, Jérôme
2016-11-01
The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.
The Gaussian radial basis function method for plasma kinetic theory
Hirvijoki, E.; Candy, J.; Belli, E.; Embréus, O.
2015-10-01
Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker-Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker-Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas.
CENTORI: a global toroidal electromagnetic two-fluid plasma turbulence code
Knight, P J; Edwards, T D; Hein, J; Romanelli, M; McClements, K G
2011-01-01
A new global two-fluid electromagnetic turbulence code, CENTORI, has been developed for the purpose of studying magnetically-confined fusion plasmas. This code is used to evolve the combined system of electron and ion fluid equations and Maxwell equations in fully toroidal geometry, and is applicable to tokamaks of arbitrary aspect ratio and high plasma beta. A predictor corrector, semi-implicit finite difference scheme is used to compute the time evolution of fluid quantities and fields. Vector operations and the evaluation of flux surface averages are speeded up by choosing the Jacobian of the transformation from laboratory to plasma coordinates to be a function of the equilibrium poloidal magnetic flux. A subroutine, GRASS, is used to co-evolve the plasma equilibrium by computing the steady-state solutions of a diffusion equation with a pseudo-time derivative. The code is written in Fortran 95 and is efficiently parallelized using Message Passing Interface (MPI). Illustrative examples of output from a simu...
Theory and hybrid simulations of the radial evolution of the solar wind turbulence
Comisel, Horia; Narita, Yasuhito; Motschmann, Uwe
2016-04-01
Solar wind turbulence in the inner heliosphere is believed to evolve in the radial direction away from the Sun driven by various nonlinear processes. When a perturbative treatment is applicable, plasma fluctuations evolve along the dispersion relations while the frequencies deviate from the normal-mode frequency by exciting non-normal modes or sideband waves. Direct numerical simulations of magnetized plasma at the scale of ion gyro-radius or smaller using the hybrid code AIKEF show smooth transitions and evolutions into nonlinear stage with sideband wave excitations. The evolution profile of linear and nonlinear modes as well as the intrinsic nature of wave vector anisotropy can be unambiguously classified according to the values of ion plasma beta. By using a mapping based on a one-dimensional solar wind expansion model, the resulting ion kinetic scale turbulence is related to the solar distance from the Sun. We find that the relevant normal modes such as ion cyclotron and Bernstein mode will occur first at radial distance of about 0.2-0.3 AU, i.e., near the Mercury orbit. Furthermore, a radial dependence of the wave-vector anisotropy is obtained. The predominance of the filament structures highlights the strong impact of Alfvénic waves.
Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere
Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan
2014-06-01
The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.
The applications of Complexity Theory and Tsallis Non-extensive Statistics at Solar Plasma Dynamics
Pavlos, George
2015-04-01
As the solar plasma lives far from equilibrium it is an excellent laboratory for testing complexity theory and non-equilibrium statistical mechanics. In this study, we present the highlights of complexity theory and Tsallis non extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at sunspot, solar flare and solar wind phenomena. Generally, when a physical system is driven far from equilibrium states some novel characteristics can be observed related to the nonlinear character of dynamics. Generally, the nonlinearity in space plasma dynamics can generate intermittent turbulence with the typical characteristics of the anomalous diffusion process and strange topologies of stochastic space plasma fields (velocity and magnetic fields) caused by the strange dynamics and strange kinetics (Zaslavsky, 2002). In addition, according to Zelenyi and Milovanov (2004) the complex character of the space plasma system includes the existence of non-equilibrium (quasi)-stationary states (NESS) having the topology of a percolating fractal set. The stabilization of a system near the NESS is perceived as a transition into a turbulent state determined by self-organization processes. The long-range correlation effects manifest themselves as a strange non-Gaussian behavior of kinetic processes near the NESS plasma state. The complex character of space plasma can also be described by the non-extensive statistical thermodynamics pioneered by Tsallis, which offers a consistent and effective theoretical framework, based on a generalization of Boltzmann - Gibbs (BG) entropy, to describe far from equilibrium nonlinear complex dynamics (Tsallis, 2009). In a series of recent papers, the hypothesis of Tsallis non-extensive statistics in magnetosphere, sunspot dynamics, solar flares, solar wind and space plasma in general, was tested and verified (Karakatsanis et al., 2013; Pavlos et al., 2014; 2015). Our study includes the analysis of solar plasma time
Testing THEMIS wave measurements against the cold plasma theory
Taubenschuss, Ulrich; Santolik, Ondrej; Le Contel, Olivier; Bonnell, John
2016-04-01
The THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission records a multitude of electromagnetic waves inside Earth's magnetosphere and provides data in the form of high-resolution electric and magnetic waveforms. We use multi-component measurements of whistler mode waves and test them against the theory of wave propagation in a cold plasma. The measured ratio cB/E (c is speed of light in vacuum, B is magnetic wave amplitude, E is electric wave amplitude) is compared to the same quantity calculated from cold plasma theory over linearized Faraday's law. The aim of this study is to get estimates for measurement uncertainties, especially with regard to the electric field and the cold plasma density, as well as evaluating the validity of cold plasma theory inside Earth's radiation belts.
Validation study of a drift-wave turbulence model for CSDX linear plasma device
Vaezi, P.; Holland, C.; Thakur, S. C.; Tynan, G. R.
2017-09-01
A validation study of self-regulating drift-wave turbulence/zonal flow dynamics in the Controlled Shear Decorrelation Experiment linear plasma device using Langmuir probe synthetic diagnostics is presented in this paper. We use a set of nonlocal 3D equations, which evolve density, vorticity, and electron temperature fluctuations, and include proper sheath boundary conditions. Nonlinear simulations of these equations are carried out using BOUndary Turbulence (BOUT++) framework. To identify the dominant parametric dependencies of the model, a linear growth rate sensitivity analysis is performed using input parameter uncertainties, which are taken from the experimental measurements. For the direct comparison of nonlinear simulation results to experiment, we use synthetic Langmuir probe diagnostics to generate a set of synthetic ion saturation current and floating potential fluctuations. In addition, comparisons of azimuthal velocities determined via time-delay estimation, and nonlinear energy transfer are shown. We observe a significant improvement of model-experiment agreement relative to the previous 2D simulations. An essential component of this improved agreement is found to be the effect of electron temperature fluctuations on floating potential measurements, which introduces clear amplitude and phase shifts relative to the plasma potential fluctuations in synthetically measured quantities, where the simulations capture the experimental measurements in the core of plasma. However, the simulations overpredict the fluctuation levels at larger radii. Moreover, systematic simulation scans show that the self-generated E × B zonal flows profile is very sensitive to the steepening of density equilibrium profile. This suggests that evolving both fluctuations and equilibrium profiles, along with the inclusion of modest axial variation of radial profiles in the model are needed for further improvement of simulation results against the experimental measurements.
Energy Technology Data Exchange (ETDEWEB)
Mikkelsen, D. R., E-mail: dmikkelsen@pppl.gov; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); Reinke, M. L. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Podpaly, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); AAAS S and T Fellow placed in the Directorate for Engineering, NSF, 4201 Wilson Blvd., Arlington, Virginia 22230 (United States); Ma, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Candy, J.; Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)
2015-06-15
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
The Contributions of A. N. Kolmogorov to the theory of turbulence
Directory of Open Access Journals (Sweden)
Jiménez, Javier
2004-08-01
Full Text Available Two of the papers published by Kolmogorov in 1941 are generally considered to be the origin of modern turbulence theory, including the concepts of scale similarity and of a universal inertial cascade. His third important paper, in 1962, although later superseded, was in the same way the origin of the modern investigations on intermittency. This note summarizes the history of turbulence theory before Kolmogorov, his contributions in these three papers, and his influence on the present understanding of turbulence in fluids.
Dos de los artículos publicados por Kolmogorov en 1941 son considerados generalmente como el origen de la teoría moderna de la turbulencia. Estos artículos incluyen los conceptos de semejanza de escala y de una cascada universal inercial. Su tercer artículo importante sobre el tema, publicado en 1962, es igualmente el origen de las investigaciones modernas sobre intermitencia. En esta nota se resume la historia de las teorías sobre la turbulencia antes de Kolmogorov, sus aportaciones en estos tres artículos, y su influencia sobre la comprensión actual del movimiento turbulento de los fluidos.
Hydrodynamization and transient modes of expanding plasma in kinetic theory
Heller, Michal P; Spalinski, Michal
2016-01-01
We study the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation. Our studies uncover qualitative similarities to the results on hydrodynamization in strongly coupled gauge theories. In particular, we demonstrate that the gradient expansion in this model has vanishing radius of convergence. The asymptotic character of the hydrodynamic gradient expansion is crucial for the recently discovered applicability of hydrodynamics at large gradients. Furthermore, the analysis of the resurgent properties of the series provides, quite remarkably, indication for the existence of a novel transient, damped oscillatory mode of expanding plasmas in kinetic theory.
Experiments on Plasma Turbulence Created by Supersonic Plasma Flows with Shear
2014-04-01
afterglow the primaries are absent and the secondaries have a Maxwellian distribution. Probes are usually used to measure the energy distribution, but...floating potential and ion current are non -perturbing. But for a positive probe bias the probe raises the plasma potential when it is the only electron
Rosenblum, Erica; Traxler, Adrienne; Stellmach, Stephan
2010-01-01
Double-diffusive convection, often referred to as semi-convection in astrophysics, occurs in thermally and compositionally stratified systems which are stable according to the Ledoux-criterion but unstable according to the Schwarzchild criterion. This process has been given relatively little attention so far, and its properties remain poorly constrained. In this paper, we present and analyze a set of three-dimensional simulations of this phenomenon in a Cartesian domain under the Boussinesq approximation. We find that in some cases the double-diffusive convection saturates into a state of homogeneous turbulence, but with turbulent fluxes several orders of magnitude smaller than those expected from direct overturning convection. In other cases the system rapidly and spontaneously develops closely-packed thermo-compositional layers, which later successively merge until a single layer is left. We compare the output of our simulations with an existing theory of layer formation in the oceanographic context, and fi...
Directory of Open Access Journals (Sweden)
Roger Bruce Mason
2013-05-01
Full Text Available This article proposes that the external environment influences the choice of distribution tactics. Since businesses and markets are complex adaptive systems, using complexity theory to understand such environments is necessary, but it has not been widely researched. A qualitative case method using in-depth interviews investigated four successful, versus less successful, companies in turbulent versus stable environments. The results tentatively confirmed that the more successful company, in a turbulent market, sees distribution activities as less important than other aspects of the marketing mix, but uses them to stabilise customer relationships and to maintain distribution processes. These findings can benefit marketers by emphasising a new way to consider place activities. How marketers can be assisted, and suggestions for further research, are provided.
Energy Technology Data Exchange (ETDEWEB)
Fuchert, Golo
2013-12-13
The safe and reliable satisfaction of the world's increasing energy demand at affordable costs is one of the major challenges of our century. Nuclear fusion power plants following the magnetic confinement approach may play an essential role in solving this issue. The energy loss of the fusion plasma due to plasma turbulence reduces the efficiency and poses a threat to the first wall of a fusion reactor. Close to the wall, in the scrape-off layer, this transport is dominated by blobs or filaments: Localized structures of increased pressure, which transport energy and particles towards the wall by propagating radially outwards. Their contribution to the transport depends on their size, propagation velocity and generation rate. An analytical model for the evolution of blobs predicts their velocity and size, but not the generation rate. Experiments indicate that edge turbulence in the vicinity of the last closed flux surface (the boundary between the confined plasma and the scrape-off layer) is involved in the blob generation process and should influence the generation rate. The present thesis aims at answering two main questions: How well do the blob properties predicted from the simple model compare to experimental observations in more complex magnetic field configurations of actual fusion experiments and does the edge turbulence influence the blob properties during the generation process. A fast camera was used to measure blob properties in two devices, TJ-K and ASDEX Upgrade. In TJ-K, blob sizes and velocities were determined together with the generation rate. An overall agreement with the predictions from the simple model is found. For the first time a clear influence of the edge dynamics on the analyzed blob properties is demonstrated. These measurements include the first systematic comparison of the structure-size scaling inside and outside of the last closed flux surface. Furthermore, measurements with a multi-probe array are used to reconstruct the blob
Halpern, F. D.; Ricci, P.
2017-03-01
The narrow power decay-length ({λq} ), recently found in the scrape-off layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two-fluid turbulence simulations. The formation of the steep plasma profiles is found to arise due to radially sheared \\mathbf{E}× \\mathbf{B} poloidal flows. A complex interaction between sheared flows and parallel plasma currents outflowing into the sheath regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. Analytical calculations suggest that the IWL {λq} is roughly equal to the turbulent correlation length.
Halpern, Federico D
2016-01-01
The narrow power decay-length ($\\lambda_q$), recently found in the scrape-off layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two-fluid turbulence simulations. The formation of the steep plasma profiles measured is found to arise due to radially sheared $\\vec{E}\\times\\vec{B}$ poloidal flows. A complex interaction between sheared flows and outflowing plasma currents regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. Analytical calculations suggest that the IWL $\\lambda_q$ is roughly equal to the turbulent correlation length.
Schneider, Kai
2015-01-01
Immersed boundary methods for computing confined fluid and plasma flows in complex geometries are reviewed. The mathematical principle of the volume penalization technique is described and simple examples for imposing Dirichlet and Neumann boundary conditions in one dimension are given. Applications for fluid and plasma turbulence in two and three space dimensions illustrate the applicability and the efficiency of the method in computing flows in complex geometries, for example in toroidal geometries with asymmetric poloidal cross-sections.
Ozawa, Hisashi; Shimokawa, Shinya; Sakuma, Hirofumi
Turbulence is ubiquitous in nature, yet remains an enigma in many respects. Here we investigate dissipative properties of turbulence so as to find out a statistical "law" of turbulence. Two general expressions are derived for a rate of entropy increase due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is found with these equations that phenomenological properties of turbulence such as Malkus's suggestion on maximum heat transport in thermal convection as well as Busse's sug- gestion on maximum momentum transport in shear turbulence can rigorously be ex- plained by a unique state in which the rate of entropy increase due to the turbulent dissipation is at a maximum (dS/dt = Max.). It is also shown that the same state cor- responds to the maximum entropy climate suggested by Paltridge. The tendency to increase the rate of entropy increase has also been confirmed by our recent GCM ex- periments. These results suggest the existence of a universal law that manifests itself in the long-term statistics of turbulent fluid systems from laboratory-scale turbulence to planetary-scale circulations. Ref.) Ozawa, H., Shimokawa, S., and Sakuma, H., Phys. Rev. E 64, 026303, 2001.
Lee, Dorothy B; Faget, Maxime A
1956-01-01
A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.
Tamain, P.; Bufferand, H.; Ciraolo, G.; Colin, C.; Galassi, D.; Ghendrih, Ph.; Schwander, F.; Serre, E.
2016-09-01
The new code TOKAM3X simulates plasma turbulence in full torus geometry including the open field lines of the Scrape-off Layer (SOL) and the edge closed field lines region in the vicinity of the separatrix. Based on drift-reduced Braginskii equations, TOKAM3X is able to simulate both limited and diverted plasmas. Turbulence is flux driven by incoming particles from the core plasma and no scale separation between the equilibrium and the fluctuations is assumed so that interactions between large scale flows and turbulence are consistently treated. Based on a domain decomposition, specific numerical schemes are proposed using conservative finite-differences associated to a semi-implicit time advancement. The process computation is multi-threaded and based on MPI and OpenMP libraries. In this paper, fluid model equations are presented together with the proposed numerical methods. The code is verified using the manufactured solution technique and validated through documented simple experiments. Finally, first simulations of edge plasma turbulence in X-point geometry are also introduced in a JET geometry.
Turbulence and turbulent mixing in natural fluids
Gibson, Carl H
2010-01-01
Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretion on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscosity and negative turbulence stresses work against gravity, creating mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until a quark-gluon strong-force SF freeze-out. Gluon-viscosity anti-gravity ({\\Lambda}SF) exponentially inflates the fireball to preserve big bang turbulence information at scales larger than ct as the first fossil turbulence. Cosmic microwave background CMB temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered (10^12 s) as plasma viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales (10^13 s). Turbulent morphologies and viscous-turbulent lengths a...
Temporal evolution of linear kinetic Alfvén waves in inhomogeneous plasmas and turbulence generation
Goyal, Ravinder; Sharma, R. P.
2016-07-01
The coronal ion heating in the Sun is primarily considered due to Alfvén wave dissipation. The Hinode data which has provided strong evidence for the presence of Alfvén waves in the corona and in coronal loops, has lead laboratory investigations and numerical simulations of Alfvén wave propagation and damping. The inhomogeneous plasmas with steep density gradients can be employed to study such phenomenon in relatively shorter systems. This article presents a model for the propagation of Kinetic Alfvén waves (KAWs) in inhomogeneous plasma when the inhomogeneity is in transverse and parallel directions relative to the background magnetic field. The semi-analytical technique and numerical simulations have been performed to study the KAW dynamics when plasma inhomogeneity is incorporated in the dynamics. The model equations are solved in order to study the localization of KAW and their magnetic power spectrum which indicates the direct transfer of energy from lower to higher wave numbers as well as frequencies. The inhomogeneity scale lengths in both directions may control the nature of fluctuations and localization of the waves and play a very important role in the turbulence generation and its level. We present a theoretical study of the localization of KAWs, variations in magnetic field amplitude in time, and variation in the frequency spectra arising from inhomogeneities. The relevance of the model to space and laboratory observations is discussed.
Bardoczi, L.
2016-10-01
We present the first localized measurements of ITG scale temperature and density fluctuations and TEM scale density fluctuations modified by an m=2, n=1 magnetic island. These islands are formed by a Neoclassical Tearing Mode (NTM) deep in the core plasma at the q=2 surface. NTMs are important as they often degrade confinement and lead to disruption. This is the first experimental confirmation of a long-standing theory prediction of decreased local small-scale turbulence levels across large-scale magnetic islands. Our measurements capture a mean reduction of turbulence inside (and enhancement just outside) the island region during island evolution. Additionally, in the island saturated state, the fluctuations at the O-point are observed to be reduced compared to the X-point. These measurements allow the determination of the turbulence length scale at the island separatrix that is predicted to affect NTM stability. A novel, non-perturbative measurement technique finds reduced cross-field electron thermal diffusivity (by 1-2 orders of magnitude) at the O-point, consistent with the local turbulence reduction. Initial comparisons to the GENE non-linear gyrokinetic code are promising with GENE predicting the observed turbulence reduction inside the island and increase just outside the island and replicating the observed scaling with island size. These results allow the validation of gyrokinetic simulations modeling the interaction of multi-scale phenomena as well as have potential implications for improved NTM control. Supported by USDOE under DE-FG02-08ER54984, DE-FG02-08ER54999 and DE-FC02-04ER54698.
Geometric perturbation theory and plasma physics
Energy Technology Data Exchange (ETDEWEB)
Omohundro, S.M.
1985-04-04
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.
The Link Between Shocks, Turbulence, and Magnetic Reconnection in Collisionless Plasmas
Karimabadi, H.; Roytershteyn, V.; Vu, H. X.; Omelchenko, Y. A.; Scudder, J.; Daughton, W.; Dimmock, A.; Nykyri, K.; Wan, M.; Sibeck, D.; Tatineni, M.; Majumdar, A.; Loring, B.; Geveci, B.
2014-01-01
Global hybrid (electron fluid, kinetic ions) and fully kinetic simulations of the magnetosphere have been used to show surprising interconnection between shocks, turbulence and magnetic reconnection. In particular collisionless shocks with their reflected ions that can get upstream before retransmission can generate previously unforeseen phenomena in the post shocked flows: (i) formation of reconnecting current sheets and magnetic islands with sizes up to tens of ion inertial length. (ii) Generation of large scale low frequency electromagnetic waves that are compressed and amplified as they cross the shock. These 'wavefronts' maintain their integrity for tens of ion cyclotron times but eventually disrupt and dissipate their energy. (iii) Rippling of the shock front, which can in turn lead to formation of fast collimated jets extending to hundreds of ion inertial lengths downstream of the shock. The jets, which have high dynamical pressure, 'stir' the downstream region, creating large scale disturbances such as vortices, sunward flows, and can trigger flux ropes along the magnetopause. This phenomenology closes the loop between shocks, turbulence and magnetic reconnection in ways previously unrealized. These interconnections appear generic for the collisionless plasmas typical of space, and are expected even at planar shocks, although they will also occur at curved shocks as occur at planets or around ejecta.
Kinetic plasma turbulence during the nonlinear stage of the Kelvin-Helmholtz instability
Kemel, Koen; Lapenta, Giovanni; Califano, Francesco; Markidis, Stefano
2014-01-01
Using a full kinetic, implicit particle-in-cell code, iPiC3D, we studied the properties of plasma kinetic turbulence, such as would be found at the interface between the solar wind and the Earth magnetosphere at low latitude during northwards periods. In this case, in the presence of a magnetic field B oriented mostly perpendicular to the velocity shear, turbulence is fed by the disruption of a Kelvin-Helmholtz vortex chain via secondary instabilities, vortex pairing and non-linear interactions. We found that the magnetic energy spectral cascade between ion and electron inertial scales, $d_i$ and $d_e$, is in agreement with satellite observations and other previous numerical simulations; however, in our case the spectrum ends with a peak beyond $d_e$ due to the occurrence of the lower hybrid drift instability. The electric energy spectrum is influenced by effects of secondary instabilities: anomalous resistivity, fed by the development of the lower hybrid drift instability, steepens the spectral decay and, de...
An alternative approach to field-aligned coordinates for plasma turbulence simulations
Ottaviani, M A
2010-01-01
Turbulence simulation codes can exploit the flute-like nature of plasma turbulence to reduce the effective number of degrees of freedom necessary to represent fluctuations. This can be achieved by employing magnetic coordinates of which one is aligned along the magnetic field. This work presents an approach in which the position along the field lines is identified by the toroidal angle, rather than the most commonly used poloidal angle. It will be shown that this approach has several advantages. Among these, periodicity in both angles is retained. This property allows moving to an equivalent representation in Fourier space with a reduced number of toroidal components. It will be shown how this duality can be exploited to transform conventional codes that use a spectral representation on the magnetic surface into codes with a field-aligned coordinate. It is also shown that the new approach can be generalised to get rid of magnetic coordinates in the poloidal plane altogether, for a large class of models. Tests...
The anisotropic redistribution of free energy for gyrokinetic plasma turbulence in a Z-pinch
Navarro, Alejandro Banon; Jenko, Frank
2015-01-01
For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values for the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each...
High-resolution hybrid simulations of kinetic plasma turbulence at proton scales
Franci, Luca; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr
2015-01-01
We investigate properties of plasma turbulence from magneto-hydrodynamic (MHD) to sub-ion scales by means of two-dimensional, high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field, perpendicular to the simulation box, and we add a spectrum of large-scale magnetic and kinetic fluctuations, with energy equipartition and vanishing correlation. Once the turbulence is fully developed, we observe a MHD inertial range, where the spectra of the perpendicular magnetic field and the perpendicular proton bulk velocity fluctuations exhibit power-law scaling with spectral indices of -5/3 and -3/2, respectively. This behavior is extended over a full decade in wavevectors and is very stable in time. A transition is observed around proton scales. At sub-ion scales, both spectra steepen, with the former still following a power law with a spectral index of ~-3. A -2.8 slope is observed in the density and parallel magnetic fluctuations, highlighting the presence of compressive effects ...
Space-Time Localization of Plasma Turbulence Using Multiple Spacecraft Radio Links
Armstrong, John W.; Estabrook, Frank B.
2011-01-01
Space weather is described as the variability of solar wind plasma that can disturb satellites and systems and affect human space exploration. Accurate prediction requires information of the heliosphere inside the orbit of the Earth. However, for predictions using remote sensing, one needs not only plane-of-sky position but also range information the third spatial dimension to show the distance to the plasma disturbances and thus when they might propagate or co-rotate to create disturbances at the orbit of the Earth. Appropriately processed radio signals from spacecraft having communications lines-of-sight passing through the inner heliosphere can be used for this spacetime localization of plasma disturbances. The solar plasma has an electron density- and radio-wavelength-dependent index of refraction. An approximately monochromatic wave propagating through a thin layer of plasma turbulence causes a geometrical-optics phase shift proportional to the electron density at the point of passage, the radio wavelength, and the thickness of the layer. This phase shift is the same for a wave propagating either up or down through the layer at the point of passage. This attribute can be used for space-time localization of plasma irregularities. The transfer function of plasma irregularities to the observed time series depends on the Doppler tracking mode. When spacecraft observations are in the two-way mode (downlink radio signal phase-locked to an uplink radio transmission), plasma fluctuations have a two-pulse response in the Doppler. In the two-way mode, the Doppler time series y2(t) is the difference between the frequency of the downlink signal received and the frequency of a ground reference oscillator. A plasma blob localized at a distance x along the line of sight perturbs the phase on both the up and down link, giving rise to two events in the two-way tracking time series separated by a time lag depending the blob s distance from the Earth: T2-2x/c, where T2 is the
Thermodynamical and microscopic properties of turbulent transport in the edge plasma
Ghendrih, Ph; Norscini, C.; Hasenbeck, F.; Dif-Pradalier, G.; Abiteboul, J.; Cartier-Michaud, T.; Garbet, X.; Grandgirard, V.; Marandet, Y.; Sarazin, Y.; Tamain, P.; Zarzoso, D.
2012-12-01
Edge plasma turbulence modelled with 2D interchange is shown to exhibit convective transport at the microscale level. This transport property is related to avalanche like transport in such a flux-driven system. Correlation functions and source modulation are used to analyse the transport properties but do not allow one to recover the Fick law that must characterise the system at large scales. Coarse graining is then introduced to average out the small scales in order to recover the Fick law. One finds that the required space averaging is comparable to the system size while the time averaging is comparable to the confinement time. The system is then reduced to a single reservoir such that transport is characterised by a single scalar, either the diffusion coefficient of the Fick law or a characteristic evolution time constant.
Chasapis, A.; Retino, A.; Sahraoui, F.; Greco, A.; Vaivads, A.; Khotyaintsev, Y. V.; Sundkvist, D. J.; Canu, P.
2014-12-01
We present a statistical study of ion-scale current sheets in turbulent space plasma. The study was performed using in situ measurements from the Earth's magnetosheath downstream of the quasi-parallel shock. Intermittent structures were identified using the Partial Variance of Increments method. We studied the distribution of the identified structures as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high (>3) and low (3) structures that accounted for ~20% of the total. Those current sheets have high magnetic shear (>90 degrees) and were observed mostly in close proximity to the bow shock with their numbers reducing towards the magnetopause. Enhancement of the estimated electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.
Multi-CPU plasma fluid turbulence calculations on a CRAY Y-MP C90
Energy Technology Data Exchange (ETDEWEB)
Lynch, V.E.; Carreras, B.A.; Leboeuf, J.N. [Oak Ridge National Lab., TN (United States); Curtis, B.C.; Troutman, R.L. [National Energy Research Supercomputer Center, Livermore, CA (United States)
1993-06-01
Significant improvements in real-time efficiency have been obtained for plasma fluid turbulence calculations by microtasking the nonlinear fluid code KITE in which they are implemented on the CRAY Y-MP C90 at the National Energy Research Supercomputer Center (NERSC). The number of processors accessed concurrently scales linearly with problem size. Close to six concurrent processors have so far been obtained with a three-dimensional nonlinear production calculation at the currently allowed memory size of 80 Mword. With a calculation size corresponding to the maximum allowed memory of 200 Mword in the next system configuration, we expect to be able to access close to nine processors of the C90 concurrently with a commensurate improvement in real-time efficiency. These improvements in performance are comparable to those expected from a massively parallel implementation of the same calculations on the Intel Paragon.
Wu, D. J.; Feng, H. Q.; Li, B.; He, J. S.
2016-08-01
The nature of turbulence, dissipation, and heating in plasma media has been an attractive and challenge problem in space physics as well as in basic plasma physics. A wide continuous spectrum of Alfvénic turbulence from large MHD-scale Alfvén waves (AWs) in the inertial turbulence regime to small kinetic-scale kinetic AWs (KAWs) in the dissipation turbulence regime is a typical paradigm of plasma turbulence. The incorporation of current remote observations of AWs in the solar atmosphere, in situ satellite measurements of Alfvénic turbulence in the solar wind, and experimental investigations of KAWs on large plasma devices in laboratory provides a chance synthetically to study the physics nature of plasma turbulence, dissipation, and heating. A session entitled "Nature of Turbulence, Dissipation, and Heating in Space Plasmas: From Alfvén Waves to Kinetic Alfvén Waves" was held as a part of the twelfth Asia Oceania Geosciences Society Annual Meeting, which took place in Singapore between 2 and 7 August 2015. This special section is organized based on the session.
The Gaussian radial basis function method for plasma kinetic theory
Energy Technology Data Exchange (ETDEWEB)
Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)
2015-10-30
Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.
Energy Technology Data Exchange (ETDEWEB)
Schuster, Eugenio
2014-05-02
The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.
Effective Potential Theory: A Practical Way to Extend Plasma Transport Theory to Strong Coupling
Baalrud, Scott D; Daligault, Jerome
2014-01-01
The effective potential theory is a physically motivated method for extending traditional plasma transport theories to stronger coupling. It is practical in the sense that it is easily incorporated within the framework of the Chapman-Enskog or Grad methods that are commonly applied in plasma physics and it is computationally efficient to evaluate. The extension is to treat binary scatterers as interacting through the potential of mean force, rather than the bare Coulomb or Debye-screened Coulomb potential. This allows for aspects of many-body correlations to be included in the transport coefficients. Recent work has shown that this method accurately extends plasma theory to orders of magnitude stronger coupling when applied to the classical one-component plasma model. The present work shows that similar accuracy is realized for the Yukawa one-component plasma model and it provides a comparison with other approaches.
Theory of magnetic reconnection in solar and astrophysical plasmas.
Pontin, David I
2012-07-13
Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this paper, we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex three-dimensional magnetic fields and describe the fundamental differences between reconnection in two and three dimensions. We go on to outline recent developments in modelling of reconnection with kinetic theory, as well as in the magnetohydrodynamic framework where a number of new three-dimensional reconnection regimes have been identified. We discuss evidence from observations and simulations of Solar System plasmas that support this theory and summarize some prominent locations in which this new reconnection theory is relevant in astrophysical plasmas.
Plasma physics and nuclear fusion research
Gill, Richard D
1981-01-01
Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe
Applications of Symmetry Methods to the Theory of Plasma Physics
Giampaolo Cicogna; Francesco Ceccherini; Francesco Pegoraro
2006-01-01
The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-...
The Implications of Discontinuities for Testing Theories of Turbulence in the Solar Wind
Turner, A J; Gogoberidze, G
2012-01-01
In-situ observations of magnetic field fluctuations in the solar wind show a broad continuum in the power spectral density (PSD) with a power-law range of scaling often identified as an inertial range of magnetohydrodynamic turbulence. However, both turbulence and discontinuities are present in the solar wind on these inertial range of scales. We identify and remove these discontinuities using a method which for the first time does not impose a characteristic scale on the resultant time-series. The PSD of vector field fluctuations obtained from at-a point observations is a tensor that can in principle be anisotropic with scaling exponents that depend on background field and flow direction. This provides a key test of theories of turbulence. We find that the removal of discontinuities from the observed time-series can significantly alter the PSD trace anisotropy. It becomes quasi-isotropic, in that the observed exponent does not vary with the background field angle once the discontinuities are removed. This is...
Turbulent cross-field transport of non-thermal electrons in coronal loops: theory and observations
Bian, N; McKinnon, A
2011-01-01
A fundamental problem in astrophysics is the interaction between magnetic turbulence and charged particles. It is now possible to use \\emph{Ramaty High Energy Solar Spectroscopic Imager (RHESSI)} observations of hard X-rays (HXR) emitted by electrons to identify the presence of turbulence and to estimate the magnitude of the magnetic field line diffusion coefficient at least in dense coronal flaring loops.} {We discuss the various possible regimes of cross-field transport of non-thermal electrons resulting from broadband magnetic turbulence in coronal loops. The importance of the Kubo number $K$ as a governing parameter is emphasized and results applicable in both the large and small Kubo number limits are collected.} {Generic models, based on concepts and insights developed in the statistical theory of transport, are applied to the coronal loops and to the interpretation of hard X-ray imaging data in solar flares. The role of trapping effects, which become important in the non-linear regime of transport, is ...
Coupled mode theory approach to depolarization associated with propagation in turbulent media
Crosignani, B.; di Porto, P.; Clifford, Steven F.
1988-06-01
Marcuse's (1974) coupled-mode theory is invoked in the present consideration of the problem of light depolarization in a turbulent atmosphere, in order to allow the evaluation of the depolarization ratio for a plane wave and comparison of its expression with that obtained in the frame of two distinct approaches predicting different behaviors. It is found that both approaches yield the same result when calculated to the same order in both of the relevant smallness parameters, thereby resolving a long-standing controversy.
Kiyani, Khurom; Chapman, Sandra; Osman, Kareem; Sahraoui, Fouad; Hnat, Bogdan
2014-05-01
The anisotropic nature of the scaling properties of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster, ACE and STEREO spacecraft missions in both fast and slow quiet solar wind conditions. The data span five decades in scales from the inertial range to the electron Larmor radius. We find a clear transition in scaling behaviour between the inertial and kinetic range of scales, which provides a direct, quantitative constraint on the physical processes that mediate the cascade of energy through these scales. In the inertial (magnetohydrodynamic) range the statistical nature of turbulent fluctuations are known to be anisotropic, both in the vector components of the magnetic field fluctuations (variance anisotropy) and in the spatial scales of these fluctuations (wavevector or k-anisotropy). We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations suggest the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. Computing higher-order statistics, we show that the full statistical signature of both parallel, and perpendicular fluctuations at scales below the ion Larmor radius are that of an isotropic globally scale-invariant non-Gaussian process. Lastly, we perform a survey of multiple intervals of quiet solar wind sampled under different plasma conditions (fast, slow wind; plasma beta etc.) and find that the
Handy, Timothy; Drake, R Paul; Zhiglo, Andrey
2013-01-01
We investigate the possibility of generating and studying turbulence in plasma by means of high-energy density laser-driven experiments. Our focus is to create supersonic, self-magnetized turbulence with characteristics that resemble those found in the interstellar medium (ISM). We consider a target made of a spherical core surrounded by a shell made of denser material. The shell is irradiated by a sequence of laser pulses sending inward-propagating shocks that convert the inner core into plasma and create turbulence. In the context of the evolution of the ISM, the shocks play the role of supernova remnant shocks and the core represents the ionized interstellar medium. We consider the effects of both pre-existing and self-generating magnetic fields and study the evolution of the system by means of two-dimensional numerical simulations. We find that the evolution of the turbulent core is generally, subsonic with rms-Mach number $M_t\\approx 0.2$. We observe an isotropic, turbulent velocity field with an inertia...
Kaplan, S A; ter Haar, D
2013-01-01
Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary
Majda, Andrew J.; Qi, Di
2016-02-01
Turbulent dynamical systems with a large phase space and a high degree of instabilities are ubiquitous in climate science and engineering applications. Statistical uncertainty quantification (UQ) to the response to the change in forcing or uncertain initial data in such complex turbulent systems requires the use of imperfect models due to the lack of both physical understanding and the overwhelming computational demands of Monte Carlo simulation with a large-dimensional phase space. Thus, the systematic development of reduced low-order imperfect statistical models for UQ in turbulent dynamical systems is a grand challenge. This paper applies a recent mathematical strategy for calibrating imperfect models in a training phase and accurately predicting the response by combining information theory and linear statistical response theory in a systematic fashion. A systematic hierarchy of simple statistical imperfect closure schemes for UQ for these problems is designed and tested which are built through new local and global statistical energy conservation principles combined with statistical equilibrium fidelity. The forty mode Lorenz 96 (L-96) model which mimics forced baroclinic turbulence is utilized as a test bed for the calibration and predicting phases for the hierarchy of computationally cheap imperfect closure models both in the full phase space and in a reduced three-dimensional subspace containing the most energetic modes. In all of phase spaces, the nonlinear response of the true model is captured accurately for the mean and variance by the systematic closure model, while alternative methods based on the fluctuation-dissipation theorem alone are much less accurate. For reduced-order model for UQ in the three-dimensional subspace for L-96, the systematic low-order imperfect closure models coupled with the training strategy provide the highest predictive skill over other existing methods for general forced response yet have simple design principles based on a
Arshad, Kashif; Poedts, Stefaan; Lazar, Marian
2017-04-01
Nowadays electromagnetic (EM) fields have various applications in fundamental research, communication, and home appliances. Even though, there are still some subtle features of electromagnetic field known to us a century ago, yet to be utilized. It is because of the technical complexities to sense three dimensional electromagnetic field. An important characteristic of electromagnetic field is its orbital angular momentum (OAM). The angular momentum consists of two distinct parts; intrinsic part associated with the wave polarization or spin, and the extrinsic part associated with the orbital angular momentum (OAM). The orbital angular momentum (OAM) is inherited by helically phased light or helical (twisted) electric field. The investigations of Allen on lasers carrying orbital angular momentum (OAM), has initiated a new scientific and technological advancement in various growing fields, such as microscopy and imaging, atomic and nano-particle manipulation, ultra-fast optical communications, quantum computing, ionospheric radar facility to observe 3D plasma dynamics in ionosphere, photonic crystal fibre, OAM entanglement of two photons, twisted gravitational waves, ultra-intense twisted laser pulses and astrophysics. Recently, the plasma modes are also investigated with orbital angular momentum. The production of electron vortex beams and its applications are indicated by Verbeeck et al. The magnetic tornadoes (rotating magnetic field structures) exhibit three types of morphology i.e., spiral, ring and split. Leyser pumped helical radio beam carrying OAM into the Ionospheric plasma under High Frequency Active Auroral Research Program (HAARP) and characteristic ring shaped morphology is obtained by the optical emission spectrum of pumped plasma turbulence. The scattering phenomenon like (stimulated Raman and Brillouin backscattering) is observed to be responsible for the interaction between electrostatic and electromagnetic waves through orbital angular momentum. The
Formation of plasma around a small meteoroid: 1. Kinetic theory
Dimant, Y S
2016-01-01
Every second millions of small meteoroids enter the Earth's atmosphere producing dense plasmas. Radars easily detect these plasmas and researchers use this data to characterize both the meteoroids and the atmosphere. This paper develops a first-principle kinetic theory describing the behavior of particles, ablated from a fast-moving meteoroid, that colliside with the atmospheric molecules. This theory produces analytic expressions describing the spatial structure and velocity distributions of ions and neutrals near the ablating meteoroid. This analytical model will serve as a basis for a more accurate quantitative interpretation of radar measurements and should help calculate meteoroid and atmosphere parameters from radar head-echo observations.
Theory of a beam-driven plasma antenna
Timofeev, I. V.; Volchok, E. P.; Annenkov, V. V.
2016-08-01
In this paper, we propose a theory describing generation of electromagnetic waves in a thin beam-plasma system with a characteristic transverse size comparable with the radiation wavelength. In fact, a thin plasma column with a longitudinal density modulation works like a plasma antenna in which an electron beam can excite a superluminal wave of electric current. It has previously been shown that, if the period of this modulation coincides with the wavelength of the most unstable beam-driven mode, radiation at a frequency slightly below the plasma frequency is emitted transversely to the plasma column and generated in thin boundary layers. For the plasma thickness comparable with the skin-depth, generation of the terahertz radiation can reach high efficiency ( ˜10 % ) in such a scheme, but the absolute power of this radiation cannot be increased by increasing the transverse plasma size. In this paper, we study whether the power of such an antenna can be increased in the regime of oblique emission when the magnetized plasma is transparent to the radiated electromagnetic waves and the whole plasma volume may be involved in their generation.
A First-Principle Kinetic Theory of Meteor Plasma Formation
Dimant, Yakov; Oppenheim, Meers
2015-11-01
Every second millions of tiny meteoroids hit the Earth from space, vast majority too small to observe visually. However, radars detect the plasma they generate and use the collected data to characterize the incoming meteoroids and the atmosphere in which they disintegrate. This diagnostics requires a detailed quantitative understanding of formation of the meteor plasma. Fast-descending meteoroids become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently and start ablating. The ablated material then collides into atmospheric molecules and forms plasma around the meteoroid. Reflection of radar pulses from this plasma produces a localized signal called a head echo. Using first principles, we have developed a consistent collisional kinetic theory of the near-meteoroid plasma. This theory shows that the meteoroid plasma develops over a length-scale close to the ion mean free path with a non-Maxwellian velocity distribution. The spatial distribution of the plasma density shows significant deviations from a Gaussian law usually employed in head-echo modeling. This analytical model will serve as a basis for more accurate quantitative interpretation of the head echo radar measurements. Work supported by NSF Grant 1244842.
Transport phenomena in a plasma quasilinear theory
Directory of Open Access Journals (Sweden)
Enos D'Ambrogio
1991-05-01
Full Text Available Making use of a recently developed quasi-linear formulation of 1D Vlasov equation, we derive the balance relations for the space-averaged distribution function and spectral power density. The validity-range in the short-time behaviour as well as in the time asymptotic limit is discussed. The formalism is perturbative but non-markovian in character, as it formally generalizes, and in the appropriate limit reproduces, Pocobelli's kinetic theory.
Modified Enskog Kinetic Theory for Strongly Coupled Plasmas
Baalrud, Scott D
2015-01-01
Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S.~D.~Baalrud and J.~Daligault, Phys.~Rev.~Lett.~{\\bf 110}, 235001 (2013)] to include an exclusion radius surrounding individual charged particles that is associated with Coulomb repulsion. This is obtained by analogy with the finite size of hard spheres in Enskog's theory. Predictions for the self-diffusion and shear viscosity coefficients of the one-component plasma are tested against molecular dynamics simulations. The theory is found to accurately capture the kinetic contributions to the transport coefficients, but not the potential contributions that arise at very strong coupling ($\\Gamma \\gtrsim 30$). Considerations related to a first-principles generalization of Enskog's kinetic equation to continuous potentials are also discussed.
Modified Enskog kinetic theory for strongly coupled plasmas.
Baalrud, Scott D; Daligault, Jérôme
2015-06-01
Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S. D. Baalrud and J. Daligault, Phys. Rev. Lett. 110, 235001 (2013)] to include an exclusion radius surrounding individual charged particles that is associated with Coulomb repulsion. This is obtained by analogy with the finite size of hard spheres in Enskog's theory. Predictions for the self-diffusion and shear viscosity coefficients of the one-component plasma are tested against molecular dynamics simulations. The theory is found to accurately capture the kinetic contributions to the transport coefficients, but not the potential contributions that arise at very strong coupling (Γ≳30). Considerations related to a first-principles generalization of Enskog's kinetic equation to continuous potentials are also discussed.
The mathematical theory of reduced MHD models for fusion plasmas
Guillard, Hervé
2015-01-01
The derivation of reduced MHD models for fusion plasma is here formulated as a special instance of the general theory of singular limit of hyperbolic system of PDEs with large operator. This formulation allows to use the general results of this theory and to prove rigorously that reduced MHD models are valid approximations of the full MHD equations. In particular, it is proven that the solutions of the full MHD system converge to the solutions of an appropriate reduced model.
Energy Technology Data Exchange (ETDEWEB)
W.M. Tang
2005-01-03
The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources.
Matsumoto, Y; Amano, T; Kato, T N; Hoshino, M
2015-02-27
Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.
Mathematical concepts and their physical foundation in the nonstandard analysis theory of turbulence
Institute of Scientific and Technical Information of China (English)
Wu Feng
2007-01-01
Main mathematical concepts and their physical foundation in the nonstandard analysis theory of turbulence are presented and discussed. The underlying fact is that there does not exist the absolute zero fluid-volume. Therefore, the physical object corresponding to the absolute point is just the uniform fluid-particle. The fluid-particle, in general, corresponds to the monad. The uniform fluid-particle corresponds to the uniform monad, while the nonuniform fluid-particle to the nonuniform monad. There are two kinds of the differentiations, one is based on the absolute point, and the other based on the monad. The former is adopted in the Navier-Stokes equations, and the latter in the fundamental equations presented in this paper for the nonstandard analysis theory of turbulence. The continuity of fluid is elucidated by virtue of the concepts of the fluid-particle and fluid-particle at a lower level. Furthermore, the characters of the continuity in two cases, i.e. in the standard and nonstandard analyses, are presented in this paper. And the difference in discretization between the Navier-Stokes equations and the fundamental equations given herein is also pointed out.
Tang, William
2013-04-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research in the 21st Century. The imperative is to translate the combination of the rapid advances in super-computing power together with the emergence of effective new algorithms and computational methodologies to help enable corresponding increases in the physics fidelity and the performance of the scientific codes used to model complex physical systems. If properly validated against experimental measurements and verified with mathematical tests and computational benchmarks, these codes can provide more reliable predictive capability for the behavior of complex systems, including fusion energy relevant high temperature plasmas. The magnetic fusion energy research community has made excellent progress in developing advanced codes for which computer run-time and problem size scale very well with the number of processors on massively parallel supercomputers. A good example is the effective usage of the full power of modern leadership class computational platforms from the terascale to the petascale and beyond to produce nonlinear particle-in-cell simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. Illustrative results provide great encouragement for being able to include increasingly realistic dynamics in extreme-scale computing campaigns to enable predictive simulations with unprecedented physics fidelity. Some illustrative examples will be presented of the algorithmic progress from the magnetic fusion energy sciences area in dealing with low memory per core extreme scale computing challenges for the current top 3 supercomputers worldwide. These include advanced CPU systems (such as the IBM-Blue-Gene-Q system and the Fujitsu K Machine) as well as the GPU-CPU hybrid system (Titan).
Drift-Alfven turbulence of a parallel shearing flow of the finite beta plasma with warm ions
Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June
2016-09-01
It was predicted [Mikhailenko et al., Phys. Plasmas 23, 020701 (2016)] that two distinct drift-Alfven instabilities may be developed in the parallel shearing flow of finite beta plasmas ( 1 ≫β≫me/mi ) with comparable ion and electron temperatures. The first one is the shear-flow-modified drift-Alfven instability, which develops due to the inverse electron Landau damping and exists in the shearless plasma as well. The second one is the shear-flow-driven drift-Alfven instability, which develops due to the combined effect of the velocity shear and ion Landau damping and is absent in the shearless plasma flows. In the present paper, these drift-Alfven instabilities are examined numerically and analytically by including the electromagnetic response of the ions. The levels of the drift-Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of ion scattering by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same nonlinear effect of ion scattering, is derived and employed for the analysis of the ion viscosity and ions heating resulting from the interactions of ions with drift-Alfven turbulence.
Von Kármán energy decay and heating of protons and electrons in a kinetic turbulent plasma.
Wu, P; Wan, M; Matthaeus, W H; Shay, M A; Swisdak, M
2013-09-20
Decay in time of undriven weakly collisional kinetic plasma turbulence in systems large compared to the ion kinetic scales is investigated using fully electromagnetic particle-in-cell simulations initiated with transverse flow and magnetic disturbances, constant density, and a strong guide field. The observed energy decay is consistent with the von Kármán hypothesis of similarity decay, in a formulation adapted to magnetohydrodyamics. Kinetic dissipation occurs at small scales, but the overall rate is apparently controlled by large scale dynamics. At small turbulence amplitudes the electrons are preferentially heated. At larger amplitudes proton heating is the dominant effect. In the solar wind and corona the protons are typically hotter, suggesting that these natural systems are in the large amplitude turbulence regime.
Leddy, Jarrod; Dudson, Ben
2016-10-01
Understanding the transport processes in the low temperature plasma at the boundary region of magnetic confinement fusion (MCF) devices is crucial to the design and operation of future fusion reactor devices. It influences the divertor heat load, and probably the core confinement as well. The dominant source of this transport is turbulence, which serves to mix the high and low temperature regions of the plasma. The nature of this plasma turbulence is affected by not only the plasma parameters, but also the neutral species that also exist in these low temperature regions. The interaction of neutrals with the plasma turbulence is studied in linear device geometry (for its simplicity, yet similarity in plasma parameters), and the result is a strong interaction that impacts the local plasma and neutral densities, momenta and energies. The neutral gas is found to affect plasma edge turbulence primarily through momentum exchange, reducing the radial electric field and enhancing cross-field transport, with consequent implications for the SOL width and divertor heat loads. Therefore, turbulent plasma and fluid simulations have been performed in multiple tokamak geometries to more closely examine the effects of this interaction. These cases were chosen for the variety in configuration with ISTOK having a toroidal limiter (ie. no divertor), DIII-D having a standard divertor configuration, and MAST-U having a super-X divertor with extended outer divertor legs. Progress towards the characterization of neutral impact on detachment and edge behavior will be presented.
Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas
2012-01-01
It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore in the high-beta solar wind plasma whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave turbulence creates a plateau by quasilinear diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only ~10^-3 that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.
Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas
Energy Technology Data Exchange (ETDEWEB)
Ramshaw, J.D.; Chang, C.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)
1995-12-31
Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain driving forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.
Magnetic Yang-Mills Theory of the Gluon Plasma
Baker, M
2009-01-01
We propose magnetic SU(N) pure gauge theory as an effective field theory describing the long distance nonperturbative magnetic response of the deconfined phase of Yang-Mills theory. The magnetic non-Abelian Lagrangian, unlike that of electrodynamics where there is exact electromagnetic duality, is not known explicitly, but here we regard the magnetic SU(N) Yang-Mills Lagrangian as the leading term in the long distance effective gauge theory of the plasma phase. In this treatment, which is applicable for a range of temperatures in the interval T_c < T < 3 T_c accessible in heavy ion experiments, formation of the magnetic energy profile around a spatial Wilson loop in the deconfined phase parallels the formation of an electric flux tube in the confined phase. We use the effective theory to calculate spatial Wilson loops and the magnetic charge density induced in the plasma by the corresponding color electric current loops. These calculations suggest that the deconfined phase of Yang-Mills theory has the p...
Energy Technology Data Exchange (ETDEWEB)
Dif-Pradalier, G., E-mail: gdifpradalier@ucsd.edu [Center for Astrophysics and Space Sciences, UCSD, La Jolla, CA 92093 (United States); Gunn, J. [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Ciraolo, G. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Chang, C.S. [Courant Institute of Mathematical Sciences, N.Y. University, New York, NY 10012 (United States); Chiavassa, G. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Diamond, P. [Center for Astrophysics and Space Sciences, UCSD, La Jolla, CA 92093 (United States); Fedorczak, N. [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Ghendrih, Ph., E-mail: philippe.ghendrih@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Isoardi, L. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Kocan, M. [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Ku, S. [Courant Institute of Mathematical Sciences, N.Y. University, New York, NY 10012 (United States); Serre, E. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Tamain, P. [CEA, IRFM, F-13108 Saint Paul lez Durance (France)
2011-08-01
Experimental data from the Tore Supra experiments are extrapolated in the SOL and edge to investigate the Kelvin-Helmholtz instability. The linear analysis indicates that a large part of the SOL is rather unstable. The effort is part of the set-up of the Mistral base case that is organised to validate the codes and address new issues on turbulent edges, including the comparison of kinetic and fluid modelling in the edge plasma.
Applications of Symmetry Methods to the Theory of Plasma Physics
Directory of Open Access Journals (Sweden)
Giampaolo Cicogna
2006-02-01
Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.
Kappa distributions: theory and applications in space plasmas
Pierrard, V
2010-01-01
Particle velocity distribution functions (VDF) in space plasmas often show non Maxwellian suprathermal tails decreasing as a power law of the velocity. Such distributions are well fitted by the so-called Kappa distribution. The presence of such distributions in different space plasmas suggests a universal mechanism for the creation of such suprathermal tails. Different theories have been proposed and are recalled in this review paper. The suprathermal particles have important consequences concerning the acceleration and the temperature that are well evidenced by the kinetic approach where no closure requires the distributions to be nearly Maxwellians. Moreover, the presence of the suprathermal particles take an important role in the wave-particle interactions.
Information Theory Analysis of Cascading Process in a Synthetic Model of Fluid Turbulence
Directory of Open Access Journals (Sweden)
Massimo Materassi
2014-02-01
Full Text Available The use of transfer entropy has proven to be helpful in detecting which is the verse of dynamical driving in the interaction of two processes, X and Y . In this paper, we present a different normalization for the transfer entropy, which is capable of better detecting the information transfer direction. This new normalized transfer entropy is applied to the detection of the verse of energy flux transfer in a synthetic model of fluid turbulence, namely the Gledzer–Ohkitana–Yamada shell model. Indeed, this is a fully well-known model able to model the fully developed turbulence in the Fourier space, which is characterized by an energy cascade towards the small scales (large wavenumbers k, so that the application of the information-theory analysis to its outcome tests the reliability of the analysis tool rather than exploring the model physics. As a result, the presence of a direct cascade along the scales in the shell model and the locality of the interactions in the space of wavenumbers come out as expected, indicating the validity of this data analysis tool. In this context, the use of a normalized version of transfer entropy, able to account for the difference of the intrinsic randomness of the interacting processes, appears to perform better, being able to discriminate the wrong conclusions to which the “traditional” transfer entropy would drive.
Hierarchic Models of Turbulence, Superfluidity and Superconductivity
Kaivarainen, A
2000-01-01
New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cyclotron resonance; Electroconductivity; 8. Microscopic theory of superconductivity (BCS); 9. Mesoscopic scenario of superconductivity: Interpretation of experimental data in the framework of mesoscopic model of superconductivity.
Experimental and theoretical research in applied plasma physics
Energy Technology Data Exchange (ETDEWEB)
Porkolab, M.
1992-01-01
This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.
Dual cascade and its possible variations in magnetized kinetic plasma turbulence
Zhu, Jian-Zhou
2010-01-01
An electrostatic gyrokinetic model for the deviation from Maxwellian distribution is used to study the dual cascade feature in the magnetized plasma (kinetic) turbulence in a 2D slab geometry. Only a finite range of spacial Fourier modes are kept and the Gibbs statistics are calculated with one ($E$) plus a continuum ($G(v)$) of constants of motion. The covariance density with continuous velocity is obtained by doing functional inversion and it is found that kinetic effects greatly enrich the physics of the absolute equilibria; but, the qualitative feature in physical space is similar to other 2D fluid models and that the conventional dual cascade arguments may be carried over \\textit{mutatis mutandis}. A finite extra contribution to the Fourier spectrum of $g^2$ emerges once a cutoff scale $\\Delta v$ of velocity arrises from the numerical discretization/coarse graining or other physical mechanisms. This contribution may seriously deteriorate the equipartition of $G(v)$ over the wave vectors and may drastical...
Turbulent reconnection and its implications
Lazarian, A.; Eyink, G.; Vishniac, E.; Kowal, G.
2015-01-01
Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes happening in magnetized plasmas. In most astrophysical environments, the Reynolds numbers corresponding to plasma flows are large and therefore the transition to turbulence is inevitable. This turbulence, which can be pre-existing or driven by magnetic reconnection itself, must be taken into account for any theory of magnetic reconnection that attempts to describe the process in the aforementioned environments. This necessity is obvious as three-dimensional high-resolution numerical simulations show the transition to the turbulence state of initially laminar reconnecting magnetic fields. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (Lazarian & Vishniac 1999 Astrophys. J. 517, 700–718 ()) reconnection model. We present numerical evidence supporting the model and demonstrate that it is closely connected to the experimentally proven concept of Richardson dispersion/diffusion as well as to more recent advances in understanding of the Lagrangian dynamics of magnetized fluids. We point out that the generalized Ohm's law that accounts for turbulent motion predicts the subdominance of the microphysical plasma effects for reconnection for realistically turbulent media. We show that one of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a cornerstone of most theories dealing with magnetized plasmas, and therefore its change induces fundamental shifts in accepted paradigms, for instance, turbulent reconnection entails reconnection diffusion process that is essential for understanding star formation. We argue that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares that are predicted by turbulent reconnection and relate this process to
Rica, Sergio
2016-01-01
The recent observation of gravitational waves, stimulates the question of the longtime evolution of the space-time fluctuations. Gravitational waves interact themselves through the nonlinear character of Einstein's equations of general relativity. This nonlinear wave interaction allows the spectral energy transfer from mode to mode. According to the wave turbulence theory, the weakly nonlinear interaction of gravitational waves leads to the existence of an irreversible kinetic regime that dominates the longtime evolution. The resulting kinetic equation suggests the existence of an equilibrium wave spectrum and the existence of a non-equilibrium Kolmogorov-Zakharov spectrum for spatio-temporal fluctuations. Evidence of these solutions extracted in the fluctuating signal of the recent observations will be discussed in the paper. Probably, the present results would be pertinent in the new age of development of gravitational astronomy, as well as, in new tests of General Relativity.
Dispersion of swimming algae in laminar and turbulent channel flows: theory and simulations
Croze, O A; Ahmed, M; Bees, M A; Brandt, L
2012-01-01
Algal swimming is often biased by environmental cues, e.g. gravitational and viscous torques drive cells towards downwelling fluid (gyrotaxis). In view of biotechnological applications, it is important to understand how such biased swimming affects cell dispersion in a flow. Here, we study the dispersion of gyrotactic swimming algae in laminar and turbulent channel flows. By direct numerical simulation (DNS) of cell motion within upwelling and downwelling channel flows, we evaluate time-dependent measures of dispersion for increasing values of the flow Peclet (Reynolds) numbers, Pe (Re). Furthermore, we derive an analytical `swimming Taylor-Aris dispersion' theory, using flow-dependent transport parameters given by existing microscopic models. In the laminar regime, DNS results and analytical predictions compare very well, providing the first confirmation that cells' response to flow is best described by the generalized-Taylor-dispersion microscopic model. We predict that cells drift along a channel faster th...
Recent progress on phase-space turbulence and dynamical response in collisionless plasmas
Lesur, Maxime
2013-01-01
In the presence of wave dissipation, phase-space structures emerge in nonlinear Vlasov dynamics. Their dynamics can lead to a nonlinear continuous shifting of the wave frequency (chirping). This report summarizes my personal contribution to these topics in the fiscal year 2012. The effects of collisions on chirping characteristics were investigated, with a one-dimensional beam-plasma kinetic model. The long-time nonlinear evolution was systematically categorized as damped, steady-state, periodic, chaotic and chirping. The chirping regime was sub-categorized as periodic, chaotic, bursty, and intermittent. Existing analytic theory was extended to account for Krook-like collisions. Relaxation oscillations, associated with chirping bursts, were investigated in the presence of dynamical friction and velocity-diffusion. The period increases with decreasing drag, and weakly increases with decreasing diffusion. A new theory gives a simple relation between the growth of phase-space structures and that of the wave ener...
Zhao, K. J.; Shi, Yuejiang; Liu, H.; Diamond, P. H.; Li, F. M.; Cheng, J.; Chen, Z. P.; Nie, L.; Ding, Y. H.; Wu, Y. F.; Chen, Z. Y.; Rao, B.; Cheng, Z. F.; Gao, L.; Zhang, X. Q.; Yang, Z. J.; Wang, N. C.; Wang, L.; Jin, W.; Xu, J. Q.; Yan, L. W.; Dong, J. Q.; Zhuang, G.; J-TEXT Team
2016-07-01
The acceleration of the co-current toroidal rotations around resonant surfaces by resonant magnetic perturbations (RMPs) through turbulence is presented. These experiments were performed using a Langmuir probe array in the edge plasmas of the J-TEXT tokamak. This study aims at understanding the RMP effects on edge toroidal rotations and exploring its control method. With RMPs, the flat electron temperature T e profile, due to magnetic islands, appears around resonant surfaces (Zhao et al 2015 Nucl. Fusion 55 073022). When the resonant surface is closer to the last closed flux surface, the flat T e profile vanishes with RMPs. In both cases, the toroidal rotations significantly increase in the direction of the plasma current around the resonant surfaces with RMPs. The characteristics of turbulence are significantly affected by RMPs around the resonant surfaces. The turbulence intensity profile changes and the poloidal wave vector k θ increases with RMPs. The power fraction of the turbulence components in the ion diamagnetic drift direction increases with RMPs. The measurements of turbulent Reynolds stresses are consistent with the toroidal flows that can be driven by turbulence. The estimations of the energy transfer between the turbulence and toroidal flows suggest that turbulence energy transfers into toroidal flows. The result has the implication of the intrinsic rotation being driven by RMPs via turbulence.
The kinetic theory of a dilute ionized plasma
García-Colin, L S
2008-01-01
This book results from recent studies aimed at answering questions raised by astrophycists who use values of transport coefficients that are old and often unsatisfactory. The few books dealing with the rigorous kinetic theory of a ionized plasma are based on the so called Landau (Fokker-Planck) equation and they seldom relate the microscopic results with their macroscopic counterpart provided by classical non-equilibrium thermodynamics. In this book both issues are thoroughly covered. Starting from the full Boltzmann equation for inert dilute plasmas and using the Hilbert-Chapman-Enskog method to solve the first two approximations in Knudsen´s parameter, we construct all the transport properties of the system within the framework of linear irreversible thermodynamics. This includes a systematic study of all possible cross effects (which, except for a few cases, were never treated in the literature) as well as the famous H-theorem. The equations of magneto-hydrodynamics for dilute plasmas, including the rathe...
A formal derivation of the local energy transfer (LET) theory of homogeneous turbulence
McComb, W. D.; Yoffe, S. R.
2017-09-01
A statistical closure of the Navier-Stokes hierarchy which leads to equations for the two-point, two-time covariance of the velocity field for stationary, homogeneous isotropic turbulence is presented. It is a generalisation of the self-consistent field method due to Edwards (1964) for the stationary, single-time velocity covariance. The probability distribution functional P≤ft[\\mathbf{u},t\\right] is obtained, in the form of a series, from the Liouville equation by means of a perturbation expansion about a Gaussian distribution, which is chosen to give the exact two-point, two-time covariance. The triple moment is calculated in terms of an ensemble-averaged infinitesimal velocity-field propagator, and shown to yield the Edwards result as a special case. The use of a Gaussian zero-order distribution has been found to justify the introduction of a fluctuation-response relation, which is in accord with modern dynamical theories. In a sense this work completes the analogy drawn by Edwards between turbulence and Brownian motion. Originally Edwards had shown that the noise input was determined by the correlation of the velocity field with the externally applied stirring forces but was unable to determine the system response. Now we find that the system response is determined by the correlation of the velocity field with internal quasi-entropic forces. This analysis is valid to all orders of perturbation theory, and allows the recovery of the local energy transfer (LET) theory, which had previously been derived by more heuristical methods. The LET theory is known to be in good agreement with experimental results. It is also unique among two-point statistical closures in displaying an acceptable (i.e. non-Markovian) relationship between the transfer spectrum and the system response, in accordance with experimental results. As a result of the latter property, it is compatible with the Kolmogorov (K41) spectral phenomenology. In memory of Professor Sir Sam Edwards F
Gabet, Xavier; Sauter, Olivier
2013-07-01
The 2012 Joint Varenna-Lausanne International Workshop on the theory of fusion plasmas was very fruitful. A broad variety of topics was addressed, covering turbulence, magnetohydrodynamics (MHD), edge physics, and radio frequency (RF) wave heating. Moreover, the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, some of them triggered by the construction of ITER and JT-60SA. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may refer to, for instance, the choice of plasma facing components or the design of control systems. Another characteristic of these workshops is the interplay between various domains of plasma physics. For instance, MHD modes are currently investigated with gyrokinetic codes, kinetic effects are included in MHD stability analysis more and more, and turbulence is now accounted for in wave propagation problems. This is proof of cross-fertilization and is certainly a healthy sign for our community. Finally, introducing some novelty in the programme does not prevent from us respecting old traditions. As usual, many presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne Workshop, which was respected again this year. The quality and size of the scientific output from this workshop is shown in this special issue of Plasma Physics and Controlled Fusion; a further 26 papers have already appeared in Journal of Physics: Conference Series in December 2012. We hope the readers will enjoy this special issue, and find therein knowledge and inspiration.
Explosive turbulent magnetic reconnection.
Higashimori, K; Yokoi, N; Hoshino, M
2013-06-21
We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.
The cosmic web and microwave background fossilize the first turbulent combustion
Gibson, Carl H.; Keeler, R. Norris
2016-10-01
Collisional fluid mechanics theory predicts a turbulent hot big bang at Planck conditions from large, negative, turbulence stresses below the Fortov-Kerr limit (Big bang turbulence fossilized when quarks formed, extracting the mass energy of the universe by extreme negative viscous stresses of inflation, expanding to length scales larger than the horizon scale ct. Viscous-gravitational structure formation by fragmentation was triggered at big bang fossil vorticity turbulence vortex lines during the plasma epoch, as observed by the Planck space telescope. A cosmic web of protogalaxies, protogalaxyclusters, and protogalaxysuperclusters that formed in turbulent boundary layers of the spinning voids are hereby identified as expanding turbulence fossils that falsify CDMHC cosmology.
Theory to predict shear stress on cells in turbulent blood flow.
Morshed, Khandakar Niaz; Bark, David; Forleo, Marcio; Dasi, Lakshmi Prasad
2014-01-01
Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.
Dalimier, E.; Oks, E.
2017-01-01
Transport phenomena in plasmas, such as, e.g., resistivity, can be affected by electrostatic turbulence that frequently occurs in various kinds of laboratory and astrophysical plasmas. Transport phenomena are affected most significantly by a low-frequency electrostatic turbulence—such as, e.g., ion acoustic waves, also known as ionic sound—causing anomalous resistivity. In this case, for computing profiles of spectral lines, emitted by plasma ions, by any appropriate code for diagnostic purposes, it is necessary to calculate the distribution of the total quasistatic field. For a practically important situation, where the average turbulent field is much greater than the characteristic ion microfield, we develop a robust computational method valid for any appropriate distribution of the ion microfield at a charged point. We show that the correction to the Rayleigh distribution of the turbulent field is controlled by the behavior of the ion microfield distribution at large fields—in distinction to the opposite (and therefore, erroneous) result in the literature. We also obtain a universal analytical expression for the correction to the Rayleigh distribution based on the asymptotic of the ion microfield distribution at large fields at a charged point. By comparison with various known distributions of the ion microfield, we show that our asymptotic formula has a sufficiently high accuracy. Also exact computations are used to verify the high accuracy of the method. This robust approximate, but accurate method yields faster computational results than the exact calculations and therefore should be important for practical situations requiring simultaneous computations of a large number of spectral lineshapes (e.g., for calculating opacities)—especially for laser-produced plasmas.
Procaccia, I
1995-01-01
The lectures presented by one of us (IP) at the Les Houches summer school dealt with the scaling properties of high Reynolds number turbulence in fluid flows. The results presented are available in the literature and there is no real need to reproduce them here. Quite on the contrary, some of the basic tools of the field and theoretical techniques are not available in a pedagogical format, and it seems worthwhile to present them here for the benefit of the interested student. We begin with a detailed exposition of the naive perturbation theory for the ensemble averages of hydrodynamic observables (the mean velocity, the response functions and the correlation functions). The effective expansion parameter in such a theory is the Reynolds number (Re); one needs therefore to perform infinite resummations to change the effective expansion parameter. We present in detail the Dyson-Wyld line resummation which allows one to dress the propagators, and to change the effective expansion parameter from Re to O(1). Next w...
Watkins, N. W.; Rosenberg, S.; Sanchez, R.; Chapman, S. C.; Credgington, D.
2008-12-01
Since the 1960s Mandelbrot has advocated the use of fractals for the description of the non-Euclidean geometry of many aspects of nature. In particular he proposed two kinds of model to capture persistence in time (his Joseph effect, common in hydrology and with fractional Brownian motion as the prototype) and/or prone to heavy tailed jumps (the Noah effect, typical of economic indices, for which he proposed Lévy flights as an exemplar). Both effects are now well demonstrated in space plasmas, notably in the turbulent solar wind. Models have, however, typically emphasised one of the Noah and Joseph parameters (the Lévy exponent μ and the temporal exponent β) at the other's expense. I will describe recent work in which we studied a simple self-affine stable model-linear fractional stable motion, LFSM, which unifies both effects and present a recently-derived diffusion equation for LFSM. This replaces the second order spatial derivative in the equation of fBm with a fractional derivative of order μ, but retains a diffusion coefficient with a power law time dependence rather than a fractional derivative in time. I will also show work in progress using an LFSM model and simple analytic scaling arguments to study the problem of the area between an LFSM curve and a threshold. This problem relates to the burst size measure introduced by Takalo and Consolini into solar-terrestrial physics and further studied by Freeman et al [PRE, 2000] on solar wind Poynting flux near L1. We test how expressions derived by other authors generalise to the non-Gaussian, constant threshold problem. Ongoing work on extension of these LFSM results to multifractals will also be discussed.
Kinetics of a network of vortex loops in He II and a theory of superfluid turbulence
Nemirovskii, Sergey K.
2008-06-01
A theory is developed to describe the superfluid turbulence on the base of kinetics of the merging and splitting vortex loops. Because of very frequent reconnections the vortex loops (as a whole) do not live long enough to perform any essential evolution due to the deterministic motion. On the contrary, they rapidly merge and split, and these random recombination processes prevail over other slower dynamic processes. To develop quantitative description we take the vortex loops to have a Brownian structure with the only degree of freedom, which is the length l of the loop. We perform investigation on the base of the Boltzmann type “kinetic equation” for the distribution function n(l) of number of loops with length l . This equation describes a slow change of the density of loops (in space of their lengths l ) due to the deterministic equation of motion and due to fast random change because of the frequent reconnections. By use of the special ansatz in the “collision” integral, we have found the exact power-like solution n(l)∝l-5/2 of “kinetic equation” in the stationary case. This solution is not (thermodynamically) equilibrium, but on the contrary, it describes the state with two mutual fluxes of the length (or energy) in space of sizes of the vortex loops. The term “flux” means just redistribution of length (or energy) among the loops of different sizes due to reconnections. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the turbulent superfluid helium. In particular, we obtained that the mean radius of the curvature is of the order of interline space. We also evaluated the full rate of the reconnection events. Assuming, further, that the processes of random collisions are the fastest ones, we studied the evolution of full length of vortex loops per unit volume—the so-called vortex line density L(t) . It is shown this evolution to obey the famous Vinen equation. The properties of the Vinen
Savin, Sergey; Büchner, Jörg; Zelenyi, Lev; Kronberg, Elena; Kozak, Lyudmila; Blecki, Jan; Lezhen, Liudmila; Nemecek, Zdenek; Safrankova, Jana; Skalsky, Alexander; Budaev, Vyacheslav; Amata, Ermanno
We explore interactions of Supersonic Plasma Streams (SPS) with the Earth magnetosphere in the context of the planetary and astrophysical magnetospheres and of that of laboratory plasmas. The interactions can be inherently non-local and non-equilibrium, and even explosive due to both solar wind (SW) induced and self-generated coherent structures in the multiscale system with the scales ranging from the micro to global scales. We concentrate on the main fundamental processes arising from the SPS cascading and interactions with surface and cavity resonances in the Earth’s magnetosphere, using multi-spacecraft data (SPECTR-R, DOUBLE STAR, CLUSTER, GEOTAIL, ACE, WIND etc.). We will address the following key problems to advance our understanding of anomalous transport and boundary dynamics: - generalizations of the SPS generation mechanisms, e.g., by bow shock (BS) surface or magnetosheath (MSH) cavity resonances, triggering by interplanetary shocks, solar wind (SW) dynamic pressure jumps, foreshock nonlinear structures, etc. - the clarification of BS rippling mechanisms requires base on the relevant databases from the CLUSTER/ DOUBLE STAR/ GEOTAIL/SPECTR-R/ ACE/ WIND spacecraft, which will be used for a statistical analysis targeting the SPS statistical features as extreme events. - substantial part of the SW kinetic energy can be pumped into the BS membrane and MSH cavity modes and initiate further cascades towards higher frequencies. Accordingly we present the multipoint studies of the SPS and of related nonlinear discrete cascades (carried generally by the SPS), along with the transformation of discrete cascades of the dynamic pressure into turbulent cascades. - investigation of spectral and bi-spectral cross-correlations in SW, foreshock, MSH and in vicinity of BS and magnetopause (MP) would demonstrate that both inflow and outflow into/ from magnetosphere can be modulated by the SPS and by the related outer magnetospheric resonances as well. We demonstrate in
Rincon, F; Schekochihin, A A; Rieutord, M
2016-01-01
The Sun provides us with the only spatially well-resolved astrophysical example of turbulent thermal convection. While various aspects of solar photospheric turbulence, such as granulation (one-Megameter horizontal scale), are well understood, the questions of the physical origin and dynamical organization of larger-scale flows, such as the 30-Megameters supergranulation and flows deep in the solar convection zone, remain largely open in spite of their importance for solar dynamics and magnetism. Here, we present a new critical global observational characterization of multiscale photospheric flows and subsequently formulate an anisotropic extension of the Bolgiano-Obukhov scaling theory of hydrodynamic stratified turbulence that may explain several of their distinctive dynamical properties. Our combined analysis suggests that photospheric flows in the horizontal range of scales between supergranulation and granulation have a typical vertical correlation scale of 2.5 to 4 Megameters and operate in a strongly a...
Muñoz-Jaramillo, Andrés; Martens, Petrus C H
2010-01-01
The turbulent magnetic diffusivity in the solar convection zone is one of the most poorly constrained ingredients of mean-field dynamo models. This lack of constraint has previously led to controversy regarding the most appropriate set of parameters, as different assumptions on the value of turbulent diffusivity lead to radically different solar cycle predictions. Typically, the dynamo community uses double step diffusivity profiles characterized by low values of diffusivity in the bulk of the convection zone. However, these low diffusivity values are not consistent with theoretical estimates based on mixing-length theory -- which suggest much higher values for turbulent diffusivity. To make matters worse, kinematic dynamo simulations cannot yield sustainable magnetic cycles using these theoretical estimates. In this work we show that magnetic cycles become viable if we combine the theoretically estimated diffusivity profile with magnetic quenching of the diffusivity. Furthermore, we find that the main featur...
Gibson, C H
1999-01-01
A theory of fossil turbulence presented in the 11th Liege Colloquium on Marine turbulence is "revisited" in the 29th Liege Colloquium "Marine Turbulence Revisited". The Gibson (1980) theory applied universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as it is constrained and fossilized by buoyancy forces. Towed oceanic microstructure measurements of Schedvin (1979) confirmed the predicted universal constants. Universal constants, spectra, hydrodynamic phase diagrams (HPDs) and other predictions of the theory have been reconfirmed by a wide variety of field and laboratory observations. Fossil turbulence theory has many applications; for example, in marine biology, laboratory and field measurements suggest phytoplankton species with different swimming abilities adjust their growth strategies differently by pattern recognition of several days of turbulence-fossil-turbulence dissipation and persistence times above thres...
Guszejnov, Dávid; Zoletnik, Sándor; Lazányi, Nóra
2014-01-01
This paper is aimed to contribute to the scientific discussions that have been triggered by the experimental observation of a quadratic relation between the kurtosis and skewness of turbulent fluctuations present in fusion plasmas and other nonlinear physical systems. In this paper we offer a general statistical model which attributes the observed $K = aS^2 + b$ relation to the varying intermittency of the experimental signals. The model is a two random variable model constructed to catch the essential intermittent feature of the real signal. One of the variables is the amplitude of the underlying intermittent event (e.g. turbulent structure) while the other is connected to the intermittency level of the system. This simple model can attribute physical meaning to the $a$ and $b$ coefficients, as they characterize the spatio-temporal statistics of intermittent events. By constructing a particle-conserving Gaussian model for the underlying coherent structures the experimentally measured $a$ and $b$ coefficients...
Weak turbulence theory of collisionless trapped electron driven drift instability in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Hahm, T.S.; Tang, W.M.
1990-10-01
The toroidal collisionless trapped electron modes are analyzed in the weak turbulence regime treating both ions and trapped electrons nonlinearly in the presence of ion and electron temperature gradients. The spectral intensity of the density fluctuations in the nonlinearly saturated state is analytically obtained from the steady state solution of the wave-kinetic equation. Distant nonlinear interactions between low-k{sub {theta}} and high-k{sub {theta}} modes of similar frequencies via trapped electron scattering (the resonance between the beat wave and the trapped electron precession drift frequencies) suppress the low-k{sub {theta}} (k{sub {theta}}{rho}{sub s} {much lt} (L{sub n}/R){sup 1/2}) modes while close interactions via ion Compton scattering (nonlinear ion Landau damping) produce a monotonically decreasing spectrum from k{sub {theta}}{rho}{sub s} {congruent} (L{sub n}/R){sup 1/2} to k{sub {theta}}{rho}{sub s} {congruent} 1 according to an approximate power law k{sub {theta}}{sup {minus}3}. Various fluctuation amplitudes at saturation and the fluctuation-induced anomalous particle and heat fluxes are found to be smaller than the mixing length estimates. The plasma confinement is predicted to improve with higher T{sub i}/T{sub e}, more peaked density profile, larger aspect ratio, and higher plasma current. Also, a significant dependence of transport on the electron temperature gradient is found which could contribute to the rigidity of the electron temperature profile often experimentally observed.
Turbulence optimisation in stellarator experiments
Energy Technology Data Exchange (ETDEWEB)
Proll, Josefine H.E. [Max-Planck/Princeton Center for Plasma Physics (Germany); Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstr. 1, 17491 Greifswald (Germany); Faber, Benjamin J. [HSX Plasma Laboratory, University of Wisconsin-Madison, Madison, WI 53706 (United States); Helander, Per; Xanthopoulos, Pavlos [Max-Planck/Princeton Center for Plasma Physics (Germany); Lazerson, Samuel A.; Mynick, Harry E. [Plasma Physics Laboratory, Princeton University, P.O. Box 451 Princeton, New Jersey 08543-0451 (United States)
2015-05-01
Stellarators, the twisted siblings of the axisymmetric fusion experiments called tokamaks, have historically suffered from confining the heat of the plasma insufficiently compared with tokamaks and were therefore considered to be less promising candidates for a fusion reactor. This has changed, however, with the advent of stellarators in which the laminar transport is reduced to levels below that of tokamaks by shaping the magnetic field accordingly. As in tokamaks, the turbulent transport remains as the now dominant transport channel. Recent analytical theory suggests that the large configuration space of stellarators allows for an additional optimisation of the magnetic field to also reduce the turbulent transport. In this talk, the idea behind the turbulence optimisation is explained. We also present how an optimised equilibrium is obtained and how it might differ from the equilibrium field of an already existing device, and we compare experimental turbulence measurements in different configurations of the HSX stellarator in order to test the optimisation procedure.
Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.
Schroeder, C B; Esarey, E
2010-05-01
A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.
On the structure and statistical theory of turbulence of extended magnetohydrodynamics
Miloshevich, George; Lingam, Manasvi; Morrison, Philip J.
2017-01-01
Recent progress regarding the noncanonical Hamiltonian formulation of extended magnetohydrodynamics (XMHD), a model with Hall drift and electron inertia, is summarized. The advantages of the Hamiltonian approach are invoked to study some general properties of XMHD turbulence, and to compare them against their ideal MHD counterparts. For instance, the helicity flux transfer rates for XMHD are computed, and Liouville’s theorem for this model is also verified. The latter is used, in conjunction with the absolute equilibrium states, to arrive at the spectra for the invariants, and to determine the direction of the cascades, e.g., generalizations of the well-known ideal MHD inverse cascade of magnetic helicity. After a similar analysis is conducted for XMHD by inspecting second order structure functions and absolute equilibrium states, a couple of interesting results emerge. When cross helicity is taken to be ignorable, the inverse cascade of injected magnetic helicity also occurs in the Hall MHD range—this is shown to be consistent with previous results in the literature. In contrast, in the inertial MHD range, viz at scales smaller than the electron skin depth, all spectral quantities are expected to undergo direct cascading. The consequences and relevance of our results in space and astrophysical plasmas are also briefly discussed.