WorldWideScience

Sample records for plasma transport particle

  1. Modelling of neutral particle transport in divertor plasma

    International Nuclear Information System (INIS)

    Kakizuka, Tomonori; Shimizu, Katsuhiro

    1995-01-01

    An outline of the modelling of neutral particle transport in the diverter plasma was described in the paper. The characteristic properties of divertor plasma were largely affected by interaction between neutral particles and divertor plasma. Accordingly, the behavior of neutral particle should be investigated quantitatively. Moreover, plasma and neutral gas should be traced consistently in the plasma simulation. There are Monte Carlo modelling and the neutral gas fluid modelling as the transport modelling. The former need long calculation time, but it is able to make the physical process modelling. A ultra-large parallel computer is good for the former. In spite of proposing some kinds of models, the latter has not been established. At the view point of reducing calculation time, a work station is good for the simulation of the latter, although some physical problems have not been solved. On the Monte Carlo method particle modelling, reducing the calculation time and introducing the interaction of particles are important subjects to develop 'the evolutional Monte Carlo Method'. To reduce the calculation time, two new methods: 'Implicit Monte Carlo method' and 'Free-and Diffusive-Motion Hybrid Monte-Carlo method' have been developing. (S.Y.)

  2. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  3. Neutral particle transport modeling with a reflective source in the plasma edge

    International Nuclear Information System (INIS)

    Valenti, M.E.

    1992-01-01

    A reflective source term is incorporated into the Boltzmann neutral particle transport equation to account for boundary reflection. This reflective neutral model is integrated over a uniform axis and subsequently discretized. The discrete two-dimensional equations are solved iteratively with a computer code. The results of the reflective neutral model computer code are benchmarked with the neutral particle transport code ONEDANT. The benchmark process demonstrates the validity of the reflective neutral model. The reflective neutral model is coupled to the Braams plasma particle and energy transport code. The coupled system generates self-consistent plasma edge transport solutions. These solutions, which utilize the transport equation are similar to solutions which utilize simple plasma edge neutral models when high recycle divertors are modeled. In the high recycle mode, the high electron density at the divertor plate reduces the mean free path of plate neutrals. Hence, the similarity in results. It is concluded that simple neutral models are sufficient for the analysis of high recycle power reactor edge plasmas. Low recycle edge plasmas were not examined

  4. Modeling of Particle Transport on Channels and Gaps Exposed to Plasma Fluxes

    International Nuclear Information System (INIS)

    Nieto-Perez, Martin

    2008-01-01

    Many problems in particle transport in fusion devices involve the transport of plasma or eroded particles through channels or gaps, such as in the case of trying to assess damage to delicate optical diagnostics collecting light through a slit or determining the deposition and codeposition on the gaps between tiles of plasma-facing components. A dynamic-composition Monte Carlo code in the spirit of TRIDYN, previously developed to study composition changes on optical mirrors subject to ion bombardment, has been upgraded to include motion of particles through a volume defined by sets of plane surfaces. Particles sputtered or reflected from the walls of the channel/gap can be tracked as well, allowing the calculation of wall impurity transport, either back to the plasma (for the case of a gap) or to components separated from the plasma by a channel/slit (for the case of optical diagnostics). Two examples of the code application to particle transport in fusion devices will be presented in this work: one will evaluate the erosion/impurity deposition rate on a mirror separated from a plasma source by a slit; the other case will look at the enhanced emission of tile material in the region of the gap between two tiles

  5. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.

    2002-01-01

    Relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated for the first time in reversed shear (RS) and high-β p ELMy H-mode (weak positive shear) plasmas of JT-60U for understanding of compatibility of improved energy confinement and effective particle control such as exhaust of helium ash and reduction in impurity contamination. In the RS plasma, no helium and carbon accumulation inside the ITB is observed even with highly improved energy confinement. In the high-β p plasma, both helium and carbon density profiles are flat. As the ion temperature profile changes from parabolic- to box-type, the helium diffusivity decreases by a factor of about 2 as well as the ion thermal diffusivity in the RS plasma. The measured soft X-ray profile is more peaked than that calculated by assuming the same n AR profile as the n e profile in the Ar injected RS plasma with the box-type profile, suggesting accumulation of Ar inside the ITB. Particle transport is improved with no change of ion temperature in the RS plasma, when density fluctuation is drastically reduced by a pellet injection. (author)

  6. Solitary Model of the Charge Particle Transport in Collisionless Plasma

    International Nuclear Information System (INIS)

    Simonchik, L.V.; Trukhachev, F.M.

    2006-01-01

    The one-dimensional MHD solitary model of charged particle transport in plasma is developed. It is shown that self-consistent electric field of ion-acoustic solitons can displace charged particles in space, which can be a reason of local electric current generation. The displacement amount is order of a few Debye lengths. It is shown that the current associated with soliton cascade has pulsating nature with DC component. Methods of built theory verification in dusty plasma are proposed

  7. Direct measurements of particle transport in dc glow discharge dusty plasmas

    International Nuclear Information System (INIS)

    Thomas, E. Jr.

    2001-01-01

    Many recent experiments in dc glow discharge plasmas have shown that clouds of dust particles can be suspended near the biased electrodes. Once formed, the dust clouds have well defined boundaries while particle motion within the clouds can be quite complex. Because the dust particles in the cloud can remain suspended in the plasma for tens of minutes, it implies that the particles have a low diffusive loss rate and follow closed trajectories within the cloud. In the experiments discussed in this paper, direct measurements of the dust particle velocities are made using particle image velocimetry (PIV) techniques. From the velocity measurements, a reconstruction of the three-dimensional transport of the dust particles is performed. A qualitative model is developed for the closed motion of the dust particles in a dc glow discharge dusty plasma. (orig.)

  8. Particle transport in JET and TCV-H mode plasmas

    International Nuclear Information System (INIS)

    Maslov, M.

    2009-10-01

    Understanding particle transport physics is of great importance for magnetically confined plasma devices and for the development of thermonuclear fusion power for energy production. From the beginnings of fusion research, more than half a century ago, the problem of heat transport in tokamaks attracted the attention of researchers, but the particle transport phenomena were largely neglected until fairly recently. As tokamak physics advanced to its present level, the physics community realized that there are many hurdles to the development of fusion power beyond the energy confinement. Particle transport is one of the outstanding issues. The aim of this thesis work is to study the anomalous (turbulence driven) particle transport in tokamaks on the basis of experiments on two different devices: JET (Joint European Torus) and TCV (Tokamak à Configuration Variable). In particular the physics of particle inward convection (pinch), which causes formation of peaked density profiles, is addressed in this work. Density profile peaking has a direct, favorable effect on fusion power in a reactor, we therefore also propose an extrapolation to the international experimental reactor ITER, which is currently under construction. To complete the thesis research, a comprehensive experimental database was created on the basis of data collected on JET and TCV during the duration of the thesis. Improvements of the density profile measurements techniques and careful analysis of the experimental data allowed us to derive the dependencies of density profile shape on the relevant plasma parameters. These improved techniques also allowed us to dispel any doubts that had been voiced about previous results. The major conclusions from previous work on JET and other tokamaks were generally confirmed, with some minor supplements. The main novelty of the thesis resides in systematic tests of the predictions of linear gyrokinetic simulations of the ITG (Ion Temperature Gradient) mode against the

  9. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    Science.gov (United States)

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  10. Gyrokinetic theory for particle and energy transport in fusion plasmas

    Science.gov (United States)

    Falessi, Matteo Valerio; Zonca, Fulvio

    2018-03-01

    A set of equations is derived describing the macroscopic transport of particles and energy in a thermonuclear plasma on the energy confinement time. The equations thus derived allow studying collisional and turbulent transport self-consistently, retaining the effect of magnetic field geometry without postulating any scale separation between the reference state and fluctuations. Previously, assuming scale separation, transport equations have been derived from kinetic equations by means of multiple-scale perturbation analysis and spatio-temporal averaging. In this work, the evolution equations for the moments of the distribution function are obtained following the standard approach; meanwhile, gyrokinetic theory has been used to explicitly express the fluctuation induced fluxes. In this way, equations for the transport of particles and energy up to the transport time scale can be derived using standard first order gyrokinetics.

  11. Integral and Lagrangian simulations of particle and radiation transport in plasma

    International Nuclear Information System (INIS)

    Christlieb, A J; Hitchon, W N G; Lawler, J E; Lister, G G

    2009-01-01

    Accurate integral and Lagrangian models of transport in plasmas, in which the models reflect the actual physical behaviour as closely as possible, are presented. These methods are applied to the behaviour of particles and photons in plasmas. First, to show how these types of models arise in a wide range of plasma physics applications, an application to radiation transport in a lighting discharge is given. The radiation transport is solved self-consistently with a model of the discharge to provide what are believed to be very accurate 1D simulations of fluorescent lamps. To extend these integral methods to higher dimensions is computationally very costly. The wide utility of 'treecodes' in solving massive integral problems in plasma physics is discussed, and illustrated in modelling vortex formation in a Penning trap, where a remarkably detailed simulation of vortex formation in the trap is obtained. Extension of treecode methods to other integral problems such as radiation transport is under consideration.

  12. Electron cyclotron absorption in Tokamak plasmas in the presence of radial transport of particles

    International Nuclear Information System (INIS)

    Rosa, Paulo R. da S.; Ziebell, Luiz F.

    1998-01-01

    We use quasilinear theory to study effects of particle radial transport on the electron cyclotron absorption coefficient by a current carrying plasma, in a tokamak modelated as a plasma slab. Our numerical results indicate significant modification in the profile of the electron cyclotron absorption coefficient when transport is taken into account relative to the situation without transport. (author)

  13. Particle Transport in ECRH Plasmas of the TJ-II

    International Nuclear Information System (INIS)

    Vargas, V. I.; Lopez-Bruna, D.; Estrada, T.; Guasp, J.; Reynolds, J. M.; Velasco, J. L.; Herranz, J.

    2007-01-01

    We present a systematic study of particle transport in ECRH plasmas of TJ-II with different densities. The goal is to fi nd particle confinement time and electron diffusivity dependence with line-averaged density. The experimental information consists of electron temperature profiles, T e (Thomson Scattering TS) and electron density, n e , (TS and reflectometry) and measured puffing data in stationary discharges. The profile of the electron source, Se, was obtained by the 3D Monte-Carlo code EIRENE. The analysis of particle balance has been done by linking the results of the code EIRENE with the results of a model that reproduces ECRH plasmas in stationary conditions. In the range of densities studied (0.58 ≤n e > (10 1 9m - 3) ≤0.80) there are two regions of confinement separated by a threshold density, e > ∼0.65 10 1 9m - 3. Below this threshold density the particle confinement time is low, and vice versa. This is reflected in the effective diffusivity, D e , which in the range of validity of this study, 0.5 e are flat for ≥0,63(10 1 9m - 3). (Author) 35 refs

  14. Particle Transport in ECRH Plasmas of the TJ-II; Transporte de Particulas en Plasmas ECRH del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Estrada, T.; Guasp, J.; Reynolds, J. M.; Velasco, J. L.; Herranz, J.

    2007-07-01

    We present a systematic study of particle transport in ECRH plasmas of TJ-II with different densities. The goal is to fi nd particle confinement time and electron diffusivity dependence with line-averaged density. The experimental information consists of electron temperature profiles, T{sub e} (Thomson Scattering TS) and electron density, n{sub e}, (TS and reflectometry) and measured puffing data in stationary discharges. The profile of the electron source, Se, was obtained by the 3D Monte-Carlo code EIRENE. The analysis of particle balance has been done by linking the results of the code EIRENE with the results of a model that reproduces ECRH plasmas in stationary conditions. In the range of densities studied (0.58 {<=}n{sub e}> (10{sup 1}9m{sup -}3) {<=}0.80) there are two regions of confinement separated by a threshold density, {approx}0.65 10{sup 1}9m{sup -}3. Below this threshold density the particle confinement time is low, and vice versa. This is reflected in the effective diffusivity, D{sub e}, which in the range of validity of this study, 0.5 <{rho}<0.9 being {rho} normalized plasma radius, decreased significantly above the threshold density. The profiles of D{sub e} are flat for {>=}0,63(10{sup 1}9m{sup -}3). (Author) 35 refs.

  15. Effects of fueling profiles on plasma transport

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Mense, A.T.; Attenberger, S.E.; Milora, S.L.

    1977-01-01

    The effects of cold particle fueling profiles on particle and energy transport in an ignition sized tokamak plasma are investigated in this study with a one-dimensional, multifluid transport model. A density gradient driven trapped particle microinstability model for plasma transport is used to demonstrate potential effects of fueling profiles on ignition requirements. Important criteria for the development of improved transport models under the conditions of shallow particle fueling profiles are outlined. A discrete pellet fueling model indicates that large fluctuations in density and temperature may occur in the outer regions of the plasma with large, shallowly penetrating pellets, but fluctuations in the pressure profile are small. The hot central core of the plasma remains unaffected by the large fluctuations near the plasma edge

  16. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1976-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount. For example, a deuterium plasma with 1.3 percent oxygen, one of the particle transport coefficients is increased by a factor of about four. The transport coefficients for the toroidal magnetic flux are reduced by about 20 percent. The increase in the particle transport coefficient is due to the collisional scattering of the deuterons by the heavy oxygen ions which is larger than the deuteron electron scattering, the normal process for particle transport in a two species plasma. The reduction in the toroidal magnetic flux transport coefficients are left unexplained

  17. Particle-in-cell simulations of electron transport from plasma turbulence: recent progress in gyrokinetic particle simulations of turbulent plasmas

    International Nuclear Information System (INIS)

    Lin, Z; Rewoldt, G; Ethier, S; Hahm, T S; Lee, W W; Lewandowski, J L V; Nishimura, Y; Wang, W X

    2005-01-01

    Recent progress in gyrokinetic particle-in-cell simulations of turbulent plasmas using the gyrokinetic toroidal code (GTC) is surveyed. In particular, recent results for electron temperature gradient (ETG) modes and their resulting transport are presented. Also, turbulence spreading, and the effects of the parallel nonlinearity, are described. The GTC code has also been generalized for non-circular plasma cross-section, and initial results are presented. In addition, two distinct methods of generalizing the GTC code to be electromagnetic are described, along with preliminary results. Finally, a related code, GTC-Neo, for calculating neoclassical fluxes, electric fields, and velocities, are described

  18. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, Hidenobu; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density control to suppress heavy impurity accumulation. (author)

  19. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density gradient control to suppress heavy impurity accumulation. (author)

  20. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1977-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount

  1. Fluid and gyrokinetic modelling of particle transport in plasmas with hollow density profiles

    International Nuclear Information System (INIS)

    Tegnered, D; Oberparleiter, M; Nordman, H; Strand, P

    2016-01-01

    Hollow density profiles occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the fuelling scheme inefficient. In the present work, the particle transport driven by ITG/TE mode turbulence in regions of hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description, and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/L T , and magnetic shear are investigated. It is found that β in particular has a stabilizing effect in the negative R/L n region, both nonlinear GENE and EDWM show a decrease in inward flux for negative R/L n and a change of direction from inward to outward for positive R/L n . This might have serious consequences for pellet fuelling of high β plasmas. (paper)

  2. Fluid description of particle transport in hf heated magnetized plasma

    International Nuclear Information System (INIS)

    Klima, R.

    1980-01-01

    Particle fluxes averaged over high-frequency oscillations are analyzed. The collisional effects and the kinetic mechanisms of energy absorption are included. Spatial dependences of both the high-frequency and the (quasi-)steady electromagnetic fields are arbitrary. The equations governing the fluxes are deduced from the moments of the averaged kinetic equation. Explicit expressions for steady state fluxes are given in terms of electromagnetic field quantities. The results can also be applied to anomalous transport phenomena in weakly turbulent plasmas. (author)

  3. Collisional particle-in-cell modeling for energy transport accompanied by atomic processes in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.; Beg, F. N. [Center for Energy Research, University of California, San Diego, California 92093 (United States); Leblanc, P.; Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Wei, M. S. [General Atomics, San Diego, California 92121 (United States)

    2013-07-15

    Fully relativistic collisional Particle-in-Cell (PIC) code, PICLS, has been developed to study extreme energy density conditions produced in intense laser-solid interaction. Recent extensions to PICLS, such as the implementation of dynamic ionization, binary collisions in a partially ionized plasma, and radiative losses, enhance the efficacy of simulating intense laser plasma interaction and subsequent energy transport in resistive media. Different ionization models are introduced and benchmarked against each other to check the suitability of the model. The atomic physics models are critical to determine the energy deposition and transport in dense plasmas, especially when they consist of high Z (atomic number) materials. Finally we demonstrate the electron transport simulations to show the importance of target material on fast electron dynamics.

  4. Transport barriers in plasmas

    International Nuclear Information System (INIS)

    Caldas, I L; Szezech, J D Jr; Kroetz, T; Marcus, F A; Roberto, M; Viana, R L; Lopes, S R

    2012-01-01

    We discuss the creation of transport barriers in magnetically confined plasmas with non monotonic equilibrium radial profiles. These barriers reduce the transport in the shearless region (i.e., where the twist condition does not hold). For the chaotic motion of particles in an equilibrium electric field with a nonmonotonic radial profile, perturbed by electrostatic waves, we show that a nontwist transport barrier can be created in the plasma by modifying the electric field radial profile. We also show non twist barriers in chaotic magnetic field line transport in the plasma near to the tokamak wall with resonant modes due to electric currents in external coils.

  5. Effects of applied dc radial electric fields on particle transport in a bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1978-01-01

    The influence of applied dc radial electric fields on particle transport in a bumpy torus plasma is studied. The plasma, magnetic field, and ion heating mechanism are operated in steady state. Ion kinetic temperature is more than a factor of ten higher than electron temperature. The electric fields raise the ions to energies on the order of kilovolts and then point radially inward or outward. Plasma number density profiles are flat or triangular across the plasma diameter. It is suggested that the radial transport processes are nondiffusional and dominated by strong radial electric fields. These characteristics are caused by the absence of a second derivative in the density profile and the flat electron temperature profiles. If the electric field acting on the minor radius of the toroidal plasma points inward, plasma number density and confinement time are increased.

  6. Plasma flow driven by fusion-generated alpha particles

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1978-05-01

    The confinement of fusion-generated alpha particles will affect the transports of the background plasma particles by the momentum transfer from the energetic alphas. The ions tend to migrate towards the center of plasma (i.e. fuel injection) and electrons towards the plasma periphery. This means the existence of a mechanism which enable to pump out the ashes in the fuel plasma because of the momentum conservation of whole plasma particles. (author)

  7. Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah D.; Silver, Jennifer

    2004-01-01

    Over the past 5 years, two-dimensional particle image velocimetry (PIV) techniques [E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)] have been used to obtain detailed measurements of microparticle transport in dusty plasmas. This Letter reports on an extension of these techniques to a three-dimensional velocity vector measurement approach using stereoscopic PIV. Initial measurements using the stereoscopic PIV diagnostic are presented

  8. Particle transport in a He-microchip plasma atomic emission system with an ultrasonic nebulizer for aqueous sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joosuck [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of); Lim, H.B. [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of)], E-mail: plasma@dankook.ac.kr

    2008-11-15

    The transport efficiency of dried particles generated from an ultrasonic nebulizer (USN) was studied to improve the analytical performance of a lab-made, He-microchip plasma system, in which a quartz tube ({approx} 1 mm i.d.) was positioned inside the central channel of a poly(dimethylsiloxane) (PDMS) polymer chip. The polymer microchip plasma has the advantages of low cost, small size, easy handling and design, and self-ignition with long stabilization (> 24 h). However, direct introduction of aqueous solution into the microplasma for the detection of metals remains problematic due to plasma instability. In addition, the much smaller size of the system can cause signal suppression due to low transport efficiency. Therefore, knowledge of particle transport efficiency in this microplasma system is required to enhance the sensitivity and stability. The weight of transported particles in the range of 0.02 to 10 mg m{sup -3} was measured using a piezobalance with a precision of 0.4-17.8%, depending on the operating conditions. The significant effects of the USN operating conditions and the physical properties of the tubing, namely, length, inner diameter and surface characteristics, on the number of particles transported from the nebulizer to the microplasma were studied. When selected metals, such as Na, Mg and Pb, at a concentration of 5 mg L{sup -1} were nebulized, transported particles were obtained with a mass range of 0.5-5 mg m{sup -3}, depending on atomic weights. For application of the He-rf-microplasma, the atomic emission system was optimized by changing both the radio frequency (rf) power (60-200 W) and cooling temperature of the USN (- 12-9 deg. C). The limits of detection obtained for K, Na and Cu were 0.26, 0.22, and 0.28 mg L{sup -1}, respectively. These results confirmed the suitable stability and sensitivity of the He-rf-PDMS microchip plasma for application as an atomization source.

  9. 13th EU-US Transport Task Force Workshop on transport in fusion plasmas

    DEFF Research Database (Denmark)

    Connor, J.W.; Fasoli, A.; Hidalgo, C.

    2009-01-01

    This report summarizes the contributions presented at the 13th EU-US Transport Task Force Workshop on transport in fusion plasmas, held in Copenhagen, Denmark, 1-4 September 2008. There were sessions on core heat and particle transport; core and edge momentum transport; edge and scrape-off-layer ......This report summarizes the contributions presented at the 13th EU-US Transport Task Force Workshop on transport in fusion plasmas, held in Copenhagen, Denmark, 1-4 September 2008. There were sessions on core heat and particle transport; core and edge momentum transport; edge and scrape...

  10. Plasma-particle interaction effects in induction plasma modelling under dense loading conditions

    International Nuclear Information System (INIS)

    Proulx, P.; Mostaghimi, J.; Boulos, M.

    1983-07-01

    The injection of solid particles or aerosol droplets in the fire-ball of an inductively coupled plasma can substantially perturb the plasma and even quench it under high loading conditions. This can be mainly attributed to the local cooling of the plasma by the particles or their vapour cloud, combined with the possible change of the thermodynamic and transport properties of the plasma in the presence of the particle vapour. This paper reports the state-of-the-art in the mathematical modelling of the induction plasma. A particle-in-cell model is used in order to combine the continuum approach for the calculation of the flow, temperature and concentration fields in the plasma, with the stochastic single particle approach, for the calculation of the particle trajectories and temperature histories. Results are given for an argon induction plasma under atmospheric pressure in which fine copper particles are centrally injected in the coil region of the discharge

  11. Transport and containment of plasma, particles and energy within flares

    Science.gov (United States)

    Acton, L. W.; Brown, W. A.; Bruner, M. E. C.; Haisch, B. M.; Strong, K. T.

    1983-01-01

    Results from the analysis of flares observed by the Solar Maximum Mission (SMM) and a recent rocket experiment are discussed. Evidence for primary energy release in the corona through the interaction of magnetic structures, particle and plasma transport into more than a single magnetic structure at the time of a flare and a complex and changing magnetic topology during the course of a flare is found. The rocket data are examined for constraints on flare cooling, within the context of simple loop models. These results form a basis for comments on the limitations of simple loop models for flares.

  12. Application of diffusion theory to the transport of neutral particles in fusion plasmas

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1985-01-01

    It is shown that the widely held view that diffusion theory can not provide good accuracy for the transport of neutral particles in fusion plasmas is misplaced. In fact, it is shown that multigroup diffusion theory gives quite good accuracy as compared to the transport theory. The reasons for this are elaborated and some of the physical and theoretical reasons which make the multigroup diffusion theory provide good accuracy are explained. Energy dependence must be taken into consideration to obtain a realistic neutral atom distribution in fusion plasmas. There are two reasons for this; presence of either is enough to necessitate an energy dependent treatment. First, the plasma temperature varies spatially, and second, the ratio of charge-exchange to total plasma-neutral interaction cross section (c) is not close to one. A computer code to solve the one-dimensional multigroup diffusion theory in general geometry (slab, cylindrical and spherical) has been written for use on Cray computers, and its results are compared with those from the one-dimensional transport code ANISN to support the above finding. A fast, compact and versatile two-dimensional finite element multigroup diffusion theory code, FINAT, in X-Y and R-Z cylindrical/toroidal geometries has been written for use on CRAY computers. This code has been compared with the two dimensional transport code DOT-4.3. The accuracy is very good, and FENAT runs much faster compared even to DOT-4.3 which is a finite difference code

  13. Effects of fueling profiles on plasma transport

    International Nuclear Information System (INIS)

    Mense, A.T.; Houlberg, W.A.; Attenberger, S.E.; Milora, S.L.

    1978-04-01

    A one-dimensional (1-D), multifluid transport model is used to investigate the effects of particle fueling profiles on plasma transport in an ignition-sized tokamak (TNS). Normal diffusive properties of plasmas will likely maintain the density at the center of the discharge even if no active fueling is provided there. This significantly relaxes the requirements for fuel penetration. Not only is lower fuel penetration easier to achieve, but it may have the advantage of reducing or eliminating density gradient-driven trapped particle microinstabilities. Simulation of discrete pellet fueling indicates that relatively low velocity (approximately 10 3 m/sec) pellets may be sufficient to fuel a TNS-sized device (approximately 1.25-m minor radius), to produce a relatively broad, cool edge region of plasma which should reduce the potential for sputtering, and also to reduce the likelihood of trapped particle mode dominated transport. Low penetrating pellets containing up to 10 to 20 percent of the total plasma ions can produce fluctuations in density and temperature at the plasma edge, but the pressure profile and fusion alpha production remain almost constant

  14. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    International Nuclear Information System (INIS)

    Zhao, N.; Yan, N.; Xu, G. S.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.; Wang, Z. X.

    2016-01-01

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.

  15. Suprathermal ion transport in turbulent magnetized plasmas

    International Nuclear Information System (INIS)

    Bovet, A. D.

    2015-01-01

    Suprathermal ions, which have an energy greater than the quasi-Maxwellian background plasma temperature, are present in many laboratory and astrophysical plasmas. In fusion devices, they are generated by the fusion reactions and auxiliary heating. Controlling their transport is essential for the success of future fusion devices that could provide a clean, safe and abundant source of electric power to our society. In space, suprathermal ions include energetic solar particles and cosmic rays. The understanding of the acceleration and transport mechanisms of these particles is still incomplete. Basic plasma devices allow detailed measurements that are not accessible in astrophysical and fusion plasmas, due to the difficulty to access the former and the high temperatures of the latter. The basic toroidal device TORPEX offers an easy access for diagnostics, well characterized plasma scenarios and validated numerical simulations of its turbulence dynamics, making it the ideal platform for the investigation of suprathermal ion transport. This Thesis presents three-dimensional measurements of a suprathermal ion beam injected in turbulent TORPEX plasmas. The combination of uniquely resolved measurements and first principle numerical simulations reveals the general non-diffusive nature of the suprathermal ion transport. A precise characterization of their transport regime shows that, depending on their energies, suprathermal ions can experience either a super diffusive transport or a subdiffusive transport in the same background turbulence. The transport character is determined by the interaction of the suprathermal ion orbits with the turbulent plasma structures, which in turn depends on the ratio between the ion energy and the background plasma temperature. Time-resolved measurements reveal a clear difference in the intermittency of suprathermal ions time-traces depending on the transport regime they experience. Conditionally averaged measurements uncover the influence of

  16. Transport, chaos and plasma physics

    International Nuclear Information System (INIS)

    Benkadda, S.; Doveil, F.; Elskens, Y.

    1993-01-01

    This workshop made it possible to gather for the first time plasma physicists, dynamical systems physicists and mathematicians, around a general theme focusing on the characterisation of chaotic transport. The participations have been divided into 4 topics: - dynamical systems and microscopic models of chaotic transport, - magnetic fluctuations and transport in tokamaks, - drift wave turbulence, self-organisation and intermittency, and - Wave-particle interactions

  17. Observation of neoclassical transport in reverse shear plasmas on TFTR

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Goeler, S. von; Houlberg, W.A.

    1999-01-01

    Perturbative experiments on TFTR have investigated the transport of multiple ion species in reverse shear (RS) plasmas. The profile evolutions of trace tritium and helium and intrinsic carbon indicate the formation of core particle transport barriers in enhanced reverse shear (ERS) plasmas. There is an order of magnitude reduction in the particle diffusivity inside the RS region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  18. Fueling profile sensitivities of trapped particle mode transport to TNS

    International Nuclear Information System (INIS)

    Mense, A.T.; Attenberger, S.E.; Houlberg, W.A.

    1977-01-01

    A key factor in the plasma thermal behavior is the anticipated existence of dissipative trapped particle modes. A possible scheme for controlling the strength of these modes was found. The scheme involves varying the cold fueling profile. A one dimensional multifluid transport code was used to simulate plasma behavior. A multiregime model for particle and energy transport was incorporated based on pseudoclassical, trapped electron, and trapped ion regimes used elsewhere in simulation of large tokamaks. Fueling profiles peaked toward the plasma edge may provide a means for reducing density-gradient-driven trapped particle modes, thus reducing diffusion and conduction losses

  19. Transport and turbulence in a magnetized plasma (application to tokamak plasmas); Transport et turbulence dans un plasma magnetise (application aux plasmas de tokamaks)

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y

    2004-03-01

    This document gathers the lectures made in the framework of a Ph.D level physics class dedicated to plasma physics. This course is made up of 3 parts : 1) collisions and transport, 2) transport and turbulence, and 3) study of a few exchange instabilities. More precisely the first part deals with the following issues: thermonuclear fusion, Coulomb collisions, particles trajectories in a tokamak, neo-classical transport in tokamaks, the bootstrap current, and ware pinch. The second part involves: particle transport in tokamaks, quasi-linear transport, resonance islands, resonance in tokamaks, from quasi to non-linear transport, and non-linear saturation of turbulence. The third part deals with: shift velocities in fluid theory, a model for inter-change instabilities, Rayleigh-Benard instability, Hasegawa-Wakatani model, and Hasegawa-Mima model. This document ends with a series of appendices dealing with: particle-wave interaction, determination of the curvature parameter G, Rossby waves.

  20. Theoretical modeling of transport barriers in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.; Ohyabu, N.

    2008-10-01

    A unified transport modelling to explain electron Internal Transport Barriers (e-ITB) in helical plasmas and Internal Diffusion Barriers (IDB) observed in Large Helical Device (LHD) is proposed. The e-ITB can be predicted with the effect of zonal flows to obtain the e-ITB in the low collisional regime when the radial variation of the particle anomalous diffusivity is included. Transport analysis in this article can newly show that the particle fuelling induces the IDB formation when this unified transport modelling is used in the high collisional regime. The density limit for the IDB in helical plasmas is also examined including the effect of the radiation loss. (author)

  1. Plasma transport in the Scrape-off-Layer of magnetically confined plasma and the plasma exhaust

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Naulin, Volker; Nielsen, Anders Henry

    An overview of the plasma dynamics in the Scrape-off-Layer (SOL) of magnetically confined plasma is presented. The SOL is the exhaust channel of the warm plasma from the core, and the understanding of the SOL plasma dynamics is one of the key issues in contemporary fusion research. It is essential...... for operation of fusion experiments and ultimately fusion power plants. Recent results clearly demonstrate that the plasma transport through the SOL is dominated by turbulent intermittent fluctuations organized into filamentary structures convecting particles, energy, and momentum through the SOL region. Thus......, the transport cannot be described and parametrized by simple diffusive type models. The transport leads to strong localized power loads on the first wall and the plasma facing components, which have serious lasting influence....

  2. Collisional transport in nonneutral plasmas

    International Nuclear Information System (INIS)

    Dubin, D.H.E.

    1999-01-01

    Classical transport theory grossly underestimates collisionally-driven cross-field transport for plasmas in the parameter regime of r c D , where r c ≡ v-bar/Ω c , λ D 2 ≡ T/4πe 2 n. In current experiments operating in this regime, cross-field test particle transport is observed to be a factor of 10 larger than the prediction of classical theory. Heat conduction is enhanced by up to 300 times over classical theory, and viscosity is up to 10 4 times larger. New guiding center theories of transport due to long-range collisions have been developed that agree with the measurements. Theory also predicts that emission and absorption of plasma waves may further enhance the thermal conduction and viscosity, providing a possible mechanism for anomalous thermal conductivity in the electron channel of fusion plasmas. (author)

  3. Transient particle transport studies at the W7-AS stellarator

    International Nuclear Information System (INIS)

    Koponen, J.

    2000-01-01

    One of the crucial problems in fusion research is the understanding of the transport of particles and heat in plasmas relevant for energy production. Extensive experimental transport studies have unraveled many details of heat transport in tokamaks and stellarators. However, due to larger experimental difficulties, the properties of particle transport have remained much less known. In particular, very few particle transport studies have been carried out in stellarators. This thesis summarises the transient particle transport experiments carried out at the Wendelstein 7-Advanced Stellarator (W7-AS). The main diagnostics tool was a 10-channel microwave interferometer. A technique for reconstructing the electron density profiles from the multichannel interferometer data was developed and implemented. The interferometer and the reconstruction software provide high quality electron density measurements with high temporal and sufficient spatial resolution. The density reconstruction is based on regularization methods studied during the development work. An extensive program of transient particle transport studies was carried out with the gas modulation method. The experiments resulted in a scaling expression for the diffusion coefficient. Transient inward convection was found in the edge plasma. The role of convection is minor in the core plasma, except at higher heating power, when an outward directed convective flux is observed. Radially peaked density profiles were found in discharges free of significant central density sources. Such density profiles are usually observed in tokamaks, but never before in W7-AS. Existence of an inward pinch is confirmed with two independent transient transport analysis methods. The density peaking is possible if the plasma is heated with extreme off-axis Electron Cyclotron Heating (ECH), when the temperature gradient vanishes in the core plasma, and if the gas puffing level is relatively low. The transport of plasma particles and heat

  4. Periodic long-range transport in a large volume dc glow discharge dusty plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Amatucci, William E.; Compton, Christopher; Christy, Brian; Jackson, Jon David

    2003-01-01

    In an earlier paper, the authors reported on observations of a variety of particle transport phenomena observed in DUPLEX--the DUsty PLasma EXperiment at the Naval Research Laboratory [E. Thomas, Jr., W. E. Amatucci, C. Compton, and B. Christy, Phys. Plasmas 9, 3154 (2002)]. DUPLEX is a large, transparent polycarbonate cylinder that is 40 cm in radius and 80 cm in height. dc glow discharge argon plasmas are generated in DUPLEX. In this paper, the authors expand upon one particular feature of particle transport in DUPLEX, the long-range (i.e., greater than 15 cm), periodic (T∼2.5 min) transport of suspended alumina particles through the plasma. A detailed description of this particle motion through the plasma is presented. Finally, a qualitative model describing the phenomena that lead to this transport is also given

  5. Particle and heat transport in Tokamaks

    International Nuclear Information System (INIS)

    Chatelier, M.

    1984-01-01

    A limitation to performances of tokamaks is heat transport through magnetic surfaces. Principles of ''classical'' or ''neoclassical'' transport -i.e. transport due to particle and heat fluxes due to Coulomb scattering of charged particle in a magnetic field- are exposed. It is shown that beside this classical effect, ''anomalous'' transport occurs; it is associated to the existence of fluctuating electric or magnetic fields which can appear in the plasma as a result of charge and current perturbations. Tearing modes and drift wave instabilities are taken as typical examples. Experimental features are presented which show that ions behave approximately in a classical way whereas electrons are strongly anomalous [fr

  6. Transport of plasma impurities and the role of the plasma edge layers for the hot plasma production

    International Nuclear Information System (INIS)

    Drawin, H.W.

    1987-01-01

    The first problem of impurity transport is removal of alpha particles from the interior outward. The second problem is the control of impurities produced in the plasma-wall interaction. Finally there is the problem of using injected impurities for assessment of transport coefficients. The influence of impurity radiation on the power balance of a DT plasma is considered. Limiters and divertors as impurity sources are mentioned and transport equations for impurities are given. As an example iron impurities transport in a hydrogen plasma is considered. The role of the edge layer is emphasized. Finally requirements for plasma diagnostics are stated. 50 refs., 10 figs. (qui)

  7. Turbulent transport in magnetized plasmas

    CERN Document Server

    Horton, Wendell

    2012-01-01

    This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.

  8. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  9. Particle balance in diverted plasmas in TEXT-U

    International Nuclear Information System (INIS)

    Rowan, W.L.; Bengtson, R.D.; Bonnin, X.; Edmonds, P.H.; Hurwitz, P.D.; Solano, E.R.; Tsui, H.Y.W.; Uglum, J.R.; Wootton, A.J.

    1995-01-01

    Tokamak plasmas in an open divertor configuration with the X-point at the inner equator were compared with plasmas limited by an inner toroidal belt. This paper describes and compares the particle balance in these two types of discharge. The plasma parameters n e (r), φ(r), T e (r), n e , and φ were measured in the scrape-off layer and in the plasma periphery at one poloidal location and mapped onto the rest of the plasma by assuming constancy on flux surfaces. Emission from neutral hydrogen was measured throughout the plasma. The particle source and then the global particle confinement were inferred from these measurements using a 3-D neutral transport simulation. The SOL profiles are significantly steeper in the diverted discharge. Both the source measurements and estimates from the SOL profiles indicate significantly better confinement in the diverted discharge. ((orig.))

  10. Coarse Grained Transport Model for Neutrals in Turbulent SOL Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Marandet, Y.; Mekkaoui, A.; Genesio, P.; Rosato, J.; Capes, H.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R., E-mail: yannick.marandet@univ-amu.fr [PIIM, CNRS/Aix-Marseille University, Marseille (France); Reiter, D.; Boerner, P. [IEK4, FZJ, Juelich (Germany)

    2012-09-15

    Full text: Edge plasmas of magnetic fusion devices exhibit strong intermittent turbulence, which governs perpendicular transport of particles and heat. Turbulent fluxes result from the coarse graining procedure used to derive the transport equation, which entails time averaging of the underlying equations governing the turbulent evolution of the electron and ion fluids. In previous works, we have pointed out that this averaging is not carried out on the Boltzmann equation that describes the transport of neutral particles (atoms, molecules) in current edge code suites (such as SOLPS). Since fluctuations in the far SOL are of order unity, calculating the transport of neutral particles, hence the source terms in plasma fluid equations, in the average plasma background might lead to misleading results. In particular, retaining the effects of fluctuations could affect the estimation of the importance of main chamber recycling, hence first wall sputtering by charge exchange atoms, as well as main chamber impurity contamination and transport. In this contribution, we obtain an exact coarse-grained equation for the average neutral density, assuming that density fluctuations are described by multivariate Gamma statistics. This equation is a scattering free Boltzmann equation, where the ionization rate has been renormalized to account for fluctuations. The coarse grained transport model for neutrals has been implemented in the EIRENE code, and applications in 2D geometry with ITER relevant plasma parameters are presented. Our results open the way for the implementation of the effects of turbulent fluctuations on the transport of neutral particles in coupled plasma/neutral edge codes like B2-EIRENE. (author)

  11. Nonlocal transport in hot plasma. Part I

    International Nuclear Information System (INIS)

    Brantov, A. V.; Bychenkov, V. Yu.

    2013-01-01

    The problem of describing charged particle transport in hot plasma under the conditions in which the ratio of the electron mean free path to the gradient length is not too small is one of the key problems of plasma physics. However, up to now, there was a deficit of the systematic interpretation of the current state of this problem, which, in most studies, is formulated as the problem of nonlocal transport. In this review, we fill this gap by presenting a self-consistent linear theory of nonlocal transport for small plasma perturbations and an arbitrary collisionality from the classical highly collisional hydrodynamic regime to the collisionless regime. We describe a number of nonlinear transport models and demonstrate the application of the nonclassical transport theory to the solution of some problems of plasma physics, first of all for plasmas produced by nanosecond laser pulses with intensities of 10 13 –10 16 W/cm 2

  12. Semi-analytic modeling of tokamak particle transport

    International Nuclear Information System (INIS)

    Shi Bingren; Long Yongxing; Li Jiquan

    2000-01-01

    The linear particle transport equation of tokamak plasma is analyzed. Particle flow consists of an outward diffusion and an inward convection. General solution is expressed in terms of a Green function constituted by eigen-functions of corresponding Sturm-Liouville problem. For a particle source near the plasma edge (shadow fueling), a well-behaved solution in terms of Fourier series can be constituted by using the complementarity relation. It can be seen from the lowest eigen-function that the particle density becomes peaked when the wall recycling reduced. For a transient point source in the inner region, a well-behaved solution can be obtained by the complementarity as well

  13. The energetic alpha particle transport method EATM

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1998-02-01

    The EATM method is an evolving attempt to find an efficient method of treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of the particles and the Larmor radius may be long compared to the gradient lengths in the plasma. The intent is to span the range of parameter space with the efficiency and accuracy thought necessary for experimental analysis and design of magnetized fusion targets

  14. Modelling of shear effects on thermal and particle transport in advanced Tokamak scenarios

    International Nuclear Information System (INIS)

    Moreau, D.; Voitsekhovitch, I.; Baker, D.R.

    1999-01-01

    Evolution of thermal and particle internal transport barriers (ITBs) is studied by modelling the time-dependent energy and particle balance in DIII-D plasmas with reversed magnetic shear configurations and in JET discharges with monotonic or slightly reversed q-profiles and large ExB rotation shear. Simulations are performed with semi-empirical models for anomalous diffusion and particle pinch. Stabilizing effects of magnetic and ExB rotation shears are included in anomalous particle and heat diffusivity. Shear effects on particle and thermal transport are compared. Improved particle and energy confinement with the formation of an internal transport barrier (ITB) has been produced in DIII-D plasmas during current ramp-up accompanied with neutral beam injection (NBI). These plasmas are characterized by strong reversed magnetic shear and large ExB rotation shear which provide the reduction of anomalous fluxes. The formation of ITB's in the optimized shear (OS) JET scenario starts with strong NBI heating in a target plasma with a flat or slightly reversed q-profile pre-formed during current ramp-up with ion cyclotron resonance heating (ICRH). Our paper presents the modelling of particle and thermal transport for these scenarios. (authors)

  15. Sawtooth driven particle transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Nicolas, T.

    2013-01-01

    The radial transport of particles in tokamaks is one of the most stringent issues faced by the magnetic confinement fusion community, because the fusion power is proportional to the square of the pressure, and also because accumulation of heavy impurities in the core leads to important power losses which can lead to a 'radiative collapse'. Sawteeth and the associated periodic redistribution of the core quantities can significantly impact the radial transport of electrons and impurities. In this thesis, we perform numerical simulations of sawteeth using a nonlinear tridimensional magnetohydrodynamic code called XTOR-2F to study the particle transport induced by sawtooth crashes. We show that the code recovers, after the crash, the fine structures of electron density that are observed with fast-sweeping reflectometry on the JET and TS tokamaks. The presence of these structure may indicate a low efficiency of the sawtooth in expelling the impurities from the core. However, applying the same code to impurity profiles, we show that the redistribution is quantitatively similar to that predicted by Kadomtsev's model, which could not be predicted a priori. Hence finally the sawtooth flushing is efficient in expelling impurities from the core. (author) [fr

  16. Kinetic theory of nonlinear transport phenomena in complex plasmas

    International Nuclear Information System (INIS)

    Mishra, S. K.; Sodha, M. S.

    2013-01-01

    In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

  17. Heavy particle transport in sputtering systems

    Science.gov (United States)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  18. Investigation of particle reduction and its transport mechanism in UHF-ECR dielectric etching system

    International Nuclear Information System (INIS)

    Kobayashi, Hiroyuki; Yokogawa, Ken'etsu; Maeda, Kenji; Izawa, Masaru

    2008-01-01

    Control of particle transport was investigated by using a UHF-ECR etching apparatus with a laser particle monitor. The particles, which float at a plasma-sheath boundary, fall on a wafer when the plasma is turned off. These floating particles can be removed from the region above the wafer by changing the plasma distribution. We measured the distribution of the rotational temperature of nitrogen molecules across the wafer to investigate the effect of the thermophoretic force. We found that mechanisms of particle transport in directions parallel to the wafer surface can be explained by the balance between thermophoretic and gas viscous forces

  19. Instabilities, turbulence and transport in a magnetized plasma; Instabilites, turbulence et transport dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Garbet, X

    2001-06-01

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  20. Recent developments in plasma turbulence and turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)

    1997-09-22

    This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.

  1. Plasma Transport at the Magnetospheric Flank Boundary. Final report

    International Nuclear Information System (INIS)

    Otto, Antonius

    2012-01-01

    Progress is highlighted in these areas: 1. Model of magnetic reconnection induced by three-dimensional Kelvin Helmholtz (KH) modes at the magnetospheric flank boundary; 2. Quantitative evaluation of mass transport from the magnetosheath onto closed geomagnetic field for northward IMF; 3. Comparison of mass transfer by cusp reconnection and Flank Kelvin Helmholtz modes; 4. Entropy constraint and plasma transport in the magnetotail - a new mechanism for current sheet thinning; 5. Test particle model for mass transport onto closed geomagnetic field for northward IMF; 6. Influence of density asymmetry and magnetic shear on (a) the linear and nonlinear growth of 3D Kelvin Helmholtz (KH) modes, and (b) three-dimensional KH mediated mass transport; 7. Examination of entropy and plasma transport in the magnetotail; 8. Entropy change and plasma transport by KH mediated reconnection - mixing and heating of plasma; 9. Entropy and plasma transport in the magnetotail - tail reconnection; and, 10. Wave coupling at the magnetospheric boundary and generation of kinetic Alfven waves

  2. Effects of electrode polarization and particle deposition profile on TJ-I plasma confinement

    International Nuclear Information System (INIS)

    Zurro, B.; Tabares, F.; Pardo, C.; Tafalla, D.; Cal, E. de la; Garcia-Castaner, B.; Pedrosa, M.A.; Sanchez, J.; Rodriguez-Yunta, A.

    1991-01-01

    The role of self-created radial electric field on particle confinement in TJ-I plasmas was addressed using plasma rotation data in conjunction with particle confinement times measured by laser ablation. In this paper following the pioneer work of Taylor, we have started to study the influence of a polarized electrode inserted into the plasma on particle confinement and plasma rotation in this ohmically heated tokamak. To have a supportive frame of reference, the confinement time of background particles and their transport into plasma without electrode, has been studied by measuring with space-time resolution the H α emission on varying plasma conditions. These experiments have been carried out in ohmically heated discharges of the TJ-I tokamak (R 0 =30 cm, a=10 cm) which was operated with plasma currents between 20 and 45 kA and a toroidal field ranging from 0.8 to 1.5 T. In this paper, firstly the experimental plasma and specific diagnostics are described, secondly, the parametric dependence of the particle confinement time and radial transport of background plasma is presented and finally, the influence of polarizing an inserted electrode on a particular discharge is given and discussed in the context of other polarization experiments. (author) 7 refs., 4 figs

  3. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  4. Numerical simulation of the anomalous transport at the plasma-edge

    International Nuclear Information System (INIS)

    Pohn, E.

    2001-03-01

    In addition to the classical transport which is caused by Coloumb-collisions two further transport mechanisms take place in an inhomogeneous magnetically confined thermonuclear fusion-plasma, the neoclassical and the anomalous transport. The anomalous transport is caused by collective motion of the plasma-particles respectively turbulence and essentially affects the energy-confinement-time of the plasma. The energy-confinement-time in turn constitutes an important criterion with respect to the feasibility of using nuclear fusion for energy production. The anomalous transport is theoretically not yet well understood. By means of numerical simulations of the anomalous transport in the plasma edge, it is the intention of this work to contribute to the understanding of this transport mechanism. The Vlasov-Poisson-system constitutes the starting point for all performed simulations. This system consists of kinetic equations, which model for each particle-species the motion of the particles composing the plasma in six-dimensional phase-space. A coupling of these kinetic equations occurs due to the Poisson-equation, resulting in a nonlinear system of differential equations. The time evolution of this system was calculated numerically. On the one hand, simulations were performed where the whole velocity-space was retained. This fully-kinetic model was applied for the spatially one- as well as two-dimensional case. In the one-dimensional case only the radial direction of the plasma-edge was modeled, i.e. the direction along which the plasma joins to the vacuum. When performing the spatially two-dimensional simulations, in addition the poloidal direction has been regarded. A second set of simulations was performed using a gyro-kinetic model. In this model only the velocity-component parallel to the magnetic field vector is retained. The components perpendicular to the magnetic field vector, which are responsible for the gyration of particles, are omitted from phase-space but

  5. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    International Nuclear Information System (INIS)

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  6. Energy selecting action of limiters on particle fluxes penetrating into the SOL-plasma

    International Nuclear Information System (INIS)

    Hildebrandt, D.

    1986-01-01

    A single model of the penetration of particle effluxes from the core plasma into the SOL-plasma of tokamaks is proposed. The assumptions made are free streaming of particles parallel to the magnetic field and anomalous particle transport perpendicular to the toroidal field with a constant radial velocity. The model has been proved for measured particle fluxes of Li which was injected into the core plasma of the tokamak T-10. The dependence of the Li-particle flux on the minor radius as well as toroidal asymmetries in the SOL-plasma can be explained by the results of the calculations. (author)

  7. Positron deposition in plasmas by positronium beam ionization and transport of positrons in tokamak plasmas

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1986-11-01

    In a recently proposed positron transport experiment, positrons would be deposited in a fusion plasma by forming a positronium (Ps) beam and passing it through the plasma. Positrons would be deposited as the beam is ionized by plasma ions and electrons. Radial transport of the positrons to the limiter could then be measured by detecting the gamma radiation produced by annihilation of positrons with electrons in the limiter. This would allow measurements of the transport of electron-mass particles and might shed some light on the mechanisms of electron transport in fusion plasmas. In this paper, the deposition and transport of positrons in a tokamak are simulated and the annihilation signal determined for several transport models. Calculations of the expected signals are necessary for the optimal design of a positron transport experiment. There are several mechanisms for the loss of positrons besides transport to the limiter. Annihilation with plasma electrons and reformation of positronium in positron-hydrogen collisions are two such processes. These processes can alter the signal and place restrictions ons on the plasma conditions in which positron transport experiments can be effectively performed

  8. Transport processes in space plasmas

    International Nuclear Information System (INIS)

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth's magnetosphere and associated waves, the Earth's magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth's magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior

  9. Self-consistent electron transport in collisional plasmas

    International Nuclear Information System (INIS)

    Mason, R.J.

    1982-01-01

    A self-consistent scheme has been developed to model electron transport in evolving plasmas of arbitrary classical collisionality. The electrons and ions are treated as either multiple donor-cell fluids, or collisional particles-in-cell. Particle suprathermal electrons scatter off ions, and drag against fluid background thermal electrons. The background electrons undergo ion friction, thermal coupling, and bremsstrahlung. The components move in self-consistent advanced E-fields, obtained by the Implicit Moment Method, which permits Δt >> ω/sub p/ -1 and Δx >> lambda/sub D/ - offering a 10 2 - 10 3 -fold speed-up over older explicit techniques. The fluid description for the background plasma components permits the modeling of transport in systems spanning more than a 10 7 -fold change in density, and encompassing contiguous collisional and collisionless regions. Results are presented from application of the scheme to the modeling of CO 2 laser-generated suprathermal electron transport in expanding thin foils, and in multi-foil target configurations

  10. Magnetic fluctuation driven cross-field particle transport in the reversed-field pinch

    International Nuclear Information System (INIS)

    Scheffel, J.; Liu, D.

    1997-01-01

    Electrostatic and electromagnetic fluctuations generally cause cross-field particle transport in confined plasmas. Thus core localized turbulence must be kept at low levels for sufficient energy confinement in magnetic fusion plasmas. Reversed-field pinch (RFP) equilibria can, theoretically, be completely stable to ideal and resistive (tearing) magnetohydrodynamic (MHD) modes at zero beta. Unstable resistive interchange modes are, however, always present at experimentally relevant values of the poloidal beta β θ . An analytical quasilinear, ambipolar diffusion model is here used to model associated particle transport. The results indicate that core density fluctuations should not exceed a level of about 1% for plasmas of fusion interest. Parameters of experimentally relevant stationary states of the RFP were adjusted to minimize growth rates, using a fully resistive linearized MHD stability code. Density gradient effects are included through employing a parabolic density profile. The scaling of particle diffusion [D(r)∝λ 2 n 0.5 T/aB, where λ is the mode width] is such that the effects of particle transport are milder in present day RFP experiments than in future reactor-relevant plasmas. copyright 1997 American Institute of Physics

  11. Effect of electron degeneracy on fast-particles energy deposition in dense plasma systems

    International Nuclear Information System (INIS)

    Johzaki, T.; Nakao, Y.; Nakashima, H.; Kudo, K.

    1997-01-01

    The effects of electron degeneracy on fast-particles energy deposition in dense plasmas are investigated by making transport calculations for the fast particles. It is found that the degeneracy substantially affects the profiles of energy deposition of 3.52-MeV α-particles. On the other hand, the effect on the energy deposition of 14.1-MeV neutrons is negligibly small because the recoil ions, which transfer the neutron energy to the plasma constituents, are produced in a whole plasma volume due to the long mean-free-path of neutrons. The coupled transport-hydrodynamic calculations show that these effects of degeneracy are negligible in the ignition and burn characteristics of central ignition D-T targets. (author)

  12. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the classical transport theory in plasmas. Ch. 1 is a chapter of 'pure' hamiltonian mechanics and starts with the study of the motion of an individual charged particle in the presence of an electromagnetic field. Ch. 2 introduces the tools of statistical mechanics for the study of large collections of charged particles. A kinetic theory is derived as a basic tool for transport theory. In ch. 3 the hydro-dynamic - or plasmadynamic - balance equations are derived. The macroscopic dynamical equations have the structure of an infinite hierarchy. This introduces the necessity of construction of a transport theory, by which te infinite set of equations can be reduced to a finite, closed set. This can only be done by a detailed analysis of the kinetic equation under well defined conditions. The tools for such nan analysis are developed in ch. 4. In ch. 5 the transport equations, relating the unknown fluxes of matter, momentum, energy and electricity to the hydrodynamic variables, are derived and discussed. In ch. 6 the results are incorporated into the wider framework of non-equilibrium thermodynamics by connecting the transport processes to the central concept of entropy production. In ch. 7 the results of transport theory are put back into the equations of plasmadynamics

  13. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1992-01-01

    Particle and energy transport in tokamak plasmas have long been subjects of vigorous investigation. Present-day measurement techniques permit radially resolved studies of the transport of electron perturbations, low- and high-Z impurities, and energy. In addition, developments in transport theory provide tools that can be brought to bear on transport issues. Here, we examine local particle transport measurements of electrons, fully-stripped thermal helium, and helium-like iron in balanced-injection L-mode and enhanced confinement deuterium plasmas on TFTR of the same plasma current, toroidal field, and auxiliary heating power. He 2+ and Fe 24+ transport has been studied with charge exchange recombination spectroscopy, while electron transport has been studied by analyzing the perturbed electron flux following the same helium puff used for the He 2+ studies. By examining the electron and He 2+ responses following the same gas puff in the same plasmas, an unambiguous comparison of the transport of the two species has been made. The local energy transport has been examined with power balance analysis, allowing for comparisons to the local thermal fluxes. Some particle and energy transport results from the Supershot have been compared to a transport model based on a quasilinear picture of electrostatic toroidal drift-type microinstabilities. Finally, implications for future fusion reactors of the observed correlation between thermal transport and helium particle transport is discussed

  14. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  15. Two dimensional neutral transport analysis in tokamak plasma

    International Nuclear Information System (INIS)

    Shimizu, Katsuhiro; Azumi, Masafumi

    1987-02-01

    Neutral particle influences the particle and energy balance, and play an important role on sputtering impurity and the charge exchange loss of neutral beam injection. In order to study neutral particle behaviour including the effects of asymmetric source and divertor configuration, the two dimensional neutral transport code has been developed using the Monte-Carlo techniques. This code includes the calculation of the H α radiation intensity based on the collisional-radiation model. The particle confinement time of the joule heated plasma in JT-60 tokamak is evaluated by comparing the calculated H α radiation intensity with the experimental data. The effect of the equilibrium on the neutral density profile in high-β plasma is also investigated. (author)

  16. Neoclassical transport of impurtities in tokamak plasmas

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Sigmar, D.J.

    1981-05-01

    Tokamak plasmas are inherently comprised of multiple ion species. This is due to wall-bred impurities and, in future reactors, will result from fusion-born alpha particles. Relatively small concentrations of highly charged non-hydrogenic impurities can strongly influence plasma transport properties whenever n/sub I/e/sub I/ 2 /n/sub H/e 2 greater than or equal to (m/sub e//m/sub H/)/sup 1/2/. The determination of the complete neoclassical Onsager matrix for a toroidally confined multispecies plasma, which provides the linear relation between the surface averaged radial fluxes and the thermodynamic forces (i.e., gradients of density and temperature, and the parallel electric field), is reviewed. A closed set of one-dimensional moment equations is presented for the time evolution of thermodynamic and magnetic field quantities which results from collisional transport of the plasma and two dimensional motion of the magnetic flux surface geometry. The effects of neutral beam injection on the equilibrium and transport properties of a toroidal plasma are consistently included

  17. Extended fluid transport theory in the tokamak plasma edge

    Science.gov (United States)

    Stacey, W. M.

    2017-06-01

    Fluid theory expressions for the radial particle and energy fluxes and the radial distributions of pressure and temperature in the edge plasma are derived from fundamental conservation (particle, energy, momentum) relations, taking into account kinetic corrections arising from ion orbit loss, and integrated to illustrate the dependence of the observed edge pedestal profile structure on fueling, heating, and electromagnetic and thermodynamic forces. Solution procedures for the fluid plasma and associated neutral transport equations are discussed.

  18. Observation of neoclassical transport in reverse shear plasmas on the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Goeler, S. von; Houlberg, W.A.

    2001-01-01

    Perturbative experiments on the Tokamak Fusion Test Reactor (TFTR) have investigated the transport of multiple ion species in reverse shear plasmas. The profile evolution of trace tritium and helium, and intrinsic carbon indicate the formation of core particle transport barriers in ERS plasmas. There is an order of magnitude reduction in the particle diffusivity inside the reverse shear region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  19. Observation of neoclassical transport in reverse shear plasmas on the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Von Goeler, S.; Houlberg, W.A.

    1999-01-01

    Perturbative experiments on the Tokamak Fusion Test Reactor (TFTR) have investigated the transport of multiple ion species in reverse shear plasmas. The profile evolution of trace tritium and helium, and intrinsic carbon indicate the formation of core particle transport barriers in ERS plasmas. There is an order of magnitude reduction in the particle diffusivity inside the reverse shear region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  20. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  1. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1991-01-01

    We have developed a Monte Carlo method to estimate the transport of different groups of particles for plasmas in toroidal geometries. This method can determine the important transport mechanisms driving the anomalous transport by comparing the numerical results with the experimental data. The important groups of particles whose transport can be estimated by this method include runaway electrons, thermal electrons, both passing and trapped diagnostic beam ions etc. The three basic mechanisms driving the anomalous transport are: spatial variation of magnetic field strength, spatial variation of electrostatic potential within the flux surfaces, and the loss of flux surfaces. The equation of motion are obtained from the drift hamiltonian. The equations of motion are developed in the canonical and in the non-canonical, practical co-ordinates as well. The effects of collisions are represented by appropriate stochastic changes in the constants of motion at each time-step. Here we present the results of application of this method to three cases: superathermal alphas in the rippled field of tokamaks, motion in the magnetic turbulence of takapole II, and transport in the stochastic fields of ZT40. This work is supported by DOE OFE and ORAU HBCU program

  2. Plasma transport across a braided magnetic field

    International Nuclear Information System (INIS)

    Stix, T.H.

    1978-01-01

    Simple fluid and particle models are used to estimate the transport of density, current, and electron heat for a plasma immersed in a region through which magnetic lines of force meander in a stochastic fashion and in which magnetic surfaces are destroyed. (author)

  3. Finite beta effects on turbulent transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Hein, Tobias

    2011-01-01

    The research on the transport properties of magnetically confined plasmas plays an essential role towards the achievement of practical nuclear fusion energy. An economically viable fusion reactor is expected to operate at high plasma pressure. This implies that the detailed study of the impact of electromagnetic effects, whose strength increases with increasing pressure, is of critical importance. In the present work, the electromagnetic effects on the particle, momentum and heat transport channels have been investigated, with both analytical and numerical calculations. Transport processes due to a finite plasma pressure have been identified, their physical mechanisms have been explained, and their contributions have been quantified, showing that they can be significant under experimentally relevant conditions.

  4. Collisional transport in a plasma with steep gradients

    International Nuclear Information System (INIS)

    Wang, W.; Okamoto, M.; Nakajima, N.; Murakami, S.

    1999-06-01

    The validity is given to the newly proposed two δf method for neoclassical transport calculation, which can be solve the drift kinetic equation considering effects of steep plasma gradients, large radial electric field, finite banana width, and an orbit topology near the axis. The new method is applied to the study of ion transport with steep plasma gradients. It is found that the ion thermal diffusivity decreases as the scale length of density gradient decreases, while the ion particle flux due to ion-ion self collisions increases with increasing gradient. (author)

  5. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1989-12-01

    When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II

  6. Plasma transport through magnetic boundaries

    International Nuclear Information System (INIS)

    Treumann, R.A.

    1992-01-01

    We examine the overall plasma diffusion processes across tangential discontinuities of which the best known example is the Earth's magnetopause during northward interplanetary magnetic field conditions. The existence of the low latitude boundary layer (LLBL) adjacent to the magnetopause during those periods is ample evidence for the presence of so far poorly defined and understood entry processes acting at the magnetopause. We conclude that microscopic instabilities are probably not efficient enough to account for the LLBL. They affect only a small number of resonant particles. It is argued that macroscopic nonresonant turbulence is the most probable mechanism for plasma transport

  7. Plasma particle sources due to interactions with neutrals in a turbulent scrape-off layer of a toroidally confined plasma

    DEFF Research Database (Denmark)

    Thrysøe, Alexander Simon; Løiten, M.; Madsen, J.

    2018-01-01

    The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms...... is present in the edge and SOL regions, those will influence the plasma parameters and thus the plasma confinement. In this paper, it is displayed how neutrals, described by a fluid model, introduce source terms in a plasma drift-fluid model due to inelastic collisions. The resulting source terms...... are included in a four-field drift fluid model, and it is shown how an increasing neutral particle density in the edge and SOL regions influences the plasma particle transport across the lastclosed-flux-surface. It is found that an appropriate gas puffing rate allows for the edge density in the simulation...

  8. Measurement of particle transport coefficients on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  9. Measurement of particle transport coefficients on Alcator C-Mod

    International Nuclear Information System (INIS)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial (∼ 2 cm) and high temporal (≤ 1.0 ms) resolution. The system consists of 10 CO 2 (10.6 μm) and 4 HeNe (.6328 μm) chords that are used to measure the line integrated density to within 0.08 CO 2 degrees or 2.3 x 10 16 m -2 theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment

  10. Plasma and BIAS Modeling: Self-Consistent Electrostatic Particle-in-Cell with Low-Density Argon Plasma for TiC

    Directory of Open Access Journals (Sweden)

    Jürgen Geiser

    2011-01-01

    processes. In this paper we present a new model taken into account a self-consistent electrostatic-particle in cell model with low density Argon plasma. The collision model are based of Monte Carlo simulations is discussed for DC sputtering in lower pressure regimes. In order to simulate transport phenomena within sputtering processes realistically, a spatial and temporal knowledge of the plasma density and electrostatic field configuration is needed. Due to relatively low plasma densities, continuum fluid equations are not applicable. We propose instead a Particle-in-cell (PIC method, which allows the study of plasma behavior by computing the trajectories of finite-size particles under the action of an external and self-consistent electric field defined in a grid of points.

  11. Transport of super-thermal particles and their effect on the stability of global modes in fusion plasmas

    International Nuclear Information System (INIS)

    Schneller, Mirjam Simone

    2013-01-01

    In thermonuclear plasmas, a population of super-thermal particles generated by external heating methods or fusion reactions can lead to the excitation of global instabilities. The transport processes due to nonlinear wave-particle interactions and the consequential particle losses reduce the plasma heating and the efficiency of the fusion reaction rate. Furthermore, these energetic or fast particles may cause severe damages to the wall of the device. This thesis addresses the resonance mechanisms between these energetic particles and global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic investigation of energetic particles resonant with multiple modes (double-resonance) is presented for the first time. The double-resonant mode coupling is modeled for waves with different frequencies in various overlapping scenarios. It is found that, depending on the radial mode distance, double-resonance is able to significantly enhance, both the growth rates and the saturation amplitudes. Small radial mode distances, however can lead to strong nonlinear mode stabilization of a linear dominant mode. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different q profiles). An understanding of fast particle behavior for non-monotonic q profiles is important for the development of advanced fusion scenarios. The numerical tool is the extended version of the HAGIS code, which computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this thesis, a consistent fast particle distribution function was implemented, to represent the fast particle population generated by the particular heating method (ICRH). Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to allow fast ion loss

  12. Transport of super-thermal particles and their effect on the stability of global modes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schneller, Mirjam Simone

    2013-08-02

    In thermonuclear plasmas, a population of super-thermal particles generated by external heating methods or fusion reactions can lead to the excitation of global instabilities. The transport processes due to nonlinear wave-particle interactions and the consequential particle losses reduce the plasma heating and the efficiency of the fusion reaction rate. Furthermore, these energetic or fast particles may cause severe damages to the wall of the device. This thesis addresses the resonance mechanisms between these energetic particles and global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic investigation of energetic particles resonant with multiple modes (double-resonance) is presented for the first time. The double-resonant mode coupling is modeled for waves with different frequencies in various overlapping scenarios. It is found that, depending on the radial mode distance, double-resonance is able to significantly enhance, both the growth rates and the saturation amplitudes. Small radial mode distances, however can lead to strong nonlinear mode stabilization of a linear dominant mode. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different q profiles). An understanding of fast particle behavior for non-monotonic q profiles is important for the development of advanced fusion scenarios. The numerical tool is the extended version of the HAGIS code, which computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this thesis, a consistent fast particle distribution function was implemented, to represent the fast particle population generated by the particular heating method (ICRH). Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to allow fast ion loss

  13. Toroidally asymmetric particle transport caused by phase-locking of MHD modes in RFX-mod

    International Nuclear Information System (INIS)

    Lorenzini, R.; Terranova, D.; Auriemma, F.; Cavazzana, R.; Innocente, P.; Martini, S.; Serianni, G.; Zuin, M.

    2007-01-01

    The particle and energy transport in reversed field pinch experiments is affected by the locking in phase of the tearing modes, also dubbed dynamo modes, that sustain the magnetic configuration. In standard RFP pulses many m = 1 and m = 0 resonant modes have a relatively large amplitude (a spectrum dubbed MH for multiple helicity). The locking in phase of m = 1 tearing modes produces a helical deformation (locked mode (LM)) of the magnetic surfaces in a region of approximately 40 toroidal degrees. The region of the LM is characterized by a strong plasma-wall interaction and by high losses of energy and particles that account for a significant fraction of the input power and of the total particle outflux. The locking in phase of m = 0 modes modifies the plasma radius, shrinking and enlarging the plasma cross section in two wide toroidal regions of about 100 0 . The purpose of this paper is to investigate to what extent the locking in phase of m = 0 modes introduces toroidal asymmetries in the transport properties of the plasma. This study has been carried out investigating the shape of the density profile in the RFX-mod experiment. The analyses show that the profile exhibits a dependence on the toroidal angle, which is related to the deformation of the plasma column due to the locking in phase of m = 0 modes: the least steep density gradients at the edge are found in the region where the plasma column is shrunk, entailing that in this region the particle transport is enhanced. An analogous asymmetry also characterizes the density and magnetic fluctuations at the edge, which are enhanced in the same toroidal region where the particle transport also is enhanced. This result can be considered the first experimental evidence of an instability localized where the plasma column is shrunk

  14. Nonlinear neoclassical transport in toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Helander, P.

    2001-01-01

    In conventional neoclassical theory, the density and temperature gradients are not allowed to be as steep as frequently observed in the tokamak edge. In this paper the theory of neoclassical transport in a collisional, impure plasma is extended to allow for steeper profiles than normally assumed. The dynamics of highly charged impurity ions then becomes nonlinear, which affects the transport of all species. As earlier found in the banana regime, when the bulk plasma gradients are large the impurity ions undergo a poloidal redistribution, which reduces their parallel friction with the bulk ions and suppresses the neoclassical ion particle flux. The neoclassical confinement is thus improved in regions with large radial gradients. When the plasma is collisional and the gradients are large, the impurities accumulate on the inboard side of the torus

  15. Empirical particle transport model for tokamaks

    International Nuclear Information System (INIS)

    Petravic, M.; Kuo-Petravic, G.

    1986-08-01

    A simple empirical particle transport model has been constructed with the purpose of gaining insight into the L- to H-mode transition in tokamaks. The aim was to construct the simplest possible model which would reproduce the measured density profiles in the L-regime, and also produce a qualitatively correct transition to the H-regime without having to assume a completely different transport mode for the bulk of the plasma. Rather than using completely ad hoc constructions for the particle diffusion coefficient, we assume D = 1/5 chi/sub total/, where chi/sub total/ ≅ chi/sub e/ is the thermal diffusivity, and then use the κ/sub e/ = n/sub e/chi/sub e/ values derived from experiments. The observed temperature profiles are then automatically reproduced, but nontrivially, the correct density profiles are also obtained, for realistic fueling rates and profiles. Our conclusion is that it is sufficient to reduce the transport coefficients within a few centimeters of the surface to produce the H-mode behavior. An additional simple assumption, concerning the particle mean-free path, leads to a convective transport term which reverses sign a few centimeters inside the surface, as required by the H-mode density profiles

  16. A one-dimensional plasma and impurity transport model for reversed field pinches

    International Nuclear Information System (INIS)

    Veerasingam, R.

    1991-11-01

    In this thesis a one-dimensional (1-D) plasma and impurity transport model is developed to address issues related to impurity behavior in Reversed Field Pinch (RFP) fusion plasmas. A coronal non-equilibrium model is used for impurities. The impurity model is incorporated into an existing one dimensional plasma transport model creating a multi-species plasma transport model which treats the plasma and impurity evolution self-consistently. Neutral deuterium particles are treated using a one-dimensional (slab) model of neutral transport. The resulting mode, RFPBI, is then applied to existing RFP devices such as ZT-40M and MST, and also to examine steady state behavior of ZTH based on the design parameters. A parallel algorithm for the impurity transport equations is implemented and tested to determine speedup and efficiency

  17. Plasma particle sources due to interactions with neutrals in a turbulent scrape-off layer of a toroidally confined plasma

    Science.gov (United States)

    Thrysøe, A. S.; Løiten, M.; Madsen, J.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul

    2018-03-01

    The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms is present in the edge and SOL regions, those will influence the plasma parameters and thus the plasma confinement. In this paper, it is displayed how neutrals, described by a fluid model, introduce source terms in a plasma drift-fluid model due to inelastic collisions. The resulting source terms are included in a four-field drift-fluid model, and it is shown how an increasing neutral particle density in the edge and SOL regions influences the plasma particle transport across the last-closed-flux-surface. It is found that an appropriate gas puffing rate allows for the edge density in the simulation to be self-consistently maintained due to ionization of neutrals in the confined region.

  18. Control of alpha-particle transport by ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-01-01

    In this paper control of radial alpha-particle transport by using ion cyclotron range of frequency (ICRF) waves is investigated in a large-aspect-ratio tokamak geometry. Spatially inhomogeneous ICRF wave energy with properly selected frequencies and wave numbers can induce fast convective transports of alpha particles at the speed of order v α ∼ (P RF /n α ε 0 )ρ p , where R RF is the ICRF wave power density, n α is the alpha-particle density, ε 0 is the alpha-particle birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to International Thermonuclear Experimental Reactor (ITER) plasma is studied and possible antenna designs to control alpha-particle flux are discussed

  19. Isotopic scaling of transport in deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Scott, S.D.; Adler, H.; Bell, M.G.; Bell, R.; Budny, R.V.; Bush, C.E.; Chang, Z.; Duong, H.

    1995-01-01

    Both global and thermal energy confinement improve in high-temperature supershot plasmas in the Tokamak Fusion Test Reactor (TFTR) when deuterium beam heating is partially or wholly replaced by tritium beam heating. For the same heating power, the tritium-rich plasmas obtain up to 22% higher total energy, 30% higher thermal ion energy, and 20-25% higher central ion temperature. Kinetic analysis of the temperature and density profiles indicates a favorable isotopic scaling of ion heat transport and electron particle transport, with τ Ei (a/2) ∝ (A) 0.7-0.8 and τ pe (a) ∝ (A) 0.8

  20. Instabilities, turbulence and transport in a magnetized plasma

    International Nuclear Information System (INIS)

    Garbet, X.

    2001-06-01

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  1. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  2. Particle transport due to magnetic fluctuations

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Hokin, S.A.; Prager, S.C.; Fiksel, G.; Ji, H.; Den Hartog, D.J.

    1994-01-01

    Electron current fluctuations are measured with an electrostatic energy analyzer at the edge of the MST reversed-field pinch plasma. The radial flux of fast electrons (E>T e ) due to parallel streaming along a fluctuating magnetic field is determined locally by measuring the correlated product e B r >. Particle transport is small just inside the last closed flux surface (Γ e,mag e,total ), but can account for all observed particle losses inside r/a=0.8. Electron diffusion is found to increase with parallel velocity, as expected for diffusion in a region of field stochasticity

  3. Heat and momentum transfer from an atmospheric argon hydrogen plasma jet to spherical particles

    International Nuclear Information System (INIS)

    Vaessen, P.H.M.

    1984-01-01

    In this thesis the author describes the energy and momentum transfer from the plasma jet to the spray particles. This is done both experimentally and theoretically. Also the internal energy process of the recombining plasma is discussed. All elastic and inelastic collisional and radiative processes, as well as transport effects within the plasma are considered. In the next section, the so called passive spectroscopy is treated. It describes the diagnostics of electron density and temperature measurement, as well as the investigation on heat content of the particles. Spatially resolved electron density and temperature profiles are presented. Next, the active spectroscopy, i.e. the laser Doppler anemometer is dealt with. With this diagnostic, axial spray-particle velocities inside the plasma jet were determined. The author also presents heat and momentum transfer modelling of the plasma, related to the plasma particle interaction. Finally, a one dimensional model verification is made, using the experimentally determined particle velocity and plasma temperature profiles. (Auth.)

  4. Transport in a toroidally confined pure electron plasma

    International Nuclear Information System (INIS)

    Crooks, S.M.; ONeil, T.M.

    1996-01-01

    O close-quote Neil and Smith [T.M. O close-quote Neil and R.A. Smith, Phys. Plasmas 1, 8 (1994)] have argued that a pure electron plasma can be confined stably in a toroidal magnetic field configuration. This paper shows that the toroidal curvature of the magnetic field of necessity causes slow cross-field transport. The transport mechanism is similar to magnetic pumping and may be understood by considering a single flux tube of plasma. As the flux tube of plasma undergoes poloidal ExB drift rotation about the center of the plasma, the length of the flux tube and the magnetic field strength within the flux tube oscillate, and this produces corresponding oscillations in T parallel and T perpendicular . The collisional relaxation of T parallel toward T perpendicular produces a slow dissipation of electrostatic energy into heat and a consequent expansion (cross-field transport) of the plasma. In the limit where the cross section of the plasma is nearly circular the radial particle flux is given by Γ r =1/2ν perpendicular,parallel T(r/ρ 0 ) 2 n/(-e∂Φ/∂r), where ν perpendicular,parallel is the collisional equipartition rate, ρ 0 is the major radius at the center of the plasma, and r is the minor radius measured from the center of the plasma. The transport flux is first calculated using this simple physical picture and then is calculated by solving the drift-kinetic Boltzmann equation. This latter calculation is not limited to a plasma with a circular cross section. copyright 1996 American Institute of Physics

  5. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    International Nuclear Information System (INIS)

    Gilmore, Mark Allen

    2017-01-01

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  6. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  7. Thermodynamic theory of transport in magnetized plasmas

    International Nuclear Information System (INIS)

    Misguich, J.H.

    1990-10-01

    Transport laws relating thermodynamic flows to forces by means of transport coefficients in a magnetized plasma are derived here from basic plasmadynamics and nonequilibrium thermodynamics. Macroscopic balance equations are derived in the first part, taking into account the energy of relative diffusion between species in an exact way. The resulting plasmadynamical equations appear to be more general than the usual ones. In the second part, the particular features of a two-temperature diffusing plasma are taken into account in deriving the balance equation for the entropy density, the differences with thermodynamics of neutral fluid mixtures or metals are explained. The general expressions obtained for the entropy production rate are used in part III to derive transport laws. Onsager symmetry relations are applied to interrelate crossed transport coefficients. Basic transport coefficients are the electrical conductivity, the thermo-electric coefficient, along with the thermal conductivities and the viscosities for each species. The slight difference between thermo-electric effect and thermo-diffusion is explained. An important resistive thermo-electric effect appears which describes crossed transport coefficients between thermal and electric flows. Because of the anisotropy introduced by the magnetic field, the transport coefficients are tensors, with non diagonal elements associated with the Hall, Nernst and Ettinghausen effects in the plasma. The field geometry and applications to several particular cases are treated explicitly in part IV, namely the neo-classical transport laws. The Ettinghausen effect appears to play an important role in the transport laws for radial electron heat flow and particle flow in confined plasmas. Practical prescriptions are given to apply the Onsager symmetry relations in a correct way

  8. BALDUR: a one-dimensional plasma transport code

    International Nuclear Information System (INIS)

    Singer, C.E.; Post, D.E.; Mikkelsen, D.R.

    1986-07-01

    The purpose of BALDUR is to calculate the evolution of plasma parameters in an MHD equilibrium which can be approximated by concentric circular flux surfaces. Transport of up to six species of ionized particles, of electron and ion energy, and of poloidal magnetic flux is computed. A wide variety of source terms are calculated including those due to neutral gas, fusion, and auxiliary heating. The code is primarily designed for modeling tokamak plasmas but could be adapted to other toroidal confinement systems

  9. Using Field-Particle Correlations to Diagnose the Collisionless Damping of Plasma Turbulence

    Science.gov (United States)

    Howes, Gregory; Klein, Kristropher

    2016-10-01

    Plasma turbulence occurs ubiquitously throughout the heliosphere, yet our understanding of how turbulence governs energy transport and plasma heating remains incomplete, constituting a grand challenge problem in heliophysics. In weakly collisional heliospheric plasmas, such as the solar corona and solar wind, damping of the turbulent fluctuations occurs due to collisionless interactions between the electromagnetic fields and the individual plasma particles. A particular challenge in diagnosing this energy transfer is that spacecraft measurements are typically limited to a single point in space. Here we present an innovative field-particle correlation technique that can be used with single-point measurements to estimate the energization of the plasma particles due to the damping of the electromagnetic fields, providing vital new information about this how energy transfer is distributed as a function of particle velocity. This technique has the promise to transform our ability to diagnose the kinetic plasma physical mechanisms responsible for not only the damping of turbulence, but also the energy conversion in both collisionless magnetic reconnection and particle acceleration. The work has been supported by NSF CAREER Award AGS-1054061, NSF AGS-1331355, and DOE DE-SC0014599.

  10. Gyrokinetic particle simulation of neoclassical transport

    International Nuclear Information System (INIS)

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1995-01-01

    A time varying weighting (δf ) scheme for gyrokinetic particle simulation is applied to a steady-state, multispecies simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion--electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient-driven electron particle flux and the bootstrap current while reducing temperature gradient-driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, in the present work a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes is demonstrated. copyright 1995 American Institute of Physics

  11. Plasma based charged-particle accelerators

    International Nuclear Information System (INIS)

    Bingham, R; Mendonca, J T; Shukla, P K

    2004-01-01

    Studies of charged-particle acceleration processes remain one of the most important areas of research in laboratory, space and astrophysical plasmas. In this paper, we present the underlying physics and the present status of high gradient and high energy plasma accelerators. We will focus on the acceleration of charged particles to relativistic energies by plasma waves that are created by intense laser and particle beams. The generation of relativistic plasma waves by intense lasers or electron beams in plasmas is important in the quest for producing ultra-high acceleration gradients for accelerators. With the development of compact short pulse high brightness lasers and electron positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high acceleration gradients. These include the plasma beat wave accelerator mechanism, which uses conventional long pulse (∼100 ps) modest intensity lasers (I ∼ 10 14 -10 16 W cm -2 ), the laser wakefield accelerator (LWFA), which uses the new breed of compact high brightness lasers ( 10 18 W cm -2 , the self-modulated LWFA concept, which combines elements of stimulated Raman forward scattering, and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomena such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm -1 have been generated with particles being accelerated to 200 MeV over a distance of millimetre. Plasma wakefields driven by positron beams at the Stanford Linear Accelerator Center facility have accelerated the tail of the positron beam. In the near future

  12. A study on the fusion reactor - Numerical analyses of MHD equilibrium and= edge plasma transport in tokamak fusion reactor with divertor configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Kang, Kyung Doo; Ryu, Ji Myung; Kim, Deok Kyu; Chung, TaeKyun; Chung, Mo Se [Seoul National University, Seoul (Korea, Republic of); Cho, Su Won [Kyungki University, Suwon (Korea, Republic of)

    1995-08-01

    In the present project for developing the numerical codes of 2-D MHD equilibrium, edge plasma transport and neutral particle transport for the tokamak plasmas, we computed the MHD equilibria of single and double null configurations and determined the external coil currents and the plasma parameters used for operation and control data. Also we numerically acquired the distributions of edge plasma parameters in poloidal and radial directions= and the design-related values according to the various operating conditions using the developed plasma transport code. Furthermore, a neutral particle transport code for the edge region is developed and them used for the analysis of the neutral particle behavior yielding the source terms in the fluid transport equations, and expected to supply the input parameters for the edge plasma transport code. 53 refs., 12 tabs., 44 figs. (author)

  13. From particles to plasmas

    International Nuclear Information System (INIS)

    Van Dam, J.W.

    1989-01-01

    The title of this book, From Particles to Plasmas, has more than one meaning. First, it reflects how the scientific career of Marshall Rosenbluth has evolved, beginning in the field of elementary particle physics and extending into his major area of plasma physics. Secondly, it is meant to suggest the wide spectrum of subject matters addressed in the individual lectures, ranging from numerical simulation and space physics and accelerators to various subfields in the physics of plasmas. In the third place, the title is a reference to the way in which the theoretical description of plasmas is often constructed, namely starting from the motion of single particles and then incorporating collective effects. Most of the contributions in this book do concern various aspects of fusion plasma physics, which is the field in which most of Marshall Rosenbluth's scientific contributions have been and are being made. In this field his eminence and authority are indicated by the sobriquet pope of plasma physics that is often applied to him

  14. Joint proposal for US/USSR on nonlinear dynamics and plasma transport

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sagdeev, R.Z.

    1991-01-01

    This report discusses: convection-driven flow in plasma and fluids; particle transport and rotation damping by sound wave propagation along stochastic magnetic field lines; acceleration of charge article in a magnetic field by electromagnetic and electrostatic waves, lagrangian particle transport in time-dependent 20 flows; fast dynamo; 3D flows will stagnation points and vortices; Edge-localized modes in Tokamaks; and code development for nonlinear analysis and visualization. (LP)

  15. Dynamical Simulation of Recycling and Particle Fueling in TJ-II Plasmas

    International Nuclear Information System (INIS)

    Lopez-Bruna, D.; Ferreira, J. A.; Tabares, F. L.; Castejon, F.; Guasp, J.

    2007-01-01

    With the aim of improving the calculation tools for transport analysis in TJ-II plasmas, in this work we analyze the simplified model for a kinetic equation that ASTRA uses to calculate the neutral particle distribution in the plasma. Next, we act on the boundary conditions for this kinetic equation (particularly on the neutral density in the plasma boundary) so we can simulate the recycling conditions for the TJ-II in a simple way. With the resulting transport models we can easily analyze the sensibility of these plasmas to the cold gas puffing depending on the recycling conditions. These transport models evidence the problem of density control in the TJ-II. Likewise, we estimate the importance of recycling in the plasmas heated by energetic neutral beam injection. The experimentally observed increments in density when the energetic neutrals are injected would respond, according to the calculations here presented, to a large increment of the neutrals influx that cannot be explained by the beam itself. (Author) 22 refs

  16. Isotopic scaling of transport in deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Scott, S.D.; Murakami, M.; Adler, H.; Chang, Z.; Duong, H.; Grisham, L.R.; Fredrickson, E.D.; Grek, B.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jassby, D.L.; Johnson, D.W.; Johnson, L.C.; Loughlin, M.J.; Mansfield, D.K.; McGuire, K.M.; Meade, D.M.; Mikkelsen, D.M.; Murphy, J.; Park, H.K.; Ramsey, A.T.; Schivell, J.; Skinner, C.H.; Strachan, J.D.; Synakowski, E.J.; Taylor, G.; Thompson, M.E.; Wieland, R.; Zarnstorff, M.C.

    1995-01-01

    Both global and thermal energy confinement improve in high-temperature supershot plasmas in the Tokamak Fusion Test Reactor (TFTR) when deuterium beam heating is partially or wholly replaced by tritium beam heating. For the same heating power, the tritium-rich plasmas obtain up to 22% higher total energy, 30% higher thermal ion energy, and 20-25% higher central ion temperature. Kinetic analysis of the temperature and density profiles indicates a favorable isotopic scaling of ion heat transport and electron particle transport, with τ Ei (a/2) ∝ left angle A right angle 0.7-0.8 and τ pe (a) ∝ left angle A right angle 0.8 . (orig.)

  17. Evolution of α-particle distribution in burning plasmas including energy dependent α-transport effects

    International Nuclear Information System (INIS)

    Kamelander, G.; Sigmar, D.; Woloch, F.

    1991-09-01

    This report resumes the essential results of a common OEFZS/MIT (Plasma Fusion Center) project to investigate fusion alpha transport. A computer code has been developed going beyond standard FOKKER-PLANCK-codes assuming that the fusion products give their energy to the plasma on the place of their birth. The present transport code admits the calculation of the α-distribution function. By means of the distribution function the energy deposition rates are calculated. The time-evolution of the α-distribution function has been evaluated for an ignited plasma. A description of the transport code, of the subroutines and of the input data as well as a listing is enclosed to this report. (Authors)

  18. Plasmator. A numerical code for simulation of plasma transport in Tokamaks

    International Nuclear Information System (INIS)

    Guasp, J.

    1979-01-01

    Plasmator is a flexible monodimensional numerical code for plasma transport in Tokamaks of circular cross-section, it allows neutral particle transport and impurity effects. The code leaves a total freedom in the analytical form of transport coefficients. It has been writen in Fortran-V for the UNIVAC-1100/80 from JEN and allows for the possibility of graphics for radial profiles and temporal evolution of the main plasma magnitudes, as well in three-dimensional as in two-dimensional representation either on a Calcomp plotter or in the printer. (author)

  19. Transport in a fusion plasma in presence of a chaotic magnetic field

    International Nuclear Information System (INIS)

    Nguyen, F.

    1992-09-01

    In the tokamak Tore Supra, the magnetic field ensuring the confinement is stochastic at the plasma edge due to a resonant perturbation. This perturbation is created by a set of six helicoidal coils inside the vacuum vessel, the ergodic divertor. The first part of the study concerns the analysis of the transport of particles and energy in a fusion plasma in presence of a stochastic magnetic field, without physical wall. The effective transport of electrons, i.e. heat transport, increases. The ions transport increases too but less than heat transport. The discrepancy produces a mean radial electric field. The second part is devoted to the influence of the physical wall. The topology of the magnetic connexion on the wall is precisely determined with the code Mastoc. The transport of particles and energy is then described from the confined plasma until the wall. This study enlights severals important observations of the experience Tore Supra in the ergodic divertor configuration: the spreading of the power deposition on the wall components without anomalous concentration, the robustness of this configuration relatively to misalignment, the edge structures visible in H α light during plasma reattachment. In order to study the transport of impurity ions, a variational approach of minimum entropy production has been developped. This principle is applied to the calculation of the neoclassical diffusion of impurity ions with the radial electric field. This electric field deconfines ions if the pressure profile is not balanced by a Lorentz force, i.e. if the plasma is locked in rotation, poloidally and toroidally, because of magnetic perturbation or friction force

  20. Effects of varying the step particle distribution on a probabilistic transport model

    International Nuclear Information System (INIS)

    Bouzat, S.; Farengo, R.

    2005-01-01

    The consequences of varying the step particle distribution on a probabilistic transport model, which captures the basic features of transport in plasmas and was recently introduced in Ref. 1 [B. Ph. van Milligen et al., Phys. Plasmas 11, 2272 (2004)], are studied. Different superdiffusive transport mechanisms generated by a family of distributions with algebraic decays (Tsallis distributions) are considered. It is observed that the possibility of changing the superdiffusive transport mechanism improves the flexibility of the model for describing different situations. The use of the model to describe the low (L) and high (H) confinement modes is also analyzed

  1. Simulation analysis of dust-particle transport in the peripheral plasma in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Masuzaki, Suguru; Kawamura, Gakushi; Yamada, Hiroshi; Tanaka, Yasunori; Uesugi, Yoshihiko; Pigarov, Alexander Yu.; Smirnov, Roman D.

    2014-01-01

    The function of the peripheral plasma in the Large Helical Device (LHD) on transport of dusts is investigated using a dust transport simulation code (DUSTT) in a non-axisymmetric geometry. The simulation shows that the transport of the dusts is dominated by the plasma flow (mainly by ion drag force) formed in the peripheral plasma. The trajectories of dusts are investigated in two probable situations: release of spherical iron dusts from the inboard side of the torus, and drop of spherical carbon dusts from a divertor plate installed near an edge of an upper port. The trajectories in these two situations are calculated in various sized dust cases. From a viewpoint of protection of the main plasma from dust penetration, it proves that there are two functions in the LHD peripheral plasma. One is sweeping of dusts by the effect of the plasma flow in the divertor legs, and another one is evaporation/sublimation of dusts by heat load onto the dusts in the ergodic layer. (author)

  2. The Efficiency of Quartz Particles Evaporation in the Argon Plasma Flow of the RF Inductively Coupled Plasma Torch

    Directory of Open Access Journals (Sweden)

    Yu. M. Grishin

    2017-01-01

    Full Text Available Owing to high-power density and high-purity plasma, a RF inductively coupled plasma torch (ICPT is widely used both in research laboratory and in industry. The potential RF ICPT application areas are powders spheroidisation, waste treatment, thermal spraying, etc.In the last decade the investigation was focused on the treatment processes of quartz into polycrystalline silicon. An analysis of these results has shown that the increasing productivity and producing high-purity silicon can be achieved only when using the electrodeless radio-frequency induction plasma torches and in case the optimum conditions for evaporation of SiO2solid particles are realized.Optimization of the RF ICPT design and power parameters calls for a wide range of computational studies. In spite of the fact that to date a large number of efforts to calculate the evaporation efficiency of powder materials have been made, a number of issues, as applied to the problem of obtaining silicon, require further research.In this paper, we present the results of a two-dimensional numerical simulation of the heating and evaporation of quartz particles in the RF ICPT channel with axial flow of gases. The main aim is to determine how the axial position of the central tube (through which the particles are injected into the discharge zone, the dispersion of the quartz powder, the amplitude of the discharge current (and, respectively, flow regimes impact on the evaporation efficiency of quartz particles.The paper presented the numerical modeling results of heating and evaporation processes of quartz particles supplied by transporting gas to the RF ICPT channel with axial gas flow (argon. Defined the impact of the axial position of the central tube, the plasma flow regime, the discharge current, the flow rate of transporting gas, and other parameters on the evaporation efficiency of quartz particles.It is shown that the evaporation efficiency of particles reaches its maximum when their

  3. Drift-Alfven wave mediated particle transport in an elongated density depression

    International Nuclear Information System (INIS)

    Vincena, Stephen; Gekelman, Walter

    2006-01-01

    Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii ρ s =c s /ω ci . The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k perpendicular ρ s ∼0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles

  4. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  5. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor

  6. Fast transient transport phenomena measured by soft X-ray emission in TCV tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Furno, I. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-08-01

    Energy and particle transport during sawtooth activity in TCV plasmas has been studied in this thesis with high temporal resolution many chord diagnostics. We indicated the influence of sawteeth on plasma profiles in ohmic conditions and in the presence of auxiliary electron cyclotron resonance heating and current drive. A 2-dimensional model for heat transport, including localised heat source and a magnetic island, has been used to interpret the experimental observations. These results provided a new interpretation of a coupled heat and transport phenomenon which is potentially important for plasma confinement. The observations validate the applicability and show the possibility of improvement of a 2-dimensional theoretic a1 model for the study of heat transport in the presence of localised heat source and a magnetic island. Furthermore, the TCV results showed a new possibility for the interpretation of a coupled heat and particle transport phenomenon previously understood only in stellarators. (author)

  7. Discrete particle noise in particle-in-cell simulations of plasma microturbulence

    International Nuclear Information System (INIS)

    Nevins, W.M.; Hammett, G.W.; Dimits, A.M.; Dorland, W.; Shumaker, D.E.

    2005-01-01

    Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence with the global particle-in-cell (PIC) code GTC [Z. Lin et al., Proceedings of the 20th Fusion Energy Conference, Vilamoura, Portugal, 2004 (IAEA, Vienna, 2005)] yielded different results from earlier flux-tube continuum code simulations [F. Jenko and W. Dorland, Phys. Rev. Lett. 89, 225001 (2002)] despite similar plasma parameters. Differences between the simulation results were attributed to insufficient phase-space resolution and novel physics associated with global simulation models. The results of the global PIC code are reproduced here using the flux-tube PIC code PG3EQ [A. M. Dimits et al., Phys. Rev. Lett. 77, 71 (1996)], thereby eliminating global effects as the cause of the discrepancy. The late-time decay of the ETG turbulence and the steady-state heat transport observed in these PIC simulations are shown to result from discrete particle noise. Discrete particle noise is a numerical artifact, so both these PG3EQ simulations and, by inference, the GTC simulations that they reproduced have little to say about steady-state ETG turbulence and the associated anomalous heat transport. In the course of this work several diagnostics are developed to retrospectively test whether a particular PIC simulation is dominated by discrete particle noise

  8. Turbulence and intermittent transport at the boundary of magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2005-01-01

    Numerical fluid simulations of interchange turbulence for geometry and parameters relevant to the boundary region of magnetically confined plasmas are shown to result in intermittent transport qualitatively similar to recent experimental measurements. The two-dimensional simulation domain features...... a forcing region with spatially localized sources of particles and heat outside which losses due to the motion along open magnetic-field lines dominate, corresponding to the edge region and the scrape-off layer, respectively. Turbulent states reveal intermittent eruptions of hot plasma from the edge region...... fluctuation wave forms and transport statistics are also in a good agreement with those derived from the experiments. Associated with the turbulence bursts are relaxation oscillations in the particle and heat confinements as well as in the kinetic energy of the sheared poloidal flows. The formation of blob...

  9. Experimental investigation of turbulent transport at the edge of a tokamak plasma

    International Nuclear Information System (INIS)

    Fedorczak, N.

    2010-01-01

    This manuscript is devoted to the experimental investigation of particle transport in the edge region of the tokamak Tore Supra. The first part introduces the motivations linked to energy production, the principle of a magnetic confinement and the elements of physics essential to describe the dynamic of the plasma at the edge region. From data collected by a set of Langmuir probes and a fast visible imaging camera, we demonstrate that the particle transport is dominated by the convection of plasma filaments, structures elongated along magnetic field lines. They present a finite wave number, responsible for the high enhancement of the particle flux at the low field side of the tokamak. This leads to the generation of strong parallel flows, and the strong constraint of filament geometry by the magnetic shear. (author)

  10. Plasma physics via particle simulation

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1981-01-01

    Plasmas are studied by following the motion of many particles in applied and self fields, analytically, experimentally and computationally. Plasmas for magnetic fusion energy devices are very hot, nearly collisionless and magnetized, with scale lengths of many ion gyroradii and Debye lengths. The analytic studies of such plasmas are very difficult as the plasma is nonuniform, anisotropic and nonlinear. The experimental studies have become very expensive in time and money, as the size, density and temperature approach fusion reactor values. Computational studies using many particles and/or fluids have complemented both theories and experiments for many years and have progressed to fully three dimensional electromagnetic models, albeit with hours of running times on the fastest largest computers. Particle simulation methods are presented in some detail, showing particle advance from acceleration to velocity to position, followed by calculation of the fields from charge and current densities and then further particle advance, and so on. Limitations due to the time stepping and use of a spatial grid are given, to avoid inaccuracies and instabilities. Examples are given for an electrostatic program in one dimension of an orbit averaging program, and for a three dimensional electromagnetic program. Applications of particle simulations of plasmas in magnetic and inertial fusion devices continue to grow, as well as to plasmas and beams in peripheral devices, such as sources, accelerators, and converters. (orig.)

  11. Transport processes in multicomponent plasma

    International Nuclear Information System (INIS)

    Zissis, G.

    2002-01-01

    Full text: This book treats in detail, as indicated in the title, the transport phenomena in multicomponent plasmas. Here, the term 'transport' applies to the study of mass and energy transfer in plasmas due to the interactions between pairs of particles only. Radiation is legitimately omitted; anyway, radiative transfer is another field of study. As the author himself mentions in the introduction, 'the term multicomponent plasma implies a partially or fully ionized mixture of arbitrary number of species of neutral and charged particles satisfying the condition of quasi-neutrality'. In fact, this book treats a large variety of plasmas applying to different systems ranging from low-pressure systems which may be far from local thermodynamic equilibrium (LTE) conditions, to thermal plasmas in LTE or near-LTE states with special attention to two-temperature systems; partially ionized plasmas with low ionization degree for which electron-neutral interactions are predominant, to systems with higher ionization degrees in which charged particle interactions are no more negligible. In addition, for all the above stated situations, the author treats both plasmas which are subjected to an external electromagnetic field and those which are not (homogeneous and inhomogeneous cases). Furthermore, in the last chapters a special discussion concerning molecular plasmas is presented. Taking into account the evolution of plasma modelling in the last few years, the subject is of current interest and the reader will find in the book a large amount of information necessary for a good understanding of transport phenomena in plasmas: for a plasma simulation specialist, this book may be regarded as reference text, which includes all necessary mathematical relations for his work. However, it should not be considered a simple formulary; the reader will also find here an excellent description of the theoretical basis necessary for the derivation of all given expressions. To this point of view

  12. Particle melting and particle/plasma interactions in DC and RF plasmas: a modeling study. (Volumes I and II)

    International Nuclear Information System (INIS)

    Wei, D.Y.C.

    1987-01-01

    Integral process models were developed to predict particle melting in both DC and RF plasmas. Specifically, a numerical model has been developed to predict the temperature history of particles injected in a low pressure DC plasma jet. The temperature and velocity fields of the plasma jet are predicted as a free jet by solving the parabolized Navier-Stokes equations using a spatial marching scheme. Correction factors were introduced to take into account non continuum effects encountered in the low pressure environment. The plasma jet profiles as well as the particle/plasma interactions under different jet pressure ratios (from underexpanded to overexpanded) were investigated. The flow and temperature fields in the RF plasma torch are calculated using the axisymmetric Navier-Stokes equations based on the primitive variables, along with pseudo two-dimensional electromagnetic field equations. Particle trajectories and heat transfer characteristics in both DC and RF plasmas are calculated using predicted plasma jet profiles. Particle melting efficiencies in both DC and RF plasmas are evaluated and compared using model alloy systems. Based on the theoretical considerations, an alternative route of plasma spraying process (hybrid plasma spraying process) is proposed. An evaluation of particle melting in hybrid plasma jets had indicated that further improvement in deposit properties could be made

  13. Dust particle diffusion in ion beam transport region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  14. Macroscopic cross sections for analyzing the transport of neutral particles in plasmas

    International Nuclear Information System (INIS)

    Suzuki, Tadakazu; Taji, Yuukichi; Nakahara, Yasuaki

    1975-05-01

    Algorithms have been developed for calculating the ionization and charge exchange cross sections required for analyzing the neutral transport in plasmas. In our algorithms, the integration of the expression for reaction rate of neutrals with plasmas is performed by expanding the integrand with the use of polynomials. At present, multi-energy-group sets of the cross sections depending on plasma temperature and energy of neutrals can be prepared by means of Maxwellian averages over energy. Calculational results are printed out in the FIDO format. Some numerical examples are given for several forms of spatial distributions assumed for the plasma ion temperature and source neutral energy. (auth.)

  15. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-β micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient

  16. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-..beta.. micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient.

  17. About relaxation phenomena and transport processing in a fully ionized non-ideal plasma

    International Nuclear Information System (INIS)

    Baimbetov, F.B.; Iztleuov, N.T.

    1999-01-01

    In this report correlation effects for non-ideal plasma are accounted in the so called pseudopotentials. The accounting of high order correlation influences in the pseudopotential lead to the strongly screened potential. Kinetic equation with pseudopotential is cited. The equations which describe the relaxation of the difference of directed velocities of plasma particles, and frequency of particle collision which determines relaxation of temperature for non-ideal plasma are obtained. On basis of mentioned kinetic equation the transport equation is obtained as well

  18. Impact of the plasma response in three-dimensional edge plasma transport modelling for RMP ELM control scenarios at ITER

    Science.gov (United States)

    Schmitz, Oliver

    2014-10-01

    The constrains used in magneto-hydrodynamic (MHD) modeling of the plasma response to external resonant magnetic perturbation (RMP) fields have a profound impact on the three-dimensional (3-D) shape of the plasma boundary induced by RMP fields. In this contribution, the consequences of the plasma response on the actual 3D boundary structure and transport during RMP application at ITER are investigated. The 3D fluid plasma and kinetic neutral transport code EMC3-Eirene is used for edge transport modeling. Plasma response modeling is conducted with the M3D-C1 code using a single fluid, non-linear and a two fluid, linear MHD constrain. These approaches are compared to results with an ideal MHD like plasma response. A 3D plasma boundary is formed for all cases consisting of magnetic finger structures at the X-point intersecting the divertor surface in a helical footprint pattern. The width of the helical footprint pattern is largely reduced compared to vacuum magnetic fields when using the ideal MHD like screening model. This yields increasing peak heat fluxes in contrast to a beneficial heat flux spreading seen with vacuum fields. The particle pump out as well as loss of thermal energy is reduced by a factor of two compared to vacuum fields. In contrast, the impact of the plasma response obtained from both MHD constrains in M3D-C1 is nearly negligible at the plasma boundary and only a small modification of the magnetic footprint topology is detected. Accordingly, heat and particle fluxes on the target plates as well as the edge transport characteristics are comparable to the vacuum solution. This span of modeling results with different plasma response models highlights the importance of thoroughly validating both, plasma response and 3D edge transport models for a robust extrapolation towards ITER. Supported by ITER Grant IO/CT/11/4300000497 and F4E Grant GRT-055 (PMS-PE) and by Start-Up Funds of the University of Wisconsin - Madison.

  19. Integrated transport code system for a multicomponent plasma in a gas dynamic trap

    International Nuclear Information System (INIS)

    Anikeev, A.V.; Karpushov, A.N.; Noak, K.; Strogalova, S.L.

    2000-01-01

    This report is focused on the development of the theoretical and numerical models of multicomponent high-β plasma confinement and transport in the gas-dynamic trap (GDT). In order to simulate the plasma behavior in the GDT as well as that in the GDT-based neutron source the Integrated Transport Code System is developed from existing stand-alone codes calculating the target plasma, the fast ions and the neutral gas in the GDT. The code system considers the full dependence of the transport phenomena on space, time, energy and angle variables as well as the interactions between the particle fields [ru

  20. Transport of carbon ion test particles and hydrogen recycling in the plasma of the Columbia tokamak ''HBT'' [High Beta Tokamak

    International Nuclear Information System (INIS)

    Wang, Jian-Hua.

    1990-01-01

    Carbon impurity ion transport is studied in the Columbia High Beta Tokamak (HBT), using a carbon tipped probe which is inserted into the plasma (n e ∼ 1 - 5 x 10 14 (cm -3 ), T e ∼ 4 - 10 (eV), B t ∼ 0.2 - 0.4(T)). Carbon impurity light, mainly the strong lines of C II (4267A, emitted by the C + ions) and C III (4647A, emitted by the C ++ ions), is formed by the ablation or sputtering of plasma ions and by the discharge of the carbon probe itself. The diffusion transport of the carbon ions is modeled by measuring the space-and-time dependent spectral light emission of the carbon ions with a collimated optical beam and photomultiplier. The point of emission can be observed in such a way as to sample regions along and transverse to the toroidal magnetic field. The carbon ion diffusion coefficients are obtained by fitting the data to a diffusion transport model. It is found that the diffusion of the carbon ions is ''classical'' and is controlled by the high collisionality of the HBT plasma; the diffusion is a two-dimensional problem and the expected dependence on the charge of the impurity ion is observed. The measurement of the spatial distribution of the H α emissivity was obtained by inverting the light signals from a 4-channel polychromator, the data were used to calculate the minor-radial influx, the density, and the recycling time of neutral hydrogen atoms or molecules. The calculation shows that the particle recycling time τ p is comparable with the plasma energy confinement time τ E ; therefore, the recycling of the hot plasma ions with the cold neutrals from the walls is one of the main mechanisms for loss of plasma energy

  1. Transport of plasma across a braided magnetic field

    International Nuclear Information System (INIS)

    Stix, T.H.

    1976-10-01

    Transport rates are calculated for a plasma immersed in a region through which magnetic lines of force meander in a stochastic fashion and in which the magnetic surfaces are destroyed. Such a magnetic condition, termed magnetic braiding, may be brought about by asymmetric magnetic perturbations, perhaps quite weak, which typically produce overlap of two sets of magnetic islands. Plasma transport is calculated for this environment, using both a fluid and a kinetic drift model. The latter gives an appreciably higher rate, namely, a fast-particle diffusion coefficient equal to ( 1 / 2 )D/sub M/ [absolute value of v/sub ''/], where D/sub M/ is the coefficient of spatial diffusion for the magnetic lines of force. Correction terms, due to polarization-associated E/sub ''/ fields, are small unless components of the braiding field resonate with ion-acoustic or drift waves. Insertion of a Bhatnager--Gross--Krook collision term shows the diffusion rate is unaffected by weak collisions. Diffusion due to magnetic braiding is of interest for tokamaks, particularly with respect to enhanced electron heat transport, enhanced current penetration, plasma disruption, and internal sawtooth oscillations

  2. A 3D Monte Carlo code for plasma transport in island divertors

    International Nuclear Information System (INIS)

    Feng, Y.; Sardei, F.; Kisslinger, J.; Grigull, P.

    1997-01-01

    A fully 3D self-consistent Monte Carlo code EMC3 (edge Monte Carlo 3D) for modelling the plasma transport in island divertors has been developed. In a first step, the code solves a simplified version of the 3D time-independent plasma fluid equations. Coupled to the neutral transport code EIRENE, the EMC3 code has been used to study the particle, energy and neutral transport in W7-AS island divertor configurations. First results are compared with data from different diagnostics (Langmuir probes, H α cameras and thermography). (orig.)

  3. New Developments In Particle Image Velocimetry (PIV) For The Study Of Complex Plasmas

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Fisher, Ross; Shaw, Joseph; Jefferson, Robert; Cianciosa, Mark; Williams, Jeremiah

    2011-01-01

    Particle Image Velocimetry (PIV) is a fluid measurement technique in which the average displacement of small groups of particles is made by comparing a pair of images that are separated in time by an interval Δt. For over a decade, a several variations of the PIV technique, e.g., two-dimensional, stereoscopic, and tomographic PIV, have been used to characterize particle transport, instabilities, and the thermal properties of complex plasmas. This paper describes the basic principles involved in the PIV analysis technique and discusses potential future applications of PIV to the study of complex plasmas.

  4. Transport quasiparticles and transverse interactions in quark-gluon plasmas

    International Nuclear Information System (INIS)

    Baym, Gordon

    1996-01-01

    Calculations of the properties of interacting quark-gluon plasmas are beset by infrared divergences associated with the fact that magnetic interactions, i.e., those occurring through exchange of transverse gluons, are, in the absence of a 'magnetic mass''in QCD, not screened. In this lecture we discuss the effects of magnetic interactions on the transport coefficients and the quasiparticle structure of quark-gluon plasmas. We describe how inclusion of dynamical screening effects - corresponding to Landau damping of the virtual quanta exchanged - leads to finite transport scattering rates. In the weak coupling limit, dynamical screening effects dominate over a magnetic mass. We illustrate the breakdown of the quasi particle structure of degenerate plasmas caused by long-ranged magnetic interactions, describe the structure of fermion quasiparticles in hot relativistic plasmas, and touch briefly on the problem of the lifetime of quasiparticle in the presence of long-ranged magnetic interactions. (author)

  5. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhihong [Univ. of California, Irvine, CA (United States)

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.

  6. A study on tokamak fusion reactor - Numerical analyses of MHD equilibrium= and edge plasma transport in tokamak fusion reactor with divertor configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Lim, Ki Hang; Kang, Kyung Doo; Ryu, Ji Myung; Kim, Duk Kyu [Seoul National University, Seoul (Korea, Republic of); Cho, Soo Won [Kyungki Unviersity, Suwon (Korea, Republic of)

    1995-08-01

    In the present project for developing the numerical codes of 2-DMHD equilibrium, edge plasma transport and neutral particle transport for the tokamak plasmas, we compute the plasma equilibrium of double null type and calculate the external coil currents and the plasma parameters used for operation and control data. Also the numerical algorithm is developed to analyse the behavior of edge plasmas in poloidal and radial directions and the programming and debugging of a 2-D transport code are completed. Furthermore, a neutral particle transport code for the edge region is developed and then used for the analysis of the neutral transport phenomena giving the sources in the fluid equations, and expected to supply the input parameters for the edge plasma transport code. 34 refs., 5 tabs., 28 figs. (author)

  7. Transport of a multiple ion species plasma in the Pfirsch--Schluter regime

    International Nuclear Information System (INIS)

    Hirshman, S.P.

    1976-10-01

    The classical parallel friction coefficients, which relate the collisional friction forces to the flow of particles and heat along the magnetic field, are calculated for a multiple ion species plasma. In the short mean free path regime, the neoclassical Pfirsch--Schlueter transport coefficients for a toroidally confined multispecies plasma are computed in terms of the classical friction coefficients. The dependence of the neoclassical cross-field transport on the equilibration of the parallel ion temperature profiles is determined

  8. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  9. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  10. Plasma wall particle balance in Tore Supra

    International Nuclear Information System (INIS)

    Grisolia, C.; Ghendrih, P.; Pegourie, B.; Grosman, A.

    1992-01-01

    A comprehensive study of the particle balance between the carbon wall and the plasma is presented. One finds that the effective particle content of the wall which governs the plasma equilibrium density departs from the deposited number of particles. This effect is dominant for the fully desaturated wall. A scaling law of the plasma density in terms of the wall effective particle content has been obtained. Moreover, the experimental data allows to estimate the plasma particle confinement time. Values ranging from 0.2 s to 0.5 s are found depending on the density. An analytical functional dependence of the particle confinement time is obtained

  11. Gyrokinetic particle-in-cell simulations of plasma microturbulence on advanced computing platforms

    International Nuclear Information System (INIS)

    Ethier, S; Tang, W M; Lin, Z

    2005-01-01

    Since its introduction in the early 1980s, the gyrokinetic particle-in-cell (PIC) method has been very successfully applied to the exploration of many important kinetic stability issues in magnetically confined plasmas. Its self-consistent treatment of charged particles and the associated electromagnetic fluctuations makes this method appropriate for studying enhanced transport driven by plasma turbulence. Advances in algorithms and computer hardware have led to the development of a parallel, global, gyrokinetic code in full toroidal geometry, the gyrokinetic toroidal code (GTC), developed at the Princeton Plasma Physics Laboratory. It has proven to be an invaluable tool to study key effects of low-frequency microturbulence in fusion plasmas. As a high-performance computing applications code, its flexible mixed-model parallel algorithm has allowed GTC to scale to over a thousand processors, which is routinely used for simulations. Improvements are continuously being made. As the US ramps up its support for the International Tokamak Experimental Reactor (ITER), the need for understanding the impact of turbulent transport in burning plasma fusion devices is of utmost importance. Accordingly, the GTC code is at the forefront of the set of numerical tools being used to assess and predict the performance of ITER on critical issues such as the efficiency of energy confinement in reactors

  12. Ballooning mode instability due to slowed-down ALPHA -particles and associated transport

    International Nuclear Information System (INIS)

    Itoh, Sanae; Itoh, Kimitaka; Tuda, Takashi; Tokuda, Shinji.

    1982-01-01

    The microscopic stability of tokamak plasma, which contains slowed-down alpha-particles and the anomalous fluxes enhanced by the fluctuation, was studied. The local maxwellian distribution with the density inhomogeneity as the equilibrium distribution of electrons, ions and alpha-particles was closen. In the zero-beta limit, two branches of eigenmodes, which are electrostatic, were obtained. The electrostatic ballooning mode became unstable by the grad B drift of particles in the toroidal plasma. It should be noted that there was no critical alpha-particle density and no critical beta-value for the onset of the instability in toroidal plasma even in the presence of the magnetic shear. When the beta-value exceeded the critical beta-value of the MHD ballooning mode, the growth rate approached to that of the MHD mode, and the mode sturcture became very close to that of the MHD mode. The unstable mode in toroidal plasma was the ballooning mode, and was unstable for all plasma parameters. The associated cross-field transport by the ballooning mode is considered. It was found that if the distribution function was assumed to be the birth distribution, the loss rate was very slow and slower than the slowing down time. The effect of alpha-particles on the large scale MHD activity of plasma is discussed. (Kato, T.)

  13. Transport Studies in Alcator C-Mod ITB Plasmas

    Science.gov (United States)

    Fiore, C. L.; Bonoli, P. T.; Ernst, D.; Greenwald, M. J.; Ince-Cushman, A.; Lin, L.; Marmar, E. S.; Porkolab, M.; Rice, J. E.; Wukitch, S.; Rowan, W.; Bespamyatnov, I.; Phillips, P.

    2008-11-01

    Internal transport barriers occur in C-Mod plasmas that have off-axis ICRF heating and also in Ohmic H-mode plasmas. These ITBs are marked by highly peaked density and pressure profiles, as they rely on a reduction of particle and thermal flux in the barrier region which allows the neoclassical pinch to peak the central density without reducing the central temperature. Enhancement of several core diagnostics has resulted in increased understanding of C-Mod ITBs. Ion temperature profile measurements have been obtained using an innovative design for x-ray crystal spectrometry and clearly show a barrier forming in the ion temperature profile. The phase contrast imaging (PCI) provides limited localization of the ITB related fluctuations that increase in strength as the central density increases. Simulation of triggering conditions, integrated simulations with fluctuation measurements, parametric studies, and transport implications of fully ionized boron impurity profiles in the plasma are under study. A summary of these results will be presented.

  14. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    International Nuclear Information System (INIS)

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  15. Cross-field blob transport in tokamak scrape-off-layer plasmas

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Myra, J.R.; Krasheninnikov, S.I.

    2002-01-01

    Recent measurements show that nondiffusive, intermittent transport of particles can play a major role in the scrape-off-layer (SOL) of fusion experiments. A possible mechanism for fast convective plasma transport is related to the plasma filaments or 'blobs' observed in the SOL with fast cameras and probes. In this paper, physical arguments suggesting the importance of blob transport [S. I. Krasheninnikov, Phys. Lett. A 283, 368 (2001)] have been extended by calculations using a three-field fluid model, treating the blobs as coherent propagating structures. The properties of density, temperature and vorticity blobs, and methods of averaging over ensembles of blobs to get the average SOL profiles, are illustrated. The role of ionization of background neutrals in sustaining the density blob transport is also discussed. Many qualitative features of the experiments, such as relatively flat density profiles and transport coefficients increasing toward the wall, are shown to emerge naturally from the blob transport paradigm

  16. Edge plasma control: Particle channeling in Tore Supra pump limiter and ergodic divertor

    International Nuclear Information System (INIS)

    Ghendrih, P.; Samain, A.; Grosman, A.; Capes, H.; Morera, J.P.

    1989-01-01

    Improved pumping efficiency can be achieved on Tore Supra by channeling process for particles, i.e. channeling of neutrals in the throat of pump limiters and channeling of plasma towards neutralizer plates in the ergodic divertor. The plugging length for the pump limiter throat is computed and numerical evidence of plasma flux channeling between the conductor bars of the ergodic divertor is presented. The effect of the Tore Supra ergodic divertor on edge plasma state and edge plasma transport is discussed. (orig.)

  17. Gyrokinetic modelling of the quasilinear particle flux for plasmas with neutral-beam fuelling

    Science.gov (United States)

    Narita, E.; Honda, M.; Nakata, M.; Yoshida, M.; Takenaga, H.; Hayashi, N.

    2018-02-01

    A quasilinear particle flux is modelled based on gyrokinetic calculations. The particle flux is estimated by determining factors, namely, coefficients of off-diagonal terms and a particle diffusivity. In this paper, the methodology to estimate the factors is presented using a subset of JT-60U plasmas. First, the coefficients of off-diagonal terms are estimated by linear gyrokinetic calculations. Next, to obtain the particle diffusivity, a semi-empirical approach is taken. Most experimental analyses for particle transport have assumed that turbulent particle fluxes are zero in the core region. On the other hand, even in the stationary state, the plasmas in question have a finite turbulent particle flux due to neutral-beam fuelling. By combining estimates of the experimental turbulent particle flux and the coefficients of off-diagonal terms calculated earlier, the particle diffusivity is obtained. The particle diffusivity should reflect a saturation amplitude of instabilities. The particle diffusivity is investigated in terms of the effects of the linear instability and linear zonal flow response, and it is found that a formula including these effects roughly reproduces the particle diffusivity. The developed framework for prediction of the particle flux is flexible to add terms neglected in the current model. The methodology to estimate the quasilinear particle flux requires so low computational cost that a database consisting of the resultant coefficients of off-diagonal terms and particle diffusivity can be constructed to train a neural network. The development of the methodology is the first step towards a neural-network-based particle transport model for fast prediction of the particle flux.

  18. Highly radiative plasmas for local transport studies and power and particle handling in reactor regimes

    International Nuclear Information System (INIS)

    Hill, K.W.; Bell, M.G.; Budny, R.

    1999-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into TFTR supershots and high-l i plasmas. At neutral beam injection (NBI) powers P B ≥ 30 MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both D and DT plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in ITER. The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms. (author)

  19. Highly radiative plasmas for local transport studies and power and particle handling in reactor regimes

    International Nuclear Information System (INIS)

    Hill, K.W.; Bell, M.G.; Budny, R.

    2001-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into TFTR supershots and high-l i plasmas. At neutral beam injection (NBI) powers P B ≤30MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both D and DT plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in ITER. The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms. (author)

  20. One possible method of mathematical modeling of turbulent transport processes in plasma

    International Nuclear Information System (INIS)

    Skvortsova, Nina N.; Batanov, German M.; Petrov, Alexander E.; Pshenichnikov, Anton A.; Sarksyan, Karen A.; Kharchev, Nikolay K.; Bening, Vladimir E.; Korolev, Victor Yu.

    2003-01-01

    It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in plasma of the L-2M stellarator and the TAU-1 linear device, the increments of the process of local fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians. (author)

  1. Plasma features and alpha particle transport in low-aspect ratio tokamak reactor

    International Nuclear Information System (INIS)

    Xu Qiang; Wang Shaojie

    1997-06-01

    The results of the experiment and theory from low-aspect ratio tokamak devices have proved that the MHD stability will be improved. Based on present plasma physics and extrapolation to reduced aspect ratio, the feature of physics of low-aspect ratio tokamak reactor is discussed primarily. Alpha particle confinement and loss in the self-justified low-aspect ratio tokamak reactor parameters and the effect of alpha particle confinement and loss for different aspect ratio are calculated. The results provide a reference for the feasible research of compact tokamak reactor. (9 refs., 2 figs., 3 tabs.)

  2. Two-dimensional transport of tokamak plasmas

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Jardin, S.C.

    1979-01-01

    A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape

  3. Drift-Alfvén wave mediated particle transport in an elongated density depression

    Science.gov (United States)

    Vincena, Stephen; Gekelman, Walter

    2006-06-01

    Cross-field particle transport due to drift-Alfvén waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28ρs=cs/ωci. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k ⊥ρs˜0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.

  4. Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Landreman, M., E-mail: mattland@umd.edu [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Smith, H. M.; Helander, P. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Mollén, A. [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden)

    2014-04-15

    In this work, we examine the validity of several common simplifying assumptions used in numerical neoclassical calculations for nonaxisymmetric plasmas, both by using a new continuum drift-kinetic code and by considering analytic properties of the kinetic equation. First, neoclassical phenomena are computed for the LHD and W7-X stellarators using several versions of the drift-kinetic equation, including the commonly used incompressible-E × B-drift approximation and two other variants, corresponding to different effective particle trajectories. It is found that for electric fields below roughly one third of the resonant value, the different formulations give nearly identical results, demonstrating the incompressible E × B-drift approximation is quite accurate in this regime. However, near the electric field resonance, the models yield substantially different results. We also compare results for various collision operators, including the full linearized Fokker-Planck operator. At low collisionality, the radial transport driven by radial gradients is nearly identical for the different operators; while in other cases, it is found to be important that collisions conserve momentum.

  5. Turbulence spectra, transport, and E × B flows in helical plasmas

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Nunami, M.; Sugama, H.; Satake, S.; Matsuoka, S.; Ishizawa, A.; Tanaka, K.; Maeyama, Shinya

    2012-11-01

    Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation by turbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic E × B flows determined by the ambipolarty condition for neoclassical particle fluxes. (author)

  6. Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-02-01

    Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order υ alpha ∼ (P RF /n α ε 0 ) ρ p , where P RF is the ICRF-wave power density, n α is the alpha density, ε 0 is the alpha birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs

  7. Final technical report on studies of plasma transport

    International Nuclear Information System (INIS)

    O'Neil, T.M.; Driscoll, C.F.; Malmberg, J.H.

    1997-01-01

    This document gives an overview of the scientific results obtained under the DOE grant, and references the journal articles which give more complete descriptions of the various topics. Recently, the research has been focused on 2-dimensional vortices and turbulence: experiments using a new camera-diagnosed electron plasma apparatus have given surprising results which both clarify and challenge theories. Here, the crossfield E x B flow of the electron plasma is directly analogous to the 2-d flow of an ideal fluid such as water, and may also give insight into more complicated poloidal flows exhibited in toroidal plasmas. The shear-flow instabilities, turbulence, and vortices can be accurately observed, and the free relaxation of this turbulence has been characterized. The physical processes underlying the complicated turbulent evolution can also be studied in more controlled near-linear regimes. The original experimental focus of this program was on radial particle transport from applied external field asymmetries. Here, this research program clearly identified the importance of the collective response of the plasma, giving smaller fields from shielding, or enhanced fields from resonant modes. Experiments and theory work have also elucidated the flow of a plasma along the magnetic field. Finally, some theory was pursued for direct application to fusion plasmas, and to gravitating gas clouds in astrophysics. This program was highly successful in clarifying basic plasma transport processes

  8. Calculation of Transport Coefficients in Dense Plasma Mixtures

    Science.gov (United States)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during

  9. A quasi-linear gyrokinetic transport model for tokamak plasmas

    International Nuclear Information System (INIS)

    Casati, A.

    2009-10-01

    After a presentation of some basics around nuclear fusion, this research thesis introduces the framework of the tokamak strategy to deal with confinement, hence the main plasma instabilities which are responsible for turbulent transport of energy and matter in such a system. The author also briefly introduces the two principal plasma representations, the fluid and the kinetic ones. He explains why the gyro-kinetic approach has been preferred. A tokamak relevant case is presented in order to highlight the relevance of a correct accounting of the kinetic wave-particle resonance. He discusses the issue of the quasi-linear response. Firstly, the derivation of the model, called QuaLiKiz, and its underlying hypotheses to get the energy and the particle turbulent flux are presented. Secondly, the validity of the quasi-linear response is verified against the nonlinear gyro-kinetic simulations. The saturation model that is assumed in QuaLiKiz, is presented and discussed. Then, the author qualifies the global outcomes of QuaLiKiz. Both the quasi-linear energy and the particle flux are compared to the expectations from the nonlinear simulations, across a wide scan of tokamak relevant parameters. Therefore, the coupling of QuaLiKiz within the integrated transport solver CRONOS is presented: this procedure allows the time-dependent transport problem to be solved, hence the direct application of the model to the experiment. The first preliminary results regarding the experimental analysis are finally discussed

  10. Transport barriers with and without shear flows in a magnetized plasma

    International Nuclear Information System (INIS)

    Martinell, Julio J.

    2014-01-01

    Different ways of producing a transport barrier in a toroidal magnetized plasma are discussed and the properties of the barriers are analyzed. The first mechanism is associated with the presence of a sheared plasma flow that is present in a limited region of the plasma, which creates a zonal flow. In contrast to the usual paradigm stating that the sheared flow reduces the turbulence correlation length and leads to suppression of the fluctuation driven transport in the region of highest shear, it is shown that from the perspective of chaotic transport of plasma particles in the fluctuation fields, the transport barrier is formed in the region of zero shear and it can be destroyed when the fluctuation level is high enough. It is also shown that finite gyroradius effects modify the dynamics and introduces new conditions for barrier formation. The second mechanism considers a method in which radio-frequency waves injected into the plasma can stabilize the drift waves and therefore the anomalous transport is reduced, creating a barrier. This process does not involve the presence of sheared flows and depends only on the effect of the RF wave field on the drift waves. The stabilizing effect in this case is due to the nonlinear ponderomotive force which acts in a way that offsets the pressure gradient destabilization. Finally, a mechanism based on the ponderomotive force of RF waves is described which produces poloidal plasma rotation around the resonant surface due to the asymmetry of induced transport; it creates a transport barrier by shear flow stabilization of turbulence

  11. A one-dimensional transport code for the simulation of D-T burning tokamak plasma

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Maki, Koichi; Kasai, Masao; Nishida, Hidetsugu

    1980-11-01

    A one-dimensional transport code for D-T burning tokamak plasma has been developed, which simulates the spatial behavior of fuel ions(D, T), alpha particles, impurities, temperatures of ions and electrons, plasma current, neutrals, heating of alpha and injected beam particles. The basic transport equations are represented by one generalized equation so that the improvement of models and the addition of new equations may be easily made. A model of burn control using a variable toroidal field ripple is employed. This report describes in detail the simulation model, numerical method and the usage of the code. Some typical examples to which the code has been applied are presented. (author)

  12. Calculation of the neoclassical conductivity of plasma and fraction of trapped particles for elongated Damavand Tokamak

    International Nuclear Information System (INIS)

    Dini, F.; Khorasani, S.

    2007-01-01

    Configuration of Tokamak plasma has a dominant effect on its parameters. In the calculation of transport, there are some transport coefficients and quantities, where the knowledge of their precise values, according to the system of equations, is essential to be realized. Tokamak has a toroidal configuration, in addition to classical effects, it is necessary to study the neoclassical effects due to the field curvature. The trapped particles in strong electromagnetic fields oscillate on banana-shaped orbits which in turn affect many other collisional transport parameters. Here, a precise estimation of trapped particles based on the standard equilibrium model for an elliptical shape of Tokamak plasma has been carried out using Lin-Liu model. It should be added that in this calculation, the profile of the averaged magnetic field on the flux surfaces has been derived using analytical integration and consideration of an elliptic shape for ellipticity function in the limit of large aspect ratio and zero shift of magnetic flux surfaces. Having the fraction of the trapped particles, by ,following the formulation and using an appropriate model in various collisional regimes, the neoclassical conductivity of plasma in Damavand Tokamak is obtained and the respective variations have been found. The presented results can exploit the computation of transport and other quantities of Damavand Tokamak

  13. Experimental and theoretical study of particle transport in the TCV Tokamak

    International Nuclear Information System (INIS)

    Fable, E.

    2009-06-01

    The main scope of this thesis work is to compare theoretical models with experimental observations on particle transport in particular regimes of plasma operation from the Tokamak à Configuration Variable (TCV) located at CRPP–EPFL in Lausanne. We introduce the main topics in Tokamak fusion research and the challenging problems in the first Chapter. A particular attention is devoted to the modelling of heat and particle transport. In the second Chapter the experimental part is presented, including an overview of TCV capabilities, a brief review of the relevant diagnostic systems, and a discussion of the numerical tools used to analyze the experimental data. In addition, the numerical codes that are used to interpret the experimental data and to compare them with theoretical predictions are introduced. The third Chapter deals with the problem of understanding the mechanisms that regulate the transport of energy in TCV plasmas, in particular in the electron Internal Transport Barrier (eITB) scenario. A radial transport code, integrated with an external module for the calculation of the turbulence-induced transport coefficients, is employed to reproduce the experimental scenario and to understand the physics at play. It is shown how the sustainment of an improved confinement regime is linked to the presence of a reversed safety factor profile. The improvement of confinement in the eITB regime is visible in the energy channel and in the particle channel as well. The density profile shows strong correlation with the temperature profile and has a large local logarithmic gradient. This is an important result obtained from the TCV eITB scenario analysis and is presented in the fourth Chapter. In the same chapter we present the estimate of the particle diffusion and convection coefficients obtained from density transient experiments performed in the eITB scenario. The theoretical understanding of the strong correlation between density and temperature observed in the e

  14. MHD waves, reconnection, and plasma transport at the dayside magnetopause

    International Nuclear Information System (INIS)

    Johnson, J.R.; Cheng, C.Z.

    1996-01-01

    The magnetic field of the Earth creates a huge cavity in the solar wind known as the magnetosphere. The transition region between the solar wind plasma and magnetosphere plasma is of substantial interest because many magnetospheric processes are governed by the transport of particles, momentum and energy across that boundary. At this boundary, the magnetopause, there is an abrupt decrease in plasma bulk flow, density and pressure, and large increase in temperature and magnetic field. Throughout this region the plasmas is large. Large amplitude compressional waves are nearly always found in the region just outside of the magnetopause. These waves are either intrinsic solar wind fluctuations or they may be global mirror modes which are generated in a localized region of large pressure anisotropy just outside the magnetopause. The substantial background gradients observed at the magnetopause strongly couple the compressional waves with kinetic Alfven waves near the Alfven resonance location, leading to substantial particle transport. Moreover, for a sheared background magnetic field, as is found at times of southward interplanetary magnetic field, the mode converted kinetic Alfven waves can propagate to the location where k parallel = 0 and generate islands in phase space. We present a solution of the kinetic-MHD wave equations for the magnetic field structure based on a realistic steady state profile which includes: a sheared magnetic field; magnetic curvature; and gradients in the background density, pressure and magnetic field. We incorporate wave-particle resonance interactions for electrons and ions to obtain the dissipation. The background magnetic Keld curvature and gradient give rise to drifts which alter the resonance condition for the various particle species (ω - k circ V d - k parallel v parallel ) and reduces the Landau damping of the kinetic Alfven wave, allowing it to propagate to the k parallel = 0 location

  15. Particle modeling of plasmas computational plasma physics

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1991-01-01

    Recently, through the development of supercomputers, a powerful new method for exploring plasmas has emerged; it is computer modeling of plasmas. Such modeling can duplicate many of the complex processes that go on in a plasma and allow scientists to understand what the important processes are. It helps scientists gain an intuition about this complex state of matter. It allows scientists and engineers to explore new ideas on how to use plasma before building costly experiments; it allows them to determine if they are on the right track. It can duplicate the operation of devices and thus reduce the need to build complex and expensive devices for research and development. This is an exciting new endeavor that is in its infancy, but which can play an important role in the scientific and technological competitiveness of the US. There are a wide range of plasma models that are in use. There are particle models, fluid models, hybrid particle fluid models. These can come in many forms, such as explicit models, implicit models, reduced dimensional models, electrostatic models, magnetostatic models, electromagnetic models, and almost an endless variety of other models. Here the author will only discuss particle models. He will give a few examples of the use of such models; these will be taken from work done by the Plasma Modeling Group at UCLA because he is most familiar with work. However, it only gives a small view of the wide range of work being done around the US, or for that matter around the world

  16. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Eugenio

    2014-05-02

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  17. TEMPEST simulations of the plasma transport in a single-null tokamak geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Rognlien, T.D.; Bodi, K.; Krasheninnikov, S.

    2010-01-01

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. To study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. A series of TEMPEST simulations were conducted to investigate the transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. We also show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.

  18. Reflectometry and transport in thermonuclear plasmas in the Joint European Torus

    International Nuclear Information System (INIS)

    Sips, A.C.C.

    1991-01-01

    The subjects of this thesis are the study of microwave reflectometry as a method to measure electron density profiles, and the study of particle and energy transport in thermonuclear plasmas. In the transport studies data of a 12-channel reflectometer system are used to analyze the propagation of electron density perturbations in the plasma. The measurements described in this thesis are performed in the plasmas in the Joint European Torus (JET). The main points of study described are based on microwave reflectometry, the principles of which are given. Two modes of operation of a reflectometer are described. Firstly, electro-magnetic waves with constant frequencies may be launched into the plasma to measure variations in the electron density profile. Secondly, the absolute density profile can be measured with a reflectometer, when the source frequencies are swept. (author). 56 refs.; 41 figs.; 5 tabs

  19. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Patrick H.

    2011-09-21

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  20. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    International Nuclear Information System (INIS)

    Diamond, Patrick H.

    2011-01-01

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  1. Highly Radiative Plasmas for Local Transport Studies and Power and Particle Handling in Reactor Regimes

    International Nuclear Information System (INIS)

    Bell, M.G.; Bell, R.E.; Budny, R.; Bush, C.E.; Hill, K.W.

    1998-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into the Tokamak Fusion Test Reactor (TFTR) supershots and high-l(subscript) plasmas. At neutral beam injection (NBI) powers P(subscript B) greater than or equal to 30 MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both deuterium (D) and deuterium-tritium (DT) plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in the International Thermonuclear Experimental Reactor (ITER). The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms

  2. Three-dimensional plasma transport in open chaotic magnetic fields. A computational assessment for tokamak edge layers

    International Nuclear Information System (INIS)

    Frerichs, Heinke Gerd

    2010-04-01

    The development of nuclear fusion as an alternative energy source requires the research on magnetically confined, high temperature plasmas. In particular, the quantification of plasma flows in the domain near exposed material surfaces of the plasma container by computer simulations is of key importance, both for guiding interpretation of present fusion experiments and for aiding the ongoing design activities for large future devices such as ITER, W7-X or the DEMO reactor. There is a large number of computational issues related to the physics of hot, fully ionized and magnetized plasmas near surfaces of the vacuum chamber. This thesis is dedicated to one particular such challenge, namely the numerical quantification of self-consistent kinetic neutral gas and plasma fluid flows in very complex 3D (partially chaotic) magnetic fields, in the absence of any common symmetries for plasma and neutral gas dynamics. Such magnetic field configurations are e.g. generated by externally applied magnetic perturbations at the plasma edge, and are of great interest for the control of particle and energy exhausts. In the present thesis the 3D edge plasma and neutral particle transport code EMC3-EIRENE is applied to two distinct configurations of open chaotic magnetic system: at the TEXTOR and DIII-D tokamaks. Improvements of the edge transport model and extensions of the transport code are presented, which have allowed such simulations for the first time for 3D scenarios at DIII-D with ITER similar plasmas. A strong 3D effect of the chaotic magnetic field on the DIII-D edge plasma is found and analyzed in detail. It is found that a pronounced striation pattern of target particle and heat fluxes at DIII-D can only be obtained up to a certain upper limiting level of anomalous cross-field transport. Hence, in comparison to experimental data, these findings allow to narrow down the range of this model parameter. One particular interest at TEXTOR is the achievement of a regime with

  3. Modeling and analysis of surface roughness effects on sputtering, reflection, and sputtered particle transport

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ruzic, D.N.

    1990-01-01

    The microstructure of the redeposited surface in tokamaks may affect sputtering and reflection properties and subsequent particle transport. This subject has been studied numerically using coupled models/codes for near-surface plasma particle kinetic transport (WBC code) and rough surface sputtering (fractal-TRIM). The coupled codes provide an overall Monte Carlo calculation of the sputtering cascade resulting from an initial flux of hydrogen ions. Beryllium, carbon, and tungsten surfaces are analyzed for typical high recycling, oblique magnetic field, divertor conditions. Significant variations in computed sputtering rates are found with surface roughness. Beryllium exhibits high D-T and self-sputtering coefficients for the plasma regime studied (T e = 30-75 eV). Carbon and tungsten sputtering is significantly lower. 9 refs., 6 figs., 1 tab

  4. A Unified Gas Kinetic Scheme for Transport and Collision Effects in Plasma

    Directory of Open Access Journals (Sweden)

    Dongxin Pan

    2018-05-01

    Full Text Available In this study, the Boltzmann equation with electric acceleration term is discretized and solved by the unified gas-kinetic scheme (UGKS. The charged particle transport driven by electric field is included in the electric acceleration term. To capture non-equilibrium distribution function, the probability distribution functions of gas is discretized in a discrete velocity space. After discretization, the numerical flux for distribution function is computed to update the microscopic and macroscopic states. The flux is decided by an integral solution of Boltzmann equation based on characteristic problem. An electron-ion collision model is introduced in the Boltzmann Bhatnagar-Gross-Krook (BGK equation. This finite volume method for the UGKS couples the free transport and long-range interaction between particles. For simplicity, the electric field induced by charged particles is controlled by the Poisson’s equation, which is solved using the Green’s function for two dimensional plasma system subjected to the symmetry or periodic boundary conditions. Two numerical cases, linear Landau damping and Gaussian beam, are carried out to validate the proposed method. The linear electron plasma wave damping is simulated based on electron-ion collision operator. Comparison results show good accuracy and higher efficiency than particle based methods. Difference between Poisson’s equation and complete electromagnetic Maxwell equation is presented by numerical results based on the two models. Highly non-equilibrium and rarefied plasma flows, such as electron flows driven by electromagnetic field, can be simulated easily. The UGKS-Poisson model is proved to be promising in plasma flow simulation.

  5. Spokes and charged particle transport in HiPIMS magnetrons

    International Nuclear Information System (INIS)

    Brenning, N; Lundin, D; Minea, T; Vitelaru, C; Costin, C

    2013-01-01

    Two separate scientific communities are shown to have studied one common phenomenon, azimuthally rotating dense plasma structures, also called spokes, in pulsed-power E × B discharges, starting from quite different approaches. The first body of work is motivated by fundamental plasma science and concerns a phenomenon called the critical ionization velocity, CIV, while the other body of work is motivated by the applied plasma science of high power impulse magnetron sputtering (HiPIMS). Here we make use of this situation by applying experimental observations, and theoretical analysis, from the CIV literature to HiPIMS discharges. For a practical example, we take data from observed spokes in HiPIMS discharges and focus on their role in charged particle transport, and in electron energization. We also touch upon the closely related questions of how they channel the cross-B discharge current, how they maintain their internal potential structure and how they influence the energy spectrum of the ions? New particle-in-cell Monte Carlo collisional simulations that shed light on the azimuthal drift and expansion of the spokes are also presented. (paper)

  6. The current of a particle along a microtubule in microscopic plasma

    International Nuclear Information System (INIS)

    Li Wei; Chen Junfang; Wang Teng; Lai Xiuqiong

    2008-01-01

    Transport of a particle along the axis of a microtubule in a plasma-enhanced chemical vapor deposition (PECVD) system is investigated. The current, respectively, as a function of the temperature, the magnetic field and the external force is obtained. The value and direction of the current may be controlled by changing the above parameters

  7. Parallel pic plasma simulation through particle decomposition techniques

    International Nuclear Information System (INIS)

    Briguglio, S.; Vlad, G.; Di Martino, B.; Naples, Univ. 'Federico II'

    1998-02-01

    Particle-in-cell (PIC) codes are among the major candidates to yield a satisfactory description of the detail of kinetic effects, such as the resonant wave-particle interaction, relevant in determining the transport mechanism in magnetically confined plasmas. A significant improvement of the simulation performance of such codes con be expected from parallelization, e.g., by distributing the particle population among several parallel processors. Parallelization of a hybrid magnetohydrodynamic-gyrokinetic code has been accomplished within the High Performance Fortran (HPF) framework, and tested on the IBM SP2 parallel system, using a 'particle decomposition' technique. The adopted technique requires a moderate effort in porting the code in parallel form and results in intrinsic load balancing and modest inter processor communication. The performance tests obtained confirm the hypothesis of high effectiveness of the strategy, if targeted towards moderately parallel architectures. Optimal use of resources is also discussed with reference to a specific physics problem [it

  8. Cavitational micro-particles: plasma formation mechanisms

    International Nuclear Information System (INIS)

    Bica, Ioan

    2005-01-01

    Cavitational micro-particles are a class to which the micro-spheres, the micro-tubes and the octopus-shaped micro-particles belong. The cavitational micro-particles (micro-spheres, micro-tubes and octopus-shaped micro-particles) at an environmental pressure. The micro-spheres, the micro-tubes and the ligaments of the octopus-shaped micro-particles are produced in the argon plasma and are formed of vapors with low values of the molar concentration in comparison with the molar density of the gas and vapor mixture, the first one on the unstable and the last two on the stable movement of the vapors. The ligaments of the octopus-shaped micro-particles are open at the top for well-chosen values of the sub-cooling of the vapor and gas cylinders. The nitrogen in the air favors the formation of pores in the wall of the micro-spheres. In this paper we present the cavitational micro-particles, their production in the plasma and some mechanisms for their formation in the plasma. (author)

  9. Computations of intermittent transport in scrape-off layer plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2004-01-01

    in the form of blobs. These structures propagate far into the scrape-off layer where they are dissipated due to transport along open magnetic field lines. From single-point recordings it is shown that the blobs have asymmetric conditional wave forms and lead to positively skewed and flattened probability......Two-dimensional fluid simulations of interchange turbulence for geometry and parameters relevant for the scrape-off layer of magnetized plasmas are presented. The computations, which have distinct plasma production and loss regions, reveal bursty ejection of particles and heat from the bulk plasma...... distribution functions. The radial propagation velocity may reach one-tenth of the sound speed. These results are in excellent agreement with recent experimental measurements....

  10. Modelling of ion thermal transport in ergodic region of collisionless toroidal plasma

    International Nuclear Information System (INIS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Ohyabu, Nobuyoshi; Takamaru, Hisanori; Okamoto, Masao

    2009-09-01

    In recent tokamak experiments it has been found that so-called diffusion theory based on the 'diffusion of magnetic field lines' overestimates the radial energy transport in the ergodic region of the collisionless plasma affected by resonant magnetic perturbations (RMPs), though the RMPs induce chaotic behavior of the magnetic field lines. The result implies that the modelling of the transport should be reconsidered for low collisionality cases. A computer simulation study of transport in the ergodic region is required for understanding fundamental properties of collisionless ergodized-plasmas, estimating the transport coefficients, and reconstructing the modelling of the transport. In this paper, we report the simulation study of thermal transport in the ergodic region under the assumption of neglecting effects of an electric field, impurities and neutrals. Because of the simulations neglecting interactions with different particle-species and saving the computational time, we treat ions (protons) in our numerical-study of the transport. We find that the thermal diffusivity in the ergodic region is extremely small compared to the one predicted by the theory of field-line diffusion and that the diffusivity depends on both the collision frequency and the strength of RMPs even for the collisionless ergodized-plasma. (author)

  11. A phenomenological model for cross-field plasma transport in non-ambipolar scrape-off layers

    International Nuclear Information System (INIS)

    LaBombard, B.; Grossman, A.A.; Conn, R.W.

    1990-01-01

    A simplified two-fluid transport model which includes phenomenological coefficients of particle diffusion, mobility, and thermal diffusivity is used to investigate the effects of nonambipolar particle transport on scrape-off layer (SOL) plasma profiles. A computer code (BSOLRAD3) has been written to iteratively solve for 2-D cross-field density, potential, and electron temperature profiles for arbitrary boundary conditions, including segments of 'limiters' that are electrically conducting or non-conducting. Numerical results are presented for two test cases: (1) a 1-D slab geometry showing the interdependency of the density, potential, and temperature gradient scale lengths on particle diffusion, mobility, and thermal diffusivity coefficients and limiter bias conditions, and (2) a 2-D geometry illustrating ExB plasma flow effects. It is shown that the SOL profiles can be quite sensitive to non-ambipolarity conditions imposed by the limiter and, in particular, whether the limiter surfaces are biased. Such effects, if overlooked in SOL transport analysis, can lead to erroreous conclusions about the magnitude of the local ambipolar diffusion coefficient. (orig.)

  12. Correcting for particle size effects on plasma actuator particle image velocimetry measurements

    Science.gov (United States)

    Masati, A.; Sedwick, R. J.

    2018-01-01

    Particle image velocimetry (PIV) is often used to characterize plasma actuator flow, but particle charging effects are rarely taken into account. A parametric study was conducted to determine the effects of particle size on the velocity results of plasma actuator PIV experiments. Results showed that smaller particles more closely match air flow velocities than larger particles. The measurement uncertainty was quantified by deconvolving the particle image diameter from the correlation diameter. The true air velocity was calculated by linearly extrapolating to the zero-size particle diameter.

  13. Transport phenomena in the edge of Alcator C-Mod plasmas

    International Nuclear Information System (INIS)

    Terry, J.L.; Basse, N.P.; Cziegler, I.; Greenwald, M.; LaBombard, B.; Edlund, E.M.; Hughes, J.W.; Lin, L.; Lin, Y.; Porkolab, M.; Veto, B.; Wukitch, S.J.; Grulke, O.; Zweben, S.J.; Sampsell, M.

    2005-01-01

    Two aspects of edge turbulence and transport in Alcator C-Mod are explored. The quasi-coherent mode, an edge fluctuation present in Enhanced Da H-mode plasmas, is examined with regard to its role in the enhanced particle transport found in these plasmas, its in/out asymmetry, its poloidal wave number, and its radial width and location. It is shown to play a dominant role in the perpendicular particle transport. The QCM is not observed at the inboard midplane, indicating that its amplitude there is significantly smaller than on the outboard side. The peak amplitude of the QCM is found just inside the separatrix, with a radial width ≥5 mm, leading to a non-zero amplitude outside the separatrix and qualitatively consistent with its transport enhancement. Also examined are the characteristics of the intermittent convective transport, associated with 'blobs' and typically occurring in the scrape-off-layer. The blobs are qualitatively similar in L- and H-mode. When their sizes, occurrence frequencies, and magnitudes are compared, it is found that the blob size may be somewhat smaller in ELMfree H-Mode, and blob frequency is similar. A clear difference is seen in the blob magnitude in the far SOL, with ELMfree H-mode showing a smaller perturbation there than L-mode. As the Greenwald density limit is approached (n/n GW ≥0.7), blobs are seen inside the separatrix, consistent with the observation that the high cross-field transport region, normally found in the far scrape-off, penetrates the closed flux surfaces at high n/n GW . (author)

  14. Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas

    International Nuclear Information System (INIS)

    Heidbrink, W. W.

    2008-01-01

    nonlinear dynamics is observed, ranging from steady modes that gradually saturate, to bursting behavior reminiscent of relaxation oscillations, to rapid frequency chirping. An analogy to the classic one-dimensional problem of electrostatic plasma waves explains much of this phenomenology. EP transport can be convective, as when the wave scatters the particle across a topological boundary into a loss cone, or diffusive, which occurs when islands overlap in the orbital phase space. Despite a solid qualitative understanding of possible transport mechanisms, quantitative calculations using measured mode amplitudes currently underestimate the observed fast-ion transport. Experimentally, detailed identification of nonlinear mechanisms is in its infancy. Beyond validation of theoretical models, the future of the field lies in the development of control tools. These may exploit EP instabilities for beneficial purposes, such as favorably modifying the current profile, or use modest amounts of power to govern the nonlinear dynamics in order to avoid catastrophic bursts

  15. Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients

    Science.gov (United States)

    Basiuk, V.; Huynh, P.; Merle, A.; Nowak, S.; Sauter, O.; Contributors, JET; the EUROfusion-IM Team

    2017-12-01

    The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.

  16. The relaxation of plasmas with dust particles

    International Nuclear Information System (INIS)

    Chutov, Yu.I.; Kravchenko, A.Yu.; Schram, P.P.J.M.

    1997-01-01

    Various parameters of relaxing plasmas with dust particles including the electron and ion energy distributions function are numerically simulated at various parameters of the dust particles using the PIC method and taking into account the dynamics of the dust particle charge without the assumption about the equilibrium of electrons and ions. Coulomb collisions are taken into account in the framework of the method of stochastic differential equations. The relaxation of bounded plasma clouds expanding into a vacuum as well as the relaxation of a uniform plasma, in which dust particles appear at some initial time, are investigated. The obtained results show that the relaxation of plasmas can be accompanied by a deviation of the ion distribution function from equilibrium as well as a change of the mean energy of electrons and ions because of the dependence of the collection of electrons and ions by dust particles on their energy. (author)

  17. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    Science.gov (United States)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  18. The plasma transport equations derived by multiple time-scale expansions and turbulent transport. I. General theory

    International Nuclear Information System (INIS)

    Edenstrasser, J.W.

    1995-01-01

    A multiple time-scale derivative expansion scheme is applied to the dimensionless Fokker--Planck equation and to Maxwell's equations, where the parameter range of a typical fusion plasma was assumed. Within kinetic theory, the four time scales considered are those of Larmor gyration, particle transit, collisions, and classical transport. The corresponding magnetohydrodynamic (MHD) time scales are those of ion Larmor gyration, Alfven, MHD collision, and resistive diffusion. The solution of the zeroth-order equations results in the force-free equilibria and ideal Ohm's law. The solution of the first-order equations leads under the assumption of a weak collisional plasma to the ideal MHD equations. On the MHD-collision time scale, not only the full set of the MHD transport equations is obtained, but also turbulent terms, where the related transport quantities are one order in the expansion parameter larger than those of classical transport. Finally, at the resistive diffusion time scale the known transport equations are arrived at including, however, also turbulent contributions. copyright 1995 American Institute of Physics

  19. GYRO Simulations of Core Momentum Transport in DIII-D and JET Plasmas

    International Nuclear Information System (INIS)

    Budny, R.V.; Candy, J.; Waltz, R.E.

    2005-01-01

    Momentum, energy, and particle transport in DIII-D and JET ELMy H-mode plasmas is simulated with GYRO and compared with measurements analyzed using TRANSP. The simulated transport depends sensitively on the nabla(T(sub)i) turbulence drive and the nabla(E(sub)r) turbulence suppression inputs. With their nominal values indicated by measurements, the simulations over-predict the momentum and energy transport in the DIII-D plasmas, and under-predict in the JET plasmas. Reducing |nabla(T(sub)i)| and increasing |nabla(E(sub)r)| by up to 15% leads to approximate agreement (within a factor of two) for the DIII-D cases. For the JET cases, increasing |nabla(T(sub)i)| or reducing |nabla(E(sub)r)| results in approximate agreement for the energy flow, but the ratio of the simulated energy and momentum flows remains higher than measurements by a factor of 2-4

  20. Particle acceleration by plasma waves

    International Nuclear Information System (INIS)

    Joshi, C.

    2006-01-01

    In an advanced particle accelerator particles are driven near by light velocity through ionized gas. Such plasma devices are compact, cost efficient and usable in many fields. Examples are given in detail. (GL)

  1. Fluctuations and transport in fusion plasmas. Final report

    International Nuclear Information System (INIS)

    Gould, R.W.; Liewer, P.C.

    1995-01-01

    The energy confinement in tokamaks in thought to be limited by transport caused by plasma turbulence. Three dimensional plasma particle-in-cell (PIC) codes are used to model the turbulent transport in tokamaks to attempt to understand this phenomena so that tokamaks can be made more efficient. Presently, hundreds of hours of Cray time are used to model these experiments and much bigger and longer runs are desired, to model a large tokamak with realistic parameters is beyond the capability of existing sequential supercomputers. Parallel supercomputers might be a cost effect tool for performing such large scale 3D tokamak simulations. The goal of the work was to develop algorithms for performing PIC codes on coarse-grained message passing parallel computers and to evaluate the performance of such parallel computers on PIC codes. This algorithm would be used in a large scale PIC production code such as the UCLA 3D gyrokinetic code

  2. Energy transport in a shear flow of particles in a two-dimensional dusty plasma.

    Science.gov (United States)

    Feng, Yan; Goree, J; Liu, Bin

    2012-11-01

    A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.

  3. Plasma analog of particle-pair production

    International Nuclear Information System (INIS)

    Tsidulko, Yu.A.; Berk, H.L.

    1996-09-01

    It is shown that the plasma axial shear flow instability satisfies the Klein-Gordon equation. The plasma instability is then shown to be analogous to spontaneous particle-pair production when a potential energy is present that is greater than twice the particle rest mass energy. Stability criteria can be inferred based on field theoretical conservation laws

  4. Acceleration of particles in plasmas

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The accelerating fields in radio-frequency accelerators are limited to roughly 100 MV/m due to material breakdown which occurs on the walls of the structure. In contrast, a plasma, being already ionized, can support electric fields in excess of 100 GV/m. Such high accelerating gradients hold the promise of compact particle accelerators. Plasma acceleration has been an emerging and fast growing field of research in the past two decades. In this series of lectures, we will review the principles of plasma acceleration. We will see how relativistic plasma waves can be excited using an ultra-intense laser or using a particle beam. We will see how these plasma waves can be used to accelerate electrons to high energy in short distances. Throughout the lectures, we will also review recent experimental results. Current laser-plasma experiments throughout the world have shown that monoenergetic electron beams from 100 MeV to 1 GeV can be obtained in distances ranging from the millimetre to the centimetre. Experiments a...

  5. Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas

    International Nuclear Information System (INIS)

    Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.

    1996-01-01

    A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, δf = f - f 0 , from an initial analytic distribution f 0 . High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question

  6. Transport in zonal flows in analogous geophysical and plasma systems

    Science.gov (United States)

    del-Castillo-Negrete, Diego

    1999-11-01

    Zonal flows occur naturally in the oceans and the atmosphere of planets. Important examples include the zonal flows in Jupiter, the stratospheric polar jet in Antarctica, and oceanic jets like the Gulf Stream. These zonal flows create transport barriers that have a crucial influence on mixing and confinement (e.g. the ozone depletion in Antarctica). Zonal flows also give rise to long-lasting vortices (e.g. the Jupiter red spot) by shear instability. Because of this, the formation and stability of zonal flows and their role on transport have been problems of great interest in geophysical fluid dynamics. On the other hand, zonal flows have also been observed in fusion plasmas and their impact on the reduction of transport has been widely recognized. Based on the well-known analogy between Rossby waves in quasigeostrophic flows and drift waves in magnetically confined plasmas, I will discuss the relevance to fusion plasmas of models and experiments recently developed in geophysical fluid dynamics. Also, the potential application of plasma physics ideas to geophysical flows will be discussed. The role of shear in the suppression of transport and the effect of zonal flows on the statistics of transport will be studied using simplified models. It will be shown how zonal flows induce large particle displacements that can be characterized as Lévy flights, and that the trapping effect of vortices combined with the zonal flows gives rise to anomalous diffusion and Lévy (non-Gaussian) statistics. The models will be compared with laboratory experiments and with atmospheric and oceanographic qualitative observations.

  7. Plasma/neutral gas transport in divertors and limiters

    International Nuclear Information System (INIS)

    Gierszewski, P.J.

    1983-09-01

    The engineering design of the divertor and first wall region of fusion reactors requires accurate knowledge of the energies and particle fluxes striking these surfaces. Simple calculations indicate that approx. 10 MW/m 2 heat fluxes and approx. 1 cm/yr erosion rates are possible, but there remain fundamental physics questions that bear directly on the engineering design. The purpose of this study was to treat hydrogen plasma and neutral gas transport in divertors and pumped limiters in sufficient detail to answer some of the questions as to the actual conditions that will be expected in fusion reactors. This was accomplished in four parts: (1) a review of relevant atomic processes to establish the dominant interactions and their data base; (2) a steady-state coupled O-D model of the plasma core, scrape-off layer and divertor exhaust to determine gross modes of operation and edge conditions; (3) a 1-D kinetic transport model to investigate the case of collisionless divertor exhaust, including non-Maxwellian ions and neutral atoms, highly collisional electrons, and a self-consistent electric field; and (4) a 3-D Monte Carlo treatment of neutral transport to correctly account for geometric effects

  8. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  9. Theoretical and Numerical Properties of a Gyrokinetic Plasma: Issues Related to Transport Time Scale Simulation

    International Nuclear Information System (INIS)

    Lee, W.W.

    2003-01-01

    Particle simulation has played an important role for the recent investigations on turbulence in magnetically confined plasmas. In this paper, theoretical and numerical properties of a gyrokinetic plasma as well as its relationship with magnetohydrodynamics (MHD) are discussed with the ultimate aim of simulating microturbulence in transport time scale using massively parallel computers

  10. Particle porosity at plasma are spraying of metals

    International Nuclear Information System (INIS)

    Petrunichev, V.A.; Koroleva, E.B.; Pushilin, N.P.

    1985-01-01

    Quantitative dependences of porosity and character of pore distribution in particles of different materials on particle size and composition of atmosphere in a working chamber are studied experimentally as applied to the process of plasma wire sputtering. Wires 1.2 mm in diameter made of tungsten, molybdenum, Kh20N80 alloy, and zirconium served as sputtering materials. It is shown that pore size and character of their distribution in particles of powders obtained by the method of plasma wire sputtering are dependent on sizes of forming particles and determined by conditions of their cooling. Intensive porosity formation is characteristic of wire sputtering in argon plasma with nitrogen additions, but there are critical values of nitrogen concentration in plasma, above which intensive porosity formation in forming particles stops

  11. Plasma polymer-functionalized silica particles for heavy metals removal.

    Science.gov (United States)

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  12. Charged particle and photon acceleration by wakefield plasma waves in non-uniform plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Kirsanov, V.I.; Sakharov, A.S.; Pegoraro, F.

    1993-01-01

    We discuss the acceleration of charged particles and the upshift of the frequency of short wave packets of laser radiation. The acceleration and the upshift are caused by wake plasma waves excited by a strong laser pulse in a non-uniform plasma. We show that unlimited acceleration of charged particles is possible for specific spatial dependencies of the plasma density. In this unlimited acceleration regime, particles have a fixed phase relationship with respect to the plasma wave, while their energy increases with time. When the wave breaking limit is approached and surpassed, the efficiency of the acceleration of the charged particles and of the frequency upshift of the photons can be increased significantly. (author) 3 refs

  13. Impurity transport in a collision-dominated rotating tokamak plasma

    International Nuclear Information System (INIS)

    Eriksson, G.; Liljegren, A.

    1981-04-01

    The flux of heavy impurities is an axisymmetric, toroidal plasma with all particles in the collision-dominated regime is considered. Plasma rotation and charge-exchange with neutrals are taken into account. A hydrodynamic model employing Braginskii's transport equations is used. The theorry is extended to higher collision freqencies as compared to previous treatments. It is found that the Pfirsch-Schlueter flux is significantly reduced as compared to the value given by Rutherford and that it is of the same order of magnitude, or less, than the classical flux in all regimes considered. It is also shown that the impurity flux can be influenced by charge-exchange with neutrals. (author)

  14. Artificial cooling due to quiet injection in bounded plasma particle simulations

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1988-01-01

    An explanation is proposed for an artificial cooling effect seen in electrostatic particle-in-cell plasma simulations. The effect hinges on heat transport from the trapped electrons to fluctuations of the electric field, which are kept at a sub-thermal level through the continuous ''quiet'' injection of passing electrons. Further simulations are done which test and support the explanation. copyright 1988 Academic Press, Inc

  15. Gyrokinetic simulation of particle and heat transport in the presence of Wide orbits and strong profile variations in the Edge plasma

    International Nuclear Information System (INIS)

    Heikkinen, J.A.; Henriksson, S.; Janhunen, S.; Kiviniemi, T.P.; Ogando, F.

    2006-01-01

    A full f nonlinear 5D gyrokinetic electrostatic particle-in-cell code ELMFIRE using an implicit direct solution method for ion polarization drift and electron parallel velocity response to electric field and its validation are described. The developed code is applied for transport analysis in a tokamak plasma at steep pressure gradient. The role of turbulence and neoclassical equilibrium in determining the flux surface averaged radial electric field component are investigated, as well as the role of the latter in affecting the saturation level of the turbulence. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Hollow density profile and particle transport of ECH plasmas in the low-aspect-ratio heliotron/torsatron CHS

    International Nuclear Information System (INIS)

    Iguchi, H.; Kubo, S.; Idei, H.

    1993-01-01

    Transport enhancement due to helical ripples is the main problem for a low-aspect-ratio helical system to survive as a magnetic fusion device. Optimization of the magnetic configuration has been experimentally studied for neutral beam heated plasmas in the Compact Helical System (CHS). A confinement regime compatible with the LHD scaling has been obtained by shifting the magnetic axis inward with respect to the minor axis of the helical windings. However a power balance analysis suggests that the improvement of plasma parameters has mainly been achieved by the improvement of power deposition. On the other hand, electron density profiles become peaked with the inward shifted magnetic axis in contrast to flattened profiles with the outward shifted one. A question arises: Does the magnetic structure really affect transport processes? In order to answer this question, it is most suitable to examine ECH plasmas in a low collisionality regime. In this paper we report some characteristics of the ECH plasmas in the low-aspect-ratio device CHS and discuss the effect of magnetic field ripples on transport processes. (author) 10 refs., 4 figs

  17. Metastable states of plasma particles close to a charged surface

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A. V., E-mail: shavlov@ikz.ru [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation); Tyumen State Oil and Gas University, 38, Volodarskogo St., 625000, Tyumen (Russian Federation); Dzhumandzhi, V. A. [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation)

    2015-09-15

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.

  18. Energy transport in laser produced plasmas

    International Nuclear Information System (INIS)

    Key, M.H.

    1989-06-01

    The study of energy transport in laser produced plasmas is of great interest both because it tests and develops understanding of several aspects of basic plasma physics and also because it is of central importance in major applications of laser produced plasmas including laser fusion, the production of intense X-ray sources, and X-ray lasers. The three sections cover thermal electrons (energy transport in one dimension, plane targets and lateral transport from a focal spot, thermal smoothing, thermal instabilities), hot electrons (preheating in one dimension, lateral transport from a focal spot) and radiation (preheating in one dimension, lateral transport and smoothing, instabilities). (author)

  19. Collisionality dependent transport in TCV SOL plasmas

    DEFF Research Database (Denmark)

    Garcia, Odd Erik; Pitts, R.A.; Horacek, J.

    2007-01-01

    Results are presented from probe measurements in the low field side scrape-off layer (SOL) region of TCV during plasma current scan experiments. It is shown that with decreasing plasma current the radial particle density profile becomes broader and the fluctuation levels and turbulence driven...... radial particle flux increase. In the far SOL the fluctuations exhibit a high degree of statistical similarity and the particle density and flux at the wall radius scale inversely with the plasma current. Together with previous TCV density scan experiments, this indicates that plasma fluctuations...

  20. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    Science.gov (United States)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  1. Excitation of an instability by neutral particle ionization induced fluxes in the tokamak edge plasma

    International Nuclear Information System (INIS)

    Bachmann, P.; Sunder, D.

    1991-01-01

    Strong density and potential fluctuations in the edge plasma of toroidal nuclear fusion devices can lead to anomalously fast particle and energy transport. There are some reasons to assume the level of these fluctuations to be connected with neutral particles which enter the plasma by gas puffing or recycling processes. The influence of neutral particles on the behaviour of electrostatic drift modes was investigated. Using the ballooning transformation the excitation of dissipative drift waves in tokamak was studied taking ionization and charge exchange into consideration. Ionization driven drift wave turbulence was analyzed. The higher the neutral particle density is the more important the plasma-wall interaction and the less important the action of the limiter becomes. Instabilities localized in the edge plasma and far from the limiter can be one of the reasons of such a phenomenon. In the present paper we show that such an instability may exist. Usually the neutral particle density is large in the vicinity of the limiter and decreases rapidly with the distance from it. Plasma particles generated by ionization of these neutrals outside the limiter shadow, move along the magnetic field lines into a region without neutrals and diffuse slowly across the magnetic field. We solve the stability problem for modes with a perpendicular wave length that is much larger than the ion Larmor radius with electron temperature, and much smaller than the minor plasma radius. The excitation of such modes localized far from the limiter is investigated. A one-dimensional differential equation is derived in the cold ion approximation without taking shear and toroidal effects into consideration. In the case of low flow velocities a nearly aperiodic instability is found analytically. Its growth rate is proportional to the equilibrium plasma velocity at the boundary of the neutral particle's free region and to the inverse of the extension of this zone. This mode is localized in the edge

  2. Prospects of the Minimum Fisher Regularisation in the Experimental Analyses of Plasma Particle Transport at JET

    Czech Academy of Sciences Publication Activity Database

    Mlynář, Jan; Bonheure, G.; Murari, A.; JET EFDA, Contributors.

    2006-01-01

    Roč. 51, č. 10 (2006), s. 196 ISSN 0003-0503. [Division of Plasma Physics Meeting 2006. Philadelphia, Pennsylvania , 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tomography * transport * neutrons * fusion * tokamak * JET Subject RIV: BL - Plasma and Gas Discharge Physics

  3. Simple collision operators for direct Vlasov simulations of laser plasma interaction and transport

    International Nuclear Information System (INIS)

    Arber, T D; Sircombe, N J

    2010-01-01

    Non-local electron transport effects have a direct influence on the compression of cryogenic targets in laser driven ICF and target heating in high energy density experiments. There is a growing need for self-consistent models of laser plasma interactions coupled to nonlocal transport. We present a direct Vlasov solver that includes multiple species and a simple collision operator. This BGK model operator - which conserves particle density, energy and momentum - is fully implicit. For collisionless plasmas it has been shown that a double layer may be formed in which an accelerated, kinetic ion population satisfies the zero current condition. Here we extend this result to collisionalities of interest to laser driven ignition to assess the validity of nonlocal electron transport models based on fluid ions.

  4. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  5. Particle beams and plasmas

    International Nuclear Information System (INIS)

    Hofmann, A.; Messerschmid, E.; Lawson, J.D.

    1976-01-01

    These lectures present a survey of some of the concepts of plasma physics and look at some situations familiar to particle-accelerator physicists from the point of view of a plasma physicist, with the intention of helping to link together the two fields. At the outset, basic plasma concepts are presented, including definitions of a plasma, characteristic parameters, magnetic pressure and confinement. This is followed by a brief discussion on plasma kinetic theory, non-equilibrium plasma, and the temperature of moving plasmas. Examples deal with beams in the CERN Intersecting Storage Rings as well as with non-steady beams in cyclic accelerators and microwave tubes. In the final chapters, time-varying systems are considered: waves in free space and the effect of cylinder bounds, wave motion in cold stationary plasmas, and waves in plasmas with well-defined streams. The treatment throughout is informal, with emphasis on the essential physical properties of continuous beams in accelerators and storage rings in relation to the corresponding problems in plasma physics and microwave tubes. (Author)

  6. Effect of magnetic configuration on density fluctuation and particle transport in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Yamagishi, O.; Ida, K.; Yamada, H.; Yoshinuma, M.; Yokoyama, M.; Miyazawa, J.; Morita, S.; Kawahata, K.; Tokzawa, T.; Shoji, M.; Vyacheslavov, L.N.; Sanin, A.L.

    2005-01-01

    The study of fluctuations and particle transport is important issue in heliotron and stellarator devices as well as in tokamaks. A two dimensional phase contrast interferometer (2D PCI) was developed to investigate fluctuation characteristics, which play role in confinement. The current 2D PCI can detect fluctuations for which -1 0.3 -1 and 5< f<500kHz. With the use of magnetic shear and the 2D detector, the spatial resolution around 20% of averaged minor radius is possible presently. The strongest fluctuations are localized in the plasma edge, where density gradients are negative, but fluctuations also exist in the positive density gradient region of the hollow density profile. The phase velocity of fluctuations in the positive gradient region is close to plasma ErxBt rotation. On the other hand, fluctuations in the negative density gradient region propagate in the ion diamagnetic direction in the plasma frame and do not follow ErxBt rotation. This suggests there is a different nature of the fluctuations in the positive and negative density gradient regions. A particle transport was studied by means of density modulation experiments. The systematic study was done at Rax=3.6m, which is so-called standard configuration. The density profiles vary from peaked to hollow with increasing heating power. It was also found that particle diffusion and convection are functions of electron temperature and its gradient respectively. The magnetic configuration is another parameter, which characterizes particle confinement. At more outward shifted configurations, helical ripple becomes larger and the ergodic region becomes thicker, then neoclassical transport becomes larger. However estimated diffusion coefficients are still around one order of magnitude larger than neoclassical values in edge region, where ρ = 0.7 ∼ 1.0 and they are larger at more outward configurations. At the same time the convection velocity is found to be comparable with neoclassical prediction at Rax=3

  7. Research of transportation efficiency of low-energy high- current electron beam in plasma channel in external magnetic field

    International Nuclear Information System (INIS)

    Vagin, E S; Grigoriev, V P

    2015-01-01

    Effective high current (5-20 kA) and low energy (tens of keV) electrons beam transportation is possible only with almost complete charging neutralization. It is also necessary to use quite high current neutralization for elimination beam self-pinching effect. The research is based on the self-consistent mathematical model that takes into account beam and plasma particles dynamic, current and charge neutralization of electron beam and examines the transportation of electron beam into a chamber with low-pressure plasma in magnetic field. A numerical study was conducted using particle in cell (PIC) method. The study was performed with various system parameters: rise time and magnitude of the beam current, gas pressure and plasma density and geometry of the system. Regularities of local virtual cathode field generated by the beam in the plasma channel, as well as ranges of parameters that let transportation beam with minimal losses, depending on the external magnetic field were determined through a series of numerical studies. In addition, the assessment of the impact of the plasma ion mobility during the transition period and during steady beam was performed. (paper)

  8. The energy partitioning of non-thermal particles in a plasma: the Coulomb logarithm revisited

    International Nuclear Information System (INIS)

    Singleton, Robert L Jr; Brown, Lowell S

    2008-01-01

    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated exactly to leading and next-to-leading accuracy in the plasma density by Brown, Preston and Singleton (BPS). Since the calculational techniques of BPS might be unfamiliar to some, and since the same methodology can also be used for other energy transport phenomena, we will review the main ideas behind the calculation. BPS used their stopping power calculation to derive a Fokker-Planck equation, also accurate to leading and next-to-leading orders, and we will also review this. We use this Fokker-Planck equation to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion-more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible. One method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows down and becomes thermalized into the background plasma, this method of calculating the electron-ion energy splitting breaks down. As a result, it suffers a systematic error that may be as large as T/E 0 , where T is the plasma temperature and E 0 is the initial energy of the charged particle. The formalism presented here is designed to account for the thermalization process and it provides results that are near-exact.

  9. Transport of charged particles in the plasma of an ECRIS; Transport des particules chargees dans le plasma d'ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Girard, A.; Perrer, Douysset; Melin, G. [Dept. de Recherche Fondamentale sur la Matiere Condensee CEA Centre d' Etudes de Grenoble, 38 (France)

    1999-07-01

    The paper has the following contents: 1. Introduction; 2. Electron transport. 2.1. Experiments - Lifetime measurements - Contradiction. 2.2. Modelling; 3. Ion transport. 3.1. Experiments - Measurement of argon K{sub {alpha}}. 3.2. Lifetime. 3.3. Proposed model, controversy; 4. Conclusion. A setup of the experiment and the results concerning the electron density, energy content, mean energy, current density, electron lifetime and lifetime of electron energy as a function of rf power are presented. The results are interpreted and modelled. Also, the experimental setup for the study of ion transport is presented. The density of argon ions is determined by means of the high resolution X ray spectra which, by making use of a simple collisional radiative model, is able to single out the argon K{sub {alpha}} rays corresponding to different ions. These results are also interpreted and modelled. In conclusion, with an electron dynamics controlled by rf, due to a high mirror ratio, the losses are limited. According to the scale law the higher the frequency the higher is the energy content of the electrons and consequently the higher are the performances. The ions are cool and colliding. Their lifetime increases with the charge. If it increases linearly their transport is controlled by the spatial diffusion in the ambipolar electric field. A correct lifetime requires plasma of high dimensions and low ionic temperature.

  10. Particle-in-cell simulations of Hall plasma thrusters

    Science.gov (United States)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  11. Particle behavior in an ECR plasma etch tool

    International Nuclear Information System (INIS)

    Blain, M.G.; Tipton, G.D.; Holber, W.M.; Westerfield, P.L.; Maxwell, K.L.

    1993-01-01

    Sources of particles in a close-coupled electron cyclotron resonance (ECR) polysilicon plasma etch source include flaking of films deposited on chamber surfaces, and shedding of material from electrostatic wafer chucks. A large, episodic increase in the number of particles added to a wafer in a clean system is observed more frequently for a plasma-on than for a gas-only source condition. For polymer forming process conditions, particles were added to wafers by a polymer film which was observed to fracture and flake away from chamber surfaces. The presence of a plasma, especially when rf bias is applied to the wafer, caused more particles to be ejected from the walls and added to wafers than the gas-only condition; however, no significant influence was observed with different microwave powers. A study of effect of electrode temperatures on particles added showed that thermophoretic forces are not significant for this ECR configuration. Particles originating from the electrostatic chuck were observed to be deposited on wafers in much larger numbers in the presence of the plasma as compared to gas-only conditions

  12. Particle-transport simulation with the Monte Carlo method

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.

    1975-01-01

    Attention is focused on the application of the Monte Carlo method to particle transport problems, with emphasis on neutron and photon transport. Topics covered include sampling methods, mathematical prescriptions for simulating particle transport, mechanics of simulating particle transport, neutron transport, and photon transport. A literature survey of 204 references is included. (GMT)

  13. Edge transport and fluctuation induced turbulence characteristics in early SST-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kakati, B., E-mail: bharat.kakati@ipr.res.in; Pradhan, S., E-mail: pradhan@ipr.res.in; Dhongde, J.; Semwal, P.; Yohan, K.; Banaudha, M.

    2017-02-15

    Highlights: • Anomalous particle transport during the high MHD activity at SST-1. • Electrostatic turbulence is modulated by MHD activity at SST-1 tokamak. • Edge floating potential fluctuations shows poloidal long-range cross correlation. - Abstract: Plasma edge transport characteristics are known to be heavily influenced by the edge fluctuation induced turbulences. These characteristics play a critical role towards the confinement of plasma column in a Tokamak. The edge magnetic fluctuations and its subsequent effect on electrostatic fluctuations have been experimentally investigated for the first time at the edge of the SST-1 plasma column. This paper reports the correlations that exist and is experimentally been observed between the edge densities and floating potential fluctuations with the magnetic fluctuations. The edge density and floating potential fluctuations have been measured with the help of poloidally separated Langmuir probes, whereas the magnetic fluctuations have been measured with poloidally spaced Mirnov coils. Increase in magnetic fluctuations associated with enhanced MHD activities has been found to increase the floating potential and ion saturation current. These observations indicate electrostatic turbulence getting influenced with the MHD activities and reveal the edge anomalous particle transport during SST-1 tokamak discharge. Large-scale coherent structures have been observed in the floating potential fluctuations, indicating long-distance cross correlation in the poloidal directions. From bispectral analysis, a strong nonlinear coupling among the floating potential fluctuations is observed in the low-frequency range about 0–15 kHz.

  14. Turbulent transport in low-beta plasmas

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Pécseli, H.L.; Juul Rasmussen, J.

    1996-01-01

    Low-frequency electrostatic fluctuations are studied experimentally in a low-P plasma, with particular attention to their importance for the anomalous plasma transport across magnetic field lines. The presence of large coherent structures in a turbulent background at the edge of the plasma column...... is demonstrated by a statistical analysis. The importance of these structures for the turbulent transport is investigated. The study is extended by a multichannel conditional analysis to illustrate detailed properties and parameter dependences of the turbulent transport. (C) 1996 American Institute of Physics....

  15. Rotating structures in low temperature magnetized plasmas - Insight from particle simulations

    Directory of Open Access Journals (Sweden)

    Jean-Pierre eBoeuf

    2014-12-01

    Full Text Available The EXB configuration of various low temperature plasma devices is often responsible for the formation of rotating structures and instabilities leading to anomalous electron transport across the magnetic field. In these devices, electrons are strongly magnetized while ions are weakly or not magnetized and this leads to specific physical phenomena that are not present in fusion plasmas where both electrons and ions are strongly magnetized. In this paper we describe basic phenomena involving rotating plasma structures in simple configurations of low temperature EXB plasma devices on the basis of PIC-MCC (Particle-In-Cell Monte Carlo Collisions simulations. We focus on three examples: rotating electron vortices and rotating spokes in cylindrical magnetrons, and azimuthal electron-cyclotron drift instability in Hall thrusters. The simulations are not intended to give definite answers to the many physics issues related to low temperature EXB plasma devices but are used to illustrate and discuss some of the basic questions that need further studies.

  16. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Andreas [Université Libre de Bruxelles, Service de Physique Statistique et des Plasmas, CP 231, B-1050 Brussels (Belgium); Wiengarten, Tobias; Fichtner, Horst [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Effenberger, Frederic [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Kühl, Patrick; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel, D-24098 Kiel (Germany); Raath, Jan-Louis; Potgieter, Marius S. [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-03-01

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.

  17. Plasma stream transport method (2) Use of charge exchange plasma source

    International Nuclear Information System (INIS)

    Tsuchimoto, T.

    1978-01-01

    The plasma stream transport method using a single plasma source has limitations for practical film deposition. Using a charge exchange phenomenon, a new plasma source is devised and tested by the plasma stream transport machine. Metals, silicon dioxide, and nitride films are deposited by this system. The mechanism of deposition under relatively high vacuum surrounding a silicon wafer is discussed as is the effect of radical atoms

  18. Process maps for plasma spray: Part 1: Plasma-particle interactions

    International Nuclear Information System (INIS)

    Gilmore, Delwyn L.; Neiser, Richard A. Jr.; Wan, Yuepeng; Sampath, Sanjay

    2000-01-01

    This is the first paper of a two part series based on an integrated study carried out at Sandia National Laboratories and the State University of New York at Stony Brook. The aim of the study is to develop a more fundamental understanding of plasma-particle interactions, droplet-substrate interactions, deposit formation dynamics and microstructural development as well as final deposit properties. The purpose is to create models that can be used to link processing to performance. Process maps have been developed for air plasma spray of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, auxiliary gas flow, and powder carrier gas flow. In-flight particle diameters, temperatures, and velocities were measured in various areas of the spray plume. Samples were produced for analysis of microstructures and properties. An empirical model was developed, relating the input parameters to the in-flight particle characteristics. Multi-dimensional numerical simulations of the plasma gas flow field and in-flight particles under different operating conditions were also performed. In addition to the parameters which were experimentally investigated, the effect of particle injection velocity was also considered. The simulation results were found to be in good general agreement with the experimental data

  19. Transport in the plasma edge specific connection to the wall in the Tore Supra ergodic divertor experiments

    International Nuclear Information System (INIS)

    Grosman, A.; Ghendrih, P.; DeMichelis, C.; Monier-Garbet, P.; Vallet, J.C.; Capes, H.; Chatelier, M.; Geraud, A.; Goniche, M.; Grisolia, C.; Guilhem, D.; Harris, G.; Hess, W.; Nguyen, F.; Poutchy, L.; Samain, A.

    1992-01-01

    The ergodic divertor experiments in TORE SUPRA can be analysed along two main lines. The first one refers to the change of the heat and particle transport in the ergodized zone. This is especially true for the electron heat transport which is enhanced in the edge layer. But other distinctive features give evidence of the importance of the parallel connexion length between the plasma edge and the wall. The field lines, which are stochastic in the major part of the perturbed layer (10-15 cm) are such that, in the outermost layer (3 cm), the connexion topology is regular. This has obvious effects on the particle and power deposition, but also on the plasma parameters, and consequently influences the particle recycling and impurity shielding processes. The TORE SUPRA ergodic divertor experiments are reviewed in this framework

  20. Thermonuclear Tokamak plasmas in the presence of fusion alpha particles

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1988-01-01

    In this overview, we have focused on several results of the thermonuclear plasma research pertaining to the alpha particle physics and diagnostics in a fusion tokamak plasma. As regards the discussion of alpha particle effects, two distinct classes of phenomena have been distinguished: the simpler class containing phenomena exhibited by individual alpha particles under the influence of bulk plasma properties and, the more complex class including collective effects which become important for increasing alpha particle density. We have also discussed several possibilities to investigate alpha particle effects by simulation experiments using an equivalent population of highly energetic ions in the plasma. Generally, we find that the present theoretical knowledge on the role of fusion alpha particles in a fusion tokamak plasma is incomplete. There are still uncertainties and partial lack of quantitative results in this area. Consequently, further theoretical work and, as far a possible, simulation experiments are needed to improve the situation. Concerning the alpha particle diagnostics, the various diagnostic techniques and the status of their development have been discussed in two different contexts: the escaping alpha particles and the confined alpha particles in the fusion plasma. A general conclusion is that many of the different diagnostic methods for alpha particle measurements require further major development. (authors)

  1. Turbulence and transport characteristics of a barrier in a toroidal plasma

    International Nuclear Information System (INIS)

    Fujisawa, A; Shimizu, A; Nakano, H; Ohsima, S; Itoh, K; Iguchi, H; Yoshimura, Y; Minami, T; Nagaoka, K; Takahashi, C; Kojima, M; Nishimura, S; Isobe, M; Suzuki, C; Akiyama, T; Nagashima, Y; Ida, K; Toi, K; Ido, T; Itoh, S-I; Matsuoka, K; Okamura, S; Diamond, P H

    2006-01-01

    Turbulence and zonal flow at a transport barrier are studied with twin heavy ion beam probes in a toroidal helical plasma. A wavelet analysis is used to extract turbulence properties, e.g. spectra of both density and potential fluctuations, the coherence and the phase between them and the dispersion relation. Particle transport estimated from the fundamental characteristics is found to clearly rise with their intermittent activities after the barrier is broken down. Time-dependent analysis reveals that the intermittency of turbulence is correlated with the evolution of the stationary zonal flow

  2. Turbulence and transport characteristics of a barrier in a toroidal plasma

    International Nuclear Information System (INIS)

    Fujisawa, A.; Shimizu, A.; Nakano, H.

    2005-10-01

    Turbulence and zonal flow at a transport barrier are studied with twin heavy ion beam probes in a toroidal helical plasma. A wavelet analysis is used to extract turbulence properties, e.g., spectra of both density and potential fluctuations, coherence and phase between them, and the dispersion relation. Particle transport estimated from the fundamental characteristics is found to clearly rise with their intermittent activities after the barrier is broken down. The time-dependent analysis reveals that intermittency of turbulence is correlated with evolution of stationary zonal flow. (author)

  3. Fast Particle Interaction With Waves In Fusion Plasmas

    International Nuclear Information System (INIS)

    Breizman, Boris

    2006-01-01

    There are two well-known motivations for theoretical studies of fast particle interaction with waves in magnetic confinement devices. One is the challenge of avoiding strong collective losses of alpha particles and beam ions in future burning plasma experiments. The other one is the compelling need to quantitatively interpret the large amount of experimental data from JET, TFTR, JT-60U, DIII-D, and other machines. Such interpretation involves unique diagnostic opportunities offered by MHD spectroscopy. This report discusses how the present theory responds to the stated challenges and what theoretical and computational advances are required to address the outstanding problems. More specifically, this paper deals with the following topics: predictive capabilities of linear theory and simulations; theory of Alfven cascades; diagnostic opportunities based on linear and nonlinear properties of unstable modes; interplay of kinetic and fluid nonlinearities; fast chirping phenomena for non-perturbative modes; and global transport of fast particles. Recent results are presented on some of the listed topics, although the main goal is to identify critical issues for future work

  4. Destabilizing effect of alpha particles in a Maxwellian plasma

    International Nuclear Information System (INIS)

    Wang, M.Y.

    1976-01-01

    Various plasma waves which are possibly excited by MeV alphas have been investigated. For a delta birth distribution it is found that: a) The right-circularly polarized Alfven wave can be excited. Its growth rate is linearly proportional to the α-particle density. b) The drift Alfven wave is stable against α-particles. c) For a uniform temperature, the plasma wave spectrum changes from three branches with n/sub α/ = 0 to four branches for n/sub α/ not equal to 0 case. d) α-particles can destabilize the ion drift acoustic wave even with uniform temperature. However, the ion acoustic wave appears to be stable against fusion products in a fusion grade plasma. e) If their effect on the background plasma spectrum is neglected, α-particles can excite the electromagnetic cyclotron wave in a range of harmonics (band structure). The growth rate is proportional to the square root of α-particle density. f) If the effect of α-particle on the plasma spectrum is included, we find that electromagnetic cyclotron wave is stable

  5. Anomalous plasma transport due to electron temperature gradient instability

    International Nuclear Information System (INIS)

    Tokuda, Sinji; Ito, Hiroshi; Kamimura, Tetsuo.

    1979-01-01

    The collisionless drift wave instability driven by an electron temperature inhomogeneity (electron temperature gradient instability) and the enhanced transport processes associated with it are studied using a two-and-a-half dimensional particle simulation code. The simulation results show that quasilinear diffusion in phase space is an important mechanism for the saturation of the electron temperature gradient instability. Also, the instability yields particle fluxes toward the hot plasma regions. The heat conductivity of the electron temperature perpendicular to the magnetic field, T sub(e'), is not reduced by magnetic shear but remains high, whereas the heat conductivity of the parallel temperature, T sub(e''), is effectively reduced, and the instability stabilized. (author)

  6. Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1995-01-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear term. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the bootstrap current are also affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The quasilinear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated from the fluctuating part of the drift kinetic equation. The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime to derive the parallel viscosities modified by the fluctuations. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. copyright 1995 American Institute of Physics

  7. Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1995-05-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear term. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the bootstrap current are also affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The quasilinear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated from the fluctuating part of the drift kinetic equation. The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime to derive the parallel viscosities modified by the fluctuations. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. (author)

  8. Dynamical Simulation of Recycling and Particle Fueling in TJ-II Plasmas; Simulacion Dinamica del Reciclado y de la Inyeccion de Particulas en los Plasmas del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Bruna, D; Ferreira, J A; Tabares, F L; Castejon, F; Guasp, J

    2007-07-20

    With the aim of improving the calculation tools for transport analysis in TJ-II plasmas, in this work we analyze the simplified model for a kinetic equation that ASTRA uses to calculate the neutral particle distribution in the plasma. Next, we act on the boundary conditions for this kinetic equation (particularly on the neutral density in the plasma boundary) so we can simulate the recycling conditions for the TJ-II in a simple way. With the resulting transport models we can easily analyze the sensibility of these plasmas to the cold gas puffing depending on the recycling conditions. These transport models evidence the problem of density control in the TJ-II. Likewise, we estimate the importance of recycling in the plasmas heated by energetic neutral beam injection. The experimentally observed increments in density when the energetic neutrals are injected would respond, according to the calculations here presented, to a large increment of the neutrals influx that cannot be explained by the beam itself. (Author) 22 refs.

  9. Magnetic stochasticity in magnetically confined fusion plasmas chaos of field lines and charged particle dynamics

    CERN Document Server

    Abdullaev, Sadrilla

    2014-01-01

    This is the first book to systematically consider the modern aspects of chaotic dynamics of magnetic field lines and charged particles in magnetically confined fusion plasmas.  The analytical models describing the generic features of equilibrium magnetic fields and  magnetic perturbations in modern fusion devices are presented. It describes mathematical and physical aspects of onset of chaos, generic properties of the structure of stochastic magnetic fields, transport of charged particles in tokamaks induced by magnetic perturbations, new aspects of particle turbulent transport, etc. The presentation is based on the classical and new unique mathematical tools of Hamiltonian dynamics, like the action--angle formalism, classical perturbation theory, canonical transformations of variables, symplectic mappings, the Poincaré-Melnikov integrals. They are extensively used for analytical studies as well as for numerical simulations of magnetic field lines, particle dynamics, their spatial structures and  statisti...

  10. Revisited neoclassical transport theory for steep, collisional plasma edge profiles

    International Nuclear Information System (INIS)

    Rogister, A.L.

    1994-01-01

    Published neoclassical results are misleading as concerns the plasma edge for they do not adequately take the peculiar local conditions into account, in particular the fact that the density and temperature variation length-scales are quite small. Coupled novel neoclassical equations obtain, not only for the evolution of the density and temperatures, but also for the radial electric field and the evolution of the parallel ion momentum: gyro-stresses and inertia indeed upset the otherwise de facto ambipolarity of particle transport and a radial electric field necessarily builds up. The increased nonlinear character of these revisited neoclassical equations widens the realm of possible plasma behaviors. (author)

  11. Hot plasma and energetic particles in the earth's outer magnetosphere: new understandings during the IMS

    International Nuclear Information System (INIS)

    Baker, D.N.; Fritz, T.A.

    1984-01-01

    In this paper we review the major accomplishments made during the IMS period in clarifying magnetospheric particle variations in the region from roughly geostationary orbit altitudes into the deep magnetotail. We divide our review into three topic areas: (1) acceleration processes; (2) transport processes; and (3) loss processes. Many of the changes in hot plasmas and energetic particle populations are often found to be related intimately to geomagnetic storm and magnetospheric substorm effects and, therefore, substantial emphasis is given to these aspects of particle variations in this review. The IMS data, taken as a body, allow a reasonably unified view as one traces magnetospheric particles from their acceleration source through the plasma sheet and outer trapping regions and, finally, to their loss via ionospheric precipitation and ring current formation processes. It is this underlying, unifying theme which is pursued here. 52 references, 19 figures

  12. Charged particle acceleration in nonuniform plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Naumova, N.M.; Pegoraro, F.

    1996-11-01

    The high-gradient electron acceleration schemes that have been demonstrated using LWFA appear promising for the development of plasma-based laser accelerators into practical devices. However, a question still exists: how to avoid the wake field deterioration and the loss of the phase synchronism between the plasma wave and the electrons that prevent them from being accelerated up to the theoretical limit. In order to obtain the highest possible values of the wake electric field one must use as intense laser pulses as possible i.e., pulses with dimensionless amplitudes a much-gt 1. Pulses that have a dimensionless amplitude larger than one tend to be subject to a host of instabilities, such as relativistic self-focusing, self modulation and stimulated Raman scattering, that affect their propagation in the plasma. Such processes could be beneficial, in so far as they increase the pulse energy density, enhance the wake field generation, and provide the mechanism for transporting the laser radiation over several Rayleigh lengths without diffraction spreading. However, it is still far from certain that these processes can be exploited in a controlled form and can lead to regular, stationary wake fields. It is known that, in order to create good quality wake fields, it would be preferable to use laser pulses with steep fronts of order λ p . The present paper aims at analyzing the influence of the laser pulse shape and of the plasma nonuniformity on the charged particle acceleration. This study is based on the results obtained with one dimensional PIC simulations

  13. NIFS joint research meeting on plasma facing components, PSI, and heat/particle control

    International Nuclear Information System (INIS)

    Yamashina, T.

    1997-10-01

    The LHD collaboration has been started in 1996. Particle and heat control is one of the categories for the collaboration, and a few programs have been nominated in these two years. A joint research meeting on PFC, PSI, heat and particle meeting was held at NIFS on June 27, 1997, in which present status of these programs were reported. This is a collection of the notes and view graphs presented in this meeting. Brief reviews and research plan of each program are included in relation to divertor erosion and sputtering, impurity generation, hydrogen recycling, edge plasma structure, edge transport and its control, heat removal, particle exhaust, wall conditioning etc. (author)

  14. Plasma transport simulation modeling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  15. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Energy Technology Data Exchange (ETDEWEB)

    Totsuji, Hiroo, E-mail: totsuji-09@t.okadai.jp

    2017-03-11

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity. - Highlights: • In fine particle (dusty) plasmas, the charge neutrality is much enhanced by the existence of fine particles. • The enhancement of charge neutrality generally occurs under microgravity and gravity. • Structure of fine particle clouds under gravity is determined by applying the enhanced charge neutrality.

  16. Fluctuations and transport in fusion plasmas. Annual progress report, October 1, 1983-September 30, 1984

    International Nuclear Information System (INIS)

    Gould, R.W.

    1984-01-01

    This grant supports an integrated program of experiment and theory in tokamak plasma physics. Emphasis is placed on microscopic fluctuations and anomalous transport. The primary objective is to characterize the properties of the microscopic fluctuations observed in tokamaks and to try to develop an understanding of the fluctuation-induced transport of particles and heat. Anomalous transport, which causes energy losses one to two orders of magnitude larger than predicted by neoclassical transport theory, occurs in all tokamaks and underlies empirical scaling laws

  17. Heat and particle transport of sol/divertor plasma in the W-shaped divertor on JT-60U

    International Nuclear Information System (INIS)

    Asakura, N.; Sakurai, S.; Hosogane, N.

    1999-01-01

    The plasma profile and parallel flow in the scrape-off layer (SOL) were systematically measured using Mach probes installed at the midplane and the divertor x-point. Quantitative evaluation of a parallel flow: naturally produced in a torus to keep the pressure constant along the field line, was consistent with the measurement. Geometry effects of the W-shaped divertor on the divertor plasma and particle recycling at the newly installed baffle plates were evaluated quantitatively using the edge plasma data. (author)

  18. Mechanism of travelling-wave transport of particles

    International Nuclear Information System (INIS)

    Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki

    2006-01-01

    Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency

  19. Mathematical modelling of powder material motion and transportation in high-temperature flow core during plasma coatings application

    Science.gov (United States)

    Bogdanovich, V. I.; Giorbelidze, M. G.

    2018-03-01

    A problem of mathematical modelling of powder material motion and transportation in gas thermal flow core has been addressed. Undertaken studies indicate significant impact on dynamics of motion of sprayed particles of phenomenological law for drag coefficient and accounting momentum loss of a plasma jet upon acceleration of these particles and their diameter. It is determined that at great dispersion of spraying particles, they reach detail surface at different velocity and significant particles separation takes place at spraying spot. According to the results of mathematical modelling, requirements for admissible dispersion of diameters of particles used for spraying have been formulated. Research has also allowed reducing separation of particles at the spraying spot due to the selection of the method of powder feed to the anode channel of the plasma torch.

  20. Transport of rare earth element-tagged soil particles in response to thunderstorm runoff.

    Science.gov (United States)

    Matisoff, G; Ketterer, M E; Wilson, C G; Layman, R; Whiting, P J

    2001-08-15

    The downslope transport of rare earth element-tagged soil particles remobilized during a spring thunderstorm was studied on both a natural prairie and an agricultural field in southwestern Iowa (U.S.A.). A technique was developed for tagging natural soils with the rare earth elements Eu, Tb, and Ho to approximately 1,000 ppm via coprecipitation with MnO2. Tagged material was replaced in target locations; surficial soil samples were collected following precipitation and runoff; and rare earth element concentrations were determined by inductively coupled plasma mass spectrometry. Diffusion and exponential models were applied to the concentration-distance data to determine particle transport distances. The results indicate that the concentration-distance data are well described by the diffusion model, butthe exponential model does not simulate the rapid drop-off in concentrations near the tagged source. Using the diffusion model, calculated particle transport distances at all hillside locations and at both the cultivated and natural prairie sites were short, ranging from 3 to 73 cm during this single runoff event. This study successfully demonstrates a new tool for studying soil erosion.

  1. Experimental characterization of solid particle transport by slug flow using Particle Image Velocimetry

    International Nuclear Information System (INIS)

    Goharzadeh, A; Rodgers, P

    2009-01-01

    This paper presents an experimental study of gas-liquid slug flow on solid particle transport inside a horizontal pipe with two types of experiments conducted. The influence of slug length on solid particle transportation is characterized using high speed photography. Using combined Particle Image Velocimetry (PIV) with Refractive Index Matching (RIM) and fluorescent tracers (two-phase oil-air loop) the velocity distribution inside the slug body is measured. Combining these experimental analyses, an insight is provided into the physical mechanism of solid particle transportation due to slug flow. It was observed that the slug body significantly influences solid particle mobility. The physical mechanism of solid particle transportation was found to be discontinuous. The inactive region (in terms of solid particle transport) upstream of the slug nose was quantified as a function of gas-liquid composition and solid particle size. Measured velocity distributions showed a significant drop in velocity magnitude immediately upstream of the slug nose and therefore the critical velocity for solid particle lifting is reached further upstream.

  2. Parallel Transport and Profile of Boundary Plasma with a Low Recycling Wall

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.; Guo, Z., E-mail: xtang@lanl.gov [Los Alamos National Laboratory, Los Alamos (United States)

    2012-09-15

    Full text: Reduction of wall recycling by, for example, a flowing liquid surface at the divertor and first wall, holds the promise of accessing the distinct tokamak reactor operational mode with boundary plasmas of high temperature and low density. Earlier work has indicated that such a boundary plasma would reduce the temperature gradient across the entire plasma and hence remove the primary micro-instability drive responsibly for anomalous particle and energy transport. Here we present a systematic study solving the kinetic equations both analytically and numerically, with and without Coulomb collision. The distinct roles of magnetic field strength modulation and the ambipolar electric field on the electron and ion distribution functions are clarified. The resulting behavior on plasma profile and parallel heat flux, which are often surprising and counter the expectations from the collisional fluid models, on which previous work were based, are explained both intuitively and with a contrast between analytical calculation and numerical simulations. The transport-induced plasma instabilities, and their essential role in maintaining ambipolarity, are clarified, along with the subtle effect of Coulomb collision on electron temperature and wall potential as small but finite collisionality is taken into account. (author)

  3. On helicon wave induced radial plasma transport

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-04-01

    Estimates of helicon wave induced radial plasma transport are presented. The wave induced transport grows or decreases in dependence on the sign of the azimuthal wave number; these changes in transport may play an important role in helicon wave plasma sources. (author) 5 figs., 18 refs

  4. Behavior of the particle transport coefficients near the density limit in MTX

    International Nuclear Information System (INIS)

    Marinak, M.M.

    1993-04-01

    The perturbed particle transport coefficients were determined for a range of plasma conditions in the Alcator C tokamak, a component of the Microwave Tokamak Experiment (MTX), from analysis of density perturbations created in gas modulation experiments. Density measurements from a 15 chord far-infrared interferometer were sufficiently detailed to allow radial profiles of the transport coefficients to be resolved. Gas modulation experiments were carried out on plasmas over a range of relatively low currents and a wide variety of line-averaged densities, including values near the Greenwald density limit. With this technique the perturbed diffusion coefficient D and the perturbed convection velocity V can be determined simultaneously. Measured profiles of D rise toward the outside of the plasma column in a manner generally similar to those determined previously for χ e,HP from sawtooth heat pulse propagation. Values of D are typically smaller than those of χ e,HP given for the same line-averaged densities by a factor of 2-5. Diffusion coefficients from a series of discharges at constant current showed little variation with density through most of the saturated ohmic confinement regime. At the Greenwald density limit threshold a dramatic increase occurred in both the perturbed convective and diffusive transport coefficients in the outer region of the plasma. The increases were most pronounced at the outermost range of the radii where coefficients were determined (r/a = 0.8), but were apparent over a region which extended well into the plasma interior. Density profiles maintained a similar shape near the density limit, congruous with the similar behavior of the transport coefficients. No dramatic deterioration was evident in the global energy confinement

  5. Particle and power deposition on divertor targets in EAST H-mode plasmas

    International Nuclear Information System (INIS)

    Wang, L.; Xu, G.S.; Guo, H.Y.; Chen, R.; Ding, S.; Gan, K.F.; Gao, X.; Gong, X.Z.; Jiang, M.; Liu, P.; Liu, S.C.; Luo, G.N.; Ming, T.F.; Wan, B.N.; Wang, D.S.; Wang, F.M.; Wang, H.Q.; Wu, Z.W.; Yan, N.; Zhang, L.

    2012-01-01

    The effects of edge-localized modes (ELMs) on divertor particle and heat fluxes were investigated for the first time in the Experimental Advanced Superconducting Tokamak (EAST). The experiments were carried out with both double null and lower single null divertor configurations, and comparisons were made between the H-mode plasmas with lower hybrid current drive (LHCD) and those with combined ion cyclotron resonance heating (ICRH). The particle and heat flux profiles between and during ELMs were obtained from Langmuir triple-probe arrays embedded in the divertor target plates. And isolated ELMs were chosen for analysis in order to reduce the uncertainty resulting from the influence of fast electrons on Langmuir triple-probe evaluation during ELMs. The power deposition obtained from Langmuir triple probes was consistent with that from the divertor infra-red camera during an ELM-free period. It was demonstrated that ELM-induced radial transport predominantly originated from the low-field side region, in good agreement with the ballooning-like transport model and experimental results of other tokamaks. ELMs significantly enhanced the divertor particle and heat fluxes, without significantly broadening the SOL width and plasma-wetted area on the divertor target in both LHCD and LHCD + ICRH H-modes, thus posing a great challenge for the next-step high-power, long-pulse operation in EAST. Increasing the divertor-wetted area was also observed to reduce the peak heat flux and particle recycling at the divertor target, hence facilitating long-pulse H-mode operation. The particle and heat flux profiles during ELMs appeared to exhibit multiple peak structures, and were analysed in terms of the behaviour of ELM filaments and the flux tubes induced by modified magnetic topology during ELMs. (paper)

  6. Response of plasma facing components in Tokamaks due to intense energy deposition using Particle-In-Cell (PIC) methods

    Science.gov (United States)

    Genco, Filippo

    Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving

  7. Magnetic-flutter-induced pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.; Cole, A.J.

    2013-01-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δB ρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δB ρ s induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δB ρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δB ρ /B 0 ) 2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an

  8. Magnetic-flutter-induced pedestal plasma transport

    Science.gov (United States)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron

  9. Particle acceleration in near critical density plasma

    International Nuclear Information System (INIS)

    Gu, Y.J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Nagashima, T.

    2013-01-01

    Charged particle acceleration schemes driven by ultra intense laser and near critical density plasma interactions are presented. They include electron acceleration in a plasma channel, ion acceleration by the Coulomb explosion and high energy electron beam driven ion acceleration. It is found that under the near critical density plasma both ions and electrons are accelerated with a high acceleration gradient. The electron beam containing a large charge quantity is accelerated well with 23 GeV/cm. The collimated ion bunch reaches 1 GeV. The investigations and discussions are based on 2.5D PIC (particle-in-cell) simulations. (author)

  10. Nanoscale morphogenesis of nylon-sputtered plasma polymer particles

    Science.gov (United States)

    Choukourov, Andrei; Shelemin, Artem; Pleskunov, Pavel; Nikitin, Daniil; Khalakhan, Ivan; Hanuš, Jan

    2018-05-01

    Sub-micron polymer particles are highly important in various fields including astrophysics, thermonuclear fusion and nanomedicine. Plasma polymerization offers the possibility to produce particles with tailor-made size, crosslink density and chemical composition to meet the requirements of a particular application. However, the mechanism of nucleation and growth of plasma polymer particles as well as diversity of their morphology remain far from being clear. Here, we prepared nitrogen-containing plasma polymer particles by rf magnetron sputtering of nylon in a gas aggregation cluster source with variable length. The method allowed the production of particles with roughly constant chemical composition and number density but with the mean size changing from 80 to 320 nm. Atomic Force Microscopy with super-sharp probes was applied to study the evolution of the particle surface topography as they grow in size. Height–height correlation and power spectral density functions were obtained to quantify the roughness exponent α  =  0.78, the growth exponent β  =  0.35, and the dynamic exponent 1/z  =  0.50. The set of critical exponents indicates that the particle surface evolves in a self-affine mode and the overall particle growth is caused by the accretion of polymer-forming species from the gas phase and not by coagulation. Redistribution of the incoming material over the surface coupled with the inhomogeneous distribution of inner stress is suggested as the main factor that determines the morphogenesis of the plasma polymer particles.

  11. A study on the particle melting by plasma spraying

    International Nuclear Information System (INIS)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I.

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size

  12. A study on the particle melting by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size.

  13. Plasma transport simulation modelling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1992-01-01

    New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs

  14. The effect of pre-plasma formation under nonlocal transport conditions for ultra-relativistic laser-plasma interaction

    Science.gov (United States)

    Holec, M.; Nikl, J.; Vranic, M.; Weber, S.

    2018-04-01

    Interaction of high-power lasers with solid targets is in general strongly affected by the limited contrast available. The laser pre-pulse ionizes the target and produces a pre-plasma which can strongly modify the interaction of the main part of the laser pulse with the target. This is of particular importance for future experiments which will use laser intensities above 1021 W cm-2 and which are subject to the limited contrast. As a consequence the main part of the laser pulse will be modified while traversing the pre-plasma, interacting with it partially. A further complication arises from the fact that the interaction of a high-power pre-pulse with solid targets very often takes place under nonlocal transport conditions, i.e. the characteristic mean-free-path of the particles and photons is larger than the characteristic scale-lengths of density and temperature. The classical diffusion treatment of radiation and heat transport in the hydrodynamic model is then insufficient for the description of the pre-pulse physics. These phenomena also strongly modify the formation of the pre-plasma which in turn affects the propagation of the main laser pulse. In this paper nonlocal radiation-hydrodynamic simulations are carried out and serve as input for subsequent kinetic simulations of ultra-high intensity laser pulses interacting with the plasma in the ultra-relativistic regime. It is shown that the results of the kinetic simulations differ considerably whether a diffusive or nonlocal transport is used for the radiation-hydrodynamic simulations.

  15. Computer simulation of phenomena in plasma via particles

    International Nuclear Information System (INIS)

    Alves, M.V.; Bittencourt, J.A.

    1988-06-01

    The method of plasma computer simulation via particles has become an efficient tool to investigate the time and spatial evolution of various physical phenomena in plasmas. This method is based on the study of the individual plasma particle motions interacting with one another and with the externally applied fields. Although fairly simple, it allows a non-linear analysis of complex plasma physical phenomena and to obtain diagnostics even for regions of the system where experimental measurements would be difficult to make. In this report, a general view of the electrostatic one-dimensional computer code ES1, originally developed by A. Bruce Langdon, is presented. The main mathematical artifice in this code is the use of a spatial grid in which various plasma particles are represented by ''superparticles'', using a given shape function. The principal characteristics of the model, the approximations made and the mathematical methods used to solve the equations involved, are described. The specification of the input parameters which characterize the system, the initial conditions and the graphic diagnostics which can be utilized, are also described. Results are presented illustrating graphically the behavior of the plasma oscillations, the two-stream instability and the beam-plasma instability. (author) [pt

  16. Plasma technology for powder particles

    Energy Technology Data Exchange (ETDEWEB)

    Kranz, E. (Technische Hochschule, Ilmenau (German Democratic Republic))

    1983-03-01

    A survey is given of principles and applications of plasma spraying and of powder transformation and generation in plasma considering spheroidization, grain size transformation, powder particle formation, powder reduction, and melting within the power range of 10/sup 3/ to 10/sup 7/ W. The products are applied in many industrial fields such as nuclear engineering, hard metal production, metallurgy, catalysis, and semiconductor techniques.

  17. Effects of pressure anisotropy on plasma transport

    International Nuclear Information System (INIS)

    Zawaideh, E.; Najmabadi, F.; Conn, R.W.

    1986-03-01

    In a recent paper a new set of generalized two-field equations is derived which describes plasma transport along the field lines of a space and time dependent magnetic field. These equations are valid for collisional to weakly collisional plasmas; they reduce to the conventional fluid equations of Braginskii for highly collisional plasmas. An important feature of these equations is that the anisotropy in the ion pressure is explicitly included. In this paper, these generalized transport equations are applied to a model problem of plasma flow through a magnetic mirror field. The profiles of the plasma parameters (density, flow speed, and pressures) are numerically calculated for plasma in different collisionality regimes. These profiles are explained by examining the competing terms in the transport equation. The pressure anisotropy is found to profoundly impact the plasma flow behavior. As a result, the new generalized equations predict flow behavior more accurately than the conventional transport equations. A large density and pressure drop is predicted as the flow passes through a magnetic mirror. Further, the new equations uniquely predict oscillations in the density profile, an effect missing in results from the conventional equations

  18. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    International Nuclear Information System (INIS)

    Mehrling, Timon Johannes

    2014-11-01

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exceed with 10-100 GV/m the ones in today's radio-frequency accelerators by several orders of magnitude, hence, in principle allowing for accordingly shorter and cheaper accelerators based on plasma. Despite the tremendous progress in the recent decade, beams from plasma accelerators are not yet achieving the quality as demanded for pivotal applications of relativistic electron-beams, e.g. free-electron lasers (FELs).Studies within this work examine how the quality can be optimized in the production of the beams and preserved during the acceleration and transport to the interaction region. Such studies cannot be approached purely analytical but necessitate numerical methods, such as the Particle-In-Cell (PIC) method, which can model kinetic, electrodynamic and relativistic plasma phenomena. However, this method is computationally too expensive for parameter-scans in three-dimensional geometries. Hence, a quasi-static PIC code was developed in connection with this work, which is significantly more effective than the full PIC method for a class of problems in plasma-based acceleration.The evolution of the emittance of beams which are injected into plasma modules was studied in this work by means of theoretical and the above numerical methods. It was shown that the beam parameters need to be matched accurately into the focusing plasma-channel in order to allow for beam-quality preservation. This suggested that new extraction and injection-techniques are required in staged plasma

  19. Observation of internal transport barrier in ELMy H-mode plasmas on the EAST tokamak

    Science.gov (United States)

    Yang, Y.; Gao, X.; Liu, H. Q.; Li, G. Q.; Zhang, T.; Zeng, L.; Liu, Y. K.; Wu, M. Q.; Kong, D. F.; Ming, T. F.; Han, X.; Wang, Y. M.; Zang, Q.; Lyu, B.; Li, Y. Y.; Duan, Y. M.; Zhong, F. B.; Li, K.; Xu, L. Q.; Gong, X. Z.; Sun, Y. W.; Qian, J. P.; Ding, B. J.; Liu, Z. X.; Liu, F. K.; Hu, C. D.; Xiang, N.; Liang, Y. F.; Zhang, X. D.; Wan, B. N.; Li, J. G.; Wan, Y. X.; EAST Team

    2017-08-01

    The internal transport barrier (ITB) has been obtained in ELMy H-mode plasmas by neutron beam injection and lower hybrid wave heating on the Experimental Advanced Superconducting Tokamak (EAST). The ITB structure has been observed in profiles of ion temperature, electron temperature, and electron density within ρ safety factor q(0) ˜ 1. Transport coefficients are calculated by particle balance and power balance analysis, showing an obvious reduction after the ITB formation.

  20. Study of neutral particle behavior and particle confinement in JT-60U

    International Nuclear Information System (INIS)

    Takenaga, Hidenobu; Shimizu, Katsuhiro; Asakura, Nobuyuki; Shimada, Michiya; Kikuchi, Mitsuru; Tsuji-Iio, Shunji; Uchino, Kiichiro; Muraoka, Katsunori.

    1995-07-01

    In order to understand the particle confinement properties in JT-60U, the particle confinement time was estimated through analyses of the neutral particle behavior. First, the neutral particle transport simulation code DEGAS using a Monte-Carlo technique was combined with the simple divertor code for calculating the edge plasma parameters, and was developed to calculate under the experimental conditions in JT-60U. Then, the charged particle source in the main plasma due to the ionization of the neutral particles was evaluated from the analyses of the neutral particle penetration to the main plasma based on results of the simulation code and measurements of D α emission intensities. Finally, the particle confinement time was estimated from the analysis of particle balance. The analyses were performed systematically for the L-mode plasma and H-mode plasma of JT-60U, and a data base of the particle confinement time was obtained. The dependence of the particle confinement time on the plasma parameters and the relationship between the properties of the particle confinement and the energy confinement were examined. (author)

  1. Thermodynamic and transport properties of two-temperature SF6 plasmas

    International Nuclear Information System (INIS)

    Wang Weizong; Rong Mingzhe; Wu Yi; Spencer, Joseph W.; Yan, Joseph D.; Mei, DanHua

    2012-01-01

    This paper deals with thermodynamic and transport properties of SF 6 plasmas in a two-temperature model for both thermal equilibrium and non-equilibrium conditions. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and Guldberg-Waage equation according to deviation of van de Sanden et al. Transport properties including diffusion coefficient, viscosity, thermal conductivity, and electrical conductivity are calculated with most recent collision interaction potentials by adopting Devoto’s electron and heavy particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of Chapman–Enskog method. The results are computed for various values of pressures from 0.1 atm to 10 atm and ratios of the electron temperature to the heavy particle temperature from 1 to 20 with electron temperature range from 300 to 40 000 K. In the local thermodynamic equilibrium regime, results are compared with available results of previously published studies.

  2. Plasma Turbulence Suppression and Transport Barrier Formation by Externally Driven RF Waves in Spherical Tokamaks

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.C.; Komoshvili, K.

    2002-01-01

    Turbulent transport of heat and particles is the principle obstacle confronting controlled fusion today. Thus, we investigate quantitatively the suppression of turbulence and formation of transport barriers in spherical tokamaks by sheared electric fields generated by externally driven radio-frequency (RF) waves, in the frequency range o)A n o] < o)ci (e)A and o)ci are the Alfven and ion cyclotron frequencies). This investigation consists of the solution of the full-wave equation for a spherical tokamak in the presence of externally driven fast waves and the evaluation of the power dissipation by the mode-converted Alfven waves. This in turn, provides a radial flow shear responsible for the suppression of plasma turbulence. Thus, a strongly non-linear equation for the radial sheared electric field is solved, the turbulent transport suppression rate is evaluated and compared with the ion temperature gradient (ITG) instability increment. For illustration, the case of START-like device (Sykes 2000) is treated. Thus, (i) the exact D-shape cross-section is considered; (ii) additional kinetic (including Landau damping) and particle trapping effects are added to the resistive two-fluid dielectric tensor operator; (iii) a finite extension antenna located on the low-field-side of the plasma is considered; (iv) a rigorous 2.5 finite elements numerical code (Sewell 1993) is used; and (v) the turbulence and transport barrier generated as a result of wave-plasma interaction is evaluated

  3. Development of a Coupled Fluid and Colloidall Particle Transport Model

    OpenAIRE

    Ripplinger, Scott

    2013-01-01

    A colloidal system usually refers to when very small particles are suspended within a solution. The study of these systems encompasses a variety of cases including bacteria in ground water, blood cells and platelets in blood plasma, and river silt transport. Taking a look at these kinds of systems using computer simulation can provide a great deal of insight into how they work. Most approaches to date do not look at the details of the system, however, and are specific to given system. In this...

  4. Electromagnetic ''particle-in-cell'' plasma simulation

    International Nuclear Information System (INIS)

    Langdon, A.B.

    1985-01-01

    ''PIC'' simulation tracks particles through electromagnetic fields calculated self-consistently from the charge and current densities of the particles themselves, external sources, and boundaries. Already used extensively in plasma physics, such simulations have become useful in the design of accelerators and their r.f. sources. 5 refs

  5. Radially sheared azimuthal flows and turbulent transport in a cylindrical helicon plasma device

    International Nuclear Information System (INIS)

    Tynan, G R; Burin, M J; Holland, C; Antar, G; Diamond, P H

    2004-01-01

    A radially sheared azimuthal flow is observed in a cylindrical helicon plasma device. The shear flow is roughly azimuthally symmetric and contains both time-stationary and slowly varying components. The turbulent radial particle flux is found to peak near the density gradient maximum and vanishes at the shear layer location. The shape of the radial plasma potential profile associated with the azimuthal E x B flow is predicted accurately by theory. The existence of the mean shear flow in a plasma with finite flow damping from ion-neutral collisions and no external momentum input implies the existence of radial angular momentum transport from the turbulent Reynolds-stress

  6. Studies of Particle Wake Potentials in Plasmas

    Science.gov (United States)

    Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren

    2011-10-01

    Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (PPPM) code ddcMD and the particle-in-cell (PIC) code BEPS to perform these simulations. As a starting point in our study, we examine the wake of a particle passing through a plasma in 3D electrostatic simulations performed with ddcMD and with BEPS using various cell sizes. In this poster, we compare the wakes we observe in these simulations with each other and predictions from Vlasov theory. Prepared by LLNL under Contract DE-AC52-07NA27344 and by UCLA under Grant DE-FG52-09NA29552.

  7. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Abiteboul, J.

    2012-10-01

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  8. Dust particle charge and screening in the collisional RF plasma sheath

    NARCIS (Netherlands)

    Beckers, J.; Trienekens, D.J.M.; Kroesen, G.M.W.; Sprouse, G.D.

    2012-01-01

    Once immersed in plasma, a dust particle gathers a highly negative charge due to the net collection of free electrons. In most plasma's on earth and with particle sizes is in the micrometer range, the gravitational force is dominant and consequently the particle ends up within the plasma sheath

  9. Turbulence and abnormal transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Garbet, X.

    1988-09-01

    Microinstabilities in linear and nonlinear tokamak plasmas were studied. A variational method based on the existence of a system of angular variables and action for the charged particles in the magnetic configuration of a tokamak is described. The corresponding functional, extremal in relation to the fluctuating electromagnetic field, is calculated analytically, taking into account the effects of the toroidal geometry. A numerical code, TORRID, was derived from these principles and the main instabilities, especially ion instabilities and microtearing, were studied linearly. Nonlinear methods were also applied to microtearing. Quasi-linear transport coefficients are derived from a principle of minimum entropy production. Thermal ionic conductivity and viscosity are calculated for an ionic turbulence [fr

  10. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    International Nuclear Information System (INIS)

    Wang, Haiyan; Qi, Haiyang; Wang, Weizong; Yan, Joseph D; Geng, Jinyue; Wu, Yaowu

    2017-01-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg–Waage equation according to van de Sanden et al ’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman–Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes. (paper)

  11. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    Science.gov (United States)

    Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu

    2017-10-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.

  12. Fly ash particles spheroidization using low temperature plasma energy

    OpenAIRE

    Shekhovtsov, V. V.; Volokitin, O. G.; Vitske, Rudolf Evaldovich; Kondratyuk, Alexey Alekseevich

    2016-01-01

    The paper presents the investigations on producing spherical particles 65-110 [mu]m in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition ...

  13. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigm

    International Nuclear Information System (INIS)

    Sanchez, R.; Milligen, B.Ph. van; Carreras, B.A.

    2005-01-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Levy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems

  14. Transport theory for energetic alpha particles and tolerable magnitude of error fields in tokamaks with broken symmetry

    International Nuclear Information System (INIS)

    Shaing, K.C.; Hsu, C.T.

    2014-01-01

    A transport theory for energetic fusion born alpha particles in tokamaks with broken symmetry has been developed. The theory is a generalization of the theory for neoclassical toroidal plasma viscosity for thermal particles in tokamaks. It is shown that the radial energy transport rate can be comparable to the slowing down rate for energetic alpha particles when the ratio of the typical magnitude of the perturbed magnetic field strength to that of the equilibrium magnetic field strength is of the order of 10 −4 or larger. This imposes a constraint on the magnitude of the error fields in thermonuclear fusion reactors. The implications on stellarators as potential fusion reactors are also discussed. (paper)

  15. Multi-energy soft-x-ray technique for impurity transport measurements in the fusion plasma edge

    International Nuclear Information System (INIS)

    Clayton, D J; Tritz, K; Stutman, D; Finkenthal, M; Kumar, D; Kaye, S M; LeBlanc, B P; Paul, S; Sabbagh, S A

    2012-01-01

    A new diagnostic technique was developed to produce high-resolution impurity transport measurements of the steep-gradient edge of fusion plasmas. Perturbative impurity transport measurements were performed for the first time in the NSTX plasma edge (r/a ∼ 0.6 to the SOL) with short neon gas puffs, and the resulting line and continuum emission was measured with the new edge multi-energy soft-x-ray (ME-SXR) diagnostic. Neon transport is modeled with the radial impurity transport code STRAHL and the resulting x-ray emission is computed using the ADAS atomic database. The radial transport coefficient profiles D(r) and v(r), and the particle flux from the gas puff Φ(t), are the free parameters in this model and are varied to find the best fit to experimental x-ray emissivity measurements, with bolometry used to constrain the impurity source. Initial experiments were successful and results were consistent with previous measurements of core impurity transport and neoclassical transport calculations. New diagnostic tools will be implemented on NSTX-U to further improve these transport measurements. (paper)

  16. New approach in two-dimensional fluid modeling of edge plasma transport with high intermittency due to blobs and edge localized modes

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2011-01-01

    A new approach is proposed to simulate intermittent, non-diffusive plasma transport (via blobs and filaments of edge localized modes (ELMs)) observed in the tokamak edge region within the framework of two-dimensional transport codes. This approach combines the inherently three-dimensional filamentary structures associated with an ensemble of blobs into a macro-blob in the two-dimensional poloidal cross-section and advects the macro-blob ballistically across the magnetic field, B. Intermittent transport is represented as a sequence of macro-blobs appropriately seeded in the edge plasma according to experimental statistics. In this case, the code is capable of reproducing both the long-scale temporal evolution of the background plasma and the fast spatiotemporal dynamics of blobs. We report the results from a two-dimensional edge plasma code modeling of a single macro-blob dynamics, and its interaction with initially stationary background plasma as well as with material surfaces. The mechanisms of edge plasma particle and energy losses from macro-blobs are analyzed. The effects of macro-blob sizes and advection velocity on edge plasma profiles are studied. The macro-blob impact on power loading and sputtering rates on the chamber wall and on inner and outer divertor plates is discussed. Temporal evolution of particle inventory of the edge plasma perturbed by macro-blobs is analyzed. Application of macro-blobs to ELM modeling is highlighted.

  17. Neutral particle kinetics in fusion devices

    International Nuclear Information System (INIS)

    Tendler, M.; Heifetz, D.

    1986-05-01

    The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles which themselves are unaffected by magnetic fields. This transport affects the global power and particle balances in fusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. This paper reviews the development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange corresponds to scattering and ionization to absorption. Progress in the field depends on developing multidimensional analytic methods, and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices which are directly related to neutral transport, such as H/sub α/ emission rates, plenum pressures, and charge-exchange emission spectra

  18. Neutral particle kinetics in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Tendler, M.; Heifetz, D.

    1986-05-01

    The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles which themselves are unaffected by magnetic fields. This transport affects the global power and particle balances in fusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. This paper reviews the development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange corresponds to scattering and ionization to absorption. Progress in the field depends on developing multidimensional analytic methods, and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices which are directly related to neutral transport, such as H/sub ..cap alpha../ emission rates, plenum pressures, and charge-exchange emission spectra.

  19. Plasma jet acceleration of dust particles to hypervelocities

    International Nuclear Information System (INIS)

    Ticos, C. M.; Wang, Zhehui; Wurden, G. A.; Kline, J. L.; Montgomery, D. S.

    2008-01-01

    A convenient method to accelerate simultaneously hundreds of micron-size dust particles to a few km/s over a distance of about 1 m is based on plasma drag. Plasma jets which can deliver sufficient momentum to the dust particles need to have speeds of at least several tens of km/s, densities of the order of 10 22 m -3 or higher, and low temperature ∼1 eV, in order to prevent dust destruction. An experimental demonstration of dust particles acceleration to hypervelocities by plasma produced in a coaxial gun is presented here. The plasma flow speed is deduced from photodiode signals while the plasma density is measured by streaked spectroscopy. As a result of the interaction with the plasma jet, the dust grains are also heated to high temperatures and emit visible light. A hypervelocity dust shower is imaged in situ with a high speed video camera at some distance from the coaxial gun, where light emission from the plasma flow is less intense. The bright traces of the flying microparticles are used to infer their speed and acceleration by employing the time-of-flight technique. A simple model for plasma drag which accounts for ion collection on the grain surface gives predictions for dust accelerations which are in good agreement with the experimental observations.

  20. Particle transport across a circular shear layer with coherent structures

    International Nuclear Information System (INIS)

    Nielsen, A.H.; Lynov, J.P.; Juul Rasmussen, J.

    1998-01-01

    In the study of the dynamics of coherent structures, forced circular shear flows offer many desirable features. The inherent quantisation of circular geometries due to the periodic boundary conditions makes it possible to design experiments in which the spatial and temporal complexity of the coherent structures can be accurately controlled. Experiments on circular shear flows demonstrating the formation of coherent structures have been performed in different physical systems, including quasi-neutral plasmas, non-neutral plasmas and rotating fluids. In this paper we investigate the evolution of such coherent structures by solving the forced incompressible Navier-Stokes equations numerically using a spectral code. The model is formulated in the context of a rotating fluid but apply equally well to low frequency electrostatic oscillations in a homogeneous magnetized plasma. In order to reveal the Lagrangian properties of the flow and in particular to investigate the transport capacity in the shear layer, passive particles are traced by the velocity field. (orig.)

  1. Field aligned expansion of particle clouds in magnetically confined plasmas: A Langrangian model

    International Nuclear Information System (INIS)

    Spathis, P.N.

    1992-01-01

    A 1-D time-dependent numerical model has been developed for describing the B-parallel expansion of the ablated pellet material in fusion experiments. The hydrodynamic part of the model, which includes, besides the usual conservation equations, also finite rate ionization processes and energy transport by collisional deplation of the flux carried by incident plasma particles, is operational. The computed expansion rates are in agreement with experimental observations. (orig.)

  2. Macroscale implicit electromagnetic particle simulation of magnetized plasmas

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1988-01-01

    An electromagnetic and multi-dimensional macroscale particle simulation code (MACROS) is presented which enables us to make a large time and spatial scale kinetic simulation of magnetized plasmas. Particle ions, finite mass electrons with the guiding-center approximation and a complete set of Maxwell equations are employed. Implicit field-particle coupled equations are derived in which a time-decentered (slightly backward) finite differential scheme is used to achieve stability for large time and spatial scales. It is shown analytically that the present simulation scheme suppresses high frequency electromagnetic waves and that it accurately reproduces low frequency waves in the plasma. These properties are verified by numerical examination of eigenmodes in a 2-D thermal equilibrium plasma and by that of the kinetic Alfven wave. (author)

  3. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    International Nuclear Information System (INIS)

    Totsuji, Hiroo

    2008-01-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  4. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    Science.gov (United States)

    Totsuji, Hiroo

    2008-07-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  5. Implicit particle simulation of electromagnetic plasma phenomena

    International Nuclear Information System (INIS)

    Kamimura, T.; Montalvo, E.; Barnes, D.C.; Leboeuf, J.N.; Tajima, T.

    1986-11-01

    A direct method for the implicit particle simulation of electromagnetic phenomena in magnetized, multi-dimensional plasmas is developed. The method is second-order accurate for ωΔt < 1, with ω a characteristic frequency and time step Δt. Direct time integration of the implicit equations with simplified space differencing allows the consistent inclusion of finite particle size. Decentered time differencing of the Lorentz force permits the efficient simulation of strongly magnetized plasmas. A Fourier-space iterative technique for solving the implicit field corrector equation, based on the separation of plasma responses perpendicular and parallel to the magnetic field and longitudinal and transverse to the wavevector, is described. Wave propagation properties in a uniform plasma are in excellent agreement with theoretical expectations. Applications to collisionless tearing and coalescence instabilities further demonstrate the usefulness of the algorithm. (author)

  6. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  7. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    1999-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  8. Scattering of electromagnetic waves into plasma oscillations via plasma particles

    International Nuclear Information System (INIS)

    Lin, A.T.; Dawson, J.M.

    1975-01-01

    A plasma subjected to an intense electromagnetic wave can exhibit a large number of parametric instabilities. An interesting example which has received little attention is the decay of the electromagnetic wave into a plasma oscillation with the excess energy and momentum being carried off by electrons. This process has been simulated on a one-and-two-halves dimensional electromagnetic code. The incident electromagnetic wave had a frequency near the plasma frequency so that decay into a plasma oscillation and a backscattered electromagnetic wave was excluded. As expected, the threshold for this instability was very large , so it is unlikely that this instability is competitive in most laser plasmas. Nevertheless, the physical mechanism involved provides a means for absorption of laser light and acceleration of particles in a plasma containing large amplitude plasma oscillations

  9. Coherent structures and transport in drift wave plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bang Korsholm, S.

    2011-12-15

    Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)

  10. Coherent structures and transport in drift wave plasma turbulence

    International Nuclear Information System (INIS)

    Bang Korsholm, S.

    2011-12-01

    Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)

  11. Extensions of the 3-dimensional plasma transport code E3D

    International Nuclear Information System (INIS)

    Runov, A.; Schneider, R.; Kasilov, S.; Reiter, D.

    2004-01-01

    One important aspect of modern fusion research is plasma edge physics. Fluid transport codes extending beyond the standard 2-D code packages like B2-Eirene or UEDGE are under development. A 3-dimensional plasma fluid code, E3D, based upon the Multiple Coordinate System Approach and a Monte Carlo integration procedure has been developed for general magnetic configurations including ergodic regions. These local magnetic coordinates lead to a full metric tensor which accurately accounts for all transport terms in the equations. Here, we discuss new computational aspects of the realization of the algorithm. The main limitation to the Monte Carlo code efficiency comes from the restriction on the parallel jump of advancing test particles which must be small compared to the gradient length of the diffusion coefficient. In our problems, the parallel diffusion coefficient depends on both plasma and magnetic field parameters. Usually, the second dependence is much more critical. In order to allow long parallel jumps, this dependence can be eliminated in two steps: first, the longitudinal coordinate x 3 of local magnetic coordinates is modified in such a way that in the new coordinate system the metric determinant and contra-variant components of the magnetic field scale along the magnetic field with powers of the magnetic field module (like in Boozer flux coordinates). Second, specific weights of the test particles are introduced. As a result of increased parallel jump length, the efficiency of the code is about two orders of magnitude better. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Analysis of pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Groebner, R.J.; Osborne, T.H.; Canik, J.M.; Owen, L.W.; Pankin, A.Y.; Rafiq, T.; Rognlien, T.D.; Stacey, W.M.

    2010-01-01

    An H-mode edge pedestal plasma transport benchmarking exercise was undertaken for a single DIII-D pedestal. Transport modelling codes used include 1.5D interpretive (ONETWO, GTEDGE), 1.5D predictive (ASTRA) and 2D ones (SOLPS, UEDGE). The particular DIII-D discharge considered is 98889, which has a typical low density pedestal. Profiles for the edge plasma are obtained from Thomson and charge-exchange recombination data averaged over the last 20% of the average 33.53 ms repetition time between type I edge localized modes. The modelled density of recycled neutrals is largest in the divertor X-point region and causes the edge plasma source rate to vary by a factor ∼10 2 on the separatrix. Modelled poloidal variations in the densities and temperatures on flux surfaces are small on all flux surfaces up to within about 2.6 mm (ρ N > 0.99) of the mid-plane separatrix. For the assumed Fick's-diffusion-type laws, the radial heat and density fluxes vary poloidally by factors of 2-3 in the pedestal region; they are largest on the outboard mid-plane where flux surfaces are compressed and local radial gradients are largest. Convective heat flows are found to be small fractions of the electron (∼ 2 s -1 . Electron heat transport is found to be best characterized by electron-temperature-gradient-induced transport at the pedestal top and paleoclassical transport throughout the pedestal. The effective ion heat diffusivity in the pedestal has a different profile from the neoclassical prediction and may be smaller than it. The very small effective density diffusivity may be the result of an inward pinch flow nearly balancing a diffusive outward radial density flux. The inward ion pinch velocity and density diffusion coefficient are determined by a new interpretive analysis technique that uses information from the force balance (momentum conservation) equations; the paleoclassical transport model provides a plausible explanation of these new results. Finally, the measurements

  13. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  14. Plasma focusing and diagnosis of high energy particle beams

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1990-09-01

    Various novel concepts of focusing and diagnosis of high energy charged particle beams, based on the interaction between the relativistic particle beam and the plasma, are reviewed. This includes overdense thin plasma lenses, and (underdense) adiabatic plasma lens, and two beam size monitor concepts. In addition, we introduce another mechanism for measuring flat beams based on the impulse received by heavy ions in an underdense plasma. Theoretical investigations show promise of focusing and diagnosing beams down to sizes where conventional methods are not possible to provide. 21 refs

  15. Influence of the RF electrode cleanliness on plasma characteristics and dust-particle generation in methane dusty plasmas

    Science.gov (United States)

    Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.

    2018-01-01

    The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.

  16. The effects of particle recycling on the divertor plasma: A particle-in-cell with Monte Carlo collision simulation

    Science.gov (United States)

    Chang, Mingyu; Sang, Chaofeng; Sun, Zhenyue; Hu, Wanpeng; Wang, Dezhen

    2018-05-01

    A Particle-In-Cell (PIC) with Monte Carlo Collision (MCC) model is applied to study the effects of particle recycling on divertor plasma in the present work. The simulation domain is the scrape-off layer of the tokamak in one-dimension along the magnetic field line. At the divertor plate, the reflected deuterium atoms (D) and thermally released deuterium molecules (D2) are considered. The collisions between the plasma particles (e and D+) and recycled neutral particles (D and D2) are described by the MCC method. It is found that the recycled neutral particles have a great impact on divertor plasma. The effects of different collisions on the plasma are simulated and discussed. Moreover, the impacts of target materials on the plasma are simulated by comparing the divertor with Carbon (C) and Tungsten (W) targets. The simulation results show that the energy and momentum losses of the C target are larger than those of the W target in the divertor region even without considering the impurity particles, whereas the W target has a more remarkable influence on the core plasma.

  17. Visualization of intermittent blobby plasma transport in attached and detached plasmas of the NAGDIS-II

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Furuta, Katsuhiro; Takamura, Shuichi

    2004-01-01

    We investigated the intermittent convective plasma transport in a attached and/or detached plasma condition of the linear divertor plasma simulator, NAGDIS-II. Images taken by a fast-imaging camera clearly show that in attached plasmas, blobs are peeled off the bulk plasma, and propagate outward with an azimuthal motion. In detached plasmas, plasma turbulence observed near the plasma recombining region drives strong intermittent radial plasma transport, which could broaden the radial density profile. (author)

  18. Time dependent plasma viscosity and relation between neoclassical transport and turbulent transport

    International Nuclear Information System (INIS)

    Shaing, K.C.

    2005-01-01

    Time dependent plasma viscosities for asymmetric toroidal plasmas in various collisionality regimes are calculated. It is known that in the symmetric limit the time dependent plasma viscosities accurately describe plasma flow damping rate. Thus, time dependent plasma viscosities are important in modeling the radial electric field of the zonal flow. From the momentum balance equation, it is shown that, at the steady state, the balance of the viscosity force and the momentum source determines the radial electric field of the zonal flow. Thus, for a fixed source, the smaller the viscous force is, the larger the value of the radial electric field is, which in turn suppresses the turbulence fluctuations more and improves turbulence transport. However, the smaller the viscous force also implies the smaller the neoclassical transport fluxes based on the neoclassical flux-force relationship. We thus show that when neoclassical transport fluxes are improved so are the turbulent fluxes in toroidal plasmas. (author)

  19. Heat transport in PBX-M high βp plasmas

    International Nuclear Information System (INIS)

    LeBlanc, B.; Kaye, S.; Bell, R.; Fishman, H.; Hatcher, R.; Kaita, R.; Kessel, C.; Kugel, H.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Takahashi, H.; Duperrex, P.; Gammel, G.; Holland, A.; Levinton, F.

    1992-04-01

    PBX-M high beta poloidal discharges routinely transition into the H-mode regime: typically, a quiescent phase followed by an MHD active phase characterize the H-mode period. An analysis of the energy transport during these phases is conducted using the experimental data and the TRANSP code; effective diffusivities are computed to quantify the energy transport of the thermal component of the plasma. Compared to the L-mode, the quiescent H-phase is characterized by a decrease of the thermal ion energy transport and a flattening of the associated effective diffusivity profile. An error analysis is presented. Enhanced fast-ion losses are observed during the MHD active phase: particles in the lower end of the fast-ion energy spectrum with large perpendicular velocity component are predominantly affected. These losses must be taken into account in the analysis in order to reproduce the measured stored energy and time evolution of the neutron production rate during the MHD active phase

  20. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigma)

    Science.gov (United States)

    Sánchez, R.; van Milligen, B. Ph.; Carreras, B. A.

    2005-05-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Lévy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems.

  1. Mathematical modeling plasma transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Quiang, Ji [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1997-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 1020/m3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.

  2. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Quiang, Ji

    1995-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  3. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  4. Orbit effects on impurity transport in a rotating tokamak plasma

    International Nuclear Information System (INIS)

    Wong, K.L.; Cheng, C.Z.

    1988-05-01

    Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster with a higher bounce frequency, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle orbits near the surface of a rotating tokamak are also analyzed. Orbit effects indicate that more impurities can penetrate into a plasma rotating with counter-beam injection. Particle simulation is carried out with realistic experimental parameters and the results are in qualitative agreement with some experimental observations in the Tokamak Fusion Test Reactor (TFTR). 19 refs., 15 figs

  5. Turbulent transport modeling in the edge plasma of tokamaks: verification, validation, simulation and synthetic diagnostics

    International Nuclear Information System (INIS)

    Colin-Bellot, Clothilde

    2015-01-01

    The possibility to produce power by using magnetically confined fusion is a scientific and technological challenge. The perspective of ITER conveys strong signals to intensify modeling effort on magnetized fusion plasmas. The success of the fusion operation is conditioned by the quality of plasma confinement in the core of the reactor and by the control of plasma exhaust on the wall. Both phenomena are related to turbulent cross-field transport that is at the heart of the notion of magnetic confinement studies, particle and heat losses. The study of edge phenomena is therefore complicated by a particularly complex magnetic geometry.This calls for an improvement of our capacity to develop numerical tools able to reproduce turbulent transport properties reliable to predict particle and energy fluxes on the plasma facing components. This thesis introduces the TOKAM3X fluid model to simulate edge plasma turbulence. A special focus is made on the code Verification and the Validation. It is a necessary step before using a code as a predictive tool. Then new insights on physical properties of the edge plasma turbulence are explored. In particular, the poloidal asymmetries induced by turbulence and observed experimentally in the Low-Field-Side of the devices are investigated in details. Great care is dedicated to the reproduction of the MISTRAL base case which consists in changing the magnetic configuration and observing the impact on parallel flows in the poloidal plane. The simulations recover experimental measurements and provide new insights on the effect of the plasma-wall contact position location on the turbulent features, which were not accessible in experiments. (author) [fr

  6. Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, R. A.; Ziebell, L. F. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP: 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354-Campus UFPel, CEP: 96010-900 Pelotas, Rio Grande do Sul (Brazil); Juli, M. C. de [Centro de Radio-Astronomia e Astrofisica Mackenzie-CRAAM, Universidade Presbiteriana Mackenzie, Rua da Consolacao 896, CEP: 01302-907 Sao Paulo, Sao Paulo (Brazil)

    2012-12-15

    We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.

  7. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    International Nuclear Information System (INIS)

    Laitinen, T.; Dalla, S.

    2017-01-01

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  8. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk [Jeremiah Horrocks Institute, University of Central Lancashire, Preston (United Kingdom)

    2017-01-10

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  9. Neoclassical transport caused by collisionless scattering across an asymmetric separatrix.

    Science.gov (United States)

    Dubin, Daniel H E; Driscoll, C F; Tsidulko, Yu A

    2010-10-29

    Plasma loss due to apparatus asymmetries is a ubiquitous phenomenon in magnetic plasma confinement. When the plasma equilibrium has locally trapped particle populations partitioned by a separatrix from one another and from passing particles, the asymmetry transport is enhanced. The trapped and passing particle populations react differently to the asymmetries, leading to the standard 1/ν and sqrt[ν] transport regimes of superbanana orbit theory as particles collisionally scatter from one orbit type to another. However, when the separatrix is itself asymmetric, particles can collisionlessly transit from trapped to passing and back, leading to enhanced transport.

  10. Kinetic phenomena in charged particle transport in gases, swarm parameters and cross section data

    International Nuclear Information System (INIS)

    Petrovic, Z Lj; Suvakov, M; Nikitovic, Z; Dujko, S; Sasic, O; Jovanovic, J; Malovic, G; Stojanovic, V

    2007-01-01

    In this review we discuss the current status of the physics of charged particle swarms, mainly electrons. The whole field is analysed mainly through its relationship to plasma modelling and illustrated by some recent examples developed mainly by our group. The measurements of the swarm coefficients and the availability of the data are briefly discussed. More time is devoted to the development of complete electron-molecule cross section sets along with recent examples such as NO, CF 4 and HBr. We extend the discussion to the availability of ion and fast neutral data and how swarm experiments may serve to provide new data. As a point where new insight into the kinetics of charge particle transport is provided, the role of kinetic phenomena is discussed and recent examples are listed. We focus here on giving two examples on how non-conservative processes make dramatic effects in transport, the negative absolute mobility and the negative differential conductivity for positrons in argon. Finally we discuss the applicability of swarm data in plasma modelling and the relationship to other fields where swarm experiments and analysis make significant contributions. (topical review)

  11. Transport of high fluxes of hydrogen plasma in a linear plasma generator

    NARCIS (Netherlands)

    Vijvers, W.A.J.; Al, R.S.; Lopes Cardozo, N.J.; Goedheer, W.J.; Groot, de B.; Kleyn, A.W.; Meiden, van der H.J.; Peppel, van de R.J.E.; Schram, D.C.; Shumack, A.E.; Westerhout, J.; Rooij, van G.J.; Schmidt, J.; Simek, M.; Pekarek, S.; Prukner, V.

    2007-01-01

    A study was made to quantify the losses during the convective hydrogen plasma transport in the linear plasma generator Pilot-PSI due to volume recombination. A transport efficiency of 35% was achieved at neutral background pressures below ~7 Pa in a magnetic field of 1.2 T. This efficiency decreased

  12. Effects of background neutral particles on a field-reversed configuration plasma in the translation process

    International Nuclear Information System (INIS)

    Matsuzawa, Yoshiki; Asai, Tomohiko; Takahashi, Tsutomu; Takahashi, Toshiki

    2008-01-01

    A field-reversed configuration (FRC) plasma was translated into a weakly ionized plasma and the effects of heating and particle buildup of the FRC plasma due to the background neutral particles and plasma injection in the translation process were investigated. Improvement of the particle and poloidal flux confinements and delay of onset of n=2 rotational instability were observed in the translation process. It was found that the internal structure of the plasma pressure (plasma temperature and density) at the separatrix and field null was deformed by the particle injection. FRC plasma translation through the background particles was equivalent to an end-on particle beam injection to the FRC plasma. Particles and energy were supplied during the translation. The results obtained for the phenomena of particle supply and plasma heating were also supported by the results of two-dimensional particle simulation. The effects of background particle injection appear to be a promising process for the regeneration of translation kinetic energy to plasma internal energy

  13. Size scaling effects on the particle density fluctuations in confined plasmas

    International Nuclear Information System (INIS)

    Vazquez, Federico; Markus, Ferenc

    2009-01-01

    In this paper, memory and nonlocal effects on fluctuating mass diffusion are addressed in the context of fusion plasmas. Nonlocal effects are included by considering a diffusivity coefficient depending on the size of the container in the transverse direction to the applied magnetic field. It is obtained by resorting to the general formulation of the extended version of irreversible thermodynamics in terms of the higher order dissipative fluxes. The developed model describes two different types of the particle density time correlation function. Both have been observed in tokamak and nontokamak devices. These two kinds of time correlation function characterize the wave and the diffusive transport mechanisms of particle density perturbations. A transition between them is found, which is controlled by the size of the container. A phase diagram in the (L,2π/k) space describes the relation between the dynamics of particle density fluctuations and the size L of the system together with the oscillating mode k of the correlation function.

  14. Orbit effects on impurity transport in a rotating plasma

    International Nuclear Information System (INIS)

    Wong, K.L.; Cheng, C.Z.

    1988-01-01

    In 1985, very high ion temperature plasmas were first produced in TFTR with co-injecting neutral beams in low current, low density plasmas. This mode of operation is called the energetic ion mode in which the plasma rotates at very high speed. It was found that heavy impurities injected into these plasmas diffused out very quickly. In this paper, the authors calculate the impurity ion orbits in a rotating tokamak plasma based on the equation of motion in the frame that rotates with the plasma. It is shown that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster. Particle orbits near the surface of a rotating tokamak are also analyzed. During impurity injection experiments, freshly ionized impurities near the plasma surface are essentially stationary in the laboratory frame and they are counter-rotating in the plasma frame with co-beam injection. The results are substantiated by numeral particle simulation. The computer code follows the impurity guiding center positions by integrating the equation of motion with the second order predictor-corrector method

  15. Nongyrotropic particle distributions in space plasmas

    Directory of Open Access Journals (Sweden)

    U. Motschmann

    1999-05-01

    Full Text Available In nonstationary, strong inhomogeneous or open plasmas particle orbits are rather complicated. If the nonstationary time scale is smaller than the gyration period, if the inhomogeneity scale is smaller than the gyration radius, i.e. at magnetic plasma boundaries, or if the plasma has sources and sinks in phase space, then nongyrotropic distribution functions occur. The stability of such plasma configurations is studied in the framework of linear dispersion theory. In an open plasma nongyrotropy drives unstable waves parallel and perpendicular to the background magnetic field, whereas in the gyrotropic limit the plasma is stable. In nonstationary plasmas nongyrotropy drives perpendicular unstable waves only. Temporal modulation couples a seed mode with its side lobes and thus it renders unstable wave growth more difficult. As an example of an inhomogeneous plasma a magnetic halfspace is discussed. In a layer with thickness of the thermal proton gyroradius a nongyrotropic distribution is formed which may excite unstable parallel and perpendicular propagating waves.Key words. Interplanetary physics (plasma waves and turbulence · Ionosphere (plasma waves and instabilities · Magnetospheric physics (plasma waves and instabilities

  16. RMP-Flutter-Induced Pedestal Plasma Transport

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J. D.; Hegna, C., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison (United States); Cole, A. J. [Columbia University, New York (United States)

    2012-09-15

    Full text: Plasma toroidal rotation can prevent or limit reconnection of externally applied resonant magnetic perturbation (RMP) fields {delta}B on rational magnetic flux surfaces. Hence, it causes the induced radial perturbations to vanish or be small there, and thereby inhibits magnetic island formation and stochasticity in the edge of high (H-mode) confinement tokamak plasmas. However, the radial component of the spatial magnetic flutter induced by RMP fields off rational surfaces causes a radial electron thermal diffusivity of (1/2)({delta}B{sub p}/B){sup 2} times a magnetic-shear-influenced effective parallel electron thermal diffusivity. The resultant RMP-flutter-induced electron thermal diffusivity can be comparable to experimentally inferred values at the top of H-mode pedestals. This process also causes a factor of about 3 smaller RMP-induced electron density diffusivity there. Because this electron density transport is non-ambipolar, it produces a toroidal torque on the plasma, which is usually in the co-current direction. Kinetic-based cylindrical screw-pinch and toroidal models of these RMP-flutter-induced plasma transport effects have been developed. The RMP-induced increases in these diffusive plasma transport processes are typically spatially inhomogeneous in that they are strongly peaked near the rational surfaces in low collisionality pedestals, which may lead to resonant sensitivities to the local safety factor q. The effects can be large enough to reduce the radially averaged gradients of the electron temperature and density at the top of H-mode edge pedestals, and modify the plasma toroidal rotation and radial electric field there. At high collisionality the various effects are less strongly peaked at rational surfaces and thus less likely to exhibit RMP-induced resonant behavior. These RMP-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize

  17. Final Report for grant ER54958, 'Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas'

    International Nuclear Information System (INIS)

    Decyk, Viktor K.

    2011-01-01

    widely used in plasma modeling in DOE, not only in areas in fusion energy as exemplified by GTC, but in high energy physics, plasma accelerators, ICF, and other areas. In 2010, about 12% of the INCITE grants in DOE were devoted to PIC codes. We began by developing a simple 2D electrostatic PIC code for the NVIDIA Tesla C1060 GPU based on one of the codes from the UPIC Framework. The major new feature of this code was the implementation of a streaming algorithm, where the two major data elements (particles and fields) are read only once each time step with an optimal memory access pattern (unit stride). To achieve this, particles need to be ordered by cell and we developed a particle reordering scheme that worked effectively on this hardware. The first results used global memory only and achieved a speedup of 13 compared to a 2.67 GHz Intel Nehalem processor, and were published in the ICAP conference proceedings in 2009. In the next version, we parameterized the code to make it adaptable to different architectures. The reordering algorithm was generalized to allow more than one grid per sorting cell and more than one sorting cell per thread. We also added support for shared memory. The four tunable parameters were defined as follows: lth, the number of tightly coupled threads, ngpx and ngpy, the number of grids in a sorting cell, and ngpt, the number of sorting cells assigned to a thread. Increasing the number of grids per sorting cell reduced the cost of particle reordering, but it could increase the particle processing time because more shared memory was required. For the NVIDIA C1060, the optimal parameters were lth=32, ngpx=2, ngpy=3, ngpt = 1. Speedups of 15-25 were obtained compared to the Intel Nehalem, depending on plasma temperature. Details about the algorithm and performance results were published in 2011. The electrostatic PIC code was very simple, with low computational intensity (few floating point operations per memory access). Codes with higher

  18. High performance stream computing for particle beam transport simulations

    International Nuclear Information System (INIS)

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  19. How is plasma profile determined?

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae

    1991-01-01

    The plasma of toroidal system magnetic field confinement which is represented by tokamak is realized as dissipating structure which is maintained by the supply of energy and particles. Besides the spatial distributions of heat, particles and momentum inside plasma take various forms, there are the transition phenomena among the distributions with different forms, intermittent energy loss, the exchange of spatial positions among ions and so on, accordingly confined plasma is the treasure house of the transport phenomena accompanied by various temporal and spatial scales. Now might be the time that the unknown physics being concealed with veil becomes clear. In this report, by taking tokamaks as the example, concerning the transport phenomena in plasma, the recent development on the physical phenomena and the comparison of the theoretical model with the experiment is explained. The formulation of transport phenomena, the elementary process of transport by flickering, transport matrix, waves in drift frequency band, boundary condition, the comparison of transport in steady state, the research on the time change of distribution, and the correlation of flickering and transport are described. (K.I.)

  20. Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis

    CERN Document Server

    Qian, Shizhi

    2012-01-01

    Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect

  1. Particle-in-Cell Codes for plasma-based particle acceleration

    CERN Document Server

    Pukhov, Alexander

    2016-01-01

    Basic principles of particle-in-cell (PIC ) codes with the main application for plasma-based acceleration are discussed. The ab initio full electromagnetic relativistic PIC codes provide the most reliable description of plasmas. Their properties are considered in detail. Representing the most fundamental model, the full PIC codes are computationally expensive. The plasma-based acceler- ation is a multi-scale problem with very disparate scales. The smallest scale is the laser or plasma wavelength (from one to hundred microns) and the largest scale is the acceleration distance (from a few centimeters to meters or even kilometers). The Lorentz-boost technique allows to reduce the scale disparity at the costs of complicating the simulations and causing unphysical numerical instabilities in the code. Another possibility is to use the quasi-static approxi- mation where the disparate scales are separated analytically.

  2. Computationally efficient description of relativistic electron beam transport in dense plasma

    Science.gov (United States)

    Polomarov, Oleg; Sefkov, Adam; Kaganovich, Igor; Shvets, Gennady

    2006-10-01

    A reduced model of the Weibel instability and electron beam transport in dense plasma is developed. Beam electrons are modeled by macro-particles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. Our approach is motivated by the conditions of the FI scenario, where the beam density is likely to be much smaller than the plasma density and the beam energy is likely to be very high. For this case the growth rate of the Weibel instability is small, making the modeling of it by conventional PICs exceedingly time consuming. The present approach does not require resolving the plasma period and only resolves a plasma collisionless skin depth and is suitable for modeling a long-time behavior of beam-plasma interaction. An efficient code based on this reduced description is developed and benchmarked against the LSP PIC code. The dynamics of low and high current electron beams in dense plasma is simulated. Special emphasis is on peculiarities of its non-linear stages, such as filament formation and merger, saturation and post-saturation field and energy oscillations. *Supported by DOE Fusion Science through grant DE-FG02-05ER54840.

  3. Nonlinear electron transport in magnetized laser plasmas

    International Nuclear Information System (INIS)

    Kho, T.H.; Haines, M.G.

    1986-01-01

    Electron transport in a magnetized plasma heated by inverse bremsstrahlung is studied numerically using a nonlinear Fokker--Planck model with self-consistent E and B fields. The numerical scheme is described. Nonlocal transport is found to alter many of the transport coefficients derived from linear transport theory, in particular, the Nernst and Righi--Leduc effects, in addition to the perpendicular heat flux q/sub perpendicular/, are substantially reduced near critical surface. The magnetic field, however, remains strongly coupled to the nonlinear q/sub perpendicular/ and, as has been found in hydrosimulations, convective amplification of the magnetic field occurs in the overdense plasma

  4. A transmission/escape probabilities model for neutral particle transport in the outer regions of a diverted tokamak

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1992-12-01

    A new computational model for neutral particle transport in the outer regions of a diverted tokamak plasma chamber is presented. The model is based on the calculation of transmission and escape probabilities using first-flight integral transport theory and the balancing of fluxes across the surfaces bounding the various regions. The geometrical complexity of the problem is included in precomputed probabilities which depend only on the mean free path of the region

  5. Gas and particle velocity measurements in an induction plasma

    International Nuclear Information System (INIS)

    Lesinski, J.; Gagne, R.; Boulos, M.I.

    1981-08-01

    Laser doppler anemometry was used for the measurements of the plasma and particle velocity profiles in the coil region of an inductively coupled plasma. Results are reported for a 50 mm ID induction torch operated at atmospheric pressure with argon as the plasma gas. The oscillator frequency was 3 MHz and the power in the coil was varied between 4.6 and 10.5 kW. The gas velocity measurements were made using a fine carbon powder as a tracer (dp approx. = 1 μm). Measurements were also made with larger silicon particles (dp = 33 μm and sigma = 13 μm) centrally injected in the plasma under different operating conditions

  6. SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhihong [Univ. of California, Irvine, CA (United States)

    2017-12-30

    Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulation codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the

  7. Interchange Instability and Transport in Matter-Antimatter Plasmas

    Science.gov (United States)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-01

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  8. Interchange Instability and Transport in Matter-Antimatter Plasmas.

    Science.gov (United States)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-09

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  9. Entropic Ratchet transport of interacting active Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  10. Entropic Ratchet transport of interacting active Brownian particles

    International Nuclear Information System (INIS)

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-01-01

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction

  11. Fly ash particles spheroidization using low temperature plasma energy

    Science.gov (United States)

    Shekhovtsov, V. V.; Volokitin, O. G.; Kondratyuk, A. A.; Vitske, R. E.

    2016-11-01

    The paper presents the investigations on producing spherical particles 65-110 μm in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition of fly ash particles to a state of viscous flow occurs at 20 mm distance from the plasma jet. The X-ray phase analysis is carried out for the both original state of fly ash powders and the particles obtained. This analysis shows that fly ash contains 56.23 wt.% SiO2; 20.61 wt.% Al2O3 and 17.55 wt.% Fe2O3 phases that mostly contribute to the integral (experimental) intensity of the diffraction maximum. The LTP treatment results in a complex redistribution of the amorphous phase amount in the obtained spherical particles, including the reduction of O2Si, phase, increase of O22Al20 and Fe2O3 phases and change in Al, O density of O22Al20 chemical unit cell.

  12. Plasma Interactions with Mixed Materials and Impurity Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chernov, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Magee, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Umansky, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-28

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  13. Plasma Interactions with Mixed Materials and Impurity Transport

    International Nuclear Information System (INIS)

    Rognlien, T. D.; Beiersdorfer, Peter; Chernov, A.; Frolov, T.; Magee, E.; Rudd, R.; Umansky, M.

    2016-01-01

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  14. Nongyrotropic particle distributions in space plasmas

    Directory of Open Access Journals (Sweden)

    U. Motschmann

    Full Text Available In nonstationary, strong inhomogeneous or open plasmas particle orbits are rather complicated. If the nonstationary time scale is smaller than the gyration period, if the inhomogeneity scale is smaller than the gyration radius, i.e. at magnetic plasma boundaries, or if the plasma has sources and sinks in phase space, then nongyrotropic distribution functions occur. The stability of such plasma configurations is studied in the framework of linear dispersion theory. In an open plasma nongyrotropy drives unstable waves parallel and perpendicular to the background magnetic field, whereas in the gyrotropic limit the plasma is stable. In nonstationary plasmas nongyrotropy drives perpendicular unstable waves only. Temporal modulation couples a seed mode with its side lobes and thus it renders unstable wave growth more difficult. As an example of an inhomogeneous plasma a magnetic halfspace is discussed. In a layer with thickness of the thermal proton gyroradius a nongyrotropic distribution is formed which may excite unstable parallel and perpendicular propagating waves.

    Key words. Interplanetary physics (plasma waves and turbulence · Ionosphere (plasma waves and instabilities · Magnetospheric physics (plasma waves and instabilities

  15. Influence of particle sorting in transport of sediment-associated contaminants

    International Nuclear Information System (INIS)

    Lane, L.J.; Hakonson, T.E.

    1982-01-01

    Hydrologic and sediment transport models are developed to route the flow of water and sediment (by particle size classes) in alluvial stream channels. A simplified infiltration model is used to compute runoff from upland areas and flow is routed in ephemeral stream channels to account for infiltration or transmission losses in the channel alluvium. Hydraulic calculations, based on the normal flow assumption and an approximating hydrograph, are used to compute sediment transport by particle size classes. Contaminants associated with sediment particles are routed in the stream channels to predict contaminatant transport by particle size classes. An empirical adjustment factor, the enrichment ratio, is shown to be a function of the particle size distribution of stream bed sediments, contaminant concentrations by particle size, differential sediment transport rates, and the magnitude of the runoff event causing transport of sediment and contaminants. This analysis and an example application in a liquid effluent-receiving area illustrate the significance of particle sorting in transport of sediment associated contaminants

  16. Cooperative particle motion in complex (dusty) plasmas

    Science.gov (United States)

    Zhdanov, Sergey; Morfill, Gregor

    2014-05-01

    Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids at the kinetic level. A particularly interesting and challenging topic is to study dynamic cooperativity at local and intermediate scales. As an important element of self-organization, cooperative particle motion is present in many physical, astrophysical and biological systems. As a rule, cooperative dynamics, bringing to life 'abnormal' effects like enhanced diffusion, self-dragging, or self-propelling of particles, hold aspects of 'strange' kinetics. The synergy effects are also important. Such kind of cooperative behavior was evidenced for string-like formations of colloidal rods, dynamics of mono- and di-vacancies in 2d colloidal crystals. Externally manipulated 'dust molecules' and self-assembled strings in driven 3d particle clusters were other noticeable examples. There is a certain advantage to experiment with complex plasmas merely because these systems are easy to manipulate in a controllable way. We report on the first direct observation of microparticle cooperative movements occurring under natural conditions in a 2d complex plasma.

  17. Plasma transport in a compact ignition tokamak

    International Nuclear Information System (INIS)

    Singer, C.E.; Ku, L.P; Bateman, G.

    1987-02-01

    Nominal predicted plasma conditions in a compact ignition tokamak are illustrated by transport simulations using experimentally calibrated plasma transport models. The range of uncertainty in these predictions is explored by using various models which have given almost equally good fits to experimental data. Using a transport model which best fits the data, thermonuclear ignition occurs in a Compact Ignition Tokamak design with major radius 1.32 m, plasma half-width 0.43 m, elongation 2.0, and toroidal field and plasma current ramped in six seconds from 1.7 to 10.4 T and 0.7 to 10 MA, respectively. Ignition is facilitated by 20 MW of heating deposited off the magnetic axis near the 3 He minority cyclotron resonance layer. Under these conditions, sawtooth oscillations are small and have little impact on ignition. Tritium inventory is minimized by preconditioning most discharges with deuterium. Tritium is injected, in large frozen pellets, only after minority resonance preheating. Variations of the transport model, impurity influx, heating profile, and pellet ablation rates, have a large effect on ignition and on the maximum beta that can be achieved

  18. Stochastic transport of particles across single barriers

    International Nuclear Information System (INIS)

    Kreuter, Christian; Siems, Ullrich; Henseler, Peter; Nielaba, Peter; Leiderer, Paul; Erbe, Artur

    2012-01-01

    Transport phenomena of interacting particles are of high interest for many applications in biology and mesoscopic systems. Here we present measurements on colloidal particles, which are confined in narrow channels on a substrate and interact with a barrier, which impedes the motion along the channel. The substrate of the particle is tilted in order for the particles to be driven towards the barrier and, if the energy gained by the tilt is large enough, surpass the barrier by thermal activation. We therefore study the influence of this barrier as well as the influence of particle interaction on the particle transport through such systems. All experiments are supported with Brownian dynamics simulations in order to complement the experiments with tests of a large range of parameter space which cannot be accessed in experiments.

  19. Relaxation oscillations and transport barrier dynamics in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Benkadda, Sadruddin; Beyer, Peter; Fuhr-Chaudier, Guillaume; Garbet, Xavier; Ghendrih, Philippe; Sarazin, Yanick

    2004-01-01

    Oscillations of turbulent transport of particles and energy in magnetically confined plasmas can be easily observed in simulations of a variety of turbulence models. These oscillations typically involve a mechanism of energy exchange between fluctuations and a poloidal shear flow. This kind of ''predator-prey'' mechanism is found to be not relevant for transport barrier relaxations. In RBM simulations of resistive ballooning turbulence with transport barrier, relaxation oscillations of the latter are observed even in the case of frozen poloidal shear flow. These relaxations are due to a transitory growth of a mode localized at the barrier center. A one-dimensional model for the evolution of such a mode in the presence of a shear flow describes a transitory growth of an initial perturbation. Oscillations in the case of a finite steady-state shear flow are possible due to the coupling of the mode to the dynamics of the pressure profile. (author)

  20. Robustness and flexibility in compact quasiaxial stellarators: Global ideal MHD stability and energetic particle transport

    International Nuclear Information System (INIS)

    Redi, M.H.; Diallo, A.; Cooper, W.A.; Fu, G.Y.

    2000-01-01

    Concerns about the flexibility and robustness of a compact quasiaxial stellarator design are addressed by studying the effects of varied pressure and rotational transform profiles on expected performance. For thirty, related, fully three-dimensional configurations the global, ideal magnetohydrodynamic stability is evaluated as well as energetic particle transport. It is found that tokamak intuition is relevant to understanding the magnetohydrodynamic stability, with pressure gradient driving terms and shear stabilization controlling both the periodicity preserving, N=0, and the non-periodicity preserving, N=1, unstable kink modes. Global kink modes are generated by steeply peaked pressure profiles near the half radius and edge localized kink modes are found for plasmas with steep pressure profiles at the edge as well as with edge rotational transform above 0.5. Energetic particle transport is not strongly dependent on these changes of pressure and current (or rotational transform) profiles, although a weak inverse dependence on pressure peaking through the corresponding Shafranov shift is found. While good transport and MHD stability are not anticorrelated in these equilibria, stability only results from a delicate balance of the pressure and shear stabilization forces. A range of interesting MHD behaviors is found for this large set of equilibria, exhibiting similar particle transport properties

  1. Charged-particle calculations using Boltzmann transport methods

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1981-01-01

    Several aspects of radiation damage effects in fusion reactor neutron and ion irradiation environments are amenable to treatment by transport theory methods. In this paper, multigroup transport techniques are developed for the calculation of charged particle range distributions, reflection coefficients, and sputtering yields. The Boltzmann transport approach can be implemented, with minor changes, in standard neutral particle computer codes. With the multigroup discrete ordinates code, ANISN, determination of ion and target atom distributions as functions of position, energy, and direction can be obtained without the stochastic error associated with atomistic computer codes such as MARLOWE and TRIM. With the multigroup Monte Carlo code, MORSE, charged particle effects can be obtained for problems associated with very complex geometries. Results are presented for several charged particle problems. Good agreement is obtained between quantities calculated with the multigroup approach and those obtained experimentally or by atomistic computer codes

  2. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1989-08-01

    A cursory examination of the research activities of the Magneto-Fluid Dynamics Division for the calendar year 1988 shows the effects of the gradual transformation of the group. Although our principal activity, fusion plasma physics research, is unchanged, the work shows closer ties to problems relevant to present experiments than previously. Most notable is the concentrated effort on tokamak equilibrium and transport. We are exploring the implication of turbulence induced transport, resistive MHD effects, neoclassical transport, and possible interpretations of transport based on classical phenomena. In addition, one of our members has chosen to focus on problems of enhanced statistical methods for interpretation of experiments. All of this activity preceded the Tokamak Transport Initiative and reflects our active involvement and concern with the world-wide tokamak program. Since equilibrium and transport are by no means the only theoretical plasma physics problems affecting fusion devices we continue substantial efforts in wave propagation and heating, particle simulation of plasmas, stability theory, enhancement of numerical algorithms, and general plasma physics. We are attempting to develop effective numerical schemes for the Boltzmann equation, adaptive grid methods for MHD, and particle simulation of boundary and antenna effects. Many of these topics reflect our continuing concern to maintain a modest effort in the development of theoretical models and tools for problems of real significance to fusion, but not necessarily of immediate highest priority. We select problems which we expect to become extremely important in the future. Our space plasma physics activities, funded by agencies other than DOE, transfers knowledge learned in fusion plasma physics to another area and conversely stimulates work also relevant to fusion problems

  3. The Role of Kinetic Alfven Waves in Plasma Transport in an Ion-scale Flux Rope

    Science.gov (United States)

    Tang, B.; Li, W.; Wang, C.; Dai, L.

    2017-12-01

    Magnetic flux ropes, if generated by multiply X-line reconnections, would be born as a crater type one, meaning the plasma density within is relatively high. They will then evolve into typical flux ropes as plasma are transported away along the magnetic field lines [Zhang et al., 2010]. In this study, we report an ion-scale flux rope observed by MMS on November 28, 2016, which is accompanied by strong kinetic Alfven waves (KAW). The related wave parallel electric field can effectively accelerate electrons inside the flux rope by Landau resonance, resulting into a significant decrease of the electron at 90° pitch angle. The change of electron pitch angle distribution would cause the rapid plasma transport along the magnetic field lines, and help the flux rope evolve into a strong magnetic core in a short time. This wave-particle interaction would be a candidate mechanism to explain the rareness of crater flux ropes in reality.

  4. Predictive modelling of edge transport phenomena in ELMy H-mode tokamak fusion plasmas

    International Nuclear Information System (INIS)

    Loennroth, J.-S.

    2009-01-01

    This thesis discusses a range of work dealing with edge plasma transport in magnetically confined fusion plasmas by means of predictive transport modelling, a technique in which qualitative predictions and explanations are sought by running transport codes equipped with models for plasma transport and other relevant phenomena. The focus is on high confinement mode (H-mode) tokamak plasmas, which feature improved performance thanks to the formation of an edge transport barrier. H-mode plasmas are generally characterized by the occurrence of edge localized modes (ELMs), periodic eruptions of particles and energy, which limit confinement and may turn out to be seriously damaging in future tokamaks. The thesis introduces schemes and models for qualitative study of the ELM phenomenon in predictive transport modelling. It aims to shed new light on the dynamics of ELMs using these models. It tries to explain various experimental observations related to the performance and ELM-behaviour of H-mode plasmas. Finally, it also tries to establish more generally the potential effects of ripple-induced thermal ion losses on H-mode plasma performance and ELMs. It is demonstrated that the proposed ELM modelling schemes can qualitatively reproduce the experimental dynamics of a number of ELM regimes. Using a theory-motivated ELM model based on a linear instability model, the dynamics of combined ballooning-peeling mode ELMs is studied. It is shown that the ELMs are most often triggered by a ballooning mode instability, which renders the plasma peeling mode unstable, causing the ELM to continue in a peeling mode phase. Understanding the dynamics of ELMs will be a key issue when it comes to controlling and mitigating the ELMs in future large tokamaks. By means of integrated modelling, it is shown that an experimentally observed increase in the ELM frequency and deterioration of plasma confinement triggered by external neutral gas puffing might be due to a transition from the second to

  5. Modification of Plasma Solitons by Resonant Particles

    DEFF Research Database (Denmark)

    Karpman, Vladimir; Lynov, Jens-Peter; Michelsen, Poul

    1980-01-01

    A consistent theory of plasma soliton interaction with resonant particles is developed. A simple derivation of a perturbed Korteweg–de Vries equation with the interaction term is presented. It is shown how the known limit cases (such as Ott–Sudan’s, etc.) can be derived from the general equations...... Korteweg–de Vries equation. Laboratory measurements carried out in a strongly magnetized, plasma‐filled waveguide and results from particle simulation are interpreted in terms of the analytical results.......A consistent theory of plasma soliton interaction with resonant particles is developed. A simple derivation of a perturbed Korteweg–de Vries equation with the interaction term is presented. It is shown how the known limit cases (such as Ott–Sudan’s, etc.) can be derived from the general equations...... and what their regions of applicability are. Some effects caused by the soliton‐particle interaction (amplitude change‐rate, tail formation, etc.) are analyzed by means of a recently developed perturbation method. The analytical results are compared with a direct numerical integration of the perturbed...

  6. Energy and particle core transport in tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, Marc; Angioni, Clemente; Beidler, Craig; Dinklage, Andreas; Fuchert, Golo; Hirsch, Matthias; Puetterich, Thomas; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald/Garching (Germany)

    2016-07-01

    The paper discusses expectations for core transport in the Wendelstein 7-X stellarator (W7-X) and presents a comparison to tokamaks. In tokamaks, the neoclassical trapped-particle-driven losses are small and turbulence dominates the energy and particle transport. At reactor relevant low collisionality, the heat transport is limited by ion temperature gradient limited turbulence, clamping the temperature gradient. The particle transport is set by an anomalous inward pinch, yielding peaked profiles. A strong edge pedestal adds to the good confinement properties. In traditional stellarators the 3D geometry cause increased trapped orbit losses. At reactor relevant low collisionality and high temperatures, these neoclassical losses would be well above the turbulent transport losses. The W7-X design minimizes neoclassical losses and turbulent transport can become dominant. Moreover, the separation of regions of bad curvature and that of trapped particle orbits in W7-X may have favourable implications on the turbulent electron heat transport. The neoclassical particle thermodiffusion is outward. Without core particle sources the density profile is flat or even hollow. The presence of a turbulence driven inward anomalous particle pinch in W7-X (like in tokamaks) is an open topic of research.

  7. Ratchet Transport of Chiral Particles Caused by the Transversal Asymmetry: Current Reversals and Particle Separation

    Science.gov (United States)

    Liu, Jian-li; Lu, Shi-cai; Ai, Bao-quan

    2018-06-01

    Due to the chirality of active particles, the transversal asymmetry can induce the the longitudinal directed transport. The transport of chiral active particles in a periodic channel is investigated in the presence of two types of the transversal asymmetry, the transverse force and the transverse rigid half-circle obstacles. For all cases, the counterclockwise and clockwise particles move to the opposite directions. For the case of the only transverse force, the chiral active particles can reverse their directions when increasing the transverse force. When the transverse rigid half-circle obstacles are introduced, the transport behavior of particles becomes more complex and multiple current reversals occur. The direction of the transport is determined by the competition between two types of the transversal asymmetry. For a given chirality, by suitably tailoring parameters, particles with different self-propulsion speed can move in different directions and can be separated.

  8. Experimental study of particle transport and density fluctuation in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Morita, S.; Sanin, A.; Michael, C.; Kawahata, K.; Yamada, H.; Miyazawa, J.; Tokuzawa, T.; Akiyama, T.; Goto, M.; Ida, K.; Yoshinuma, M.; Narihara, K.; Yamada, I.; Yokoyama, M.; Masuzaki, S.; Morisaki, T.; Sakamoto, R.; Funaba, H.; Komori, A.; Vyacheslavov, L.N.; Murakami, S.; Wakasa, A.

    2005-01-01

    A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained from density modulation experiments in the standard configuration. The values of D and V are estimated separately at the core and edge. The diffusion coefficients are strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in core and T e 1.1±0.14 in edge. And edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in edge is close to gyro-Bohm-like in nature. The existence of non-zero V is observed. It is observed that the electron temperature (T e ) gradient can drive particle convection. This is particularly clear in the core region. The convection velocity in the core region reverses direction from inward to outward as the T e gradient increases. In the edge, the convection is inward directed in the most of the case of the present data set. And it shows modest tendency, whose value is proportional to T e gradient keeping inward direction. However, the toroidal magnetic field also significantly affects value and direction of V. The spectrum of density fluctuation changes at different heating power suggesting that it has an influence on particle transport. The peak wavenumber is around 0.1 times the inversed ion Larmor radius, as is expected from gyro-Bohm diffusion. The peaks of fluctuation intensity are localized at the plasma edge, where density gradient becomes negative and diffusion contributes most to the particle flux. These results suggest a qualitative correlation of fluctuations with particle diffusion. (author)

  9. The acceleration and propagation of energetic particles in turbulent cosmic plasmas

    International Nuclear Information System (INIS)

    Achterberg, A.

    1981-01-01

    This thesis concentrates on the acceleration and propagation of energetic particles in turbulent cosmic plasmas. The stochastic acceleration of relativistic electrons by long-wavelength weak magnetohydrodynamic turbulence is considered and a model is discussed that allows the determination of both the electron energy spectrum and the wavenumber spectrum of the magnetohydrodynamic turbulence in a consistent way. The question of second phase acceleration in large solar flares and the precise form of the force exerted on the background plasma when Alfven waves are generated by fast particles are considered. The energy balance in the shock wave acceleration, the propagation of energetic particles in a high β plasma (β>10 2 ) and sheared flow as a possible source of plasma turbulence for a magnetized plasma with field-aligned flow, are discussed. (Auth./C.F.)

  10. Electron thermal transport in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Konings, J A

    1994-11-30

    The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (10{sup 8} K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called `tokamak` this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high `fusion` temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This `anomalous transport` of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL).

  11. Plasma channels for electron beam transport

    International Nuclear Information System (INIS)

    Schneider, R.F.; Smith, J.R.; Moffatt, M.E.; Nguyen, K.T.; Uhm, H.S.

    1988-01-01

    In recent years, there has been much interest in transport of intense relativistic electron beams using plasma channels. These channels are formed by either: ionization of an organic gas by UV photoionization or electron impact ionization of a low pressure gas utilizing a low energy (typically several hundred volts) electron gun. The second method is discussed here. As their electron gun, the authors used a 12 volt lightbulb filament which is biased to -400 volts with respect to the grounded 15 cm diameter drift tube. The electrons emitted from the filament are confined by an axial magnetic field of --100 Gauss to create a plasma channel which is less than 1 cm in radius. The channel density has been determined with Langmuir probes and the resulting line densities were found to be 10 11 to 10 12 per cm. When a multi-kiloamp electron beam is injected onto this channel, the beam space charge will eject the plasma electrons leaving the ions behind to charge neutralize the electron beam, hence allowing the beam to propagate. In this work, the authors performed experimental studies on the dynamics of the plasma channel. These include Langmuir probe measurements of a steady state (DC) channel, as well as time-resolved Langmuir probe studies of pulsed channels. In addition they performed experimental studies of beam propagation in these plasma channels. Specifically, they observed the behavior of current transport in these channels. Detailed results of beam transport and channel studies are presented

  12. Dynamic transport study of the plasmas with transport improvement in LHD and JT-60U

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Sakamoto, R.; Tanaka, K.; Funaba, H.; Kubo, S.; Yoshinuma, M.; Shimozuma, T.; Takeiri, Y.; Ikeda, K.; Michael, C.; Tokuzawa, T.; Sakamoto, Yoshiteru; Takenaga, Hidenobu; Isayama, Akihiko; Ide, Shunsuke; Fujita, Takaaki

    2006-10-01

    A transport analysis during the transient phase of heating (a dynamic transport study) applied to the plasma with internal transport barriers (ITBs) in the Large Helical Device (LHD) heliotron and JT-60U tokamak is described. In the dynamic transport study 1) a slow transition between two transport branches is observed, 2) the time of the transition from the L-mode plasma to the ITB plasma is clearly determined by the onset of the flattening of the temperature profile in the core region and 3) a spontaneous phase transition from a weak, wide ITB to a strong, narrow ITB and its back-transition are observed. The flattening of the core region of the ITB transition and the back-transition between a wide ITB and a narrow ITB suggest the strong interaction of turbulent transport in space, where turbulence suppression at certain locations in the plasma causes the enhancement of turbulence and thermal diffusivity nearby. (author)

  13. Fractional calculus phenomenology in two-dimensional plasma models

    Science.gov (United States)

    Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill

    2006-10-01

    Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).

  14. Classical convective energy transport in large gradient regions

    International Nuclear Information System (INIS)

    Hinton, F.L.

    1996-01-01

    Large gradients in density and temperature occur near the edge in H-mode plasmas and in the core of tokamak plasmas with negative central shear. Transport in these regions may be comparable to neoclassical. Standard neoclassical theory does not apply when the gradient lengths are comparable to an ion orbit excursion, or banana width. A basic question for neoclassical transport in large gradient regions is: do ion-ion collisions drive particle transport? Near the plasma edge in H-mode, where ion orbit loss requires that the ion energy transport be convective, neoclassical particle transport due to ion-ion collisions may play an important role. In negative central shear plasmas, where transport is inferred to be near neoclassical, it is important to have accurate predictions for the neoclassical rate of energy and particle transport. A simple 2-D slab model has been used, with a momentum-conserving collision operator, to show that ion-ion collisions do drive particle transport. When the gradients are large, the open-quotes field particleclose quotes contribution to the particle flux is non-local, and does not cancel the open-quotes test particleclose quotes contribution, which is local. Solutions of the kinetic equation are found which show that the steepness of the density profile, for increasing particle flux, is limited by orbit averaging. The gradient length is limited by the thermal gyroradius, and the convective energy flux is independent of ion temperature. This will allow an ion thermal runaway to occur, if there are no other ion energy loss mechanisms

  15. The influence of collisional and anomalous radial diffusion on parallel ion transport in edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Hazeltine, R.D.; Catto, P.J.

    1996-01-01

    The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma

  16. Study of neoclassical transport in LHD plasmas by applying the DCOM/NNW neoclassical transport database

    International Nuclear Information System (INIS)

    Wakasa, Arimitsu; Oikawa, Shun-ichi; Murakami, Sadayoshi

    2008-01-01

    In helical systems, neoclassical transport is one of the important issues in addition to anomalous transport, because of a strong temperature dependency of heat conductivity and an important role in the radial electric field determination. Therefore, the development of a reliable tool for the neoclassical transport analysis is necessary for the transport analysis in Large Helical Device (LHD). We have developed a neoclassical transport database for LHD plasmas, DCOM/NNW, where mono-energetic diffusion coefficients are evaluated by the Monte Carlo method, and the diffusion coefficient database is constructed by a neural network technique. The input parameters of the database are the collision frequency, radial electric field, minor radius, and configuration parameters (R axis , beta value, etc). In this paper, database construction including the plasma beta is investigated. A relatively large Shafranov shift occurs in the finite beta LHD plasma, and the magnetic field configuration becomes complex leading to rapid increase in the number of the Fourier modes in Boozer coordinates. DCOM/NNW can evaluate neoclassical transport accurately even in such a configuration with a large number of Fourier modes. The developed DCOM/NNW database is applied to a finite-beta LHD plasma, and the plasma parameter dependences of neoclassical transport coefficients and the ambipolar radial electric field are investigated. (author)

  17. Turbulence and abnormal transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Garbet, X.

    1988-06-01

    The objective of this thesis is the study of plasma microinstabilities in linear and nonlinear tokamak regime. After a brief review of experimental results the theoretical tools used in this study are presented. A variational method founded on the existence of angular variables system and on action for charged particles in tokamak configurations is detailed. The correspondent functional extreme with regard to fluctuating electromagnetic field, is calculated analytically with taking into account the toroidal geometry. A numerical code, TORRID, has been constructed on this principle and the main instabilities, particularly ionic instabilities and microtearing, has been linearly studied. The most simple non linear methods are rewieved and applied at the microtearing instabilities. The quasilinear transport coefficients are deducted of an entropy minimum production principle. The ionic thermic conductivity and the viscosity are calculated for an ionic turbulence [fr

  18. Plasma-parameter measurements using neutral-particle-beam attenuation

    International Nuclear Information System (INIS)

    Foote, J.H.; Molvik, A.W.; Turner, W.C.

    1982-01-01

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane

  19. Diagnosing collisionless energy transfer using field-particle correlations: Vlasov-Poisson plasmas

    Science.gov (United States)

    Howes, Gregory G.; Klein, Kristopher G.; Li, Tak Chu

    2017-02-01

    Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field-particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov-Poisson plasma. Generalizations necessary to apply the field-particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field-particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.

  20. Tornado-like transport in a magnetized plasma

    Science.gov (United States)

    Poulos, Matthew; van Compernolle, Bart; Morales, George

    2017-10-01

    Recent heat transport experiments conducted in the LAPD device at UCLA in which avalanche events have been previously documented have also lead to the identification of a new tornado-like transport phenomenon. These tornados occur much earlier than the avalanches events, essentially in the interval following the application of the bias voltage that causes the injection of an electron beam from a ring-shaped LaB6 cathode into the afterglow of a cold, magnetized plasma. The tornados exhibit a low-frequency (4 kHz) (much lower than drift-waves), spiraling, global eigenmode whose transient behavior is responsible for significant radial transport well outside the heated region. Detailed experimental observations are compared with a Braginskii transport code that includes the effects of ExB convection induced by the spiraling global eigenmode. New insights are gained into the necessary modifications of classical transport to accurately simulate the spiraling effects and the possible interaction with avalanches. This work is supported by the NSF/DOE partnership in basic plasma science and engineering, Grant Number 1619505, and is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF. Sponsored by DOE/NSF at BaPSF and NSF 1619505.

  1. Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma

    Science.gov (United States)

    Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.

    2008-11-01

    In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)

  2. Review: engineering particles using the aerosol-through-plasma method

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Luhrs, Claudia C [UNM; Richard, Monique [TEMA

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

  3. Feature-Based Analysis of Plasma-Based Particle Acceleration Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geddes, Cameron G. R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Min [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cormier-Michel, Estelle [Tech-X Corp., Boulder, CO (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-02-01

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  4. Spatiotemporal Structure of Aeolian Particle Transport on Flat Surface

    Science.gov (United States)

    Niiya, Hirofumi; Nishimura, Kouichi

    2017-05-01

    We conduct numerical simulations based on a model of blowing snow to reveal the long-term properties and equilibrium state of aeolian particle transport from 10-5 to 10 m above the flat surface. The numerical results are as follows. (i) Time-series data of particle transport are divided into development, relaxation, and equilibrium phases, which are formed by rapid wind response below 10 cm and gradual wind response above 10 cm. (ii) The particle transport rate at equilibrium is expressed as a power function of friction velocity, and the index of 2.35 implies that most particles are transported by saltation. (iii) The friction velocity below 100 µm remains roughly constant and lower than the fluid threshold at equilibrium. (iv) The mean particle speed above 300 µm is less than the wind speed, whereas that below 300 µm exceeds the wind speed because of descending particles. (v) The particle diameter increases with height in the saltation layer, and the relationship is expressed as a power function. Through comparisons with the previously reported random-flight model, we find a crucial problem that empirical splash functions cannot reproduce particle dynamics at a relatively high wind speed.

  5. Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids

    OpenAIRE

    Sedlačík, M.; Pavlínek, V.; Lehocký, M.; Mráček, A.; Grulich, O.; Švrčinová, P. (Petra); Filip, P. (Petr); Vesel, A.

    2011-01-01

    The aim of this paper is to document suitability of plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids. Surface-modified carbonyl iron particles were prepared via their exposure to 50% argon and 50% octafluorocyclobutane plasma. The X-ray photoelectron spectroscopy was used for analysis of chemical bonding states in the surface layer. Plasma-treated particles were adopted for a dispersed phase in magnetorheological (MR) fluids, and the MR behaviour was in...

  6. Molecular Dynamic Studies of Particle Wake Potentials in Plasmas

    Science.gov (United States)

    Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren

    2010-11-01

    Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (P^3M) code ddcMD to perform these simulations. As a starting point in our study, we examined the wake of a particle passing through a plasma. In this poster, we compare the wake observed in 3D ddcMD simulations with that predicted by Vlasov theory and those observed in the electrostatic PIC code BEPS where the cell size was reduced to .03λD.

  7. Three-dimensional Monte Carlo simulations of W7-X plasma transport: density control and particle balance in steady-state operations

    International Nuclear Information System (INIS)

    Sharma, D.; Feng, Y.; Sardei, F.; Reiter, D.

    2005-01-01

    This paper presents self-consistent three-dimensional (3D) plasma transport simulations in the boundary of stellarator W7-X obtained with the Monte Carlo code EMC3-EIRENE for three typical island divertor configurations. The chosen 3D grid consists of relatively simple nested finite toroidal surfaces defined on a toroidal field period and covering the whole edge topology, which includes closed surfaces, islands and ergodic regions. Local grid refinements account for the required high resolution in the divertor region. The distribution of plasma density and temperature in the divertor region, as well as the power deposition profiles on the divertor plates, are shown to strongly depend on the island geometry, i.e. on the position and size of the dominant island chain. Configurations with strike-point positions closer to the gap of the divertor chamber generally favour the neutral compression in the divertor chamber and hence the pumping efficiency. The ratio of pumping to recycling fluxes is found to be roughly independent of the separatrix density and is thus a figure of merit for the quality of the configuration and of the divertor system in terms of density control. Lower limits for the achievable separatrix density, which determine the particle exhaust capabilities in stationary conditions, are compared for the three W7-X configurations

  8. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  9. An entropic approach to magnetized nonlocal transport and other kinetic phenomena in high-energy-density plasmas

    International Nuclear Information System (INIS)

    Del-Sorbo, Dario

    2015-01-01

    Hydrodynamic simulations in high-energy-density physics and inertial confinement fusion require a detailed description of energy fluxes. The leading mechanism is the electron transport, which can be a nonlocal phenomenon that needs to be described with quasistationary and simplified Fokker-Planck models in large scale hydrodynamic codes. My thesis is dedicated to the development of a new nonlocal transport model based on a fast-moving-particles collision operator and on a first moment Fokker-Planck equation, simplified with an entropic closure relation. Such a closure enables a better description of the electron distribution function in the limit of high anisotropies, where small scale electrostatic instabilities could be excited. This new model, so called M1, is successfully compared with the well known nonlocal electron transport model proposed by Schurtz, Nicolai and Busquet, using different collision operators, and with the reduced Fokker-Planck model, based on a small-anisotropies polynomial closure relation (P1). Several typical configurations of heat transport are considered. We show that the M1 entropic model may operate in two and three dimensions and is able to account for electron transport modifications in external magnetic fields. Moreover, our model enables to compute realistic electron distribution functions, which can be used for kinetic studies, as for the plasma stability in the transport zone. It is demonstrated that the electron energy transport may strongly modify damping of Langmuir and ion acoustic waves, while the simplified nonlocal transport models are not able to describe accurately the modifications of the distribution function and plasma wave damping. The structure of the M1 model allows to naturally take into account self-generated magnetic fields, which play a crucial role in multidimensional simulations. Moreover, magnetic fields could also be used for the focusing of energetic particles in alternative ignition schemes. The M1 model

  10. Turbulent transport of impurities in a magnetized plasma; Transport turbulent d'impuretes dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Dubuit, N

    2006-10-15

    This work deals with the transport of impurities in magnetically confined thermonuclear plasmas. The accumulation of impurities in the core of the plasma would imply dramatic losses of energy that may lead to the extinction of the plasma. On the opposite, the injection of impurities in the plasma edge is considered as an efficient means to extract heat without damaging the first wall. The balance between these 2 contradictory constraints requires an accurate knowledge of the impurity transport inside the plasma. The effect of turbulence, the main transport mechanism for impurities is therefore a major issue. In this work, the complete formula of a turbulent flow of impurities for a given fluctuation spectrum has been inferred. The origin and features of the main accumulation processes have been identified. The main effect comes from the compressibility of the electrical shift speed in a plane perpendicular to the magnetic field. This compressibility appears to be linked to the curvature of the magnetic field. A less important effect is a thermal-diffusion process that is inversely proportional to the number of charges and then disappears for most type of impurities except the lightest. This effect implies an impurity flux proportional to the temperature gradient and its direction can change according to the average speed of fluctuations. A new version of the turbulence code TRB has been developed. This new version allows the constraints of the turbulence not by the gradients but by the flux which is more realistic. The importance of the processes described above has been confirmed by a comparison between calculation and experimental data from Tore-supra and the Jet tokamak. The prevailing role of the curvature of the magnetic field in the transport impurity is highlighted. (A.C.)

  11. Tungsten transport in the plasma edge at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Janzer, Michael Arthur

    2015-04-30

    The Plasma Facing Components (PFC) will play a crucial role in future deuterium-tritium magnetically confined fusion power plants, since they will be subject to high energy and particle loads, but at the same time have to ensure long lifetimes and a low tritium retention. These requirements will most probably necessitate the use of high-Z materials such as tungsten for the wall materials, since their erosion properties are very benign and, unlike carbon, capture only little tritium. The drawback with high-Z materials is, that they emit strong line radiation in the core plasma, which acts as a powerful energy loss mechanism. Thus, the concentration of these high-Z materials has to be controlled and kept at low levels in order to achieve a burning plasma. Understanding the transport processes in the plasma edge is essential for applying the proper impurity control mechanisms. This control can be exerted either by enhancing the outflux, e.g. by Edge Localized Modes (ELM), since they are known to expel impurities from the main plasma, or by reducing the influx, e.g. minimizing the tungsten erosion or increasing the shielding effect of the Scrape Off Layer (SOL). ASDEX Upgrade (AUG) has been successfully operating with a full tungsten wall for several years now and offers the possibility to investigate these edge transport processes for tungsten. This study focused on the disentanglement of the frequency of type-I ELMs and the main chamber gas injection rate, two parameters which are usually linked in H-mode discharges. Such a separation allowed for the first time the direct assessment of the impact of each parameter on the tungsten concentration. The control of the ELM frequency was performed by adjusting the shape of the plasma, i.e. the upper triangularity. The radial tungsten transport was investigated by implementing a modulated tungsten source. To create this modulated source, the linear dependence of the tungsten erosion rate at the Ion Cyclotron Resonance

  12. Physics of electron internal transport barrier in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Toda, S.; Fujisawa, A.; Ida, K.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.; Diamond, P.H.

    2006-10-01

    The role of zonal flows in the formation of the transport barrier in the helical plasmas is analyzed using the transport code. A set of one-dimensional transport equations is analyzed, including the effect of zonal flows. The turbulent transport coefficient is shown to be suppressed when the plasma state changes from the weak negative radial electric field to the strong positive one. This bifurcation of the turbulent transport is newly caused by the change of the damping rate of zonal flows. It is theoretically demonstrated that the damping rate of zonal flows governs the global confinement in toroidal plasmas. (author)

  13. Integrated heat transport simulation of high ion temperature plasma of LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamaguchi, H.; Sakai, A.

    2014-10-01

    A first dynamical simulation of high ion temperature plasma with carbon pellet injection of LHD is performed by the integrated simulation GNET-TD + TASK3D. NBI heating deposition of time evolving plasma is evaluated by the 5D drift kinetic equation solver, GNET-TD and the heat transport of multi-ion species plasma (e, H, He, C) is studied by the integrated transport simulation code, TASK3D. Achievement of high ion temperature plasma is attributed to the 1) increase of heating power per ion due to the temporal increase of effective charge, 2) reduction of effective neoclassical transport with impurities, 3) reduction of turbulence transport. The reduction of turbulence transport is most significant contribution to achieve the high ion temperature and the reduction of the turbulent transport from the L-mode plasma (normal hydrogen plasma) is evaluated to be a factor about five by using integrated heat transport simulation code. Applying the Z effective dependent turbulent reduction model we obtain a similar time behavior of ion temperature after the C pellet injection with the experimental results. (author)

  14. BOOK REVIEW: Transport and Structural Formation in Plasmas

    Science.gov (United States)

    Thyagaraja, A.

    1999-06-01

    tokamak can be taken as an illustrative example) are clearly dissipative open systems, which are invariably driven far from thermodynamic equilibrium by means of a suitable set of external particle, momentum, energy and current sources. In this sense, such plasmas are analogous to the Earth's atmosphere and many other fluid dynamic systems one encounters in engineering and physics. It is well known that the transport processes in such systems are describable by strictly collisional, kinetically derived models such as neoclassical theory or laminar fluid flow equations only in exceptional circumstances. The generic case is one in which the system acquires `structure' in the sense that symmetry-breaking spatio-temporal turbulent micro/mesoscale fluctuations `spontaneously' occur, and in their turn influence the macroscale evolution of the system. Thus, given typical values of density, temperature, magnetic field and current, the tokamak plasma does not automatically reach a steady state consistent with the sources, symmetry and neoclassical equations. Rather, one finds a more or less turbulent state which often (but not always!) involves much worse thermal and particle insulation than expected on the grounds of Coulomb collisional processes alone. The authors seek to promulgate a particular model which does not require the existence (in principle) of any linear instability of the `equilibrium'. This is a well-known state of affairs in fluid dynamics (e.g. pipe flow) when turbulence can occur in spite of the fact that linear theory predicts the equilibrium to be stable. While this is indeed a welcome clarification of the relatively limited role of linear theory in describing plasma turbulence in any detailed predictive sense, it is not clear why the authors elevate `subcritical turbulence' to a fundamental principle. While it may well be present, it is in general neither necessary nor sufficient to explain turbulent transport in plasmas. In this reviewer's opinion, at the

  15. Vaporized wall material/plasma interaction during plasma disruption

    International Nuclear Information System (INIS)

    Merrill, B.J.; Carroll, M.C.; Jardin, S.C.

    1983-01-01

    The purpose of this paper is to discuss a new plasma disruption model that has been developed for analyzing the consequences to the limiter/first wall structures. This model accounts for: nonequilibrium surface vaporization for the ablating structure, nonequilibrium ionization of and radiation emitted from the ablated material in the plasma, plasma particle and energy transport, and plasma electromagnetic field evolution during the disruption event. Calculations were performed for a 5 ms disruption on a stainless steel flat limiter as part of a D-shaped first wall. These results indicated that the effectiveness of the ablated wall material to shield the exposed structure is greater than predicted by earlier models, and that the rate of redeposition of the ablated wall material ions is very dramatic. Impurity transport along magnetic field lines, global plasma motion, and radiation transport in an optically thick plasma are important factors that require additional modeling. Experimental measurements are needed to verify these models

  16. Sintering of Fine Particles in Suspension Plasma Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Leszek Latka

    2010-07-01

    Full Text Available Suspension plasma spraying is a process that enables the production of finely grained nanometric or submicrometric coatings. The suspensions are formulated with the use of fine powder particles in water or alcohol with some additives. Subsequently, the suspension is injected into plasma jet and the liquid additives evaporate. The remaining fine solids are molten and subsequently agglomerate or remain solid, depending on their trajectory in the plasma jet. The coating’s microstructure results from these two groups of particles arriving on a substrate or previously deposited coating. Previous experimental studies carried out for plasma sprayed titanium oxide and hydroxyapatite coatings enabled us to observe either a finely grained microstructure or, when a different suspension injection mode was used, to distinguish two zones in the microstructure. These two zones correspond to the dense zone formed from well molten particles, and the agglomerated zone formed from fine solid particles that arrive on the substrate in a solid state. The present paper focuses on the experimental and theoretical analysis of the formation process of the agglomerated zone. The experimental section establishes the heat flux supplied to the coating during deposition. In order to achieve this, calorimetric measurements were made by applying experimental conditions simulating the real coatings’ growth. The heat flux was measured to be in the range from 0.08 to 0.5 MW/m2,depending on the experimental conditions. The theoretical section analyzes the sintering during the coating’s growth, which concerns the fine particles arriving on the substrate in the solid state. The models of volume, grain boundary and surface diffusion were analyzed and adapted to the size and chemistry of the grains, temperature and time scales corresponding to the suspension plasma spraying conditions. The model of surface diffusion was found to best describe the sintering during suspension

  17. Increased understanding of the dynamics and transport in ITB plasmas from multi- machine comparisons

    International Nuclear Information System (INIS)

    Gohil, P.

    2002-01-01

    This paper presents details on: (a) examination and compilation of experimental results on transport from the many machines worldwide to better understand the physics of ITB formation and sustainment; (b) the development of an international database on ITB experimental results to determine the requirements for the formation and sustainment of ITBs, especially for reactor relevant conditions; (c) determining and performing comprehensive tests of theory-based models and simulations using the experimental ITB database. This paper will further present the status of research on critical issues in ITB physics including barrier formation and access conditions, particle and impurity transport, fueling, core-edge integration, profile control and stability as well as issues of accessibility in reactor scale devices such as barriers with T e =T i , barriers with low toroidal rotation and flat density profiles. Results will be presented from many devices providing a clearer understanding of transport and ITB physics in present plasmas and how this understanding can be applied to increase the performance of plasmas in future devices. An ITB database is being developed. (author)

  18. Discontinuity model for internal transport barrier formation in reversed magnetic shear plasmas

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Dettrick, S.A.; Li, J.Q.; Shirai, S.; Kim, J.Y.; Horton, W.; Tajima, T.; LeBrun, M.J.

    2000-01-01

    It is becoming clear that tokamak anomalous transport is dominated by radially extended non-local modes which originate from strong toroidal coupling of rational surfaces in non-uniform plasmas. To aid in understanding the internal transport barrier (ITB) formed in reversed magnetic shear experiments, in addition to the well known shear flow effect, the article points out an important non-local effect and/or finite size effect which comes from the complex behaviour of the mode over a finite radial region around the minimum q (safety factor) surface. The non-local mode, which is characterized by its radial extent and the degree of tilting in the poloidal direction (Δr, θ 0 ), changes its structure depending on the sign of the magnetic shear, and as a result such modes are weakly excited across the q min surface. This leads to a discontinuity or gap which disconnects the phase relation in the global wave structure across the q min surface. Once such a discontinuity (or gap) is formed, transport suppression occurs and therefore a transport barrier can be expected near the q min surface. The existence of this discontinuity is confirmed through use of a toroidal particle simulation. It is also shown that whether such a discontinuity is efficiently established depends on the presence of the radial electric field and the related plasma shear flow. (author)

  19. Thermal plasmas: fundamental aspects

    International Nuclear Information System (INIS)

    Fauchais, P.

    2005-01-01

    This article treats of thermal plasmas, i.e. mainly produced by electric arcs and RF discharges. Their main characteristic is that they are generated at a pressure close to the atmospheric pressure (between 10 4 and 10 6 Pa) and refer to the classical kinetics of the Boltzmann equation. Because of the pressure, the collisions between particles are numerous and ionization is mainly due to a thermal effect. They correspond to electron densities between 10 20 and 10 24 m -3 and temperatures between 6000 and 25000 K. In these plasmas, the electric fields and the average free trajectories are too weak to generate a ionization state by direct inelastic collision. Ionization is thus essentially a thermal phenomenon due to elastic collisions. This article presents: 1 - the particles present in a plasma: definition, energy states; 2 - characteristic data: collisions, average free path and collision cross-section, distribution function, ionization types, charged particles mobility inside an electric field, scattering, Debye length; 3 - plasmas at the thermodynamical equilibrium: conditions of equilibrium, calculation of composition, thermodynamic properties, transport properties, radiation; 4 - thermal plasmas away from equilibrium: conditions of non-equilibrium, calculation of plasma composition, calculation of transport properties, quenching phenomenon. (J.S.)

  20. Auxiliary plasma heating and fueling models for use in particle simulation codes

    International Nuclear Information System (INIS)

    Procassini, R.J.; Cohen, B.I.

    1989-01-01

    Computational models of a radiofrequency (RF) heating system and neutral-beam injector are presented. These physics packages, when incorporated into a particle simulation code allow one to simulate the auxiliary heating and fueling of fusion plasmas. The RF-heating package is based upon a quasilinear diffusion equation which describes the slow evolution of the heated particle distribution. The neutral-beam injector package models the charge exchange and impact ionization processes which transfer energy and particles from the beam to the background plasma. Particle simulations of an RF-heated and a neutral-beam-heated simple-mirror plasma are presented. 8 refs., 5 figs

  1. Laser-induced plasmas as an analytical source for quantitative analysis of gaseous and aerosol systems: Fundamentals of plasma-particle interactions

    Science.gov (United States)

    Diwakar, Prasoon K.

    2009-11-01

    Laser-induced Breakdown Spectroscopy (LIBS) is a relatively new analytical diagnostic technique which has gained serious attention in recent past due to its simplicity, robustness, and portability and multi-element analysis capabilities. LIBS has been used successfully for analysis of elements in different media including solids, liquids and gases. Since 1963, when the first breakdown study was reported, to 1983, when the first LIBS experiments were reported, the technique has come a long way, but the majority of fundamental understanding of the processes that occur has taken place in last few years, which has propelled LIBS in the direction of being a well established analytical technique. This study, which mostly focuses on LIBS involving aerosols, has been able to unravel some of the mysteries and provide knowledge that will be valuable to LIBS community as a whole. LIBS processes can be broken down to three basic steps, namely, plasma formation, analyte introduction, and plasma-analyte interactions. In this study, these three steps have been investigated in laser-induced plasma, focusing mainly on the plasma-particle interactions. Understanding plasma-particle interactions and the fundamental processes involved is important in advancing laser-induced breakdown spectroscopy as a reliable and accurate analytical technique. Critical understanding of plasma-particle interactions includes study of the plasma evolution, analyte atomization, and the particle dissociation and diffusion. In this dissertation, temporal and spatial studies have been done to understand the fundamentals of the LIBS processes including the breakdown of gases by the laser pulse, plasma inception mechanisms, plasma evolution, analyte introduction and plasma-particle interactions and their influence on LIBS signal. Spectral measurements were performed in a laser-induced plasma and the results reveal localized perturbations in the plasma properties in the vicinity of the analyte species, for

  2. Entropic transport of active particles driven by a transverse ac force

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian-chun, E-mail: wjchun2010@163.com; Chen, Qun; Ai, Bao-quan, E-mail: aibq@scnu.edu.cn

    2015-12-18

    Transport of active particles is numerically investigated in a two-dimensional period channel. In the presence of a transverse ac force, the directed transport of active particles demonstrates striking behaviors. By adjusting the amplitude and the frequency of the transverse ac force, the average velocity will be influenced significantly and the direction of the transport can be reversed several times. Remarkably, it is also found that the direction of the transport varies with different self-propelled speeds. Therefore, particles with different self-propelled speeds will move to the different directions, which is able to separate particles of different self-propelled speeds. - Highlights: • A transverse ac force strongly influence the transport of active particles. • The direction of the transport can be reversed several times. • Active particles with different self-propelled speeds can be separated.

  3. Extraordinary Matter: Visualizing Space Plasmas and Particles

    Science.gov (United States)

    Barbier, S. B.; Bartolone, L.; Christian, E.; Thieman, J.; Eastman, T.; Lewis, E.

    2011-09-01

    Atoms and sub-atomic particles play a crucial role in the dynamics of our universe, but these particles and the space plasmas comprised of them are often overlooked in popular scientific and educational resources. Although the concepts are pertinent to a wide range of topics, even the most basic particle and plasma physics principles are generally unfamiliar to non-scientists. Educators and public communicators need assistance in explaining these concepts that cannot be easily demonstrated in the everyday world. Active visuals are a highly effective aid to understanding, but resources of this type are currently few in number and difficult to find, and most do not provide suitable context for audience comprehension. To address this need, our team is developing an online multimedia reference library of animations, visualizations, interactivities, and videos resources - Extraordinary Matter: Visualizing Space Plasmas and Particles. The site targets grades 9-14 and the equivalent in informal education and public outreach. Each ready-to-use product will be accompanied by a supporting explanation at a reading level matching the educational level of the concept. It will also have information on relevant science, technology, engineering, and mathematics (STEM) educational standards, activities, lesson plans, related products, links, and suggested uses. These products are intended to stand alone, making them adaptable to the widest range of uses, including scientist presentations, museum displays, educational websites and CDs, teacher professional development, and classroom use. This project is funded by a NASA Education and Public Outreach in Earth and Space Science (EPOESS) grant.

  4. Non-local transport in a tokamak plasma divertor with recycling

    International Nuclear Information System (INIS)

    Abou-Assaleh, Z.; Petravic, M.; Vesey, R.

    1993-01-01

    The plasma transport, particle and energy fluxes, near the diverter plate with high recycling has been modeled by using an electron kinetic code (Fokker-Planck International) in conjunction with a two-fluid ambipolar code. We include the effects of ionization and excitation of the hydrogen atoms. The electron energy distribution calculated from the kinetic code shows a large deviation from Maxwellian especially near the plate. This deviation from Maxwellian is due to the non-local transport of the suprathermal electrons from the SOL, and due also to the absorption of the fast electrons by the target plate. The heat flux near the plate is shown to be nonlocal, in that it is not determined uniquely by the local plasma parameters. Therefore the classical transport coefficients in the fluid model must be modified by including a nonlocal effect to produce the kinetic results. The kinetic calculation is compared with those of the fluid code with different values of the electron heat flux limiter factor (f). To reduce the computer load, the initial condition we used corresponds to the equilibrium solution already found with the fluid code with f=0.2. The fluid and Fokker-Planck codes are relaxed until all transients associated with electron dynamics have disappeared. In section 2, we present the kinetic code. The fluid code is presented in section 3. The boundary conditions used in these simulations are given in section 4. Finally the results and conclusion of these simulations are presented in section 5

  5. Transport analysis of oscillatory state for plasma dynamics in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2012-11-01

    In helical plasmas, two kinds of the oscillation for the plasma quantities are experimentally observed. Firstly, the limit cycle phenomena in the temporal evolution of the electrostatic potential, namely the electric pulsation, have been observed in the core region. The temporally self-generated oscillation of the radial electric field is shown as a simulation result in the core region. The dependence of the transition point for the radial electric field on the source is examined. Secondly, the density limit oscillation in the helical device was reported. To realize the oscillation phenomena at the density limit, the temporal evolution of the density profile is newly included in a simulation when the radiative loss is calculated in the edge region. Two stationary plasma states, where the transport loss or radiative loss is dominant in the edge region, are obtained. The dynamics of the plasma quantity is found to show the transition from the transport-dominated state to the radiation-dominated state. (author)

  6. Fundamentals of charged particle transport in gases and condensed matter

    CERN Document Server

    Robson, Robert E; Hildebrandt, Malte

    2018-01-01

    This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.

  7. Particle transport in field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Linford, R.K.

    1982-05-01

    Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average ..beta.. condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement.

  8. Particle transport in field-reversed configurations

    International Nuclear Information System (INIS)

    Tuszewski, M.; Linford, R.K.

    1982-01-01

    Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average β condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement

  9. Microstripes for transport and separation of magnetic particles

    DEFF Research Database (Denmark)

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally...... applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled...... selective manipulation and separation of magnetically labelled species. (C) 2012 American Institute of Physics....

  10. Estimates of Lagrangian particle transport by wave groups: forward transport by Stokes drift and backward transport by the return flow

    Science.gov (United States)

    van den Bremer, Ton S.; Taylor, Paul H.

    2014-11-01

    Although the literature has examined Stokes drift, the net Lagrangian transport by particles due to of surface gravity waves, in great detail, the motion of fluid particles transported by surface gravity wave groups has received considerably less attention. In practice nevertheless, the wave field on the open sea often has a group-like structure. The motion of particles is different, as particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for wave groups ensuring the (irrotational) mass balance holds. We use WKB theory to study the variation of the Lagrangian transport by the return current with depth distinguishing two-dimensional seas, three-dimensional seas, infinite depth and finite depth. We then provide dimensional estimates of the net horizontal Lagrangian transport by the Stokes drift on the one hand and the return flow on the other hand for realistic sea states in all four cases. Finally we propose a simple scaling relationship for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current.

  11. Anomalous transport in turbulent plasmas and continuous time random walks

    International Nuclear Information System (INIS)

    Balescu, R.

    1995-01-01

    The possibility of a model of anomalous transport problems in a turbulent plasma by a purely stochastic process is investigated. The theory of continuous time random walks (CTRW's) is briefly reviewed. It is shown that a particular class, called the standard long tail CTRW's is of special interest for the description of subdiffusive transport. Its evolution is described by a non-Markovian diffusion equation that is constructed in such a way as to yield exact values for all the moments of the density profile. The concept of a CTRW model is compared to an exact solution of a simple test problem: transport of charged particles in a fluctuating magnetic field in the limit of infinite perpendicular correlation length. Although the well-known behavior of the mean square displacement proportional to t 1/2 is easily recovered, the exact density profile cannot be modeled by a CTRW. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW

  12. An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles

    International Nuclear Information System (INIS)

    Meng, Jianxin; Mei, Deqing; Yang, Keji; Fan, Zongwei

    2014-01-01

    In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, an approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles

  13. Particle pitch angle diffusion due to nonadiabatic effects in the plasma sheet

    International Nuclear Information System (INIS)

    Gray, P.C.; Lee, L.C.

    1982-01-01

    In order to understand certain aspects of the plasma sheet dynamics, a numerical study of the nonadiabatic behavior of particles in a model field geometry is performed. The particle's magnetic moment as a function of time is calculated for various initial parameters, corresponding to various particle energies and degrees of field curvature. It is shown that the magnetic moment changes as the particle passes through the plasma sheet and that the magnitude of the change is related to the curvature of the field at the middle of the plasma sheet. The relation of the magnitude of the change in magnetic moment to the particle's pitch and phase angles as it passes through the sheet is numerically resolved. The nature of the change may be considered as a mechanism for pitch angle diffusion, and the diffusion coefficient is calculated. This scattering mechanism is significant for plasma sheet ions (1--10 keV) as well as energetic electrons (>100 keV)

  14. Plasma transport in stochastic magnetic field caused by vacuum resonant magnetic perturbations at diverted tokamak edge

    International Nuclear Information System (INIS)

    Park, G.; Chang, C. S.; Joseph, I.; Moyer, R. A.

    2010-01-01

    A kinetic transport simulation for the first 4 ms of the vacuum resonant magnetic perturbations (RMPs) application has been performed for the first time in realistic diverted DIII-D tokamak geometry [J. Luxon, Nucl. Fusion 42, 614 (2002)], with the self-consistent evaluation of the radial electric field and the plasma rotation. It is found that, due to the kinetic effects, the stochastic parallel thermal transport is significantly reduced when compared to the standard analytic model [A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978)] and the nonaxisymmetric perpendicular radial particle transport is significantly enhanced from the axisymmetric level. These trends agree with recent experimental result trends [T. E. Evans, R. A. Moyer, K. H. Burrell et al., Nat. Phys. 2, 419 (2006)]. It is also found, as a side product, that an artificial local reduction of the vacuum RMP fields in the vicinity of the magnetic separatrix can bring the kinetic simulation results to a more detailed agreement with experimental plasma profiles.

  15. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    International Nuclear Information System (INIS)

    Block, E.R.; Edwards, D.

    1987-01-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of [ 14 C]-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells

  16. Perturbative transport experiments in JET Advanced Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantica, P.; Gorini, G.; Sozzi, C. [Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Milan (Italy); Imbeaux, F.; Sarazin, Y.; Garbet, X. [Association Euratom-CEA, St. Paul-lez-Durance Cedex (France); Kinsey, J. [Lehigh Univ., Bethlehem, Pennsylvania (United States); Budny, R. [Princeton Plasma Physics Lab, New Jersey (United States); Coffey, I.; Parail, V.; Walden, A. [Euratom/UKAEA Fusion Association, Abingdon, Oxon (United Kingdom); Dux, R. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Garzotti, L. [Istituto Gas Ionizzati, Padova (Italy); Ingesson, C. [FOM-Instituut voor Plasmafysica, Nieuwegein (Netherlands); Kissick, M. [University of California, Los Angeles (United States)

    2003-07-01

    Perturbative transport experiments have been performed in JET Advanced Tokamak plasmas either in conditions of fully developed Internal Transport Barrier (ITB) or during a phase where an ITB was not observed. Transient peripheral cooling was induced by either Laser Ablation or Shallow Pellet Injection and the ensuing travelling cold pulse was used to probe the plasma transport in the electron and, for the first time, also in the ion channel. Cold pulses travelling through ITBs are observed to erode the ITB outer part, but, if the inner ITB portion survives, it strongly damps the propagating wave. The result is discussed in the context of proposed possible pictures for ITB formation. In the absence of an ITB, the cold pulse shows a fast propagation in the outer plasma half, which is consistent with a region of stiff transport, while in the inner half it slows down but shows the peculiar feature of amplitude growing while propagating. The data are powerful tests for the validation of theoretical transport models. (author)

  17. Micro-particle transporting system using galvanotactically stimulated apo-symbiotic cells of Paramecium bursaria.

    Science.gov (United States)

    Furukawa, Shunsuke; Karaki, Chiaki; Kawano, Tomonori

    2009-01-01

    It is well known that Paramecium species including green paramecia (Paramecium bursaria) migrate towards the anode when exposed to an electric field in a medium. This type of a cellular movement is known as galvanotaxis. Our previous study revealed that an electric stimulus given to P bursaria is converted to a galvanotactic cellular movement by involvement of T-type calcium channel on the plasma membrane [Aonuma et al. (2007), Z. Naturforsch. 62c, 93-102]. This phenomenon has attracted the attention of bioengineers in the fields of biorobotics or micro-robotics in order to develop electrically controllable micromachineries. Here, we demonstrate the galvanotactic controls of the cellular migration of P bursaria in capillary tubes (diameter, 1-2 mm; length, 30-240 mm). Since the Paramecium cells take up particles of various sizes, we attempted to use the electrically stimulated cells of P bursaria as the vehicle for transportation of micro-particles in the capillary system. By using apo-symbiotic cells of P bursaria obtained after forced removal of symbiotic algae, the uptake of the particles could be maximized and visualized. Then, electrically controlled transportations of particle-filled apo-symbiotic P bursaria cells were manifested. The particles transported by electrically controlled cells (varying in size from nm to /m levels) included re-introduced green algae, fluorescence-labeled polystyrene beads, magnetic microspheres, emerald green fluorescent protein (EmGFP)-labeled cells of E. coli, Indian ink, and crystals of zeolite (hydrated aluminosilicate minerals with a micro-porous structure) and some metal oxides. Since the above demonstrations were successful, we concluded that P bursaria has a potential to be employed as one of the micro-biorobotic devices used in BioMEMS (biological micro-electro-mechanical systems).

  18. Transport of deuterium, tritium and helium in a tokamak

    International Nuclear Information System (INIS)

    Potters, J.H.H.M.

    1984-02-01

    A one-dimensional numerical model for determining steady-state radial profiles of the densities of the particles, including neutrals, in a multispecies toroidal plasma is described. For prescribed temperature profiles, the coupled momentum and particle balances of the ions are solved numerically with a newly developed compact finite difference scheme for a non-equidistant mesh. Neutral densities are obtained by solving the Boltzmann equations, using a collocation method. The model is applied to deuterium-tritium plasmas without and with a helium admixture. For the charged particles, Pfirsch-Schlueter transport, including the highly collisional extension, and either of two anomalous transport models are adopted. For equal densities of deuterons and tritons in the plasma centre, the neutral tritium density in front of the wall is found to be 1.3 to 1.6 times higher than that of deuterium, depending on the plasma density, the temperature profile and the transport model. Secondly, it is found that pumping neutral helium, originating from fusion alpha particles, out of a cold plasma/gas blanket surrounding the hot plasma is not feasible, as the helium gas density, corresponding to a relative abundance of alpha-particles in the plasma core below 10%, is very low. Although depending strongly on the ion transport model and being increased by elastic collisions between neutral helium and charged hydrogen isotopes, the neutral helium enrichment ratio is always much less than unity. (Auth.)

  19. Transport analysis of the edge zone of H-mode plasmas by computer simulation

    International Nuclear Information System (INIS)

    Becker, G.; Murmann, H.

    1988-01-01

    Local transport and ideal ballooning stability in the L-phase and ELM-free H-phase in ASDEX are analysed by computer modelling. It is found that the diffusivities χ e and D at the edge are reduced by a factor of six a few milliseconds after the H-transition. Local transport in the inner plasma improves at an early stage by a typical factor of two. A change in the collisionality regime of electrons and ions does not take place. During the L-phase and the quiescent H-phase ideal ballooning modes are found to be stable. Computer experiments further show that a significant reduction in the particle flux at the separatrix takes place which is closely connected with the H-transition process. This explains the observed buildup of a density shoulder on a millisecond time-scale and the drop of the particle flow into the divertor. A strong decrease of the electron heat conduction flux at the separatrix is, however, ruled out in ELM-free periods. On the assumption of electrostatic turbulence induced transport, these results are consistent with measured density fluctuation levels near the separatrix. (author). 20 refs, 9 figs

  20. Hydrogen transport behavior of metal coatings for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R. (Idaho National Engineering Lab., Idaho Falls (USA))

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D{sub 3}{sup +} ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates of tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5x10{sup 19} D/m{sup 2} s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs. (orig.).

  1. Hydrogen transport behavior of metal coatings for plasma-facing components

    Science.gov (United States)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D +3 ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5 × 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs.

  2. Hydrogen transport behavior of metal coatings for plasma facing components

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.

    1990-01-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3-keV D 3 + ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 K to 825 K and implanting particle fluxes of approximately 5 x 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs. 18 refs., 3 figs., 3 tabs

  3. Intermittency, avalanche statistics, and long-term correlations in a turbulent plasma

    International Nuclear Information System (INIS)

    Castellanos, Omar; Sentíes, José M; Anabitarte, Ernesto; López, Juan M

    2013-01-01

    We study the turbulent dynamics of a helium plasma in a non-confining cylindrical configuration. Our experimental setup allows us to analyze particle transport in different plasma regions. We find that, whereas the transport is diffusive in the innermost regions of the plasma, distinctive non-diffusive features appear in regions away from the center. Indeed, at the plasma edge we find that particle flux exhibits a power-law distribution of avalanche durations, intermittency, and long-term correlations. (paper)

  4. Introduction to burning plasma physics

    International Nuclear Information System (INIS)

    Momota, Hiromu

    1982-01-01

    The free energy of fusion-produced charged particles, the critical plasma Q-value for the thermal instability, and the Cherenkov's emission are discussed. The free energy of fusion-produced charged particles is large even in DT burning plasma. The primary role of fusion-produced energetic charged particles is the heating of fuel plasma. If the charged particle heating is large, burning may be thermally unstable. A zero dimensional analysis shows that the critical plasma Q-values for this thermal instability are nearly 5 for DT burning plasma of 14 keV and 1.6 for D-He 3 burning plasma of 60 keV. These critical plasma Q-values are small as compared to that required for commercial reactors. Then, some methods of burning-control should be introduced to fusion plasma. Another feature of energetic charged particles may be Cherenkov's emission of various waves in fusion plasma. The relationship between this micro-instability and transport phenomena may be the important problem to be clarified. The fusion-produced energetic charged particles have large Larmor radii, and they may have effects on balooning mode instability. (Kato, T.)

  5. Phenomenological studies of electron-beam transport in wire-plasma channels

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Beezhold, W.

    1980-01-01

    Multiple electron-beam transport in air through plasma channels is an important method for delivering many intense beams to a bremsstrahlung converter system. This paper reports work intended to optimize this transport technique with emphasis on transport through curved channels and on transport efficiencies. Curved-channel transport allows accelerators such as Sandia's PROTO II and PBFA I facilities to be used as flash x-ray sources for weapon effects simulation without reconfiguring the diodes or developing advanced converters. The formation mechanisms of wire-initiated plasma channels in air were examined and the subsequent transport efficiencies of relativistic electron beams through various-length straight and curved plasma channels were determined. Electron transport efficiency through a channel was measured to be 80 to 100% of a zero length channel for 40 cm long straight channels and for curved channels which re-directed the electron beam through an angle of 90 0 . Studies of simultaneous e-beam transport along two curved channels closely spaced at the converter showed that transport efficiency remained at 80 to 100%. However, it was observed that the two e-beams were displaced towards each other. Transport efficiency was observed to depend only weakly on parameters such as wire material, wire length and shape, diode anode aperture, e-beam injection time, and wire-channel applied voltage. For off-center injection conditions the electron beam strongly perturbed the plasma channel in periodic or regularly spaced patterns even though the total energy lost by the electron beam remained small. Plasma-channel transport, when all experimental parameters have been optimized for maximum transport efficiency, is a workable method for directing electron beams to a converter target

  6. Transport of the moving barrier driven by chiral active particles

    Science.gov (United States)

    Liao, Jing-jing; Huang, Xiao-qun; Ai, Bao-quan

    2018-03-01

    Transport of a moving V-shaped barrier exposed to a bath of chiral active particles is investigated in a two-dimensional channel. Due to the chirality of active particles and the transversal asymmetry of the barrier position, active particles can power and steer the directed transport of the barrier in the longitudinal direction. The transport of the barrier is determined by the chirality of active particles. The moving barrier and active particles move in the opposite directions. The average velocity of the barrier is much larger than that of active particles. There exist optimal parameters (the chirality, the self-propulsion speed, the packing fraction, and the channel width) at which the average velocity of the barrier takes its maximal value. In particular, tailoring the geometry of the barrier and the active concentration provides novel strategies to control the transport properties of micro-objects or cargoes in an active medium.

  7. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  8. Neoclassical and anomalous transport in toroidal plasmas with drift-ordered turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1996-01-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electromagnetic drift wave fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear wave-particle interactions. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. For the microscale fluctuations k perpendicular ρ i ∼ 1 the parallel neoclassical fluxes remain invariant. For mesoscale fluctuations the mixing length fluctuation level with broken symmetry from (weak) shear flows the neoclassical banana-plateau fluxes are affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. The proof of the Onsager symmetry is carried out by splitting the response function up into the even and odd parts under the (t, B) → (-t,-B) transformation and using the self-adjointness of the linearized Landau collision operator and the quasilinear formalism. An explicit calculation of the symmetric transport coefficients is possible when the Krook collision model replaces the Landau collision operator. The importance of low aspect ratio tokamaks and helical systems for experimental investigations of the Onsager symmetries is emphasized

  9. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  10. Plasma particle drifts due to traveling waves with cyclotron frequencies

    International Nuclear Information System (INIS)

    Hatakeyama, Rikizo; Sato, Naoyuki; Sato, Noriyoshi

    1991-01-01

    A particle orbit theory yields that traveling waves with cyclotron frequencies give rise to charged particle drifts perpendicular both to the wave propagation and external magnetic field lines. The result is applicable to particle-flux control of magnetized plasmas. (author)

  11. Powder Particle Penetration into Steam-argon Plasma Jet and its Relation with Particle Parameters

    Czech Academy of Sciences Publication Activity Database

    Chumak, Oleksiy; Kopecký, Vladimír; Konrád, Miloš; Hrabovský, Milan; Kavka, Tetyana

    2004-01-01

    Roč. 54, suppl. C (2004), C931-C936 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21st/. Praha, 14.06.2004-17.06.2004] R&D Projects: GA AV ČR KSK2043105 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma sprazing, torch with hybrid stabilization, particle temperature Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  12. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  13. Transport equation and shock waves

    International Nuclear Information System (INIS)

    Besnard, D.

    1981-04-01

    A multi-group method is derived from a one dimensional transport equation for the slowing down and spatial transport of energetic positive ions in a plasma. This method is used to calculate the behaviour of energetic charged particles in non homogeneous and non stationary plasma, and the effect of energy deposition of the particles on the heating of the plasma. In that purpose, an equation for the density of fast ions is obtained from the Fokker-Planck equation, and a closure condition for the second moment of this equation is deduced from phenomenological considerations. This method leads to a numerical method, simple and very efficient, which doesn't require much computer storage. Two types of numerical results are obtained. First, results on the slowing down of 3.5 MeV alpha particles in a 50 keV plasma plublished by Corman and al and Moses are compared with the results obtained with both our method and a Monte Carlo type method. Good agreement was obtained, even for energy deposition on the ions of the plasma. Secondly, we have calculated propagation of alpha particles heating a cold plasma. These results are in very good agreement with those given by an accurate Monte Carlo method, for both the thermal velocity, and the energy deposition in the plasma

  14. Turbulence and transport in a magnetized argon plasma

    International Nuclear Information System (INIS)

    Pots, B.F.M.

    1979-01-01

    An experimental study on turbulence and transport in the highly ionized argon plasma of a hollow cathode discharge is described. In order to determine the plasma parameters three standard diagnostics have been used, whilst two diagnostics have been developed to study the plasma turbulence. (Auth.)

  15. Numerical Simulation and Experimental Investigation of Multi-function Micro-plasma Jet and Alumina Particle Behaviour

    Directory of Open Access Journals (Sweden)

    Liu Gu

    2016-01-01

    Full Text Available Turbulent flow in multi-function micro-plasma spray, as well as the trajectories and state-changing course of alumina particles in the plasma jet were simulated. The distribution of temperature and velocity of the plasma jet and in-flight alumina particles is discussed. Calculations show that particles are heated and accelerated sufficiently by the plasma flame due to a longer travel time than that of external injection system, therefore, possess higher temperature and velocity. Alumina particles temperature and velocity increase rapidly along the jet axis at the initial stage, but then decrease gradually. The velocity and surface temperature of in-flight alumina particles are measured by Spray Watch-2i system. The velocity and surface temperature of alumina particles measured agree well with the simulation results, confirming that the simulation model is suitable for the prediction of the turbulent flow and the particle characteristics, which also reveals the superiority of the plasma spray gun in this multi-function micro-plasma spraying system.

  16. Plasma transport near material boundaries

    International Nuclear Information System (INIS)

    Singer, C.E.

    1985-06-01

    The fluid theory of two-dimensional (2-d) plasma transport in axisymmetric devices is reviewed. The forces which produce flow across the magnetic field in a collisional plasma are described. These flows may lead to up-down asymmetries in the poloidal rotation and radial fluxes. Emphasis is placed on understanding the conditions under which the known 2-d plasma fluid equations provide a valid description of these processes. Attempts to extend the fluid treatment to less collisional, turbulent plasmas are discussed. A reduction to the 1-d fluid equations used in many computer simulations is possible when sources or boundary conditions provide a large enough radial scale length. The complete 1-d fluid equations are given in the text, and 2-d fluid equations are given in the Appendix

  17. Particle Simulation of Pulsed Plasma Thruster Plumes

    National Research Council Canada - National Science Library

    Boyd, Ian

    2002-01-01

    .... Our modeling had made progress in al aspects of simulating these complex devices including Teflon ablation, plasma formation, electro-magnetic acceleration, plume expansion, and particulate transport...

  18. Active neutral particle diagnostics for high temperature plasma

    International Nuclear Information System (INIS)

    Tobita, Kenji

    1993-01-01

    This paper describes experimental studies related to active neutral particle diagnostics in the JT-60 tokamak. Detection efficiencies of a micro-channel plate (MCP), which has widely used in plasma diagnostics, were determined for ions and neutrals. Multi-step processes for a neutral beam is predicted to enhance the beam stopping cross section in a plasma. In order to confirm the predictions, shine-through for a hydrogen and for a helium beam was measured in the JT-60 ohmic plasmas. The measurements for a hydrogen beam resulted in the cross sectional enhancement in the beam stopping. The same experiment using a helium beam indicated that the cross sectional enhancement for helium was much smaller than that for hydrogen at almost same plasma parameters. Ion temperature diagnostic using active beam scattering was developed in data processing technique, in consideration of the device function of a neutral particle analyzer and in estimation of the effect of beam ion component. Fundamental experiments for detecting helium ions in a plasma were performed using two-electron transfer reaction between a helium atomic beam and helium ions, and the energy distribution and the density of the helium ions were determined. These experiments demonstrated promise of the two-electron transfer reaction as an alpha ash detection in a burning plasma. A parasitic neutral efflux accompanied by active beam injection was investigated. (J.P.N.)

  19. Hybrid simulations of plasma transport by Kelvin-Helmholtz instability at the magnetopause: magnetic shear

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa M [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Gary, S Peter [Los Alamos National Laboratory

    2009-01-01

    Two-dimensional hybrid (kinetic ions, massless fluid electrons) simulations of the Kelvin Helmholtz Instability (KHI) for a magnetopause configuration with a magnetic shear across the boundary are carried out to examine how the transport of magnetosheath plasma into the magnetosphere is affected by the shear field. Low magnetic shear conditions where the magnetosheath magnetic field is within 30{sup o} of northward is included in the simulations because KHI is thought to be important for plasma transport only for northward or near-northward interplanetary magnetic field orientations. The simulations show that coherent vortices can grow for these near-northward angles, and that they are sometimes more coherent than for pure northward conditions because the turbulence which breaks-down these vortices is reduced when there are magnetic tension forces. With increasing magnetic shear angle, the growth rate is reduced, and the vortices do not grow to as large of size which reduces the plasma transport. By tracking the individual particle motions diffusion coefficients can be obtained for the system, where the diffusion is not classical in nature but instead has a time dependence resulting from both the increasingly large-scale vortex motion and the small-scale turbulence generated in the break-down of the instabilities. Results indicate that diffusion on the order of 10{sup 9} m{sup 2}/s could possibly be generated by KHI on the flanks of the magnetosphere.

  20. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  1. Physics of high performance deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    McGuire, K.M.; Batha, S.

    1996-11-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I i ) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I i discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed

  2. DC Glow Discharge Plasma, Containing Dust Particles: Self Organization and Peculiarities of Behavior

    International Nuclear Information System (INIS)

    Molotkov, V.I.; Pustyl'nik, M.Y.; Torchinskij, V.M.; Fortov, V.E.

    2003-01-01

    Dust particles, immersed in a plasma, acquire charge due to which they may be electrostatically trapped in a plasma. The energy of the interaction of the dust particles may be enough to transfer the dust component to nonideal and even crystalline state. This phenomenon is observed in various plasmas. In the present work a review of the investigations of strongly nonideal dusty plasma of the dc glow discharge striations is given. The formation of plasma crystals, liquids and plasma liquid crystals is considered. Typical phenomenon a for the dc discharge dusty plasma, such as coexistence of different phases in a single structure, convective motions, dust acoustic instability, are underlined. Results of the experiments on different external influences on dusty plasma structures are stated. It is shown that external influences may be used for measuring of the particle charge and field of forces acting on a dust grain levitating in a plasma. (author)

  3. Slowing of charged particles by particle methods

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-03-01

    We review some facts about particle methods for solving linear hyperbolic equations. We show how one gets an evaluation of integral quantities like: ∫ u(x,t) zeta(x,t) dxdt where u denotes the solution and zeta an arbitrary weight function. Then, we apply the method to the equation describing charged particle transport in a plasma with emphasis on the evaluation of energy deposition on ions and electrons [fr

  4. Plasma transport in mixed magnetic topologies

    International Nuclear Information System (INIS)

    Hegna, C.C.; Callen, J.D.

    1992-12-01

    A simple model is introduced to illustrate some features concerning anomalous transport associated with magnetic turbulence. For magnetic topologies that are described as bands of stochasticity separated by regions with good flux surfaces, the transport coefficients deviate significantly from those describing completely stochastic magnetic fields. It is possible to have the electron heat diffusivity exceed a runaway electron diffusion coefficient, despite the existence of widespread magnetic stochasticity. Comparing the ratios of transport coefficients is not an accurate way to determine whether anomalous plasma transport is controlled by electrostatic or electromagnetic fluctuations

  5. Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic δf particle-in-cell simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, J.; Wan, Weigang; Chen, Yang; Parker, Scott E. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States); Holland, C. [University of California at San Diego, La Jolla, California 92093 (United States); Howard, N. T. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37831 (United States)

    2014-11-15

    The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error. Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.

  6. Plasma transport studies using transient techniques

    International Nuclear Information System (INIS)

    Simonen, T.C.; Brower, D.L.; Efthimion, P.

    1991-01-01

    Selected topics from the Transient Transport sessions of the Transport Task Force Workshop, held February 19-23, 1990, in Hilton Head, South Carolina are summarized. Presentations on sawtooth propagation, ECH modulation, particle modulation, and H-mode transitions are included. The research results presented indicated a growing theoretical understanding and experimental sophistication in the application of transient techniques to transport studies. (Author)

  7. Dynamic transport study of the plasmas with transport improvement in LHD and JT-60U

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Sakamoto, R.; Tanaka, K.; Fujita, T.; Funaba, H.; Kubo, S.; Yoshinuma, M.; Shimozuma, T.; Takeiri, Y.; Ikeda, K.; Michael, C.; Tokuzawa, T.; Sakamoto, Y.; Takenaga, H.; Isayama, A.; Matsunaga, G.; Ide, S.

    2009-01-01

    Transport analysis during the transient phase of heating (a dynamic transport study) applied to the plasma with internal transport barriers (ITBs) in the Large Helical Device (LHD) heliotron and the JT-60U tokamak is described. In the dynamic transport study the time of transition from the L-mode plasma to the ITB plasma is clearly determined by the onset of flattening of the temperature profile in the core region and a spontaneous phase transition from a zero curvature ITB (hyperbolic tangent shaped ITB) or a positive curvature ITB (concaved shaped ITB) to a negative curvature ITB (convex shaped ITB) and its back-transition are observed. The flattening of the core region of the ITB transition and the back-transition between a zero curvature ITB and a convex ITB suggest the strong interaction of turbulent transport in space.

  8. Internal transport barrier in tokamak and helical plasmas

    Science.gov (United States)

    Ida, K.; Fujita, T.

    2018-03-01

    The differences and similarities between the internal transport barriers (ITBs) of tokamak and helical plasmas are reviewed. By comparing the characteristics of the ITBs in tokamak and helical plasmas, the mechanisms of the physics for the formation and dynamics of the ITB are clarified. The ITB is defined as the appearance of discontinuity of temperature, flow velocity, or density gradient in the radius. From the radial profiles of temperature, flow velocity, and density the ITB is characterized by the three parameters of normalized temperature gradient, R/{L}T, the location, {ρ }{ITB}, and the width, W/a, and can be expressed by ‘weak’ ITB (small R/{L}T) or ‘strong’ (large R/{L}T), ‘small’ ITB (small {ρ }{ITB}) or ‘large’ ITB (large {ρ }{ITB}), and ‘narrow’ (small W/a) or ‘wide’ (large W/a). Three key physics elements for the ITB formation, radial electric field shear, magnetic shear, and rational surface (and/or magnetic island) are described. The characteristics of electron and ion heat transport and electron and impurity transport are reviewed. There are significant differences in ion heat transport and electron heat transport. The dynamics of ITB formation and termination is also discussed. The emergence of the location of the ITB is sometimes far inside the ITB foot in the steady-state phase and the ITB region shows radial propagation during the formation of the ITB. The non-diffusive terms in momentum transport and impurity transport become more dominant in the plasma with the ITB. The reversal of the sign of non-diffusive terms in momentum transport and impurity transport associated with the formation of the ITB reported in helical plasma is described. Non-local transport plays an important role in determining the radial profile of temperature and density. The spontaneous change in temperature curvature (second radial derivative of temperature) in the ITB region is described. In addition, the key parameters of the control of the

  9. On the Langevin approach to particle transport

    International Nuclear Information System (INIS)

    Bringuier, Eric

    2006-01-01

    In the Langevin description of Brownian motion, the action of the surrounding medium upon the Brownian particle is split up into a systematic friction force of Stokes type and a randomly fluctuating force, alternatively termed noise. That simple description accounts for several basic features of particle transport in a medium, making it attractive to teach at the undergraduate level, but its range of applicability is limited. The limitation is illustrated here by showing that the Langevin description fails to account realistically for the transport of a charged particle in a medium under crossed electric and magnetic fields and the ensuing Hall effect. That particular failure is rooted in the concept of the friction force rather than in the accompanying random force. It is then shown that the framework of kinetic theory offers a better account of the Hall effect. It is concluded that the Langevin description is nothing but an extension of Drude's transport model subsuming diffusion, and so it inherits basic limitations from that model. This paper thus describes the interrelationship of the Langevin approach, the Drude model and kinetic theory, in a specific transport problem of physical interest

  10. Turbulent transport of large particles in the atmospheric boundary layer

    Science.gov (United States)

    Richter, D. H.; Chamecki, M.

    2017-12-01

    To describe the transport of heavy dust particles in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission processes with the larger-scale atmospheric motions. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large dust particles (larger than 10 micron in diameter) can be accurately described in a simplified Eulerian framework. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow, and consequences of overestimating surface fluxes via traditional parameterizations will be demonstrated.

  11. Characterization of intermittency of impurity turbulent transport in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.

    2008-01-01

    The statistical properties of impurity transport of a tokamak edge plasma embedded in a dissipative drift-wave turbulence are investigated using structure function analysis. The impurities are considered as a passive scalar advected by the plasma flow. Two cases of impurity advection are studied and compared: A decaying impurities case (given by a diffusion-advection equation) and a driven case (forced by a mean scalar gradient). The use of extended self-similarity enables us to show that the relative scaling exponent of structure functions of impurity density and vorticity exhibit similar multifractal scaling in the decaying case and follows the She-Leveque model. However, this property is invalidated for the impurity driven advection case. For both cases, potential fluctuations are self-similar and exhibit a monofractal scaling in agreement with Kolmogorov-Kraichnan theory for two-dimensional turbulence. These results obtained with a passive scalar model agree also with test-particle simulations.

  12. Regular and stochastic particle motion in plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1979-08-01

    A Hamiltonian formalism is presented for the study of charged-particle trajectories in the self-consistent field of the particles. The intention is to develop a general approach to plasma dynamics. Transformations of phase-space variables are used to separate out the regular, adiabatic motion from the irregular, stochastic trajectories. Several new techniques are included in this presentation

  13. Transport analysis of high radiation and high density plasmas in the ASDEX Upgrade tokamak

    Directory of Open Access Journals (Sweden)

    Casali L.

    2014-01-01

    Full Text Available Future fusion reactors, foreseen in the “European road map” such as DEMO, will operate under more demanding conditions compared to present devices. They will require high divertor and core radiation by impurity seeding to reduce heat loads on divertor target plates. In addition, DEMO will have to work at high core densities to reach adequate fusion performance. The performance of fusion reactors depends on three essential parameters: temperature, density and energy confinement time. The latter characterizes the loss rate due to both radiation and transport processes. The DEMO foreseen scenarios described above were not investigated so far, but are now addressed at the ASDEX Upgrade tokamak. In this work we present the transport analysis of such scenarios. Plasma with high radiation by impurity seeding: transport analysis taking into account the radiation distribution shows no change in transport during impurity seeding. The observed confinement improvement is an effect of higher pedestal temperatures which extend to the core via stiffness. A non coronal radiation model was developed and compared to the bolometric measurements in order to provide a reliable radiation profile for transport calculations. High density plasmas with pellets: the analysis of kinetic profiles reveals a transient phase at the start of the pellet fuelling due to a slower density build up compared to the temperature decrease. The low particle diffusion can explain the confinement behaviour.

  14. Dynamics of a Brownian particle in a plasma in the long-time limit

    International Nuclear Information System (INIS)

    Dickman, R.; Varley, R.L.

    1981-01-01

    The velocity autocorrelation function (VAF) of a Brownian particle in a plasma is calculated in the long-time limit. The Brownian particle VAF exhibits the same qualitative behavior as the electron VAF in a one-component plasma: oscillations at the plasma frequency and decay approx. t -3 sup(/) 2 . (orig.)

  15. Nonlinear particle-wave kinetics in weakly unstable plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Pekker, M.S.

    1996-01-01

    With the motivation to address the behavior of the fusion produced alpha particles in a thermonuclear reactor, a theory is developed for predicting the wave saturation levels and particle transport in weakly unstable systems with a discrete number of modes in the presence of energetic particle sources and sinks. Conditions are established for either steady state or bursting nonlinear scenarios when several modes are excited for cases where there is and there is not resonance overlap. Depending on parameters, the particles can undergo benign relaxation, with only a small fraction of the available free energy released to waves and with no global transport, or the particles can experience rapid global transport caused by a substantial conversion of their free energy into wave energy. When the resonance condition of the particle-wave interaction is varied adiabatically, the particles trapped in a wave are found to form phase space holes or clumps that enhance the particle-wave energy exchange. This mechanism, which has been experimentally observed when there is frequency chirping, causes increased saturation levels of instabilities. If resonance sweeping is imposed externally, the particle free energy can even be tapped in stable systems where background dissipation suppresses linear instability. Externally applied resonance sweeping can be important for alpha particle energy channeling, as well as for understanding fishbone and some Alfven wave instability experiments. Near instability threshold, that is when the destabilizing drive just exceeds the background dissipation, a more sophisticated analysis is developed to predict the correct saturation. To leading order, this problem reduces to an integral equation for the wave amplitude with a temporally non local cubic term. This equation has a self-similar solution that blows-up in a finite time

  16. Modelling the turbulent transport of angular momentum in tokamak plasmas - A quasi-linear gyrokinetic approach

    International Nuclear Information System (INIS)

    Cottier, Pierre

    2013-01-01

    The magnetic confinement in tokamaks is for now the most advanced way towards energy production by nuclear fusion. Both theoretical and experimental studies showed that rotation generation can increase its performance by reducing the turbulent transport in tokamak plasmas. The rotation influence on the heat and particle fluxes is studied along with the angular momentum transport with the quasi-linear gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is modified in order to take the plasma rotation into account and compute the angular momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the angular momentum flux including the E*B shear induced residual stress as well as the influence of rotation on the heat and particle fluxes. The major approximations of QuaLiKiz formalisms are reviewed, in particular the ballooning representation at its lowest order and the eigenfunctions calculated in the hydrodynamic limit. The construction of the quasi-linear fluxes is also reviewed in details and the quasi-linear angular momentum flux is derived. The different contributions to the turbulent momentum flux are studied and successfully compared both against non-linear gyro-kinetic simulations and experimental data. (author) [fr

  17. Dynamical interplay between fluctuations, electric fields and transport in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Goncalves, B.

    2003-01-01

    A view of recent experimental results and progress in the characterization of the statistical properties of electrostatic turbulence in magnetically confined devices is given. An empirical similarity in the scaling properties of the probability distribution function (PDF) of turbulent transport has been observed in the plasma edge region in fusion plasmas. The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shows that these parameters are strongly coupled both in tokamak and stellarator plasmas. The bursty behaviour of turbulent transport is linked with a departure from the most probable radial gradient. The dynamical relation between fluctuations in gradients and transport is strongly affected by the presence of sheared poloidal flows which organized themselves near marginal stability. These results emphasize the importance of the statistical description of transport processes in fusion plasmas as an alternative approach to the traditional way to characterize transport based on the computation of effective transport coefficients. (author)

  18. Convective and diffusive effects on particle transport in asymmetric periodic capillaries.

    Directory of Open Access Journals (Sweden)

    Nazmul Islam

    Full Text Available We present here results of a theoretical investigation of particle transport in longitudinally asymmetric but axially symmetric capillaries, allowing for the influence of both diffusion and convection. In this study we have focused attention primarily on characterizing the influence of tube geometry and applied hydraulic pressure on the magnitude, direction and rate of transport of particles in axi-symmetric, saw-tooth shaped tubes. Three initial value problems are considered. The first involves the evolution of a fixed number of particles initially confined to a central wave-section. The second involves the evolution of the same initial state but including an ongoing production of particles in the central wave-section. The third involves the evolution of particles a fully laden tube. Based on a physical model of convective-diffusive transport, assuming an underlying oscillatory fluid velocity field that is unaffected by the presence of the particles, we find that transport rates and even net transport directions depend critically on the design specifics, such as tube geometry, flow rate, initial particle configuration and whether or not particles are continuously introduced. The second transient scenario is qualitatively independent of the details of how particles are generated. In the third scenario there is no net transport. As the study is fundamental in nature, our findings could engender greater understanding of practical systems.

  19. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie

    2010-12-10

    prominent role in stellarators than in tokamaks. In the final chapter of this thesis, analytical expressions for the particle and heat fluxes in an impure, collisional plasma are derived from first principles. Contrary to the tokamak case, where collisional transport is exclusively caused directly by friction, in stellarators an additional source of transport exists, namely anisotropy between the pressures parallel and perpendicular to the magnetic field. Whereas this anisotropy term does not contribute much to the overall fluxes at high collisionality since it is then considerably smaller than the friction contributions, it is nonetheless important since it is not ambipolar and therefore of relevance to the ambipolar electric field. Based on these results, the behaviour of heavy impurity ions under the influence of strong radial temperature and density gradients of the background plasma is studied. It is shown that a redistribution of the impurity ions within each magnetic flux surface arises. The effect of 3D geometry is studied. Since the resulting partial differential equations are too complicated for an analytical treatment, different limits are considered analytically and the full equation is solved numerically. The redistribution is driven by parallel friction and qualitatively influenced by the radial temperature gradient of the background plasma and the spatially varying E x B rotation due to the radial electric potential. The resulting impurity density patterns on the flux surface are sensitive to the exact geometry of the device and can be determined with the help of numerical databases of the magnetic configurations of different experiments. (orig.)

  20. Kinetic stability constraints on magnetized plasma equilibria: Quasi-particle approach

    International Nuclear Information System (INIS)

    Sosenko, P.; Weiland, J.

    1996-01-01

    Macroscopic adiabatic invariants for the magnetized plasma are studied within the context of the quasi-particle description, as well as constraints which they impose on energy transfer and stable plasma equilibria. 6 refs

  1. Electron heat transport analysis of low-collisionality plasmas in the neoclassical-transport-optimized configuration of LHD

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Wakasa, Arimitsu

    2002-01-01

    Electron heat transport in low-collisionality LHD plasma is investigated in order to study the neoclassical transport optimization effect on thermal plasma transport with an optimization level typical of so-called ''advanced stellarators''. In the central region, a higher electron temperature is obtained in the optimized configuration, and transport analysis suggests the considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. The obtained experimental results support future reactor design in which the neoclassical and/or anomalous transports are reduced by magnetic field optimization in a non-axisymmetric configuration. (author)

  2. Role of stochastic fluctuations in the charge on macroscopic particles in dusty plasmas

    International Nuclear Information System (INIS)

    Vaulina, O.S.; Nefedov, A.P.; Petrov, O.F.; Khrapak, S.A.

    1999-01-01

    The currents which charge a macroscopic particle placed in a plasma consist of discrete charges; hence, the charge can undergo random fluctuations about its equilibrium value. These random fluctuations can be described by a simple model which, if the mechanisms for charging of macroscopic particles are known, makes it possible to determine the dependence of the temporal and amplitude characteristics of the fluctuations on the plasma parameters. This model can be used to study the effect of charge fluctuations on the dynamics of the macroscopic particles. The case of so-called plasma-dust crystals (i.e., highly ordered structures which develop because of strong interactions among macroscopic particles) in laboratory gaseous discharge plasmas is considered as an example. The molecular dynamics method shows that, under certain conditions, random fluctuations in the charge can effectively heat a system of macroscopic particles, thereby impeding the ordering process

  3. Transport with three-particle interaction

    International Nuclear Information System (INIS)

    Morawetz, K.

    2000-01-01

    Starting from a point - like two - and three - particle interaction the kinetic equation is derived. While the drift term of the kinetic equation turns out to be determined by the known Skyrme mean field the collision integral appears in two - and three - particle parts. The cross section results from the same microscopic footing and is naturally density dependent due to the three - particle force. By this way no hybrid model for drift and cross section is needed for nuclear transport. The resulting equation of state has besides the mean field correlation energy also a two - and three - particle correlation energy which both are calculated analytically for the ground state. These energies contribute to the equation of state and lead to an occurrence of a maximum at 3 times nuclear density in the total energy. (author)

  4. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  5. photon-plasma: A modern high-order particle-in-cell code

    International Nuclear Information System (INIS)

    Haugbølle, Troels; Frederiksen, Jacob Trier; Nordlund, Åke

    2013-01-01

    We present the photon-plasma code, a modern high order charge conserving particle-in-cell code for simulating relativistic plasmas. The code is using a high order implicit field solver and a novel high order charge conserving interpolation scheme for particle-to-cell interpolation and charge deposition. It includes powerful diagnostics tools with on-the-fly particle tracking, synthetic spectra integration, 2D volume slicing, and a new method to correctly account for radiative cooling in the simulations. A robust technique for imposing (time-dependent) particle and field fluxes on the boundaries is also presented. Using a hybrid OpenMP and MPI approach, the code scales efficiently from 8 to more than 250.000 cores with almost linear weak scaling on a range of architectures. The code is tested with the classical benchmarks particle heating, cold beam instability, and two-stream instability. We also present particle-in-cell simulations of the Kelvin-Helmholtz instability, and new results on radiative collisionless shocks

  6. Source effects on impurity and heat transport in a tokamak

    International Nuclear Information System (INIS)

    Bennett, R.B.

    1980-12-01

    A recently developed generalization of neoclassical theory is extended here to study heat flux contributions to impurity transport, as well as the heat fluxes themselves. The theory accounts for the first four source moments, with external drags, which has been studied previously with either fewer moments or restricted to a collisional plasma. Conditions are established for which a momentum source may be used to modify the particle and heat transport. In the course of this work, the particle and heat transport is evaluated for a two species plasma with arbitrary plasma geometry, beta, and collisionality

  7. PLASMA ENERGETIC PARTICLES SIMULATION CENTER (PEPSC)

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Herbert L.

    2014-05-23

    The main effort of the Texas group was to develop theoretical and simplified numerical models to understand chirping phenomena often seen for Alfven and geodesic acoustic waves in experimental plasmas such as D-III-D, NSTX and JET. Its main numerical effort was to modify the AEGIS code, which was originally developed as an eigenvalue solver. To apply to the chirping problem this code has to be able to treat the linear response to the continuum and the response of the plasma to external drive or to an internal drive that comes from the formation of phase space chirping structures. The theoretical underpinning of this investigation still needed to be more fully developed to understand how to best formulate the theoretical problem. Considerable progress was made on this front by B.N. Breizman and his collaborators and a new reduced model was developed by H. L. Berk and his PhD student, G. Wang which can be uses as simplified model to describe chirping in a large aspect ratio tokamak. This final report will concentrate on these two directions that were developed as well as results that were found in the work with the AEGIS code and in the progress in developing a novel quasi-linear formulation for a description of Alfvenic modes destabilized by energetic particles, such as alpha particles in a burning plasma.

  8. Classical dissipation and transport in plasmas

    International Nuclear Information System (INIS)

    Hinton, F.L.

    1989-01-01

    This paper reviews the subject of classical and neoclassical transport. The paper is organized into four main parts, dealing with plasma kinetic theory, classical transport, neoclassical transport, and the present state of the subject. The results of the neoclassical theory of transport are still being used to give the lower limit on the transport rates in tokamaks, which would apply if instabilities and turbulence could be suppressed. So far, only the ion thermal conductivity and the current density have been found experimentally to agree with this theory, and only under special conditions. The electron thermal conductivity has been found experimentally to be much larger than the neoclassical prediction

  9. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry. Part 2: Investigation of MO+ ions, effect of sample morphology, transport gas, and binding agents

    International Nuclear Information System (INIS)

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-01-01

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO + ions also yield signal spikes, but these MO + spikes generally occur at different times from their atomic ion counterparts.

  10. A collision model in plasma particle simulations

    International Nuclear Information System (INIS)

    Ma Yanyun; Chang Wenwei; Yin Yan; Yue Zongwu; Cao Lihua; Liu Daqing

    2000-01-01

    In order to offset the collisional effects reduced by using finite-size particles, β particle clouds are used in particle simulation codes (β is the ratio of charge or mass of modeling particles to real ones). The method of impulse approximation (strait line orbit approximation) is used to analyze the scattering cross section of β particle clouds plasmas. The authors can obtain the relation of the value of a and β and scattering cross section (a is the radius of β particle cloud). By using this relation the authors can determine the value of a and β so that the collisional effects of the modeling system is correspondent with the real one. The authors can also adjust the values of a and β so that the authors can enhance or reduce the collisional effects fictitiously. The results of simulation are in good agreement with the theoretical ones

  11. Micrometer sized dust particles in a fr plasma under varying gravity conditions

    NARCIS (Netherlands)

    Beckers, J.; Stoffels, W.W.; Kroesen, G.M.W.; Ockenga, T.; Wolter, M.; Kersten, H.

    2009-01-01

    For diagnostic purposes micrometer-sized particles can be used as floating electrostatic probes. Once injected into a complex rf plasma, these particles will become negatively charged and can be trapped in the plasma sheath due to an equilibrium of several forces working on them, e.g. the

  12. Development of plasma diagnostics technologies - Measurement of transport= parameters in tokamak edge plasma by using electric transport probes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyu Sun; Chang, Do Hee; Sim, Yeon Gun; Kim, Jin Hee [Hanyang University, Seoul (Korea, Republic of)

    1995-08-01

    Electric transport probe system is developed for the measurement of electron temperature, floating potential, plasma density and flow velocity of= edge plasmas in the KT-2 medium size tokamak. Experiments have been performed in KT-1 small size tokamak. Electric transport probe is composed of a single probe(SP) and a Mach probe (MP). SP is used for the measurements of electron density, floating potential, and plasma density and measured values are {approx} 3*10{sup 11}/cm{sup -3}, -20 volts, 15 {approx} 25 eV. For the most discharges, respectively. MP is for the measurements of toroidal(M{sub T}) and poloidal(M{sub P}) flow velocities, and density, which are M{sub T} {approx_equal} .0.85, M{sub P} {approx_equal}. 0.17, n. {approx_equal} 2.1*10{sup 11} cm{sup -3}, respectively. A triple probe is also developed for the direct reading of T{sub e} and n{sub e}, and is used for DC, RF, and RF+DC plasma in APL of Hanyang university. 38 refs., 36 figs. (author)

  13. A plasma membrane zinc transporter from ¤Medicago truncatula¤ is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization

    DEFF Research Database (Denmark)

    Burleigh, S.H.; Kristensen, B.K.; Bechmann, I.E.

    2003-01-01

    of yeast implying that the protein encoded by this gene can transport Zn across the yeast's plasma membrane. The product of a MtZIP2-GFP fusion construct introduced into onion cells by particle bombardment likewise localized to the plasma membrane. The MtZIP2 gene was expressed in roots and stems...

  14. Vlasov equation for photons and quasi-particles in a plasma

    International Nuclear Information System (INIS)

    Mendonca, J.T.

    2014-01-01

    We show that, in quite general conditions, a Vlasov equation can be derived for photons in a medium. The same is true for other quasi-particles, such as plasmons, phonons or driftons, associated with other wave modes in a plasma. The range of validity of this equation is discussed. We also discuss the Landau resonance, and its relation with photon acceleration. Exact and approximate expressions for photon and quasi-particle Landau damping are stated. Photon and quasi-particle acceleration and trapping is also discussed. Specific applications to laser-plasma interaction, and to magnetic fusion turbulence, are considered as illustrations of the general approach. (author)

  15. Light-induced modification of plant plasma membrane ion transport.

    Science.gov (United States)

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  16. Self-generated magnetic fields and energy transport by ultra-intense laser-plasma interaction

    International Nuclear Information System (INIS)

    Abudurexiti, A.; Tuniyazi, P.; Wang Qian

    2011-01-01

    The electromagnetic instability (Weibel instability) and its mechanism in ultra-intense laser-plasma interactions are studied by using three-dimensional particle-in-cell simulations. The transport of energy in electron thermal conduction is analyzed by the Spitzer-Harm theory, and the election's vertical pyrogenation phenomenon that resulted from anisotropic heating of laser is observed. The results indicate that the strong magnetic field excited by Weibel instability makes the electron beam deposit its energy within a very short distance, and it restrains the electron thermal flux formed when the laser ponderomotive force bursts through the electron. With the increase of the self-generated magnetic field, the electron will be seized by the wave of magnetic field, and the transport of heat will be restricted. (authors)

  17. Slowing down of alpha particles in ICF DT plasmas

    Science.gov (United States)

    He, Bin; Wang, Zhi-Gang; Wang, Jian-Guo

    2018-01-01

    With the effects of the projectile recoil and plasma polarization considered, the slowing down of 3.54 MeV alpha particles is studied in inertial confinement fusion DT plasmas within the plasma density range from 1024 to 1026 cm-3 and the temperature range from 100 eV to 200 keV. It includes the rate of the energy change and range of the projectile, and the partition fraction of its energy deposition to the deuteron and triton. The comparison with other models is made and the reason for their difference is explored. It is found that the plasmas will not be heated by the alpha particle in its slowing down the process once the projectile energy becomes close to or less than the temperature of the electron or the deuteron and triton in the plasmas. This leads to less energy deposition to the deuteron and triton than that if the recoil of the projectile is neglected when the temperature is close to or higher than 100 keV. Our model is found to be able to provide relevant, reliable data in the large range of the density and temperature mentioned above, even if the density is around 1026 cm-3 while the deuteron and triton temperature is below 500 eV. Meanwhile, the two important models [Phys. Rev. 126, 1 (1962) and Phys. Rev. E 86, 016406 (2012)] are found not to work in this case. Some unreliable data are found in the last model, which include the range of alpha particles and the electron-ion energy partition fraction when the electron is much hotter than the deuteron and triton in the plasmas.

  18. Physics of plasma-wall interactions in controlled fusion

    International Nuclear Information System (INIS)

    Post, D.E.; Behrisch, R.

    1984-01-01

    In the areas of plasma physics, atomic physics, surface physics, bulk material properties and fusion experiments and theory, the following topics are presented: the plasma sheath; plasma flow in the sheath and presheath of a scrape-off layer; probes for plasma edge diagnostics in magnetic confinement fusion devices; atomic and molecular collisions in the plasma boundary; physical sputtering of solids at ion bombardment; chemical sputtering and radiation enhanced sublimation of carbon; ion backscattering from solid surfaces; implantation, retention and release of hydrogen isotopes; surface erosion by electrical arcs; electron emission from solid surfaces;l properties of materials; plasma transport near material boundaries; plasma models for impurity control experiments; neutral particle transport; particle confinement and control in existing tokamaks; limiters and divertor plates; advanced limiters; divertor tokamak experiments; plasma wall interactions in heated plasmas; plasma-wall interactions in tandem mirror machines; and impurity control systems for reactor experiments

  19. Control of internal transport barriers on Alcator C-Mod

    International Nuclear Information System (INIS)

    Fiore, C.L.; Bonoli, P.T.; Ernst, D.R.; Hubbard, A.E.; Greenwald, M.J.; Lynn, A.; Marmar, E.S.; Phillips, P.; Redi, M.H.; Rice, J.E.; Wolfe, S.M.; Wukitch, S.J.; Zhurovich, K.

    2004-01-01

    Recent studies of internal transport and double transport barrier regimes in the Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] have explored the limits for forming, maintaining, and controlling these plasmas. The C-Mod provides a unique platform for studying such discharges: the ions and electrons are tightly coupled by collisions and the plasma has no internal particle or momentum sources. The double-barrier mode comprised of an edge barrier with an internal transport barrier (ITB) can be induced at will using off-axis ion cyclotron range of frequency (ICRF) injection on either the low or high field side of the plasma with either of the available ICRF frequencies (70 or 80 MHz). When an enhanced D α high confinement mode (EDA H-mode) is accessed in Ohmic plasmas, the double barrier ITB forms spontaneously if the H-mode is sustained for ∼2 energy confinement times. The ITBs formed in both Ohmic and ICRF heated plasmas are quite similar regardless of the trigger method. They are characterized by strong central peaking of the electron density, and a reduction of the core particle and energy transport. The control of impurity influx and heating of the core plasma in the presence of the ITB have been achieved with the addition of central ICRF power in both the Ohmic H-mode and ICRF induced ITBs. The radial location of the particle transport barrier is dependent on the toroidal magnetic field but not on the location of the ICRF resonance. A narrow region of decreased electron thermal transport, as determined by sawtooth heat pulse analysis, is found in these plasmas as well. Transport analysis indicates that a reduction of the particle diffusivity in the barrier region allows the neoclassical pinch to drive the density and impurity accumulation in the plasma center. An examination of the gyrokinetic stability at the trigger time for the ITB suggests that the density and temperature profiles are inherently stable to ion temperature gradient and

  20. Charged particle acceleration with plasmas

    International Nuclear Information System (INIS)

    Bravo O, A.

    1989-01-01

    Under certain conditions it is possible to create spatial charge waves (OCE) in a plasma (ionized gas) through some disturbance mechanism, the phenomenon produces electric fields of high intensity that are propagated at velocities near to a c. When charged particles are connected to such OCE they may be accelerated to very high energies in short distances. At present electric fields of approximately 10 7 V/cm have been observed. (Author). 4 refs

  1. New particle accelerations by magnetized plasma shock waves

    International Nuclear Information System (INIS)

    Takeuchi, Satoshi

    2005-01-01

    Three mechanisms concerning particle accelerations are proposed to account for the high energy of cosmic rays. A model of magnetized plasma clouds is used to simulate a shock-type wave. The attainable energies of test particles colliding with the moving magnetic clouds are investigated by analytical and numerical methods for the three mechanisms. The magnetic trapping acceleration is a new type of particle trapping and acceleration in which, in principle, the test particle is accelerated indefinitely; hence, this mechanism surpasses the Fermi-type acceleration. In the single-step acceleration, the test particle obtains a significant energy gain even though it only experiences a single collision. Lastly, there is the bouncing acceleration by which the test particle is substantially accelerated due to repeated collisions

  2. The measurement of single particle temperature in plasma sprays

    International Nuclear Information System (INIS)

    Fincke, J.R.; Swank, W.D.; Bolsaitis, P.P.; Elliott, J.F.

    1990-01-01

    A measurement technique for simultaneously obtaining the size, velocity, temperature, and relative number density of particles entrained in high temperature flow fields is described. In determining the particle temperature from a two-color pyrometery technique, assumptions about the relative spectral emissivity of the particle are required. For situations in which the particle surface undergoes chemical reactions the assumption of grey body behavior is shown to introduce large Temperature measurement uncertainties. Results from isolated, laser heated, single particle measurements and in-flight data from the plasma spraying of WC-Co are presented. 10 refs., 5 figs

  3. Particle Acceleration and Fractional Transport in Turbulent Reconnection

    Science.gov (United States)

    Isliker, Heinz; Pisokas, Theophilos; Vlahos, Loukas; Anastasiadis, Anastasios

    2017-11-01

    We consider a large-scale environment of turbulent reconnection that is fragmented into a number of randomly distributed unstable current sheets (UCSs), and we statistically analyze the acceleration of particles within this environment. We address two important cases of acceleration mechanisms when particles interact with the UCS: (a) electric field acceleration and (b) acceleration by reflection at contracting islands. Electrons and ions are accelerated very efficiently, attaining an energy distribution of power-law shape with an index 1-2, depending on the acceleration mechanism. The transport coefficients in energy space are estimated from test-particle simulation data, and we show that the classical Fokker-Planck (FP) equation fails to reproduce the simulation results when the transport coefficients are inserted into it and it is solved numerically. The cause for this failure is that the particles perform Levy flights in energy space, while the distributions of the energy increments exhibit power-law tails. We then use the fractional transport equation (FTE) derived by Isliker et al., whose parameters and the order of the fractional derivatives are inferred from the simulation data, and solving the FTE numerically, we show that the FTE successfully reproduces the kinetic energy distribution of the test particles. We discuss in detail the analysis of the simulation data and the criteria that allow one to judge the appropriateness of either an FTE or a classical FP equation as a transport model.

  4. Particle Acceleration and Fractional Transport in Turbulent Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Isliker, Heinz; Pisokas, Theophilos; Vlahos, Loukas [Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece)

    2017-11-01

    We consider a large-scale environment of turbulent reconnection that is fragmented into a number of randomly distributed unstable current sheets (UCSs), and we statistically analyze the acceleration of particles within this environment. We address two important cases of acceleration mechanisms when particles interact with the UCS: (a) electric field acceleration and (b) acceleration by reflection at contracting islands. Electrons and ions are accelerated very efficiently, attaining an energy distribution of power-law shape with an index 1–2, depending on the acceleration mechanism. The transport coefficients in energy space are estimated from test-particle simulation data, and we show that the classical Fokker–Planck (FP) equation fails to reproduce the simulation results when the transport coefficients are inserted into it and it is solved numerically. The cause for this failure is that the particles perform Levy flights in energy space, while the distributions of the energy increments exhibit power-law tails. We then use the fractional transport equation (FTE) derived by Isliker et al., whose parameters and the order of the fractional derivatives are inferred from the simulation data, and solving the FTE numerically, we show that the FTE successfully reproduces the kinetic energy distribution of the test particles. We discuss in detail the analysis of the simulation data and the criteria that allow one to judge the appropriateness of either an FTE or a classical FP equation as a transport model.

  5. Measurement of the local particle diffusion coefficient in a magnetized plasma

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Levinton, F.M.

    1987-02-01

    Local impurity particle diffusion coefficients have been measured in a low temperature plasma by the injection of test particles at the center of the plasma. The injection is accomplished by a high voltage discharge between two small graphite electrodes on a probe. The probe can be located anywhere in the plasma. The diffusion is observed spectroscopically. An analysis of the spatial and temporal evolution of the CII radiation from the carbon discharge can determine the parallel and perpendicular diffusion of the impurity ions. Results with the diagnostic have been obtained in the Proto S-1/C spheromak. The measured value of the diffusion coefficient in the afterglow plasma is in good agreement with classical predictions

  6. Particle formation and its control in dual frequency plasma etching reactors

    International Nuclear Information System (INIS)

    Kim, Munsu; Cheong, Hee-Woon; Whang, Ki-Woong

    2015-01-01

    The behavior of a particle cloud in plasma etching reactors at the moment when radio frequency (RF) power changes, that is, turning off and transition steps, was observed using the laser-light-scattering method. Two types of reactors, dual-frequency capacitively coupled plasma (CCP) and the hybrid CCP/inductively coupled plasma (ICP), were set up for experiments. In the hybrid CCP/ICP reactor (hereafter ICP reactor), the position and shape of the cloud were strongly dependent on the RF frequency. The particle cloud becomes larger and approaches the electrode as the RF frequency increases. By turning the lower frequency power off later with a small delay time, the particle cloud is made to move away from the electrode. Maintaining lower frequency RF power only was also helpful to reduce the particle cloud size during this transition step. In the ICP reactor, a sufficient bias power is necessary to make a particle trap appear. A similar particle cloud to that in the CCP reactor was observed around the sheath region of the lower electrode. The authors can also use the low-frequency effect to move the particle cloud away from the substrate holder if two or more bias powers are applied to the substrate holder. The dependence of the particle behavior on the RF frequencies suggests that choosing the proper frequency at the right moment during RF power changes can reduce particle contamination effectively

  7. Relevance of plasma science to particle accelerators

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1998-01-01

    In following the theme of this Symposium, ''Plasma Science and Its Applications,'' the authors may be suggesting to some readers that the other applications of Plasma Science somehow justify the existence of a field traditionally devoted to fusion energy. In fact, they do not believe that plasma science can or should be justified for its spin-off contributions. Nevertheless, the unity of science would be seriously threatened by a precipitous decline in the support for plasma science. It is that unity which repeatedly has been verified as one looks for how advances in one field are crucial to several other seemingly fundamentally different fields. Thus it is in this case, as a representative of the community of Particle Accelerator Scientists, that they show four significant areas in which the methods and the results of plasma science have been applied to Accelerator Science. They have deliberately skipped plasma ion sources which are perhaps the most obvious application of plasmas to accelerators. Two of their four examples are cases in which the computational methods of plasma science have been adopted, and two are examples in which the plasmas themselves are employed. One of each category are now actively in use and the other one in each category is being used to develop or design new devices

  8. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  9. Plasma boundary experiments on DIII-D tokamak

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Brooks, N.; Jackson, G.L.; Langhorn, A.; Leikind, B.; Lippmann, S.; Luxon, J.; Petersen, P.; Petrie, P.; Stambaugh, R.D.; Simonen, T.C.; Staebler, G.; Buchenauer, D.; Futch, A.; Hill, D.N.; Rensink, M.; Hogan, J.; Menon, M.; Mioduszewski, P.K.; Owen, L.; Matthews, G.

    1990-01-01

    A survey of the boundary physics research on the DIII-D tokamak and an outline of the DIII-D Advanced Divertor Program (ADP) is presented. We will present results of experiments on impurity control, impurity transport, neutral particle transport, and particle effects on core confinement over a wide range of plasma parameters, I p T < or approx.10.7%, P(auxiliary)< or approx.20 MW. Based on the understanding gained in these studies, we in collaboration with a number of other laboratories have devised a series of experiments (ADP) to modify the core plasma conditions through changes in the edge electric field, neutral recycling, and plasma-surface interactions. (orig.)

  10. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  11. From dressed particle to dressed mode in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Sanae-I. [Kyushu Univ., Research Inst. for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-05-01

    A theoretical method to analyze the strong turbulence in far-nonequilibrium plasma is discussed. In this approach, a test mode is treated being dressed with interactions with other modes. Nonlinear dispersion relation of the dressed mode and statistical treatment of turbulence is briefly explained. Analogue to the method of dressed particle, which has given Balescu-Lenard collision operator for inter-particle collisions, is mentioned. (author)

  12. The role of alpha particles in magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Lisak, M.; Wilhelmsson, H.

    1986-01-01

    Recent progress in the confinement of hot plasmas in magnetic fusion experiments throughout the world has intensified interest and research in the physics of D-T burning plasmas especially in the wide range of unresolved theoretical as well as experimental questions associated with the role of alpha particles in such devices. In order to review the state-of-the- art in this field, and to identify new issues and problems for further research, the Symposium on the Role of Alpha Particles in Magnetically Confined Fusion Plasmas was held from 24 to 26 June 1986 at Aspenaesgaarden near Goeteborg, Sweden. About 25 leading experts from nine countries attended the Symposium and gave invited talks. The major part of the programme was devoted to alpha-particle effects in tokamaks but some aspects of open systems were also discussed. The possibilities of obtaining ignition in JET and TFTR as well as physics issues for the compact ignition experiments were considered in particular. A special session was devoted to the diagnostics of alpha particles and other fusion products. In this report are summarised some of the highlights of the symposium. (authors)

  13. Relativistic acceleration of captured particles by a longitudinal wave in a slightly inhomogeneous plasma

    International Nuclear Information System (INIS)

    Erokhin, N.S.; Zol'nikova, N.N.; Mikhajlovskaya, L.A.

    1991-01-01

    Relativistic acceleration of charged particles, captured by a longitudinal wave in a slightly inhomogeneous plasma without an external magnetic field is considered numerically and analytically. It is shown that with the growth of the plasma inhomogeneity parameter the maximum energy of accelerated captured particles exponentially increases. Attention is paid to the possibility of 'eternal' confinement and, respectively, unlimited acceleration of captured particles by an undamped longitudinal wave in a plasma without a magnetic field

  14. Transport of Particle Swarms Through Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which

  15. Anomalous particle pinch for collisionless plasma

    International Nuclear Information System (INIS)

    Terry, P.W.

    1989-01-01

    The particle transport arising from the convection of nonadiabatic electron density by ion temperature gradient driven turbulence is examined when trapped electrons collide less often than a bounce period. In the lower temperature end of this regime, trapped electrons are collisional and the particle flux is outward (in the direction of the gradients). When the trapped electrons are collisionless, there is a temperature threshold above which the electron temperature gradient driven particle flux changes sign and becomes inward. The magnitude of the nonadiabatic electron contribution to the growth rate is found to be potentially of the same order as the ion contribution. 11 refs

  16. Joint proposal for US/USSR on nonlinear dynamics and plasma transport

    International Nuclear Information System (INIS)

    1990-01-01

    This paper discusses the following topics: disrupted surfaces in reversed field pinches; particle transport in tokamaks; Lagrangian particle transport in nonstationary convective patterns; relativistic particle motion in electromagnetic fields; and computer softural

  17. Fast Flows in the Magnetotail and Energetic Particle Transport: Multiscale Coupling in the Magnetosphere

    Science.gov (United States)

    Lin, Y.; Wang, X.; Fok, M. C. H.; Buzulukova, N.; Perez, J. D.; Chen, L. J.

    2017-12-01

    The interaction between the Earth's inner and outer magnetospheric regions associated with the tail fast flows is calculated by coupling the Auburn 3-D global hybrid simulation code (ANGIE3D) to the Comprehensive Inner Magnetosphere/Ionosphere (CIMI) model. The global hybrid code solves fully kinetic equations governing the ions and a fluid model for electrons in the self-consistent electromagnetic field of the dayside and night side outer magnetosphere. In the integrated computation model, the hybrid simulation provides the CIMI model with field data in the CIMI 3-D domain and particle data at its boundary, and the transport in the inner magnetosphere is calculated by the CIMI model. By joining the two existing codes, effects of the solar wind on particle transport through the outer magnetosphere into the inner magnetosphere are investigated. Our simulation shows that fast flows and flux ropes are localized transients in the magnetotail plasma sheet and their overall structures have a dawn-dusk asymmetry. Strong perpendicular ion heating is found at the fast flow braking, which affects the earthward transport of entropy-depleted bubbles. We report on the impacts from the temperature anisotropy and non-Maxwellian ion distributions associated with the fast flows on the ring current and the convection electric field.

  18. Rotation and transport in Alcator C-Mod ITB plasmas

    Science.gov (United States)

    Fiore, C. L.; Rice, J. E.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.; Hughes, J. W.; Reinke, M.

    2010-06-01

    Internal transport barriers (ITBs) are seen under a number of conditions in Alcator C-Mod plasmas. Most typically, radio frequency power in the ion cyclotron range of frequencies (ICRFs) is injected with the second harmonic of the resonant frequency for minority hydrogen ions positioned off-axis at r/a > 0.5 to initiate the ITBs. They can also arise spontaneously in ohmic H-mode plasmas. These ITBs typically persist tens of energy confinement times until the plasma terminates in radiative collapse or a disruption occurs. All C-Mod core barriers exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles and thermal transport coefficients that approach neoclassical values in the core. The strongly co-current intrinsic central plasma rotation that is observed following the H-mode transition has a profile that is peaked in the centre of the plasma and decreases towards the edge if the ICRF power deposition is in the plasma centre. When the ICRF resonance is placed off-axis, the rotation develops a well in the core region. The central rotation continues to decrease as long as the central density peaks when an ITB develops. This rotation profile is flat in the centre (0 ITB density profile is observed (0.5 ITB foot that is sufficiently large to stabilize ion temperature gradient instabilities that dominate transport in C-Mod high density plasmas.

  19. Scaling study of edge plasma parameters using a multi-device database

    International Nuclear Information System (INIS)

    Tsui, H.Y.W.; Miner, W.H.; Wootton, A.J.

    1995-01-01

    A database consisting of edge equilibrium, turbulence and transport related plasma parameters has been compiled. Scaling laws for edge density, electron temperature, and radial particle flux are derived in an initial study using a subset of data obtained from tokamaks Phaedrus-T, Tokamak de Varennes, TEXT and TEXT-U. A comparison of edge particle transport in divertor and limiter plasmas shows that the magnetic topology of a separatrix or a divertor improves particle confinement. The particle diffusion coefficient varies radially in a manner opposite to that of Bohm diffusion. ((orig.))

  20. Mathematical modeling of quartz particle melting process in plasma-chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Volokitin, Oleg, E-mail: volokitin-oleg@mail.ru; Volokitin, Gennady, E-mail: vgg-tomsk@mail.ru; Skripnikova, Nelli, E-mail: nks2003@mai.ru; Shekhovtsov, Valentin, E-mail: shehovcov2010@yandex.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Vlasov, Viktor, E-mail: rector@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Ave., 634050, Tomsk (Russian Federation)

    2016-01-15

    Among silica-based materials vitreous silica has a special place. The paper presents the melting process of a quartz particle under conditions of low-temperature plasma. A mathematical model is designed for stages of melting in the experimental plasma-chemical reactor. As calculation data show, quartz particles having the radius of 0.21≤ r{sub p} ≤0.64 mm completely melt at W = 0.65 l/s particle feed rate depending on the Nusselt number, while 0.14≤ r{sub p} ≤0.44 mm particles melt at W = 1.4 l/s. Calculation data showed that 2 mm and 0.4 mm quartz particles completely melted during and 0.1 s respectively. Thus, phase transformations occurred in silicon dioxide play the important part in its heating up to the melting temperature.