WorldWideScience

Sample records for plasma thermodynamics

  1. Thermodynamics of High Temperature Plasmas

    Directory of Open Access Journals (Sweden)

    Ettore Minardi

    2009-03-01

    Full Text Available In this work we discuss how and to what extent the thermodynamic concepts and the thermodynamic formalism can be extended to the description of high temperature states of the plasma not necessarily associated with a Boltzmann distribution and with thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy concept”, an interpretative and predictive tool based on probability and information, defined in a suitably coarse-grained possibility space of all current density or of all electric charge density distributions under testable constraints, and whose variation properties are proven to be related under certain conditions to the equilibrium and the stability of the system. In the case of magnetic equilibrium the potentiality of the magnetic entropy concept is illustrated by comparing the predictions of the current density and pressure profiles with the observations in different tokamak machines and different tokamak regimes, as well as by showing how the equilibrium and the stability in devices as different as the reversed field pinch or the magnetic well are described by the variation properties of the same entropy functional applied to the different situations. In fact it emerges that the maximum of the entropy can be seen in these different cases as an optimization constraint for the minimum of the magnetic energy. The application of the entropy concept to the electrostatic processes shows in particular that the so-called reactive instabilities (non-dissipative, non-resonant instabilities with a marginal point admit a neighboring state with higher entropy and are therefore of special relevance from the point of view of the physical evolution of the system. In this case the thermodynamic formalism allows the introduction of the concept of “thermodynamic fluctuations” of the macroscopic charge density and provides a method for the calculation of the “thermodynamic” fluctuation levels both on the stable as

  2. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  3. Thermodynamics of the N=2^* strongly coupled plasma

    CERN Document Server

    Buchel, A; Kerner, P; Liu, J T; Buchel, Alex; Deakin, Stan; Kerner, Patrick; Liu, James T.

    2007-01-01

    Gauge/string duality is a potentially important framework for addressing the properties of the strongly coupled quark gluon plasma produced at RHIC. However, constructing an actual string theory dual to QCD has so far proven elusive. In this paper, we take a partial step towards exploring the QCD plasma by investigating the thermodynamics of a non-conformal system, namely the N=2^* theory, which is obtained as a mass deformation of the conformal N=4 gauge theory. We find that at temperatures of order the mass scale, the thermodynamics of the mass deformed plasma is surprisingly close to that of the conformal gauge theory plasma. This suggests that many properties of the quark gluon plasma at RHIC may in fact be well described by even relatively simple models such as that of the conformal N=4 plasma.

  4. Thermodynamics estimation of copper plasma efficiency from secondary raw material

    Directory of Open Access Journals (Sweden)

    Віктор Сергійович Козьмін

    2014-09-01

    Full Text Available The results of the thermodynamic evaluation of oxidative plasma copper refining efficiency recycled from impurities present in the feedstock are shown. It was established that the type of impurity factor increasing the efficiency of the plasma refining the potential change of Gibbs varies from 1,4 to 4, 8, and for silver, and of gold there is a transition from an unlikely to real positive state. 

  5. Thermodynamic and dynamical properties of dense ICF plasma

    Directory of Open Access Journals (Sweden)

    Gabdullin Maratbek T.

    2016-06-01

    Full Text Available In present work, thermodynamic expressions were obtained through potentials that took into consideration long-range many-particle screening effects as well as short-range quantum-mechanical effects and radial distribution functions (RDFs. Stopping power of the projectile ions in dense, non-isothermal plasma was considered. One of the important values that describe the stopping power of the ions in plasma is the Coulomb logarithm. We investigated the stopping power of ions in inertial confinement fusion (ICF plasma and other energetic characteristics of fuel. Calculations of ions energy losses in the plasma for different values of the temperature and plasma density were carried out. A comparison of the calculated data of ion stopping power and energy deposition with experimental and theoretical results of other authors was also performed.

  6. Composition and thermodynamic properties of dense alkali metal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gabdullin, M.T. [NNLOT, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan); Ramazanov, T.S.; Dzhumagulova, K.N. [IETP, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan)

    2012-04-15

    In this work composition and thermodynamic properties of dense alkali metal plasmas (Li, Na) were investigated. Composition was derived by solving the Saha equations with corrections due to nonideality. The lowering of the ionization potentials was calculated on the basis of pseudopotentials by taking screening and quantum effects into account (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Interaction potentials and thermodynamic properties of two component semiclassical plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. S.; Moldabekov, Zh. A.; Ismagambetova, T. N. [Al-Farabi Kazakh National University, IETP, 71 al-Farabi Av., Almaty 050040 (Kazakhstan); Gabdullin, M. T. [Al-Farabi Kazakh National University, NNLOT, 71 al-Farabi Av., Almaty 050040 (Kazakhstan)

    2014-01-15

    In this paper, the effective interaction potential in two component semiclassical plasma, taking into account the long-range screening and the quantum-mechanical diffraction effects at short distances, is obtained on the basis of dielectric response function method. The structural properties of the semiclassical plasma are considered. The thermodynamic characteristics (the internal energy and the equation of state) are calculated using two methods: the method of effective potentials and the method of micropotentials with screening effect taken into account by the Ornstein-Zernike equation in the HNC approximation.

  8. Opacity calculations for Non-Local-Thermodynamic-Equilibrium plasmas

    Institute of Scientific and Technical Information of China (English)

    PANG Jin-qiao; WU Ze-qing; YAN Jun; HAN Guo-xing

    2004-01-01

    In this paper, we presented a method to calculate the spectral-resolved opacity for Non-Local-Thermodynamic-Equilibrium (non-LTE) plasmas. By solving the rate equations, we get the population. In the rate equations, configuration-averaged rate coefficients are used and the cross sections are calculated based on the first-perturbation theory. Using the detailed configuration accounting with the term structures treated by the unresolved transition array model, we calculated the spectral-resolved opacity of Al plasmas. The results are compared with those of other theoretical models. From the comparison, we can see that the present results fit well with other models for low-Z plasmas. For high-Z plasmas, we will give detailed discussion in the future.

  9. Coal pyrolysis in plasma and thermodynamic analysis for model compound

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Pang, X.; Bao, W.; Xie, K. [Shanxi Key Laboratory of Coal Science and Technology, Taiyuan (China)

    2001-02-01

    On the basis of study on coal and graphite pyrolysis in hydrogen-enriched argon plasma jet reactor, thermodynamic analysis for reactions producing acetylene was carried out by the means of selecting model compounds including various gaseous aliphatic and liquid aromatic hydrocarbons, which were regarded as similar to the primary volatile of coal, and by calculating the changes of Gibbs functions under deferent temperatures. The fact that the reactions of the volatiles releasing from coal play an essential part in acetylene formation from coal in H{sub 2}-Ar plasma was verified. The result that acetylene can be produced easily in high temperature can be deduced from entropy effects by theoretical analysis and experiment. These results are of significance for mechanism investigation of acetylene formation in plasma reactor. 7 refs., 1 fig., 3 tabs.

  10. Thermodynamic State Variables in Quasi-Equilibrium Ultracold Neutral Plasma

    CERN Document Server

    Tiwari, Sanat Kumar; Baalrud, Scott D

    2016-01-01

    The pressure and internal energy of an ultracold plasma in a state of quasi-equilibrium are evaluated using classical molecular dynamics simulations. Coulomb collapse is avoided by modeling electron-ion interactions using an attractive Coulomb potential with a repulsive core. We present a method to separate the contribution of classical bound states, which form due to recombination, from the contribution of free charges when evaluating these thermodynamic state variables. It is found that the contribution from free charges is independent of the choice of repulsive core length-scale when it is sufficiently short-ranged. The partial pressure associated with the free charges is found to closely follow that of the one-component plasma model, reaching negative values at strong coupling, while the total system pressure remains positive. This pseudo-potential model is also applied to Debye-H\\"{u}ckel theory to describe the weakly coupled regime.

  11. A Thermodynamic Model for Argon Plasma Kernel Formation

    Directory of Open Access Journals (Sweden)

    James Keck

    2010-11-01

    Full Text Available Plasma kernel formation of argon is studied experimentally and theoretically. The experiments have been performed in a constant volume cylindrical vessel located in a shadowgraph system. The experiments have been done in constant pressure. The energy of plasma is supplied by an ignition system through two electrodes located in the vessel. The experiments have been done with two different spark energies to study the effect of input energy on kernel growth and its properties. A thermodynamic model employing mass and energy balance was developed to predict the experimental data. The agreement between experiments and model prediction is very good. The effect of various parameters such as initial temperature, initial radius of the kernel, and the radiation energy loss have been investigated and it has been concluded that initial condition is very important on formation and expansion of the kernel.

  12. Thermodynamic state variables in quasiequilibrium ultracold neutral plasma

    Science.gov (United States)

    Tiwari, Sanat Kumar; Shaffer, Nathaniel R.; Baalrud, Scott D.

    2017-04-01

    The pressure and internal energy of an ultracold plasma in a state of quasiequilibrium are evaluated using classical molecular dynamics simulations. Coulomb collapse is avoided by modeling electron-ion interactions using an attractive Coulomb potential with a repulsive core. We present a method to separate the contribution of classical bound states, which form due to recombination, from the contribution of free charges when evaluating these thermodynamic state variables. It is found that the contribution from free charges is independent of the choice of repulsive core length scale when it is sufficiently short-ranged. The partial pressure associated with the free charges is found to closely follow that of the one-component plasma model, reaching negative values at strong coupling, while the total system pressure remains positive. This pseudopotential model is also applied to Debye-Hückel theory to describe the weakly coupled regime.

  13. Dual QCD thermodynamics and quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, H.C., E-mail: chandolaharish@gmail.com [Centre of Advanced Study, Department of Physics, Kumaun University, Nainital-263001 (India); Punetha, Garima [Centre of Advanced Study, Department of Physics, Kumaun University, Nainital-263001 (India); Dehnen, H. [Fachbereich Physik, Universität Konstanz, M 677, 78457 Konstanz (Germany)

    2016-01-15

    Using grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of dual QCD based on magnetic symmetry has been presented and analyzed for the quark–gluon plasma phase of hadronic matter. The dual QCD based bag construction has been shown to lead to the radial pressure on bag surface in terms of the vector glueball masses of magnetically condensed QCD vacuum. Constructing the grand canonical partition function, the energy density and plasma pressure have been derived and used to compute the critical temperatures for QGP–hadron phase transition along with its dynamics. A comparison of the values of critical temperatures for QGP–hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to either the relaxation of the system via a mixed phase of QGP and hot hadron gas or go through a crossover. The associated profiles of the normalized energy density and specific heat have been shown to lead to a large latent heat generation and indicate the onset of a first-order QGP phase transition which turns into a rapid crossover for the case of temperature dependent bag parameter. The squared speed of sound has been shown to act as a physical measure of large thermodynamical fluctuations near transition point. The possible implications of trace anomaly and conformal measure on QGP formation have also been discussed.

  14. Taming microwave plasma to beat thermodynamics in CO2 dissociation.

    Science.gov (United States)

    van Rooij, G J; van den Bekerom, D C M; den Harder, N; Minea, T; Berden, G; Bongers, W A; Engeln, R; Graswinckel, M F; Zoethout, E; van de Sanden, M C M

    2015-01-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrations. Simple molecular physics considerations are presented to explain potential dissociation pathways in plasma and their effect on energy efficiency. A common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures (exceeding 10(4) K) and conversion degrees (up to 30%), respectively. The results are interpreted on a basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favorable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry to dominate. The highest observed energy efficiencies of 45% indicate that non-equilibrium dynamics had been at play. A novel approach involving additives of low ionization potential to tailor the electron energies to the vibrational excitation regime is proposed.

  15. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  16. Thermodynamical study on production of acetylene from coal pyrolysis in hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F.; Guo, W.K.; Yuan, X.Q.; Zhao, T.Z. [Fudan University, Shanghai (China). Inst. for Modern Physics

    2006-05-15

    The chemical thermodynamic equilibrium of acetylene production by coal pyrolysis in hydrogen plasma was studied. The thermodynamic equilibrium is obtained by using the method of free energy. Calculated results show that the hydrogen concentration in the equilibrium system is very important for the acetylene production by coal conversion and the energy consumption for the production of acetylene per-kilogram strongly depends on the hydrogen concentration and the temperature.

  17. Thermodynamical Study on Production of Acetylene from Coal Pyrolysis in Hydrogen Plasma

    Science.gov (United States)

    Wang, Fei; Guo, Wenkang; Yuan, Xingqiu; Zhao, Taize

    2006-05-01

    The chemical thermodynamic equilibrium of acetylene production by coal pyrolysis in hydrogen plasma was studied. The thermodynamic equilibrium is obtained by using the method of free energy. Calculated results show that the hydrogen concentration in the equilibrium system is very important for the acetylene production by coal conversion and the energy consumption for the production of acetylene per-kilogram strongly depends on the hydrogen concentration and the temperature.

  18. Stochastic transition between turbulent branch and thermodynamic branch of an inhomogeneous plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Mitsuhiro; Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-05-01

    Transition phenomena between thermodynamic branch and turbulent branch in submarginal turbulent plasma are analyzed with statistical theory. Time-development of turbulent fluctuation is obtained by numerical simulations of Langevin equation which contains submarginal characteristics. Probability density functions and transition rates between two states are analyzed. Transition from turbulent branch to thermodynamic branch occurs in almost entire region between subcritical bifurcation point and linear stability boundary. (author)

  19. Memory effects and thermodynamics in strong field plasmas

    CERN Document Server

    Bloch, J C R; Schmidt, S M

    2000-01-01

    We study the evolution of a strong field plasma using a quantum Vlasov equation with a non-Markovian source term and a simple collision term, and calculate the time dependence of the energy- and number-density, and the temperature. The evolution of a plasma produced with RHIC-like initial conditions is well described by a low density approximation to the source term. However, non-Markovian aspects should be retained to obtain an accurate description of the early stages of an LHC-like plasma.

  20. Taming microwave plasma to beat thermodynamics in CO2 dissociation

    NARCIS (Netherlands)

    van Rooij, G.; van den Bekerom, D.; N. den Harder,; Minea, T.; G. Berden,; Bongers, W.; Engeln, R.; Graswinckel, M.; Zoethout, E.; M. C. M. van de Sanden,

    2015-01-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrations. Simple molecular physics considerations are presented to explain potential dissociation pathways in a

  1. Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S; Dzhumagulova, K N; Gabdullin, M T [IETP, Al-Farabi Kazakh National University, 96a, Tole Bi St, Almaty, 050012 (Kazakhstan)

    2006-04-28

    Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma were investigated on the basis of pseudopotential models. Radial distribution functions (RDF) of particles were obtained using a system of the Ornstein-Zernike integral equations. The corrections to internal energy and the equation of state were calculated using RDF.

  2. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas

    Science.gov (United States)

    Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen

    2017-03-01

    Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron–heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ  >  1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.

  3. Investigation of the local thermodynamic equilibrium of laser-induced aluminum plasma by Thomson scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); Kański, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); Farah-Sougueh, A. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); GREMI — site de Bourges, Université d' Orléans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pellerin, S. [GREMI — site de Bourges, Université d' Orléans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ul. Podchorażych 2, 30-084 Kraków (Poland); Dzierżęga, K. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland)

    2014-06-01

    A laser Thomson scattering method was applied to investigate the local Saha–Boltzmann equilibrium in aluminum laser-induced plasma. Plasma was created in ambient air using 4.5 ns pulses from a Nd:YAG laser at 532 nm, focused on an Al target. Spatially resolved measurements, performed for the time interval between 600 ns and 3 μs, show electron density and temperature to decrease from 3.4 × 10{sup 23} m{sup −3} to 0.5 × 10{sup 23} m{sup −3} and from 61,000 K to 13,000 K in the plasma core. The existence of local thermodynamic equilibria in the plasma was verified by comparing the rates of the collisional to radiative processes (the McWhirter criterion), as well as relaxation times and diffusion lengths of different plasma species, with the appropriate rate of electron density evolution and its gradients at given, experimentally determined, electron temperatures. We found these criteria to be much easier to satisfy for metallic plasma species than for nitrogen. The criteria are also easier to satisfy in the plasma core of higher electron density. - Highlights: • Laser Thomson scattering method was applied to investigate aluminum laser-induced plasma. • Spatio-temporal evolution of electron temperature and density was determined. • Three criteria for existence of local thermodynamic equilibrium were verified. • Criteria are much easier to satisfy for metallic plasma species than for nitrogen. • Criteria are easier to satisfy at earlier times and in the plasma core.

  4. Thermodynamic analysis of coal pyrolysis to acetylene in hydrogen plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Changning; Chen, Jiaqi; Cheng, Yi [Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A systematic re-examination of the thermodynamic study on the process of coal pyrolysis to acetylene in a hydrogen plasma reactor was performed with referenced pilot-plant data at the scale of 2-MW plasma. At the ultra-high temperature conditions, the gas phase composition may reach thermodynamic equilibrium immediately no matter whether the solid carbon exists or not. The mass ratio of C/H in the gaseous phase plays a significant role in the acetylene concentration at the thermodynamic equilibrium states. It is demonstrated either in thermodynamics calculation or in hot tests that a mass ratio of C/H near or above 2 is essential to gain an acceptable concentration of acetylene in the mixed gases, which indicates that the mixing efficiency between gas and coal particles near the coal injection point becomes pivotal to the yield of acetylene for its direct influence on the devolatilization of coal, i.e., the gaseous C/H ratio. Being consistent with the hot test experience, the extra amount of water added into the system may inhibit the production of acetylene. However, the addition of methane might impose a positive effect on the yield of acetylene and therefore on the overall reactor performance. (author)

  5. Calculation of thermodynamic and transport properties of thermal plasmas based on the Cantera software toolkit

    Science.gov (United States)

    Doiron, Charles; Hencken, Kai

    2013-09-01

    Computational fluid-dynamic simulations nowadays play a central role in the development of new gas circuit breakers. For these simulations to be reliable, a good knowledge of the pressure and temperature-dependence of the thermodynamic and transport properties of ionized gases is required. A key ingredient in the calculation of thermodynamic properties of thermal plasmas is the calculation of the chemical equilibrium composition of the gas. The general-purpose, open-source software toolkit Cantera provides most functionality required to carry out such thermodynamic calculations. In this contribution, we explain how we tailored Cantera specifically to calculate material properties of plasmas. The highly modular architecture of this framework made it possible to add support for Debye-Hückel non-ideality corrections in the calculation of the chemical equilibrium mixture, as well as to enable the calculation of the key transport parameters needed in CFD-based electric arc simulations: electrical and thermal conductivity, viscosity, and diffusion coefficients. As an example, we discuss the thermodynamic and transport properties of mixtures of carbon dioxide and copper vapor.

  6. Local thermodynamic equilibrium modeling of ionization of impurities in argon inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Serapinas, Petras, E-mail: serapinas@pfi.l [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, 01108 Vilnius (Lithuania); Salkauskas, Julius; Ezerinskis, Zilvinas; Acus, Arturas [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, 01108 Vilnius (Lithuania)

    2010-01-15

    Essentially higher ionization degree of small concentrations of elements in inductively coupled plasma in comparison to the ionization of pure elements is emphasized. This conclusion is used to determine the relative dependence of the sensitivity of the inductively coupled plasma mass spectrometer on the atomic mass. The possibility of evaluation of the ionization temperature and electron density from mass spectrometric signals is proposed. Temperatures about 7000 K and 8000 K were obtained from the ionization ratio dependences on ionization potentials. Electron densities of the order of magnitude 10{sup 15} cm{sup -3}, in excess to the local thermodynamic equilibrium values, follow from the application of the Saha equation to the measurement results and indicate the recombining character of the plasma in the mass spectrometer measurement region. Effects due to additional ionization from matrix were discussed. The effect is largest on minor abundant ionization state components. Matrix effect is restricted to some temperature interval, which depends on the whole matrix composition and the plasma state. The results show that the local thermodynamic equilibrium modeling, if adequately matching the sample composition, can be useful as a quantitative basis for both description of the plasma state and indication of the character of the nonequilibrium effects.

  7. Modeling non local thermodynamic equilibrium plasma using the Flexible Atomic Code data

    CERN Document Server

    Han, Bo; Salzmann, David; Zhao, Gang

    2015-01-01

    We present a new code, RCF("Radiative-Collisional code based on FAC"), which is used to simulate steady-state plasmas under non local thermodynamic equilibrium condition, especially photoinization dominated plasmas. RCF takes almost all of the radiative and collisional atomic processes into rate equation to interpret the plasmas systematically. The Flexible Atomic Code (FAC) supplies all the atomic data RCF needed, which insures calculating completeness and consistency of atomic data. With four input parameters relating to the radiation source and target plasma, RCF calculates the population of levels and charge states, as well as potentially emission spectrum. In preliminary application, RCF successfully reproduces the results of a photoionization experiment with reliable atomic data. The effects of the most important atomic processes on the charge state distribution are also discussed.

  8. Thermodynamic Properties of Gaseous Plasmas in the Limit of Extremely Low Temperature

    CERN Document Server

    Iosilevskiy, Igor

    2010-01-01

    Limiting structure of thermodynamic functions of gaseous plasmas is under consideration in the limit of zero temperature and density. Remarkable tendency, which was claimed previously (Iosilevskiy and Gryaznov, 1985) is carried to extreme. Both equations of state, thermal and caloric ones obtain in this limit identical stepped structure ("ionization stairs") for plasma of any single element when this limit (T -> 0, n -> 0) is carried out at fixed value of chemical potential for electrons (or atoms). The same stepped structure is valid for plasma of mixtures or compounds. This structure appears within a fixed (negative) range of chemical potential of electrons bounded below by value of major ionization potential of element and above by the value depending on sublimation energy of substance. Binding energies of all possible bound complexes (atomic, molecular, ionic and clusters) in its ground state are the only quantities that manifest itself in meaningful details of this limiting picture as location and value ...

  9. Bag model of hadrons, dual QCD thermodynamics and Quark-Gluon Plasma

    CERN Document Server

    Chandola, H C; Dehnen, H

    2015-01-01

    Using the grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of the dual QCD has been presented in terms of the bag model of hadrons and analyzed for the quark-gluon plasma phase of hadronic matter. The dual QCD bag construction has been shown to lead to the radial pressure on the bag surface in terms of the vector glueball masses of the magnetically condensed QCD vacuum. Constructing the grand canonical partition function to deal with the quark-gluon plasma phase of the non-strange hadrons, the energy density and the plasma pressure have been derived and used to understand the dynamics of the associated phase transition. The critical temperature for QGP-hadron phase transition has been derived and numerically estimated by using various thermodynamic considerations. A comparison of the values of the critical temperatures for QGP-hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to the relaxation ...

  10. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    Science.gov (United States)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  11. Numerical tests of the electroweak phase transition and thermodynamics of the electroweak plasma

    CERN Document Server

    Csikor, Ferenc; Hein, J; Jaster, A; Montvay, István

    1996-01-01

    The finite temperature phase transition in the SU(2) Higgs model at a Higgs boson mass M_H \\simeq 34 GeV is studied in numerical simulations on four-dimensional lattices with time-like extensions up to L_t=5. The effects of the finite volume and finite lattice spacing on masses and couplings are studied in detail. The errors due to uncertainties in the critical hopping parameter are estimated. The thermodynamics of the electroweak plasma near the phase transition is investigated by determining the relation between energy density and pressure.

  12. Variational Average-Atom in Quantum Plasmas (VAAQP) - A check of thermodynamic consistency

    Science.gov (United States)

    Piron, R.; Blenski, T.; Cichocki, B.

    2009-12-01

    A new code called VAAQP (Variational Average-Atom in Quantum Plasmas) is presented. The conceptual model on which the code is based, as well as the important results of previous studies are briefly discussed. The code is based on a new fully variational model of equilibrium dense plasmas employing a quantal treatment of all electrons. VAAQP can calculate the Average-Atom structure and the mean ionization from the variational equations satisfying the virial theorem and without imposing the neutrality of the Wigner-Seitz sphere. The formula obtained for the electron pressure is simple and does not require any numerical differentiation. A description of the principal features of the code is given. The thermodynamic consistency of the results obtained with VAAQP is shown by a comparison with another approach for the aluminium 2 eV isotherm. An initial comparison to an INFERNO-type model is also presented.

  13. Thermodynamic coherence of the Variational Average-Atom in Quantum Plasmas (VAAQP) approach

    CERN Document Server

    Piron, R; Cichocki, B

    2009-01-01

    A new code called VAAQP (Variational Average-Atom in Quantum Plasmas) is reported. The model as well as main results of previous studies are briefly recalled. The code is based on a new fully variational model of dense plasmas at equilibrium with quantum treatment of all electrons. The code can calculate the Average Atom structure and the mean ionization from the variational equations respecting the virial theorem and without imposing the neutrality of the Wigner-Seitz sphere. The formula obtained for the electronic pressure is simple and does not require any numerical differentiation. A description of the principal features of the code is given. The thermodynamic consistency of the results obtained with VAAQP is shown by a comparison with another approach on the example of the aluminium 10 eV isotherm EOS curve. A first comparison to an INFERNO-type model is also presented.

  14. Characterization of local thermodynamic equilibrium in a laser-induced aluminum alloy plasma.

    Science.gov (United States)

    Zhang, Yong; Zhao, Zhenyang; Xu, Tao; Niu, GuangHui; Liu, Ying; Duan, Yixiang

    2016-04-01

    The electron temperature was evaluated using the line-to-continuum ratio method, and whether the plasma was close to the local thermodynamic equilibrium (LTE) state was investigated in detail. The results showed that approximately 5 μs after the plasma formed, the changes in the electron and excitation temperatures, which were determined using a Boltzmann plot, overlapped in the 15% error range, which indicated that the LTE state was reached. The recombination of electrons and ions and the free electron expansion process led to the deviation from the LTE state. The plasma's expansion rate slowed over time, and when the expansion time was close to the ionization equilibrium time, the LTE state was almost reached. The McWhirter criterion was adopted to calculate the threshold electron density for different species, and the results showed that experimental electron density was greater than the threshold electron density, which meant that the LTE state may have existed. However, for the nonmetal element N, the threshold electron density was greater than the value experimental value approximately 0.8 μs after the plasma formed, which meant that LTE state did not exist for N.

  15. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    Science.gov (United States)

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  16. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  17. Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 and Ni

    Science.gov (United States)

    Zhang, Fan; Zhang, Jinyong; Leng, Xiaoxuan; Lei, Liwen; Fu, Zhengyi

    2017-03-01

    Spark plasma sintering (SPS) welding of chromium carbide (Cr3C2) and nickel (Ni) was used to investigate the atomic diffusion caused by bypassing current. It was found that the diffusion coefficient with bypassing current was enhanced by almost 3.57 times over that without bypassing current. Different from the previous researches, the thermodynamics analysis conducted herein showed that the enhancement included a current direction-independent part besides the known current direction-dependent part. A local temperature gradient (LTG) model was proposed to explain the current direction-independent effect. Assuming that the LTG was mainly due to the interfacial electric resistance causing heterogeneous Joule heating, the theoretical results were in good agreement with the experimental results both in the present and previous studies. This new LTG model provides a reasonable physical meaning for the low-temperature advantage of SPS welding and should be useful in a wide range of applications.

  18. THERMODYNAMIC ANALYSIS AND EXPERIMENTAL VERIFICATION FOR SYNTHESIZING SILICON NITRIDE NANOPARTICLES USING RF PLASMA CVD

    Institute of Scientific and Technical Information of China (English)

    Ruoyu Hong; Jianmin Ding; Hongzhong Li

    2003-01-01

    Silicon nitride nanoparticles were synthesized by radio-frequency (RF) plasma chemical vapor deposition (PCVD) using silicon tetrachloride and ammonia as precursors, and argon as carrier gas. By assuming chemical thermodynamic equilibrium in the system, a computer program based on chemical thermodynamics was used to calculate the compositions of the system at different initial concentrations and final temperatures. At first, five elements and thirty-four species were considered. The effects of temperatures, and concentrations of ammonia, hydrogen and nitrogen on the equilibrium compositions were analyzed. It was found that the optimal reaction temperature range should be 1200 to 1500 K to obtain the highest conversion and yield of Si3N4. The inlet position of ammonia should be lower than that of silicon tetrachloride, and both should be located at the tail of the plasma torch. The best mole ratio of ammonia to silicon tetrachloride was found to be about 6. Later, the influences of water (and oxygen) were considered, and 17 additional species were included in the computations. It was found that oxygen or water content in the raw materials should be as low as possible in order to have high nitride content in the produced Si3N4. Nitrogen or hydrogen might be used to replace some or even all the argon to improve the yield of silicon nitride and reduce the cost. The ratio of ammonia to silicon tetrachloride should be high enough to obtain high conversion, but not excessively high to reduce the oxygen content due to the existence of water in ammonia. The simulated results were verified by experiments.

  19. Thermodynamic Structure of Collision-Dominated Expanding Plasma: Heating of Interplanetary Coronal Mass Injections

    Science.gov (United States)

    Liu, Y.; Richardson, J. D.; Belcher, J. W.; Kasper, J. C.; Elliott, H. A.

    2006-01-01

    We investigate the thermodynamic structure of interplanetary coronal mass ejections (ICMEs) using combined surveys of the ejecta between 0.3 and 20 AU. ICMEs are shown to have a moderate expansion in the solar wind compared with theoretical predictions. The expansion seems to be governed by a polytrope with gamma approx. 1.3 in this distance range. We find that Coulomb collisions are important contributors to the ion-ion equilibration process in the ICME plasma. The alpha-proton differential speed quickly drops to below 10 km/s due to strong Coulomb collisions. However, the two species of particles are far from thermal equilibrium with a temperature ratio T(sub alpha/T(sub p) = 4-6, suggestive of a preferential heating of alpha particles. The plasma heating rate as a function of heliocentric &stance required for the temperature profile is deduced by taking into account the expansion and energy transfer between protons and alphas via Coulomb collisions. The turbulence dissipation rate is also inferred from the inertial range power spectrum of magnetic fluctuations within ICMEs. Comparison of the turbulence dissipation rate with the required heating rate shows that turbulence dissipation seems sufficient to explain the ICME heating. Sources powering the turbulence are also investigated by examining the instabilities induced by temperature anisotropies and energy deposition by pickup ions.

  20. Ab initio study of thermodynamically consistent equation of state of warm dense aluminum plasma

    Science.gov (United States)

    Gao, Xiang; Chen, Liang; Valencia, Ramón; Xia, Weiyi; Gao, Weiwei; Han, Xiao-Ying; Li, Jia-Ming; Zhang, Peihong

    2016-09-01

    Thermodynamically consistent equation of state (EOS) of two-temperature aluminum across a wide range of parameter space (compression ratio ratios V0/V up to 4, electronic temperatures Te up to 1 500 000 K, and ionic temperature Tion up to 10 000 000 K for Te up to 40 000 K) is investigated from the free energy calculations using density functional theory (DFT) based first-principles electronic structure methods. Our results can serve as a stringent benchmark for the present EOS model and database, where various approximations are adopted, used in hydrodynamic simulations as well as developing new EOS models. We find that the Thomas-Fermi model for the electronic pressure overestimates the EOS within the present parameter space, whereas the Thomas-Fermi model with exchange corrections are in good agreement with our results for Te greater than 600 000 K. The ionic pressure for a given ionic temperature Tion is found to be nearly independent of the electronic temperature at high temperatures, which can be modeled with kinetic theory for Tion larger than 1 000 000 K for various Te. The asymptotic behavior of the electronic contributions to the plasma pressure is further analyzed and casted into a compact analytical form with a few fitting parameters. This analytical form is physically well motivated and reproduces the desired asymptotic behaviors of the EOS within the interested parameter space. Therefore, our results can be conveniently used for modeling important properties and processes of high energy density systems.

  1. Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, L., E-mail: laurent.jacquet@cea.fr; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-12-15

    The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and

  2. Thermodynamic properties and transport coefficients of air thermal plasmas mixed with ablated vapors of Cu and polytetrafluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, JunMin, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Lu, ChunRong [School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191 (China); Guan, YongGang, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Liu, WeiDong [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around the number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc.

  3. Thermodynamic analysis of carbon migration in W1-1.0C steel in plasma surface chromizing

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    W1-1.0C steel was chromized at 1173 K with double glow plasma surface alloying process, and the distribution of Fe, Cr,and C contents in the chromized layer was measured using glow discharge spectrum analysis (GDA).The behavior and mechanism of carbon migration during the formation of chromized layer were studied through thermodynamic analysis and calculation.The gradient of carbon chemical potential was regarded as the driving force of carbon migration.An equation was derived to describe the carbon content varying with the chromium content within the carbon-rich region.The calculated results from the equation approximated closely to the experimental ones.

  4. Biomechanics and thermodynamics of nanoparticle interactions with plasma and endosomal membrane lipids in cellular uptake and endosomal escape.

    Science.gov (United States)

    Peetla, Chiranjeevi; Jin, Shihua; Weimer, Jonathan; Elegbede, Adekunle; Labhasetwar, Vinod

    2014-07-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(D,L-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  5. Calculation of 2-temperature plasma thermo-physical properties considering condensed phases: application to CO2-CH4 plasma: part 1. Composition and thermodynamic properties

    Science.gov (United States)

    Wu, Yi; Chen, Zhexin; Rong, Mingzhe; Cressault, Yann; Yang, Fei; Niu, Chunping; Sun, Hao

    2016-10-01

    As the first part of this series of papers, a new calculation method for composition and thermodynamic properties of 2-temperature plasma considering condensed species under local chemical equilibrium (LCE) and local phase equilibrium assumption is presented. The 2-T mass action law and chemical potential are used to determine the composition of multiphase system. The thermo-physical properties of CO2-CH4 mixture, which may be a possible substitution for SF6, are calculated by this method as an example. The influence of condensed graphite, non-LTE effect, mixture ratio and pressure on the thermo-physical properties has been discussed. The results will serve as reliable reference data for computational simulation of CO2-CH4 plasmas.

  6. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes; Validation experimentale des codes de physique atomique des plasmas hors equilibre thermodynamique local

    Energy Technology Data Exchange (ETDEWEB)

    Nagels-Silvert, V

    2004-09-15

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  7. Thermodynamics and equations of state of matter from ideal gas to quark-gluon plasma

    CERN Document Server

    Fortov, Vladimir

    2016-01-01

    The monograph presents a comparative analysis of different thermodynamic models of the equations of state. The basic ideological premises of the theoretical methods and the experiment are considered. The principal attention is on the description of states that are of greatest interest for the physics of high energy concentrations which are either already attained or can be reached in the near future in controlled terrestrial conditions, or are realized in astrophysical objects at different stages of their evolution. Ultra-extreme astrophysical and nuclear-physical applications are also analyzed where the thermodynamics of matter is affected substantially by relativism, high-power gravitational and magnetic fields, thermal radiation, transformation of nuclear particles, nucleon neutronization, and quark deconfinement. The book is intended for a wide range of specialists engaged in the study of the equations of state of matter and high energy density physics, as well as for senior students and postgraduates.

  8. Thermodynamics of the quark-gluon plasma at finite chemical potential: color path integral Monte Carlo results

    Energy Technology Data Exchange (ETDEWEB)

    Filinov, V.S.; Fortov, V.E. [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13, bd. 2, 125412 Moscow (Russian Federation); Bonitz, M. [Institute for Theoretical Physics and Astrophysics, Christian Albrechts University Kiel, Leibnizstrasse 15, D-24098 Kiel (Germany); Ivanov, Y.B. [National Research Center ' ' Kurchatov Institute' ' , Kurchatov Sq. 1, 123182 Moscow, Russia, National Research Nuclear University ' ' MEPhI' ' , Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Reseach, Joliot-Curie str. 6, Dubna, 141980, Moscow Region (Russian Federation)

    2015-02-01

    Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), color quantum path-integral Monte-Carlo (PIMC) calculations of the thermodynamic properties of the QGP are performed. We extend our previous zero chemical potential simulations to the QGP at finite baryon chemical potential. The results indicate that color PIMC can be applied not only above the QCD critical temperature T{sub c} but also below T{sub c}. Besides reproducing the lattice equation of state our approach yields also valuable additional insight into the internal structure of the QGP, via the pair distribution functions of the various quasiparticles. In particular, the pair distribution function of gluons reflects the existence of gluon-gluon bound states at low temperatures and μ = 175 MeV, i.e. glueballs, while meson-like bound states are not found. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Effects of non-local thermodynamic equilibrium conditions on numerical simulations of inertial confinement fusion plasmas

    Indian Academy of Sciences (India)

    N K Gupta; B K Godwal

    2002-07-01

    Effects of non-local thermodynamic equilibrium (non-LTE) condition on emission and hydrodynamics of typical inertial confinement fusion (ICF) plasmas are studied. The average degree of ionization at high temperatures is seen to be much lower compared to the values obtained from Thomas–Fermi scaling or Saha equation for high- element like gold. LTE and non-LTE predictions for emitted radiation from laser-driven gold foil are compared with the experimental results and it is seen that non-LTE simulations show a marked improvement over LTE results. The effects of one group and multigroup, LTE and non-LTE approximations of radiation transport on hydrodynamic parameters are studied for laser-driven aluminium and gold foils. It is further seen that non-LTE and multigroup effects play an important role in predicting conversion efficiency of laser light to X-rays

  10. Thermodynamical consideration of the synthesis of solid AlN from thermal plasma

    Directory of Open Access Journals (Sweden)

    NIKOLA PEKAS

    2001-08-01

    Full Text Available The synthesis process of solid AlN in thermal plasmas was investigated theoretically by computing the equilibrium composition of the gas mixture involving nitrogen and various amounts of aluminum, oxygen and hydrogen for the temperature range between 1000 and 5500 K. The results obtained by treating the plasma as a single-gas system were combined with those which take into account the presence of solid AlN and liquid Al, to find the optimal conditions for the deposition of solid AlN. The factors determining the efficiency of this process are discussed.

  11. EFFECT OF EXCITATION-AUTOIONIZATION IN NON-LOCAL THERMODYNAMIC EQUILIBRIUM PLASMAS

    Institute of Scientific and Technical Information of China (English)

    Wu Ze-qing; Zhang Ben-ai; Qiu Yu-bo

    2000-01-01

    Based on the detailed configuration accounting model, the authros havedeveloped a method to calculate the rate of excitation-autoionization(EA) in the average atom model and used it in the rate equations. Thenumerical results show that EA effect is signifficant in hightemperature low density plasma and can cause an additional ionization upto 15% of an ionization stage.

  12. Thermodynamic study on the formation of acetylene during coal pyrolysis in the arc plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Bao, W.; Li, F.; Cai, G.; Lu, Y.; Chang, L. [Taiyuan University of Technology, Taiyuan (China)

    2009-07-01

    Based on the principle of minimizing the Gibbs free energy, the composition of C-H-O-N-S equilibrium system about acetylene formation during the pyrolysis in arc plasma jet for four kinds of different rank-ordered coals such as Datong, Xianfeng, Yangcheng, and Luan was analyzed and calculated. The results indicated that hydrogen, as the reactive atmosphere, was beneficial to the acetylene formation. The coal ranks and the hydrogen, oxygen, nitrogen, and sulfur in coal all could obviously affect the acetylene yield. The mole fraction of acetylene is the maximum when the ratio value of atom H/C was 2. The content of oxygen was related to the acetylene yield, but it does not compete with CO formation. These agreed with the experimental results, and they could help to select the coal type for the production of acetylene through plasma pyrolysis process.

  13. Energy loss, equilibration, and thermodynamics of a baryon rich strongly coupled quark-gluon plasma

    CERN Document Server

    Rougemont, Romulo; Finazzo, Stefano; Noronha, Jorge

    2015-01-01

    Lattice data for the QCD equation of state and the baryon susceptibility near the crossover phase transition (at zero baryon density) are used to determine the input parameters of a 5-dimensional Einstein-Maxwell-Dilaton holographic model that provides a consistent holographic framework to study both equilibrium and out-of-equilibrium properties of a hot and {\\it baryon rich} strongly coupled quark-gluon plasma (QGP). We compare our holographic equation of state computed at nonzero baryon chemical potential, $\\mu_B$, with recent lattice calculations and find quantitative agreement for the pressure and the speed of sound for $\\mu_B \\leq 400$ MeV. This holographic model is used to obtain holographic predictions for the temperature and $\\mu_B$ dependence of the drag force and the Langevin diffusion coefficients associated with heavy quark jet propagation as well as the jet quenching parameter $\\hat{q}$ and the shooting string energy loss of light quarks in the dense plasma. We find that the energy loss of heavy ...

  14. Thermodynamics of the Quark-Gluon Plasma within a T-matrix approach

    CERN Document Server

    Lacroix, Gwendolyn; Buisseret, Fabien

    2015-01-01

    The strongly-coupled phase of the quark-gluon plasma (QGP) is studied here by resorting to a $T$-matrix formulation in which the medium is seen as a non-ideal gas of quasiparticles (quarks, antiquarks and gluons) interacting nonpertubatively. In the temperature range under study, (1-5) $T_c$, where $T_c$ is the temperature of deconfinement, the interactions are expected to be strong enough to generate bound states. The dissociation temperature of such binary bound states is thus computed here. The more the quasiparticles involved in the binary system are heavy, the more the bound state is likely to survive significantly above $T_c$. Then, the QGP equations of state at zero and small baryonic potential are computed for $N_f = 2$ and $N_f = 2 + 1$ by resorting to the Dashen, Ma and Bernstein formulation of statistical mechanics. Comparisons with current lattice QCD data are presented.

  15. Thermodynamical and microscopic properties of turbulent transport in the edge plasma

    Science.gov (United States)

    Ghendrih, Ph; Norscini, C.; Hasenbeck, F.; Dif-Pradalier, G.; Abiteboul, J.; Cartier-Michaud, T.; Garbet, X.; Grandgirard, V.; Marandet, Y.; Sarazin, Y.; Tamain, P.; Zarzoso, D.

    2012-12-01

    Edge plasma turbulence modelled with 2D interchange is shown to exhibit convective transport at the microscale level. This transport property is related to avalanche like transport in such a flux-driven system. Correlation functions and source modulation are used to analyse the transport properties but do not allow one to recover the Fick law that must characterise the system at large scales. Coarse graining is then introduced to average out the small scales in order to recover the Fick law. One finds that the required space averaging is comparable to the system size while the time averaging is comparable to the confinement time. The system is then reduced to a single reservoir such that transport is characterised by a single scalar, either the diffusion coefficient of the Fick law or a characteristic evolution time constant.

  16. Structural, thermodynamic, and transport properties of CH2 plasma in the two-temperature regime

    Science.gov (United States)

    Knyazev, D. V.; Levashov, P. R.

    2016-10-01

    This paper covers calculation of radial distribution functions, specific energy, and static electrical conductivity of CH2 plasma in the two-temperature regime. The calculation is based on the quantum molecular dynamics, density functional theory, and the Kubo-Greenwood formula. The properties are computed at 5 kK ≤ T i ≤ T e ≤ 40 kK and ρ = 0.954 g/cm3 and depend severely on the presence of chemical bonds in the system. Chemical compounds exist at the lowest temperature T i = T e = 5 kK considered; they are destroyed rapidly at the growth of Ti and slower at the increase of Te. A significant number of bonds are present in the system at 5 kK ≤ T i ≤ T e ≤ 10 kK. The destruction of bonds correlates with the growth of specific energy and static electrical conductivity under these conditions.

  17. Thyrotropin binding to porcine thyroid plasma membranes: kinetic and thermodynamic analyses.

    Science.gov (United States)

    Saltiel, A R; Thomas, C G; Nayfeh, S N

    1982-01-01

    Evaluation of TSH binding to plasma membranes of porcine thyroid revealed unique sensitivity to pH and temperature. Analysis of apparent equilibrium binding yielded a linear Scatchard plot at the optimal pH of 6.0, indicating one class of binding sites. At physiological pH 7.4 a curvilinear Scatchard plot was obtained, resolved by computer analysis into two classes of binding sites of different affinities and capacities. Treatment of membranes with phospholipase C resulted in a 20% decrease in the number of high affinity sites, but no change occurred in binding affinity. In contrast, low affinity sites were not altered. To evaluate the significance of the curvilinear Scatchard plot, the kinetics of association were examined. The intrinsic Kd (kd/ka) was 0.20 nM, a value essentially equivalent to that of the high affinity binding component. The 'negative cooperativity' model of hormone binding was evaluated by examining the effect of excess unlabeled TSH on dissociation rate. Dissociation of bound 125I-labeled TSH was biphasic, and was enhanced by unlabeled hormone, regardless of whether the membranes were prelabeled at pH 6.0 or 7.4. This effect was not correlated with curvilinear Scatchard plots, and therefore not proof of negative cooperativity. Binding sites for TSH were further distinguished by their sensitivity to temperature. A van't Hoff plot of temperature dependence of the apparent Kd of the high affinity site was linear from 4 to 37 degrees C. In contrast, the apparent Kd of low affinity binding did not vary with respect to temperature. These results demonstrate that there are at least two independent binding sites for TSH on porcine thyroid plasma membranes, distinguishable by their equilibrium binding properties.

  18. Investigation of thermodynamic equilibrium in laser-induced aluminum plasma using the H{sub α} line profiles and Thomson scattering spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cvejić, M., E-mail: marko.cvejic@ipb.ac.rs, E-mail: krzysztof.dzierzega@uj.edu.pl [Institute of Physics, University of Belgrade, P.O. Box 68, 11080 Belgrade (Serbia); Faculty of Physics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Dzierżęga, K., E-mail: marko.cvejic@ipb.ac.rs, E-mail: krzysztof.dzierzega@uj.edu.pl; Pięta, T. [M. Smoluchowski Institute of Physics, Jagellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland)

    2015-07-13

    We have studied isothermal equilibrium in the laser-induced plasma from aluminum pellets in argon at pressure of 200 mbar by using a method which combines the standard laser Thomson scattering and analysis of the H{sub α}, Stark-broadened, line profiles. Plasma was created using 4.5 ns, 4 mJ pulses from a Nd:YAG laser at 1064 nm. While electron density and temperature were determined from the electron feature of Thomson scattering spectra, the heavy particle temperature was obtained from the H{sub α} full profile applying computer simulation including ion-dynamical effects. We have found strong imbalance between these two temperatures during entire plasma evolution which indicates its non-isothermal character. At the same time, according to the McWhirter criterion, the electron density was high enough to establish plasma in local thermodynamic equilibrium.

  19. Chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rock, P.A.

    1983-01-01

    This book, suitable as an introductory text for undergraduates, presents temperature, internal energy, and entropy with a minimum of mathematics. The basic mathematical models of classical chemical thermodynamics are developed later in the text. Includes numerous problems at the end of each chapter, an appendix giving thermodynamic data for common substances, a short list of references, answers to selected problems, and a subject index. Contents, abridged: Energy and the first law of thermodynamics. Thermodynamic functions. The third law of thermodynamics and absolute entropies. Thermodynamics of chemical reactions. Phase equilibria: the activity function. Thermodynamics of ions in solution. Statistical thermodynamics. Appendices. Index.

  20. ``Statistical treatment of the spectral properties of plasmas in local thermodynamical equilibrium using a screened hydrogenic model``; ``Traitement statistique des proprietes spectrales des plasmas a l`equilibre thermodynamique local dans le cadre du modele hydrogenique ecrante``

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G.

    1996-12-31

    A new screened hydrogenic model is presented. The screening constants depend both on the principal n and orbital l quantum numbers. They have been obtained from numerical fits over a large data base containing ionization potentials and one-electron excitation energies of ions. A rapid and original method to compute the bound-bound and bound-free oscillator strengths is proposed. The discrete spectrum and the series continuum are connected by continuity, and the sum rules are respected. The screened hydrogenic average atom is well-adapted to describe multicharged ion plasmas in local thermodynamic equilibrium (LTE). Using the key principle of statistical mechanics, it is shown first that this model is properly defined and thermodynamically coherent. Secondly, a new method of detailed ionization stage accounting of a LTE plasma is explained. It can be used to reconstruct the distribution of integer charge states in such a plasma from any average atom model. The l -splitting allows one-electron transitions between two subshells with the same principal quantum number n. They may be of great importance when the Rosseland opacity is computed. Though, methods of classical statistical mechanics are required to calculate the distribution of the configurations around the average atom one and so to improve the spectral opacities. The splitting in integer ionic stages can be easily included. The formalism is tested by comparisons with theoretical and experimental results published in the literature. From the photoabsorption spectra encountered, the main results are the correct estimations of both the Rosseland opacity and the detailed charge degrees accounting. (author).

  1. Monte Carlo simulations for thermodynamical properties calculations of plasmas at thermodynamical equilibrium. Applications to opacity and equation of state calculations; Apport d'un code de simulation Monte Carlo pour l'etude des proprietes thermodynamiques d'un plasma a l'equilibre et application au calcul de l'elargissement des profils de raies ioniques emises dans les plasmas denses, aux opacites spectrales et aux equations d'etat de systemes fluides

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, D

    2005-07-01

    This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)

  2. Derivation of the Fano profile from time-dependent density-functional theory for local thermodynamic equilibrium plasmas

    Science.gov (United States)

    Kiyokawa, Shuji

    2007-04-01

    We give the derivation of the Fano profile (the resonance energy position, the resonance width Γ , and q value) from the time-dependent nonrelativistic density-functional theory (DFT) and propose a scheme for calculating the photoabsorption cross section of hot dense plasmas. As a consequence of this derivation, we show the line profile is obtained as a superposition of Fano and Lorentz profiles when the competition of two optically allowed bound-bound and bound-free transitions occurs. We also show the results of the photoabsorption cross section by applying our scheme to an Fe plasma (density is 7.85g/cm3 , temperature is 100eV ), where the calculation is carried out without numerical divergence for any photon energy. The calculated results are in good agreement with those of Grimaldi.

  3. Thermodynamic Study of Water-Steam Plasma Pyrolysis of Medical Waste for Recovery of CO and H2

    Institute of Scientific and Technical Information of China (English)

    Huang Jianjun; Guo Wenkang; Xu Ping

    2005-01-01

    This paper describes the equilibrium compositions of the typical medical waste under high temperature pyrolysis by a steam plasma torch using the NASA CEA2 program. Various components from selected typical medical waste were input to the program along with the treatment temperature from 1000 K ~ 4100 K. The program then performed the Gibbs free energy calculations and searched for the equilibrium composition with minimizing the total system Gibbs free energy. The calculation results indicate that, the equilibrium composition of a system C-H-O at C/O = 1 in the temperature range of 1400 K ~ 2000 K has demonstrated that gas composition are CO and H2 mainly, the other components (CO2, C2H4, C2H2, CH4 etc.) is less than 1%by volume and the degree of raw material transformation is about 100%. Comparison with air plasma, the steam plasma treatment will not produce nitrogen oxides, if the materials are free of nitrogen element.

  4. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  5. General thermodynamics

    CERN Document Server

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  6. Calculation of the rate of nuclear excitation by electron transition in an Rbm84 plasma under the hypothesis of local thermodynamic equilibrium using a multiconfiguration Dirac-Fock approach

    Science.gov (United States)

    Denis-Petit, David; Gosselin, Gilbert; Hannachi, Fazia; Tarisien, Medhi; Bonnet, Thomas; Comet, Maxime; Gobet, Franck; Versteegen, Maud; Morel, Pascal; Méot, Vincent; Matea, Iolanda

    2017-08-01

    One promising candidate for the first detection of nuclear excitation in plasma is the 463-keV, 20.26-min-lifetime isomeric state in 84Rb, which can be excited via a 3.5-keV transition to a higher lying state. According to our preliminary calculations, under specific plasma conditions, nuclear excitation by electron transition (NEET) may be its strongest excitation process. Evaluating a reliable NEET rate requires, in particular, a thorough examination of all atomic transitions contributing to the rate under plasma conditions. We report the results of a detailed evaluation of the NEET rate based on multiconfiguration Dirac Fock (MCDF) atomic calculations, in a rubidium plasma at local thermodynamic equilibrium with a temperature of 400 eV and a density of 10-2g /cm3 and based on a more precise energy measurement of the nuclear transition involved in the excitation.

  7. Green thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cengel, Y.A. [Nevada Univ., Reno, NV (United States). Dept. of Mechanical Engineering

    2006-07-01

    Green components of thermodynamics were identified and general aspects of green practices associated with thermodynamics were assessed. Energy uses associated with fossil fuels were reviewed. Green energy sources such as solar, wind, geothermal and hydropower were discussed, as well as biomass plantations. Ethanol production practices were reviewed. Conservation practices in the United States were outlined. Energy efficiency and exergy analyses were discussed. Energy intensity measurements and insulation products for houses were also reviewed. Five case studies were presented to illustrate aspects of green thermodynamics: (1) light in a classroom; (2) fuel saved by low-resistance tires; and (3) savings with high-efficiency motors; (4) renewable energy; and (5) replacing a valve with a turbine at a cryogenic manufacturing facility. It was concluded that the main principles of green thermodynamics are to ensure that all material and energy inputs minimize the depletion of energy resources; prevent waste; and improve or innovate technologies that achieve sustainability. 17 refs., 2 tabs., 9 figs.

  8. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  9. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  10. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  11. (Chemical thermodynamics)

    Energy Technology Data Exchange (ETDEWEB)

    Mesmer, R.E.

    1990-09-12

    The purpose of this travel was for the traveler to participate in the 11th IUPAC International Conference on Chemical Thermodynamics and to present a paper of which he is co-author entitled The Transition from Strong-to-Weak Electrolyte Behavior Near the Critical Point of Water'' in the session on Solutions. The conference brought together nearly 500 scientists from around the world to discuss broad aspects of experimental thermodynamics and theoretical modeling. The traveler also visited the University of Karlsruhe to discuss current research with E.U. Franck and his collaborators. This institution has been for many years one of the leading centers for experimental studies on phase equilibrium and physical chemical studies especially on pure substances under the direction of Franck.

  12. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  13. Nanoscopic Thermodynamics.

    Science.gov (United States)

    Qi, Weihong

    2016-09-20

    Conventional thermodynamics for bulk substances encounters challenges when one considers materials on the nanometer scale. Quantities such as entropy, enthalpy, free energy, melting temperature, ordering temperature, Debye temperature, and specific heat no longer remain constant but change with the crystal dimension, size, and morphology. Often, one phenomenon is associated with a variety of theories from different perspectives. Still, a model that can reconcile the size and shape dependence of the thermal properties of the nanoscaled substances remains one of the goals of nanoscience and nanotechnology. This Account highlights the nanoscopic thermodynamics for nanoparticles, nanowires, and nanofilms, with particular emphasis on the bond energy model. The central idea is that the atomic cohesive energy determines the thermodynamic performance of a substance and the cohesive energy varies with the atomic coordination environment. It is the cohesive energy difference between the core and the shell that dictates the nanoscopic thermodynamics. This bond energy model rationalizes the following: (i) how the surface dangling bonds depress the melting temperature, entropy, and enthalpy; (ii) how the order-disorder transition of the nanoparticles depends on particle size and how their stability may vary when they are embedded in an appropriate matrix; (iii) predictions of the existence of face-centered cubic structures of Ti, Zr, and Hf at small size; (iv) how two elements that are immiscible in the bulk can form an alloy on the nanoscale, where the critical size can be predicted. The model has enabled us to reproduce the size and shape dependence of a number of physical properties, such as melting temperature, melting entropy, melting enthalpy, ordering temperature, Gibbs free energy, and formation heat, among others, for materials such as Pd, Au, Ag, Cu, Ni, Sn, Pb, In, Bi, Al, Ti, Zr, Hf, In-Al, Ag-Ni, Co-Pt, Cu-Ag, Cu-Ni, Au-Ni, Ag-Pt, and Au-Pt on the nanometer scale

  14. Equilibrium thermodynamics

    CERN Document Server

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  15. Equilibrium thermodynamics

    CERN Document Server

    Oliveira, Mário J

    2013-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions.  These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This textbo...

  16. Investigation of local thermodynamic equilibrium of laser induced Al2O3-TiC plasma in argon by spatially resolved optical emission spectroscopy

    Science.gov (United States)

    Alnama, K.; Alkhawwam, A.; Jazmati, A. K.

    2016-06-01

    Plasma plume of Al2O3-TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES) at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  17. Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Alnama

    2016-06-01

    Full Text Available Plasma plume of Al2O3–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  18. Thermodynamic interpolation

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, D E

    1998-10-01

    A method for constructing bicubic interpolation polynomials for the pressure P and internal energy E that are thermodynamically consistent at the mesh ponts and continuous across mesh boundaries is presented. The slope boundary conditions for the pressure and energy are derived from finite differences of the data and from Maxwell's consistency relation. Monotonicity of the sound speed and the specific heat is obtained by a bilinear interpolation of the slopes of the tabulated data. Monotonicity of the functions near steep gradients may be achieved by mesh refinement or by using a non-consistent bilinear to the data. Mesh refinement is very efficient for uniform-linear or uniform-logarithmic spaced data because a direct table lookup can be used. The direct method was compared to binary search and was 37 percent faster for logarithmic-spaced data and 106 percent faster for linear-spaced data. This improvement in speed is very important in the radiation-transport opacity-lookup part of the calculation. Interpolation in P-E space, with mesh refinement, can be made simple, robust, and conserve energy. In the final analysis the interpolation of the free energy and entropy (Maiden and Cook) remains a competitor.

  19. Holostar thermodynamics

    CERN Document Server

    Petri, M

    2003-01-01

    A simple thermodynamic model for the final state of a collapsed, spherically symmetric star is presented. It is assumed, that the star's interior at the endpoint of the collapse consists of an ideal gas of ultra-relativistic fermions and bosons in thermal equilibrium and that the metric approaches the static metric of the so called holostar-solution of general relativity. The final configuration has a radius slightly exceeding the gravitational radius of the star. The radial coordinate difference between gravitational and actual radius is of order of the Planck length. The total number of ultra-relativistic particles within the star is proportional its proper surface-area, measured in units of the Planck-area. This is first direct evidence for the microscopic-statistical nature of the Hawking entropy and indicates, that the holographic principle is valid for compact self gravitating objects of any size. A "Stephan-Boltzmann-type" relation between the surface temperature and the surface area of the star is der...

  20. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  1. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  2. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  3. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  4. Measuring Thermodynamic Length

    Energy Technology Data Exchange (ETDEWEB)

    Crooks, Gavin E

    2007-09-07

    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information, and Rao's entropy differential metric. Therefore, thermodynamic length is of central interestin understanding matter out of equilibrium. In this Letter, we will consider how to denethermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.

  5. Chemical thermodynamics: plenary review.

    Science.gov (United States)

    Fegley, B., Jr.

    1990-05-01

    The invited and contributed papers dealing with the applications of chemical thermodynamics to planetary atmospheres research are briefly reviewed. The key areas for future applications of chemical thermodynamics research to planetary atmospheres are also described.

  6. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  7. Estimation Using an Enhancement Factor on Non Local Thermodynamic Equilibrium Behavior of High-lying Energy Levels of Neutral Atom in Argon Radio-Frequency Inductively-Coupled Plasma.

    Science.gov (United States)

    Wagatsuma, Kazuaki; Satoh, Kozue

    2016-01-01

    This paper describes a plasma-diagnostic method using an enhancement factor on the Boltzmann distribution among emission lines of iron atom in an argon radio-frequency inductively-coupled plasma (ICP). It indicated that Boltzmann plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from a linear relationship. This observation could be explained by the fact that ICP is not in a complete thermodynamic equilibrium between direct excitation to energy levels of iron atom, ionization of iron atom, and radiative decay processes to the ground state. Especially, the recombination of iron ion with captured electron should accompany cascade de-excitations between closely-spaced excited levels just below the ionization limit, the rates of which become slower as a whole; as a result, these high-lying levels might be more populated than the low-lying levels as if a different LTE condition coexists on the high energy side. This overpopulation could be quantitatively estimated using an enhancement factor (EF), which was a ratio of the observed intensity to the expected value extrapolated from the normal distribution on the low energy side. The EFs were generally small (less than 3); therefore, the cascade de-excitation process would slightly contribute to the population of these excited levels. It could be considered from variations of the EF that the overpopulation proceeded to a larger extent at lower radio-frequency forward powers, at higher flow rates of the carrier gas, or at higher observation heights. The reason for this is that the kinetic energy of energetic particles, such as electrons, becomes reduced under all of these plasma conditions, thus enabling the high-lying levels to be more populated by cascade de-excitation processes from iron ion rather than by collisional excitation processes with the energetic particles. A similar Boltzmann analysis using the EF

  8. Thermodynamics for dummies

    CERN Document Server

    Pauken, Mike

    2011-01-01

    Take some heat off the complexity of thermodynamics Does the mere thought of thermodynamics make you sweat? It doesn't have to! This hands-on guide helps you score your highest in a thermodynamics course by offering easily understood, plain-English explanations of how energy is used in things like automobiles, airplanes, air conditioners, and electric power plants. Thermodynamics 101 - take a look at some examples of both natural and man-made thermodynamic systems and get a handle on how energy can be used to perform work Turn up the heat - discover how to use the firs

  9. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  10. Twenty lectures on thermodynamics

    CERN Document Server

    Buchdahl, H A

    2013-01-01

    Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text

  11. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  12. Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicans.

    Science.gov (United States)

    Seweryn, Karolina; Karkowska-Kuleta, Justyna; Wolak, Natalia; Bochenska, Oliwia; Kedracka-Krok, Sylwia; Kozik, Andrzej; Rapala-Kozik, Maria

    2015-01-01

    Cell wall proteins of Candida albicans, besides their best known role in the adhesion of this fungal pathogen to host's tissues, also bind some soluble proteins, present in body fluids and involved in maintaining the biochemical homeostasis of the human organism. In particular, three plasma factors - high-molecular-mass kininogen (HK), factor XII (FXII) and prekallikrein (PPK) - have been shown to adhere to candidal cells. These proteins are involved in the surface-contact-catalyzed production of bradykinin-related peptides (kinins) that contribute to inflammatory states associated with microbial infections. We recently identified several proteins, associated with the candidal cell walls, and probably involved in the binding of HK. In our present study, a list of potential FXII- and PPK-binding proteins was proposed, using an affinity selection (on agarose-coupled FXII or PPK) from a whole mixture of β-1,3-glucanase-extrated cell wall-associated proteins and the mass-spectrometry protein identification. Five of these fungal proteins, including agglutinin-like sequence protein 3 (Als3), triosephosphate isomerase 1 (Tpi1), enolase 1 (Eno1), phosphoglycerate mutase 1 (Gpm1) and glucose-6-phosphate isomerase 1 (Gpi1), were purified and characterized in terms of affinities to the human contact factors, using the surface plasmon resonance measurements. Except Gpm1 that bound only PPK, and Als3 that exhibited an affinity to HK and FXII, the other isolated proteins interacted with all three contact factors. The determined dissociation constants for the identified protein complexes were of 10(-7) M order, and the association rate constants were in a range of 10(4)-10(5) M(-1)s(-1). The identified fungal pathogen-host protein interactions are potential targets for novel anticandidal therapeutic approaches.

  13. Thermodynamical string fragmentation

    Science.gov (United States)

    Fischer, Nadine; Sjöstrand, Torbjörn

    2017-01-01

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  14. Thermodynamical String Fragmentation

    CERN Document Server

    Fischer, Nadine

    2016-01-01

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from...

  15. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  16. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  17. Thermodynamics of radiation modes

    Energy Technology Data Exchange (ETDEWEB)

    Pina, Eduardo; De la Selva, Sara Maria Teresa [Departamento de Fisica, Universidad Autonoma Metropolitana - Iztapalapa, PO Box 55 534, Mexico, D F, 09340 (Mexico)], E-mail: pge@xanum.uam.mx, E-mail: tere@xanum.uam.mx

    2010-03-15

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the frequencies. One equation relating frequency and volume is used to define the thermodynamics of one mode, and to explain the mystery of the frequency-dependent quantities having a similar behaviour to the non-frequency-dependent quantities for some thermodynamic equations and different behaviour for others. Besides, this frequency-volume relation is used to count the number of modes in a band of frequency.

  18. Thermodynamic Stability of Wormholes

    CERN Document Server

    Sajadi, S N

    2016-01-01

    In the context of GR, we study the thermodynamic stability of evolving Lorentzian wormholes at the apparent horizon. The average pressure of the anisotrropic components is considered as the pressure of the wormhole. According to the requirements of stable equilibrium in conventional thermodynamics, we calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of the wormhole.

  19. Stochastic Thermodynamics of Learning

    Science.gov (United States)

    Goldt, Sebastian; Seifert, Udo

    2017-01-01

    Virtually every organism gathers information about its noisy environment and builds models from those data, mostly using neural networks. Here, we use stochastic thermodynamics to analyze the learning of a classification rule by a neural network. We show that the information acquired by the network is bounded by the thermodynamic cost of learning and introduce a learning efficiency η ≤1 . We discuss the conditions for optimal learning and analyze Hebbian learning in the thermodynamic limit.

  20. Stochastic Thermodynamics of Learning

    CERN Document Server

    Goldt, Sebastian

    2016-01-01

    Virtually every organism gathers information about its noisy environment and builds models from that data, mostly using neural networks. Here, we use stochastic thermodynamics to analyse the learning of a classification rule by a neural network. We show that the information acquired by the network is bounded by the thermodynamic cost of learning and introduce a learning efficiency $\\eta\\le1$. We discuss the conditions for optimal learning and analyse Hebbian learning in the thermodynamic limit.

  1. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  2. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  3. Heat and thermodynamics

    CERN Document Server

    Brewster, Hilary D

    2009-01-01

    Thermodynamics is an exciting and fascinating subject that deals with energy, which is essential for sustenance of life, and Thermodynamics has long been an essential part of Engineering Curricula all over the world. It has a broad application area ranging from Microscopic Organisms to common Household Appliances, Transportation Vehicles, and Power Generation Systems.

  4. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  5. Thermodynamics an engineering approach

    CERN Document Server

    Cengel, Yunus A

    2014-01-01

    Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...

  6. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  7. Advanced thermodynamics engineering

    CERN Document Server

    Annamalai, Kalyan; Jog, Milind A

    2011-01-01

    Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form

  8. Thermodynamics I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics

  9. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  10. Elements of statistical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2006-01-01

    Encompassing essentially all aspects of statistical mechanics that appear in undergraduate texts, this concise, elementary treatment shows how an atomic-molecular perspective yields new insights into macroscopic thermodynamics. 1974 edition.

  11. Workshop on Teaching Thermodynamics

    CERN Document Server

    1985-01-01

    It seemed appropriate to arrange a meeting of teachers of thermodynamics in the United Kingdom, a meeting held in the pleasant surroundings of Emmanuel College, Cambridge, in Sept~mber, 1984. This volume records the ideas put forward by authors, the discussion generated and an account of the action that discussion has initiated. Emphasis was placed on the Teaching of Thermodynamics to degree-level students in their first and second years. The meeting, a workshop for practitioners in which all were expected to take part, was remarkably well supported. This was notable in the representation of essentially every UK university and polytechnic engaged in teaching engineering thermodynamics and has led to a stimulating spread of ideas. By intention, the emphasis for attendance was put on teachers of engineering concerned with thermodynamics, both mechanical and chemical engineering disciplines. Attendance from others was encouraged but limited as follows: non-engineering acad­ emics, 10%, industrialists, 10%. The ...

  12. Theoretical physics 5 thermodynamics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...

  13. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  14. Thermodynamics and Frozen Foods.

    Science.gov (United States)

    Kerr, William L.; Reid, David S.

    1993-01-01

    The heat content of a food at a given temperature can be described by the thermodynamic property of enthalpy. Presents a method to construct a simple calorimeter for measuring the enthalpy changes of different foods during freezing. (MDH)

  15. Constructor Theory of Thermodynamics

    CERN Document Server

    Marletto, Chiara

    2016-01-01

    The laws of thermodynamics, powerful for countless purposes, are not exact: both their phenomenological and their statistical-mechanical versions are valid only at 'macroscopic scales', which are never defined. Here I propose a new, exact and scale-independent formulation of the first and second laws of thermodynamics, using the principles and tools of the recently proposed constructor theory. Specifically, I improve upon the axiomatic formulations of thermodynamics (Carath\\'eodory, 1909; Lieb and Yngvason, 1999) by proposing an exact and more general formulation of 'adiabatic accessibility'. This work provides an exact distinction between work and heat; it reveals an unexpected connection between information theory and the first law of thermodynamics (not just the second); it resolves the clash between the irreversibility of the 'cycle'-based second law and time-reversal symmetric dynamical laws. It also achieves the long-sought unification of the axiomatic version of the second law with Kelvin's.

  16. Thermodynamics of primary photosynthesis.

    Science.gov (United States)

    Mauzerall, D

    2013-10-01

    The thermodynamics of photosynthesis has been much discussed, but recent articles have pointed to some confusion on the subject. The aim of this review is to clarify a limited part of this state of affairs.

  17. Thermodynamics of complexity

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.

    1998-01-01

    Thermodynamics has always been a remarkable science in that it studies macroscopic properties that are only partially determined by the properties of individual molecules. Entropy and free energy only exist in constellations of more than a single molecule (degree of freedom). They are the so......-called emergent properties. Tendency towards increased entropy is an essential determinant for the behaviour of ideal gas mixtures, showing that even in the simplest physical/chemical systems, (dys)organisation of components is crucial for the behaviour of systems. This presentation aims at illustrating...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...

  18. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  19. Elements of chemical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2005-01-01

    This survey of purely thermal data in calculating the position of equilibrium in a chemical reaction highlights the physical content of thermodynamics, as distinct from purely mathematical aspects. 1970 edition.

  20. Elementary chemical thermodynamics

    CERN Document Server

    Mahan, Bruce H

    1963-01-01

    This text introduces thermodynamic principles in a straightforward manner. Suitable for advanced undergraduates and graduate students, it emphasizes chemical applications and physical interpretations and simplifies mathematical development. 1964 edition.

  1. Differential geometry and thermodynamics

    CERN Document Server

    Quevedo, H

    2003-01-01

    In this work we present the first steps of a new approach to the study of thermodynamics in the context of differential geometry. We introduce a fundamental differential 1-form and a metric on a pseudo-Euclidean manifold coordinatized by means of the extensive thermodynamic variables. The study of the connection and the curvature of these objects is initialized in this work by using Cartan structure equations. (Author)

  2. Information theory and Thermodynamics

    OpenAIRE

    Kafri, Oded

    2006-01-01

    A communication theory for a transmitter broadcasting to many receivers is presented. In this case energetic considerations cannot be neglected as in Shannon theory. It is shown that, when energy is assigned to the information bit, information theory complies with classical thermodynamic and is part of it. To provide a thermodynamic theory of communication it is necessary to define equilibrium for informatics systems that are not in thermal equilibrium and to calculate temperature, heat, and ...

  3. Thermodynamics - basic conception

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Eul Bok

    1979-08-15

    This book tells of basic conception of thermodynamics, condition and property of matter, work and power, thermal efficiency, the principle of the conservation of energy, relationship between work and heat, enthalpy, Jouel's law, complete gasification, the second low of thermodynamics such as thermal efficiency and quality factor, carnot cycle, and entropy, condensation of gas like press of internal combustion engine, vapor, steam power plant and structure, internal combustion cycle, freeze cycle, flow of fluid, combustion and heat transfer.

  4. Fundamentals of engineering thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Moran, M.J.; Shapiro, H.N.

    1988-01-01

    This book provides a thorough development of the second law of thermodynamics (featuring the entropy-production concept), an up-to-date discussion of availability analysis (including an introduction to chemical availability), and a sound description of the application areas. Topics covered include control volume energy analysis, vapor power systems, gas power systems, thermodynamic relations for simple compressible substances, nonreacting ideal gas mixtures and psycrometrics, reacting mixtures and combustion, and chemical and phase equilibrium.

  5. Chemical thermodynamics of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Amaia Sandino, M.C.; Oesthols, E. [eds.] [OECD Nuclear Energy Agency NEA, Issy-les-Moulineaux (France)

    1999-07-01

    This volume on technetium is the third volume in a series of critical reviews of the chemical thermodynamic properties of elements of special importance to modelling efforts for the safety assessment of radioactive waste disposal systems, and is the only one concerned with a fission product element. The first two volumes were reviews of the chemical thermodynamics of uranium and americium. Thermochemical data for neptunium and plutonium are being reviewed for a later volume. refs.

  6. A New Perspective on Thermodynamics

    CERN Document Server

    Lavenda, Bernard H

    2010-01-01

    Dr. Bernard H. Lavenda has written A New Perspective on Thermodynamics to combine an old look at thermodynamics with a new foundation. The book presents a historical perspective, which unravels the current presentation of thermodynamics found in standard texts, and which emphasizes the fundamental role that Carnot played in the development of thermodynamics. A New Perspective on Thermodynamics will: Chronologically unravel the development of the principles of thermodynamics and how they were conceived by their discoverers Bring the theory of thermodynamics up to the present time and indicate areas of further development with the union of information theory and the theory of means and their inequalities. New areas include nonextensive thermodynamics, the thermodynamics of coding theory, multifractals, and strange attractors. Reintroduce important, yet nearly forgotten, teachings of N.L. Sardi Carnot Highlight conceptual flaws in timely topics such as endoreversible engines, finite-time thermodynamics, geometri...

  7. Gravity as a thermodynamic phenomenon

    OpenAIRE

    Moustos, Dimitris

    2017-01-01

    The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.

  8. Evolution in thermodynamics

    Science.gov (United States)

    Bejan, Adrian

    2017-03-01

    This review covers two aspects of "evolution" in thermodynamics. First, with the constructal law, thermodynamics is becoming the domain of physics that accounts for the phenomenon of evolution in nature, in general. Second, thermodynamics (and science generally) is the evolving add-on that empowers humans to predict the future and move more easily on earth, farther and longer in time. The part of nature that thermodynamics represents is this: nothing moves by itself unless it is driven by power, which is then destroyed (dissipated) during movement. Nothing evolves unless it flows and has the freedom to change its architecture such that it provides greater and easier access to the available space. Thermodynamics is the modern science of heat and work and their usefulness, which comes from converting the work (power) into movement (life) in flow architectures that evolve over time to facilitate movement. I also review the rich history of the science, and I clarify misconceptions regarding the second law, entropy, disorder, and the arrow of time, and the supposed analogy between heat and work.

  9. Thermodynamics of Fractal Universe

    CERN Document Server

    Sheykhi, Ahmad; Wang, Bin

    2012-01-01

    We investigate the thermodynamical properties of the apparent horizon in a fractal universe. We find that one can always rewrite the Friedmann equation of the fractal universe in the form of the entropy balance relation $ \\delta Q=TdS+Td\\tilde{S}$, where $ \\delta Q $ and $ T $ are the energy flux and Unruh temperature seen by an accelerated observer just inside the apparent horizon, and $d\\tilde{S}$ is the entropy production term due to nonequilibrium thermodynamics of fractal universe. This shows that in a fractal universe, a treatment with nonequilibrium thermodynamics of spacetime may be needed. We also study the generalized second law of thermodynamics in the framework of fractal universe. When the temperature of the apparent horizon and the matter fields inside the horizon are equal, i.e. $T=T_h$, the generalized second law of thermodynamics can be fulfilled provided the deceleration and the equation of state parameters ranges either as $-1 \\leq q < 0 $, $- 1 \\leq w < - 1/3$ or as $q<-1$, $w<...

  10. Thermodynamics of Biological Processes

    Science.gov (United States)

    Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob

    2012-01-01

    There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788

  11. Thermodynamics "beyond" local equilibrium

    Science.gov (United States)

    Vilar, Jose; Rubi, Miguel

    2002-03-01

    Nonequilibrium thermodynamics has shown its applicability in a wide variety of different situations pertaining to fields such as physics, chemistry, biology, and engineering. As successful as it is, however, its current formulation considers only systems close to equilibrium, those satisfying the so-called local equilibrium hypothesis. Here we show that diffusion processes that occur far away from equilibrium can be viewed as at local equilibrium in a space that includes all the relevant variables in addition to the spatial coordinate. In this way, nonequilibrium thermodynamics can be used and the difficulties and ambiguities associated with the lack of a thermodynamic description disappear. We analyze explicitly the inertial effects in diffusion and outline how the main ideas can be applied to other situations. [J.M.G. Vilar and J.M. Rubi, Proc. Natl. Acad. Sci. USA 98, 11081-11084 (2001)].

  12. Statistical thermodynamics of alloys

    CERN Document Server

    Gokcen, N A

    1986-01-01

    This book is intended for scientists, researchers, and graduate students interested in solutions in general, and solutions of metals in particular. Readers are assumed to have a good background in thermodynamics, presented in such books as those cited at the end of Chapter 1, "Thermo­ dynamic Background." The contents of the book are limited to the solutions of metals + metals, and metals + metalloids, but the results are also appli­ cable to numerous other types of solutions encountered by metallurgists, materials scientists, geologists, ceramists, and chemists. Attempts have been made to cover each topic in depth with numerical examples whenever necessary. Chapter 2 presents phase equilibria and phase diagrams as related to the thermodynamics of solutions. The emphasis is on the binary diagrams since the ternary diagrams can be understood in terms of the binary diagrams coupled with the phase rule, and the Gibbs energies of mixing. The cal­ culation of thermodynamic properties from the phase diagrams is ...

  13. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  14. Discrete Thermodynamics of Lasers

    CERN Document Server

    Zilbergleyt, B

    2007-01-01

    The paper offers a discrete thermodynamic model of lasers. Laser is an open system; its equilibrium is based on a balance of two thermodynamic forces, one related to the incoming pumping power and another to the emitted light. The basic expression for such equilibrium is a logistic map, graphical solutions to which are pitchfork bifurcation diagrams. As pumping force increases, the relative populations on the ground and lasing branches tend to zero and unity correspondingly. An interesting feature of this model is the line spectrum of the up and down transitions between the branches beyond bifurcation point. Even in a simple case of 2-level laser with only 2 possible transition types (up and down), the spectra look like sets of the line packets, starting well before the population inversion. This effect is an independent confirmation of the Einstein's prohibition on practical realization of 2-level laser. Multilevel lasers may be approached by employing the idea of thermodynamic activity for the emitting atom...

  15. Thermodynamics and Thermoeconomics

    Directory of Open Access Journals (Sweden)

    Yehia M. El-Sayed

    1999-03-01

    Full Text Available Raising the efficiency of an energy system is within the domain of thermodynamics. Raising the efficiency cost-effectively (Thermoeconomics is a multi-disciplinary problem in which thermodynamics interfaces other disciplines of knowledge which in this particular case are design, manufacture and economics. This paper deals with a communication/optimization strategy, via the concept of costing equations, whereby the system can be analyzed and optimized for minimum cost within the domain of thermodynamics. The communication/optimization strategy is explained. The generation of costing equations is demonstrated. A gas turbine power system and seawater distillation process system are used as examples for improved design point and improved configuration. The results of their optimized design points for configurations in order of increasing complexity are displayed on cost-efficiency coordinates.

  16. Thermodynamics of Nonadditive Systems.

    Science.gov (United States)

    Latella, Ivan; Pérez-Madrid, Agustín; Campa, Alessandro; Casetti, Lapo; Ruffo, Stefano

    2015-06-12

    The usual formulation of thermodynamics is based on the additivity of macroscopic systems. However, there are numerous examples of macroscopic systems that are not additive, due to the long-range character of the interaction among the constituents. We present here an approach in which nonadditive systems can be described within a purely thermodynamics formalism. The basic concept is to consider a large ensemble of replicas of the system where the standard formulation of thermodynamics can be naturally applied and the properties of a single system can be consequently inferred. After presenting the approach, we show its implementation in systems where the interaction decays as 1/r(α) in the interparticle distance r, with α smaller than the embedding dimension d, and in the Thirring model for gravitational systems.

  17. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  18. Thermodynamics of graphene

    Science.gov (United States)

    Rusanov, A. I.

    2014-12-01

    The 21st century has brought a lot of new results related to graphene. Apparently, graphene has been characterized from all points of view except surface science and, especially, surface thermodynamics. This report aims to close this gap. Since graphene is the first real two-dimensional solid, a general formulation of the thermodynamics of two-dimensional solid bodies is given. The two-dimensional chemical potential tensor coupled with stress tensor is introduced, and fundamental equations are derived for energy, free energy, grand thermodynamic potential (in the classical and hybrid forms), enthalpy, and Gibbs energy. The fundamentals of linear boundary phenomena are formulated with explaining the concept of a dividing line, the mechanical and thermodynamic line tensions, line energy and other linear properties with necessary thermodynamic equations. The one-dimensional analogs of the Gibbs adsorption equation and Shuttleworth-Herring relation are presented. The general thermodynamic relationships are illustrated with calculations based on molecular theory. To make the reader sensible of the harmony of chemical and van der Waals forces in graphene, the remake of the classical graphite theory is presented with additional variable combinations of graphene sheets. The calculation of the line energy of graphene is exhibited including contributions both from chemical bonds and van der Waals forces (expectedly, the latter are considerably smaller than the former). The problem of graphene holes originating from migrating vacancies is discussed on the basis of the Gibbs-Curie principle. An important aspect of line tension is the planar sheet/nanotube transition where line tension acts as a driving force. Using the bending stiffness of graphene, the possible radius range is estimated for achiral (zigzag and armchair) nanotubes.

  19. Concise chemical thermodynamics

    CERN Document Server

    Peters, APH

    2010-01-01

    EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of

  20. Introductory statistical thermodynamics

    CERN Document Server

    Dalarsson, Nils; Golubovic, Leonardo

    2011-01-01

    Introductory Statistical Thermodynamics is a text for an introductory one-semester course in statistical thermodynamics for upper-level undergraduate and graduate students in physics and engineering. The book offers a high level of detail in derivations of all equations and results. This information is necessary for students to grasp difficult concepts in physics that are needed to move on to higher level courses. The text is elementary, self contained, and mathematically well-founded, containing a number of problems with detailed solutions to help students to grasp the more difficult

  1. Thermodynamics II essentials

    CERN Document Server

    REA, The Editors of

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics II includes review of thermodynamic relations, power and refrigeration cycles, mixtures and solutions, chemical reactions, chemical equilibrium, and flow through nozzl

  2. Thermodynamics of ABC transporters.

    Science.gov (United States)

    Zhang, Xuejun C; Han, Lei; Zhao, Yan

    2016-01-01

    ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.

  3. Quantum thermodynamic cooling cycle

    CERN Document Server

    Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

    2001-01-01

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  4. Mechanics, Waves and Thermodynamics

    Science.gov (United States)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  5. Components in Chemical Thermodynamics

    Science.gov (United States)

    Alberty, Robert A.

    1995-09-01

    Chemical equations are actually matrix equations, and this has important implications for their thermodynamic treatment. The fundamental equation for chemical thermodynamics for a chemical reaction system can be written in terms of species, but at chemical equilibrium, it has to be written in terms of components. The number of components is equal to the number of species minus the number of independent chemical reactions. The fundamental equation for the Gibbs energy of a system containing ethylene, methane, ethane, and propane is discussed. At chemical equilibrium there are two components, which can be taken to be carbon and hydrogen or ethylene and methane. There are advantages in using matrix notation.

  6. Black Hole Thermodynamics

    CERN Document Server

    Carlip, S

    2014-01-01

    The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this chapter I will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.

  7. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  8. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    Science.gov (United States)

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  9. Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Morales, Vladimir [Departament de Termodinamica, Universitat de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain)]. E-mail: vladimir.garcia@uv.es; Cervera, Javier [Departament de Termodinamica, Universitat de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Pellicer, Julio [Departament de Termodinamica, Universitat de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain)

    2005-02-28

    The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems.

  10. Modeling the thermodynamics of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Thomas

    2010-07-26

    Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)

  11. A Hamiltonian approach to Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)

    2016-10-15

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  12. Thermodynamic stabilization of colloids

    NARCIS (Netherlands)

    Stol, R.J.; Bruyn, P.L. de

    1980-01-01

    An analysis is given of the conditions necessary for obtaining a thermodynamically stable dispersion (TSD) of solid particles in a continuous aqueous solution phase. The role of the adsorption of potential-determining ions at the planar interface in lowering the interfacial free energy (γ) to promot

  13. Thermodynamics of liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Kushnirenko, A.N.

    1988-01-01

    The thermodynamics of a liquid metal based on quantum-mechanical models of the crystal, electronic, and nuclear structures of the metal are derived in this paper. The models are based on such formulations as the Bohr radius, the Boltzmann constant, the Planck Law, the Fermi surface, and the Pauli principle.

  14. Thermodynamically Stable Pickering Emulsions

    NARCIS (Netherlands)

    Sacanna, S.; Kegel, W.K.; Philipse, A.P.

    2007-01-01

    We show that under appropriate conditions, mixtures of oil, water, and nanoparticles form thermodynamically stable oil-in-water emulsions with monodisperse droplet diameters in the range of 30–150 nm. This observation challenges current wisdom that so-called Pickering emulsions are at most metastabl

  15. Thermodynamical Arguments against Evolution

    Science.gov (United States)

    Rosenhouse, Jason

    2017-01-01

    The argument that the second law of thermodynamics contradicts the theory of evolution has recently been revived by anti-evolutionists. In its basic form, the argument asserts that whereas evolution implies that there has been an increase in biological complexity over time, the second law, a fundamental principle of physics, shows this to be…

  16. On Teaching Thermodynamics

    Science.gov (United States)

    Debbasch, F.

    2011-01-01

    The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…

  17. The thermodynamics of portfolios

    OpenAIRE

    Edward W. Piotrowski; Jan Sladkowski

    2000-01-01

    We propose a new method of valuation of portfolios and their respective investing strategies. To this end we define a canonical ensemble of portfolios that allows to use the formalism of thermodynamics. (final version published in Acta Phys.Pol.B,32(2001)597-604)

  18. On Teaching Thermodynamics

    Science.gov (United States)

    Debbasch, F.

    2011-01-01

    The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…

  19. Thermodynamics and statistical mechanics

    CERN Document Server

    Landsberg, Peter T

    1990-01-01

    Exceptionally articulate treatment combines precise mathematical style with strong physical intuition. Wide range of applications includes negative temperatures, negative heat capacities, special and general relativistic effects, black hole thermodynamics, gravitational collapse, more. Over 100 problems with worked solutions. Advanced undergraduate, graduate level. Table of applications. Useful formulas and other data.

  20. Chemical thermodynamics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Keszei, Ernoe [Budapest Univ. (Hungary). Dept. of Physical Chemistry

    2012-07-01

    Eminently suitable as a required textbook comprising complete material for or an undergraduate chemistry major course in chemical thermodynamics. Clearly explains details of formal derivations that students can easily follow and so master applied mathematical operations. Offers problems and solutions at the end of each chapter for self-test and self- or group study. This course-derived undergraduate textbook provides a concise explanation of the key concepts and calculations of chemical thermodynamics. Instead of the usual 'classical' introduction, this text adopts a straightforward postulatory approach that introduces thermodynamic potentials such as entropy and energy more directly and transparently. Structured around several features to assist students' understanding, Chemical Thermodynamics: - Develops applications and methods for the ready treatment of equilibria on a sound quantitative basis. - Requires minimal background in calculus to understand the text and presents formal derivations to the student in a detailed but understandable way. - Offers end-of-chapter problems (and answers) for self-testing and review and reinforcement, of use for self- or group study. This book is suitable as essential reading for courses in a bachelor and master chemistry program and is also valuable as a reference or textbook for students of physics, biochemistry and materials science.

  1. Thermodynamics in dynamical spacetimes

    CERN Document Server

    Tresguerres, Romualdo

    2013-01-01

    We derive a general formulation of the laws of irreversible thermodynamics in the presence of electromagnetism and gravity. For the handling of macroscopic material media, we use as a guide the field equations and the Noether identities of fundamental matter as deduced in the framework of gauge theories of the Poincar\\'e$\\otimes U(1)$ group.

  2. Thermodynamics for the practicing engineer

    CERN Document Server

    Theodore, Louis; Vanvliet, Timothy

    2009-01-01

    This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.

  3. Thermodynamics of two-dimensional Yukawa systems across coupling regimes

    Science.gov (United States)

    Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.

    2017-04-01

    Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.

  4. IUPAC conference on chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The 39th Calorimetry Conference includes papers on the following typics: thermodynamic properties of various compounds and materials; measuring methods and equipment for determination of thermodynamic quantities; calculation of thermodynamic quantities. Fossil fuels, nuclear fuels, electrochemistry, photochemistry, and biochemistry are areas of applications which are emphasized.

  5. Thermodynamic Function of Life

    CERN Document Server

    Michaelian, K

    2009-01-01

    Darwinian Theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic, out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere of greatest mass, the plants and cyanobacteria, are involved in the transpiration of vast amounts of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its life barren neighboring planets, Venus and Mars. The water cycle, including the absorption of sunlight in the biosphere, is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can therefore be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants ...

  6. Mechanics and thermodynamics

    CERN Document Server

    Demtröder, Wolfgang

    2017-01-01

    This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.

  7. A commentary on thermodynamics

    CERN Document Server

    Day, William Alan

    1988-01-01

    The aim of this book is to comment on, and clarify, the mathematical aspects of the theory of thermodynamics. The standard presentations of the subject are often beset by a number of obscurities associated with the words "state", "reversible", "irreversible", and "quasi-static". This book is written in the belief that such obscurities are best removed not by the formal axiomatization of thermodynamics, but by setting the theory in the wider context of a genuine field theory which incorporates the effects of heat conduction and intertia, and proving appropriate results about the governing differential equations of this field theory. Even in the simplest one-dimensional case it is a nontrivial task to carry through the details of this program, and many challenging problems remain open.

  8. Thermodynamics, entropy and waterwheels

    CERN Document Server

    Bagnoli, Franco

    2016-01-01

    In textbooks, it is often repeated that Carnot arrived to the formulation of the second law of thermodynamics without knowing the first, using the caloric theory. In fact, in his book, R\\'eflexions sur la puissance motrice du feu, he often repeats that the "fall" of the caloric through a heat engine is equivalent to the fall of the water through a water wheel. Actually, one can play the analogy between thermal and hydraulic machines all the way down, and discover, with the help of the first principle and introducing the concept of the absolute height, what really "falls" through a waterwheel, i.e., the entropy. Adding a bit of relativity it is possible to extend the analogy to real machines and also to introduce the analogous of third law of thermodynamics.

  9. Chemical thermodynamics of americium

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.J. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab.; Bidoglio, G. [Commission of the European Communities, Ispra (Italy). Environment Inst.; Rand, M.H. [Wintershill Consultancy, Dry Sandford, Abingdon (United Kingdom); Robouch, P.B. [Commission of the European Communities, Geel (Belgium). Inst. for Reference Materials and Measurements; Wanner, H. [MBT Environmental Engineering, Zurich (Switzerland); Puigdomenech, I. [OECD Nuclear Energy Agency, Issy-les-Moulineaux (France)

    1995-09-01

    This is the second volume in a series of critical reviews of the chemical thermodynamic data of those elements of particular importance in the safety assessment modeling of high-level radioactive waste storage and disposal facilities. The objective of these reviews is to provide a set of reliable thermodynamic data that can be used to describe the behaviour of these elements under conditions relevant for radioactive waste disposal systems and the geochemical environments. The present volume is a review of experimental data reported in the literature for americium. On a few occasions, where no data existed, comparisons and estimates were made based on experimental data on analog lanthanide elements. The basic philosophy was to develop a minimum set of solid phases and solution species of americium that would fit all experimental data being reviewed. 15 figs., 32 tabs., 485 refs., 4 appendices

  10. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2013-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  11. Thermodynamic Origin of Life

    OpenAIRE

    Michaelian, K.

    2009-01-01

    Understanding the thermodynamic function of life may shed light on its origin. Life, as are all irreversible processes, is contingent on entropy production. Entropy production is a measure of the rate of the tendency of Nature to explore available microstates. The most important irreversible process generating entropy in the biosphere, and thus facilitating this exploration, is the absorption and transformation of sunlight into heat. Here we hypothesize that life began, and persists today, as...

  12. Thermodynamics and emergent universe

    CERN Document Server

    Ghosh, Saumya

    2016-01-01

    We show that in the isentropic scenario the first order thermodynamical particle creation model gives an emergent universe solution even when the chemical potential is non-zero. However there exists no emergent universe scenario in the second order non-equilibrium theory for the particle creation model. We then point out a correspondence between the particle creation model with barotropic equation of state and the equation of state giving rise to an emergent universe without particle creation in spatially flat FRW cosmology.

  13. Thermodynamics of Organic Compounds

    Science.gov (United States)

    1979-01-01

    General Techniques for Combustion of Liquid/Soli. Organic Compounds by Oxygen Bomb Calorimetry by Arthur J. Head, William D. Good, and Ccrnelius...Mosselman, Chap. 8; Combustion of Liquid/Solid Organic Compounds with Non-Metallic Hetero-Atoms by Arthur J. Head and William D. Good, Chap. 9; in...0 Box 95085 Washington, DC 20234 Los Angeles, CA 90045 National Bureau of Standards CINDAS Chemical Thermodynamics Division Purdue University

  14. Black Hole Thermodynamics

    Science.gov (United States)

    Israel, Werner

    This chapter reviews the conceptual developments on black hole thermodynamics and the attempts to determine the origin of black hole entropy in terms of their horizon area. The brick wall model and an operational approach are discussed. An attempt to understand at the microlevel how the quantum black hole acquires its thermal properties is included. The chapter concludes with some remarks on the extension of these techniques to describing the dynamical process of black hole evaporation.

  15. Unit 5. Thermodynamics (Summary)

    OpenAIRE

    Beléndez Vázquez, Augusto

    2012-01-01

    Summary of the "Unit 5. Thermodynamics" of course "Physical Foundations of Engineering I". Degree in Sound and Image Engineering, in Telecommunications. Polytechnic School of the University of Alicante Resumen del "Tema 5. Termodinámica" de la asignatura "Fundamentos Físicos de la Ingeniería I". Grado en Ingeniería en Sonido e Imagen en Telecomunicaciones. Escuela Politécnica Superior. Universidad de Alicante.

  16. Thermodynamical Arguments Against Evolution

    Science.gov (United States)

    Rosenhouse, Jason

    2017-02-01

    The argument that the second law of thermodynamics contradicts the theory of evolution has recently been revived by anti-evolutionists. In its basic form, the argument asserts that whereas evolution implies that there has been an increase in biological complexity over time, the second law, a fundamental principle of physics, shows this to be impossible. Scientists have responded primarily by noting that the second law does not rule out increases in complexity in open systems, and since the Earth receives energy from the Sun, it is an open system. This reply is correct as far as it goes, and it adequately rebuts the most crude versions of the second law argument. However, it is insufficient against more sophisticated versions, and it leaves many relevant aspects of thermodynamics unexplained. We shall consider the history of the argument, explain the nuances various anti-evolution writers have brought to it, and offer thorough explanations for why the argument is fallacious. We shall emphasize in particular that the second law is best viewed as a mathematical statement. Since anti-evolutionists never make use of the mathematical structure of thermodynamics, invocations of the second law never contribute anything substantive to their discourse.

  17. Nonequilibrium thermodynamics of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M., E-mail: marco.schweizer@math.ethz.ch [ETH Zurich, Department of Materials, Polymer Physics, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Sagis, L. M. C., E-mail: leonard.sagis@wur.nl [ETH Zurich, Department of Materials, Polymer Physics, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Food Physics Group, Wageningen University, Bornse Weilanden, 6708 WG Wageningen (Netherlands)

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  18. Thermodynamic Functions of Magnetized Coulomb Crystals

    CERN Document Server

    Baiko, D A

    2013-01-01

    Free energy, internal energy, and specific heat for each of the three phonon spectrum branches of a magnetized Coulomb crystal with body-centered cubic lattice are calculated by numerical integration over the Brillouin zone in the range of magnetic fields $B$ and temperatures $T$, such that $0 \\le \\omega_{\\rm B}/\\omega_{\\rm p}\\le 10^3$ and $10^{-4} \\le T/T_{\\rm p} \\le 10^4$. In this case, $\\omega_{\\rm B}$ is the ion cyclotron frequency, $\\omega_{\\rm p}$ and $T_{\\rm p}$ are the ion plasma frequency and plasma temperature, respectively. The results of numerical calculations are approximated by simple analytical formulas. For illustration, these formulas are used to analyze the behavior of the heat capacity in the crust of a neutron star with strong magnetic field. Thermodynamic functions of magnetized neutron star crust are needed for modeling various observational phenomena in magnetars and high magnetic field pulsars.

  19. Thermodynamics of adaptive molecular resolution

    Science.gov (United States)

    Delgado-Buscalioni, R.

    2016-11-01

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U(1)-U(0). The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al., J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as `real' thermodynamic variables. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  20. The postulates of gravitational thermodynamics

    CERN Document Server

    Martínez, E A

    1996-01-01

    The general principles and logical structure of a thermodynamic formalism that incorporates strongly self-gravitating systems are presented. This framework generalizes and simplifies the formulation of thermodynamics developed by Callen. The definition of extensive variables, the homogeneity properties of intensive parameters, and the fundamental problem of gravitational thermodynamics are discussed in detail. In particular, extensive parameters include quasilocal quantities and are naturally incorporated into a set of basic general postulates for thermodynamics. These include additivity of entropies (Massieu functions) and the generalized second law. Fundamental equations are no longer homogeneous first-order functions of their extensive variables. It is shown that the postulates lead to a formal resolution of the fundamental problem despite non-additivity of extensive parameters and thermodynamic potentials. Therefore, all the results of (gravitational) thermodynamics are an outgrowth of these postulates. T...

  1. Thermodynamics of Thermoelectric Materials

    Science.gov (United States)

    Doak, Jeff W.

    One challenge facing society is the responsible use of our energy resources. Increasing the efficiency of energy generation provides one path to solving this challenge. One commonality among most current energy generation methods is that waste heat is generated during the generation process. Thermoelectrics can provide a solution to increasing the efficiency of power generation and automotive systems by converting waste heat directly to electricity. The current barrier to implementation of thermoelectric systems is the low efficiencies of underlying thermoelectric materials. The efficiency of a thermoelectric material depends on the electronic and thermal transport properties of the material; a good thermoelectric material should be an electronic conductor and a thermal insulator, traits which generally oppose one another. The thermal properties of a thermoelectric material can be improved by forming nanoscale precipitates with the material which scatter phonons, reducing the thermal conductivity. The electronic properties of a thermoelectric material can be improved by doping the material to increase the electronic conductivity or by alloying the material to favorably alter its band structure. The ability of these chemical modifications to affect the thermoelectric efficiency of material are ultimately governed by the chemical thermodynamics of the system. PbTe is a prototypical thermoelectric material: Alloying PbTe with PbS (or other materials) creates nanostructures which scatter phonons and reduce the lattice thermal conductivity. Doping PbTe with Na increases the hole concentration, increasing the electronic conductivity. In this work, we investigate the thermodynamics of PbTe and similar systems using first principles to understand the underlying mechanisms controlling the formation of nanostructures and the amount of doping allowed in these systems. In this work we: 1) investigate the thermodynamics of pseudo-binary alloys of IV--VI systems to identify the

  2. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  3. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  4. Chemical thermodynamics of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Grenthe, I.; Fuger, J.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung Cregu, C.; Wanner, H.

    1992-01-01

    A comprehensive overview on the chemical thermodynamics of those elements that are of particular importance in the safety assessment of radioactive waste disposal systems is provided. This is the first volume in a series of critical reviews to be published on this subject. The book provides an extensive compilation of chemical thermodynamic data for uranium. A description of procedures for activity corrections and uncertainty estimates is given. A critical discussion of data needed for nuclear waste management assessments, including areas where significant gaps of knowledge exist is presented. A detailed inventory of chemical thermodynamic data for inorganic compounds and complexes of uranium is listed. Data and their uncertainty limits are recommended for 74 aqueous complexes and 199 solid and 31 gaseous compounds containing uranium, and on 52 aqueous and 17 solid auxiliary species containing no uranium. The data are internally consistent and compatible with the CODATA Key Values. The book contains a detailed discussion of procedures used for activity factor corrections in aqueous solution, as well as including methods for making uncertainty estimates. The recommended data have been prepared for use in environmental geochemistry. Containing contributions written by experts the chapters cover various subject areas such a s: oxide and hydroxide compounds and complexes, the uranium nitrides, the solid uranium nitrates and the arsenic-containing uranium compounds, uranates, procedures for consistent estimation of entropies, gaseous and solid uranium halides, gaseous uranium oxides, solid phosphorous-containing uranium compounds, alkali metal uranates, uncertainties, standards and conventions, aqueous complexes, uranium minerals dealing with solubility products and ionic strength corrections. The book is intended for nuclear research establishments and consulting firms dealing with uranium mining and nuclear waste disposal, as well as academic and research institutes.

  5. Thermodynamics of irreversible physicochemical processes

    Science.gov (United States)

    Bulatov, N. K.; Lundin, A. B.

    The main principles of the phenomenological thermodynamics of irreversible processes are expounded in close relation to concepts of classical phenomenological thermodynamics, and the most important thermodynamic equations of state are presented. These principles are then used in describing various physicochemical processes, including chemical transformations, structural relaxation, heat conduction, electrical conductivity, diffusion, and sedimentation in homogeneous, continuous, and discontinuous systems. Other processes discussed include filtration, electrical osmosis, heat transfer, and the mechanocaloric effect.

  6. Thermodynamic aspects of rock friction

    CERN Document Server

    Mitsui, Noa

    2013-01-01

    Rate- and state-dependent friction law for velocity-step tests is analyzed from a thermodynamic point of view. A simple macroscopic non-equilibrium thermodynamic model with a single internal variable reproduces instantaneous jump and relaxation. Velocity weakening appears as a consequence of a plasticity related nonlinear coefficient. Permanent part of displacement corresponds to plastic strain, and relaxation effects are analogous to creep in thermodynamic rheology.

  7. Practical Chemical Thermodynamics for Geoscientists

    CERN Document Server

    Fegley, Jr, Bruce

    2012-01-01

    Practical Chemical Thermodynamics for Geoscientists covers classical chemical thermodynamics and focuses on applications to practical problems in the geosciences, environmental sciences, and planetary sciences. This book will provide a strong theoretical foundation for students, while also proving beneficial for earth and planetary scientists seeking a review of thermodynamic principles and their application to a specific problem. Strong theoretical foundation and emphasis on applicationsNumerous worked examples in each chapterBrief historical summaries and biographies of key thermodynamicist

  8. On thermodynamic and microscopic reversibility

    Energy Technology Data Exchange (ETDEWEB)

    Crooks, Gavin E.

    2011-07-12

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.

  9. Thermodynamics of Rubber Elasticity

    Science.gov (United States)

    Pellicer, J.; Manzanares, J. A.; Zúñiga, J.; Utrillas, P.; Fernández, J.

    2001-02-01

    A thermodynamic study of an isotropic rubber band under uniaxial stress is presented on the basis of its equation of state. The behavior of the rubber band is compared with both that of an ideal elastomer and that of an ideal gas, considering the generalized Joule's law as the ideality criterion. First, the thermal expansion of rubber at constant stress and the change in the stress with temperature at constant length are described. Thermoelastic inversion is then considered, and the experimental observations are easily rationalized. Finally, the temperature changes observed in the adiabatic stretching of a rubber band are evaluated from the decrease of entropy with length.

  10. Principles of thermodynamics

    CERN Document Server

    Kaufman, Myron

    2002-01-01

    Ideal for one- or two-semester courses that assume elementary knowledge of calculus, This text presents the fundamental concepts of thermodynamics and applies these to problems dealing with properties of materials, phase transformations, chemical reactions, solutions and surfaces. The author utilizes principles of statistical mechanics to illustrate key concepts from a microscopic perspective, as well as develop equations of kinetic theory. The book provides end-of-chapter question and problem sets, some using Mathcad™ and Mathematica™; a useful glossary containing important symbols, definitions, and units; and appendices covering multivariable calculus and valuable numerical methods.

  11. Time and Thermodynamics

    CERN Document Server

    Kirkland, Kyle

    2007-01-01

    Temperature is vital to the health and welfare of all living beings, and Earth's temperature varies considerably from place to place. Early humans could only live in warm areas such as the tropics. Although modern humans have the technology to keep their houses and offices warm even in cold environments, the growth and development of civilization has created unintentional effects. Cities are warmer than their surrounding regions, and on a global scale, Earth is experiencing rising temperatures. Thus, the science of thermodynamics offers an important tool to study these effects. "Time and

  12. Interfacial solvation thermodynamics

    Science.gov (United States)

    Ben-Amotz, Dor

    2016-10-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies.

  13. Thermodynamic Stability of Nanobubbles

    CERN Document Server

    Attard, Phil

    2015-01-01

    The observed stability of nanobubbles contradicts the well-known result in classical nucleation theory, that the critical radius is both microscopic and thermodynamically unstable. Here nanoscopic stability is shown to be the combined result of two non-classical mechanisms. It is shown that the surface tension decreases with increasing supersaturation, and that this gives a nanoscopic critical radius. Whilst neither a free spherical bubble nor a hemispherical bubble mobile on an hydrophobic surface are stable, it is shown that an immobilized hemispherical bubble with a pinned contact rim is stable and that the total entropy is a maximum at the critical radius.

  14. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  15. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  16. Dynamics and Thermodynamics of Nanoclusters

    Directory of Open Access Journals (Sweden)

    Karo Michaelian

    2015-10-01

    Full Text Available The dynamic and thermodynamic properties of nanoclusters are studied in two different environments: the canonical and microcanonical ensembles. A comparison is made to thermodynamic properties of the bulk. It is shown that consistent and reproducible results on nanoclusters can only be obtained in the canonical ensemble. Nanoclusters in the microcanonical ensemble are trapped systems, and inconsistencies will be found if thermodynamic formalism is applied. An analytical model is given for the energy dependence of the phase space volume of nanoclusters, which allows the prediction of both dynamical and thermodynamical properties.

  17. Thermodynamics of Accelerating Black Holes

    CERN Document Server

    Appels, Michael; Kubiznak, David

    2016-01-01

    We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.

  18. Thermodynamics of Accelerating Black Holes

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; KubizÅák, David

    2016-09-01

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon—even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  19. Symmetry group and group representations associated with the thermodynamic covariance principle

    Science.gov (United States)

    Sonnino, Giorgio; Evslin, Jarah; Sonnino, Alberto; Steinbrecher, György; Tirapegui, Enrique

    2016-10-01

    The main objective of this work [previously appeared in literature, the thermodynamical field theory (TFT)] is to determine the nonlinear closure equations (i.e., the flux-force relations) valid for thermodynamic systems out of Onsager's region. The TFT rests upon the concept of equivalence between thermodynamic systems. More precisely, the equivalent character of two alternative descriptions of a thermodynamic system is ensured if, and only if, the two sets of thermodynamic forces are linked with each other by the so-called thermodynamic coordinate transformations (TCT). In this work, we describe the Lie group and the group representations associated to the TCT. The TCT guarantee the validity of the so-called thermodynamic covariance principle (TCP): The nonlinear closure equations, i.e., the flux-force relations, everywhere and in particular outside the Onsager region, must be covariant under TCT. In other terms, the fundamental laws of thermodynamics should be manifestly covariant under transformations between the admissible thermodynamic forces, i.e., under TCT. The TCP ensures the validity of the fundamental theorems for systems far from equilibrium. The symmetry properties of a physical system are intimately related to the conservation laws characterizing that system. Noether's theorem gives a precise description of this relation. We derive the conserved (thermodynamic) currents and, as an example of calculation, a system out of equilibrium (tokamak plasmas) where the validity of TCP imposed at the level of the kinetic equations is also analyzed.

  20. Symmetry group and group representations associated with the thermodynamic covariance principle.

    Science.gov (United States)

    Sonnino, Giorgio; Evslin, Jarah; Sonnino, Alberto; Steinbrecher, György; Tirapegui, Enrique

    2016-10-01

    The main objective of this work [previously appeared in literature, the thermodynamical field theory (TFT)] is to determine the nonlinear closure equations (i.e., the flux-force relations) valid for thermodynamic systems out of Onsager's region. The TFT rests upon the concept of equivalence between thermodynamic systems. More precisely, the equivalent character of two alternative descriptions of a thermodynamic system is ensured if, and only if, the two sets of thermodynamic forces are linked with each other by the so-called thermodynamic coordinate transformations (TCT). In this work, we describe the Lie group and the group representations associated to the TCT. The TCT guarantee the validity of the so-called thermodynamic covariance principle (TCP): The nonlinear closure equations, i.e., the flux-force relations, everywhere and in particular outside the Onsager region, must be covariant under TCT. In other terms, the fundamental laws of thermodynamics should be manifestly covariant under transformations between the admissible thermodynamic forces, i.e., under TCT. The TCP ensures the validity of the fundamental theorems for systems far from equilibrium. The symmetry properties of a physical system are intimately related to the conservation laws characterizing that system. Noether's theorem gives a precise description of this relation. We derive the conserved (thermodynamic) currents and, as an example of calculation, a system out of equilibrium (tokamak plasmas) where the validity of TCP imposed at the level of the kinetic equations is also analyzed.

  1. Biochemical Thermodynamics under near Physiological Conditions

    Science.gov (United States)

    Mendez, Eduardo

    2008-01-01

    The recommendations for nomenclature and tables in Biochemical Thermodynamics approved by IUBMB and IUPAC in 1994 can be easily introduced after the chemical thermodynamic formalism. Substitution of the usual standard thermodynamic properties by the transformed ones in the thermodynamic equations, and the use of appropriate thermodynamic tables…

  2. THE THERMODYNAMIC CHARACTER OF INFORMATION

    Directory of Open Access Journals (Sweden)

    Popova T.M.

    2010-04-01

    Full Text Available The article includes data concerning application of one of the universal method of the modern science based on fundamental thermodynamic laws to analyze the efficiency of the information processes. The comparison of the information and thermodynamic processes brought the author to the basic conclusion of the energetic character of information.

  3. Fundamental functions in equilibrium thermodynamics

    NARCIS (Netherlands)

    Horst, H.J. ter

    1987-01-01

    In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using

  4. Thermodynamics from Car to Kitchen

    Science.gov (United States)

    Auty, Geoff

    2014-01-01

    The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…

  5. Thermodynamics from Car to Kitchen

    Science.gov (United States)

    Auty, Geoff

    2014-01-01

    The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…

  6. Thermodynamics of light and sound

    Directory of Open Access Journals (Sweden)

    G. M. Kremer

    1991-05-01

    Full Text Available This paper presents a thermodynamic theory of light and sound. It demonstrates that extended thermodynamics permits the explicit calculation of the main part of the equations of balance of energy for photons and phonons. Wave speeds are calculated and the limiting cases of near-equilibrium and free streaming are discussed.

  7. Thermodynamics of the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Frank D [CSIRO Exploration and Mining, PO Box 883, Kenmore, Qld. 4069 (Australia)], E-mail: Frank.Stacey@csiro.au

    2010-04-15

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10{sup 12} W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10{sup 4} : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical

  8. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  9. Equilibrium thermodynamics - Callen’s postulational approach

    NARCIS (Netherlands)

    Jongschaap, Robert J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  10. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  11. A Hamiltonian approach to Thermodynamics

    CERN Document Server

    Baldiotti, M C; Molina, C

    2016-01-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed ontop of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac's theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases.

  12. Thermodynamic cost of acquiring information.

    Science.gov (United States)

    Micadei, Kaonan; Serra, Roberto M; Céleri, Lucas C

    2013-12-01

    Connections between information theory and thermodynamics have proven to be very useful to establish bounding limits for physical processes. Ideas such as Landauer's erasure principle and information-assisted work extraction have greatly contributed not only to broadening our understanding about the fundamental limits imposed by nature, but also paving the way for practical implementations of information-processing devices. The intricate information-thermodynamics relation also entails a fundamental limit on parameter estimation, establishing a thermodynamic cost for information acquisition. We show that the amount of information that can be encoded in a physical system by means of a unitary process is limited by the dissipated work during the implementation of the process. This includes a thermodynamic tradeoff for information acquisition. Likewise, the information acquisition process is ultimately limited by the second law of thermodynamics. This tradeoff for information acquisition may find applications in several areas of knowledge.

  13. Applied statistical thermodynamics

    CERN Document Server

    Lucas, Klaus

    1991-01-01

    The book guides the reader from the foundations of statisti- cal thermodynamics including the theory of intermolecular forces to modern computer-aided applications in chemical en- gineering and physical chemistry. The approach is new. The foundations of quantum and statistical mechanics are presen- ted in a simple way and their applications to the prediction of fluid phase behavior of real systems are demonstrated. A particular effort is made to introduce the reader to expli- cit formulations of intermolecular interaction models and to show how these models influence the properties of fluid sy- stems. The established methods of statistical mechanics - computer simulation, perturbation theory, and numerical in- tegration - are discussed in a style appropriate for newcom- ers and are extensively applied. Numerous worked examples illustrate how practical calculations should be carried out.

  14. Cooling by Thermodynamic Induction

    Science.gov (United States)

    Patitsas, S. N.

    2017-03-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  15. Cooling by Thermodynamic Induction

    Science.gov (United States)

    Patitsas, S. N.

    2016-11-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  16. Thermodynamic Origin of Life

    CERN Document Server

    Michaelian, K

    2009-01-01

    Understanding the thermodynamic function of life may shed light on its origin. Out of equilibrium structuring in space and time is contingent on continuous entropy production. Entropy production is a measure of the rate of the natural tendency of Nature to explore all available microstates. The process producing the greatest amount of entropy in the biosphere is the absorption and transformation of sunlight, leading to the transpiration of water by plants and cyanobacteria. Here we hypothesize that life began, and exists today, as a dynamic catalyst for the absorption and transformation of sunlight into heat, which could then be efficiently harvested by the water cycle, hurricanes, and ocean and wind currents. RNA and DNA are the most efficient of all known molecules for absorbing the ultraviolet light that could have penetrated the dense early atmosphere, and are extremely rapid in transforming this light into heat that can be readily absorbed by liquid water. The origin and evolution of life was thus driven...

  17. Thermodynamics of anisotropic branes

    Energy Technology Data Exchange (ETDEWEB)

    Ávila, Daniel [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Fernández, Daniel [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Patiño, Leonardo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)

    2016-11-22

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a ‘Minkowski embedding’, in which they lie outside of the horizon, and a ‘black hole embedding’, in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  18. Covariant Thermodynamics and Relativity

    CERN Document Server

    Lopez-Monsalvo, C S

    2011-01-01

    This thesis deals with the dynamics of irreversible processes within the context of the general theory of relativity. In particular, we address the problem of the 'infinite' speed of propagation of thermal disturbances in a dissipative fluid. The present work builds on the multi-fluid variational approach to relativistic dissipation, pioneered by Carter, and provides a dynamical theory of heat conduction. The novel property of such approach is the thermodynamic interpretation associated with a two-fluid system whose constituents are matter and entropy. The dynamics of this model leads to a relativistic generalisation of the Cattaneo equation; the constitutive relation for causal heat transport. A comparison with the Israel and Stewart model is presented and its equivalence is shown. This discussion provides new insights into the not-well understood definition of a non-equilibrium temperature. The variational approach to heat conduction presented in this thesis constitutes a mathematically promising formalism ...

  19. Thermodynamics and energy conversion

    CERN Document Server

    Struchtrup, Henning

    2014-01-01

    This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices.   Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools.   Topics include: car and aircraft engines,  including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet;  steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy.    The book i...

  20. Thermodynamics of fragment binding.

    Science.gov (United States)

    Ferenczy, György G; Keserű, György M

    2012-04-23

    The ligand binding pockets of proteins have preponderance of hydrophobic amino acids and are typically within the apolar interior of the protein; nevertheless, they are able to bind low complexity, polar, water-soluble fragments. In order to understand this phenomenon, we analyzed high resolution X-ray data of protein-ligand complexes from the Protein Data Bank and found that fragments bind to proteins with two near optimal geometry H-bonds on average. The linear extent of the fragment binding site was found not to be larger than 10 Å, and the H-bonding region was found to be restricted to about 5 Å on average. The number of conserved H-bonds in proteins cocrystallized with multiple different fragments is also near to 2. These fragment binding sites that are able to form limited number of strong H-bonds in a hydrophobic environment are identified as hot spots. An estimate of the free-energy gain of H-bond formation versus apolar desolvation supports that fragment sized compounds need H-bonds to achieve detectable binding. This suggests that fragment binding is mostly enthalpic that is in line with their observed binding thermodynamics documented in Isothermal Titration Calorimetry (ITC) data sets and gives a thermodynamic rationale for fragment based approaches. The binding of larger compounds tends to more rely on apolar desolvation with a corresponding increase of the entropy content of their binding free-energy. These findings explain the reported size-dependence of maximal available affinity and ligand efficiency both behaving differently in the small molecule region featured by strong H-bond formation and in the larger molecule region featured by apolar desolvation.

  1. Thermodynamics of weight loss diets.

    Science.gov (United States)

    Fine, Eugene J; Feinman, Richard D

    2004-12-08

    BACKGROUND: It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? RESULTS: Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. CONCLUSIONS: Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms.

  2. Chemical thermodynamics: principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Ott, J. Bevan; Boerio-Goates, Juliana [Brigham Young Univ., Provo, UT (United States)

    2000-06-01

    Chemical Thermodynamics: Principles and Applications presents a thorough development of the principles of thermodynamics--an old science to which the authors include the most modem applications, along with those of importance in developing the science and those of historical interest. The text is written in an informal but rigorous style, including anecdotes about some of the great thermodynamicists (with some of whom the authors have had a personal relationship), and focuses on 'real' systems in the discussion and figures, in contrast to the generic examples that are often used in other textbooks. The book provides a basic review of thermodynamic principles, equations, and applications of broad interest. It covers the development of thermodynamics as one of the pre-eminent examples of an exact science. A discussion of the standard state that emphasizes its significance and usefulness is also included, as well as a more rigorous and indepth treatment of thermodynamics. Outlines the development of the principles of thermodynamics, including the most modem applications along with those of importance in developing the science and those of historical interest . Provides a basic review of thermodynamic principles, equations, and applications of broad interest. Treats thermodynamics as one of the preeminent examples of an exact science. Provides a more rigorous and indepth treatment of thermodynamics and discussion of a wider variety of applications than are found in more broadly based physical chemistry undergraduate textbooks. Includes examples in the text and exercises and problems at the end of each chapter to assist the student in learning the subject. (Author)

  3. Modern thermodynamics - New concepts based on the second law of thermodynamics

    Institute of Scientific and Technical Information of China (English)

    Jitao Wang

    2009-01-01

    Thermodynamics is a core part of science.Nearly all scientists should have a basic knowledge of thermodynamics.Thermodynamics is a science of development,and is a viewpoint of scientific development in natural sciences.Achievement of thermodynamics has influence not only on natural sciences,but also on social sciences and philosophy.Fundamental concepts and definitions are very important for any discipline of science,so what is classical thermodynamics and what is modern thermodynamics have become the key points of puzzledom in thermodynamics.In this paper,after clarification of fundamental concept in thermodynamics,a complete basic modern classification of thermodynamics is naturally obtained.It is suggested that extended Carnot theorem and dissipation decrease theorem,together with the laws of thermodynamics,are the most fundamental theorems in thermodynamics discipline.Nondissipative thermodynamics is a new field besides equilibrium thermodynamics belonging to the equal part of the second law of thermodynamics.

  4. Thermodynamic Metrics and Optimal Paths

    Energy Technology Data Exchange (ETDEWEB)

    Sivak, David; Crooks, Gavin

    2012-05-08

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  5. Statistical Thermodynamics of Disperse Systems

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    1996-01-01

    Principles of statistical physics are applied for the description of thermodynamic equilibrium in disperse systems. The cells of disperse systems are shown to possess a number of non-standard thermodynamic parameters. A random distribution of these parameters in the system is determined....... On the basis of this distribution, it is established that the disperse system has an additional degree of freedom called the macro-entropy. A large set of bounded ideal disperse systems allows exact evaluation of thermodynamic characteristics. The theory developed is applied to the description of equilibrium...

  6. The Thermodynamic Properties of Cubanite

    Science.gov (United States)

    Berger, E. L.; Lauretta, D. S.; Keller, L. P.

    2012-01-01

    CuFe2S3 exists in two polymorphs, a low-temperature orthorhombic form (cubanite) and a high-temperature cubic form (isocubanite). Cubanite has been identified in the CI-chondrite and Stardust collections. However, the thermodynamic properties of cubanite have neither been measured nor estimated. Our derivation of a thermodynamic model for cubanite allows constraints to be placed on the formation conditions. This data, along with the temperature constraint afforded by the crystal structure, can be used to assess the environments in which cubanite formation is (or is not) thermodynamically favored.

  7. Vector Theory in Relativistic Thermodynamics

    Institute of Scientific and Technical Information of China (English)

    刘泽文

    1994-01-01

    It is pointed out that five defects occur in Planck-Einstein’s relativistic thermodynamics (P-E theory). A vector theory in relativistic thermodynamics (VTRT) is established. Defining the internal energy as a 4-vector, and supposing the entropy and the number of. particles to be invariants we have derived the transformations of all quantities, and subsequently got the Lagrangian and 4-D forms of thermodynamic laws. In order to test the new theory, several exact solutions with classical limits are given. The VTRT is free from the defects of the P-E theory.

  8. Legendre transforms in chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alberty, R.A. (Massachusetts Inst. of Technology, Cambridge, MA (United States). Dept. of Chemistry)

    After introductory remarks on chemical thermodynamics, independent variables, and natural variables, the paper discusses the following: Callen's nomenclature for Legendre transformed thermodynamic potentials; Transforms for chemical work (gas reactions, biochemical reactions, and ligand binding and denaturation of macromolecules); Transforms for gravitational and centrifugal work; Transforms for mechanical work (tensile stress and shear stress); Transforms for surface work; Transforms for work of electrical transport (fundamental equations, thermodynamic properties and chemical reactions, and derivation of the equation for the membrane potential); Transforms for work of electric polarization; and Transforms for work of magnetic polarization. 92 references.

  9. Screening and damping effects on the thermodynamic potential in QGP

    Institute of Scientific and Technical Information of China (English)

    王欣; 李家荣

    2003-01-01

    By using the spectral functions of gluons, which contain Debye screening and soft damping effects,the effective two-loop thermodynamic potential in quark-gluon plasma was evaluated via real-time temperatureQCD. The result that depends on screening and damping of gluons as physical parameters is obtained. It canbe seen that our analytical result and the recent lattice results are in agreement for T〉~2Tc.

  10. Power coal plasma gasification. Computation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    N.A. Bastyrev; V.I. Golysh; M.A. Gorokhovski; Yu.E. Karpenko; V.G. Lukiaschenko; V.E. Messerle; A.O. Nagibin; E.F. Osadchaya; S.F. Osadchy; I.G. Stepanov; K.A. Umbetkaliev; A.B. Ustimenko [Combustion Problems Institute, Almaty (Kazakhstan)

    2005-07-01

    Results of complex experimental and numerical investigation of coal plasma gasification in steam and air are presented. To analyse numerically the universal thermodynamic calculation code TERRA was used. The data base of it contains thermodynamic properties for 3500 individual components in temperature interval from 300 to 6000 K. Experiments were fulfilled at an original installation for coal plasma gasification. Nominal power of the plasma gasifier is 100 kW and sum consumption of the reagents is up to 25 kg/h. High integral indexes of the gasification processes were achieved. The numerical and experimental results comparison showed their satisfied agreement. 7 refs., 7 figs., 3 tabs.

  11. Onsager relaxation of toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Samain, A.; Nguyen, F.

    1997-01-01

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author). 36 refs.

  12. Thermodynamics of firms' growth

    CERN Document Server

    Zambrano, Eduardo; Fernandez-Bariviera, Aurelio; Hernando, Ricardo; Plastino, Angelo

    2015-01-01

    The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper we show that a thermodynamic model based on the Maximum Entropy Principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive data-base of Spanish firms, which covers to a very large extent Spain's economic activity with a total of 1,155,142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of the economic system for creating/destroying firms, and can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger that 1, creation of firms is favored; when it is smaller that 1, destruction of firms is favored instead; and when it equals 1 (matching Zipf's law), the system is in a full mac...

  13. QCD Thermodynamics and Fireball Evolution in URHICs

    CERN Document Server

    Renk, T; Weise, W

    2002-01-01

    The fireball created in an ultrarelativistic heavy ion collision is the environment in which all processes providing clues about the possible formation of the quark-gluon plasma (QGP) happen. It is therefore crucial to understand the dynamics of this hot and dense system. We set up a model in which the fireball evolution is reconstructed between two stages, the freeze-out, which is accessible by hadronic observables, and the initial collision for which the overlap geometry can be calculated. Using the equation of state (EoS) provided by a quasiparticle model of the QGP, we are able to calculate thermodynamical properties in volume slices of constant proper time and determine the volume expansion self-consistently. The resulting evolution model can then be tested against other observables, such as dilepton yields.

  14. Program calculation of thermodynamic properties

    Science.gov (United States)

    Gill, Walter; Filho, Fernando Fachini; Ribeirodeoliveira, Ronaldo

    1986-12-01

    The determination of the thermodynamic properties are examined through the basic equations such as: state equation (Beattie-Bridgeman Form), saturation pressure equation, specific heat constant pressure or constant volume equation, and specific volume or density of liquid equation.

  15. Thermodynamic efficiency of solar concentrators.

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  16. Thermodynamic black di-rings

    CERN Document Server

    Iguchi, Hideo

    2010-01-01

    Previously the five dimensional $S^1$-rotating black rings have been superposed in concentric way by some solitonic methods and regular systems of two $S^1$-rotating black rings were constructed by the authors and then Evslin and Krishnan (we called these solutions black di-rings). In this place we show some characteristics of the solutions of five dimensional black di-rings, especially in thermodynamic equilibrium. After the summary of the di-ring expressions and their physical quantities, first we comment on the equivalence of the two different solution-sets of the black di-rings. Then the existence of thermodynamic black di-rings are shown, in which both iso-thermality and iso-rotation between the inner black ring and the outer black ring are realized. We also give detailed analysis of peculiar properties of the thermodynamic black di-ring including discussion about a certain kind of thermodynamic stability (instability) of the system.

  17. On the Mathematics of Thermodynamics

    CERN Document Server

    Cooper, J B

    2011-01-01

    We show that the mathematical structure of Gibbsian thermodynamics flows from the following simple elements: the state space of a thermodynamical substance is a measure space together with two orderings (corresponding to "warmer than" and "adiabatically accessible from") which satisfy certain plausible physical axioms and an area condition which was introduced by Paul Samuelson. We show how the basic identities of thermodynamics, in particular the Maxwell relations, follow and so the existence of energy, free energy, enthalpy and the Gibbs potential function. We also discuss some questions which we have not found dealt with in the literature, such as the amount of information required to reconstruct the equations of state of a substance and a systematic approach to thermodynamical identities.

  18. Experimental approaches to membrane thermodynamics

    DEFF Research Database (Denmark)

    Westh, Peter

    2009-01-01

    Thermodynamics describes a system on the macroscopic scale, yet it is becoming an important tool for the elucidation of many specific molecular aspects of membrane properties. In this note we discuss this application of thermodynamics, and give a number of examples on how thermodynamic measuremen...... have contributed to the understanding of specific membrane phenomena. We mainly focus on non-specific interactions of bilayers and small molecules (water and solutes) in the surrounding solvent, and the changes in membrane properties they bring about. Differences between thermodynamic...... and stoichiometric (structural) definitions of non-specific binding or partitioning are emphasized, and it is concluded that this distinction is important for weak, but not for strong, interactions....

  19. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  20. Review of selenium thermodynamic data

    Science.gov (United States)

    Cowan, C. E.

    1988-02-01

    This report assesses the accuracy and completeness of available thermodynamic data on selenium. A review of experimental methods from published literature on selenium thermodynamic data focused on chemical reactions responsible for the formation of both aqueous complexes and solid phases of selenate, selenite, and selenide. The reviewer selected best data values, based on the methods used for estimating thermodynamic data. After inclusion of these values into the MINTEQ model, a validation study evaluated model performance for selenite and selenide solid phases. Lack of selenate data precluded model validation for this compound. The review furnished data on 22 aqueous complexes of selenite, 15 of selenide, and 17 of selenate, as well as 21 solid phases of selenite, 20 of selenide and 8 of selenate. These data proved inadequate to represent the formation of species in the solid phase. The validation study gave inconclusive predictions of selenite and selenide solubility and could not be used to assess the accuracy or completeness of the thermodynamic data.

  1. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...

  2. Association theories for complex thermodynamics

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Rafiqul Gani

    2013-01-01

    Thermodynamics of complex systems (e.g. with associating molecules, multicomponent mixtures, multiphase equilibria, wide ranges of conditions, estimation of many different properties simultaneously) is a topic of great importance in chemical engineering and for a wide range of industrial...... promising direction for a general and useful for engineering purposes modeling of complex thermodynamics is via the use of association theories e.g. those based on chemical theory (like APACT), or on the lattice theory (like NRHB) or those based on perturbation theory (like SAFT and CPA). The purpose...... applications. While specialized models can handle different cases, even complex ones, with the advent of powerful theories and computers there is the hope that a single or a few models could be suitable for a general modeling of complex thermodynamics. After more than 100 years with active use of thermodynamic...

  3. Entropy Function for Multifractal Thermodynamics

    Institute of Scientific and Technical Information of China (English)

    QiuhuaZENG

    1999-01-01

    The theory on multifractal thermodynamics has been studied by the method of series expansion.The method is able to overcome the shortages of Kohmoto's steepest desent method and the results have general meanings.

  4. Calculation of opacities and emissivities for carbon plasmas under NLTE and LTE conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Martel, P. [Las Palmas de Gran Canaria Univ., Dept. de Fisica (Spain); Sauvan, P. [Universidad Nacional de Educacion a Distancia, Dept. de Ingenieria Energetica, Madrid (Spain); Minguez, E. [Madrid Univ. Politecnica, Instituto de Fusion Nuclear-DENIM (Spain)

    2006-06-15

    We calculate different optical properties for carbon plasma in a wide range of temperatures and densities by using ATOM3R-OP code which has been recently developed. In this code we have implemented the rate equations, the Saha equation (for local thermodynamic equilibrium) and the coronal equilibrium model. We have calculated average ionizations, level populations, opacities and emissivities and we focus our study on the identification with our code of coronal equilibrium, non-local thermodynamic equilibrium and local thermodynamic equilibrium regions for this kind of plasma. Moreover, we analyse the differences in the optical properties when they are calculated in non-local thermodynamic equilibrium and local thermodynamic equilibrium. (authors)

  5. Thermodynamic and relativistic uncertainty relations

    Science.gov (United States)

    Artamonov, A. A.; Plotnikov, E. M.

    2017-01-01

    Thermodynamic uncertainty relation (UR) was verified experimentally. The experiments have shown the validity of the quantum analogue of the zeroth law of stochastic thermodynamics in the form of the saturated Schrödinger UR. We have also proposed a new type of UR for the relativistic mechanics. These relations allow us to consider macroscopic phenomena within the limits of the ratio of the uncertainty relations for different physical quantities.

  6. Thermodynamics of nonsingular bouncing universes

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro C. [Universidade Federal do Rio Grande do Norte, Escola de Ciencias e Tecnologia, Natal, Rio Grande do Norte (Brazil); Pavon, Diego [Universidad Autonoma de Barcelona, Departamento de Fisica, Bellaterra, Barcelona (Spain)

    2016-01-15

    Homogeneous and isotropic, nonsingular, bouncing world models are designed to evade the initial singularity at the beginning of the cosmic expansion. Here, we study the thermodynamics of the subset of these models governed by general relativity. Considering the entropy of matter and radiation and considering the entropy of the apparent horizon to be proportional to its area, we argue that these models do not respect the generalized second law of thermodynamics, also away from the bounce. (orig.)

  7. Thermodynamics from concepts to applications

    CERN Document Server

    Shavit, Arthur

    2008-01-01

    The book presents a logical methodology for solving problems in the context of conservation laws and property tables or equations. The authors elucidate the terms around which thermodynamics has historically developed, such as work, heat, temperature, energy, and entropy. Using a pedagogical approach that builds from basic principles to laws and eventually corollaries of the laws, the text enables students to think in clear and correct thermodynamic terms as well as solve real engineering problems.

  8. Thermodynamics of Asymptotically Conical Geometries.

    Science.gov (United States)

    Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H

    2015-06-12

    We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.

  9. Generalization of Gibbs Entropy and Thermodynamic Relation

    OpenAIRE

    Park, Jun Chul

    2010-01-01

    In this paper, we extend Gibbs's approach of quasi-equilibrium thermodynamic processes, and calculate the microscopic expression of entropy for general non-equilibrium thermodynamic processes. Also, we analyze the formal structure of thermodynamic relation in non-equilibrium thermodynamic processes.

  10. Physical Intelligence and Thermodynamic Computing

    Directory of Open Access Journals (Sweden)

    Robert L. Fry

    2017-03-01

    Full Text Available This paper proposes that intelligent processes can be completely explained by thermodynamic principles. They can equally be described by information-theoretic principles that, from the standpoint of the required optimizations, are functionally equivalent. The underlying theory arises from two axioms regarding distinguishability and causality. Their consequence is a theory of computation that applies to the only two kinds of physical processes possible—those that reconstruct the past and those that control the future. Dissipative physical processes fall into the first class, whereas intelligent ones comprise the second. The first kind of process is exothermic and the latter is endothermic. Similarly, the first process dumps entropy and energy to its environment, whereas the second reduces entropy while requiring energy to operate. It is shown that high intelligence efficiency and high energy efficiency are synonymous. The theory suggests the usefulness of developing a new computing paradigm called Thermodynamic Computing to engineer intelligent processes. The described engineering formalism for the design of thermodynamic computers is a hybrid combination of information theory and thermodynamics. Elements of the engineering formalism are introduced in the reverse-engineer of a cortical neuron. The cortical neuron provides perhaps the simplest and most insightful example of a thermodynamic computer possible. It can be seen as a basic building block for constructing more intelligent thermodynamic circuits.

  11. Thermodynamics of firms' growth

    Science.gov (United States)

    Zambrano, Eduardo; Hernando, Alberto; Hernando, Ricardo; Plastino, Angelo

    2015-01-01

    The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1 155 142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing ‘free’ creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. PMID:26510828

  12. Thermodynamics of noncommutative quantum Kerr black holes

    CERN Document Server

    Escamilla-Herrera, L F; Torres-Arenas, J

    2016-01-01

    Thermodynamic formalism for rotating black holes, characterized by noncommutative and quantum corrections, is constructed. From a fundamental thermodynamic relation, equations of state and thermodynamic response functions are explicitly given and the effect of noncommutativity and quantum correction is discussed. It is shown that the well known divergence exhibited in specific heat is not removed by any of these corrections. However, regions of thermodynamic stability are affected by noncommutativity, increasing the available states for which the system is thermodynamically stable.

  13. Thermodynamics and time-directional invariance

    OpenAIRE

    Klimenko, A. Y.; Maas, U.

    2012-01-01

    Time directions are not invariant in conventional thermodynamics. We broadly follow ideas of Ludwig Boltzmann and investigate implications of postulating time-directional invariance in thermodynamics. In this investigation, we require that thermodynamic descriptions are not changed under time reversal accompanied by replacement of matter by antimatter (i.e. CPT-invariant thermodynamics). The matter and antimatter are defined as thermodynamic concepts without detailing their physical structure...

  14. Thermodynamics of weight loss diets

    Directory of Open Access Journals (Sweden)

    Fine Eugene J

    2004-12-01

    Full Text Available Abstract Background It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? Results Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. Conclusions Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms.

  15. Mesoscopic non-equilibrium thermodynamics

    Directory of Open Access Journals (Sweden)

    Rubi, Jose' Miguel

    2008-02-01

    Full Text Available Basic concepts like energy, heat, and temperature have acquired a precise meaning after the development of thermodynamics. Thermodynamics provides the basis for understanding how heat and work are related and with the general rules that the macroscopic properties of systems at equilibrium follow. Outside equilibrium and away from macroscopic regimes most of those rules cannot be applied directly. In this paper we present recent developments that extend the applicability of thermodynamic concepts deep into mesoscopic and irreversible regimes. We show how the probabilistic interpretation of thermodynamics together with probability conservation laws can be used to obtain kinetic equations describing the evolution of the relevant degrees of freedom. This approach provides a systematic method to obtain the stochastic dynamics of a system directly from the knowledge of its equilibrium properties. A wide variety of situations can be studied in this way, including many that were thought to be out of reach of thermodynamic theories, such as non-linear transport in the presence of potential barriers, activated processes, slow relaxation phenomena, and basic processes in biomolecules, like translocation and stretching.

  16. The physics of non-ideal plasma

    CERN Document Server

    Fortov, Vladimir E

    2000-01-01

    This book is devoted to the physical properties of nonideal plasma which is compressed so strongly that the effects of interparticle interactions govern the plasma behavior. The interest in this plasma was generated by the development of modern technologies and facilities whose operations were based on high densities of energy. In this volume, the methods of nonideal plasma generation and diagnostics are considered. The experimental results are given and the main theoretical models of nonideal plasma state are discussed. The problems of thermodynamics, electro-physics, optics and dynamic stabi

  17. Black hole thermodynamics in finite time

    CERN Document Server

    Gruber, Christine

    2016-01-01

    Finite-time thermodynamics provides the means to revisit ideal thermodynamic equilibrium processes in the light of reality and investigate the energetic "price of haste", i.e. the consequences of carrying out a process in finite time, when perfect equilibrium cannot be awaited due to economic reasons or the nature of the process. Employing the formalism of geometric thermodynamics, a lower bound on the energy dissipated during a process is derived from the thermodynamic length of that process. The notion of length is hereby defined via a metric structure on the space of equilibrium thermodynamics, spanned by a set of thermodynamic variables describing the system. Since the aim of finite-time thermodynamics is to obtain realistic limitations on idealized scenarios, it is a useful tool to reassess the efficiency of thermodynamic processes. We examine its implications for black hole thermodynamics, in particular scenarios inspired by the Penrose process, a thought experiment by which work can be extracted from a...

  18. Thermodynamics and time-directional invariance

    CERN Document Server

    Klimenko, A Y

    2012-01-01

    Time directions are not invariant in conventional thermodynamics. We broadly follow ideas of Ludwig Boltzmann and investigate implications of postulating time-directional invariance in thermodynamics. In this investigation, we require that thermodynamic descriptions are not changed under time reversal accompanied by replacement of matter by antimatter (i.e. CPT-invariant thermodynamics). The matter and antimatter are defined as thermodynamic concepts without detailing their physical structure. Our analysis stays within the limits of conceptual thermodynamics and leads to effective negative temperatures, to thermodynamic restrictions on time travel and to inherent antagonism of matter and antimatter. This antagonism is purely thermodynamic; it explains the difficulty in achieving thermodynamic equilibrium between matter and antimatter and does not postulate their mutual annihilation on contact. We believe that the conclusions of this work can be of interest not only for people researching or teaching thermodyn...

  19. The Thermodynamic Machinery of Life

    CERN Document Server

    Kurzynski, Michal

    2006-01-01

    Living organisms are open thermodynamic systems whose functional structure has developed and been kinetically frozen during the historical process of biological evolution. A thermodynamics of both nonequilibrium and complex systems is needed for their description. In this book, the foundations of such a thermodynamics are presented. Biological processes at the cellular level are considered as coupled chemical reactions and transport processes across internal and the cytoplasmic membrane. All these processes are catalyzed by specific enzymes hence the kinetics of enzymatic catalysis and its control are described here in detail. The coupling of several processes through a common enzyme is considered in the context of free energy or signal transduction. Special attention is paid to evidence for a rich stochastic internal dynamics of native proteins and its possible role in the control of enzyme activity and in the action of biological molecular machines.

  20. Thermodynamics a complete undergraduate course

    CERN Document Server

    Steane, Andrew M

    2016-01-01

    This is an undergraduate textbook in thermodynamics—the science of heat, work, temperature, and entropy. The text presents thermodynamics in and of itself, as an elegant and powerful set of ideas and methods. These methods open the way to understanding a very wide range of phenomena in physics, chemistry, engineering, and biology. Starting out from an introduction of concepts at first year undergraduate level, the roles of temperature, internal energy, and entropy are explained via the laws of thermodynamics. The text employs a combination of examples, exercises, and careful discussion, with a view to conveying the feel of the subject as well as avoiding common misunderstandings. The Feynman–Smuluchowski ratchet, Szilard’s engine, and Maxwell’s daemon are used to elucidate entropy and the second law. Free energy and thermodynamic potentials are discussed at length, with applications to solids as well as fluids and flow processes. Thermal radiation is discussed, and the main ideas significant to global...

  1. Nanofluidics thermodynamic and transport properties

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2014-01-01

    This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical therm...

  2. Non-hermitian quantum thermodynamics

    Science.gov (United States)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-01

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.

  3. Non-hermitian quantum thermodynamics.

    Science.gov (United States)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.

  4. Local non-equilibrium thermodynamics.

    Science.gov (United States)

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-16

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.

  5. Thermodynamic Calculations for Systems Biocatalysis

    DEFF Research Database (Denmark)

    Abu, Rohana; Gundersen, Maria T.; Woodley, John M.

    2015-01-01

    on the basis of kinetics. However, many of the most interesting non-natural chemical reactions which could potentially be catalysed by enzymes, are thermodynamically unfavourable and are thus limited by the equilibrium position of the reaction. A good example is the enzyme ω-transaminase, which catalyses......‘Systems Biocatalysis’ is a term describing multi-enzyme processes in vitro for the synthesis of chemical products. Unlike in-vivo systems, such an artificial metabolism can be controlled in a highly efficient way in order to achieve a sufficiently favourable conversion for a given target product...... the transamination of a pro-chiral ketone into a chiral amine (interesting in many pharmaceutical applications). Here, the products are often less energetically stable than the reactants, meaning that the reaction may be thermodynamically unfavourable. As in nature, such thermodynamically-challenged reactions can...

  6. Complexation thermodynamics of modified cyclodextrins

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Westh, Peter; Holm, Rene

    2014-01-01

    Inclusion complexes between two bile salts and a range of differently methylated β-cyclodextrins were studied in an attempt to rationalize the complexation thermodynamics of modified cyclodextrins. Calorimetric titrations at a range of temperatures provided precise values of the enthalpies (ΔH......°), entropies (ΔS°), and heat capacities (ΔCp) of complexation, while molecular dynamics simulations assisted the interpretation of the obtained thermodynamic parameters. As previously observed for several types of modified cyclodextrins, the substituents at the rims of the cyclodextrin induced large changes......° and then a strong decrease when the degree of substitution exceeded some threshold. Exactly the same trend was observed for ΔCp. The dehydration of nonpolar surface, as quantified by the simulations, can to a large extent explain the variation in the thermodynamic parameters. The methyl substituents form additional...

  7. Statistical thermodynamics of clustered populations.

    Science.gov (United States)

    Matsoukas, Themis

    2014-08-01

    We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.

  8. Hessian geometry and entanglement thermodynamics

    CERN Document Server

    Matsueda, Hiroaki

    2015-01-01

    We reconstruct entanglement thermodynamics by means of Hessian geometry, since this method exactly generalizes thermodynamics into much wider exponential family cases including quantum entanglement. Starting with the correct first law of entanglement thermodynamics, we derive that a proper choice of the Hessian potential leads to both of the entanglement entropy scaling for quantum critical systems and hyperbolic metric (or AdS space with imaginary time). We also derive geometric representation of the entanglement entropy in which the entropy is described as integration of local conserved current of information flowing across an entangling surface. We find that the entangling surface is equivalent to the domain boundary of the Hessian potential. This feature originates in a special property of critical systems in which we can identify the entanglement entropy with the Hessian potential after the second derivative by the canonical parameters, and this identification guarantees violation of extensive nature of ...

  9. Thermodynamic equivalence of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Beltman, J.M. (Katholieke Universiteit Nijmegen (Netherlands))

    1975-01-01

    The thermodynamic equilibrium properties of systems composed of classical spin /sup 1///sub 2/ particles (Ising spins) are studied. Given an interaction pattern between the Ising spins the main problem is to calculate the equilibrium state(s) of the system. The point put forward here is the existence of many thermodynamical equivalent spin coordinate systems. As a consequence of this phenomenon the interaction pattern of a system may be very intricate when described with respect to one spin coordinate system whereas it may become simple with respect to another one and vice versa. A systematic investigation of this phenomenon is made. (FR)

  10. Information thermodynamics on causal networks.

    Science.gov (United States)

    Ito, Sosuke; Sagawa, Takahiro

    2013-11-01

    We study nonequilibrium thermodynamics of complex information flows induced by interactions between multiple fluctuating systems. Characterizing nonequilibrium dynamics by causal networks (i.e., Bayesian networks), we obtain novel generalizations of the second law of thermodynamics and the fluctuation theorem, which include an informational quantity characterized by the topology of the causal network. Our result implies that the entropy production in a single system in the presence of multiple other systems is bounded by the information flow between these systems. We demonstrate our general result by a simple model of biochemical adaptation.

  11. Density perturbations with relativistic thermodynamics

    CERN Document Server

    Maartens, R

    1997-01-01

    We investigate cosmological density perturbations in a covariant and gauge- invariant formalism, incorporating relativistic causal thermodynamics to give a self-consistent description. The gradient of density inhomogeneities splits covariantly into a scalar part, a rotational vector part that is determined by the vorticity, and a tensor part that describes the shape. We give the evolution equations for these parts in the general dissipative case. Causal thermodynamics gives evolution equations for viswcous stress and heat flux, which are coupled to the density perturbation equation and to the entropy and temperature perturbation equations. We give the full coupled system in the general dissipative case, and simplify the system in certain cases.

  12. Thermodynamics of Dipolar Chain Systems

    DEFF Research Database (Denmark)

    R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.

    2012-01-01

    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects...... numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments....

  13. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  14. Nonequilibrium thermodynamics and energy efficiency in weight loss diets.

    Science.gov (United States)

    Feinman, Richard D; Fine, Eugene J

    2007-07-30

    controls fatty acid flux and oxidation, 2) the rate of lipolysis is a primary target of insulin, postprandial, and 3) chronic carbohydrate-restricted diets reduce the levels of plasma TAG in response to a single meal. In summary, we propose that, in isocaloric diets of different macronutrient composition, there is variable flux of stored TAG controlled by the kinetic effects of insulin and other hormones. Because the fatty acid-TAG cycle never comes to equilibrium, net gain or loss is possible. The greater weight loss on carbohydrate restricted diets, popularly referred to as metabolic advantage can thus be understood in terms of the principles of nonequilibrium thermodynamics and is a consequence of the dynamic nature of bioenergetics where it is important to consider kinetic as well as thermodynamic variables.

  15. Nonequilibrium thermodynamics and energy efficiency in weight loss diets

    Directory of Open Access Journals (Sweden)

    Fine Eugene J

    2007-07-01

    effect on hormone levels controls fatty acid flux and oxidation, 2 the rate of lipolysis is a primary target of insulin, postprandial, and 3 chronic carbohydrate-restricted diets reduce the levels of plasma TAG in response to a single meal. In summary, we propose that, in isocaloric diets of different macronutrient composition, there is variable flux of stored TAG controlled by the kinetic effects of insulin and other hormones. Because the fatty acid-TAG cycle never comes to equilibrium, net gain or loss is possible. The greater weight loss on carbohydrate restricted diets, popularly referred to as metabolic advantage can thus be understood in terms of the principles of nonequilibrium thermodynamics and is a consequence of the dynamic nature of bioenergetics where it is important to consider kinetic as well as thermodynamic variables.

  16. Mott-hadron resonance gas and lattice QCD thermodynamics

    CERN Document Server

    Blaschke, D; Turko, L

    2016-01-01

    We present an effective model for the generic behaviour of hadron masses and phase shifts at finite temperature which shares basic features with recent developments within the PNJL model for correlations in quark matter. On this basis we obtain the transition between a hadron resonance gas phase and the quark gluon plasma in the spirit of the generalized Beth-Uhlenbeck approach where the Mott dissociation of hadrons is encoded in the hadronic phase shifts. We find that the restriction to low-lying hadronic channels is justified by the rather low chiral transition temperature found in recent lattice QCD thermodynamics results. While we work in thermodynamic equilibrium, albeit including the contribution of unstable states, the possible contribution of massive components of the hadron resonance gas may become an aspect of strong nonequilibrium in the evolution of a hadronic fireball.

  17. On thermodynamic limits of entropy densities

    NARCIS (Netherlands)

    Moriya, H; Van Enter, A

    1998-01-01

    We give some sufficient conditions which guarantee that the entropy density in the thermodynamic limit is equal to the thermodynamic limit of the entropy densities of finite-volume (local) Gibbs states.

  18. Thermodynamic parameters of elasticity and electrical conductivity ...

    African Journals Online (AJOL)

    Thermodynamic parameters of elasticity and electrical conductivity of reinforced natural rubber (nr) vulca nizates. ... Bulletin of the Chemical Society of Ethiopia ... The thermodynamic parameters (change in free energy of elasticity, DGe; ...

  19. Conservation laws and thermodynamic efficiencies.

    Science.gov (United States)

    Benenti, Giuliano; Casati, Giulio; Wang, Jiao

    2013-02-15

    We show that generic systems with a single relevant conserved quantity reach the Carnot efficiency in the thermodynamic limit. Such a general result is illustrated by means of a diatomic chain of hard-point elastically colliding particles where the total momentum is the only relevant conserved quantity.

  20. One Antimatter— Two Possible Thermodynamics

    Directory of Open Access Journals (Sweden)

    Alexander Y. Klimenko

    2014-02-01

    Full Text Available Conventional thermodynamics, which is formulated for our world populated by radiation and matter, can be extended to describe physical properties of antimatter in two mutually exclusive ways: CP-invariant or CPT-invariant. Here we refer to invariance of physical laws under charge (C, parity (P and time reversal (T transformations. While in quantum field theory CPT invariance is a theorem confirmed by experiments, the symmetry principles applied to macroscopic phenomena or to the whole of the Universe represent only hypotheses. Since both versions of thermodynamics are different only in their treatment of antimatter, but are the same in describing our world dominated by matter, making a clear experimentally justified choice between CP invariance and CPT invariance in context of thermodynamics is not possible at present. This work investigates the comparative properties of the CP- and CPT-invariant extensions of thermodynamics (focusing on the latter, which is less conventional than the former and examines conditions under which these extensions can be experimentally tested.

  1. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  2. Jacobian's Thermodynamic Transforms Replacing Differentiation

    Institute of Scientific and Technical Information of China (English)

    邝钜炽; 张军

    2001-01-01

    The noteworthy work in this article consists in combiningcharacters of thermodynamic variables with Jacobian determinants to develop the three significant J transforms of thermodynamics,which seem not to have been reported except Eq.(12) until now.The significance of them is not only to offer us a new convenient tool for proofing puzzle but also to reveal the inner interrelations of thermodynamic variables,or to foretell the rules of variation of any thermodynamic variable following others.By all appearances,this can hardly be done by way of differentiation.%结合雅可比行列式和热力学变量的特性,率先导出了三个极为重要的雅可比热力学变换式,除(12)式外,其余尚未见报道.雅可比热力学变换的重要意义不仅体现在它为我们提供了一种证明难题的便利工具,而且还体现在其揭示了热力学变量间的内在联系,或预告某热力学量随其它热力学量变化的情况,显然此用微分法往往难以实现.

  3. Simulating metabolism with statistical thermodynamics.

    Directory of Open Access Journals (Sweden)

    William R Cannon

    Full Text Available New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  4. Microscopic Models for Chemical Thermodynamics

    OpenAIRE

    Malyshev, Vadim A.

    2011-01-01

    We introduce an infinite particle system dynamics, which includes stochastic chemical kinetics models, the classical Kac model and free space movement. We study energy redistribution between two energy types (kinetic and chemical) in different time scales, similar to energy redistribution in the living organisms. One example is considered in great detail, where the model provides main formulas of chemical thermodynamics.

  5. Thermodynamics on the Molality Scale

    Science.gov (United States)

    Canagaratna, Sebastian G.; Maheswaran, M.

    2013-01-01

    For physical measurements, the compositions of solutions, especially electrolyte solutions, are expressed in terms of molality rather than mole fractions. The development of the necessary thermodynamic equations directly in terms of molality is not common in textbooks, and the treatment in the literature is not very systematic. We develop a…

  6. Some Considerations about Thermodynamic Cycles

    Science.gov (United States)

    da Silva, M. F. Ferreira

    2012-01-01

    After completing their introductory studies on thermodynamics at the university level, typically in a second-year university course, most students show a number of misconceptions. In this work, we identify some of those erroneous ideas and try to explain their origins. We also give a suggestion to attack the problem through a systematic and…

  7. THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING

    Science.gov (United States)

    Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...

  8. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  9. Thermodynamics of asymptotically safe theories

    DEFF Research Database (Denmark)

    Rischke, Dirk H.; Sannino, Francesco

    2015-01-01

    We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...

  10. A Simple Statistical Thermodynamics Experiment

    Science.gov (United States)

    LoPresto, Michael C.

    2010-01-01

    Comparing the predicted and actual rolls of combinations of both two and three dice can help to introduce many of the basic concepts of statistical thermodynamics, including multiplicity, probability, microstates, and macrostates, and demonstrate that entropy is indeed a measure of randomness, that disordered states (those of higher entropy) are…

  11. Simulating metabolism with statistical thermodynamics.

    Science.gov (United States)

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  12. Potential Functions in Chemical Thermodynamics

    Science.gov (United States)

    Araujo, Roger J.

    1998-11-01

    The first and second laws of thermodynamics are stated in equation form. The equation containing the combined laws is used to identify potential functions appropriate to various sets of constraints. An ion-exchange reaction and a redox reaction in a melt are considered as illustrations of the importance of using the potential function appropriate to the constraints.

  13. Microscopic Models for Chemical Thermodynamics

    CERN Document Server

    Malyshev, V A

    2011-01-01

    We introduce an infinite particle system dynamics, which includes stochastic chemical kinetics models, the classical Kac model and free space movement. We study energy redistribution between two energy types (kinetic and chemical) in different time scales, similar to energy redistribution in the living cell. One example is considered in great detail, where the model provides main formulas of chemical thermodynamics.

  14. Microscopic Models for Chemical Thermodynamics

    Science.gov (United States)

    Malyshev, V. A.

    2005-06-01

    We introduce an infinite particle system dynamics, which includes stochastic chemical kinetics models, the classical Kac model and free space movement. We study energy redistribution between two energy types (kinetic and chemical) in different time scales, similar to energy redistribution in the living cell. One example is considered in great detail, where the model provides main formulas of chemical thermodynamics.

  15. Thermal plasmas: fundamental aspects; Plasmas thermiques: aspects fondamentaux

    Energy Technology Data Exchange (ETDEWEB)

    Fauchais, P. [Limoges Univ. Faculte des Sciences, Lab. Science des Procedes Ceramiques et Traitements de Surface (SPCTS-UMR-6638-CNRS), 87 (France)

    2005-10-01

    This article treats of thermal plasmas, i.e. mainly produced by electric arcs and RF discharges. Their main characteristic is that they are generated at a pressure close to the atmospheric pressure (between 10{sup 4} and 10{sup 6} Pa) and refer to the classical kinetics of the Boltzmann equation. Because of the pressure, the collisions between particles are numerous and ionization is mainly due to a thermal effect. They correspond to electron densities between 10{sup 20} and 10{sup 24} m{sup -3} and temperatures between 6000 and 25000 K. In these plasmas, the electric fields and the average free trajectories are too weak to generate a ionization state by direct inelastic collision. Ionization is thus essentially a thermal phenomenon due to elastic collisions. This article presents: 1 - the particles present in a plasma: definition, energy states; 2 - characteristic data: collisions, average free path and collision cross-section, distribution function, ionization types, charged particles mobility inside an electric field, scattering, Debye length; 3 - plasmas at the thermodynamical equilibrium: conditions of equilibrium, calculation of composition, thermodynamic properties, transport properties, radiation; 4 - thermal plasmas away from equilibrium: conditions of non-equilibrium, calculation of plasma composition, calculation of transport properties, quenching phenomenon. (J.S.)

  16. Chemical Thermodynamics and Information Theory with Applications

    CERN Document Server

    Graham, Daniel J

    2011-01-01

    Thermodynamics and information touch theory every facet of chemistry. However, the physical chemistry curriculum digested by students worldwide is still heavily skewed toward heat/work principles established more than a century ago. Rectifying this situation, Chemical Thermodynamics and Information Theory with Applications explores applications drawn from the intersection of thermodynamics and information theory--two mature and far-reaching fields. In an approach that intertwines information science and chemistry, this book covers: The informational aspects of thermodynamic state equations The

  17. Contact Geometry of Mesoscopic Thermodynamics and Dynamics

    Directory of Open Access Journals (Sweden)

    Miroslav Grmela

    2014-03-01

    Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.

  18. Thermodynamics of statistical inference by cells.

    Science.gov (United States)

    Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj

    2014-10-03

    The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.

  19. Radiant-and-plasma technology for coal processing

    OpenAIRE

    Vladimir Messerle; Alexander Ustimenko

    2012-01-01

    Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance ...

  20. Thermodynamic aspects of heat pipe operation

    Science.gov (United States)

    Richter, Robert; Gottschlich, Joseph

    1990-01-01

    An expanded heat pipe operating model is described which includes thermodynamic and heat transfer considerations to reconcile disparities between actual and theoretical heat pipe performances. The analysis shows that thermodynamic considerations can explain the observed heat pipe performance limitations. A full understanding of thermodynamic processes could lead to advanced concepts for thermal transport devices.

  1. Thermodynamics of chemical systems far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. (Stanford Univ., CA (USA)); Garcia-Colin, L.S. (UAM-Iztapalapa, Postal (Mexico))

    1989-03-09

    A critique is presented of some recent work in this and other journals on the relation of thermodynamics to the mass action law of kinetics. For most chemical reactions, the thermodynamic variables change on the same time scale as the progress variable and there is no need for an extended thermodynamics.

  2. The Casimir Effect and Thermodynamic Instability

    OpenAIRE

    Widom, A.; Sassaroli, E.; Srivastava, Y. N.; Swain, J.

    1998-01-01

    One loop field theory calculations of free energies quite often yield violations of the stability conditions associated with the thermodynamic second law. Perhaps the best known example involves the equation of state of black holes. Here, it is pointed out that the Casimir force between two parallel conducting plates also violates a thermodynamic stability condition normally associated with the second law of thermodynamics.

  3. Chemical thermodynamics and the phase rule

    Energy Technology Data Exchange (ETDEWEB)

    Franzen, H.F.; Myers, C.E.

    1978-06-01

    An attempt is made to show that the Gibbs Phase Rule can, in a sense, be obtained without using chemical thermodynamics per se but by using an assumption which is implicit in applications of thermodynamics. This development will be followed by some comments on some important thermodynamic relationships with particular emphasis on the distinction between chemical components and chemical species.

  4. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    Science.gov (United States)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  5. Classical thermodynamics of non-electrolyte solutions

    CERN Document Server

    Van Ness, H C

    1964-01-01

    Classical Thermodynamics of Non-Electrolyte Solutions covers the historical development of classical thermodynamics that concerns the properties of vapor and liquid solutions of non-electrolytes. Classical thermodynamics is a network of equations, developed through the formal logic of mathematics from a very few fundamental postulates and leading to a great variety of useful deductions. This book is composed of seven chapters and begins with discussions on the fundamentals of thermodynamics and the thermodynamic properties of fluids. The succeeding chapter presents the equations of state for

  6. Supercritical fluid thermodynamics from equations of state

    Science.gov (United States)

    Giovangigli, Vincent; Matuszewski, Lionel

    2012-03-01

    Supercritical multicomponent fluid thermodynamics are often built from equations of state. We investigate mathematically such a construction of a Gibbsian thermodynamics compatible at low density with that of ideal gas mixtures starting from a pressure law. We further study the structure of chemical production rates obtained from nonequilibrium statistical thermodynamics. As a typical application, we consider the Soave-Redlich-Kwong cubic equation of state and investigate mathematically the corresponding thermodynamics. This thermodynamics is then used to study the stability of H2-O2-N2 mixtures at high pressure and low temperature as well as to illustrate the role of nonidealities in a transcritical H2-O2-N2 flame.

  7. The Non-local Thermodynamical Equilibrium Effects on Opacity

    Institute of Scientific and Technical Information of China (English)

    WU Ze-Qing; ZHANG Ben-Ai; QIU Yu-Bo

    2001-01-01

    Based on the detailed configuration accounting (DCA) model, a method is developed to include the resonant photoionization and the excitation-autoionization in the non-local thermodynamical equilibrium (NLTE) average atom(AA) model. Using this new model, the mean charge states and the opacity are calculated for NLTE high-Z plasmas and compared with other results. The agreement w ith AA model is poor at low electron density. The present results agree well with those of DCA model within 10%. The calculations show that the NLTE effects on opacity are strong.

  8. New Thermodynamic Paradigm of Chemical Equilibria

    CERN Document Server

    Zilbergleyt, B

    2011-01-01

    The paper presents new thermodynamic paradigm of chemical equilibrium, setting forth comprehensive basics of Discrete Thermodynamics of Chemical Equilibria (DTd). Along with previous results by the author during the last decade, this work contains also some new developments of DTd. Based on the Onsager's constitutive equations, reformulated by the author thermodynamic affinity and reaction extent, and Le Chatelier's principle, DTd brings forward a notion of chemical equilibrium as a balance of internal and external thermodynamic forces (TdF), acting against a chemical system. Basic expression of DTd is the chemical system logistic map of thermodynamic states that ties together energetic characteristics of chemical reaction, occurring in the system, the system shift from "true" thermodynamic equilibrium (TdE), and causing that shift external thermodynamic forces. Solutions to the basic map are pitchfork bifurcation diagrams in coordinates "shift from TdE - growth factor (or TdF)"; points, corresponding to the ...

  9. The OpenCalphad thermodynamic software interface.

    Science.gov (United States)

    Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G

    2016-12-01

    Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into "lookup tables" to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility.

  10. Mass and Thermodynamic Volume in Lifshitz Spacetimes

    CERN Document Server

    Brenna, Wilson G; Park, Miok

    2015-01-01

    We examine the concept of black hole thermodynamic volume and its consistency with thermodynamic mass in spacetimes that are not asymptotically flat but instead have anisotropic Lifshitz scaling symmetry. We find that the generalized Smarr relation in anti de Sitter space -- extended to include a pressure-volume term -- holds here as well, and that there exists a definition of thermodynamic mass and thermodynamic volume that satisfy both this relation and the $1^{st}$ law of thermodynamics. We compare the thermodynamic mass with other known quantities such as ADM, Brown-York and Hollands-Ishibashi-Marolf masses. We also conjecture methods for obtaining a thermodynamic mass where there is ambiguity due to the cosmological constant lengthscale depending on the horizon radius lengthscale.

  11. Black hole chemistry: thermodynamics with Lambda

    CERN Document Server

    Kubiznak, David; Teo, Mae

    2016-01-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities, in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality - an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at exten...

  12. Thermodynamic constraints on fluctuation phenomena

    Science.gov (United States)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  13. Thermodynamics of the PNJL model

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, C. [ECT, Villazzano (Trento) (Italy); INFN, Gruppo Collegato di Trento, Povo (Trento) (Italy); Roessner, S.; Thaler, M.A.; Weise, W. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany)

    2007-01-15

    QCD thermodynamics is investigated by means of the Polyakov-loop-extended Nambu-Jona-Lasinio (PNJL) model, in which quarks couple simultaneously to the chiral condensate and to a background temporal gauge field representing Polyakov loop dynamics. The behaviour of the Polyakov loop as a function of temperature is obtained by minimising the thermodynamic potential of the system. A Taylor series expansion of the pressure is performed. Pressure difference and quark number density are then evaluated up to sixth order in the quark chemical potential and compared to the corresponding lattice data. The validity of the Taylor expansion is discussed within our model through a comparison between the full results and the truncated ones. (orig.)

  14. Thermodynamic Model of Spatial Memory

    Science.gov (United States)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  15. Gravity and/is Thermodynamics

    CERN Document Server

    Padmanabhan, T

    2015-01-01

    The equations of motion describing all physical systems, except gravity, remain invariant if a constant is added to the Lagrangian. In the conventional approach, gravitational theories break this symmetry exhibited by all other physical systems. Restoring this symmetry to gravity and demanding that gravitational field equations should also remain invariant under the addition of a constant to a Lagrangian, leads to the interpretation of gravity as the thermodynamic limit of the kinetic theory of atoms of space. This approach selects, in a very natural fashion, Einstein's general relativity in $d=4$. Developing this paradigm at a deeper level, one can obtain the distribution function for the atoms of space and connect it up with the thermodynamic description of spacetime. This extension relies on a curious fact that the quantum spacetime endows each event with a finite area but zero volume. This approach allows us determine the numerical value of the cosmological constant and suggests a new perspective on cosmo...

  16. Thermodynamic geometry of supercooled water

    Science.gov (United States)

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2015-03-01

    The thermodynamic curvature scalar R is evaluated for supercooled water with a two-state equation of state correlated with the most recent available experimental data. This model assumes a liquid-liquid critical point. Our investigation extends the understanding of the thermodynamic behavior of R considerably. We show that R diverges to -∞ when approaching the assumed liquid-liquid critical point. This limit is consistent with all of the fluid critical point models known so far. In addition, we demonstrate a sign change of R along the liquid-liquid line from negative near the critical point to positive on moving away from the critical point in the low density "ice-like" liquid phase. We also trace out the Widom line in phase space. In addition, we investigate increasing correlation length in supercooled water and compare our results with recent published small angle x-ray scattering measurements.

  17. Thermodynamics in Modified Gravity Theories

    CERN Document Server

    Bamba, Kazuharu; Tsujikawa, Shinji

    2011-01-01

    We demonstrate that there does exist an equilibrium description of thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density $f(R, \\phi, X)$, where $R$ is the Ricci scalar and $X$ is the kinetic energy of a scalar field $\\phi$. This comes from a suitable definition of an energy momentum tensor of the "dark" component obeying the local energy conservation law in the Jordan frame. It is shown that the equilibrium description in terms of the horizon entropy $S$ is convenient because it takes into account the contribution of the horizon entropy $\\hat{S}$ in non-equilibrium thermodynamics as well as an entropy production term.

  18. Thermodynamics of black plane solution

    CERN Document Server

    Rodrigues, Manuel E; Houndjo, Stéphane J M

    2012-01-01

    We obtain a new phantom black plane solution in 4D of the Einstein-Maxwell theory coupled with a cosmological constant. We analyse their basic properties and obtain the extensive and intensive thermodynamic variables, as well as the specific heat and the first law. Through the specific heat and the so-called geometric methods, we analyse in detail their thermodynamic properties, the extreme and phase transition limits, as well as the local and global stabilities of the system. The normal case is shown with an extreme limit and the phantom one with a phase transition only for null mass. The systems present local and global stabilities for certain values of the entropy density with respect to the electric charge, for the canonical and grand canonical ensembles.

  19. Thermodynamics of black plane solution

    Science.gov (United States)

    Rodrigues, Manuel E.; Jardim, Deborah F.; Houndjo, Stéphane J. M.; Myrzakulov, Ratbay

    2013-11-01

    We obtain a new phantom black plane solution in D of the Einstein-Maxwell theory coupled with a cosmological constant. We analyse their basic properties, as well as its causal structure, and obtain the extensive and intensive thermodynamic variables, as well as the specific heat and the first law. Through the specific heat and the so-called geometric methods, we analyse in detail their thermodynamic properties, the extreme and phase transition limits, as well as the local and global stabilities of the system. The normal case is shown with an extreme limit and the phantom one with a phase transition only for null mass, which is physically inaccessible. The systems present local and global stabilities for certain values of the entropy density with respect to the electric charge, for the canonical and grand canonical ensembles.

  20. Modern Thermodynamics with Statistical Mechanics

    CERN Document Server

    Helrich, Carl S

    2009-01-01

    With the aim of presenting thermodynamics in as simple and as unified a form as possible, this textbook starts with an introduction to the first and second laws and then promptly addresses the complete set of the potentials in a subsequent chapter and as a central theme throughout. Before discussing modern laboratory measurements, the book shows that the fundamental quantities sought in the laboratory are those which are required for determining the potentials. Since the subjects of thermodynamics and statistical mechanics are a seamless whole, statistical mechanics is treated as integral part of the text. Other key topics such as irreversibility, the ideas of Ilya Prigogine, chemical reaction rates, equilibrium of heterogeneous systems, and transition-state theory serve to round out this modern treatment. An additional chapter covers quantum statistical mechanics due to active current research in Bose-Einstein condensation. End-of-chapter exercises, chapter summaries, and an appendix reviewing fundamental pr...

  1. Dissipation Bound for Thermodynamic Control

    Science.gov (United States)

    Machta, Benjamin B.

    2015-12-01

    Biological and engineered systems operate by coupling function to the transfer of heat and/or particles down a thermal or chemical gradient. In idealized deterministically driven systems, thermodynamic control can be exerted reversibly, with no entropy production, as long as the rate of the protocol is made slow compared to the equilibration time of the system. Here we consider fully realizable, entropically driven systems where the control parameters themselves obey rules that are reversible and that acquire directionality in time solely through dissipation. We show that when such a system moves in a directed way through thermodynamic space, it must produce entropy that is on average larger than its generalized displacement as measured by the Fisher information metric. This distance measure is subextensive but cannot be made small by slowing the rate of the protocol.

  2. Thermodynamic behaviour of supercritical matter.

    Science.gov (United States)

    Bolmatov, Dima; Brazhkin, V V; Trachenko, K

    2013-01-01

    Since their discovery in 1822, supercritical fluids have been of enduring interest and have started to be deployed in many important applications. Theoretical understanding of the supercritical state is lacking and is seen to limit further industrial deployment. Here we study thermodynamic properties of the supercritical state and discover that specific heat shows a crossover between two different regimes, an unexpected result in view of currently perceived homogeneity of supercritical state in terms of physical properties. We subsequently formulate a theory of system thermodynamics above the crossover, and find good agreement between calculated and experimental specific heat with no free-fitting parameters. In this theory, energy and heat capacity are governed by the minimal length of the longitudinal mode in the system only, and do not explicitly depend on system-specific structure and interactions. We derive a power law and analyse supercritical scaling exponents in the system above the Frenkel line.

  3. Thermodynamic constraints on fluctuation phenomena.

    Science.gov (United States)

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  4. Thermodynamic Measure for Nonequilibrium Processes

    Directory of Open Access Journals (Sweden)

    Attila Grandpierre

    2007-07-01

    Full Text Available One of the most fundamental laws of Nature is formulated by the Second Law of Thermodynamics. At present, in its usual formulation the central concept is entropy characterized in terms of equilibrium state variables. We point out that because thermodynamic changes arise when systems are out of equilibrium and because entropy is not a natural state variable characterizing non-equilibrium states, a new formulation of the Second Law is required. In this paper, we introduce a new, more general, but still entropic measure that is suitable in non-equilibrium conditions as well. This new entropic measure has given a name extropy. The introduction of extropy allows us to formulate the Second Law in a more suitable and precise form, and it resolves some conceptual difficulties related to the interpretation of entropy. We point out that extropy has a fundamental significance in physics, in biology, and in our scientific worldview.

  5. Thermodynamic properties of triphenylantimony dibenzoate

    Science.gov (United States)

    Markin, A. V.; Smirnova, N. N.; Lyakaev, D. V.; Klimova, M. N.; Sharutin, V. V.; Sharutina, O. K.

    2016-10-01

    The temperature dependence of the heat capacity of triphenylantimony dibenzoate Ph3Sb(OC(O)Ph)2 is studied in the range of 6-480 K by means of precision adiabatic vacuum calorimetry and differential scanning calorimetry. The melting of the compound is observed in this temperature range, and its standard thermodynamic characteristics are identified and analyzed. Ph3Sb(OC(O)Ph)2 is obtained in a metastable amorphous state in a calorimeter. The standard thermodynamic functions of Ph3Sb(OC(O)Ph)2 in the crystalline and liquid states are calculated from the obtained experimental data: C p ° ( T), H°( T)- H°(0), S°( T), and G°(T)- H°(0) for the region from T → 0 to 480 K. The standard entropy of formation of the compound in the crystalline state at T = 298.15 K is determined. Multifractal processing of the low-temperature ( T topology.

  6. Statistical thermodynamics of nonequilibrium processes

    CERN Document Server

    Keizer, Joel

    1987-01-01

    The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo­ dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com­ bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and...

  7. Learning thermodynamics with Boltzmann machines

    Science.gov (United States)

    Torlai, Giacomo; Melko, Roger G.

    2016-10-01

    A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.

  8. Chemical thermodynamics and indifferent states

    Science.gov (United States)

    Samuilov, E. V.

    2012-12-01

    A more general procedure to compute the compositions and thermodynamic properties of complex systems, based on which a new modernized version of the TETRAN software was developed, is suggested. A new alternative method to evaluating the possibility of formation of indifferent states in chemically interacting heterogeneous systems based on the above-mentioned procedure is given. The number of free intensive thermodynamic parameters decreases because of the formation of indifferent states. The detailed investigation of the formation of indifferent states in the system consisting of the condensed sodium chloride and atmosphere of vapors formed during the evaporation of this substance is presented as an example. Concrete computations are confirmed by the comparison with the experimental data.

  9. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  10. Thermodynamic studies of zeolites: clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.K.; Tasker, I.R.; Jurgens, R.; O' Hare, P.A.G. (Argonne National Lab., IL (USA))

    1991-01-01

    Calorimetric studies are described of a carefully characterized specimen of clinoptilolite (Malheur County, Oregon, U.S.A.). Values are reported of the standard molar enthalpies of formation at 298.15 K and of the standard molar enthalpy increments (298.15 K) for both clinoptilolite and dehydrated clinoptilolite, as well as the low-temperature molar heat capacity and, by derivation, the standard molar entropy increment for clinoptilolite alone. The conventional thermodynamic properties have been calculated for both compounds. (author).

  11. Nonequilibrium thermodynamics of pressure solution

    Science.gov (United States)

    Lehner, F. K.; Bataille, J.

    1984-01-01

    This paper is concerned with the thermodynamic theory of solution and precipitation processes in wet crustal rocks and with the mechanism of steady pressure-solution slip in ‘contact zones,’ such as grain-to-grain contacts, fracture surfaces, and permeable gouge layers, that are infiltrated by a mobile aqueous solution phase. A local dissipation jump condition at the phase boundary is fundamental to identifying the thermodynamic force driving the solution and precipitation process and is used here in setting up linear phenomenological relations to model near-equilibrium phase transformation kinetics. The local thermodynamic equilibrium of a stressed pure solid in contact with its melt or solution phase is governed by Gibbs's relation, which is rederived here, in a manner emphasizing its independence of constitutive assumptions for the solid while neglecting surface tension and diffusion in the solid. Fluid-infiltrated contact zones, such as those formed by rough surfaces, cannot generally be in thermodynamic equilibrium, especially during an ongoing process of pressure-solution slip, and the existing equilibrium formulations are incorrect in overlooking dissipative processes tending to eliminate fluctuations in superficial free energies due to stress concentrations near asperities, defects, or impurities. Steady pressure-solution slip is likely to exhibit a nonlinear dependence of slip rate on shear stress and effective normal stress, due to a dependence of the contact-zone state on the latter. Given that this dependence is negligible within some range, linear relations for pressure-solution slip can be derived for the limiting cases of diffusion-controlled and interface-reaction-controlled rates. A criterion for rate control by one of these mechanisms is set by the magnitude of the dimensionless quantity kδ/2C pD, where k is the interfacial transfer coefficient, δ is the mean diffusion path length, C p is the solubility at pressure p, and D is the mass

  12. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  13. Black Hole Thermodynamics and Electromagnetism

    CERN Document Server

    Sidharth, B G

    2005-01-01

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

  14. Thermodynamic properties of sea air

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-02-01

    Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.

    In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.

    The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  15. Thermodynamic properties of sea air

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2009-10-01

    Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere–ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.

    In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as ''sea air'' here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.

    The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  16. Thermodynamic work from operational principles

    Science.gov (United States)

    Gallego, R.; Eisert, J.; Wilming, H.

    2016-10-01

    In recent years we have witnessed a concentrated effort to make sense of thermodynamics for small-scale systems. One of the main difficulties is to capture a suitable notion of work that models realistically the purpose of quantum machines, in an analogous way to the role played, for macroscopic machines, by the energy stored in the idealisation of a lifted weight. Despite several attempts to resolve this issue by putting forward specific models, these are far from realistically capturing the transitions that a quantum machine is expected to perform. In this work, we adopt a novel strategy by considering arbitrary kinds of systems that one can attach to a quantum thermal machine and defining work quantifiers. These are functions that measure the value of a transition and generalise the concept of work beyond those models familiar from phenomenological thermodynamics. We do so by imposing simple operational axioms that any reasonable work quantifier must fulfil and by deriving from them stringent mathematical condition with a clear physical interpretation. Our approach allows us to derive much of the structure of the theory of thermodynamics without taking the definition of work as a primitive. We can derive, for any work quantifier, a quantitative second law in the sense of bounding the work that can be performed using some non-equilibrium resource by the work that is needed to create it. We also discuss in detail the role of reversibility and correlations in connection with the second law. Furthermore, we recover the usual identification of work with energy in degrees of freedom with vanishing entropy as a particular case of our formalism. Our mathematical results can be formulated abstractly and are general enough to carry over to other resource theories than quantum thermodynamics.

  17. Nonequilibrium aspects of quantum thermodynamics

    OpenAIRE

    2006-01-01

    Questions about the route from a nonequilibrium initial state to the final global equilibrium have played an important role since the early days of phenomenological thermodynamics and statistical mechanics. Nowadays, their implications reach from central technical devices of the contemporary human society, like heat engines, refrigerators and computers to recent physics at almost all length scales, from Bose-Einstein-condensation and superconductors to black holes. This work addresses the fou...

  18. Thermodynamic functions of arsenic selenides

    Science.gov (United States)

    Babanly, D. M.; Velieva, G. M.; Imamaliyeva, S. Z.; Babanly, M. B.

    2017-07-01

    The solid-phase equilibria and thermodynamic properties of an As-Se system are studied using the electromotive force (EMF). The existence of compounds As2Se3, AsSe, and As4Se3 in a system with near constant composition is confirmed. The relative partial molar functions, standard Gibbs free energies, enthalpies of formation, and standard entropies of As in the alloys are calculated using EMF measurements.

  19. The thermodynamic cost of measurements

    OpenAIRE

    Granger, Léo; Kantz, Holger

    2011-01-01

    The measurement of thermal fluctuations provides information about the microscopic state of a thermodynamic system and can be used in order to extract work from a single heat bath in a suitable cyclic process. We present a minimal framework for the modeling of a measurement device and we propose a protocol for the measurement of thermal fluctuations. In this framework, the measurement of thermal fluctuations naturally leads to the dissipation of work. We illustrate this framework on a simple ...

  20. Thermodynamic States in Explosion Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  1. Thermodynamical journey in plant biology

    Directory of Open Access Journals (Sweden)

    Adelin eBarbacci

    2015-06-01

    Full Text Available Nonequilibrium irreversible thermodynamics constitute a meaningful point of view suitable to explore life with a rich paradigm. This analytical framework can be used to span the gap from molecular processes to plant function and shows great promise to create a holistic description of life. Since living organisms dissipate energy, exchange entropy and matter with their environment, they can be assimilated to dissipative structures. This concept inherited from nonequilibrium thermodynamics has four properties which defines a scale independent framework suitable to provide a simpler and more comprehensive view of the highly complex plant biology. According to this approach, a biological process is modeled as an avalanche of dissipative structures. Each dissipative structure, corresponds to an unitary biological process, which is initiated by the amplification of a fluctuation. Evolution of the process leads to the breakage of the system symmetry and to the export of entropy. Exporting entropy to the surrounding environment corresponds to collecting information about it. Biological actors which break the symmetry of the system and which store information are by consequence, key actors on which experiments and data analysis focus most. This paper aims at illustrating properties of dissipative structure through familiar examples and thus initiating the dialogue between nonequilibrium thermodynamics and plant biology.

  2. X-ray Studies of Flaring Plasma

    Indian Academy of Sciences (India)

    B. Sylwester; J. Sylwester; K. J. H. Phillips

    2008-03-01

    We present some methods of X-ray data analysis employed in our laboratory for deducing the physical parameters of flaring plasma. For example, we have used a flare well observed with Polish instrument RESIK aboard Russian CORONAS-F satellite. Based on a careful instrument calibration, the absolute fluxes in a number of individual spectral lines have been obtained. The analysis of these lines allows us to follow the evolution of important thermodynamic parameters characterizing the emitting plasma throughout this flare evolution.

  3. Thermodynamic Studies for Drug Design and Screening

    Science.gov (United States)

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  4. The Classical Thermodynamics of Deformable Materials

    Science.gov (United States)

    McLellan, A. G.

    2011-02-01

    Part I. The Mathematical Foundations of Finite Strain Theory: 1. Introduction; 2. Mathematical description of homogeneous deformations; 3. Infinitesimal deformation; 4. Transformations describing deformations of a material medium; 5. Forces; 6. Boundary conditions and work; 7. Another unique factorisation of D; 8. Virtual work; 9. Transformation of cartesian tensors; Part II. Non-Hydrostatic Thermodynamics: 10. The thermodynamic basis; 11. Thermodynamic relations; 12. Thermodynamic functions, equations of state; 13. Thermodynamic quantities, definitions, and geometrical situation; 14. Thermal expansion coefficients; 15. Specific heats; 16. Elastic stiffness and compliances; 17. Tensorial forms for the elastic stiffness and compliance matrices; 18. The effects of symmetry on the thermodynamic properties of crystals; 19. Equilibrium and stability conditions for thermodynamic systems; 20. Equilibrium conditions for diffusion in phases under non-hydrostatic stresses; 21. The equilibrium of a stressed solid in contact with a solution of the solid; 22. The thermodynamic stability of a phase; 23. Discussion of the elastic stability conditions; 24. Phase transitions and instability; 25. An example of a phase transition involving a simple shear; 26. Limiting the values of thermodynamic quantities at an instability; 27. The a-β quartz transition; 28. The thermodynamic theory of the growth of Dauphiné twinning in quartz under stress; 29. The tetragonal/cubic ferroelectric transition of barium titanate; References; Index.

  5. Ab initio thermodynamic results for warm dense matter

    Science.gov (United States)

    Bonitz, Michael

    2016-10-01

    Warm dense matter (WDM) - an exotic state where electrons are quantum degenerate and ions may be strongly correlated - is ubiquitous in dense astrophysical plasmas and highly compressed laboratory systems including inertial fusion. Accurate theoretical predictions require precision thermodynamic data for the electron gas at high density and finite temperature around the Fermi temperature. First such data have been obtained by restricted path integral Monte Carlo (restricted PIMC) simulations and transformed into analytical fits for the free energy. Such results are also key input for novel finite temperature density functional theory. However, the RPIMC data of Ref. 1 are limited to moderate densities, and even there turned out to be surprisingly inaccurate, which is a consequence of the fermion sign problem. These problems were recently overcome by the development of alternative QMC approaches in Kiel (configuration PIMC and permutation blocking PIMC) and Imperial College (Density matrix QMC). The three methods have their strengths and limitations in complementary parameter regions and provide highly accurate thermodynamic data for the electronic contributions in WDM. While the original results were obtained for small particle numbers, recently accurate finite size corrections were derived allowing to compute ab initio thermodynamic data with an unprecedented accuracy of better than 0.3 percent. This provides the final step for the use as benchmark data for experiments and models of Warm dense matter. Co-authors: T. Schoof, S. Groth, T. Dornheim, F. D. Malone, M. Foulkes, and T. Sjostroem, Funded by: DFG via SFB-TR24 and project BO1366-10.

  6. Plasma properties of laser—ablated Si target in air

    Institute of Scientific and Technical Information of China (English)

    王象泰; 许炳璋; 等

    1996-01-01

    In plasma emission spectra produced by pulsed laser ablation of Si target in air under the assumption of local thermodynamic equilibrium(LTE),the electron temperature and the electron number density are calculated.respectively,It seems that LTE is valid in early stage of the laser induced plasma evolution.

  7. Thermo-magneto coupling in a dipole plasma

    CERN Document Server

    Yoshida, Z; Morikawa, J; Saitoh, H

    2012-01-01

    On a dipole plasma, we observe the generation of magnetic moment, as the movement of the levitating magnet-plasma compound, in response to electron-cyclotron heating and the increase of $\\beta$ (magnetically-confined thermal energy). We formulate a thermodynamic model with interpreting heating as injection of microscopic magnetic moment; the corresponding chemical potential is the ambient magnetic field.

  8. Properties and evolution of anisotropic structures in collisionless plasmas

    CERN Document Server

    Karimov, A R; Stenflo, L

    2016-01-01

    A new class of exact electrostatic solutions of the Vlasov-Maxwell equations based on the Jeans's theorem is proposed for studying the evolution and properties of two-dimensional anisotropic plasmas that are far from thermodynamic equilibrium. In particular, the free expansion of a slab of electron-ion plasma into vacuum is investigated.

  9. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  10. Use of cold plasma in food processing

    NARCIS (Netherlands)

    Mastwijk, H.C.; Nierop Groot, M.N.

    2010-01-01

    Application of cold plasma has been reported in agriculture, food, and bioscience literature as an effective, non-chemical, gas-phase disinfection agent that can be applied at moderate temperatures. The unusual thermodynamic properties of these gases are discussed with focus on nitrogen-based

  11. Thermodynamics for Chemists, Physicists and Engineers

    CERN Document Server

    Hołyst, Robert

    2012-01-01

    Thermodynamics is an essential part of chemical physics and is of fundamental importance in physics, chemistry and engineering courses. This textbook takes an interdisciplinary approach to the subject and is therefore suitable for undergraduates in all those courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variabl...

  12. Thermodynamics of random reaction networks.

    Directory of Open Access Journals (Sweden)

    Jakob Fischer

    Full Text Available Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  13. Thermal physics kinetic theory and thermodynamics

    CERN Document Server

    Singh, Devraj; Yadav, Raja Ram

    2016-01-01

    THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions

  14. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  15. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  16. The thermodynamics in a dynamical black hole

    Institute of Scientific and Technical Information of China (English)

    Bo LIU; Wen-biao LIU

    2009-01-01

    Considering the back-reaction of emitting particles to the black hole, a "new" horizon is suggested where thermodynamics can be built in the dynamical black hole. It, at least, means that the thermodynamics of a dynamical black hole should not be constructed at the original event horizon any more. The temperature, "new" horizon position and radiating particles' energy will be consistent again under the theory of equilibrium thermodynamical system.

  17. Possible extended forms of thermodynamic entropy

    OpenAIRE

    Sasa, Shin-ichi

    2013-01-01

    Thermodynamic entropy is determined by a heat measurement through the Clausius equality. The entropy then formalizes a fundamental limitation of operations by the second law of thermodynamics. The entropy is also expressed as the Shannon entropy of the microscopic degrees of freedom. Whenever an extension of thermodynamic entropy is attempted, we must pay special attention to how its three different aspects just mentioned are altered. In this paper, we discuss possible extensions of the therm...

  18. Irreversible thermodynamics of Poisson processes with reaction.

    Science.gov (United States)

    Méndez, V; Fort, J

    1999-11-01

    A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.

  19. Irreversible thermodynamics of Poisson processes with reaction

    Science.gov (United States)

    Méndez, Vicenç; Fort, Joaquim

    1999-11-01

    A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.

  20. Commonly Asked Questions in Thermodynamics

    CERN Document Server

    Assael, Marc J

    2011-01-01

    Have you ever had a question that keeps persisting and for which you cannot find a clear answer? Is the question seemingly so "simple" that the problem is glossed over in most resources, or skipped entirely? CRC Press/Taylor and Francis is pleased to introduce Commonly Asked Questions in Thermodynamics, the first in a new series of books that address the questions that frequently arise in today's major scientific and technical disciplines. Designed for a wide audience, from students and researchers to practicing professionals in related areas, the books are organized in a user friend

  1. Thermodynamics of discrete quantum processes

    Science.gov (United States)

    Anders, Janet; Giovannetti, Vittorio

    2013-03-01

    We define thermodynamic configurations and identify two primitives of discrete quantum processes between configurations for which heat and work can be defined in a natural way. This allows us to uncover a general second law for any discrete trajectory that consists of a sequence of these primitives, linking both equilibrium and non-equilibrium configurations. Moreover, in the limit of a discrete trajectory that passes through an infinite number of configurations, i.e. in the reversible limit, we recover the saturation of the second law. Finally, we show that for a discrete Carnot cycle operating between four configurations one recovers Carnot's thermal efficiency.

  2. Boundary layers in stochastic thermodynamics.

    Science.gov (United States)

    Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2012-02-01

    We study the problem of optimizing released heat or dissipated work in stochastic thermodynamics. In the overdamped limit these functionals have singular solutions, previously interpreted as protocol jumps. We show that a regularization, penalizing a properly defined acceleration, changes the jumps into boundary layers of finite width. We show that in the limit of vanishing boundary layer width no heat is dissipated in the boundary layer, while work can be done. We further give an alternative interpretation of the fact that the optimal protocols in the overdamped limit are given by optimal deterministic transport (Burgers equation).

  3. The thermodynamics of general anesthesia

    CERN Document Server

    Heimburg, T; Heimburg, Thomas; Jackson, Andrew D.

    2006-01-01

    It is known that the action of general anesthetics is proportional to their partition coefficient in lipid membranes (Meyer-Overton rule). This solubility is, however, directly related to the depression of the temperature of the melting transition found close to body temperature in biomembranes. We propose a thermodynamic extension of the Meyer-Overton rule which is based on free energy changes in the system and thus automatically incorporates the effects of melting point depression. This model provides a quantitative explanation of the pressure reversal of anesthesia. Further, it explains why inflammation and the addition of divalent cations reduce the effectiveness of anesthesia.

  4. Thermodynamic laws in isolated systems.

    Science.gov (United States)

    Hilbert, Stefan; Hänggi, Peter; Dunkel, Jörn

    2014-12-01

    The recent experimental realization of exotic matter states in isolated quantum systems and the ensuing controversy about the existence of negative absolute temperatures demand a careful analysis of the conceptual foundations underlying microcanonical thermostatistics. Here we provide a detailed comparison of the most commonly considered microcanonical entropy definitions, focusing specifically on whether they satisfy or violate the zeroth, first, and second laws of thermodynamics. Our analysis shows that, for a broad class of systems that includes all standard classical Hamiltonian systems, only the Gibbs volume entropy fulfills all three laws simultaneously. To avoid ambiguities, the discussion is restricted to exact results and analytically tractable examples.

  5. Thermodynamic modeling of complex systems

    DEFF Research Database (Denmark)

    Liang, Xiaodong

    Offshore reservoirs represent one of the major growth areas of the oil and gas industry, and environmental safety is one of the biggest challenges for the offshore exploration and production. The oil accidents in the Gulf of Mexico in 1979 and 2010 were two of the biggest disasters in history...... after an oil spill. Engineering thermodynamics could be applied in the state-of-the-art sonar products through advanced artificial technology, if the speed of sound, solubility and density of oil-seawater systems could be satisfactorily modelled. The addition of methanol or glycols into unprocessed well...

  6. Thermodynamics of the hot BIon

    DEFF Research Database (Denmark)

    Grignani, Gianluca; Harmark, Troels; Marini, Andrea

    2011-01-01

    We investigate the thermodynamics of the recently obtained nite temperature BIon solution of arXiv:1012.1494, focusing on two aspects. The first concerns comparison of the free energy of the three available phases for the finite temperature brane-antibrane wormhole configuration. Based on this we...... propose a heuristic picture for the dynamics of the phases that involves a critical temperature below which a stable phase exists. This stable phase is the finite temperature analogue of the thin throat branch of the extremal brane anti-brane wormhole configuration. The second aspect that we consider...

  7. Thermodynamic Properties of Supported Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  8. Thermodynamic basis for cluster kinetics

    DEFF Research Database (Denmark)

    Hu, Lina; Bian, Xiufang; Qin, Xubo

    2006-01-01

    Due to the inaccessibility of the supercooled region of marginal metallic glasses (MMGs) within the experimental time window, we study the cluster kinetics above the liquidus temperature, Tl, to acquire information on the fragility of the MMG systems. Thermodynamic basis for the stability...... of locally ordered structure in the MMG liquids is discussed in terms of the two-order-parameter model. It is found that the Arrhenius activation energy of clusters, h, is proportional to the chemical mixing enthalpy of alloys, Hchem. Fragility of the MMG forming liquids can be described by the ratio...

  9. Thermodynamics of a collapsed object

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, N. (Inst. of Science and Techn., Sultanpur (India). Technological Faculty); De Sabbata, V. (Bologna Univ. (Italy). Ist. di Fisica)

    1981-06-20

    Here is presented a thermodynamic study in the Reissner-Nordstroem blackhole which leads to a beautiful conclusion that the product of surface gravities of the outer horizon and the inner horizon of the blackhole is equal to the inverse square of charge distribution over it. If one considers a more general collapsed object wherein rotation is also considered, a similar inference is that the product of surface gravities of the inner and the outer horizon is equal to the inverse of the sum of squares of the charge distribution and angular momentum per unit mass of the rotation.

  10. Superheated emulsions: neutronics and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    d`Errico, F. [Pisa Univ. (Italy). Dipt. di Costruzioni Meccaniche e Nucleari]|[Yale Univ., New Haven, CT (United States). School of Medicine; Curzio, G. [Pisa Univ. (Italy). Dipt. di Costruzioni Meccaniche e Nucleari; Nath, R. [Yale Univ., New Haven, CT (United States). School of Medicine; Apfel, R.E. [Yale Univ., New Haven, CT (United States). Dept. of Mechanical Engineering; Dietz, E.; Guldbakke, S.; Siebert, B.R.L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Egger, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Gualdrini, G.F. [ENEA, Bologna (Italy)

    1997-09-01

    The results of some recent theoretical and experimental investigations on the physics of superheated emulsions are presented. Computational fluid thermodynamics allowed for a detailed description of the temporal and spatial history of the energy deposition process by a charged particle in a superheated liquid. Despite the assumptions it is based upon, this model gives information in agreement with experimental data on bubble nucleation. The experimental findings concern the role of interfacial reactions between drops and emulsifier, the existence of inhibition temperatures for the detector`s response, and the progressive sensitisation to protons. (author).

  11. An introduction to statistical thermodynamics

    CERN Document Server

    Hill, Terrell L

    1987-01-01

    ""A large number of exercises of a broad range of difficulty make this book even more useful…a good addition to the literature on thermodynamics at the undergraduate level."" - Philosophical MagazineAlthough written on an introductory level, this wide-ranging text provides extensive coverage of topics of current interest in equilibrium statistical mechanics. Indeed, certain traditional topics are given somewhat condensed treatment to allow room for a survey of more recent advances.The book is divided into four major sections. Part I deals with the principles of quantum statistical mechanics a

  12. Three-loop HTLpt thermodynamics at finite temperature and chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Najmul; Bandyopadhyay, Aritra [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700107 (India); Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology,N-7491 Trondheim (Norway); Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700107 (India); Strickland, Michael [Department of Physics, Kent State University,Kent, Ohio 44242 (United States); Su, Nan [Faculty of Physics, University of Bielefeld,D-33615 Bielefeld (Germany)

    2014-05-07

    We calculate the three-loop thermodynamic potential of QCD at finite temperature and chemical potential(s) using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The resulting analytic thermodynamic potential allows us to compute the pressure, energy density, and entropy density of the quark-gluon plasma. Using these we calculate the trace anomaly, speed of sound, and second-, fourth-, and sixth-order quark number susceptibilities. For all observables considered we find good agreement between our three-loop HTLpt calculations and available lattice data for temperatures above approximately 300 MeV.

  13. Arc plasma devices: Evolving mechanical design from numerical simulation

    Indian Academy of Sciences (India)

    S Ghorui; A K Das

    2013-04-01

    Wide ranges of technological applications involve arc plasma devices as the primary plasma source for processing work. Recent findings exhibit the existence of appreciable thermal non-equilibrium in these so-called thermal plasma devices. Commercially available magnetohydrodynamic codes are not capable of handling such systems due to unavailability of non-equilibrium thermodynamic and transport property data and self-consistent models. A recipe for obtaining mechanical design of arc plasma devices from numerical simulation incorporating two-temperature thermal non-equilibrium model is presented in this article with reference to the plasma of the mixture of molecular gases like nitrogen and oxygen. Such systems are technologically important as they correspond to the plasma devices operating with air, oxygen plasma torches in cutting industries and plasma devices using nitrogen as shielding gas. Temperature field, associated fluid dynamics and electrical characteristics of a plasma torch are computed in a systematic manner to evaluate the performance of a conceived design using a two-fluid CFD model coupled with a two-temperature thermodynamic and transport property code. Important effects of different nozzle designs and plasma gases obtained from the formalism are discussed. Non-equilibrium thermo-dynamic properties are computed using modified two-temperature Saha equations and transport properties are computed using standard Chapman–Enskog approach.

  14. Treatise on irreversible and statistical thermodynamics an introduction to nonclassical thermodynamics

    CERN Document Server

    Yourgrau, Wolfgang; Raw, Gough

    2002-01-01

    Extensively revised edition of a much-respected work examines thermodynamics of irreversible processes, general principles of statistical thermodynamics, assemblies of noninteracting structureless particles, and statistical theory. 1966 edition.

  15. Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume

    CERN Document Server

    Altamirano, Natacha; Mann, Robert B; Sherkatghanad, Zeinab

    2014-01-01

    In this review we summarize, expand, and set in context recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. We specifically consider the thermodynamics of higher-dimensional rotating asymptotically flat and AdS black holes and black rings in a canonical (fixed angular momentum) ensemble. We plot the associated thermodynamic potential-the Gibbs free energy-and study its behaviour to uncover possible thermodynamic phase transitions in these black hole spacetimes. We show that the multiply-rotating Kerr-AdS black holes exhibit a rich set of interesting thermodynamic phenomena analogous to the "every day thermodynamics" of simple substances, such as reentrant phase transitions of multicomponent liquids, multiple first-order solid/liquid/gas phase transitions, and liquid/gas phase transitions of the Van der Waals type. Furthermore, the reentrant phase tran...

  16. Stochastic deformation of a thermodynamic symplectic structure

    Science.gov (United States)

    Kazinski, P. O.

    2009-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.

  17. Coherence and measurement in quantum thermodynamics

    Science.gov (United States)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  18. OpenCalphad - a free thermodynamic software

    National Research Council Canada - National Science Library

    Sundman, Bo; Kattner, Ursula R; Palumbo, Mauro; Fries, Suzana G

    2015-01-01

    ... (Calculation of Phase Diagrams) technique has made it possible to calculate properties of multicomponent systems using databases of thermodynamic descriptions with models that were assessed from experimental data...

  19. Dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fortov, Vladimir E; Khrapak, Aleksei G; Molotkov, Vladimir I; Petrov, Oleg F [Institute for High Energy Densities, Associated Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Khrapak, Sergei A [Max-Planck-Institut fur Extraterrestrische Physik, Garching (Germany)

    2004-05-31

    The properties of dusty plasmas - low-temperature plasmas containing charged macroparticles - are considered. The most important elementary processes in dusty plasmas and the forces acting on dust particles are investigated. The results of experimental and theoretical investigations of different states of strongly nonideal dusty plasmas - crystal-like, liquid-like, gas-like - are summarized. Waves and oscillations in dusty plasmas, as well as their damping and instability mechanisms, are studied. Some results on dusty plasma investigated under microgravity conditions are presented. New directions of experimental research and potential applications of dusty plasmas are discussed. (reviews of topical problems)

  20. Computer Simulation of Statistical Plasma Mechanics (An Example of Undergraduate Research)

    Science.gov (United States)

    Theimer, O.; Theimer, M. M.

    1978-01-01

    Computes various thermodynamics and statistical quantities of all electrically charged particles in a small plasma to analyze: (1) How many particles are required for computer stimulation of a macroscopic plasma? (2) To find out if this method is accurate and fast enough to become a good tool of statistical plasma mechanics. (GA)

  1. Thermodynamic studies on lithium ferrites

    Science.gov (United States)

    Rakshit, S. K.; Parida, S. C.; Naik, Y. P.; Chaudhary, Ziley Singh; Venugopal, V.

    2011-05-01

    Thermodynamic studies on ternary oxides of Li-Fe-O systems were carried out using differential scanning calorimetry, Knudsen effusion mass spectrometry, and solid-state electrochemical technique based on fluoride electrolyte. Heat capacities of LiFe 5O 8(s) and LiFeO 2(s) were determined in the temperature range 127-861 K using differential scanning calorimetry. Gibbs energies of formation of LiFe 5O 8(s) and LiFeO 2(s) were determined using Knudsen effusion mass spectrometry and solid-state galvanic cell technique. The combined least squares fits can be represented as Δ fGmo(LiFe 5O 8,s, T)/kJ mol -1 (±6)=-2341+0.6764( T/K) (588≤ T/K≤971) Δ fGmo(LiFeO 2,s, T)/kJ mol -1 (±3)=-708+0.1656( T/K) (569≤ T/K≤1021) The temperature independent term of the above equations represents Δ fHom( Tav) and temperature dependent term represents negative change in entropy of the respective compounds. Thermodynamic analysis shows that LiFe 5O 8(s) is more stable compared to LiFeO 2(s).

  2. QCD thermodynamics on a lattice

    Science.gov (United States)

    Levkova, Ludmila A.

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.

  3. Thermodynamic States in Explosion Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  4. Quasiclassical Theory and Simulations of Strongly Coupled Plasmas

    OpenAIRE

    Ebeling, W.; Ortner, J.

    1999-01-01

    A survey on the dynamical and thermodynamical properties of plasmas with strong Coulomb interactions in the quasi-classical density-temperature region is given. First the basic theoretical concepts describing nonideality are discussed. The chemical picture is introduced. It is shown that the nonideal plasma subsystem of the free charges has a rather large quasi-classical regime, where the quantum effects yield only corrections to the merely classical dynamics. The plasma of free charges may b...

  5. Universal thermodynamics in different gravity theories: Conditions for generalized second law of thermodynamics and thermodynamical equilibrium on the horizons

    CERN Document Server

    Mitra, Saugata; Chakraborty, Subenoy

    2016-01-01

    The present work deals with a detailed study of universal thermodynamics in different modified gravity theories. The validity of the generalized second law of thermodynamics (GSLT) and thermodynamical equilibrium (TE) of the Universe bounded by a horizon (apparent/event) in f(R)-gravity, Einstein-Gauss-Bonnet gravity, RS-II brane scenario and DGP brane model has been investigated. In the perspective of recent observational evidences, the matter in the Universe is chosen as interacting holographic dark energy model. The entropy on the horizons are evaluated from the validity of the unified first law and as a result there is a correction (in integral form) to the usual Bekenstein entropy. The other thermodynamical parameter namely temperature on the horizon is chosen as the recently introduced corrected Hawking temperature. The above thermodynamical analysis is done for homogeneous and isotropic flat FLRW model of the Universe. The restrictions for the validity of GSLT and the TE are presented in tabular form f...

  6. The stability analysis of magnetohydrodynamic equilibria - Comparing the thermodynamic approach with the energy principle

    Science.gov (United States)

    Brinkmann, R. P.

    1989-01-01

    This paper is a contribution to the stability analysis of current-carrying plasmas, i.e., plasma systems that are forced by external mchanisms to carry a nonrelaxing electrical current. Under restriction to translationally invariant configurations, the thermodynamic stability criterion for a multicomponent plasma is rederived within the framework of nonideal MHD. The chosen dynamics neglects scalar resistivity, but allows for other types of dissipation effects both in Ohm's law and in the equation of motion. In the second section of the paper, the thermodynamic stability criterion is compared with the ideal MHD based energy principle of Bernstein et al. With the help of Schwarz's inequality, it is shown that the former criterion is always more 'pessimistic' than the latter, i.e., that thermodynamic stability implies stability according to the MHD principle, but not vice versa. This reuslt confirms the physical plausible idea that dissipational effects tend to weaken the stability properties of current-carrying plasma equilibria by breaking the constraints of ideal MHD and allowing for possibly destabilizing effects such as magnetic field line reconfiguration.

  7. Opacity of Shock-Generated Argon Plasmas

    Institute of Scientific and Technical Information of China (English)

    王藩侯; 陈敬平; 周显明; 李西军; 经福谦; 孟续军; 孙永盛

    2001-01-01

    Argon plasmas with uniform density and temperature are generated by a planar shock wave through argon gas. The opacities of argon plasma, covering the thermodynamic states at temperatures of 1.4-2.2eV and in densities of 0.0083- 0.015 g/cm3, are investigated by measuring the emitted radiance versus time at several visible wavelengths. Comparison of the measured opacities with those calculated demonstrates that the average atom model can be used well to describe the essential transport behaviour of photons in argon plasma under the abovementioned thermodynamic condition. A simplified and self-consistent method to deduce the reflectivity R(λ) at the baseplate surface is applied. It demonstrates that the values of R(λ) are all around 0.4 in the experiments, which are basically in agreement with those given by Erskine previously (1994 J. Quant. Spectrosc. Radiat.Transfer 51 97).

  8. MOX - TDB : Nuclear Thermodynamic DataBase

    OpenAIRE

    Cheynet, Bertrand

    2006-01-01

    37 pages; A thermodynamic database collecting critical assessments made for nuclear applications has been built since 2003 for the MOX fuel. MOX-TDB is a thermodynamic database for in-vessel applications coontaining : Ba-Fe-La-O-Pu-Ru-Sr-U-Zr + Ar-H. This database covers the entire field from metal to oxide domains.

  9. Black hole chemistry: thermodynamics with Lambda

    Science.gov (United States)

    Kubizňák, David; Mann, Robert B.; Teo, Mae

    2017-03-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field.

  10. Warming to ecocide a thermodynamic diagnosis

    CERN Document Server

    Sangster, Alan J

    2011-01-01

    Suggests a route to avoiding runaway climate change by reinstating the greenhouse thermostat to its full operational capacity Addresses mankind's contribution to climate change from a thermodynamic perspective Describes and illustrates the power of thermodynamics to furnish insights into the thermal behaviour of complex physical systems

  11. An open-source thermodynamic software library

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Gaspar, Jozsef; Capolei, Andrea

    This is a technical report which accompanies the article ”An open-source thermodynamic software library” which describes an efficient Matlab and C implementation for evaluation of thermodynamic properties. In this technical report we present the model equations, that are also presented in the paper...

  12. The Conformal Version of Black Hole Thermodynamics

    CERN Document Server

    Wu, S Q

    2004-01-01

    The conformal thermodynamics of rotating charged black holes in general relativity and string theory is proposed by considering the first laws of thermodynamics for a pair of systems made up of the two horizons of a Kerr-Newman or Kerr-Sen black hole. These two systems are constructed by only demanding their ``horizon areas'' to be the sum and difference of that of the outer and inner horizons of their prototype. The thermodynamics present here is a ``conformal version'' of black hole thermodynamics, since it is closely related to the near-horizon conformal symmetry of black holes. The concept of non-quasinormal modes recently proposed by D. Birmingham and S. Carlip [7] is compatible with this ``conformal thermodynamics'', rather than the usual ``horizon thermodynamics''. In addition, we show that this conformal thermodynamics resembles to the thermodynamics of effective string or D-brane models, since the two newly-constructed systems bear a striking resemblance to the right- and left-movers in string theory...

  13. The thermodynamic solar energy; Le solaire thermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    Rivoire, B. [Centre National de la Recherche Scientifique (CNRS-IMP), 66 - Perpignan (France)

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  14. Thermodynamics and econometrics. Termodinamica e grandezze economiche

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, L.

    1993-06-01

    The principles of thermodynamics have a general rationale which, under certain circumstances, could also apply to contexts other than energetics. This article suggests the exploration of their application to economics, a subject where significant facts occur which are similar to thermodynamic phenomena and deserve interpretative considerations.

  15. Understanding the Thermodynamics of Biological Order

    Science.gov (United States)

    Peterson, Jacob

    2012-01-01

    By growth in size and complexity (i.e., changing from more probable to less probable states), plants and animals appear to defy the second law of thermodynamics. The usual explanation describes the input of nutrient and sunlight energy into open thermodynamic systems. However, energy input alone does not address the ability to organize and create…

  16. Thermodynamic geometry and critical aspects of bifurcations.

    Science.gov (United States)

    Mihara, A

    2016-07-01

    This work presents an exploratory study of the critical aspects of some well-known bifurcations in the context of thermodynamic geometry. For each bifurcation its normal form is regarded as a geodesic equation of some model analogous to a thermodynamic system. From this hypothesis it is possible to calculate the corresponding metric and curvature and analyze the critical behavior of the bifurcation.

  17. Geometrical description of denormalized thermodynamic manifold

    Institute of Scientific and Technical Information of China (English)

    Wu Li-Ping; Sun Hua-Fei; Cao Li-Mei

    2009-01-01

    In view of differential geometry,the state space of thermodynamic parameters is investigated. Here the geometrical structures of the denormalized thermodynamic manifold are considered. The relation of their geometrical metrics is obtained. Moreover an example is used to illustrate our conclusions.

  18. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  19. An Experimental Determination of Thermodynamic Values

    Science.gov (United States)

    Antony, Erling; Muccianti, Christine; Vogel, Tracy

    2012-01-01

    Measurements have been added to an old demonstration of chemical equilibria allowing the determination of thermodynamic constants. The experiment allows the students an opportunity to merge qualitative observations associated with Le Chatelier's principle and thermodynamic calculations using graphical techniques. (Contains 4 figures.)

  20. Teaching Differentials in Thermodynamics Using Spatial Visualization

    Science.gov (United States)

    Wang, Chih-Yueh; Hou, Ching-Han

    2012-01-01

    The greatest difficulty that is encountered by students in thermodynamics classes is to find relationships between variables and to solve a total differential equation that relates one thermodynamic state variable to two mutually independent state variables. Rules of differentiation, including the total differential and the cyclic rule, are…

  1. Friction Force: From Mechanics to Thermodynamics

    Science.gov (United States)

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  2. Teaching Differentials in Thermodynamics Using Spatial Visualization

    Science.gov (United States)

    Wang, Chih-Yueh; Hou, Ching-Han

    2012-01-01

    The greatest difficulty that is encountered by students in thermodynamics classes is to find relationships between variables and to solve a total differential equation that relates one thermodynamic state variable to two mutually independent state variables. Rules of differentiation, including the total differential and the cyclic rule, are…

  3. Probing the thermodynamics of protein-lipid interactions by isothermal titration calorimetry.

    Science.gov (United States)

    Swamy, Musti J; Sankhala, Rajeshwer S

    2013-01-01

    Isothermal titration calorimetry is a highly sensitive technique for the study of molecular interactions. This method has been applied quite extensively to investigate the interaction of proteins with small ligands, other proteins, and nucleic acids as well as with drugs and metal ions. In this chapter, we describe the application of ITC for the investigation of thermodynamics of protein-lipid interaction. A number of parameters such as enthalpy of binding (ΔH), entropy of binding (ΔS), association constant (K (a)), binding stoichiometry (n), and free energy of binding (ΔG) can be obtained from a single calorimetric titration, providing a complete thermodynamic characterization of the interaction. The method is described in detail taking the major protein of the bovine seminal plasma, PDC-109, which exhibits a high preference for interaction with choline-containing lipids, as an example. The method can be applied to investigate the thermodynamics of the interaction of other soluble proteins with lipid membranes.

  4. Thermodynamic Model of Noise Information Transfer

    Science.gov (United States)

    Hejna, Bohdan

    2008-10-01

    In this paper we apply a certain unifying physical description of the results of Information Theory. Assuming that heat entropy is a thermodynamic realization of information entropy [2], we construct a cyclical, thermodynamic, average-value model of an information transfer chain [3] as a general heat engine, in particular a Carnot engine, reversible or irreversible. A working medium of the cycle (a thermodynamic system transforming input heat energy) can be considered as a thermodynamic, average-value model or, as such, as a realization of an information transfer channel. We show that in a model realized in this way the extended II. Principle of Thermodynamics is valid [2] and we formulate its information form.

  5. eQuilibrator--the biochemical thermodynamics calculator.

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  6. An introduction to thermodynamics and statistical mechanics

    CERN Document Server

    Saxena, A K

    2016-01-01

    An Introduction to Thermodynamics and Statistical Mechanics aims to serve as a text book for undergraduate hons.and postgraduate students of physics. The book covers First Law of Thermodynamics, Entropy and Second Law ofThermodynamics, Thermodynamic Relations, The Statistical Basis of Thermodynamics, Microcanonical Ensemble,Classical Statistical and Canonical Distribution, Grand Canonical Ensemble, Quantum Statistical Mechanics, PhaseTransitions, Fluctuations, Irreversible Processes and Transport Phenomena (Diffusion).SALIENT FEATURES:iC* Offers students a conceptual development of the subjectiC* Review questions at the end of chapters.NEW TO THE SECOND EDITIONiC* PVT SurfacesiC* Real Heat EnginesiC* Van der Waals Models (Qualitative Considerations)iC* Cluster ExpansioniC* Brownian Motion (Einstein's Theory)

  7. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Science.gov (United States)

    Salazar, Domingos S. P.

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  8. Maximally Symmetric Spacetimes emerging from thermodynamic fluctuations

    CERN Document Server

    Bravetti, A; Quevedo, H

    2015-01-01

    In this work we prove that the maximally symmetric vacuum solutions of General Relativity emerge from the geometric structure of statistical mechanics and thermodynamic fluctuation theory. To present our argument, we begin by showing that the pseudo-Riemannian structure of the Thermodynamic Phase Space is a solution to the vacuum Einstein-Gauss-Bonnet theory of gravity with a cosmological constant. Then, we use the geometry of equilibrium thermodynamics to demonstrate that the maximally symmetric vacuum solutions of Einstein's Field Equations -- Minkowski, de-Sitter and Anti-de-Sitter spacetimes -- correspond to thermodynamic fluctuations. Moreover, we argue that these might be the only possible solutions that can be derived in this manner. Thus, the results presented here are the first concrete examples of spacetimes effectively emerging from the thermodynamic limit over an unspecified microscopic theory without any further assumptions.

  9. Thermodynamic properties of modified gravity theories

    CERN Document Server

    Bamba, Kazuharu

    2016-01-01

    We review thermodynamic properties of modified gravity theories such as $F(R)$ gravity and $f(T)$ gravity, where $R$ is the scalar curvature and $T$ is the torsion scalar in teleparallelism. In particular, we explore the equivalence between the equations of motion for modified gravity theories and the Clausius relation in thermodynamics. In addition, thermodynamics of the cosmological apparent horizon is investigated in $f(T)$ gravity. We show both equilibrium and non-equilibrium descriptions of thermodynamics. It is demonstrated that the second law of thermodynamics in the universe can be met when the temperature of the outside of the apparent horizon is equivalent to that of the inside of it.

  10. Investigation of plasma-aided bituminous coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (United States)

    2009-04-15

    This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

  11. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  12. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  13. Thermodynamic optimization of a Penrose process: an engineers' approach to black hole thermodynamics

    CERN Document Server

    Bravetti, Alessandro; Lopez-Monsalvo, Cesar S

    2015-01-01

    In this work we present a new view on the thermodynamics of black holes introducing effects of irreversibility by employing thermodynamic optimization and finite-time thermodynamics. These questions are of importance both in physics and in engineering, combining standard thermodynamics with optimal control theory in order to find optimal protocols and bounds for realistic processes without assuming anything about the microphysics involved. We find general bounds on the maximum work and the efficiency of thermodynamic processes involving black holes that can be derived exclusively from the knowledge of thermodynamic relations at equilibrium. Since these new bounds consider the finite duration of the processes, they are more realistic and stringent than their reversible counterparts. To illustrate our arguments, we consider in detail the thermodynamic optimization of a Penrose process, i.e. the problem of finding the least dissipative process extracting all the angular momentum from a Kerr black hole in finite ...

  14. Thermodynamic volume of cosmological solitons

    Science.gov (United States)

    Mbarek, Saoussen; Mann, Robert B.

    2017-02-01

    We present explicit expressions of the thermodynamic volume inside and outside the cosmological horizon of Eguchi-Hanson solitons in general odd dimensions. These quantities are calculable and well-defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton parameter a, though a narrow range exists for which the inequality does hold. For the outer case, we find that the mass Mout satisfies the maximal mass conjecture and the volume is positive. We also show that, by requiring Mout to yield the mass of dS spacetime when the soliton parameter vanishes, the associated cosmological volume is always positive.

  15. Kerr black hole thermodynamical fluctuations

    Science.gov (United States)

    Pavon, D.; Rubi, J. M.

    1985-04-01

    The near-equilibrium thermodynamical (TD) fluctuations of a massive rotating uncharged Kerr black hole immersed in a uniformly corotating radiation bath at its temperature are investigated theoretically, generalizing Schwarzschild-black-hole analysis of Pavon and Rubi(1983), based on Einstein fluctuation theory. The correlations for the energy and angular moment fluctuations and the second moments of the other TD parameters are obtained, and the generalized second law of black-hole TD and the Bekenstein (1975) interpretation of black-hole entropy are seen as functioning well in this case. A local-stability criterion and relation for TD equilibrium between the Kerr hole and its own radiation in the flat-space-time limit are derived, and a restriction between C and Lambda is deduced.

  16. Thermodynamics of quantum feedback cooling

    CERN Document Server

    Liuzzo-Scorpo, Pietro; Schmidt, Rebecca; Adesso, Gerardo

    2015-01-01

    The ability to initialize quantum registers in pure states lies at the core of many applications of quantum technologies, from sensing to quantum information processing and computation. In this paper we tackle the problem of increasing the polarization bias of an ensemble of two-level register spins by means of joint coherent manipulations, involving a second ensemble of ancillary spins, and energy dissipation into an external heat bath. We formulate this spin refrigeration protocol, akin to algorithmic cooling, in the general language of quantum feedback control, and identify the relevant thermodynamic variables involved. Our analysis is twofold: On the one hand, we assess the optimality of the protocol by means of suitable figures of merit, accounting for both its work cost and effectiveness. On the other hand, we characterise the nature of correlations built up between the register and the ancilla. In particular, we observe that neither the amount of classical correlations nor the quantum entanglement seem...

  17. Thermodynamic Model of Transcription Elongation

    Science.gov (United States)

    Tadigotla, Vasisht; O'Maoileidigh, Daibhid; Sengupta, Anirvan; Epshtein, Vitaly; Ebright, Richard; Nudler, Evgeny; Ruckenstein, Andrei

    2006-03-01

    We present a statistical mechanics approach to the prediction of backtracked pauses in prokaryotic transcription elongation derived from structural models of the transcription elongation complex (TEC). Our algorithm is based on the thermodynamic stability of TEC along the DNA template calculated from the sequence dependent free-energy of DNA-DNA, DNA-RNA and RNA-RNA base pairing associated with (a) the translocation and size fluctuations of the transcription bubble; (b) the changes in the DNA-RNA hybrid; and (c) the changes in the RNA folding free-energy. The calculations involve no adjustable parameters apart from a cutoff used to discriminate paused from non-paused complexes. When applied to 100 experimental pauses in transcription elongation by E. coli RNA polymerase on ten DNA templates the approach produces highly statistically significant results. Transcription elongation is an inherently kinetic process and a simplified kinetic model with the same predictive power is presented separately.

  18. Nonequilibrium Thermodynamics of Porous Electrodes

    CERN Document Server

    Ferguson, Todd R

    2012-01-01

    We review classical porous electrode theory and extend it to non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model...

  19. Thermodynamic cost of external control

    Science.gov (United States)

    Barato, Andre C.; Seifert, Udo

    2017-07-01

    Artificial molecular machines are often driven by the periodic variation of an external parameter. This external control exerts work on the system of which a part can be extracted as output if the system runs against an applied load. Usually, the thermodynamic cost of the process that generates the external control is ignored. Here, we derive a refined second law for such small machines that include this cost, which is, for example, generated by free energy consumption of a chemical reaction that modifies the energy landscape for such a machine. In the limit of irreversible control, this refined second law becomes the standard one. Beyond this ideal limiting case, our analysis shows that due to a new entropic term unexpected regimes can occur: the control work can be smaller than the extracted work and the work required to generate the control can be smaller than this control work. Our general inequalities are illustrated by a paradigmatic three-state system.

  20. Nonequilibrium Thermodynamics of Wealth Condensation

    CERN Document Server

    Braun, D

    2006-01-01

    We analyze wealth condensation for a wide class of stochastic economy models on the basis of the economic analog of thermodynamic potentials, termed transfer potentials. The economy model is based on three common transfers modes of wealth: random transfer, profit proportional to wealth and motivation of poor agents to work harder. The economies never reach steady state. Wealth condensation is the result of stochastic tunneling through a metastable transfer potential. In accordance with reality, both wealth and income distribution transiently show Pareto tails for high income subjects. For metastable transfer potentials, exponential wealth condensation is a robust feature. For example with 10 % annual profit 1% of the population owns 50 % of the wealth after 50 years. The time to reach such a strong wealth condensation is a hyperbolic function of the annual profit rate.

  1. Simple thermodynamics of jet engines

    Science.gov (United States)

    Patrício, Pedro; Tavares, José M.

    2010-08-01

    We use the first and second laws of thermodynamics to analyze the behavior of an ideal jet engine. Simple analytical expressions for the thermal efficiency, the overall efficiency, and the reduced thrust are derived. We show that the thermal efficiency depends only on the compression ratio r and on the velocity of the aircraft. The other two performance measures depend also on the ratio of the temperature at the turbine to the inlet temperature in the engine, T3/Ti. An analysis of these expressions shows that it is not possible to choose an optimal set of values of r and T3/Ti that maximize both the overall efficiency and thrust. We study how irreversibilities in the compressor and the turbine decrease the overall efficiency of jet engines and show that this effect is more pronounced for smaller T3/Ti.

  2. Entropy: From Thermodynamics to Hydrology

    Directory of Open Access Journals (Sweden)

    Demetris Koutsoyiannis

    2014-02-01

    Full Text Available Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron from scratch by maximizing entropy in a formal probabilistic frame. However, such deductive reasoning cannot work in more complex hydrological systems with diverse elements, yet the entropy maximization framework can help in inductive inference, necessarily based on data. Several examples of this type are provided in an attempt to link statistical thermophysics with hydrology with a unifying view of entropy.

  3. Qcd Thermodynamics On A Lattice

    CERN Document Server

    Levkova, L A

    2004-01-01

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero- temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvemen...

  4. Thermodynamics of the Casimir effect

    CERN Document Server

    Mitter, H

    2000-01-01

    A complete thermodynamic treatment of the Casimir effect is presented. Explicit expressions for the free and the internal energy, the entropy and the pressure are discussed. As an example we consider the Casimir effect with different temperatures between the plates ($T$) resp. outside of them ($T'$). For $T'

  5. Thermodynamic Volume of Cosmological Solitons

    CERN Document Server

    Mbarek, Saoussen

    2016-01-01

    We present explicit expressions of the thermodynamic volume inside and outside the cosmological horizon of Eguchi-Hanson solitons in general odd dimensions. These quantities are calculable and well-defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton parameter $a$, though a narrow range exists for which the inequality does hold. For the outer case, we find that the mass $M_{out}$ satisfies the maximal mass conjecture and the volume is positive. We also show that, by requiring $M_{out}$ to yield the mass of dS spacetime when the soliton parameter vanishes, the associated cosmological volume is always positive.

  6. Horizon Thermodynamics and Gravitational Tension

    CERN Document Server

    Widom, A; Srivastava, Y N

    2016-01-01

    We consider the thermodynamics of a horizon surface from the viewpoint of the vacuum tension $\\tau =(c^4/4G )$. Numerically, $\\tau \\approx 3.026\\times 10^{43}$ Newton. In order of magnitude, this is the tension that has been proposed for microscopic string models of gravity. However, after decades of hard work on string theory models of gravity, there is no firm scientific evidence that such models of gravity apply empirically. Our purpose is thereby to discuss the gravitational tension in terms of the conventional Einstein general theory of relativity that apparently does explain much and maybe all of presently known experimental gravity data. The central result is that matter on the horizon surface is bound by the entropy-area law by tension in the closely analogous sense that the Wilson action-area law also describes a surface confinement.

  7. Thermodynamic scaling behavior in genechips

    Directory of Open Access Journals (Sweden)

    Van Hummelen Paul

    2009-01-01

    Full Text Available Abstract Background Affymetrix Genechips are characterized by probe pairs, a perfect match (PM and a mismatch (MM probe differing by a single nucleotide. Most of the data preprocessing algorithms neglect MM signals, as it was shown that MMs cannot be used as estimators of the non-specific hybridization as originally proposed by Affymetrix. The aim of this paper is to study in detail on a large number of experiments the behavior of the average PM/MM ratio. This is taken as an indicator of the quality of the hybridization and, when compared between different chip series, of the quality of the chip design. Results About 250 different GeneChip hybridizations performed at the VIB Microarray Facility for Homo sapiens, Drosophila melanogaster, and Arabidopsis thaliana were analyzed. The investigation of such a large set of data from the same source minimizes systematic experimental variations that may arise from differences in protocols or from different laboratories. The PM/MM ratios are derived theoretically from thermodynamic laws and a link is made with the sequence of PM and MM probe, more specifically with their central nucleotide triplets. Conclusion The PM/MM ratios subdivided according to the different central nucleotides triplets follow qualitatively those deduced from the hybridization free energies in solution. It is shown also that the PM and MM histograms are related by a simple scale transformation, in agreement with what is to be expected from hybridization thermodynamics. Different quantitative behavior is observed on the different chip organisms analyzed, suggesting that some organism chips have superior probe design compared to others.

  8. Glycosylation and thermodynamic versus kinetic stability of horseradish peroxidase

    DEFF Research Database (Denmark)

    Tams, J.W.; Welinder, Karen G.

    1998-01-01

    Glycoprotein stability, glycoprotein unfolding, horseradish peroxidase, thermodynamic stability, kinetik stability......Glycoprotein stability, glycoprotein unfolding, horseradish peroxidase, thermodynamic stability, kinetik stability...

  9. The role of thermodynamics in biochemical engineering

    Science.gov (United States)

    von Stockar, Urs

    2013-09-01

    This article is an adapted version of the introductory chapter of a book whose publication is imminent. It bears the title "Biothermodynamics - The role of thermodynamics in biochemical engineering." The aim of the paper is to give a very short overview of the state of biothermodynamics in an engineering context as reflected in this book. Seen from this perspective, biothermodynamics may be subdivided according to the scale used to formalize the description of the biological system into three large areas: (i) biomolecular thermodynamics (most fundamental scale), (ii) thermodynamics of metabolism (intermediary scale), and (iii) whole-cell thermodynamics ("black-box" description of living entities). In each of these subareas, the main available theoretical approaches and the current and the potential applications are discussed. Biomolecular thermodynamics (i) is especially well developed and is obviously highly pertinent for the development of downstream processing. Its use ought to be encouraged as much as possible. The subarea of thermodynamics of live cells (iii), although scarcely applied in practice, is also expected to enhance bioprocess research and development, particularly in predicting culture performances, for understanding the driving forces for cellular growth, and in developing, monitoring, and controlling cellular cultures. Finally, there is no question that thermodynamic analysis of cellular metabolism (ii) is a promising tool for systems biology and for many other applications, but quite a large research effort is still needed before it may be put to practical use.

  10. Effective Two-loop Thermodynamic Potential with Fermions in the real-time formalism of thermal field theory

    CERN Document Server

    Xin, W; Xin, Wang; Jiarong, Li

    2000-01-01

    Within the real-time formalism (RTF) of thermal field theory,we apply the hard thermal loop (HTL) resummation technique to calculating effective two-loop thermodynamic potential in quark-gluon plasma (QGP) and its renormalization. The result with collective effects is obtained, which is valid for an arbitrary number of quark flavors with masses.

  11. Application of Irreversible Thermodynamics to Distillation

    Directory of Open Access Journals (Sweden)

    Signe Kjelstrup

    2004-09-01

    Full Text Available We compare three different ways of modelling tray distillation to each other, and to experimental data: the most common way that assumes equilibrium between the liquid and vapour phases at the outlets of each tray, and two more precise methods that use irreversible thermodynamics. Irreversible thermodynamics determines the driving forces and fluxes of a system in agreement with the second law. It is shown that the methods using irreversible thermodynamics (Maxwell-Stefan equations are superior to the method that assumes that equilibrium is reached on each tray. The Soret effect must be included to have a good description of the heat flux.

  12. Introduction to physics mechanics, hydrodynamics thermodynamics

    CERN Document Server

    Frauenfelder, P

    2013-01-01

    Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o

  13. Considerations on non equilibrium thermodynamics of interactions

    Science.gov (United States)

    Lucia, Umberto

    2016-04-01

    Nature can be considered the "first" engineer! For scientists and engineers, dynamics and evolution of complex systems are not easy to predict. A fundamental approach to study complex system is thermodynamics. But, the result is the origin of too many schools of thermodynamics with a consequent difficulty in communication between thermodynamicists and other scientists and, also, among themselves. The solution is to obtain a unified approach based on the fundamentals of physics. Here we suggest a possible unification of the schools of thermodynamics starting from two fundamental concepts of physics, interaction and flows.

  14. Thermodynamic Formalism and Applications to Dimension Theory

    CERN Document Server

    Barreira, Luis

    2011-01-01

    This self-contained monograph presents a unified exposition of the thermodynamic formalism and some of its main extensions, with emphasis on the relation to dimension theory and multifractal analysis of dynamical systems. In particular, the book considers three different flavors of the thermodynamic formalism, namely nonadditive, subadditive, and almost additive, and provides a detailed discussion of some of the most significant results in the area, some of them quite recent. It also includes a discussion of the most substantial applications of these flavors of the thermodynamic formalism to d

  15. Deduction of Lorentz Transformations from Classical Thermodynamics

    Directory of Open Access Journals (Sweden)

    Angela M. Ares de Parga

    2015-01-01

    Full Text Available The Lorentz transformations are obtained by assuming that the laws of classical thermodynamics are invariant under changes of inertial reference frames. As Maxwell equations are used in order to deduce a wave equation that shows the constancy of the speed of light, by means of the laws of classical thermodynamics, the invariance of the Carnot cycle is deduced under reference frame changes. Starting with this result and the blackbody particle number density in a rest frame, the Lorentz transformations are obtained. A discussion about the universality of classical thermodynamics is given.

  16. Thermodynamic laws apply to brain function.

    Science.gov (United States)

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  17. Thermodynamical stability of the Bardeen black hole

    Energy Technology Data Exchange (ETDEWEB)

    Bretón, Nora [Dpto. de Física, Centro de Investigación y de Estudios Avanzados del I. P. N., Apdo. 14-740, D.F. (Mexico); Perez Bergliaffa, Santiago E. [Dpto. de Física, U. Estado do Rio de Janeiro (Brazil)

    2014-01-14

    We analyze the stability of the regular magnetic Bardeen black hole both thermodynamically and dynamically. For the thermodynamical analysis we consider a microcanonical ensemble and apply the turning point method. This method allows to decide a change in stability (or instability) of a system, requiring only the assumption of smoothness of the area functional. The dynamical stability is asserted using criteria based on the signs of the Lagrangian and its derivatives. It turns out from our analysis that the Bardeen black hole is both thermodynamically and dynamically stable.

  18. Entropy for biologists an introduction to thermodynamics

    CERN Document Server

    Morowitz, Harold J

    2013-01-01

    Entropy for Biologists: An Introduction to Thermodynamics is an introductory book for people in the life sciences who wish to master the concepts of thermal physics without being forced to a degree and rate of symbol manipulation which is foreign to their patterns of thought. The book opens with a chapter on temperature, followed by separate chapters that discuss the concepts of energy, kinetic theory, total energy, the second law of thermodynamics, entropy, and probability and information theory. Subsequent chapters deal with statistical mechanics and its relation to thermodynamics, free-ener

  19. Thermodynamics in Kaluza-Klein Universe

    CERN Document Server

    Sharif, M

    2014-01-01

    This paper is devoted to check the validity of laws of thermodynamics for Kaluza-Klein universe in the state of thermal equilibrium, composed of dark matter and dark energy. The generalized holographic dark energy and generalized Ricci dark energy models are considered here. It is proved that the first and generalized second law of thermodynamics are valid on the apparent horizon for both of these models. Further, we take a horizon of radius $L$ with modified holographic or Ricci dark energy. We conclude that these models do not obey the first and generalized second law of thermodynamics on the horizon of fixed radius $L$ for a specific range of model parameters.

  20. Thermodynamical Aspects in Heavy Ion Reactions

    Science.gov (United States)

    Bruno, M.; Cannata, F.; D'Agostino, M.; de Sanctis, J.; Fabbri, S.; Fuschini, E.; Geraci, E.; Guiot, B.; Vannini, G.; Verondini, E.; Gulminelli, F.; Chomaz, Ph.; Casini, G.; Chiari, M.; Nannini, A.; Barlini, S.; Gramegna, F.; Kravchuk, V.; Lanchais, A.; Vannucci, L.; Moroni, A.; Ordine, A.; Abbondanno, U.; Margagliotti, G. V.

    2005-12-01

    The excited nuclear systems formed in heavy ion collisions can be studied from a thermodynamical point of view. Charged finite systems have different behaviors with respect to infinite ones. After experimental selection of such equilibrated systems the extraction of thermodynamic coordinates is performed. Different signals compatible with a liquid-gas phase transition have been obtained. In particular a bimodal distribution of the asymmetry between the first two heaviest fragments is presented. Abnormally large fluctuations, which in thermodynamic equilibrium are associated to a negative branch of the heat capacity give indications of a first order phase transition. Perspectives for new generation experiments are indicated.

  1. Necessity of Dark Energy from Thermodynamic Arguments

    Directory of Open Access Journals (Sweden)

    H. Moradpour

    2014-01-01

    Full Text Available Considering the cosmic fluid as a quasi-static thermodynamic system, the status of the generalized second law of thermodynamics is investigated and the valid range of the equation of state parameter is derived for a few important cosmological models. Our study shows that the satisfaction of the laws of thermodynamics in these cosmological models requires the existence of some kind of energy in our universe with ω<−1/3. In other words, the existence of a dark energy component, or equivalently modified gravity theory, is unavoidable if the cosmological model is to approach thermal equilibrium in late times.

  2. Thermodynamic universality of quantum Carnot engines.

    Science.gov (United States)

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-01

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamics-independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. Our theoretical findings are illustrated for two experimentally relevant examples.

  3. Thermodynamic Properties of Mn-C Melts

    Institute of Scientific and Technical Information of China (English)

    CHEN Er-bao; WANG Shi-jun

    2008-01-01

    Carbon solubility in Mn-Fe melts (xMn=0.161-0.706, xFe=0.034-0.633) was measured experimentally at various temperatures. By thermodynamic derivation and calculation, the relationship between activity coefficient of carbon in infinite dilute solution of manganese in Mn-C system and temperature was obtained. Using Gibbs-Duhem relationship, the experimental results of this study, and experimental data reported in references, the relationship between other thermodynamic properties in Mn-C system and temperature were obtained by thermodynamic derivation and calculation.

  4. Inflation and de Sitter Thermodynamics

    CERN Document Server

    Frolov, A; Frolov, Andrei; Kofman, Lev

    2003-01-01

    We consider the quasi-de Sitter geometry of the inflationary universe. We calculate the energy flux of the slowly rolling background scalar field through the quasi-de Sitter apparent horizon and set it equal to the change of the entropy (1/4 of the area) multiplied by the temperature, dE=TdS. Remarkably, this thermodynamic law reproduces the Friedmann equation for the rolling scalar field. The flux of the slowly rolling field through the horizon of the quasi-de Sitter geometry is similar to the accretion of a rolling scalar field onto a black hole, which we also analyze. Next we add inflaton fluctuations which generate scalar metric perturbations. Metric perturbations result in a variation of the area entropy. Again, the equation dE=TdS with fluctuations reproduces the linearized Einstein equations. In this picture as long as the Einstein equations hold, holography does not put limits on the quantum field theory during inflation. Due to the accumulating metric perturbations, the horizon area during inflation ...

  5. Bayesian second law of thermodynamics.

    Science.gov (United States)

    Bartolotta, Anthony; Carroll, Sean M; Leichenauer, Stefan; Pollack, Jason

    2016-08-01

    We derive a generalization of the second law of thermodynamics that uses Bayesian updates to explicitly incorporate the effects of a measurement of a system at some point in its evolution. By allowing an experimenter's knowledge to be updated by the measurement process, this formulation resolves a tension between the fact that the entropy of a statistical system can sometimes fluctuate downward and the information-theoretic idea that knowledge of a stochastically evolving system degrades over time. The Bayesian second law can be written as ΔH(ρ_{m},ρ)+〈Q〉_{F|m}≥0, where ΔH(ρ_{m},ρ) is the change in the cross entropy between the original phase-space probability distribution ρ and the measurement-updated distribution ρ_{m} and 〈Q〉_{F|m} is the expectation value of a generalized heat flow out of the system. We also derive refined versions of the second law that bound the entropy increase from below by a non-negative number, as well as Bayesian versions of integral fluctuation theorems. We demonstrate the formalism using simple analytical and numerical examples.

  6. Bayesian second law of thermodynamics

    Science.gov (United States)

    Bartolotta, Anthony; Carroll, Sean M.; Leichenauer, Stefan; Pollack, Jason

    2016-08-01

    We derive a generalization of the second law of thermodynamics that uses Bayesian updates to explicitly incorporate the effects of a measurement of a system at some point in its evolution. By allowing an experimenter's knowledge to be updated by the measurement process, this formulation resolves a tension between the fact that the entropy of a statistical system can sometimes fluctuate downward and the information-theoretic idea that knowledge of a stochastically evolving system degrades over time. The Bayesian second law can be written as Δ H (ρm,ρ ) + F |m≥0 , where Δ H (ρm,ρ ) is the change in the cross entropy between the original phase-space probability distribution ρ and the measurement-updated distribution ρm and F |m is the expectation value of a generalized heat flow out of the system. We also derive refined versions of the second law that bound the entropy increase from below by a non-negative number, as well as Bayesian versions of integral fluctuation theorems. We demonstrate the formalism using simple analytical and numerical examples.

  7. Thermodynamics of Quantum Feedback Cooling

    Directory of Open Access Journals (Sweden)

    Pietro Liuzzo-Scorpo

    2016-02-01

    Full Text Available The ability to initialize quantum registers in pure states lies at the core of many applications of quantum technologies, from sensing to quantum information processing and computation. In this paper, we tackle the problem of increasing the polarization bias of an ensemble of two-level register spins by means of joint coherent manipulations, involving a second ensemble of ancillary spins and energy dissipation into an external heat bath. We formulate this spin refrigeration protocol, akin to algorithmic cooling, in the general language of quantum feedback control, and identify the relevant thermodynamic variables involved. Our analysis is two-fold: on the one hand, we assess the optimality of the protocol by means of suitable figures of merit, accounting for both its work cost and effectiveness; on the other hand, we characterise the nature of correlations built up between the register and the ancilla. In particular, we observe that neither the amount of classical correlations nor the quantum entanglement seem to be key ingredients fuelling our spin refrigeration protocol. We report instead that a more general indicator of quantumness beyond entanglement, the so-called quantum discord, is closely related to the cooling performance.

  8. Thermodynamics of catalytic nanoparticle morphology

    Science.gov (United States)

    Zwolak, Michael; Sharma, Renu; Lin, Pin Ann

    Metallic nanoparticles are an important class of industrial catalysts. The variability of their properties and the environment in which they act, from their chemical nature & surface modification to their dispersion and support, allows their performance to be optimized for many chemical processes useful in, e.g., energy applications and other areas. Their large surface area to volume ratio, as well as varying sizes and faceting, in particular, makes them an efficient source for catalytically active sites. These characteristics of nanoparticles - i.e., their morphology - can often display intriguing behavior as a catalytic process progresses. We develop a thermodynamic model of nanoparticle morphology, one that captures the competition of surface energy with other interactions, to predict structural changes during catalytic processes. Comparing the model to environmental transmission electron microscope images of nickel nanoparticles during carbon nanotube (and other product) growth demonstrates that nickel deformation in response to the nanotube growth is due to a favorable interaction with carbon. Moreover, this deformation is halted due to insufficient volume of the particles. We will discuss the factors that influence morphology and also how the model can be used to extract interaction strengths from experimental observations.

  9. Thermodynamic evolution of the cosmological baryonic gas II. Galaxy formation

    CERN Document Server

    Alimi, J M

    2004-01-01

    The problem of galaxy formation and its dependence on thermodynamic properties is addressed by using Eulerian hydrodynamic numerical simulations of large scale structure formation. Global galaxy properties are explored in simulations including gravitation, shock heating and cooling processes, and following self-consistently the chemical evolution of a primordial composition hydrogen-helium plasma without assuming collisional ionization equilibrium. The galaxy formation model is mainly based on the identification of converging dense cold gas regions. We show that the evolution at low redshift of the observed cosmic star formation rate density is reproduced, and that the galaxy-like object mass function is dominated by low-mass objects. The galaxy mass functions are well described by a two power-law Schechter function whose parameters are in good agreement with observational fits of the galaxy luminosity function. The high-mass end of the galaxy mass function includes objects formed at early epochs and residing...

  10. Mechanical AGN Feedback: Controlling the Thermodynamical Evolution of Elliptical Galaxies

    CERN Document Server

    Gaspari, M; Temi, P

    2012-01-01

    A fundamental gap in the current understanding of galaxies concerns the thermodynamical evolution of the ordinary, baryonic matter. On one side, radiative emission drastically decreases the thermal energy content of the interstellar plasma (ISM), inducing a slow cooling flow toward the centre. On the other side, the active galactic nucleus (AGN) struggles to prevent the runaway cooling catastrophe, injecting huge amount of energy in the ISM. The present study intends to deeply investigate the role of mechanical AGN feedback in (isolated or massive) elliptical galaxies, extending and completing the mass range of tested cosmic environments. Our previously successful feedback models, in galaxy clusters and groups, demonstrated that AGN outflows, self-regulated by cold gas accretion, are able to properly quench the cooling flow, without destroying the cool core. Via 3D hydrodynamic simulations (FLASH 3.3), including also stellar evolution, we show that massive mechanical AGN outflows can indeed solve the cooling ...

  11. Thermodynamics of hexadecyltrimethylammonium bromide micelle formation

    Science.gov (United States)

    Velikov, A. A.

    2017-07-01

    The thermodynamic parameters for CTAB micelle formation (Δ H, Δ G, Δ S) are calculated at different temperatures. Critical micelle concentrations CMC1 are determined. The possibility of determining CMC2 is demonstrated.

  12. Fluctuations of Intensive Quantities in Statistical Thermodynamics

    Directory of Open Access Journals (Sweden)

    Artur E. Ruuge

    2013-11-01

    Full Text Available In phenomenological thermodynamics, the canonical coordinates of a physical system split in pairs, with each pair consisting of an extensive quantity and an intensive one. In the present paper, the quasithermodynamic fluctuation theory of a model system of a large number of oscillators is extended to statistical thermodynamics based on the idea of perceiving the fluctuations of intensive variables as the fluctuations of specific extensive ones in a “thermodynamically dual” system. The extension is motivated by the symmetry of the problem in the context of an analogy with quantum mechanics, which is stated in terms of a generalized Pauli problem for the thermodynamic fluctuations. The doubled Boltzmann constant divided by the number of particles plays a similar role as the Planck constant.

  13. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    Science.gov (United States)

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  14. Extrinsic and intrinsic curvatures in thermodynamic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Mansoori, Seyed Ali, E-mail: shossein@bu.edu [Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sharifian, Elham, E-mail: e.sharifian@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-08-10

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  15. Molecular Thermodynamics for Chemical Process Design

    Science.gov (United States)

    Prausnitz, J. M.

    1976-01-01

    Discusses that aspect of thermodynamics which is particularly important in chemical process design: the calculation of the equilibrium properties of fluid mixtures, especially as required in phase-separation operations. (MLH)

  16. Thermodynamic Products in the Extended Phase Space

    CERN Document Server

    Pradhan, Parthapratim

    2016-01-01

    We have examined the thermodynamic properties of spherically symmetric charged-AdS black hole, charged AdS BH surrounded by quintessence and charged AdS BH in $f(R)$ gravity in the extended phase-space. Where the cosmological constant should be treated as thermodynamic pressure and its conjugate parameter as thermodynamic volume. Then they should behave as a analog of Van der Waal like systems. In the extended phase space we have calculated the \\emph{entropy product} and \\emph{thermodynamic volume product} of all horizons. The mass(or enthalpy) independent nature of the said products signals they are "universal" quantities. Various types of pictorial diagram of the specific heat is given. The divergence of the specific heat indicates that the second order phase transition occurs under certain condition.

  17. The entropy principle thermodynamics for the unsatisfied

    CERN Document Server

    Thess, André

    2011-01-01

    Entropy is the most important and the most difficult to understand term of thermodynamics. This book helps make this key concept understandable. It includes seven illustrative examples of applications of entropy, which are presented step by step.

  18. Does decoherence in the thermodynamic limit exist?

    CERN Document Server

    Frasca, M

    2002-01-01

    We consider the Jaynes-Cummings model for N particles in the thermodynamic limit showing how it can produce decoherence on a Schr\\"odinger cat state. This mechanism can be observed in current experiments with cavities.

  19. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    Science.gov (United States)

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  20. Visible Spectrophotometric and Thermodynamic Studies of Diclofenac

    African Journals Online (AJOL)

    Purpose: To investigate the visible spectrophotometric and thermodynamic parameters of diclofenac with regard to ... The drug content of commercial diclofenac products to which the assay method was applied was between 94 ..... application.

  1. Evolution of the Second Law of Thermodynamics

    Science.gov (United States)

    Raman, V. V.

    1970-01-01

    Presents the history surrounding the evolution of the second law of thermodynamics. Discusses Sadi Carnot's contributions, but also refers to those by Clapeyron, Thomson, Joule, Clausius, and Boltzman among others. (RR)

  2. Metrics and Energy Landscapes in Irreversible Thermodynamics

    Directory of Open Access Journals (Sweden)

    Bjarne Andresen

    2015-09-01

    Full Text Available We describe how several metrics are possible in thermodynamic state space but that only one, Weinhold’s, has achieved widespread use. Lengths calculated based on this metric have been used to bound dissipation in finite-time (irreversible processes be they continuous or discrete, and described in the energy picture or the entropy picture. Examples are provided from thermodynamics of heat conversion processes as well as chemical reactions. Even losses in economics can be bounded using a thermodynamic type metric. An essential foundation for the metric is a complete equation of state including all extensive variables of the system; examples are given. Finally, the second law of thermodynamics imposes convexity on any equation of state, be it analytical or empirical.

  3. Quantum thermodynamics of general quantum processes.

    Science.gov (United States)

    Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John

    2015-03-01

    Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.

  4. Relativistic like structure of classical thermodynamics

    Science.gov (United States)

    Quevedo, Hernando; Sánchez, Alberto; Vázquez, Alejandro

    2015-04-01

    We analyze in the context of geometrothermodynamics a Legendre invariant metric structure in the equilibrium space of an ideal gas. We introduce the concept of thermodynamic geodesic as a succession of points, each corresponding to a state of equilibrium, so that the resulting curve represents a quasi-static process. A rigorous geometric structure is derived in which the thermodynamic geodesics at a given point split the equilibrium space into two disconnected regions separated by adiabatic geodesics. This resembles the causal structure of special relativity, which we use to introduce the concept of adiabatic cone for thermodynamic systems. This result might be interpreted as an alternative indication of the inter-relationship between relativistic physics and classical thermodynamics.

  5. Non-Equilibrium Thermodynamics in Multiphase Flows

    CERN Document Server

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  6. Large negative numbers in number theory, thermodynamics, information theory, and human thermodynamics

    Science.gov (United States)

    Maslov, V. P.

    2016-10-01

    We show how the abstract analytic number theory of Maier, Postnikov, and others can be extended to include negative numbers and apply this to thermodynamics, information theory, and human thermodynamics. In particular, we introduce a certain large number N 0 on the "zero level" with a high multiplicity number q i ≫ 1 related to the physical concept of gap in the spectrum. We introduce a general notion of "hole," similar to the Dirac hole in physics, in the theory. We also consider analogs of thermodynamical notions in human thermodynamics, in particular, in connection with the role of the individual in history.

  7. Thermodynamics in nuclear power plant systems

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor powersystems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibilit

  8. Predictive thermodynamics for ionic solids and liquids.

    Science.gov (United States)

    Glasser, Leslie; Jenkins, H Donald Brooke

    2016-08-21

    The application of thermodynamics is simple, even if the theory may appear intimidating. We describe tools, developed over recent years, which make it easy to estimate often elusive thermodynamic parameter values, generally (but not exclusively) for ionic materials, both solid and liquid, as well as for their solid hydrates and solvates. The tools are termed volume-based thermodynamics (VBT) and thermodynamic difference rules (TDR), supplemented by the simple salt approximation (SSA) and single-ion values for volume, Vm, heat capacity, , entropy, , formation enthalpy, ΔfH°, and Gibbs formation energy, ΔfG°. These tools can be applied to provide values of thermodynamic and thermomechanical properties such as standard enthalpy of formation, ΔfH°, standard entropy, , heat capacity, Cp, Gibbs function of formation, ΔfG°, lattice potential energy, UPOT, isothermal expansion coefficient, α, and isothermal compressibility, β, and used to suggest the thermodynamic feasibility of reactions among condensed ionic phases. Because many of these methods yield results largely independent of crystal structure, they have been successfully extended to the important and developing class of ionic liquids as well as to new and hypothesised materials. Finally, these predictive methods are illustrated by application to K2SnCl6, for which known experimental results are available for comparison. A selection of applications of VBT and TDR is presented which have enabled input, usually in the form of thermodynamics, to be brought to bear on a range of topical problems. Perhaps the most significant advantage of VBT and TDR methods is their inherent simplicity in that they do not require a high level of computational expertise nor expensive high-performance computation tools - a spreadsheet will usually suffice - yet the techniques are extremely powerful and accessible to non-experts. The connection between formula unit volume, Vm, and standard thermodynamic parameters represents a

  9. Relativistic non-equilibrium thermodynamics revisited

    CERN Document Server

    García-Colin, L S

    2006-01-01

    Relativistic irreversible thermodynamics is reformulated following the conventional approach proposed by Meixner in the non-relativistic case. Clear separation between mechanical and non-mechanical energy fluxes is made. The resulting equations for the entropy production and the local internal energy have the same structure as the non-relativistic ones. Assuming linear constitutive laws, it is shown that consistency is obtained both with the laws of thermodynamics and causality.

  10. OPTIMAL PROCESSES IN IRREVERSIBLE THERMODYNAMICS AND MICROECONOMICS

    Directory of Open Access Journals (Sweden)

    Vladimir A. Kazakov

    2004-06-01

    Full Text Available This paper describes general methodology that allows one to extend Carnot efficiency of classical thermodynamic for zero rate processes onto thermodynamic systems with finite rate. We define the class of minimal dissipation processes and show that it represents generalization of reversible processes and determines the limiting possibilities of finite rate systems. The described methodology is then applied to microeconomic exchange systems yielding novel estimates of limiting efficiencies for such systems.

  11. Thermodynamic performance of a laser cryocooler.

    Science.gov (United States)

    Wu, Feng; Chen, Lingen; Wu, Shuang; Sun, Fengrui

    2007-05-28

    The quantum dynamic action of a laser cooling system is analyzed by means of a simplified luminescence center model with ground state and excited state in this paper. The thermodynamic performance of a laser cryocooler is described by solving quantum master equation. The cooling load and the coefficient of performance of the cooler are obtained by using finite time thermodynamics. Some features of the system under the weak coupling and under the intense coupling conditions are discussed.

  12. Hadron thermodynamics in relativistic nuclear collisions

    Science.gov (United States)

    Ammiraju, P.

    1985-01-01

    Various phenomenological models based on statistical thermodynamical considerations were used to fit the experimental data at high P sub T to a two temperature distribution. Whether this implies that the two temperatures belong to two different reaction mechanisms, or consequences of Lorentz-contraction factor, or related in a fundamental way to the intrinsic thermodynamics of Space-Time can only be revealed by further theoretical and experimental investigations of high P sub T phenomena in extremely energetic hadron-hadron collisions.

  13. Variational thermodynamics of relativistic thin disks

    Science.gov (United States)

    Gutiérrez-Piñeres, Antonio C.; Lopez-Monsalvo, Cesar S.; Quevedo, Hernando

    2015-12-01

    We present a relativistic model describing a thin disk system composed of two fluids. The system is surrounded by a halo in the presence of a non-trivial electromagnetic field. We show that the model is compatible with the variational multifluid thermodynamics formalism, allowing us to determine all the thermodynamic variables associated with the matter content of the disk. The asymptotic behavior of these quantities indicates that the single fluid interpretation should be abandoned in favor of a two-fluid model.

  14. Black Hole Thermodynamics and Lorentz Symmetry

    CERN Document Server

    Jacobson, Ted

    2008-01-01

    Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe the arguments leading to that conclusion. We suggest the implication that Lorentz symmetry should be viewed as an emergent property of the macroscopic world, required by the second law of black hole thermodynamics.

  15. Horizon Thermodynamics from Einstein's Equation of State

    CERN Document Server

    Hansen, Devin; Mann, Robert

    2016-01-01

    By regarding the Einstein equations as equation(s) of state, we demonstrate that a full cohomogeneity horizon first law can be derived in horizon thermodynamics. In this approach both the entropy and the free energy are derived concepts, while the standard (degenerate) horizon first law is recovered by a Legendre projection from the more general one we derive. These results readily generalize to higher curvature gravities and establish a way of how to formulate consistent black hole thermodynamics without conserved charges.

  16. Thermodynamic Calculations for Complex Chemical Mixtures

    Science.gov (United States)

    Mcbride, B. J.

    1986-01-01

    General computer program, CECTRP, developed for calculation of thermodynamic properties of complex mixtures with option to calculate transport properties of these mixtures. Free-energy minimization technique used in equilibrium calculation. Rigorous equations used in transport calculations. Program calculates equilibrium compositions and corresponding thermodynamic and transport properties of mixtures. CECTRP accommodates up to 24 reactants, 20 elements, and 600 products, 400 of which are condensed. Written in FORTRAN IV for any large computer system.

  17. Friedmann Thermodynamics and the Geometry of the Universe

    CERN Document Server

    Bayin, Selcuk S

    2008-01-01

    In a recent article we have introduced Friedmann thermodynamics, where certain geometric parameters in Friedmann models are treated like their thermodynamic counterparts (temperature, entropy, Gibbs potential etc.). This model has the advantage of allowing us to determine the geometry of the universe by thermodynamic stability arguments. In this article we review connections between thermodynamics, geometry and cosmology.

  18. Braun-Le Chatelier principle in dissipative thermodynamics

    CERN Document Server

    Pavelka, Michal

    2016-01-01

    Braun-Le Chatelier principle is a fundamental result of equilibrium thermodynamics, showing how stable equilibrium states shift when external conditions are varied. The principle follows from convexity of thermodynamic potential. Analogously, from convexity of dissipation potential it follows how steady non-equilibrium states shift when thermodynamic forces are varied, which is the extension of the principle to dissipative thermodynamics.

  19. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    Science.gov (United States)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  20. Universalities of thermodynamic signatures in topological phases

    Science.gov (United States)

    Kempkes, S. N.; Quelle, A.; Smith, C. Morais

    2016-12-01

    Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter.

  1. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  2. Thermodynamics for separation-process technology

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, J.M.

    1995-10-01

    When contemplating or designing a separation process, every chemical engineer at once recognizes the thermodynamic boundary conditions that must be satisfied: when a mixture is continuously processed to yield at least partially purified products, energy and mass must be conserved and work must be done. In his daily tasks, a chemical engineer uses thermodynamic concepts as tacit, almost subconscious, knowledge. Thus, qualitative thermodynamics significantly informs process conception at its most fundamental level. However, quantitative design requires detailed knowledge of thermodynamic relations and physical chemistry. Most process engineers, concerned with flow sheets and economics, cannot easily command that detailed knowledge and therefore it is advantageous for them to maintain close contact with those specialists who do. Quantitative chemical thermodynamics provides an opportunity to evaluate possible separation processes not only because it may give support to the process engineer`s bold imagination but also because, when coupled with molecular models, it can significantly reduce the experimental effort required to determine an optimum choice of process alternatives. Six examples are presented to indicate the application of thermodynamics for conventional and possible future separation processes.

  3. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  4. Nuclear chiral dynamics and thermodynamics

    Science.gov (United States)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  5. Plasma Antenna

    OpenAIRE

    N M Vijay

    2014-01-01

    The fundamental base of plasma antenna is the use of an ionized medium as a conductor. The plasma antenna is a radiofrequency antenna formed by a plasma columns, Filaments or sheets, which are excited by a surface wave. The relevance of this device is how rapidly it can be turned on and off, only applying an electrical pulse. Besides its wide carrier frequency, the great directivity and controllable antenna shape. Otherwise a disadvantage is that it needs energy to be ionized....

  6. International thermodynamic tables of the fluid state propylene (propene)

    CERN Document Server

    Angus, S; De Reuck, K M

    2013-01-01

    International Thermodynamic Tables of the Fluid State - 7 Propylene (Propene) is a compilation of internationally agreed values of the equilibrium thermodynamic properties of propylene. This book is composed of three chapters, and begins with the presentation of experimental result of thermodynamic studies compared with the equations used to generate the tables. The succeeding chapter deals with correlating equations for thermodynamic property determination of propylene. The last chapter provides the tabulations of the propylene's thermodynamic properties and constants. This book will prove

  7. Thermodynamic stability of black holes surrounded by quintessence

    OpenAIRE

    Ma, Meng-Sen; Zhao, Ren; Ma, Ya-Qin

    2016-01-01

    We study the thermodynamic stabilities of uncharged and charged black holes surrounded by quintessence (BHQ) by means of effective thermodynamic quantities. When the state parameter of quintessence $\\omega_q$ is appropriately chosen, the structures of BHQ are something like that of black holes in de Sitter space. Constructing the effective first law of thermodynamics in two different ways, we can derive the effective thermodynamic quantities of BHQ. Especially, these effective thermodynamic q...

  8. Complementary role of the pressure in the black hole thermodynamics

    OpenAIRE

    Son, Edwin J.; Kim, Wontae

    2013-01-01

    In black hole thermodynamics of certain models, the thermodynamic first law may contain the pressure term. The corresponding entropy follows the area law whereas the thermodynamic energy is not the same with the black hole mass. If the pressure can be decomposed into two parts and recombined with the original thermodynamic quantities, then the thermodynamic energy becomes the black hole mass and the entropy satisfying the area law turns out to be the corrected entropy called the Wald entropy,...

  9. Chemical Equilibrium as Balance of the Thermodynamic Forces

    OpenAIRE

    Zilbergleyt, B.

    2004-01-01

    The article sets forth comprehensive basics of thermodynamics of chemical equilibrium as balance of the thermodynamic forces. Based on the linear equations of irreversible thermodynamics, De Donder definition of the thermodynamic force, and Le Chatelier's principle, new thermodynamics of chemical equilibrium offers an explicit account for multiple chemical interactions within the system. Basic relations between energetic characteristics of chemical transformations and reaction extents are bas...

  10. Thermodynamic properties of organic compounds estimation methods, principles and practice

    CERN Document Server

    Janz, George J

    1967-01-01

    Thermodynamic Properties of Organic Compounds: Estimation Methods, Principles and Practice, Revised Edition focuses on the progression of practical methods in computing the thermodynamic characteristics of organic compounds. Divided into two parts with eight chapters, the book concentrates first on the methods of estimation. Topics presented are statistical and combined thermodynamic functions; free energy change and equilibrium conversions; and estimation of thermodynamic properties. The next discussions focus on the thermodynamic properties of simple polyatomic systems by statistical the

  11. Plasma physics

    CERN Document Server

    Drummond, James E

    2013-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  12. Plasma heating via adiabatic magnetic compression-expansion cycle

    Science.gov (United States)

    Avinash, K.; Sengupta, M.; Ganesh, R.

    2016-06-01

    Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.

  13. Hydrogen Plasma Processing of Iron Ore

    Science.gov (United States)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  14. Hydrogen Plasma Processing of Iron Ore

    Science.gov (United States)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-03-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  15. Thermodynamics of Growth, Non-Equilibrium Thermodynamics of Bacterial Growth : The Phenomenological and the Mosaic Approach

    NARCIS (Netherlands)

    Westerhoff, Hans V.; Lolkema, Juke S.; Otto, Roel; Hellingwerf, K

    1982-01-01

    Microbial growth is analyzed in terms of mosaic and phenomenological non-equilibrium thermodynamics. It turns out that already existing parameters devised to measure bacterial growth, such as YATP, µ, and Qsubstrate, have as thermodynamic equivalents flow ratio, output flow and input flow. With this

  16. Tracing the pressure of the gluon plasma

    CERN Document Server

    Jackson, G

    2016-01-01

    Being interested in how a strongly coupled system approaches asymptotic freedom, we re-examine existing precision lattice QCD results for thermodynamic properties of the gluon plasma in a large temperature range. We discuss and thoroughly test the applicability of perturbative results, on which grounds we then infer that the pressure and other bulk properties approach the free limit somewhat slower than previously thought. We also revise the value of the first non-perturbative coefficient in the weak-coupling expansion.

  17. Obesity: thermodynamic principles in perspective.

    Science.gov (United States)

    Rampone, A J; Reynolds, P J

    1988-01-01

    The energy balance equation applicable to all living organisms was used as a framework on which to construct a critical review of some of the more controversial aspects of the obesity problem. The equation matches energy intake against all the known forms of work that the body does in utilizing that energy, including external and internal work and the work of adipose tissue synthesis (stored energy). Equations representing everyday living conditions, resting, fasting and basal conditions were constructed. The equation applicable to everyday living (working, non-fasting) was used to develop a set of model paradigms to illustrate some of the devices that can be invoked to decrease expenditure and conserve energy. These served as models of how obesity can arise in the absence of calorie overconsumption. The same equation was then used to create a set of opposite paradigms showing how obesity can be prevented by increasing expenditure to waste energy and stabilize body weight when challenged by hyperphagia. In order to see caloric intake and the various work terms in their proper quantitative relationships it was necessary to assign numerical values to the equation. These were selected from published reports of caloric values representative of a non-obese adult of average size engaged in a typical white collar occupation. It was then easy to adjust these assigned values commensurate with the objectives described in the preceding paragraph. Since obesity research is hampered by a confusing array of metabolic interactions it was essential to alter only one of the energy terms at a time, excluding all metabolic interactions except for those unavoidable ones dictated by the laws of thermodynamics. Only in this way could we see the body's multiple energy forms in clear perspective with regard to their real quantitative significance in the energy balance sheet and their potential impact on body weight. Creating these models gave us the added advantage of enabling us better

  18. An action principle of classical irreversible thermodynamics - Irreversible thermodynamic cycles and embodied bits of information

    CERN Document Server

    Hanel, Rudolf A

    2016-01-01

    Despite its simplicity, it seems to my best of knowledge that the possibly simplest approach towards deriving equations governing irreversible thermodynamics from gas-kinetic considerations within the framework of classical mechanics has never been pursued. In this paper we address this omission and derive the equations describing the irreversible thermodynamics of a gas in a piston and associated thermodynamic cycles performed in finite time. What we find is a thermodynamic action principle: The irreversible work we require for performing a thermodynamic cycle in finite time times the time we require to run through the cycle, a isothermal compression/decompression cycle for instance, will always be larger or equal to a lower bound given by a system specific constant with the dimension of an action. This process specific action constants can take values of the order of Plank's constant for microscopic processes, such as displacing a Hydrogen atom by one atom diameter. For macroscopic processes (e.g. a bicycle...

  19. Thermo-diffusion in inertially confined plasmas

    CERN Document Server

    Kagan, Grigory

    2013-01-01

    In a plasma of multiple ion species, thermodynamic forces such as pressure and temperature gradients can drive ion species separation via inter-species diffusion. Unlike its neutral mix counterpart, plasma thermo-diffusion is found comparable to, or even much larger than, baro-diffusion. It is shown that such a strong effect is due to the long-range nature of the Coulomb potential, as opposed to short-range interactions in neutral gases. A special composition of the tritium and 3He fuel is identified to have vanishing net diffusion during adiabatic compression, and hence provides an experimental test in which yield degradation is minimized during ICF implosions.

  20. Thermodynamic properties of potassium chloride aqueous solutions

    Science.gov (United States)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.