WorldWideScience

Sample records for plasma thermal effects

  1. Thermal plasmas: fundamental aspects

    International Nuclear Information System (INIS)

    Fauchais, P.

    2005-01-01

    This article treats of thermal plasmas, i.e. mainly produced by electric arcs and RF discharges. Their main characteristic is that they are generated at a pressure close to the atmospheric pressure (between 10 4 and 10 6 Pa) and refer to the classical kinetics of the Boltzmann equation. Because of the pressure, the collisions between particles are numerous and ionization is mainly due to a thermal effect. They correspond to electron densities between 10 20 and 10 24 m -3 and temperatures between 6000 and 25000 K. In these plasmas, the electric fields and the average free trajectories are too weak to generate a ionization state by direct inelastic collision. Ionization is thus essentially a thermal phenomenon due to elastic collisions. This article presents: 1 - the particles present in a plasma: definition, energy states; 2 - characteristic data: collisions, average free path and collision cross-section, distribution function, ionization types, charged particles mobility inside an electric field, scattering, Debye length; 3 - plasmas at the thermodynamical equilibrium: conditions of equilibrium, calculation of composition, thermodynamic properties, transport properties, radiation; 4 - thermal plasmas away from equilibrium: conditions of non-equilibrium, calculation of plasma composition, calculation of transport properties, quenching phenomenon. (J.S.)

  2. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Zhou, Qianhong; Dong, Zhiwei; Yang, Wei

    2016-01-01

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance between the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.

  3. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    Science.gov (United States)

    Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim

    2017-08-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  4. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    International Nuclear Information System (INIS)

    Karki, Surya B; Gupta, Tripti Thapa; Yildirim-Ayan, Eda; Ayan, Halim; Eisenmann, Kathryn M

    2017-01-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  5. Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod- and well-type cathodes

    International Nuclear Information System (INIS)

    Hur, Min; Hong, Sang Hee

    2002-01-01

    The thermal plasma characteristics inside the two non-transferred plasma torches with rod-type cathode (RTC) and well-type cathode (WTC) are analysed in conjunction with turbulent effects on them in the atmospheric-pressure conditions. A control volume method and a modified semi-implicit pressure linked equations revised algorithm are used for solving the governing equations, i.e. conservation equations of mass, momentum, and energy together with a current continuity equation for arc discharge. A cold flow analysis is introduced to find the cathode spot position in the WTC torch, and both the laminar and turbulent models are employed to gain a physical insight into the turbulent effects on the thermal plasma characteristics produced inside the two torches. The numerical analysis for an RTC torch shows that slightly different values of plasma temperature and velocity between the laminar and turbulent calculations occur and the radial temperature profiles are constricted at the axis with increasing the gas flow rate, and that the large turbulent viscosities appear mostly near the anode wall. These calculated results indicate that the turbulent effects on the thermal plasma characteristics are very weak in the whole discharge region inside the RTC torch. On the other hand, the calculated results of the two numerical simulations for a WTC torch present that the significantly different values of plasma characteristics between the two models appear in the whole torch region and the plasma temperatures decrease with increasing the gas flow rate because the relatively strong turbulent effects are prevailing in the entire interior region of the WTC torch. From the comparisons of plasma net powers calculated and measured in this work, the turbulent modelling turns out to provide the more accurately calculated results close to the measured ones compared with the laminar one, especially for the torch with WTC. This is because the turbulent effects are considerably strong in

  6. Foundations of High-Pressure Thermal Plasmas

    Science.gov (United States)

    Murphy, Anthony B.; Uhrlandt, Dirk

    2018-06-01

    An introduction to the main methods used to produce, model and measure thermal plasmas is provided, with emphasis on the differences between thermal plasmas and other types of processing plasmas. The critical properties of thermal plasmas are explained in physical terms and their importance in different applications is considered. The characteristics, and advantages and disadvantages, of the different main types of thermal plasmas (transferred and non-transferred arcs, radio-frequency inductively-coupled plasmas and microwave plasmas) are discussed. The methods by which flow is stabilized in arc plasmas are considered. The important concept of local thermodynamic equilibrium (LTE) is explained, leading into a discussion of the importance of thermophysical properties, and their calculation in LTE and two-temperature plasmas. The standard equations for modelling thermal plasmas are presented and contrasted with those used for non-equilibrium plasmas. Treatments of mixed-gas and non-LTE plasmas are considered, as well as the sheath regions adjacent to electrodes. Finally, the main methods used for electrical, optical, spectroscopic and laser diagnostics of thermal plasmas are briefly introduced, with an emphasis on the required assumptions for their reliable implementation, and the specific requirements of thermal plasmas.

  7. Modeling of thermal effects on TIBER II divertor during plasma disruptions

    International Nuclear Information System (INIS)

    Bruhn, M.L.; Perkins, L.J.

    1987-01-01

    Mapping the disruption power flow from the mid-plane of the TIBER Engineering Test Reactor to its divertor and calculating the resulting thermal effects are accomplished through the modification and coupling of three presently existing computer codes. The resulting computer code TADDPAK (Thermal Analysis Divertor during Disruption PAcKage) provides three-dimensional graphic presentations of time and positional dependent thermal effects on a poloidal cross section of the double-null-divertor configured reactor. These thermal effects include incident heat flux, surface temperature, vaporization rate, total vaporization, and melting depth. The dependence of these thermal effects on material choice, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is determined through parametric analysis with TADDPAK. This computer code is designed to be a convenient, rapid, and user-friendly modeling tool which can be easily adapted to most tokamak double-null-divertor reactor designs

  8. An investigation of non-equilibrium effects in thermal argon plasmas

    International Nuclear Information System (INIS)

    Rosado, R.J.

    1981-01-01

    This thesis deals with the study of the validity of the assumption of Local Thermal Equilibrium (LTE) in the description of the parameters of a thermal argon plasma. The aim is twofold. As the studied plasma is close to, but not completely in equilibrium, the author first attempts to obtain a simple description of the plasma in terms of an LTE model in which suitable corrections for the deviations of the plasma parameters from their LTE values is introduced. To this end the plasma parameters are studied by means of a diagnostic method in which the assumption of LTE is not made. The evaluation of the usefulness of this method is the second aim of this thesis. (Auth.)

  9. Thermal Plasma decomposition of fluoriated greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Seok; Watanabe, Takayuki [Tokyo Institute of Technology, Yokohama (Japan); Park, Dong Wha [Inha University, Incheon (Korea, Republic of)

    2012-02-15

    Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

  10. Oblique propagation of electron thermal modes below the electron plasma frequency without boundary effects

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Sanuki, H.

    1981-08-01

    Propagation characteristics and refractive effects of an oblique electron thermal mode without boundary effects below the electron plasma frequency are studied experimentally and theoretically in an inhomogeneous magnetized plasma. The behavior of this mode observed experimentally was confirmed by the theoretical analysis based on a new type of ray theory. (author)

  11. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  12. Thermal stability of the tokamak plasma edge

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1997-01-01

    The general linear, fluid, thermal instability theory for the plasma edge has been extended. An analysis of a two-dimensional fluid model of the plasma edge has identified the importance of many previously unappreciated phenomena associated with parallel and gyroviscous forces in the presence of large radial gradients, with large radial or parallel flows, with the temperature dependence of transport coefficients, and with the coupling of temperature, flow and density perturbations. The radiative condensation effect is generalized to include a further destabilizing condensation effect associated with radial heat conduction. Representative plasma edge neutral and impurity densities are found to be capable of driving thermal instabilities in the edge transport barrier and radiative mantle, respectively. (author)

  13. Parametric analysis of the thermal effects on the divertor in tokamaks during plasma disruptions

    International Nuclear Information System (INIS)

    Bruhn, M.L.

    1988-04-01

    Plasma disruptions are an ever present danger to the plasma-facing components in today's tokamak fusion reactors. This threat results from our lack of understanding and limited ability to control this complex phenomenon. In particular, severe energy deposition occurs on the divertor component of the double-null configured tokamak reactor during such disruptions. A hybrid computational model developed to estimate and graphically illustrate global thermal effects of disruptions on the divertor plates is described in detail. The quasi-two-dimensional computer code, TADDPAK (Thermal Analysis Divertor during Disruptions PAcKage), is used to conduct parametric analysis for the TIBER II Tokamak Engineering Test Reactor Design. The dependence of these thermal effects on divertor material choice, disruption pulse length, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is investigated for this reactor design. Results and conclusions from this analysis are presented. Improvements to this model and issues that require further investigation are discussed. Cursory analysis for ITER (International Thermonuclear Experimental Reactor) is also presented in the appendix. 75 refs., 49 figs., 10 tabs

  14. Observed and modelled effects of auroral precipitation on the thermal ionospheric plasma: comparing the MICA and Cascades2 sounding rocket events

    Science.gov (United States)

    Lynch, K. A.; Gayetsky, L.; Fernandes, P. A.; Zettergren, M. D.; Lessard, M.; Cohen, I. J.; Hampton, D. L.; Ahrns, J.; Hysell, D. L.; Powell, S.; Miceli, R. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    Auroral precipitation can modify the ionospheric thermal plasma through a variety of processes. We examine and compare the events seen by two recent auroral sounding rockets carrying in situ thermal plasma instrumentation. The Cascades2 sounding rocket (March 2009, Poker Flat Research Range) traversed a pre-midnight poleward boundary intensification (PBI) event distinguished by a stationary Alfvenic curtain of field-aligned precipitation. The MICA sounding rocket (February 2012, Poker Flat Research Range) traveled through irregular precipitation following the passage of a strong westward-travelling surge. Previous modelling of the ionospheric effects of auroral precipitation used a one-dimensional model, TRANSCAR, which had a simplified treatment of electric fields and did not have the benefit of in situ thermal plasma data. This new study uses a new two-dimensional model which self-consistently calculates electric fields to explore both spatial and temporal effects, and compares to thermal plasma observations. A rigorous understanding of the ambient thermal plasma parameters and their effects on the local spacecraft sheath and charging, is required for quantitative interpretation of in situ thermal plasma observations. To complement this TRANSCAR analysis we therefore require a reliable means of interpreting in situ thermal plasma observation. This interpretation depends upon a rigorous plasma sheath model since the ambient ion energy is on the order of the spacecraft's sheath energy. A self-consistent PIC model is used to model the spacecraft sheath, and a test-particle approach then predicts the detector response for a given plasma environment. The model parameters are then modified until agreement is found with the in situ data. We find that for some situations, the thermal plasma parameters are strongly driven by the precipitation at the observation time. For other situations, the previous history of the precipitation at that position can have a stronger

  15. Ions and electrons thermal effects on the fast-slow mode conversion process in a three components plasma

    International Nuclear Information System (INIS)

    Fidone, I.; Gomberoff, L.

    1977-07-01

    Fast-slow mode conversion in a deuterium plasma with a small amount of hydrogen impurity, for frequencies close to the two-ion hybrid frequency, is investigated. It is shown that while electron thermal effects tend to inhibit the wave conversion process, ion thermal effects tend to restore, qualitatively, the cold plasma properties, favouring therefore, the energy exchange between the two modes. The aforementioned effects are competitive for zetasub(o)sup(e)=1/nsub(parall).vsub(e)>=1. For zetasub(o)sup(e)<=1, electron thermal effects, in particular Landau damping, dominate over ion Larmor radius effects, drastically diminishing the wave conversion efficacy. For zetasub(o)sup(e)<<1, the coupling between the modes disappears altogether

  16. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    International Nuclear Information System (INIS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-01-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy

  17. Monitoring system for thermal plasma

    International Nuclear Information System (INIS)

    Romero G, M.; Vilchis P, A.E.

    1999-01-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  18. Dynamic plasma screening effects on atomic collisions in dense plasmas

    International Nuclear Information System (INIS)

    Young-Dae Jung

    1999-01-01

    Dynamic plasma screening effects are investigated on electron-ion collisional excitation and Coulomb Bremsstrahlung processes in dense plasmas. The electron-ion interaction potential is considered by introduction of the plasma dielectric function. The straight-ling trajectory method is applied to the path of the projectile electron. The transition probability including the dynamic plasma screening effect is found to be always greater than that including the static plasma screening effects. It is found that the differential Bremsstrahlung radiation cross section including the dynamic plasma screening effect is also greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. However, when the projectile velocity is greater than the electron thermal velocity, the interaction potential is almost unshielded

  19. Industrial implementation of plasma deposition using the expanding thermal plasma technique

    NARCIS (Netherlands)

    Sanden, van de M.C.M.; Oever, van den P.J.; Creatore, M.; Schaepkens, M.; Miebach, T.; Iacovangelo, C.D.; Bosch, R.C.M.; Bijker, M.D.; Evers, M.F.J.; Schram, D.C.; Kessels, W.M.M.

    2004-01-01

    Two successful industrial implementations of the expanding thermal plasma setup, a novel plasma source, obtaining high deposition rate are discussed. The Ar/O2/hexamethyldisiloxane and Ar/O2/octamethyl-cyclosiloxane-fed expanding thermal plasma setup is used to deposit scratch resistant silicone

  20. Investigation of non thermal effects from the Dα line wings in edge plasmas

    International Nuclear Information System (INIS)

    Marandet, Y.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Capes, H.; Guirlet, R.

    2002-01-01

    The far wings of intense Dα lines measured at the edge of the Tore Supra Tokamak are found to exhibit a power-law behavior. The characteristic exponent is not far from two. Since the low density rules out thermal Stark broadening, we discuss non thermal effects which may arise from the edge plasma drift-wave turbulence. We suggest that both the Stark and the Doppler profile could be affected by the turbulence

  1. Synthesis of functional nanocrystallites through reactive thermal plasma processing

    Directory of Open Access Journals (Sweden)

    Takamasa Ishigaki and Ji-Guang Li

    2007-01-01

    Full Text Available A method of synthesizing functional nanostructured powders through reactive thermal plasma processing has been developed. The synthesis of nanosized titanium oxide powders was performed by the oxidation of solid and liquid precursors. Quench gases, either injected from the shoulder of the reactor or injected counter to the plasma plume from the bottom of the reactor, were used to vary the quench rate, and therefore the particle size, of the resultant powders. The experimental results are well supported by numerical analysis on the effects of the quench gas on the flow pattern and temperature field of the thermal plasma as well as on the trajectory and temperature history of the particles. The plasma-synthesized TiO2 nanoparticles showed phase preferences different from those synthesized by conventional wet-chemical processes. Nanosized particles of high crystallinity and nonequilibrium chemical composition were formed in one step via reactive thermal plasma processing.

  2. Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism.

    Directory of Open Access Journals (Sweden)

    Amanda Lee

    Full Text Available Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application.

  3. Technological challenges in thermal plasma production

    International Nuclear Information System (INIS)

    Ramakrishnan, S.

    1995-01-01

    Thermal plasmas, generated by electric arc discharges, are used in a variety of industrial applications. The electric arc is a constricted electrical discharge with a high temperature in the range 6000-25,000 K. These characteristics are useful in plasma cutting, spraying, welding and specific areas of material processing. The thermal plasma technology is an enabling process technology and its status in the market depends upon its advantages over competing technologies. A few technological challenges to enhance the status of plasma technology are to improve the utilisation of the unique characteristics of the electric arc and to provide enhanced control of the process. In particular, new solutions are required for increasing the plasma-material interaction, controlling the electrode roots and controlling the thermal power generated by the arcing process. In this paper, the advantages of plasma technology, its constraints and future challenges for technology developments are highlighted. 36 refs., 14 figs

  4. Study of the thermal effect on silicon surface induced by ion beam from plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Z., E-mail: pscientific5@aec.org.sy [Scientific Service Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Ahmad, M. [IBA Laboratory, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Chemistry Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic)

    2017-04-01

    Structural modifications in form of ripples and cracks are induced by nitrogen ions from plasma focus on silicon surface. The investigation of such structures reveals correlation between ripples and cracks formation in peripheral region of the melt spot. The reason of such correlation and structure formation is explained as result of thermal effect. Melting and resolidification of the center of irradiated area occur within one micro second of time. This is supported by a numerical simulation used to investigate the thermal effect induced by the plasma focus ion beams on the silicon surface. This simulation provides information about the temperature profile as well as the dynamic of the thermal propagation in depth and lateral directions. In accordance with the experimental observations, that ripples are formed in latter stage after the arrival of last ion, the simulation shows that the thermal relaxation takes place in few microseconds after the end of the ion beam arrival. Additionally, the dependency of thermal propagation and relaxation on the distance of the silicon surface from the anode is presented.

  5. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-01-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  6. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  7. Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma

    International Nuclear Information System (INIS)

    Patil, S. D.; Takale, M. V.

    2013-01-01

    In the present paper, we have employed the quantum dielectric response in thermal quantum plasma to model relativistic self-focusing of Gaussian laser beam in a plasma. We have presented an extensive parametric investigation of the dependence of beam-width parameter on distance of propagation in relativistic thermal quantum plasma. We have studied the role of Fermi temperature in the phenomenon of self-focusing. It is found that the quantum effects cause much higher oscillations of beam-width parameter and better relativistic focusing of laser beam in thermal quantum plasma in comparison with that in the relativistic cold quantum plasma and classical relativistic plasma. Our computations show more reliable results in comparison to the previous works

  8. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  9. Monitoring system for thermal plasma; Sistema de monitoreo para plasma termico

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, M.; Vilchis P, A.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  10. Plasma effects on the passive external thermal control coating of Space Station Freedom

    Science.gov (United States)

    Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.

    1992-01-01

    The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.

  11. Observation of non-chemical equilibrium effect on Ar-CO2-H2 thermal plasma model by changing pressure

    International Nuclear Information System (INIS)

    Al-Mamun, Sharif Abdullah; Tanaka, Yasunori; Uesugi, Yoshihiko

    2009-01-01

    The authors developed a two-dimensional one-temperature chemical non-equilibrium (1T-NCE) model of Ar-CO 2 -H 2 inductively coupled thermal plasmas (ICTP) to investigate the effect of pressure variation. The basic concept of one-temperature model is the assumption and treatment of the same energy conservation equation for electrons and heavy particles. The energy conservation equations consider reaction heat effects and energy transfer among the species produced as well as enthalpy flow resulting from diffusion. Assuming twenty two (22) different particles in this model and by solving mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from hundred and ninety eight (198) chemical reactions, chemical non-equilibrium effects were taken into account. Transport and thermodynamic properties of Ar-CO 2 -H 2 thermal plasmas were self-consistently calculated using the first-order approximation of the Chapman-Enskog method. Finally results obtained at atmospheric pressure (760 Torr) and at reduced pressure (500, 300 Torr) were compared with results from one-temperature chemical equilibrium (1T-CE) model. And of course, this comparison supported discussion of chemical non-equilibrium effects in the inductively coupled thermal plasmas (ICTP).

  12. Modeling of thermalization phenomena in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Panneerchelvam, Premkumar; Raja, Laxminarayan L.

    2018-05-01

    Coaxial plasma accelerators are electromagnetic acceleration devices that employ a self-induced Lorentz force to produce collimated plasma jets with velocities ~50 km s‑1. The accelerator operation is characterized by the formation of an ionization/thermalization zone near gas inlet of the device that continually processes the incoming neutral gas into a highly ionized thermal plasma. In this paper, we present a 1D non-equilibrium plasma model to resolve the plasma formation and the electron-heavy species thermalization phenomena that take place in the thermalization zone. The non-equilibrium model is based on a self-consistent multi-species continuum description of the plasma with finite-rate chemistry. The thermalization zone is modelled by tracking a 1D gas-bit as it convects down the device with an initial gas pressure of 1 atm. The thermalization process occurs in two stages. The first is a plasma production stage, associated with a rapid increase in the charged species number densities facilitated by cathode surface electron emission and volumetric production processes. The production stage results in the formation of a two-temperature plasma with electron energies of ~2.5 eV in a low temperature background gas of ~300 K. The second, a temperature equilibration stage, is characterized by the energy transfer between the electrons and heavy species. The characteristic length scale for thermalization is found to be comparable to axial length of the accelerator thus putting into question the equilibrium magnetohydrodynamics assumption used in modeling coaxial accelerators.

  13. Effects of thermal plasma on self-absorbed synchrotron sources in active galactic nuclei

    International Nuclear Information System (INIS)

    De Kool, M.; Begelman, M.C.

    1989-01-01

    The observable effects of a thermal background plasma in a self-absorbed synchrotron source are reviewed, in the context of a model for the central engine of an active galactic nucleus (AGN). Considering the effects of free-free absorption and emission, Thomson and Compton scattering, and spatial stratification, it is found that the observations set an upper limit on the thermal electron scattering optical depth in the central synchrotron-emitting region of an AGN. The upper limit, tau(max) about 1, results mainly from the apparent absence of induced Compton scattering and inverse thermal Comptonization effects. The low value of tau(max) poses some problems for nonthermal models of the AGN continuum that can be partly resolved by assuming a thin disk or layer-like geometry for the source, with (h/R) less than about 0.01. A likely site for the synchrotron-producing region seems to be the surface of an accretion disk or torus. 20 refs

  14. Modeling of thermal plasma arc technology FY 1994 report

    International Nuclear Information System (INIS)

    Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

    1995-03-01

    The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces

  15. Modeling of thermal effects on TIBER II [Tokamak Ignition/Burn Experimental Reactor] divertor during plasma disruption

    International Nuclear Information System (INIS)

    Bruhn, M.L.; Perkins, L.J.

    1987-01-01

    Mapping the disruption power flow from the mid-plane of the TIBER Engineering Test Reactor to its divertor and calculating the resulting thermal effects are accomplished through the modification and coupling of three presently existing computer codes. The resulting computer code TADDPAK (Thermal Analysis Divertor during Disruption PAcKage) provides three-dimensional graphic presentations of time and positional dependent thermal effects on a poloidal cross section of the double-null-divertor configured reactor. These thermal effects include incident heat flux, surface temperature, vaporization rate, total vaporization, and melting depth. The dependence of these thermal effects on material choice, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is determined through parametric analysis with TADDPAK. This computer code is designed to be a convenient, rapid, and user-friendly modeling tool which can be easily adapted to most tokamak double-null-divertor reactor designs. 14 refs

  16. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    Science.gov (United States)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  17. Thermal plasma waste treatment

    International Nuclear Information System (INIS)

    Heberlein, Joachim; Murphy, Anthony B

    2008-01-01

    Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification of wastes with low negative values has attracted interest as a source of energy and spawned process developments for treatment of even municipal solid wastes. Numerous technologies and approaches exist for plasma treatment of wastes. This review summarizes the approaches that have been developed, presents some of the basic physical principles, provides details of some specific processes and considers the advantages and disadvantages of thermal plasmas in waste treatment applications. (topical review)

  18. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 - 10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 gm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the article refractive index

  19. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 -10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 μm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the particle refractive index

  20. Analytical method for thermal stress analysis of plasma facing materials

    Science.gov (United States)

    You, J. H.; Bolt, H.

    2001-10-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.

  1. Analytical method for thermal stress analysis of plasma facing materials

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2001-01-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed

  2. Thermal instability in a stratified plasma

    International Nuclear Information System (INIS)

    Hermanns, D.F.M.; Priest, E.R.

    1989-01-01

    The thermal instability mechansism has been studied in connection to observed coronal features, like, e.g. prominences or cool cores in loops. Although these features show a lot of structure, most studies concern the thermal instability in an uniform medium. In this paper, we investigate the thermal instability and the interaction between thermal modes and the slow magneto-acoustic subspectrum for a stratified plasma slab. We fomulate the relevant system of equations and give some straightforward properties of the linear spectrum of a non-uniform plasma slab, i.e. the existence of continuous parts in the spectrum. We present a numerical scheme with which we can investigate the linear spectrum for equilibrium states with stratification. The slow and thermal subspectra of a crude coronal model are given as a preliminary result. (author). 6 refs.; 1 fig

  3. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  4. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.; Han, Jie; Belhi, Memdouh; Arias, Paul G.; Bisetti, Fabrizio; Im, Hong G.; Chen, Jyh Yuan

    2016-01-01

    neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported

  5. SUPERFAST THERMALIZATION OF PLASMA

    Science.gov (United States)

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  6. Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas

    NARCIS (Netherlands)

    Bonanomi, N.; Mantica, P.; Citrin, J.; Giroud, C.; Lerche, E.; Sozzi, C.; Taylor, D.; Tsalas, M.; Van Eester, D.; JET Contributors,

    2018-01-01

    A set of experiments was carried out in JET ILW (Joint European Torus with ITER-Like Wall) L-mode plasmas in order to study the effects of light impurities on core ion thermal transport. N was puffed into some discharges and its profile was measured by active Charge Exchange diagnostics, while ICRH

  7. Recent progress in the modelling of thermal plasma systems

    International Nuclear Information System (INIS)

    Xi Chen

    2002-01-01

    Plasma flow and heat transfer in thermal plasma systems are often of three-dimensional (3-D) features and cannot be well studied by use of a two-dimensional modelling approach. 3-D modelling studies are recently performed in our group. It is found that appreciable 3-D effects exist within non-transferred DC arc plasma torches even for the case with axisymmetrical external conditions. The key for the successful 3-D modelling of the non-transferred arc plasma torch is that the anode-nozzle wall is included in the computational domain. The predicted results are favorably compared with experimental observation. 3-D modelling of the plasma jets with lateral injection of particulate matter and its carrier gas also reveals distinct 3-D effects with the injection velocity and the distance between the carrier-gas injection-tube tip and the jet edge as critical parameters. The 3-D effects appreciably influence the trajectories and heating histories of particles injected into the plasma jet. (author)

  8. On thermalization of electron-positron-photon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Siutsou, I. A., E-mail: siutsou@icranet.org [CAPES–ICRANet program, ICRANet–Rio, CBPF 22290-180, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ (Brazil); Aksenov, A. G. [Institute for Computer-Aided Design, Russian Academy of Sciences 123056, 2nd Brestskaya st., 19/18, Moscow (Russian Federation); Vereshchagin, G. V. [ICRANet 65122, p.le della Republica, 10, Pescara (Italy)

    2015-12-17

    Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.

  9. On thermalization of electron-positron-photon plasma

    Science.gov (United States)

    Siutsou, I. A.; Aksenov, A. G.; Vereshchagin, G. V.

    2015-12-01

    Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.

  10. High resolution X-ray spectroscopy of thermal plasmas

    International Nuclear Information System (INIS)

    Canizares, C.R.

    1990-01-01

    This paper concentrates on reviewing highlights of the Focal Plane Crystal Spectrometer (FPCS) results on thermal plasmas, particularly supernova remnants (SNRs) and clusters of galaxies from the Einstein observatory. During Einstein's short but happy life, we made over 400 observations with the FPCS of 40 different objects. Three quarters of these were objects in which the emission was primarily from optically thin thermal plasma, primarily supernova remnants (SNRs) and clusters of galaxies. Thermal plasmas provide an excellent illustration of how spectral data, particularly high resolution spectral data, can be an important tool for probing the physical properties of astrophysical objects. (author)

  11. State of the art in medical applications using non-thermal atmospheric pressure plasma

    Science.gov (United States)

    Tanaka, Hiromasa; Ishikawa, Kenji; Mizuno, Masaaki; Toyokuni, Shinya; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Metelmann, Hans-Robert; Hori, Masaru

    2017-12-01

    Plasma medical science is a novel interdisciplinary field that combines studies on plasma science and medical science, with the anticipation that understanding the scientific principles governing plasma medical science will lead to innovations in the field. Non-thermal atmospheric pressure plasma has been used for medical treatments, such as for cancer, blood coagulation, and wound healing. The interactions that occur between plasma and cells/tissues have been analyzed extensively. Direct and indirect treatment of cells with plasma has broadened the applications of non-thermal atmospheric pressure plasma in medicine. Examples of indirect treatment include plasma-assisted immune-therapy and plasma-activated medium. Controlling intracellular redox balance may be key in plasma cancer treatment. Animal studies are required to test the effectiveness and safety of these treatments for future clinical applications.

  12. Timescale and magnitude of plasma thermal energy loss before and during disruptions in JET

    International Nuclear Information System (INIS)

    Riccardo, V.; Loarte, A.

    2005-01-01

    In this paper we analyse and discuss the thermal energy loss dynamics before and during JET disruptions that occurred between 2002 and 2004 in discharges which reached >4.5 MJ of thermal energy. We observe the slow thermal energy transients with diamagnetic loops and the fast ones with electron cyclotron emission and soft x-ray diagnostics. For most disruption types in JET, the plasma thermal energy at the time of the thermal quench is substantially less than that of the full performance plasma, typically in the range of 10-50% depending on plasma conditions and disruption type. The exceptions to this observation are disruptions in plasmas with a strong internal transport barrier (ITB) and in discharges terminating in a pure vertical displacement event, in which the plasma conserves a very high energy content up to the thermal quench. These disruption types are very sudden, leaving little scope for the combined action of soft plasma landing strategies and intrinsic performance degradation, both requiring >500 ms to be effective, to decrease the available thermal energy. The characteristic time for the loss of energy from the main plasma towards the PFCs in the thermal quench of JET disruptions is in the range 0.05-3.0 ms. The shortest timescales are typical of disruptions caused by excessive pressure peaking in ITB discharges. The available thermal energy fraction and thermal quench duration observed in JET can be processed (with due caution) into estimates for the projected PFC lifetime of the ITER target

  13. Dynamic plasma screening effects on semiclassical inelastic electron endash ion collisions in dense plasmas

    International Nuclear Information System (INIS)

    Jung, Y.

    1997-01-01

    In dense plasmas, dynamic plasma screening effects are investigated on 1s→2p dipole transition probabilities for electron-impact excitation of hydrogenic ions. The electron endash ion interaction potential is considered by introduction of the plasma dielectric function. A semiclassical straight-line trajectory method is applied to the path of the projectile electron in order to visualize the semiclassical transition probability as a function of the impact parameter, projectile energy, and plasma parameters. The transition probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the electron thermal velocity, then the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low-energy projectiles. It is also found that the static plasma screening formula obtained by the Debye endash Hueckel model overestimates the plasma screening effects on the atomic excitation processes in dense plasmas. copyright 1997 American Institute of Physics

  14. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  15. Implosive Thermal Plasma Source for Energy Conversion

    Czech Academy of Sciences Publication Activity Database

    Šonský, Jiří; Tesař, Václav; Gruber, Jan; Mašláni, Alan

    2017-01-01

    Roč. 4, č. 1 (2017), s. 87-90 ISSN 2336-2626 Institutional support: RVO:61388998 ; RVO:61389021 Keywords : implosion * thermal plasma * detonation wave Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (UFP-V) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (UFP-V) https://ppt.fel.cvut.cz/ppt2017.html#number1

  16. Hydrogen production by thermal water splitting using a thermal plasma

    International Nuclear Information System (INIS)

    Boudesocque, N.; Lafon, C.; Girold, C.; Vandensteendam, C.; Baronnet, J.M.

    2006-01-01

    CEA has been working for more than 10 years in plasma technologies devoted to waste treatment: incineration, vitrification, gases and liquid treatment. Based on this experience, CEA experiments since several years an innovative route for hydrogen production by thermal water splitting, using a plasma as heat source. This new approach could be considered as an alternative to electrolysis for massive hydrogen production from water and electricity. This paper presents a brief state of the art of water thermal plasmas, showing the temperatures and quench velocity ranges technologically achievable today. Thermodynamic properties of a water plasma are presented and discussed. A kinetic computational model is presented, describing the behavior of splitted products during the quench in a plasma plume for various parameters, such as the quench rate. The model results are compared to gas analysis in the plasma plume obtained with in-situ sampling probe. The plasma composition measurements are issued from an Optical Emission Spectroscopic method (OES). The prediction of 30 % H 2 recovery with a 108 K.s -1 quench rate has been verified. A second experimentation has been performed: mass gas analysis, flowrate measurement and OES to study the 'behavior' and species in underwater electrical arc stricken between graphite electrodes. With this quench, a synthesis gas was produced with a content 55 % of hydrogen. (authors)

  17. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    Science.gov (United States)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  18. Ion streaming instabilities in pair ion plasma and localized structure with non-thermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, M. Nasir; Qamar, A., E-mail: mnnasirphysics@gmail.com [Department of Physics, University of Peshawar (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University Mardan, National Center for Physics, Mardan (Pakistan)

    2015-12-15

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A quasi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted. (author)

  19. The structure and thermal properties of plasma-sprayed beryllium for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Bartlett, A.; Elliott, K.E.; Hollis, K.J.

    1996-01-01

    Plasma spraying is being studied for in situ repair of damaged Be and W plasma facing surfaces for ITER, the next generation magnetic fusion energy device, and is also being considered for fabricating Be and W plasma-facing components for the first wall of ITER. Investigators at LANL's Beryllium Atomization and Thermal Spray Facility have concentrated on investigating the structure-property relation between as-deposited microstructures of plasma sprayed Be coatings and resulting thermal properties. In this study, the effect of initial substrate temperature on resulting thermal diffusivity of Be coatings and the thermal diffusivity at the coating/Be substrate interface (interface thermal resistance) was investigated. Results show that initial Be substrate temperatures above 600 C can improve the thermal diffusivity of the Be coatings and minimize any thermal resistance at the interface between the Be coating and Be substrate

  20. Deviations from thermal equilibrium in plasmas

    International Nuclear Information System (INIS)

    Burm, K.T.A.L.

    2004-01-01

    A plasma system in local thermal equilibrium can usually be described with only two parameters. To describe deviations from equilibrium two extra parameters are needed. However, it will be shown that deviations from temperature equilibrium and deviations from Saha equilibrium depend on one another. As a result, non-equilibrium plasmas can be described with three parameters. This reduction in parameter space will ease the plasma describing effort enormously

  1. Electrical and thermal conductivities in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  2. Thermal Plasma Generators with Water Stabilized Arc

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan

    2009-01-01

    Roč. 2, č. 1 (2009), s. 99-104 ISSN 1876-5343 R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * plasma torch * Gerdien arc Subject RIV: BL - Plasma and Gas Discharge Physics http://www.bentham.org/open/toppj/openaccess2.htm

  3. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  4. Effects of plasma jet parameters, ionization, thermal conduction, and radiation on stagnation conditions of an imploding plasma liner

    Science.gov (United States)

    Stanic, Milos

    The disciplines of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) are characterized by hypervelocity implosions and strong shocks. The Plasma Liner Experiment (PLX) is focused on reaching HEDP and/or ICF relevant regimes in excess of 1 Mbar peak pressure by the merging and implosion of discrete plasma jets, as a potentially efficient path towards these extreme conditions in a laboratory. In this work we have presented the first 3D simulations of plasma liner, formation, and implosion by the merging of discrete plasma jets in which ionization, thermal conduction, and radiation are all included in the physics model. The study was conducted by utilizing a smoothed particle hydrodynamics code (SPHC) and was a part of the plasma liner experiment (PLX). The salient physics processes of liner formation and implosion are studied, namely vacuum propagation of plasma jets, merging of the jets (liner forming), implosion (liner collapsing), stagnation (peak pressure), and expansion (rarefaction wave disassembling the target). Radiative transport was found to significantly reduce the temperature of the liner during implosion, thus reducing the thermal expansion rates and leaving more pronounced gradients in the plasma liner during the implosion compared with ideal hydrodynamic simulations. These pronounced gradients lead to a greater sensitivity of initial jet geometry and symmetry on peak pressures obtained. Accounting for ionization and transport, many cases gave higher peak pressures than the ideal hydrodynamic simulations. Scaling laws were developed accordingly, creating a non-dimensional parameter space in which performance of an imploding plasma jet liner can be estimated. It is shown that HEDP regimes could be reached with ≈ 5 MJ of liner energy, which would translate to roughly 10 to 20 MJ of stored (capacitor) energy. This is a potentially significant improvement over the currently available means via ICF of achieving HEDP and nuclear

  5. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    Science.gov (United States)

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-07

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.

  6. Waste cell phone recycling by thermal plasma techniques

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, T.; Kunimoto, N.; Abe, S. [Chuo Univ., Bunkyo-Ku, Tokyo (Japan). Dept. of Electrical, Electronics, and Communication Engineering; Li, O.L.; Chang, J.S.; Ruj, B. [McMaster Univ., Hamilton, ON (Canada). Faculty of Engineering

    2010-07-01

    Due to the cost-effective nature of wireless networks, the number of cell phones used around the world has increased significantly. However, a major problem of this technology is the generation of a great deal of complex electronics wastes, such as cell phones. The typical average life of a cell phone is around 2 years. Therefore, inexpensive recycling techniques must be developed for valuable resources such as real metals and plastics used in cell phones. Thermal plasma has been used for many different waste treatments since it has the capability to detoxify waste by-products. This paper presented a preliminary investigation for cell phone recycling by a thermal plasma technology. Recyclable resource material was identified by neutron activation analyses. Then, the cell phone waste was first crashed and treated by Ar twin torch plasmas to remove the majority of organic materials. The paper described the experimental apparatus and results. It was concluded that styrene (C{sub 8}H{sub 8}) and benzene (C{sub 6}H{sub 6}O) may be two major by-products in on-line by-products gas. The molecule becomes a much heavier by-product gas after cooling down. 6 refs., 6 figs.

  7. Applying chemical engineering concepts to non-thermal plasma reactors

    Science.gov (United States)

    Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI

    2018-06-01

    Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.

  8. Theoretical investigation of thermophysical properties in two-temperature argon-helium thermal plasma

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip; Singh, Gurpreet

    2011-01-01

    The thermophysical properties of argon-helium thermal plasma have been studied in the temperature range from 5000 to 40 000 K at atmospheric pressure in local thermodynamic equilibrium and non-local thermodynamic equilibrium conditions. Two cases of thermal plasma considered are (i) ground state plasma in which all the atoms and ions are assumed to be in the ground state and (ii) excited state plasma in which atoms and ions are distributed over various possible excited states. The influence of electronic excitation and non-equilibrium parameter θ = T e /T h on thermodynamic properties (composition, degree of ionization, Debye length, enthalpy, and total specific heat) and transport properties (electrical conductivity, electron thermal conductivity, and thermal diffusion ratio) have been studied. Within the framework of Chapman-Enskog method, the higher-order contributions to transport coefficient and their convergence are studied. The influence of different molar compositions of argon-helium plasma mixture on convergence of higher-orders is investigated. Furthermore, the effect of different definitions of Debye length has also been examined for electrical conductivity and it is observed that electrical conductivity with the definition of Debye length (in which only electrons participate in screening) is less than that of the another definition (in which both the electrons and ions participate in screening) and this deviation increases with electron temperature. Finally, the effect of lowering of ionization energy is examined on electron number density, Debye length, and higher-order contribution to electrical conductivity. It is observed that the lowering of the ionization energy affects the electron transport-properties and consequently their higher-order contributions depending upon the value of the non-equilibrium parameter θ.

  9. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    Science.gov (United States)

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  10. Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shuang [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Simmonds, Michael [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Energy Research, University of California, San Diego, La Jolla, CA 92093 (United States); Qin, Wenjing; Ren, Feng [School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China); Tynan, George R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Energy Research, University of California, San Diego, La Jolla, CA 92093 (United States); Doerner, Russell P. [Center for Energy Research, University of California, San Diego, La Jolla, CA 92093 (United States); Chen, Renkun, E-mail: rkchen@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Energy Research, University of California, San Diego, La Jolla, CA 92093 (United States)

    2017-04-01

    The near-surface region of plasma facing material (PFM) plays an important role in thermal management of fusion reactors. In this work, we measured thermal conductivity of tungsten (W) surface layers damaged by He plasma in PISCES at UCSD. We studied the damage effect on both bulk, and thin film, W. We observed that the surface morphology of both bulk and thin film was altered after exposure to He plasma with the fluence of 1 × 10{sup 26} m{sup −2} (bulk) and 2 × 10{sup 24} m{sup −2} (thin film). Transmission electron microscopy (TEM) analysis reveals that the depth of the irradiation damaged layer was approximately 20 nm on the bulk W exposed to He plasma at 773 K for 2000 s. In order to measure the thermal conductivity of this exceedingly thin damaged layer in the bulk W, we adopted the well-established ‘3-omega’ method and employed novel nanofabrication techniques to improve the measurement sensitivity. For the damaged W thin film sample, we measured the reduction in electrical conductivity and used the Wiedemann-Franz (W-F) law to extract the thermal conductivity. Results from both measurements show that thermal conductivity in the damaged layers was reduced by at least ∼80% compared to that of undamaged W. This large reduction in thermal conductivity can be attributed to the scattering of electrons, the dominant heat carriers in W, caused by defects introduced by He plasma irradiation.

  11. Atmospheric non-thermal argon-oxygen plasma for sunflower seedling growth improvement

    Science.gov (United States)

    Matra, Khanit

    2018-01-01

    Seedling growth enhancement of sunflower seeds by DC atmospheric non-thermal Ar-O2 plasma has been proposed. The plasma reactor was simply designed by the composition of multi-pin electrodes bonded on a solderable printed circuit board (PCB) anode. A stable plasma was exhibited in the non-periodical self-pulsing discharge mode during the seed treatment. The experimental results showed that non-thermal plasma treatment had a significant positive effect on the sunflower seeds. Ar-O2 mixed gas ratio, treatment time and power source voltage are the important parameters affecting growth stimulation of sunflower sprouts. In this research, the sunflower seeds treated with 3:3 liters per minute (LPM) of Ar-O2 plasma at a source voltage of 8 kV for 1 min showed the best results in stimulating the seedling growth. The results in this case showed that the dry weight and average shoot length of the sunflower sprouts were 1.79 and 2.69 times higher and heavier than those of the untreated seeds, respectively.

  12. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    Science.gov (United States)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  13. Analysis of the biological effects of a non-thermal plasma on saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Park, Gyung S.; Baik, Ku Y.; Kim, Jung G.; Kim, Yun J.; Lee, Kyung A.; Jung, Ran J.; Cho, Guang S.

    2012-01-01

    The cellular and the molecular responses of eukaryotic yeast (Saccharomyces cerevisiae) to a non-thermal plasma at atmospheric pressure are analyzed. A plasma device with a dielectric barrier discharge is used in order to understand the mechanisms of the plasma action on eukaryotic microbes. When the yeast cells are exposed to a plasma (at a 2-mm distance) and then cultured on a YPD (yeast extract, peptone, and dextrose) - agar plate, the number of surviving cells is reduced over exposure time. More than a 50% reduction in number is observed after two exposures of 5 minutes' duration. In addition, very small whitish colonies appear after the two exposures. The microscopic analysis indicates that the yeast cells treated with this plasma exposure have rough and shrunken shapes in comparison to the oval shapes with smooth surfaces of the control cells. The profile of proteins analyzed by using 2-dimentional electrophoresis demonstrates that the level of proteins with high molecular weights is increased in plasma-treated cells.

  14. Non-thermal plasma instabilities induced by deformation of the electron energy distribution function

    Science.gov (United States)

    Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.

    2014-08-01

    Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.

  15. Development of plasma properties along thermal plasma jet generated by hybrid water-argon torch

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Hrabovský, Milan

    2002-01-01

    Roč. 52, supplement D (2002), s. 637-642 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : thermal plasma, plasma jet, enthalpy probe Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  16. Preliminary experiments on wastes degradation by thermal plasma

    International Nuclear Information System (INIS)

    Cota S, G.; Pacheco S, J.; Segovia R, A.; Pena E, R.; Merlo S, L.

    1996-01-01

    This work presents the fundamental aspects involved in the installation and start up of an experimental equipment for the hazardous wastes degradation using the thermal plasma technology. It is mentioned about the form in which the thermal plasma is generated and the characteristics that its make to be an appropriate technology for the hazardous wastes degradation. Just as the installed structures for to realize the experiments and results of the first studies on degradation, using nylon as problem sample. (Author)

  17. Relativistic self-focusing of intense laser beam in thermal collisionless quantum plasma with ramped density profile

    Directory of Open Access Journals (Sweden)

    S. Zare

    2015-04-01

    Full Text Available Propagation of a Gaussian x-ray laser beam has been analyzed in collisionless thermal quantum plasma with considering a ramped density profile. In this density profile due to the increase in the plasma density, an earlier and stronger self-focusing effect is noticed where the beam width oscillates with higher frequency and less amplitude. Moreover, the effect of the density profile slope and the initial plasma density on the laser propagation has been studied. It is found that, by increasing the initial density and the ramp slope, the laser beam focuses faster with less oscillation amplitude, smaller laser spot size and more oscillations. Furthermore, a comparison is made among the laser self-focusing in thermal quantum plasma, cold quantum plasma and classical plasma. It is realized that the laser self-focusing in the quantum plasma becomes stronger in comparison with the classical regime.

  18. Dynamic plasma screening effects on electron capture process in hydrogenic ion fully stripped ion collisions in dense plasmas

    International Nuclear Information System (INIS)

    Jung, Y.

    1997-01-01

    In dense plasmas, dynamic plasma screening effects are investigated on electron capture from hydrogenic ions by past fully stripped ions. The classical Bohr Lindhard model has been applied to obtain the electron capture probability. The interaction potential in dense plasmas is represented in terms of the longitudinal dielectric function. The classical straight-line trajectory approximation is applied to the motion of the projectile ion in order to visualize the electron capture probability as a function of the impact parameter, projectile energy, and plasma parameters. The electron capture probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the plasma electron thermal velocity, the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low energy projectiles. It is found that the static screening formula obtained by the Debye Hueckel model overestimates the plasma screening effects on the electron capture processes in dense plasmas. copyright 1997 American Institute of Physics

  19. Thermal radiation properties of PTFE plasma

    Science.gov (United States)

    Liu, Xiangyang; Wang, Siyu; Zhou, Yang; Wu, Zhiwen; Xie, Kan; Wang, Ningfei

    2017-06-01

    To illuminate the thermal transfer mechanism of devices adopting polytetrafluoroethylene (PTFE) as ablation materials, the thermal radiation properties of PTFE plasma are calculated and discussed based on local thermodynamic equilibrium (LTE) and optical thin assumptions. It is clarified that line radiation is the dominant mechanism of PTFE plasma. The emission coefficient shows an opposite trend for both wavelength regions divided by 550 nm at a temperature above 15 000 K. The emission coefficient increases with increasing temperature and pressure. Furthermore, it has a good log linear relation with pressure. Equivalent emissivity varies complexly with temperature, and has a critical point between 20 000 K to 25 000 K. The equivalent cross points of the average ionic valence and radiation property are about 10 000 K and 15 000 K for fully single ionization.

  20. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Young-Hyo Ryu

    Full Text Available Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH· produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  1. Suitability of thermal plasmas for large-area bacteria inactivation on temperature-sensitive surfaces – first results with Geobacillus stearothermophilus spores

    International Nuclear Information System (INIS)

    Szulc, M; Schein, S; Schaup, J; Zimmermann, S; Schein, J

    2017-01-01

    The application of thermal plasma for large-area bacteria inactivation on temperature-sensitive surfaces is not a common one. Nonetheless, there are thermal plasma generators which offer a high sheath homogeneity and have proven to be suitable for treatment of thermally sensitive materials in the past. To investigate the suitability of such plasmas, agar dishes plated with endospores of Geobacillus stearothermophilus have been treated with a long arc plasma generator called LARGE. The achieved results have been compared with a commercially available non-thermal plasma generator. A significant inactivation of the endospores could be observed only after 60 s of treatment with the thermal plasma source. This was not possible with the non-thermal generator. Moreover, no temperature damage or increase of the specimen could be detected. An attempt to determine the main agents responsible for the microbicidal effects have been made – the influence of plasma gas composition, discharge current and treatment time has been investigated. Significant improvements in the disinfection rates after adding small amounts of nitrogen to the plasma gas could be observed. A first discussion regarding the suitability of thermal plasmas for bacteria inactivation has been given. (paper)

  2. Treatment of mixed wastes by thermal plasma discharges

    International Nuclear Information System (INIS)

    Diaz A, L.V.

    2007-01-01

    The present study has as purpose to apply the technology of thermal plasma in the destruction of certain type of waste generated in the ININ. As first instance, origin, classification and disposition of the radioactive waste generated in the ININ is identified. Once identified the waste, the waste to treat is determined based on: the easiness of treating him with plasma, classification and importance. Later on, a substance or compound settles down (sample model) that serves as indicative of the waste for its physical-chemical characteristics, this is made because in the Thermal Plasma Applications Laboratory is not had the license to work with radioactive material. The sample model and the material to form the vitreous matrix are characterized before and after the treatment in order to evaluating their degradation and vitrification. During the treatment by means of the thermal plasma, the appropriate conditions are determined for the degradation and vitrification of the waste. Also, it is carried out an energy balance in the system to know the capacity to fuse the material depending the transfer of existent heat between the plasma and the material to treat. Obtaining favorable results, it thought about to climb in the project and by this way to help to solve one of the environmental problems in Mexico, as they are it the mixed wastes. (Author)

  3. Time-resolved probing of electron thermal conduction in femtosecond-laser-pulse-produced plasmas

    International Nuclear Information System (INIS)

    Vue, B.T.V.

    1993-06-01

    We present time-resolved measurements of reflectivity, transmissivity and frequency shifts of probe light interacting with the rear of a disk-like plasma produced by irradiation of a transparent solid target with 0.1ps FWHM laser pulses at peak intensity 5 x 10 l4 W/CM 2 . Experimental results show a large increase in reflection, revealing rapid formation of a steep gradient and overdense surface plasma layer during the first picosecond after irradiation. Frequency shifts due to a moving ionization created by thermal conduction into the solid target are recorded. Calculations using a nonlinear thermal heat wave model show good agreement with the measured frequency shifts, further confining the strong thermal transport effect

  4. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  5. Radial thermal diffusivity of toroidal plasma affected by resonant magnetic perturbations

    International Nuclear Information System (INIS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Takamaru, Hisanori; Okamoto, Masao

    2012-04-01

    We investigate how the radial thermal diffusivity of an axisymmetric toroidal plasma is modified by effect of resonant magnetic perturbations (RMPs), using a drift kinetic simulation code for calculating the thermal diffusivity in the perturbed region. The perturbed region is assumed to be generated on and around the resonance surfaces, and is wedged in between the regular closed magnetic surfaces. It has been found that the radial thermal diffusivity χ r in the perturbed region is represented as χ r = χ r (0) {1 + c r parallel 2 >}. Here r parallel 2 > 1/2 is the strength of the RMPs in the radial directions, means the flux surface average defined by the unperturbed (i.e., original) magnetic field, χ r (0) is the neoclassical thermal diffusivity, and c is a positive coefficient. In this paper, dependence of the coefficient c on parameters of the toroidal plasma is studied in results given by the δ f simulation code solving the drift kinetic equation under an assumption of zero electric field. We find that the dependence of c is given as c ∝ ω b /ν eff m in the low collisionality regime ν eff b , where ν eff is the effective collision frequency, ω b is the bounce frequency and m is the particle mass. In case of ν eff > ω b , the thermal diffusivity χ r evaluated by the simulations becomes close to the neoclassical thermal diffusivity χ r (0) . (author)

  6. Thermal plasma synthesis of Fe1−xNix alloy nanoparticles

    International Nuclear Information System (INIS)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-01-01

    Fe-Ni alloy nanoparticles are of great interest because of diverse practical applications in the fields such as magnetic fluids, high density recording media, catalysis and medicine. We report the synthesis of Fe-Ni nanoparticles via thermal plasma route. Thermal plasma assisted synthesis is a high temperature process and gives high yields of production. Here, we have used direct arc thermal plasma plume of 6kw as a source of energy at operating pressure 500 Torr. The mixture of Fe-Ni powder in required proportion (Fe 1−x Ni x ; x=0.30, 0.32, 0.34, 0.36, 0.38 and 0.40) was made to evaporate simultaneously from the graphite anode in thermal plasma reactor to form Fe-Ni bimetallic nanoparticles. The as synthesized particles were characterized by X-Ray Diffraction (XRD), Thermo-Gravimetric Analysis/Differential Scanning Calorimtry (TGA/DSC)

  7. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    International Nuclear Information System (INIS)

    Choi, Yu-Ri; Kwon, Jae-Sung; Song, Doo-Hoon; Choi, Eun Ha; Lee, Yong-Keun; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2013-01-01

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering

  8. Synthesis of {gamma}-aluminium oxynitride spinel using thermal plasma technique

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Pravuram; Singh, S. K.; Sinha, S. P. [School of Applied Science (Physics), KIIT University, Bhubaneswar 751024 (India); Advanced Materials Technology Department, IMMT (CSIR), Bhubaneswar 751013 (India); School of Applied Science (Physics), KIIT University, Bhubaneswar 751024 (India)

    2012-07-23

    The synthesis technique of {gamma}-AlON in NH{sub 3} plasma using extended arc thermal plasma reactor have been reported. Dense cubic AlON spinel was synthesized in liquid state by fusion of mixture of Al{sub 2}O{sub 3} and AlN powder under thermal plasma. The density of the fused AlON was found to be 3.64 g/cc which is 98.11% of theoretical value. The formation of AlON was confirmed from XRD and Raman studies. Well faceted structure of plasma fused AlON was observed in FE-SEM micrograph.

  9. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  10. Cytocompatibility of Plasma and Thermally Treated Biopolymers

    Directory of Open Access Journals (Sweden)

    Petr Slepička

    2013-01-01

    Full Text Available This paper is focused on the surface characterization of plasma and consequently thermally treated biocompatible polymers. PLLA (poly(L-lactide acid and PMP (poly-4-methyl-1-pentene are studied. The influence of Ar plasma treatment on the surface polarity of substrate measured immediately after treatment and during the polymer surface aging is studied. Surface roughness, morphology, wettability, and surface chemistry were determined. Plasma treatment leads to significant changes in PLLA surface morphology and chemistry, with the PMP being slightly affected. The higher resistance to plasma fluence results in smaller ablation of PMP than that of PLLA. The plasma treatment improves cell adhesion and proliferation on the PMP. Plasma treatment of PLLA influences mostly the homogeneity of adhered and proliferated VSMC.

  11. The effect of topical anesthetic hydration on the depth of thermal injury from the plasma skin regeneration device.

    Science.gov (United States)

    Sanderson, Alicia R; Wu, Edward C; Liaw, Lih-Huei L; Garg, Rohit; Gangnes, Richard A

    2014-02-01

    The plasma skin regeneration (PSR) device delivers thermal energy to the skin by converting nitrogen gas to plasma. Prior to treatment, hydration of the skin is recommended as it is thought to limit the zone of thermal damage. However, there is limited data on optimal hydration time. This pilot study aims to determine the effect of topical anesthetic application time on the depth of thermal injury from a PSR device using histology. PSR (1.8 and 3.5 J) was performed after 0, 30, or 60 minutes of topical anesthetic application. Rhytidectomy was then performed and skin was fixed for histologic analysis. Four patients (two control and four treatment sites per patient) undergoing rhytidectomy were recruited for the study. Each patient served as his/her own control (no hydration). A scoring system for tissue injury was developed. Epidermal injury, the presence of vacuolization, blistering, damage to adnexal structures, and depth of dermal collagen changes were evaluated in over 1,400 high-power microscopy fields. There was a significant difference in the average thermal injury score, depth of thermal damage, and epidermal injury when comparing controls to 30 minutes of hydration (P = 0.012, 0.012, 0.017, respectively). There was no statistical difference between controls and 60 minutes of hydration or between 30 and 60 minutes of hydration. Epidermal vacuolization at low energy and patchy distribution of thermal injury was also observed. Topical hydration influences the amount of thermal damage when applied to skin for 30 minutes prior to treatment with the PSR device. There was a trend toward decreasing thermal damage at 60 minutes, and there was no difference between treatment for 30 or 60 minutes. The data suggest that application of topical anesthetic for a short period of time prior to treatment with the PSR device is cost-effective, safe, and may be clinically beneficial. © 2013 Wiley Periodicals, Inc.

  12. What makes a thermal plasma suitable for hazardous waste disposal

    International Nuclear Information System (INIS)

    Benocci, R.; Florio, R.; Galassi, A.; Paolicchio, M.; Sindoni, E.

    1997-01-01

    The basic transport and thermodynamic characteristic of a thermal plasma are analysed in order to emphasize those properties that make a high-temperature source profitable and suitable over the conventional devices for hazardous waste treatment. In addition a survey of the basic reaction sequence and apparatus units is made together with the different approaches to thermal plasma waste treatments

  13. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    Science.gov (United States)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  14. Numerical Modelling of Wood Gasification in Thermal Plasma Reactor

    Czech Academy of Sciences Publication Activity Database

    Hirka, Ivan; Živný, Oldřich; Hrabovský, Milan

    2017-01-01

    Roč. 37, č. 4 (2017), s. 947-965 ISSN 0272-4324 Institutional support: RVO:61389021 Keywords : Plasma modelling * CFD * Thermal plasma reactor * Biomass * Gasification * Syngas Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.355, year: 2016 https://link.springer.com/article/10.1007/s11090-017-9812-z

  15. The Quark-Gluon Plasma Collective Dynamics and Hard Thermal Loops

    CERN Document Server

    Blaizot, J P; Blaizot, Jean-Paul; Iancu, Edmond

    2002-01-01

    We present a unified description of the high temperature phase of QCD, the so-called quark-gluon plasma, in a regime where the effective gauge coupling $g$ is sufficiently small to allow for weak coupling calculations. The main focuss is the construction of the effective theory for the collective excitations which develop at a typical scale $gT$, which is well separated from the typical energy of single particle excitations which is the temperature $T$. We show that the plasma particles provide a source for long wavelength oscillations of average fields which carry the quantum numbers of the plasma constituents, the quarks and the gluons. To leading order in $g$, the plasma particles obey simple gauge-covariant kinetic equations, whose derivation from the general Dyson-Schwinger equations is outlined. As a by-product, the ``hard thermal loops'' emerge naturally in a physically transparent framework. We show that the collective excitations can be described in terms of classical fields, and develop for these a ...

  16. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-06-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitrogen oxides (NO x ). Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. The authors discuss in detail their work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. The results suggest that their plasma reactor can remove up to 70% of NO with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kW and an exhaust gas flow rate of 1,200 liters per minute

  17. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-01-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitric oxides (NO x ) Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. We discuss in detail our work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. Our results suggest that our plasma reactor can remove up to 70% of NO x with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kill and an exhaust gas flow rate of 1200 liters per minute

  18. Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability.

    Science.gov (United States)

    Struzzi, Claudia; Scardamaglia, Mattia; Hemberg, Axel; Petaccia, Luca; Colomer, Jean-François; Snyders, Rony; Bittencourt, Carla

    2015-01-01

    Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.

  19. Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability

    Directory of Open Access Journals (Sweden)

    Claudia Struzzi

    2015-12-01

    Full Text Available Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.

  20. Application of pulsed power and power modulation to the non-thermal plasma treatment of hazardous gaseous wastes

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1992-10-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. The use of pulsed power and power modulation is essential to the successful implementation of non-thermal plasma techniques. This paper provides an overview of the most recent developments in non-thermal plasma systems that have been applied to gaseous waste treatment. In the non-thermal plasma approach, the nonequilibrium properties of the plasma are fully exploited. These plasmas are characterized by high electron temperatures, while the gas remains at near ambient temperature and pressure. The energy is directed preferentially to the undesirable components, which are often present in very small concentrations. These techniques utilize the dissociation and ionization of the background gas to produce radicals which, in turn, decompose the toxic compounds. The key to success in the non-thermal plasma approach is to produce a discharge in which the majority of the electrical energy goes into the production of energetic electrons, rather than into gas heating. For example, in a typical application to flue gas cleanup, these electrons produce radicals, such as O and OH, through the dissociation or ionization of molecules such as H 2 O or O 2 . The radicals diffuse through the gas and preferentially oxidize the nitrogen oxides and sulfur oxides to form acids that can then be easily neutralized to form non-toxic, easily-collectible (and commercially salable) compounds. Non-thermal plasmas can be created in essentially two different ways: by electron-beam irradiation, and by electrical discharges

  1. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.

    2016-10-21

    The opportunity for ignition assistance by a pulsed applied voltage is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields (E/N ≈ 100 Td) by a DC potential applied across the domain, resulting in non-thermal behavior of the plasma formed during the discharge. A two-fluid approach is employed to couple thermal neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported from the ignition zone drift rapidly through the domain, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect, which results in an increase in the energy of the electrons in the fresh mixture with increasing time. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame\\'s preheat zone. In the configuration considered, the effect of the nanosecond pulse is to increase the mass of fuel burned at equivalent times relative to the unsupported ignition through enhanced radical generation, resulting in an increased heat release rate in the immediate aftermath of the pulse.

  2. Thermal efficiency of a non-transferred thermal plasma cannon

    International Nuclear Information System (INIS)

    Mercado, A.; Cota, G.; Merlo, L.; Pacheco, J.; Pena, R.; Cruz, A.

    1997-01-01

    This work shows a thermal efficiency research (ν) for a plasma torch in d.c. which was carried out through the realization of an energy balance around the system under consideration. The plasma torch is manufactured in copper with a tungsten incrustations in cathode. The gas used was argon and the gas fluxes were at the rank of 10 and 40 lt/min to the total pressure of 1.2 bar (1.1 atm). With these conditions it was worked with electric currents at the rank of 40 and 180 A. The data were collected through a data acquisition card which was programmed in Windows environment. (Author)

  3. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  4. Thermal cycling characteristics of plasma synthesized mullite films

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, O.R.; Hou, P.Y.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-01

    The authors have developed a plasma-based technique for the synthesis of mullite and mullite-like films on silicon carbide substrate material. The method, which they refer to as MePIIID (for Metal Plasma Immersion Ion Implantation and Deposition), uses two vacuum arc plasma sources and simultaneous pulse biasing of the substrate in a low pressure oxygen atmosphere. The Al:Si ratio can be controlled via the separate plasma guns, and the film adhesion, structure and morphology can be controlled via the ion energy which in turn is controlled by the pulse bias voltage. The films are amorphous as-deposited, and crystalline mullite is formed by subsequent annealing at 1000 C for 2 hours in air. Adhesion between the aluminum-silicon oxide film and the substrate increases after this first annealing. They have tested the behavior of films when subjected to repetitive thermal cycling between room temperature and 1100 C, and found that the films retain their adhesion and quality. Here they review the plasma synthesis technique and the characteristics of the mullite films prepared in this way, and summarize the status of the thermal cycling experiments.

  5. Inductive thermal plasma generation applied for the materials coating

    International Nuclear Information System (INIS)

    Pacheco, J.; Pena, R.; Cota, G.; Segovia, A.; Cruz, A.

    1996-01-01

    The coatings by thermal plasma are carried out introducing particles into a plasma system where they are accelerated and melted (total or partially) before striking the substrate to which they adhere and are suddenly cooled down. The nature of consolidation and solidification of the particles allows to have control upon the microstructure of the deposit. This technique is able to deposit any kind of material that is suitable to be merged (metal, alloy, ceramic, glass) upon any type of substrate (metal, graphite, ceramic, wood) with an adjustable thickness ranging from a few microns up to several millimeters. The applications are particularly focused to the coating of materials in order to improve their properties of resistance to corrosion, thermal and mechanical efforts as well as to preserve the properties of the so formed compound. In this work the electromagnetic induction phenomenon in an ionized medium by means of electric conductivity, is described. Emphasis is made on the devices and control systems employed in order to generate the thermal plasma and in carrying out the coatings of surfaces by the projection of particles based on plasma

  6. Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2014-08-01

    Full Text Available Suspension plasma spraying (SPS has become an interesting method for the production of thermal barrier coatings for gas turbine components. The development of the SPS process has led to structures with segmented vertical cracks or column-like structures that can imitate strain-tolerant air plasma spraying (APS or electron beam physical vapor deposition (EB-PVD coatings. Additionally, SPS coatings can have lower thermal conductivity than EB-PVD coatings, while also being easier to produce. The combination of similar or improved properties with a potential for lower production costs makes SPS of great interest to the gas turbine industry. This study compares a number of SPS thermal barrier coatings (TBCs with vertical cracks or column-like structures with the reference of segmented APS coatings. The primary focus has been on lifetime testing of these new coating systems. Samples were tested in thermo-cyclic fatigue at temperatures of 1100 °C for 1 h cycles. Additional testing was performed to assess thermal shock performance and erosion resistance. Thermal conductivity was also assessed for samples in their as-sprayed state, and the microstructures were investigated using SEM.

  7. Multi-Directional Optical Diagnostics of Thermal Plasma Jets

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Chvála, František; Šonský, Jiří; Gruber, Jan

    2008-01-01

    Roč. 19, č. 1 (2008), s. 1-6 ISSN 0957-0233 R&D Projects: GA ČR(CZ) GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : thermal plasma jet * optical diagnostics * Radon transform Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.493, year: 2008

  8. Non-thermal hydrogen plasma processing effectively increases the antibacterial activity of graphene oxide

    Science.gov (United States)

    Ke, Zhigang; Ma, Yulong; Zhu, Zhongjie; Zhao, Hongwei; Wang, Qi; Huang, Qing

    2018-01-01

    Graphene-based materials (GMs) are promising antibacterial agents which provide an alternative route to treat pathogenic bacteria with resistance to conventional antibiotics. To further improve their antibacterial activity, many methods have been developed to functionalize the GMs with chemicals. However, the application of additional chemicals may pose potential risks to the environment and human being. Herein, a radio-frequency-driven inductively coupled non-thermal hydrogen plasma was used to treat and reduce graphene oxide (GO) without using any other chemicals, and we found that the plasma-reduced GO (prGO) is with significantly higher bactericidal activity against Escherichia coli. The mechanism of the increased antibacterial activity of prGO is due to that plasma processing breaks down the GO sheets into smaller layers with more rough surface defects, which can thus induce more destructive membrane damages to the bacteria. This work sets another good example, showing that plasma processing is a green and low-cost alternative for GM modification for biomedical applications.

  9. Extremely high-power-density atmospheric-pressure thermal plasma jet generated by the nitrogen-boosted effect

    Science.gov (United States)

    Hanafusa, Hiroaki; Nakashima, Ryosuke; Nakano, Wataru; Higashi, Seiichiro

    2018-06-01

    In this study, the effect of N2 addition to an atmospheric-pressure Ar thermal plasma jet (TPJ) on ultrarapid heating was investigated. With increasing N2 flow rate, a boost of arc voltage to ∼36 V was observed, which significantly improved heating characteristics. As a result, a drastic power density increase from 10 to 125 kW/cm2 was achieved with the addition of 2.0 L/min N2 to 3.0 L/min Ar. The results of optical emission analysis and heating characteristics evaluation implied that dissociation and recombination of N2 molecules and the high thermal transport property of nitrogen gas play important roles in the increase in TPJ power density. Furthermore, we obtained TPJ extension with N2 addition that reached 300 mm, and it showed spatial enhancement of heat transport characteristics.

  10. Transfer anisotropy effect in a turbulent plasma

    International Nuclear Information System (INIS)

    Bychenkov, V.Yu.; Gradov, O.M.; Silin, V.P.

    1982-01-01

    A theory is developed of transfer phenomena with pronounced ion-sound turbulence. A transfer anisotropy effect is observed which is due to the temperature gradient. The corresponding fluxes across the effective force vector generating the turbulence are found to be considerably greater than the longitudinal fluxes in a plasma with a comparatively low degree of nonisothermality. In a strongly nonisothermal plasma the suppression of transverse fluxes occurs, corresponding to the growth of thermal insulation of the current-carrying plasma filaments

  11. Magnetic pressure effects in a plasma-liner interface

    Science.gov (United States)

    García-Rubio, F.; Sanz, J.

    2018-04-01

    A theoretical analysis of magnetic pressure effects in a magnetized liner inertial fusion-like plasma is presented. In previous publications [F. García-Rubio and J. Sanz, Phys. Plasmas 24, 072710 (2017)], the evolution of a hot magnetized plasma in contact with a cold unmagnetized plasma, aiming to represent the hot spot and liner, respectively, was investigated in planar geometry. The analysis was made in a double limit low Mach and high thermal to magnetic pressure ratio β. In this paper, the analysis is extended to an arbitrary pressure ratio. Nernst, Ettingshausen, and Joule effects come into play in the energy balance. The region close to the liner is governed by thermal conduction, while the Joule dissipation becomes predominant far from it when the pressure ratio is low. Mass ablation, thermal energy, and magnetic flux losses are reduced with plasma magnetization, characterized by the electron Hall parameter ω e τ e , until β values of order unity are reached. From this point forward, increasing the electron Hall parameter no longer improves the magnetic flux conservation, and mass ablation is enhanced due to the magnetic pressure gradients. A thoughtful simplification of the problem that allows to reduce the order of the system of governing equations while still retaining the finite β effects is presented and compared to the exact case.

  12. Destruction studies of hazardous wastes by thermal plasma

    International Nuclear Information System (INIS)

    Cota S, G.

    1998-01-01

    Plasma technology appears promising because its high degree of controllability, capability to process waste without the adverse effects of combustion, and a very wide temperature range of operation. The goal of this work was to develop a process for a high throughput system to turn hazardous waste into inert stable products, which can be safely stored and to greatly reduce air pollution relative to incineration. The experiments have shown that the thermal plasma reactor can provide a high degree of decomposition of CCl 4 , C 6 H 6 , C 2 Cl 4 and commercial oil at low gas input speeds, with modest power requirements. Decomposition of 99.9999 % has been obtained in our laboratory and all the organic components are decomposed in base molecules (C, CO, CO 2 , H 2 , HCl). The analysis of exhaust gases was made by using a mass filter quadrupole. The equipment consist of a cylindrical reactor hermetically sealed, double-walled and water-cooled container made of special steel, this container in halt the crucible which serves to receive the waste materials. The whole system is designed for a maximal internal temperature of 2000 Centigrade. The gaseous result components of the material are transferred to a scrubber unit through an exit arranged on the top of reactor. The thermal efficiency evaluation of the plasma torch was also realized, obtaining a reasonable agreement between measurements and predictions in temperature profiles. (Author)

  13. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    International Nuclear Information System (INIS)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-01-01

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  14. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, Vikas L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Varma, Vijay; Raut, Suyog [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K. [High Energy Materials Research Lab, Sutarwadi, Pune 411021, Maharashtra (India); Bhoraskar, Sudha V. [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Das, Asoka K. [Utkal University, VaniVihar, Bhubaneswar, Odisha 751004 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  15. Optoelectronic properties of expanding thermal plasma deposited textured zinc oxide : effect of aluminum doping

    NARCIS (Netherlands)

    Groenen, R.; Kieft, E.R.; Linden, J.L.; Sanden, van de M.C.M.

    2006-01-01

    Aluminum-doped zinc oxide films exhibiting a rough surface morphol. are deposited on glass substrates utilizing expanding thermal plasma. Spectroscopic ellipsometry is used to evaluate optical and electronic film properties. The presence of aluminum donors in doped films is confirmed by a shift in

  16. A non-equilibrium simulation of thermal constriction in a cascaded arc hydrogen plasma

    International Nuclear Information System (INIS)

    Peerenboom, K S C; Goedheer, W J; Van Dijk, J; Kroesen, G M W

    2014-01-01

    The cascaded arc hydrogen plasma of Pilot-PSI is studied in a non-LTE model. We demonstrate that the effect of vibrationally excited molecules on the heavy-particle-assisted dissociation is crucial for obtaining thermal constriction. To the best of our knowledge, thermal constriction has not been obtained before in a non-LTE simulation. Probably, realistic numerical studies of this type of plasma were hindered by numerical problems, preventing the non-LTE simulations to show characteristic physical mechanisms such as thermal constriction. In this paper we show that with the help of appropriate numerical strategies thermal constriction can be obtained in a non-LTE simulation. To this end, a new source term linearization technique is developed, which ensures physical solutions even near chemical equilibrium where the composition is dominated by chemical source terms. Results of the model are compared with experiments on Pilot-PSI and show good agreement with pressure and voltage measurements in the source. (paper)

  17. A dc non-thermal atmospheric-pressure plasma microjet

    Science.gov (United States)

    Zhu, WeiDong; Lopez, Jose L.

    2012-06-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ˜120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas.

  18. A dc non-thermal atmospheric-pressure plasma microjet

    International Nuclear Information System (INIS)

    Zhu Weidong; Lopez, Jose L

    2012-01-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ∼120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas. (paper)

  19. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  20. Role of thermo-physical properties on design and development of thermal plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.

    2014-01-01

    Thermal plasma devices find wide application in variety of technological areas like cutting, welding, spray coating, waste management, material processing, chemical reduction, nano-synthesis, novel material synthesis etc. Highly non-linear behavior of the plasma properties coupled with inherent instabilities, extremely high temperature, high gradients in thermal, and flow field, presence of thermal and chemical non-equilibrium make design and development of the plasma generating devices a challenging task as power levels of the devices increase

  1. Operational features and air plasma characteristics of a thermal plasma torch with hollow electrodes

    International Nuclear Information System (INIS)

    Hur, Min; Kim, Keun Su; Hong, Sang Hee

    2003-01-01

    The operational features and thermal plasma characteristics of a plasma torch with hollow electrodes are investigated based on their dependence on input current, gas flow rate and electrode diameter when air is used as a plasma gas. A plasma torch with a hollow cathode and anode has been designed and fabricated, and the arc voltages and thermal efficiencies are measured from its discharge. The newly modified similarity criteria are derived from the measured data related to torch performances. From the fact that these criteria successfully describe both the arc voltage and thermal efficiency behaviour of the torch, depending on its operating and geometrical parameters, it is proved that they can be usefully applied to the design and operation of high power torches. For the numerical modelling of the interior region of the torch, a cold flow analysis is employed along with a simplified balance equation of the Lorentz and gas dynamic drag forces in order to determine a cathode spot position on the cathode surface. The validity of this method is confirmed by comparison of the calculated and measured net powers. As a practically useful result of this analysis, carried out through this numerical and experimental work, it is suggested that low input current, high gas flow rate and relatively large electrode diameter are more favourable as appropriate operating conditions of the torch for the efficient treatment of hazardous organic wastes

  2. Analysis of the expanding thermal argon-oxygen plasma gas phase

    International Nuclear Information System (INIS)

    Hest, M F A M van; Haartsen, J R; Weert, M H M van; Schram, D C; Sanden, M C M van de

    2003-01-01

    An expanding thermal argon plasma into which oxygen is injected has been analysed by means of Langmuir and Pitot probe measurements. Information is obtained on the ion density profile and the flow pattern in the downstream plasma. A combination of Langmuir and Pitot probe measurements provide information on the total ion flux generated by the plasma source (cascaded arc). It has been found that the ion diffusion is mainly determined by the background pressure in the expansion vessel and the arc current. The ion density is determined by the total power input into the plasma as well as the gas flow in the plasma source. There is an optimum in the power transfer used for ionization from plasma source to the feed gas. Interaction of oxygen with the plasma results in a decrease in the argon ion density and the plasma beam radius. The recirculation pattern of the downstream plasma has been investigated experimentally using the Pitot probe. Due to the low downstream pressure (10-30 Pa), the conventional compressible Pitot probe theory no longer applies. It is concluded that viscous effects start to play an important role at these low pressures and should be taken into account in the analysis of the Pitot probe measurements

  3. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    International Nuclear Information System (INIS)

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-01-01

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented

  4. Effects of fluorine-based plasma treatment and thermal annealing on high-Al content AlGaN Schottky contact

    International Nuclear Information System (INIS)

    Liu Fang; Qin Zhixin

    2016-01-01

    Fluorine plasma treatment was used prior to the Schottky metal deposition on the undoped Al 0.45 Ga 0.55 N, which aimed at the solar-blind wavelength. After fluorine plasma treatment and before depositing the Ni/Au Schottky, the samples were thermal annealed in the N 2 gas at 400 °C. The reverse leakage current density of Al 0.45 Ga 0.55 N Schottky diode was reduced by 2 orders of magnitude at −10 V. The reverse leakage current density was reduced by 3 orders of magnitude after thermal annealing. Further capacitance–frequency analysis revealed that the fluorine-based plasma treatment reduces the surface states of AlGaN by one order of magnitude at different surface state energies. The capacitance–frequency analysis also proved that the concentration of carriers in AlGaN top is reduced through fluorine plasma treatment. (paper)

  5. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    Directory of Open Access Journals (Sweden)

    Tae-Hee Kim

    2016-02-01

    Full Text Available Gallium nitride (GaN nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO33∙xH2O was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6 powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3. Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  6. Properties of thermal air plasma with admixing of copper and carbon

    International Nuclear Information System (INIS)

    Fesenko, S; Veklich, A; Boretskij, V; Cressault, Y; Gleizes, A; Teulet, Ph

    2014-01-01

    This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors

  7. Temperature of thermal plasma jets: A time resolved approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahasrabudhe, S N; Joshi, N K; Barve, D N; Ghorui, S; Tiwari, N; Das, A K, E-mail: sns@barc.gov.i [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai - 400 094 (India)

    2010-02-01

    Boltzmann Plot method is routinely used for temperature measurement of thermal plasma jets emanating from plasma torches. Here, it is implicitly assumed that the plasma jet is 'steady' in time. However, most of the experimenters do not take into account the variations due to ripple in the high current DC power supplies used to run plasma torches. If a 3-phase transductor type of power supply is used, then the ripple frequency is 150 Hz and if 3- phase SCR based power supply is used, then the ripple frequency is 300 Hz. The electrical power fed to plasma torch varies at ripple frequency. In time scale, it is about 3.3 to 6.7 ms for one cycle of ripple and it is much larger than the arc root movement times which are within 0.2 ms. Fast photography of plasma jets shows that the luminosity of plasma jet also varies exactly like the ripple in the power supply voltage and thus with the power. Intensity of line radiations varies nonlinearly with the instantaneous power fed to the torch and the simple time average of line intensities taken for calculation of temperature is not appropriate. In this paper, these variations and their effect on temperature determination are discussed and a method to get appropriate data is suggested. With a small adaptation discussed here, this method can be used to get temperature profile of plasma jet within a short time.

  8. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip

    2014-01-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter

  9. The impact of transient thermal loads on beryllium as plasma facing material

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, Benjamin Christof

    2017-01-24

    microstructural integrity in the transition region involves the risk of a macroscopic delamination of armour material, which reduces the lifetime of afflicted first wall panels. Overall, it was found that the yield strength and ultimate tensile strength of beryllium represent two key parameters that strongly influence its performance under transient thermal loading. Both quantities decrease as a function of the base temperature. Therefore, a lower base temperature (tested down to room temperature) is favourable for the performance of the beryllium armour tiles in ITER. The generated results indicate that the plastic deformation and the cracking of beryllium do not pose a threat to the operation of ITER, if the heat flux factors of the transient thermal pulses remain at 9 MW m{sup -2} s{sup 0.5} or below. This conclusion was drawn from the fact that the thermally induced damage saturated after 10{sup 5} pulses and did not significantly change for up to 10{sup 7} pulses. However, the performed experiments did not include the effects of plasma exposure and neutron irradiation of beryllium, though these loading conditions will be present in ITER in addition to the evaluated transient thermal loads. Further experiments with sequential and simultaneous plasma/thermal/neutron loading are proposed to investigate the synergistic effects of the different loading types and to evaluate possible shifts of the threshold values that were determined within this work.

  10. The impact of transient thermal loads on beryllium as plasma facing material

    International Nuclear Information System (INIS)

    Spilker, Benjamin Christof

    2017-01-01

    microstructural integrity in the transition region involves the risk of a macroscopic delamination of armour material, which reduces the lifetime of afflicted first wall panels. Overall, it was found that the yield strength and ultimate tensile strength of beryllium represent two key parameters that strongly influence its performance under transient thermal loading. Both quantities decrease as a function of the base temperature. Therefore, a lower base temperature (tested down to room temperature) is favourable for the performance of the beryllium armour tiles in ITER. The generated results indicate that the plastic deformation and the cracking of beryllium do not pose a threat to the operation of ITER, if the heat flux factors of the transient thermal pulses remain at 9 MW m"-"2 s"0"."5 or below. This conclusion was drawn from the fact that the thermally induced damage saturated after 10"5 pulses and did not significantly change for up to 10"7 pulses. However, the performed experiments did not include the effects of plasma exposure and neutron irradiation of beryllium, though these loading conditions will be present in ITER in addition to the evaluated transient thermal loads. Further experiments with sequential and simultaneous plasma/thermal/neutron loading are proposed to investigate the synergistic effects of the different loading types and to evaluate possible shifts of the threshold values that were determined within this work.

  11. Thermalization of mini-jets in a quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, Edmond, E-mail: edmond.iancu@cea.fr; Wu, Bin, E-mail: bin.wu.phys@gmail.com [Institut de Physique Théorique, CEA Saclay, CNRS UMR 3681, F-91191 Gif-sur-Yvette (France); Department of Physics, The Ohio State University, Columbus, OH 43210 (United States)

    2016-12-15

    We present the complete physical picture for the evolution of a high-energy jet propagating through a weakly-coupled quark-gluon plasma (QGP) by analytical and numerical investigation of thermalization of the soft components of the jet. Our results support the following physical picture: the leading particle emits a significant number of mini-jets which promptly evolve via multiple branching and thus degrade into a myriad of soft gluons, with energies of the order of the medium temperature T. Via elastic collisions with the medium constituents, these soft gluons relax to local thermal equilibrium with the plasma over a time scale which is considerably shorter than the typical lifetime of the mini-jet. The thermalized gluons form a tail which lags behind the hard components of the jet. Together with the background QGP, they behave hydrodynamically.

  12. Treatment of hazardous wastes by DC thermal plasma arc discharge

    International Nuclear Information System (INIS)

    Toru, Iwao; Yafang, Liu; Furuta, N.; Tsuginori, Inaba

    2001-01-01

    The temperature of the DC thermal plasma arc discharge is discussed, and examples of the waste treatment for the inorganic compounds such as fly ash, asbestos, and for the organic compounds such as the toxic dioxines and TBT by using the DC plasma arc discharge are shown. In addition, the plasma treatment by using a radiant power emitted from the DC plasma arc discharge is also shown as another new kind of ones. (authors)

  13. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling

    International Nuclear Information System (INIS)

    Barthelemy, B.

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  14. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling

    International Nuclear Information System (INIS)

    Barthelemy, B.

    2003-01-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  15. Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma.

    Directory of Open Access Journals (Sweden)

    Arnaud Duval

    Full Text Available Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm(2 for the epidermis, 281 J/cm(2 for the dermis, and 394 J/cm(2 for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions.

  16. EFFECT OF FINITE LARMOR RADIUS CORRECTIONS ON THE THERMAL INSTABILITY OF THERMALLY CONDUCTING VISCOUS PLASMA WITH HALL CURRENT AND ELECTRON INERTIA

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Shweta; Sharma, Prerana [Physics Department, Ujjain Engineering College, Ujjain, MP-456010 (India); Kaothekar, Sachin [Physics Department, Mahakal Institute of Technology, Ujjain, MP-456664 (India); Chhajlani, R. K., E-mail: sackaothekar@gmail.com [Retired, School of Studies in Physics, Vikram University Ujjain, MP-456010 (India)

    2016-10-01

    The thermal instability of an infinite homogeneous, thermally conducting, and rotating plasma, incorporating finite electrical resistivity, finite electron inertia, and an arbitrary radiative heat-loss function in the presence of finite Larmor radius corrections and Hall current, has been studied. Analysis has been made with the help of linearized magnetohydrodynamics (MHD) equations. A general dispersion relation is obtained using the normal mode analysis method, and the dispersion relation is discussed for longitudinal propagation and transverse propagation separately. The dispersion relation has been solved numerically to obtain the dependence of the growth rate on the various parameters involved. The conditions of modified thermal instability and stability are discussed in the different cases of interest.

  17. Development of twin cannons of thermal plasma

    International Nuclear Information System (INIS)

    Pena E, R.

    1996-01-01

    Today several service and transformation industries that generate hazardous wastes must implement programs in order to fulfill with requirements established by the present standardization. This problem is solved here for proposing the design and construction of a thermal plasma transferred torch with double cannon which is generated by an electric arc with a capacity of 50 k W, a regulable gas flow from 0-50 lt./min and thermal yield higher than 85 %. This equipment would be capable for degradating industrial and hospital wastes. (Author)

  18. Formation of thermal eddies during rf heating of plasma

    International Nuclear Information System (INIS)

    Motley, R.W.; Hooke, W.M.; Anania, G.

    1979-07-01

    Moderate power (approx.1 kW) excitation of lower hybrid waves in a linear plasma column is found to increase the reflectivity of the phased waveguide exciter and to change the vertical position of the resonance cone. Probing of the plasma near the mouth of the waveguide reveals that the increased reflection results from an undulation in the plasma surface. We present evidence that this surface distortion is driven by thermal eddies associated with asymmetrical electron heating

  19. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.; Varela, P. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2016-11-15

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  20. Neutron irradiation effects on plasma facing materials

    Science.gov (United States)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  1. Neutron irradiation effects on plasma facing materials

    International Nuclear Information System (INIS)

    Barabash, V.; Federici, G.; Roedig, M.; Snead, L.L.; Wu, C.H.

    2000-01-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed

  2. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    Science.gov (United States)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs

  3. Reflection of oblique electron thermal modes in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Sanuki, H.

    1980-04-01

    In an inhomogeneous magnetoplasma, reflection of an oblique electron thermal mode radiated from a local source is investigated experimentally and theoretically near the electron plasma frequency layer. The experimental observation of reflection in the lower plasma density region than the f sub(p)-layer is found to be in qualitative accord with the theoretical reflection, which is obtained from a kinetic theory in an inhomogeneous magnetoplasma. The reflection of the thermal mode is also compared with that of an electromagnetic mode at the f sub(p)-layer. (author)

  4. Statistics of turbulent structures in a thermal plasma jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Šonský, Jiří; Něnička, Václav; Zachar, Andrej

    2005-01-01

    Roč. 38, - (2005), s. 1760-1768 ISSN 0022-3727 R&D Projects: GA AV ČR(CZ) IAA1057202; GA ČR(CZ) GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : turbulent structures * thermal plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2005

  5. Numerical modeling of disperse material evaporation in axisymmetric thermal plasma reactor

    Directory of Open Access Journals (Sweden)

    Stefanović Predrag Lj.

    2003-01-01

    Full Text Available A numerical 3D Euler-Lagrangian stochastic-deterministic (LSD model of two-phase flow laden with solid particles was developed. The model includes the relevant physical effects, namely phase interaction, panicle dispersion by turbulence, lift forces, particle-particle collisions, particle-wall collisions, heat and mass transfer between phases, melting and evaporation of particles, vapour diffusion in the gas flow. It was applied to simulate the processes in thermal plasma reactors, designed for the production of the ceramic powders. Paper presents results of extensive numerical simulation provided (a to determine critical mechanism of interphase heat and mass transfer in plasma flows, (b to show relative influence of some plasma reactor parameters on solid precursor evaporation efficiency: 1 - inlet plasma temperature, 2 - inlet plasma velocity, 3 - particle initial diameter, 4 - particle injection angle a, and 5 - reactor wall temperature, (c to analyze the possibilities for high evaporation efficiency of different starting solid precursors (Si, Al, Ti, and B2O3 powder, and (d to compare different plasma reactor configurations in conjunction with disperse material evaporation efficiency.

  6. Studying the non-thermal plasma jet characteristics and application on bacterial decontamination

    Science.gov (United States)

    Al-rawaf, Ali F.; Fuliful, Fadhil Khaddam; Khalaf, Mohammed K.; Oudah, Husham. K.

    2018-04-01

    Non-thermal atmospheric-pressure plasma jet represents an excellent approach for the decontamination of bacteria. In this paper, we want to improve and characterize a non-thermal plasma jet to employ it in processes of sterilization. The electrical characteristics was studied to describe the discharge of the plasma jet and the development of plasma plume has been characterized as a function of helium flow rate. Optical emission spectroscopy was employed to detect the active species inside the plasma plume. The inactivation efficiency of non-thermal plasma jet was evaluated against Staphylococcus aureus bacteria by measuring the diameter of inhibition zone and the number of surviving cells. The results presented that the plasma plume temperature was lower than 34° C at a flow rate of 4 slm, which will not cause damage to living tissues. The diameter of inhibition zone is directly extended with increased exposure time. We confirmed that the inactivation mechanism was unaffected by UV irradiation. In addition, we concluded that the major reasons for the inactivation process of bacteria is because of the action of the reactive oxygen and nitrogen species which formed from ambient air, while the charged particles played a minor role in the inactivation process.

  7. Ion turbulence and thermal transport in laser-produced plasmas

    International Nuclear Information System (INIS)

    Barr, H.C.; Boyd, T.J.M.

    1982-01-01

    In the interaction of high-intensity lasers with target plasmas the transport of thermal energy from the region in which the radiation is absorbed, to the cold dense plasma in the interior of the target, is an issue of central importance. The role of ion turbulence as a flux limiter is addressed with particular regard to recent experiments in which target plasmas were irradiated by 1.06 μm neodymium laser light at irradiances of 10 15 W cm - 2 and greater. Saturation levels of the ion-acoustic turbulence driven by a combination of a suprathermal electron current and a heat flux are calculated on the basis of perturbed orbit theory. The levels of turbulence are found to be markedly lower than those commonly estimated from simple trapping arguments and too low to explain the thermal flux inhibition observed in the experiments used as a basis for the model. (author)

  8. The plasma wake field excitation: Recent developments from thermal to quantum regime

    Science.gov (United States)

    Fedele, Renato; Tanjia, Fatema; de Nicola, Sergio; Jovanović, Dušan; Jovanović

    2013-12-01

    To describe the transverse nonlinear and collective self-consistent interaction of a long relativistic electron or positron beam with an unmagnetized plasma, a pair of coupled nonlinear differential equations were proposed by Fedele and Shukla in 1992 (Fedele, R. and Shukla, P. K. 1992a Phys. Rev. A 45, 4045). They were obtained within the quantum-like description provided by the thermal wave model and the theory of plasma wake field excitation. The pair of equations comprises a 2D Schrödinger-like equation for a complex wave function (whose squared modulus is proportional to beam density) and a Poisson-like equation for the plasma wake potential. The dispersion coefficient of the Schrödinger-like equation is proportional to the beam thermal emittance. More recently, Fedele-Shukla equations have been further applied to magnetized plasmas, and solutions were found in the form of nonlinear vortex states and ring solitons. They have been also applied to plasma focusing problems and extended from thermal to quantum regimes. We present here a review of the original approach, and subsequent developments.

  9. Pre-treating water with non-thermal plasma

    Science.gov (United States)

    Cho, Young I.; Fridman, Alexander; Rabinovich, Alexander; Cho, Daniel J.

    2017-07-04

    The present invention consists of a method of pre-treatment of adulterated water for distillation, including adulterated water produced during hydraulic fracturing ("fracking") of shale rock during natural gas drilling. In particular, the invention is directed to a method of treating adulterated water, said adulterated water having an initial level of bicarbonate ion in a range of about 250 ppm to about 5000 ppm and an initial level of calcium ion in a range of about 500 ppm to about 50,000 ppm, said method comprising contacting the adulterated water with a non-thermal arc discharge plasma to produce plasma treated water having a level of bicarbonate ion of less than about 100 ppm. Optionally, the plasma treated water may be further distilled.

  10. Paracetamol degradation in aqueous solution by non-thermal plasma

    Science.gov (United States)

    Baloul, Yasmine; Aubry, Olivier; Rabat, Hervé; Colas, Cyril; Maunit, Benoît; Hong, Dunpin

    2017-08-01

    This study deals with paracetamol degradation in water using a non-thermal plasma (NTP) created by a dielectric barrier discharge (DBD). The effects of the NTP operating conditions on the degradation were studied, showing that the treatment efficiency of the process was highly dependent on the electrical parameters and working gas composition in the reactor containing the aqueous solution. A conversion rate higher than 99% was reached with an energy yield of 12 g/kWh. High resolution mass spectrometry (HRMS) measurements showed that the main species produced in water during the process were nitrogen compounds, carboxylic acids and aromatic compounds. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  11. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Curry, N.; Markocsan, N.; Nylen, P.; Joshi, S.; Vilémová, Monika; Pala, Zdeněk

    2016-01-01

    Roč. 25, 1-2 (2016), s. 202-212 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] Institutional support: RVO:61389021 Keywords : axial injection * column ar microstructure * porosity * suspension plasma spraying * thermal conductivity * thermal diffusivity Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0355-7

  12. Effect of Microstructure on the Thermal Conductivity of Plasma Sprayed Y2O3 Stabilized Zirconia (8% YSZ

    Directory of Open Access Journals (Sweden)

    Ningning Hu

    2017-11-01

    Full Text Available In this paper, the effect of microstructure on the thermal conductivity of plasma-sprayed Y2O3 stabilized ZrO2 (YSZ thermal barrier coatings (TBCs is investigated. Nine freestanding samples deposited on aluminum alloys are studied. Cross-section morphology such as pores, cracks, m-phase content, grain boundary density of the coated samples are examined by scanning electron microscopy (SEM and electron back-scattered diffraction (EBSD. Multiple linear regressions are used to develop quantitative models that describe the relationship between the particle parameters, m-phase content and features of the microstructure such as porosity, crack-porosity, and the length density of small and big angle-cracks. Moreover, the relationship between the microstructure and thermal conductivity is investigated. Results reveal that the thermal conductivity of the coating is mainly determined by the microstructure and grain boundary density at room temperature (25 °C, and by the length density of big-angle-crack, monoclinic phase content and grain boundary density at high temperature (1200 °C.

  13. Analysis of the expanding thermal argon-oxygen plasma gas phase

    NARCIS (Netherlands)

    Hest, van M.F.A.M.; Haartsen, J.R.; Weert, van M.H.M.; Schram, D.C.; Sanden, van de M.C.M.

    2003-01-01

    An expanding thermal argon plasma into which oxygen is injected has been analyzed by means of Langmuir and Pitot probe measurements. Information is obtained on the ion d. profile and the flow pattern in the downstream plasma. A combination of Langmuir and Pitot probe measurements provide information

  14. Inactivation of Candida biofilms by non-thermal plasma and its enhancement for fungistatic effect of antifungal drugs.

    Directory of Open Access Journals (Sweden)

    Yi Sun

    Full Text Available We investigated the antifungal effect of non-thermal plasma, as well as its combination with common antifungal drugs, against Candida biofilms. A direct current atmospheric pressure He/O(2 (2% plasma microjet (PMJ was used to treat Candida biofilms in a 96-well plate. Inactivation efficacies of the biofilms were evaluated by XTT assay and counting colony forming units (CFUs. Morphological properties of the biofilms were evaluated by Scanning Electron Microscope (SEM. The sessile minimal inhibitory concentrations (SMICs of fluconazole, amphotericin B, and caspofungin for the biofilms were also tested. Electron Spin Resonance (ESR spectroscopy was used to detect the reactive oxygen species (ROS generated directly and indirectly by PMJ. The Candida biofilms were completely inactivated after 1 min PMJ treatment, where severely deformed fungal elements were observed in SEM images. The SMICs of the tested antifungal drugs for the plasma-treated biofilms were decreased by 2-6 folds of dilution, compared to those of the untreated controls. ROS such as hydroxyl radical ((•OH, superoxide anion radical ((•O(2 (- and singlet molecular oxygen ((1O(2 were detected by ESR. We hence conclude that He/O(2 (2% plasma alone, as well as in combination with common antifungal drugs, is able to inactivate Candida biofilms rapidly. The generation of ROS is believed to be one of the underlying mechanisms for the fungicidal activity of plasma.

  15. Nonthermal and screening effects on photoionizations in Lorentzian plasmas

    International Nuclear Information System (INIS)

    Shin, Dong-Soo; Jung, Young-Dae

    2009-01-01

    The nonthermal and plasma screening effects on the x-ray photoionization process are investigated in astrophysical Lorentzian plasmas. The screened atomic wave function and energy eigenvalue of the target ion in Lorentzian plasmas are obtained by the Rayleigh-Ritz variational method. The x-ray retardation and screened Coulomb corrections are considered to obtain a photoionization cross section as a function of the spectral index and plasma parameters. It is shown that the nonthermal character of the Lorentzian plasma suppresses the photoionization cross section. Hence, the photoionization cross sections in nonthermal plasmas are found to be always smaller than those in thermal plasmas. It is also shown that the plasma screening effect is more significant for small spectral indices. In addition, the nonthermal effect on the photoionization cross section is found to be decreased with an increase in the Debye length.

  16. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  17. Thermal equilibrium of pure electron plasmas across a central region of magnetic surfaces

    Science.gov (United States)

    Hahn, Michael; Pedersen, Thomas Sunn

    2009-06-01

    Measurements of the equilibria of plasmas created by emission from a biased filament located off the magnetic axis in the Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois et al., Fusion Sci. Technol. 50, 372 (2006)] show that such plasmas have equilibrium properties consistent with the inner surfaces being in a state of cross-surface thermal equilibrium. Numerical solutions to the equilibrium equation were used to fit the experimental data and demonstrate consistency with cross-surface thermal equilibrium. Previous experiments in CNT showed that constant temperatures across magnetic surfaces are characteristic of CNT plasmas, implying thermal confinement times much less than particle confinement times. These results show that when emitting off axis there is a volume of inner surfaces where diffusion into that region is balanced by outward transport, producing a Boltzmann distribution of electrons. When combined with the low thermal energy confinement time this is a cross-surface thermal equilibrium.

  18. Thermal equilibrium of pure electron plasmas across a central region of magnetic surfaces

    International Nuclear Information System (INIS)

    Hahn, Michael; Pedersen, Thomas Sunn

    2009-01-01

    Measurements of the equilibria of plasmas created by emission from a biased filament located off the magnetic axis in the Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois et al., Fusion Sci. Technol. 50, 372 (2006)] show that such plasmas have equilibrium properties consistent with the inner surfaces being in a state of cross-surface thermal equilibrium. Numerical solutions to the equilibrium equation were used to fit the experimental data and demonstrate consistency with cross-surface thermal equilibrium. Previous experiments in CNT showed that constant temperatures across magnetic surfaces are characteristic of CNT plasmas, implying thermal confinement times much less than particle confinement times. These results show that when emitting off axis there is a volume of inner surfaces where diffusion into that region is balanced by outward transport, producing a Boltzmann distribution of electrons. When combined with the low thermal energy confinement time this is a cross-surface thermal equilibrium.

  19. Realization of thermally durable close-packed 2D gold nanoparticle arrays using self-assembly and plasma etching

    International Nuclear Information System (INIS)

    Sivaraman, Sankar K; Santhanam, Venugopal

    2012-01-01

    Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2 nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2 × 10 5 ) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface. (paper)

  20. Energy and costs scoping study for plasma pyrolysis thermal processing system

    International Nuclear Information System (INIS)

    Sherick, K.E.; Findley, J.E.

    1992-01-01

    The purpose of this study was to provide information in support of an investigation of thermal technologies as possible treatment process for buried wastes at the INEL. Material and energy balances and a cost estimate were generated for a representative plasma torch-based thermal waste treatment system operating in a pyrolysis mode. Two waste streams were selected which are representative of INEL buried wastes, large in volume, and difficult to treat by other technologies. These streams were a solidified nitrate sludge waste stream and a waste/soil mix of other buried waste components. The treatment scheme selected includes a main plasma chamber operating under pyrolyzing conditions; a plasma afterburner to provide additional residence time at high temperature to ensure complete destruction of hazardous organics; an off-gas treatment system; and a incinerator and stack to oxidize carbon monoxide to carbon dioxide and vent the clean, oxidized gases to atmosphere. The material balances generated provide materials flow and equipment duty information of sufficient accuracy to generate initial rough-order-of-magnitude (ROM) system capital and operating cost estimates for a representative plasma thermal processing system

  1. The conversion of the thermal energy of plasma in the SOL of tokamaks

    International Nuclear Information System (INIS)

    Nedospasov, A.V.; Nenova, N.V.

    2008-01-01

    When the plasma expands across the confining magnetic field, a part of its thermal energy is converted to electrical energy. In the SOL of tokamaks, the motion of the plasma across the field due to turbulent processes is accompanied by its departure along the open lines of the magnetic field. The conversion of thermal energy is taken into account in theoretical studies devoted to the physics of plasma in the SOL; however, this conversion is ignored in numerical models, for example, in B2-SOLPS4.0. This paper deals with thermal-to-electrical energy conversion in the SOL of tokamaks. It is demonstrated that the part of the thermal energy subjected to conversion to electrical energy forms an appreciable part of the total energy flowing in the SOL. In ITER, this fraction may be as high as 20-25%. The electrical energy generated in the SOL volume is liberated in the form of Joule heat in a relatively cold plasma in the vicinity of diverter plates or directly on these plates. (letter)

  2. Non-Thermal Sanitation By Atmospheric Pressure Plasma, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  3. Modelling of ion thermal transport in ergodic region of collisionless toroidal plasma

    International Nuclear Information System (INIS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Ohyabu, Nobuyoshi; Takamaru, Hisanori; Okamoto, Masao

    2009-09-01

    In recent tokamak experiments it has been found that so-called diffusion theory based on the 'diffusion of magnetic field lines' overestimates the radial energy transport in the ergodic region of the collisionless plasma affected by resonant magnetic perturbations (RMPs), though the RMPs induce chaotic behavior of the magnetic field lines. The result implies that the modelling of the transport should be reconsidered for low collisionality cases. A computer simulation study of transport in the ergodic region is required for understanding fundamental properties of collisionless ergodized-plasmas, estimating the transport coefficients, and reconstructing the modelling of the transport. In this paper, we report the simulation study of thermal transport in the ergodic region under the assumption of neglecting effects of an electric field, impurities and neutrals. Because of the simulations neglecting interactions with different particle-species and saving the computational time, we treat ions (protons) in our numerical-study of the transport. We find that the thermal diffusivity in the ergodic region is extremely small compared to the one predicted by the theory of field-line diffusion and that the diffusivity depends on both the collision frequency and the strength of RMPs even for the collisionless ergodized-plasma. (author)

  4. Investigations of a thermal plasma jet structure by generalized correlation dimension

    Czech Academy of Sciences Publication Activity Database

    Gruber, Jan; Hlína, Jan; Šonský, Jiří

    2013-01-01

    Roč. 46, č. 1 (2013), s. 1-8 ISSN 0022-3727 Institutional research plan: CEZ:AV0Z20570509 Keywords : correlation dimension * turbulence * thermal plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.521, year: 2013

  5. Experimental studies on removal of airborne haloanisoles by non-thermal plasma air purifiers

    DEFF Research Database (Denmark)

    Fang, Lei; Hallam, David; Bermúdez, Raúl

    2016-01-01

    A laboratory study was conducted to test the performance of non-thermal plasma air purifiers on its removal effectiveness of two haloanisoles – 2,4,6-trichloroanisole (TCA) and 2,4,6-Tribromoanisole (TBA). TCA and TBA are the two major compounds found in wine cellars that can contaminate wine to ...

  6. Electrical conductivity of the thermal dusty plasma under the conditions of a hybrid plasma environment simulation facility

    Science.gov (United States)

    Zhukhovitskii, Dmitry I.; Petrov, Oleg F.; Hyde, Truell W.; Herdrich, Georg; Laufer, Rene; Dropmann, Michael; Matthews, Lorin S.

    2015-05-01

    We discuss the inductively heated plasma generator (IPG) facility in application to the generation of the thermal dusty plasma formed by the positively charged dust particles and the electrons emitted by them. We develop a theoretical model for the calculation of plasma electrical conductivity under typical conditions of the IPG. We show that the electrical conductivity of dusty plasma is defined by collisions with the neutral gas molecules and by the electron number density. The latter is calculated in the approximations of an ideal and strongly coupled particle system and in the regime of weak and strong screening of the particle charge. The maximum attainable electron number density and corresponding maximum plasma electrical conductivity prove to be independent of the particle emissivity. Analysis of available experiments is performed, in particular, of our recent experiment with plasma formed by the combustion products of a propane-air mixture and the CeO2 particles injected into it. A good correlation between the theory and experimental data points to the adequacy of our approach. Our main conclusion is that a level of the electrical conductivity due to the thermal ionization of the dust particles is sufficiently high to compete with that of the potassium-doped plasmas.

  7. Time-resolved tomographic measurements of temperatures in a thermal plasma jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Šonský, Jiří

    2010-01-01

    Roč. 43, č. 5 (2010), s. 1-9 ISSN 0022-3727 Institutional research plan: CEZ:AV0Z20570509 Keywords : thermal plasma jet * optical diagnostics * temperature distribution Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.105, year: 2010

  8. The thermal evolution of targets under plasma focus pulsed ion implantation

    International Nuclear Information System (INIS)

    Sanchez, G.; Feugeas, J.

    1997-01-01

    Pulsed ion beam implantation with plasma focus has proved to be an effective method of metal surface treatment for tribological purposes. Nevertheless, the pulsed nature and the continuous energy spectrum of the ion beams differ from those of the standard ion implantation processes. In this paper a model of the thermal evolution of the surface layers of stainless steel, titanium and copper, during and after nitrogen and argon ion beam incidence, is presented using the finite-difference method. In the calculations, the geometry and physical characteristics of the ion beams, the single-ion-solid interaction process and the thermal properties of the materials were used. The results showed a strong thermal effect consisting in the generation of transitory heating slopes and heating speeds as high as ∼3600 K μm -1 and ∼40 K ns -1 respectively, with maximum temperatures that can reach even the material evaporation point at the surface layers. The cooling down process, through the thermal conduction mechanism at the target bulk, turns out to be fast enough to produce the complete thermal relaxation of the target in only a few microseconds after the end of the ion beam incidence. The results presented are contrasted with experiments performed in similar conditions to those used in the numerical model. (Author)

  9. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model.

    Directory of Open Access Journals (Sweden)

    Laura Brullé

    Full Text Available Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties.

  10. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model.

    Science.gov (United States)

    Brullé, Laura; Vandamme, Marc; Riès, Delphine; Martel, Eric; Robert, Eric; Lerondel, Stéphanie; Trichet, Valérie; Richard, Serge; Pouvesle, Jean-Michel; Le Pape, Alain

    2012-01-01

    Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun) was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties.

  11. Understanding CO2 decomposition by thermal plasma with supersonic expansion quench

    Science.gov (United States)

    Tao, YANG; Jun, SHEN; Tangchun, RAN; Jiao, LI; Pan, CHEN; Yongxiang, YIN

    2018-04-01

    CO2 pyrolysis by thermal plasma was investigated, and a high conversion rate of 33% and energy efficiency of 17% were obtained. The high performance benefited from a novel quenching method, which synergizes the converging nozzle and cooling tube. To understand the synergy effect, a computational fluid dynamics simulation was carried out. A quick quenching rate of 107 K s‑1 could be expected when the pyrolysis gas temperature decreased from more than 3000 to 1000 K. According to the simulation results, the quenching mechanism was discussed as follows: first, the compressible fluid was adiabatically expanded in the converging nozzle and accelerated to sonic speed, and parts of the heat energy converted to convective kinetic energy; second, the sonic fluid jet into the cooling tube formed a strong eddy, which greatly enhanced the heat transfer between the inverse-flowing fluid and cooling tube. These two mechanisms ensure a quick quenching to prevent the reverse reaction of CO2 pyrolysis gas when it flows out from the thermal plasma reactor.

  12. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    Science.gov (United States)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  13. Spatial Dynamics of Coherent Structures in a Thermal Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Sekerešová, Zuzana; Šonský, Jiří

    2008-01-01

    Roč. 36, č. 4 (2008), s. 1066-1067 ISSN 0093-3813 R&D Projects: GA ČR GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : charge-coupled-device (CCD) camera * coherent structure * thermal plasma jet * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.447, year: 2008

  14. Strongly coupled Coulomb systems with positive dust grains: thermal and UV-induced plasmas

    International Nuclear Information System (INIS)

    Samarian, A.A.

    2000-01-01

    Full text: A plasma containing macroscopic dust particles or grains (often referred to as a dusty or colloidal or complex plasma) has the feature that grains may be charged by electron or ion flux or by photo- or thermoelectron emission. Electron emission from a grain surface produces a positive charge; capture of electrons produces the reverse effect making the dust grains negatively charged. Most dusty plasma research is concerned with the ordered dust structures (so-called 'plasma crystal') in glow discharges. The dust grains in these experiments were found to carry a negative charge due to the higher mobility of electrons as compared to ions in the discharge plasma. In recent years, in parallel with the study of the properties of plasma crystals under discharge conditions, attempts to obtain a structure from positively charged dust grains have been made, and structure formation processes for various charging mechanisms, particularly thermoelectron emission and photoemission, have been investigated. In this paper we review the essential features of strongly coupled plasmas with positive dust grains. An ordered structure of CeO 2 grains has been experimentally observed in a combustion products jet. The grains were charged positively and suspended in the plasma flow. Their charge is about 10 3 a and the calculated value of a Coulomb coupling parameter Γ is >10, corresponding to a plasma liquid. The ordered structures of Al 2 O 3 dust grains in propellant combustion products plasma have been observed for the first time. These structures were found in the sheath boundary of condensation region. The obtained data let us estimate the value of parameter Γ =3-40, corresponding to the plasma liquid state. The possibility is studied of the formation of ordered dust grain structures in thermal plasma. The range of the required values of the coupling parameter Γ is calculated using the results of diagnostic measurements carried out in thermal plasma with grains of

  15. Thermal efficiency of a non-transferred thermal plasma cannon; Eficiencia termica de un canon de plasma termico no-transferido

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, A; Cota, G; Merlo, L; Pacheco, J; Pena, R; Cruz, A [Instituto nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    This work shows a thermal efficiency research ({nu}) for a plasma torch in d.c. which was carried out through the realization of an energy balance around the system under consideration. The plasma torch is manufactured in copper with a tungsten incrustations in cathode. The gas used was argon and the gas fluxes were at the rank of 10 and 40 lt/min to the total pressure of 1.2 bar (1.1 atm). With these conditions it was worked with electric currents at the rank of 40 and 180 A. The data were collected through a data acquisition card which was programmed in Windows environment. (Author)

  16. The effects of thermal motion of neutrals on the non-potential instabilities in a weakly sodium plasma

    International Nuclear Information System (INIS)

    Zigman, V.J.; Milic, B.S.

    1982-01-01

    The results of recent experimental measurements of the differential cross-section for elastic scattering of electrons on sodium atoms are used to evaluate the electron steady-state distribution function in a weakly ionized, uniform and non-magnetized sodium plasma placed in a d.c. electric field. The field is assumed to be of moderate intensity, so that the thermal motion of the neutrals has to be taken into account in the evaluation of the distribution function. The resulting 'modified Druyvesteinian function' is applied to study the non-potential instabilities arising from the presence of the field in this particular plasma. Threshold drifts for both very slow and slow modes are obtained and the conditions for the onset of instabilities are discussed. It is shown that the thermal motion of the neutrals affects both critical drifts and the angles of propagation. (author)

  17. Thermal plasma treatment of stormwater sediments: comparison between DC non-transferred and partially transferred arc plasma.

    Science.gov (United States)

    Li, O L; Guo, Y; Chang, J S; Saito, N

    2015-01-01

    The disposal of enormous amount of stormwater sediments becomes an emerging worldwide problem. Stormwater sediments are contaminated by heavy metals, phosphorus, trace organic and hydrocarbons, and cannot be disposed without treatment. Thermal plasma decontamination technology offers a high decomposition rate in a wide range of toxic organic compound and immobilization of heavy metal. In this study, we compared the treatment results between two different modes of thermal plasma: (1) a non-transferred direct current (DC) mode and (2) a partial DC-transferred mode. The reductions of total organic carbon (TOC) were, respectively, 25% and 80% for non-transferred and partially transferred plasma, respectively. Most of the toxic organic compounds were converted majorly to CxHy. In the gaseous emission, the accumulated CxHy, CO, NO and H2S were significantly higher in partially transferred mode than in non-transferred mode. The solid analysis demonstrated that the concentrations of Ca and Fe were enriched by 500% and 40%, respectively. New chemical compositions such as KAlSi3O8, Fe3O4, NaCl and CaSO4 were formed after treatment in partially DC-transferred mode. The power inputs were 1 and 10 kW, respectively, for non-transferred DC mode and a partially DC-transferred mode. With a lower energy input, non-transferred plasma treatment can be used for decontamination of sediments with low TOC and metal concentration. Meanwhile, partially transferred thermal plasma with higher energy input is suitable for treating sediments with high TOC percentage and volatile metal concentration. The organic compounds are converted into valuable gaseous products which can be recycled as an energy source.

  18. Skin effect of microwaves and transverse pseudowaves in plasmas

    International Nuclear Information System (INIS)

    Minami, Kazuo

    1977-09-01

    Using linearized Vlasov-Maxwell equations, the skin effect of microwaves and transverse pseudowaves excited by an idealized grid antenna in plasmas are analyzed. It is shown that the latter is predominant over the former, in such a plasma that ω sub(p) v sub(t)/ωc >= 1, where ω sub(p) and ω are the plasma and microwave angular frequencies, v sub(t) and c are the electron thermal and light velocities, respectively. (auth.)

  19. Non-thermal plasma ethanol reforming in bubbles immersed in liquids

    International Nuclear Information System (INIS)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L

    2017-01-01

    Ethanol reforming in non-thermal plasma generated in atmospheric-pressure argon bubbles immersed in liquid ethanol/water solution is studied using a self-consistent multi-species fluid model. The influence of the dielectric constant of the liquid on the plasma dynamics and its effect on the generation of active species is analyzed. Several modes of discharge are obtained for large liquid dielectric constant. In these modes, we obtain either an axial streamer or a combination of two simultaneous streamers propagating along the bubble axis and near the liquid wall. The influence of these modes on the production of active species is also studied. The main reactions responsible for the generation of molecular hydrogen and light hydrocarbon species are analyzed. A possible mechanism of hydrogen generation in liquid phase is discussed. (paper)

  20. Non-thermal plasma mills bacteria: scanning electron microscopy observations

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Churpita, Olexandr; Zablotskyy, Vitaliy A.; Deyneka, I.G.; Meshkovskii, I.K.; Jäger, Aleš; Syková, Eva; Kubinová, Šárka; Dejneka, Alexandr

    2015-01-01

    Roč. 106, č. 5 (2015), "053703-1"-"053703-5" ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LM2011029; GA MŠk(CZ) LM2011026; GA MŠk LO1309 Grant - others:AV ČR(CZ) M100101219; SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : non-thermal plasma * plasma medicine * bacteria * cells Subject RIV: BO - Biophysics Impact factor: 3.142, year: 2015

  1. Numerical study of divertor plasma transport with thermal force due to temperature gradient

    International Nuclear Information System (INIS)

    Ohtsu, Shigeki; Tanaka, Satoru; Yamawaki, Michio

    1992-01-01

    A one-dimensional, steady state divertor plasma model is developed in order to study the carbon impurity transport phenomena considering thermal force. The divertor plasma is composed of four regions in terms of momentum transport between hydrogen and carbon impurity: Momentum transferring region, equilibrium region, hydrogen recycling region and carbon recycling region. In the equilibrium region where the friction force is counterbalanced by the thermal force, the localization of carbon impurity occurs. The sufficient condition to avoid the reverse of carbon velocity due to the thermal force is evaluated. (orig.)

  2. Use of residual hydrocarbons treated by Thermal Plasma (recovery of energy by-products)

    International Nuclear Information System (INIS)

    Carreno B, J.A.; Pacheco S, J.O.; Ramos F, F.; Cruz A, A.; Duran G, M.

    2001-01-01

    The emergence of new technologies is getting greater importance for the control of pollution. One of them is the destruction of hazardous wastes treated by thermal plasma, which is of special interest for the efficient treatment of the hazardous wastes since the heat generated by thermal plasma is able to destroy the molecular bonds generating solids and gaseous products which do not represent danger for the human being and the environment. The thermal plasma is the suitable technology for treating a wide range of hazardous wastes, including the residual hydrocarbons from the refinement process of petroleum, plasma exceeds the barrier of 3000 Centigrade. The efficiency of the degradation of residues is greater than 99.99%. Toxic emissions are not generated to environment as SO 2 , NO x and CO 2 neither dioxins and furans by being a pyrolysis process. The use of hydrogen as fuel does not generate pollution to environment. (Author)

  3. Electron thermal transport in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Konings, J A

    1994-11-30

    The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (10{sup 8} K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called `tokamak` this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high `fusion` temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This `anomalous transport` of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL).

  4. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    International Nuclear Information System (INIS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-01-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  5. Antimicrobial properties of uncapped silver nanoparticles synthesized by DC arc thermal plasma technique.

    Science.gov (United States)

    Shinde, Manish; Patil, Rajendra; Karmakar, Soumen; Bhoraskar, Sudha; Rane, Sunit; Gade, Wasudev; Amalnerkar, Dinesh

    2012-02-01

    We, herein, report the antimicrobial properties of uncapped silver nanoparticles for a Gram positive model organism, Bacillus subtilis. Uncapped silver nanoparticles have been prepared using less-explored DC arc thermal plasma technique by considering its large scale generation capability. It is observed that the resultant nanoparticles show size as well as optical property dependent antimicrobial effect.

  6. Studies of the influence of nonequilibrium plasma thermal exposure on the characteristics of the capillary-porous polymer material

    International Nuclear Information System (INIS)

    Makhotkina, L Yu; Khristoliubova, V I

    2017-01-01

    Capillary-porous materials, which include natural macromolecular tanning material, are exposed to a number of factors during the treatment by a nonequilibrium plasma. Plasma particles exchange the charge and energy with the atoms of the material during the interaction of the plasma with the surface. The results of treatment are desorption of atoms and molecules from the body surface, sputtering and evaporation of material’s particles, changes of the structure and phase state. In real terms during the modification of solids by nonequilibrium low-temperature plasma thermal effect influences the process. The energy supplied from the discharge during the process with low pressure, which is converted into heat, is significantly less than during the atmospheric pressure, but the thermal stability of high-molecular compounds used in the manufacture of materials and products of the tanning industry, is very limited and depends on the duration of the effect of temperature. Even short heating of hydrophilic polymers (proteins) (100-180 °C) causes a change in their properties. It decreases the collagen ability to absorb water vapor, to swell in water, acids, alkalis, and thus decreases their durability. Prolonged heating leads to a deterioration of the physical and mechanical properties. Higher heating temperatures it leads to the polymer degradation. The natural leather temperature during plasma exposure does not rise to a temperature of collagen degradation and does not result in changes of physical phase of the dermis. However, the thermal plasma exposure must be considered, since the high temperatures influence on physical and mechanical properties. (paper)

  7. Plasma thermal conversion of bio-oil for hydrogen production

    International Nuclear Information System (INIS)

    Guenadou, David; Lorcet, Helene; Peybernes, Jean; Catoire, Laurent; Osmont, Antoine; Gokalp, Iskender

    2012-01-01

    Numerous processes exist or are proposed for the energetic conversion of biomass. The use of thermal plasma is proposed in the frame of the GALACSY project for the conversion of bio-oil to hydrogen and carbon monoxide. For this purpose, an experimental apparatus has been built. The feasibility of this conversion at very high temperature, as encountered in thermal plasma, is examined both experimentally and numerically. This zero dimensional study tends to show that a high temperature (around 2500 K or above) is needed to ensure a high yield of hydrogen (about 50 mol%) and about 95 mol% of CO+H 2 . Predicted CO+H 2 yield and CO/H 2 ratio are consistent with measurements. It is also expected that the formation of particles and tars is hampered. Thermodynamic data of selected bio-oil components are provided in the CHEMKINNASA format. (authors)

  8. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  9. Non-thermal Plasma Activates Human Keratinocytes by Stimulation of Antioxidant and Phase II Pathways

    Science.gov (United States)

    Schmidt, Anke; Dietrich, Stephan; Steuer, Anna; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Masur, Kai; Wende, Kristian

    2015-01-01

    Non-thermal atmospheric pressure plasma provides a novel therapeutic opportunity to control redox-based processes, e.g. wound healing, cancer, and inflammatory diseases. By spatial and time-resolved delivery of reactive oxygen and nitrogen species, it allows stimulation or inhibition of cellular processes in biological systems. Our data show that both gene and protein expression is highly affected by non-thermal plasma. Nuclear factor erythroid-related factor 2 (NRF2) and phase II enzyme pathway components were found to act as key controllers orchestrating the cellular response in keratinocytes. Additionally, glutathione metabolism, which is a marker for NRF2-related signaling events, was affected. Among the most robustly increased genes and proteins, heme oxygenase 1, NADPH-quinone oxidoreductase 1, and growth factors were found. The roles of NRF2 targets, investigated by siRNA silencing, revealed that NRF2 acts as an important switch for sensing oxidative stress events. Moreover, the influence of non-thermal plasma on the NRF2 pathway prepares cells against exogenic noxae and increases their resilience against oxidative species. Via paracrine mechanisms, distant cells benefit from cell-cell communication. The finding that non-thermal plasma triggers hormesis-like processes in keratinocytes facilitates the understanding of plasma-tissue interaction and its clinical application. PMID:25589789

  10. Thermal fluctuations and critical behavior in a magnetized, anisotropic plasma

    International Nuclear Information System (INIS)

    Hazeltine, R. D.; Mahajan, S. M.

    2013-01-01

    Thermal fluctuations in a magnetized, anisotropic plasma are studied by applying standard methods, based on the Einstein rule, to the known thermodynamic potential of the system. It is found in particular that magnetic fluctuations become critical when the anisotropy p ∥ −p ⊥ changes sign. By examining the critical region, additional insight on the equations of state for near-critical anisotropic plasma is obtained

  11. Destruction studies of hazardous wastes by thermal plasma; Estudios de degradacion de residuos peligrosos mediante plasma termico

    Energy Technology Data Exchange (ETDEWEB)

    Cota S, G

    1998-11-01

    Plasma technology appears promising because its high degree of controllability, capability to process waste without the adverse effects of combustion, and a very wide temperature range of operation. The goal of this work was to develop a process for a high throughput system to turn hazardous waste into inert stable products, which can be safely stored and to greatly reduce air pollution relative to incineration. The experiments have shown that the thermal plasma reactor can provide a high degree of decomposition of CCl{sub 4} , C{sub 6} H{sub 6}, C{sub 2} Cl{sub 4} and commercial oil at low gas input speeds, with modest power requirements. Decomposition of 99.9999 % has been obtained in our laboratory and all the organic components are decomposed in base molecules (C, CO, CO{sub 2}, H{sub 2}, HCl). The analysis of exhaust gases was made by using a mass filter quadrupole. The equipment consist of a cylindrical reactor hermetically sealed, double-walled and water-cooled container made of special steel, this container in halt the crucible which serves to receive the waste materials. The whole system is designed for a maximal internal temperature of 2000 Centigrade. The gaseous result components of the material are transferred to a scrubber unit through an exit arranged on the top of reactor. The thermal efficiency evaluation of the plasma torch was also realized, obtaining a reasonable agreement between measurements and predictions in temperature profiles. (Author)

  12. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Energy Technology Data Exchange (ETDEWEB)

    Kaothekar, Sachin, E-mail: sackaothekar@gmail.com [Department of Physics, Mahakal Institute of Technology, Ujjain-456664, Madhya Pradesh (India)

    2016-08-15

    I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR) corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  13. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Directory of Open Access Journals (Sweden)

    Sachin Kaothekar

    2016-08-01

    Full Text Available I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  14. Dispersion in thermal plasma including arbitrary degeneracy and quantum recoil

    International Nuclear Information System (INIS)

    Mushtaq, A.; Melrose, D.B.

    2012-01-01

    The longitudinal response function for a thermal electron gas was calculated including two quantum effects exactly, degeneracy and the quantum recoil. The Fermi-Dirac distribution was expanded in powers of a parameter that is small in the non-degenerate limit and the response function was evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum was performed in terms of poly logarithms in the long-wavelength and quasi-static limits, giving results that apply for arbitrary degeneracy. The results were applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the non-degenerate and completely degenerate limits], and generalizing them to arbitrary degeneracy. The occupation number for the completely degenerate limit is shown. The importance of the results regarding to semiconductor plasmas were highlighted. (orig./A.B.)

  15. Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst

    International Nuclear Information System (INIS)

    Cheng, Y; Tanaka, M; Watanabe, T; Choi, S Y; Shin, M S; Lee, K H

    2014-01-01

    The catalyst of Ni 2 B nanoparticles was successfully prepared using nickel and boron as precursors with the quenching gas in radio frequency thermal plasmas. The generating of Ni 2 B needs adequate reaction temperature and boron content in precursors. The quenching gas is beneficial for the synthesis of Ni 2 B in RF thermal plasma. The effect of quenching rate, powder feed rate and boron content in feeding powders on the synthesis of nickel boride nanoparticles was studied in this research. The high mass fraction of 28 % of Ni 2 B nanoparticles can be generated at the fixed initial composition of Ni:B = 2:3. Quenching gas is necessary in the synthesis of Ni 2 B nanoaprticles. In addition, the mass fraction of Ni 2 B increases with the increase of quenching gas flow rate and powder feed rate

  16. Departures from thermal equilibrium in a dense Z-pinch plasma

    International Nuclear Information System (INIS)

    Neufeld, C.R.

    1979-01-01

    This paper presents on analysis of several features of the emission spectrum obtained from a dense hydrogen Z-pinch plasma. The spectrum is characterized by an extremely broad H/sub β/ line and by the absence of an emission line at the H/sub b/ wavelength. Comparison with theory shows that the spectrum is inconsistent with the assumption of a thermal or collision-dominated plasma. The assumption of a substantial overpopulation of the atomic-hydrogen excited levels, ascribed to a rising degree of plasma ionization, provides a satisfactory description of the observed spectrum. This result illustrates the difficulty of establishing valid equilibrium criteria for transient plasmas, even in the case of plasma densities as high as 10 19 cm -3

  17. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part I: Theory and description of model capabilities

    Science.gov (United States)

    Raffray, A. René; Federici, Gianfranco

    1997-04-01

    RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.

  18. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Pt. I. Theory and description of model capabilities

    International Nuclear Information System (INIS)

    Raffray, A.R.; Federici, G.

    1997-01-01

    For pt.II see ibid., p.101-30, 1997. RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case. (orig.)

  19. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    Science.gov (United States)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  20. Richtmyer–Meshkov instability of a thermal interface in a two-fluid plasma

    KAUST Repository

    Bond, D.

    2017-11-03

    We computationally investigate the Richtmyer–Meshkov instability of a density interface with a single-mode perturbation in a two-fluid, ion–electron plasma with no initial magnetic field. Self-generated magnetic fields arise subsequently. We study the case where the density jump across the initial interface is due to a thermal discontinuity, and select plasma parameters for which two-fluid plasma effects are expected to be significant in order to elucidate how they alter the instability. The instability is driven via a Riemann problem generated precursor electron shock that impacts the density interface ahead of the ion shock. The resultant charge separation and motion generates electromagnetic fields that cause the electron shock to degenerate and periodically accelerate the electron and ion interfaces, driving Rayleigh–Taylor instability. This generates small-scale structures and substantially increases interfacial growth over the hydrodynamic case.

  1. Development of twin cannons of thermal plasma; Desarrollo de canones gemelos de plasma termico.

    Energy Technology Data Exchange (ETDEWEB)

    Pena E, R [Instituto Nacional de Investigaciones Nucleares, Mexico D.F. (Mexico)

    1997-12-31

    Today several service and transformation industries that generate hazardous wastes must implement programs in order to fulfill with requirements established by the present standardization. This problem is solved here for proposing the design and construction of a thermal plasma transferred torch with double cannon which is generated by an electric arc with a capacity of 50 k W, a regulable gas flow from 0-50 lt./min and thermal yield higher than 85 %. This equipment would be capable for degradating industrial and hospital wastes. (Author).

  2. Powder processing and spheroidizing with thermal inductively coupled plasma

    International Nuclear Information System (INIS)

    Nutsch, G.; Linke, P.; Zakharian, S.; Dzur, B.; Weiss, K.-H.

    2001-01-01

    Processing of advanced powder materials for the spraying industry is one of the most promising applications of the thermal RF inductively coupled plasma. By selecting the feedstock carefully and adjusting the RF plasma parameters, unique materials with high quality can be achieved. Powders injected in the hot plasma core emerge with modified shapes, morphology, crystal structure and chemical composition. Ceramic oxide powders such as Al 2 O 3 , ZrO 2 , SiO 2 are spheroidized with a high spheroidization rate. By using the RF induction plasma spheroidizing process tungsten melt carbide powders are obtained with a high spheroidization rate at high feeding rates by densification of agglomerated powders consisting of di-tungsten carbide and monocarbide with a definite composition. This kind of ball-like powders is particularly suited for wear resistant applications. (author)

  3. A two-dimensional nodal model with turbulent effects for the synthesis of Si nano-particles by inductively coupled thermal plasmas

    International Nuclear Information System (INIS)

    Colombo, V; Ghedini, E; Gherardi, M; Sanibondi, P; Shigeta, M

    2012-01-01

    Nano-particle synthesis by means of inductively coupled plasma torches is a material process of large technological interest. Numerous parameters are involved in the optimization of this process; hence the development of numerical models for the prediction of thermal and magneto-fluid dynamics fields, precursor powder trajectories and thermal history, as well as nano-particle formation and growth, is necessary for the up-scaling of these devices from laboratory batch production to an industrial continuous process. In this work, a two-dimensional (2D) discrete-type model (nodal model) for the analysis of nano-powder nucleation and growth is presented, taking into account convection, diffusion and turbulent effects on particle formation. Discrete-type models feature high precision and reveal a great deal of information useful for clarifying the nano-particle formation process. Using Si as the precursor material, 2D simulations of a nano-particle synthesis RF plasma apparatus with a reaction chamber are carried out. Good agreement is found when comparing results obtained with this model with those coming from a well-established nucleation-coupled moment method. Moreover, the extended amount of obtainable information that characterizes the nodal model is underlined. (paper)

  4. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma

    International Nuclear Information System (INIS)

    Ki, S H; Park, J K; Sung, C; Lee, C B; Uhm, H; Choi, E H; Baik, K Y

    2016-01-01

    Artificial cell-like model systems can provide information which is hard to obtain with real biological cells. Giant unilamellar vesicles (GUV) containing intra-membrane DNA or OH radical-binding molecules are used to visualize the cytolytic activity of OH radicals. Changes in the GUV membrane are observed by microscopy or flow cytometry as performed for animal cells after non-thermal plasma treatment. The experimental data shows that OH radicals can be detected inside the membrane, although the biological effects are not as significant as for H 2 O 2 . This artificial model system can provide a systemic means to elucidate the complex interactions between biological materials and non-thermal plasma. (paper)

  5. Electrochemical performance of Si-multiwall carbon nanotube nanocomposite anode synthesized by thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Na, Ye-Seul; Yoo, Hyeonseok; Kim, Tae-Hee; Choi, Jinsub; Lee, Wan In; Choi, Sooseok, E-mail: sooseok@jejunu.ac.kr; Park, Dong-Wha, E-mail: dwpark@inha.ac.kr

    2015-07-31

    Lithium-ion (Li-ion) batteries are widely used in electric devices and vehicles. Silicon is a promising material for the anode of Li-ion battery due to high theoretical specific capacity. However, it shows large volume changes during charge–discharge cycles leading to the pulverization of electrode. In order to improve such disadvantage, a multiwall carbon nanotube (MWCNT) has been used with silicon as composite material. In this work, Si-MWCNT nanocomposite was prepared in thermal plasma by attaching silicon nanoparticles to MWCNT column. Electrochemical tests for raw materials and synthesized nanocomposites were carried out. The discharge capacities of silicon, MWCNT, synthesized nanocomposites collected from a reaction tube, and a chamber were 4000, 310, 200, and 1447 mAh/g, respectively. - Highlights: • Si-Multiwall carbon nanotube nanocomposite was synthesized by thermal plasma. • The effect on the collection position of product after experiment was examined. • Cycle performance of electrodes was measured. • Product collected from chamber showed good electrochemical performance.

  6. Propagation of thermal and hydromagnetic waves in an ionizing-recombining hydrogen plasma

    International Nuclear Information System (INIS)

    Di Sigalotti, Leonardo G.; Sira, Eloy; Rendon, Otto; Tremola, Ciro; Mendoza-Briceno, Cesar A.

    2004-01-01

    The propagation of thermal and magnetohydrodynamic (MHD) waves in a heat-conducting, hydrogen plasma, threaded by an external uniform magnetic field (B) and in which photoionization and photorecombination [H + +e - H+hν(χ)] processes are progressing, is investigated here using linear analysis. The resulting dispersion equation is solved analytically for varied strength (β<<1 and ∼1) and orientation of the magnetic field, where β denotes the ratio of plasma to magnetic pressures. Application of this model to the interstellar medium shows that heat conduction governs the propagation of thermal waves only at relatively high frequencies regardless of the plasma temperature, strength, and orientation of the magnetic field. When the direction of wave propagation is held perpendicular to B (i.e., k perpendicular B), the magnetosonic phase velocity is closely Alfvenic for β<<1, while for β∼1 both the hydrostatic and magnetic pressures determine the wave velocity. As long as k parallel B, the fast (transverse) magnetosonic wave becomes an Alfven wave for all frequencies independent of the plasma temperature and field strength, while the slow (longitudinal) magnetosonic wave becomes a pure sound wave. Amplification of thermal and MHD waves always occur at low frequencies and preferentially at temperatures for which the plasma is either weakly or partially ionized. Compared to previous analysis for the same hydrogen plasma model with B=0, the presence of the magnetic field makes the functional dependence of the physical quantities span a longer range of frequencies, which becomes progressively longer as the field strength is increased

  7. Improved oxidation of air pollutants in a non-thermal plasma

    International Nuclear Information System (INIS)

    Roland, U.; Holzer, F.; Kopinke, F.-D.

    2002-01-01

    The performance of non-thermal plasma (NTP) for the removal of organic air pollutants (especially in low concentrations) is improved by the introduction of ferroelectric and catalytically active materials into the discharge zone of an NTP reactor. Experiments with model systems (various contaminants and packed-bed materials) have shown that such a modification of a homogeneous gas-phase plasma can overcome the most serious restrictions of the NTP technique at its present state of the art: the incomplete total oxidation (i.e. the low selectivity to CO 2 ) and the energetic inefficiency. Placing a ferroelectric packed-bed material in the discharge zone was shown to result in a lowering of the energy input required. The main effects of plasma catalysis enabled by the introduction of a catalytically active material were an enhanced conversion of pollutants and a higher CO 2 selectivity. These improvements are based on the presence of short-lived oxidising species in the inner volume of porous catalysts. Additionally, the formation of a reservoir of adsorbed oxidants in the NTP zone could be shown. The combination of both modifications (ferroelectric packed-bed materials and plasma catalysis) is a promising method to support the NTP-initiated oxidation of air pollutants

  8. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  9. Application of a plasma-jet for skin antisepsis: analysis of the thermal action of the plasma by laser scanning microscopy

    International Nuclear Information System (INIS)

    Lademann, O; Kramer, A; Richter, H; Patzelt, A; Alborova, A; Humme, D; Weltmann, K-D; Hartmann, B; Hinz, P; Koch, S

    2010-01-01

    Recently, it was reported that a plasma-jet could be efficiently applied for the antisepsis of wounds. In this case, the discharge in an argon gas stream was used to produce a so-called ''cold plasma'' on the skin surface. The thermal action of the plasma on the skin was investigated in the present study by means of laser scanning microscopy (LSM) and by histological analysis. Consequently, the plasma beam was moved with a definite velocity at an optimal distance over the skin surface. The structural changes of the tissue were analyzed. It was found by LSM that a thermal damage could be detected only in the upper cell layers of the stratum corneum (SC) at moving velocities of the plasma beam, usually applied in clinical practice. Deeper parts of the SC were not damaged. The structural changes were so superficial that they could be detected only by LSM but not by analysis of the histological sections

  10. Characteristics of ceramic oxide nanoparticles synthesized using radio frequency produced thermal plasma

    International Nuclear Information System (INIS)

    Dhamale, Gayatri D.; Mathe, V.L.; Bhoraskar, S.V.; Ghorui, S.

    2015-01-01

    Thermal plasma devices with their unique processing capabilities due to extremely high temperature and steep temperature gradient play an important role in synthesis of ultrafine powders in the range of 100nm or less. High temperature gas phase synthesis in Radio Frequency (RF) thermal plasma reactor is an attractive route for mass production of refractory nanoparticles, especially in the case of rare earth oxides. Here we report synthesis of Yttrium Oxide (Y_2O_3), Neodymium Oxide (Nd_2O_3) and Aluminum Oxide (Al_2O_3) in an inductively coupled radio frequency thermal plasma reactor. Synthesized nanoparticles find wide application in various fields like gate dielectrics, photocatalytic applications, laser devices and photonics. Nano sized Yttrium oxide, Neodymium Oxide and Aluminum oxide powders were separately synthesized in an RF plasma reactor starting with micron sized irregular shaped precursor powders. The system was operated at 3MHz in atmospheric pressure at different power levels. Synthesized powders were scrapped out from different deposition locations inside the reactor and characterized for their phase, morphology, particle size, crystallinity and other characteristic features. Highly crystalline nature of the synthesized particles, narrow size distribution, location dependent phase formation, and distinct variation in the inherent defect states compared to the bulk are some of the important characteristic features observed

  11. Skin-effect in a dense ionizing plasma

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.; Taranenko, S.B.

    1989-01-01

    Effect of multiple ionization and radiation (bremmstrahlung and photorecombination) on skin effect in a dense plasma is investigated. Limiting cases are considered: 1) fast skin-effect, when plasma movement and any types of losses (radiation, electron thermal conductivity) have no time to manifest themselves during short heating times; 2) deceleration of skinning under effect of radiation achieving equilibrium with Joule heating. Self-simulating solutions of the problem for half-space are investigated. The results are applied to analysing experiments with exploding wires. It is shown that under conditions, typical of heavy-current decelerators tubular structures are produced as a result of heat and current skinning under free dispersion of plasma produced during the explosion. Their dimensions are of the order of dozens of microns, and the temperature exceeds 50 eV. The linear power and complete ''tube'' radiation yield at this stage are able to make a substantial contribution to the energy balance in the group

  12. Effect of Non Thermal Plasma on Alfalfa (Medicago sativa L.) Forage Production

    International Nuclear Information System (INIS)

    Abd El-Daem, G.A.N.A.; El-Aragi, G.M.; Tarrad, M.M.; Zayed, E.M.

    2013-01-01

    Field experiments were conducted at Atomic Energy Authority (AEA) Farm, at Inshas, Egypt during 2011–2012 on alfalfa. The aim of this investigation to caused mutation in alfalfa to obtain new variation. Seeds of the alfalfa were subjected to six doses of non-thermal plasma pulse. The plasma (consisting of ozone, UV and visible light) was injected into the seed samples for different durations or number of pulses. The doses used treatments were 2, 4, 6, 8, and 10 pulses (P) and non-treated control. The results showed difference seeds in both level field performances from cut 1st to cut 10th in the forage production. The results showed differences between the Control and treatment (number of pulses (P)) in each of all cuts for the productivity. The results showed the impact of plant height, Number of leaves/plant and number of branches/leaf and stem diameter as well as fresh weight of plant, fresh/weight (t/fed), dry yield (t/fed) in some cuts for Pulses 2, 4 and 10, and the ten pulses were the best for the majority of the qualities and cuts.

  13. Growth and male reproduction improvement of non-thermal dielectric barrier discharge plasma treatment on chickens

    Science.gov (United States)

    Jiao Zhang, Jiao; Luong Huynh, Do; Chandimali, Nisansala; Kang, Tae Yoon; Kim, Nameun; Mok, Young Sun; Kwon, Taeho; Jeong, Dong Kee

    2018-05-01

    This study investigated whether plasma treatment of fertilized eggs before hatching could affect the growth and reproduction of chickens. Three point five-day-incubated fertilized eggs exposed to non-thermal dielectric barrier discharge plasma at 2.81 W of power for 2 min resulted in the highest growth in chickens. Plasma growth-promoting effect was regulated by the reactive oxygen species homeostasis and the improvement of energy metabolism via increasing serum hormones and adenosine triphosphate levels which were resulted from the regulation of genes involved in antioxidant defense, hormone biosynthesis and energetic metabolism. Interestingly, plasma-treated male chickens conspicuously grew faster than females. Further, aspects of male reproductive system (testosterone level and sperm quality) were improved by the plasma treatment but female reproduction (estradiol and progesterone levels, egg-laying rate and egg weight) had no significant changes. Unfortunately, offspring whose parents were the optimal plasma-treated chickens did not show any difference on growth characteristics and failed to inherit excellent growth features from their parents. Our results suggest a new method to improve the growth rate and male reproductive capacity in poultry but it is only effective in the plasma direct-treated generation.

  14. Application of the thermal plasma technique in the treatment of stone surfaces

    International Nuclear Information System (INIS)

    Gonzalez A, Z.I.

    2000-01-01

    The stone materials which form part of the cultural heritage of Mexico, are degraded under the united action of water, atmospheric gases, air pollution, temperature changes and the microorganisms action; provoking on the stone: fissures, crevices, scalings, fragmentations, pulverizations, etc. Therefore, the purpose of this work is to study the possibilities to apply a protective coating on the stone surfaces, previously clean and consolidated, through the thermal plasma technique. The purpose is to analyse the physical and chemical properties of three types of stone materials: quarry, tezontle and chiluca, usually used in constructions of cultural interest such as: historical monuments, churches, sculptures, etc., before and after to be submitted to the action of thermal plasma in order to examine the feasibility in the use of this coating technique in this type of applications. The application of conventional techniques to determine: porosity, density, absorption, low pressure water absorption and crystallization by total immersion of nuclear techniques such as: neutron activation analysis, x-ray diffraction and scanning electron microscopy as well as of instrumental techniques: optical microscopy, mechanical assays of compression, flexure and surface area calculations, allowed to know the chemical and physical properties of the stone material before and after to be treated through the thermal plasma technique, projecting quartz on the stones surface at different distances and current intensity and showing the effect caused by the modifications or surface alterations present by cause of the application of that coating. the obtained results provide a general panorama of the application of this technique as an alternative to the maintenance of the architectural inheritance built in stone. (Author)

  15. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  16. The effect of the ergodic divertor on electron thermal confinement

    International Nuclear Information System (INIS)

    Harris, G.R.; Capes, H.; Garbet, X.

    1992-06-01

    The thermal confinement within the confinement zone of Tore Supra ohmically heated deuterium plasmas bounded by the ergodic divertor (ED) configuration is studied in a 1 1/2D analysis of the local power balance. Although the edge electron temperature and mean electron density (n e ) are both on average halved with application of the ED, the mean electron thermal diffusivity χ e shows the same density dependence as exhibited by standard ohmic limiter discharges, i.e., an Alcator-like inverse dependence on (n e ) at low density and a saturation at high density. The ion thermal transport at low to medium densities in both limiter and ED discharges is between 10 to 20 times that predicted by neoclassical theory. Comparing ED and limiter plasmas of the same density, a strong plasma decontamination is observed, with a reduction, in Z eff by between 1.0 to 1.5. The effective decoupling of (n e ) and Z eff by the ED and the invariant behaviour of χ e imply that electron thermal transport is only weakly dependent on Z eff in ohmic Tore Supra discharges

  17. Performance of plasma facing materials under intense thermal loads in tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Hirai, T.; Roedig, M.; Singheiser, L. [Forschungszentrum Juelich GmbH, EURATOM Association, Juelich (Germany)

    2003-07-01

    Beside quasi-stationary plasma operation, short transient thermal pulses with deposited energy densities in the order of several ten MJm{sup -2} are a serious concern for next step devices, in particular for tokamak devices such as ITER. The most serious of these transient events are plasma disruptions. Here a considerable fraction of the plasma energy is deposited on a localized surface area in the divertor strike zone region; the time scale of these events is typically in the order of 1 ms. In spite of the fact that a dense cloud of ablation vapour will form above the strike zone, only partial shielding of the divertor armour from incident plasma particles will occur. As a consequence, thermal shock induced crack formation, vaporization, surface melting, melt layer ejection, and particle emission induced by brittle destruction processes will limit the lifetime of the components. In addition, dust particles (neutron activated metals or tritium enriched carbon) are a serious concern form a safety point of view. Other transient heat loads which occasionally occur in magnetic confinement experiments such as instabilities in the plasma positioning (vertical displacement events) also may cause irreversible damage to plasma facing components (PFC), particularly to metals such as beryllium and tungsten. Another serious damage to PFCs is due to intense fluxes of 14 MeV neutrons in D-T-burning plasma devices. Integrated neutron fluence of several ten dpa in future thermonuclear fusion reactors will degrade essential physical properties of the components (e.g. thermal conductivity); another serious concern is the embrittlement of the heat sink and the plasma facing materials (PFM). (orig.)

  18. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  19. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Directory of Open Access Journals (Sweden)

    Kamonporn Panngom

    Full Text Available Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  20. Porous materials produced from incineration ash using thermal plasma technology.

    Science.gov (United States)

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Thermal consequences of plasma disruptions in TFTR and ETF

    International Nuclear Information System (INIS)

    Budny, R.; Ludescher, C.

    1981-01-01

    We studied thermal responses of first walls for TFTR and ETF during plasma disruptions. To model the flux, we assumed the entire kinetic energy is deposited by axisymmetric horizontal displacement of the plasma. The deposition time is a free parameter. In TFTR, the minimum deposition time which does not cause the toroidal limiter to melt is 7 or 14 ms depending on whether or not the limiter is actively cooled. In ETF, the minimum time which does not cause surface melting of the cooling tubes is 80 ms. (author)

  2. Thermal responses of tokamak reactor first walls during cyclic plasma burns

    International Nuclear Information System (INIS)

    Smith, D.L.; Charak, I.

    1978-01-01

    The CINDA-3G computer code has been adapted to analyze the thermal responses and operating limitations of two fusion reactor first-wall concepts under normal cyclic operation. A component of an LMFBR computer code has been modified and adapted to analyze the ablative behavior of first-walls after a plasma disruption. The first-wall design concepts considered are a forced-circulation water-cooled stainless steel panel with and without a monolithic graphite liner. The thermal gradients in the metal wall and liner have been determined for several burn-cycle scenarios and the extent of surface ablation that results from a plasma disruption has been determined for stainless steel and graphite first surfaces

  3. Thermal responses of tokamak reactor first walls during cyclic plasma burns

    International Nuclear Information System (INIS)

    Smith, D.L.; Charak, I.

    1977-01-01

    The CINDA-3G computer code has been adapted to analyze the thermal responses and operating limitations of two fusion reactor first-wall concepts under normal cyclic operation. A component of an LMFBR computer has been modified and adapted to analyze the ablative behavior of first-walls after a plasma disruption. The first-wall design concepts considered are a forced-circulation water-cooled stainless steel panel with and without a monolithic graphite liner. The thermal gradients in the metal wall and liner have been determined for several burn-cycle scenarios and the extent of surface ablation that results from a plasma disruption has been determined for stainless steel and graphite first surfaces

  4. Effects of fusion relevant transient energetic radiation, plasma and thermal load on PLANSEE double forged tungsten samples in a low-energy plasma focus device

    Science.gov (United States)

    Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.

    2018-06-01

    Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides

  5. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Vandenbroucke, Arne M.; Morent, Rino; De Geyter, Nathalie; Leys, Christophe

    2011-01-01

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  6. A universal mirror wave-mode threshold condition for non-thermal space plasma environments

    Directory of Open Access Journals (Sweden)

    M. P. Leubner

    2002-01-01

    Full Text Available Magnetic fluctuations are recognized in a large variety of space plasmas by increasingly high resolution, in situ observations as mirror wave mode structures. A typical requirement for the excitation of mirror modes is a dominant perpendicular pressure in a high-beta plasma environment. Contrary, we demonstrate from a realistic kinetic analysis how details of the velocity space distributions are of considerable significance for the instability threshold. Introducing the most common characteristics of observed ion and electron distributions by a mixed suprathermal-loss-cone, we derive a universal mirror instability criterion from an energy principle for collisionless plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features provides a strong source for the generation of mirror wave mode activity, reducing drastically the instability threshold. In particular, a number of space-related examples illuminate how the specific structure of the velocity space distribution dominates as a regulating excitation mechanism over the effects related to changes in the plasma parameters.

  7. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst.

    Science.gov (United States)

    Liang, Wen-Jun; Ma, Lin; Liu, Huan; Li, Jian

    2013-08-01

    Degradation of toluene in a gas by non-thermal plasma with a ferroelectric catalyst was studied at normal temperature and atmospheric pressure. Spontaneous polarization material (BaTiO3) and photocatalyst (TiO2) were added into plasma system simultively. Toluene degradation efficiency and specific energy density during the discharge process were investigated. Furthermore, byproducts and degradation mechanisms of toluene were also investigated. The toluene degradation efficiency increased when non-thermal plasma technology was combined with the catalyst. The toluene degradation efficiencies of the different catalysts tested were in the following order: BaTiO3/TiO2>BaTiO3>TiO2>no catalyst. A mass ratio of 2.38:1 was optimum for the BaTiO3 and TiO2 catalyst. The outlet gas was analyzed by gas chromatography and Fourier transform infrared spectroscopy, and the main compounds detected were CO2, H2O, O3 and benzene ring derivatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  9. DC Thermal Plasma Design and Utilization for the Low Density Polyethylene to Diesel Oil Pyrolysis Reaction

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2017-06-01

    Full Text Available The exponential increase of plastic production produces 100 million tonnes of waste plastics annually which could be converted into hydrocarbon fuels in a thermal cracking process called pyrolysis. In this research work, a direct current (DC thermal plasma circuit is designed and used for conversion of low density polyethylene (LDPE into diesel oil in a laboratory scale pyrolysis reactor. The experimental setup uses a 270 W DC thermal plasma at operating temperatures in the range of 625 °C to 860 °C for a low density polyethylene (LDPE pyrolysis reaction at pressure = −0.95, temperature = 550 °C with τ = 30 min at a constant heating rate of 7.8 °C/min. The experimental setup consists of a vacuum pump, closed system vessel, direct current (DC plasma circuit, and a k-type thermocouple placed a few millimeters from the reactant sample. The hydrocarbon products are condensed to diesel oil and analyzed using flame ionization detector (FID gas chromatography. The analysis shows 87.5% diesel oil, 1,4-dichlorobenzene (Surr, benzene, ethylbenzene and traces of toluene and xylene. The direct current (DC thermal plasma achieves 56.9 wt. % of diesel range oil (DRO, 37.8 wt. % gaseous products and minimal tar production. The direct current (DC thermal plasma shows reliability, better temperature control, and high thermal performance as well as the ability to work for long operation periods.

  10. Magnetogravitational stability of resistive plasma through porous medium with thermal conduction and FLR corrections

    International Nuclear Information System (INIS)

    Vaghela, D.S.; Chhajlani, R.K.

    1989-01-01

    The problem of stability of self gravitating magnetized plasma in porous medium is studied incorporating electrical resistivity, thermal conduction and FLR corrections. Normal mode analysis is applied to derive the dispersion relation. Wave propagation is discussed for parallel and perpendicular directions to the magnetic field. Applying Routh Hurwitz Criterion the stability of the medium is discussed and it is found that Jeans' criterion determines the stability of the medium. Magnetic field, porosity and resistivity of the medium have no effect on Jeans' Criterion in longitudinal direction. For perpendicular direction, in case of resistive medium Jeans' expression remains unaffected by magnetic field but for perfectly conducting medium magnetic field modifies the Jeans' expression to show the stabilizing effect. Thermal conductivity affects the sonic mode by making the process isothermal instead of adiabatic. Porosity of the medium is effective only in case of perpendicular direction to magnetic field for perfectly conducting plasma as it reduces the stabilizing effect of magnetic field. For longitudinal wave propagation, though Finite Larmor Radius (FLR) corrections have no effect on sonic mode but it changes the growth rate for Alfven mode. For transverse wave propagation FLR corrections and porosity affect the Jeans' expression in case of non-viscous medium but viscosity of the medium removes the effect of FLR and porosity on Jeans' condition. (author)

  11. Expected energy fluxes onto ITER Plasma Facing Components during disruption thermal quenches from multi-machine data comparisons

    International Nuclear Information System (INIS)

    Loarte, A.; Andrew, P.; Matthews, G.F.; Paley, J.; Riccardo, V.; Counsell, G.; Eich, T.; Fuchs, C.; Gruber, O.; Herrmann, A.; Pautasso, G.; Federici, G.; Finken, K.H.; Maddaluno, G.; Whyte, D.

    2005-01-01

    A comparison of the power flux characteristics during the thermal quench of plasma disruptions among various tokamak experiments has been carried out and conclusions for ITER have been drawn. It is generally observed that the energy of the plasma at the thermal quench is much smaller than that of a full performance plasma. The timescales for power fluxes onto PFCs during the thermal quench, as determined by IR measurements, are found to scale with device size but not to correlate with pre-disruptive plasma characteristics. The profiles of the thermal quench power fluxes are very broad for diverted discharges, typically a factor of 5-10 broader than that measured during 'normal' plasma operation, while for limiter discharges this broadening is absent. The combination of all the above factors is used to derive the expected range of power fluxes on the ITER divertor target during the thermal quench. The new extrapolation derived in this paper indicates that the average disruption in ITER will deposit an energy flux approximately one order of magnitude lower than previously thought. The evaluation of the ITER divertor lifetime with these revised specifications is carried out. (author)

  12. Thermal shock fracture of graphite armor plate under the heat load of plasma disruption

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Seki, Masahiro; Ohmori, Junji

    1989-01-01

    Experiments on the thermal shock brittle fracture of graphite plates were performed. Thermal loading which simulated a plasma disruption was produced by an electron beam facility. Pre-cracks produced on the surface propagated to the inside of the specimen even if the thermal stress on the surface was compressive. Two mechanisms are possible to produce tensile stress around the crack tip under thermal shock conditions. Temperature, thermal stress, and the stress intensity factor for the specimen were analyzed based on the finite element method for various heating conditions. The trend of experimental results under the asymmetric heating agrees qualitatively with the analytical results. This phenomenon is important for the design of plasma facing components made of graphite. Establishment of a lifetime prediction procedure including fatigue, fatigue crack growth, and brittle fracture is needed for graphite armors. (orig.)

  13. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  14. Thermal conductivity of plasma modified polyethylene terephthalate and polyamide-6 layers

    Directory of Open Access Journals (Sweden)

    G. Kalacska

    2016-05-01

    Full Text Available Tribological performance of the materials greatly depends on the temperature of the contacting zones and surfaces and hence on the heat conducting behaviour of the materials. Heat conduction of polymers is, however, greatly affected even by a very narrow (few tens of nm modified layer formed on the surface after subjecting the polymer to plasma treatment. In this article the heat flow inhibiting properties of plasma modified surface layers were investigated on polyethylene terephthalate (PET and polyamide-6 (PA6 engineering polymers. Nitrogen Plasma Immersion Ion Implantation gave rise to compositional and structural changes of the polymers in a depth of 110 nm. It was found that even this thin layer exhibited significant heat flow inhibiting effect. The modified layer considerably decreased the thermal conductivity coefficient of the treated polymer and resulted in a reduced heat transmission for PET and PA6 by 33 and 28%, respectively. This new information supports and is in accordance with the former tribological results about extra friction heat generation experienced under NPIII surface layer of PA6 and PET during dry sliding.

  15. To a question on thermal protection of constructional elements of vacuum-plasma devices

    International Nuclear Information System (INIS)

    Borisko, V.N.; Borisko, S.V.; Zinovev, D.V.; Lapshin, V.I.; Tselujko, A.F.

    2005-01-01

    The progress in development of vacuum-plasma devices is connected with the design and creation of constructional elements from materials, which have a high erosion resistance and can maintain the large specific flux of energy per effective area. Recently as the materials of such constructional elements it was offered to use the reversible sorbents of hydrogen of Zr-V system, which have high-rates of sorption-desorption and large thermal effect of the hydride phases decomposition. In the paper an experimental research of the thermal conditions features of the metal-hydride electrodes, which subjected of the energy loads in the vacuum-plasma devices, are given. The simulation of the energy loads on the electrodes was carried out with the help of gas discharge plasma as there is an possibility to vary the energy spectrum of the bombarding particles and to gather a necessary radiation dose to the material surface. For comparative examinations of various materials under the irradiation by high-energy heavy particles it is the most convenient to use the Penning discharge. In this case, the cathodes made of different materials are under the identical conditions even at the change of working discharge modes. Therefore in the device on the basis of the Penning discharge the cathodes of metal-hydride and stainless steel were set. It was detected, that the increase of the temperature gradient of metal-hydride cathode goes down with the increase of discharge current value. The dependence of operating temperatures difference of cathodes from exposure time has shown that the temperature of the metal-hydride cathode is sufficiently lower than the temperature of the stainless steel cathode. Such a softening of the thermal operation conditions of the metal hydride cathode is caused by thermal decomposition of hydride phases. Besides there is the energy flow dissipation of bombarding particles on the protective gas target formed by desorbed hydrogen. The considerable decrease of

  16. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    Energy Technology Data Exchange (ETDEWEB)

    Pakseresht, A.H., E-mail: amirh_pak@yahoo.com [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Rahimipour, M.R. [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Vaezi, M.R. [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Salehi, M. [Department of Materials Engineering, Isfahan University of Technology, P.O. Box 84156-83111, Isfahan (Iran, Islamic Republic of)

    2016-04-15

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO{sub 3} powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  17. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    International Nuclear Information System (INIS)

    Pakseresht, A.H.; Rahimipour, M.R.; Vaezi, M.R.; Salehi, M.

    2016-01-01

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO_3 powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  18. Modelling of shear effects on thermal and particle transport in advanced Tokamak scenarios

    International Nuclear Information System (INIS)

    Moreau, D.; Voitsekhovitch, I.; Baker, D.R.

    1999-01-01

    Evolution of thermal and particle internal transport barriers (ITBs) is studied by modelling the time-dependent energy and particle balance in DIII-D plasmas with reversed magnetic shear configurations and in JET discharges with monotonic or slightly reversed q-profiles and large ExB rotation shear. Simulations are performed with semi-empirical models for anomalous diffusion and particle pinch. Stabilizing effects of magnetic and ExB rotation shears are included in anomalous particle and heat diffusivity. Shear effects on particle and thermal transport are compared. Improved particle and energy confinement with the formation of an internal transport barrier (ITB) has been produced in DIII-D plasmas during current ramp-up accompanied with neutral beam injection (NBI). These plasmas are characterized by strong reversed magnetic shear and large ExB rotation shear which provide the reduction of anomalous fluxes. The formation of ITB's in the optimized shear (OS) JET scenario starts with strong NBI heating in a target plasma with a flat or slightly reversed q-profile pre-formed during current ramp-up with ion cyclotron resonance heating (ICRH). Our paper presents the modelling of particle and thermal transport for these scenarios. (authors)

  19. On the influence of dissipative effects on instabilities of differentially-rotating plasmas

    International Nuclear Information System (INIS)

    Lakhin, V. P.; Ilgisonis, V. I.

    2010-01-01

    The stability of differentially-rotating cylindrical plasmas in the axial homogeneous magnetic field is studied in the framework of one-fluid dissipative magnetohydrodynamics. The dispersion relation of small-scale axisymmetric perturbations, taking into account the effects of the plasma thermal stratification, its resistivity and its viscosity, is derived. In the limiting cases of negligible resistivity and of negligible viscosity, the criteria of plasma stability are obtained. It is shown that in the case of small viscosity, the azimuthal flow of resistive plasma in the axial magnetic field is unstable due to the buoyancy effect if both the plasma pressure and its entropy either increase or decrease in the radial direction.

  20. Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete.

    Science.gov (United States)

    Yang, Sheng-Fu; Wang, To-Mai; Lee, Wen-Cheng; Sun, Kin-Seng; Tzeng, Chin-Ching

    2010-10-15

    This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with high velocity compressed air. The basic technological characteristics of MMVF, including morphology, diameter, shot content, length and chemical resistance, are described in this work. Laboratory experiments were conducted on the fiber-reinforced concrete. The effects of fibrous content on compressive strength and flexural strength are presented. The experimental results showed the proper additive of MMVF in concrete can enhance its mechanical properties. MMVF products produced from incinerator ashes treated with the thermal plasma technique have great potential for reinforcement in concrete. 2010 Elsevier B.V. All rights reserved.

  1. Propagation of sound and thermal waves in an ionizing-recombining hydrogen plasma: Revision of results

    International Nuclear Information System (INIS)

    Di Sigalotti, Leonardo G.; Sira, Eloy; Tremola, Ciro

    2002-01-01

    The propagation of acoustic and thermal waves in a heat conducting, hydrogen plasma, in which photoionization and photorecombination [H + +e - H+hν(χ)] processes are progressing, is re-examined here using linear analysis. The resulting dispersion equation is solved analytically and the results are compared with previous solutions for the same plasma model. In particular, it is found that wave propagation in a slightly and highly ionized hydrogen plasma is affected by crossing between acoustic and thermal modes. At temperatures where the plasma is partially ionized, waves of all frequencies propagate without the occurrence of mode crossing. These results disagree with those reported in previous work, thereby leading to a different physical interpretation of the propagation of small linear disturbances in a conducting, ionizing-recombining, hydrogen plasma

  2. Production of Sn/SnO2/MWCNT composites by plasma oxidation after thermal evaporation from pure Sn targets onto buckypapers.

    Science.gov (United States)

    Alaf, M; Gultekin, D; Akbulut, H

    2012-12-01

    In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).

  3. Thermal de-isolation of silicon microstructures in a plasma etching environment

    International Nuclear Information System (INIS)

    Lee, Yong-Seok; Jang, Yun-Ho; Kim, Yong-Kweon; Kim, Jung-Mu

    2013-01-01

    This paper presents a theoretical and experimental strategy for thermal de-isolation of silicon microstructures during a plasma etching process. Heat sinking blocks and thin metal layers are implemented around a thermally isolated mass to avoid severe spring width losses by a steep temperature rise. Thermal de-isolation significantly reduces the fabrication errors from −51.0% to −9.0% and from −39.5% to −6.7% for spring widths and resonant frequencies, respectively. Thermal de-isolation also reduces the standard deviation of resonant frequencies from 8.7% to 1.5% across a wafer, which clearly demonstrates the proposed method. (paper)

  4. Incineration/vitrification of radioactive wastes and combustion of pyrolysis gases in thermal plasmas

    International Nuclear Information System (INIS)

    Girold, Ch.

    1997-03-01

    Two thermal plasma processes used for incineration of radioactive technological wastes (cellulose, plastics, rubber...) have been investigated. First, the different types of radioactive wastes are presented, with a special attention to those which may benefit from a high temperature thermal treatment. The most significant thermal plasma processes, suitable for this goal, are described. Then, the author deals with the post-combustion, in an oxygen plasma jet reactor, of gases from burnable radioactive waste pyrolysis. An experimental planning method as been used to evaluate the combustion performances in the reactor, with a wide range of gas composition and running parameters such as oxygen excess and electrical power. The results of a modeling of kinetics, based on 116 chemicals reactions between 25 species, are compared with experimental values. Finally, an oxygen plasma reactor where the arc is transferred on a basalt melt is experimented. The efficiency of the combustion and the homogeneity of the glass are discussed. The volatility of some glass elements and tracers added to the wastes is also approached in two different ways: by post-trial material balance and by an optical emission spectroscopic method. The author built a diagnostic method that allows the following versus time of the metallic vapours above the melt. (author)

  5. Spontaneous generation of electromagnetic waves in plasmas with electron thermal flux

    International Nuclear Information System (INIS)

    Okada, Toshio

    1977-01-01

    Spontaneous generation of propagating electromagnetic fields due to a microinstability is investigated for plasmas which convey electron thermal fluxes. The following two cases are examined: 1) Electromagnetic fields spontaneously excited by electrons in a velocity distribution of skewed Maxwellian type. 2) Electromagnetic waves generated by electrons in a velocity distribution which consists of a main part and a high energy part. In this case, the electron thermal flux can be very high. In both cases, induced electromagnetic waves with relatively low frequencies propagate parallel to the direction of Thermal flux. (auth.)

  6. Transport of thermal plasma above the auroral ionosphere in the presence of electrostatic ion-cyclotron turbulence

    Directory of Open Access Journals (Sweden)

    V. E. Zakharov

    Full Text Available The electron component of intensive electric currents flowing along the geomagnetic field lines excites turbulence in the thermal magnetospheric plasma. The protons are then scattered by the excited electromagnetic waves, and as a result the plasma is stable. As the electron and ion temperatures of the background plasma are approximately equal each other, here electrostatic ion-cyclotron (EIC turbulence is considered. In the nonisothermal plasma the ion-acoustic turbulence may occur additionally. The anomalous resistivity of the plasma causes large-scale differences of the electrostatic potential along the magnetic field lines. The presence of these differences provides heating and acceleration of the thermal and energetic auroral plasma. The investigation of the energy and momentum balance of the plasma and waves in the turbulent region is performed numerically, taking the magnetospheric convection and thermal conductivity of the plasma into account. As shown for the quasi-steady state, EIC turbulence may provide differences of the electric potential of ΔV≈1–10 kV at altitudes of 500 < h < 10 000 km above the Earth's surface. In the turbulent region, the temperatures of the electrons and protons increase only a few times in comparison with the background values.

    Key words. Magnetospheric physics (electric fields; plasma waves and instabilities

     

  7. Thermal effects of divertor sweeping in ITER

    International Nuclear Information System (INIS)

    Wesley, J.C.

    1992-01-01

    In this paper, thermal effects of magnetically sweeping the separatrix strike point on the outer divertor target of the International Thermonuclear Fusion Reactor (ITER) are calculated. For the 0. 2 Hz x ± 12 cm sweep scenario proposed for ITER operations, the thermal capability of a generic target design is found to be slightly inadequate (by ∼ 5%) to accommodate the full degree of plasma scrape-off peaking postulated as a design basis. The principal problem identified is that the 5 s sweep period is long relative to the 1. 4 s thermal time constant of the divertor target. An increase of the sweep frequency to ∼ 1 Hz is suggested: this increase would provide a power handling margin of ∼ 25% relative to present operational criteria

  8. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    Science.gov (United States)

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  9. Experimental investigation of thermal conduction and related phenomena in a laser heated plasma

    International Nuclear Information System (INIS)

    Gray, D.R.

    1979-02-01

    Thermal conduction in plasmas is of major importance especially in controlled nuclear fusion studies. Direct measurements are rare. When the temperature gradient in a plasma becomes large enough classical thermal conduction (Heat flux q = -kΔT) no longer applies and it is thought that q is limited to some fraction of the free streaming limit qsub(m). The main experiment is the heating of a z-pinch plasma by a fast rising, intense carbon dioxide laser pulse. Electron temperature and density in time and space are diagnosed by ruby laser scattering. The profiles obtained were consistent with a flux limited to approximately 3% of the free streaming limit. Ion acoustic turbulence is observed along the temperature gradient. It is shown that the observed turbulence level is consistent with the heat flux limitation. At electron densities > 10 17 cm -3 backscattered light is observed from the plasma whose growth rate implies that it is Brillouin scattered. (author)

  10. Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD

    Science.gov (United States)

    Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi

    2013-03-01

    Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.

  11. Studies of thermal energy confinement scaling in PDX plasmas: D0 → H+ limiter discharges

    International Nuclear Information System (INIS)

    Kaye, S.M.; Goldston, R.J.; Bell, M.

    1984-06-01

    Experiments were performed on the PDX tokamak to study plasma heating and β scaling with higher power, near-perpendicular neutral beam injection. The data taken during these experiments were analyzed using a time-dependent data interpretation code (TRANSP) to study the transport and thermal confinement scaling over a wide range of plasma parameters. This study focuses on results from experiments with D 0 injection into H + plasmas using graphite rail limiters, a = 40 to 44 cm, R = 143 cm, I/sub p/ = 200 to 480 kA, B/sub T/ = 0.7 to 2.2 T, and typically anti n/sub e/ = 2.5 to 4.2 x 10 13 cm -3 . The results of this study indicate that for both ohmic and neutral beam heated discharges the energy flow out of the plasma is dominated by anomalous electron losses, attributed to electron thermal conduction. The ion conduction losses are well described to electron thermal conduction. The ion conduction losses are well described by neoclassical theory; however, the total ion loss influences the power balance significantly only at high toroidal fields and high plasma currents

  12. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  13. THERMODYNAMIC REASONS OF AGGLOMERATION OF DUST PARTICLES IN THE THERMAL DUSTY PLASMA

    Directory of Open Access Journals (Sweden)

    V.I.Vishnyakov

    2003-01-01

    Full Text Available The thermodynamic equilibrium of thermal dusty plasmas consisting of ionized gas (plasma and solid particles (dust grains, which interact with each other, is studied. The tendency of grains in dusty plasmas to agglomerate corresponds to the tendency of dusty plasmas to balanced states. When grains agglomerate, electrical perturbations generated by each grain concentrate inside the agglomerate. The plasma is perturbed only by the agglomerate's exterior surface. The greater number of possible states for electrons and ions in plasma depends on the volume of perturbation of grains. The fewer are the perturbations the greater is the amount of possible states for electrons and ions in plasma. If the grains collected from a distance smaller than 8 Debye lengths, the total volume of perturbations is minimized; the free energy of the plasma is also minimized.

  14. Preliminary degradation process study of infectious biological waste in a 5 k W thermal plasma equipment

    International Nuclear Information System (INIS)

    Xochihua S M, M.C.

    1997-01-01

    This work is a preliminary study of infectious biological waste degradation process by thermal plasma and was made in Thermal Plasma Applications Laboratory of Environmental Studies Department of the National Institute of Nuclear Research (ININ). Infectious biological waste degradation process is realized by using samples such polyethylene, cotton, glass, etc., but the present study scope is to analyze polyethylene degradation process with mass and energy balances involved. Degradation method is realized as follow: a polyethylene sample is put in an appropriated crucible localized inside a pyrolysis reactor chamber, the plasma jet is projected to the sample, by the pyrolysis phenomena the sample is degraded into its constitutive particles: carbon and hydrogen. Air was utilized as a recombination gas in order to obtain the higher percent of CO 2 if amount of O 2 is greater in the recombination gas, the CO generation is reduced. The effluent gases of exhaust pyrolysis reactor through are passed through a heat exchanger to get cooled gases, the temperature water used is 15 Centigrade degrees. Finally the gases was tried into absorption tower with water as an absorbent fluid. Thermal plasma degradation process is a very promising technology, but is necessary to develop engineering process area to avail all advantages of thermal plasma. (Author)

  15. Preparation of boron-rich aluminum boride nanoparticles by RF thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sooseok [Inha University, Department of Chemical Engineering and Regional Innovation Center for Environmental Technology of Thermal Plasma (Korea, Republic of); Matsuo, Jiro; Cheng, Yingying [Tokyo Institute of Technology, Department of Environmental Chemistry and Engineering (Japan); Watanabe, Takayuki, E-mail: watanabe@chemenv.titech.ac.jp [Kyushu University, Department of Chemical Engineering (Japan)

    2013-08-15

    Boron-rich compounds of AlB{sub 12} and AlB{sub 10} nanoparticles were synthesized by a radiofrequency thermal plasma. Aluminum and boron raw powders were evaporated in virtue of high enthalpy of the thermal plasma in upstream region, followed by the formation of aluminum boride nanoparticles in the tail region of plasma flame with rapid quenching. A high production rate of aluminum boride was confirmed by the X-ray diffraction measurement in the case of high input power, high boron content in raw material and helium inner gas. Polyhedral nanoparticles of 20.8 nm in mean size were observed by a transmission electron microscope. In the raw powder mixture of aluminum, titanium, and boron, titanium-boride nanoparticles were synthesized preferentially, because the Gibbs free energy for the boridation of titanium is lower than that of aluminum. Since the nucleation temperature of boron is higher than that of aluminum, the condensation of metal monomers onto boron nuclei results in the formation of boron-rich aluminum boride nanoparticles.

  16. Influence of coil current modulation on polycrystalline diamond film deposition by irradiation of Ar/CH4/H2 inductively coupled thermal plasmas

    Science.gov (United States)

    Betsuin, Toshiki; Tanaka, Yasunori; Arai, T.; Uesugi, Y.; Ishijima, T.

    2018-03-01

    This paper describes the application of an Ar/CH4/H2 inductively coupled thermal plasma with and without coil current modulation to synthesise diamond films. Induction thermal plasma with coil current modulation is referred to as modulated induction thermal plasma (M-ITP), while that without modulation is referred to as non-modulated ITP (NM-ITP). First, spectroscopic observations of NM-ITP and M-ITP with different modulation waveforms were made to estimate the composition in flux from the thermal plasma by measuring the time evolution in the spectral intensity from the species. Secondly, we studied polycrystalline diamond film deposition tests on a Si substrate, and we studied monocrystalline diamond film growth tests using the irradiation of NM-ITP and M-ITP. From these tests, diamond nucleation effects by M-ITP were found. Finally, following the irradiation results, we attempted to use a time-series irradiation of M-ITP and NM-ITP for polycrystalline diamond film deposition on a Si substrate. The results indicated that numerous larger diamond particles were deposited with a high population density on the Si substrate by time-series irradiation.

  17. Intermittent thermal plasma acceleration linked to sporadic motions of the magnetopause, first Cluster results

    Directory of Open Access Journals (Sweden)

    J.-A. Sauvaud

    Full Text Available This paper presents the first observations with Cluster of a very dense population of thermal ionospheric ions (H+, He+, O+ locally "accelerated" perpendicularly to the local magnetic field in a region adjacent to the magnetopause and on its magnetospheric side. The observation periods follow a long period of very weak magnetic activity. Recurrent motions of the magnetopause are, in the presented cases, unexpectedly associated with the appearance inside closed field lines of recurrent energy structures of ionospheric ions with energies in the 5 eV to  ~1000 eV range. The heaviest ions were detected with the highest energies. Here, the ion behaviour is interpreted as resulting from local electric field enhancements/decreases which adiabatically enhance/lower the bulk energy of a local dense thermal ion population. This drift effect, which is directly linked to magnetopause motions caused by pressure changes, allows for the thermal ions to overcome the satellite potential and be detected by the suprathermal CIS Cluster experiment. When fast flowing, i.e. when detectable, the density (~ 1 cm-3 of these ions from a terrestrial origin is (in the cases presented here largely higher than the local density of ions from magnetospheric/plasma sheet origin which poses again the question of the relative importance of solar and ionospheric sources for the magnetospheric plasma even during very quiet magnetic conditions.

    Key words. Ionosphere (planetary ionosphere; plasma convection Magnetospheric physics (magnetopause, cusp and boundary layers

  18. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  19. Optimal control theory applied to fusion plasma thermal stabilization

    International Nuclear Information System (INIS)

    Sager, G.; Miley, G.; Maya, I.

    1985-01-01

    Many authors have investigated stability characteristics and performance of various burn control schemes. The work presented here represents the first application of optimal control theory to the problem of fusion plasma thermal stabilization. The objectives of this initial investigation were to develop analysis methods, demonstrate tractability, and present some preliminary results of optimal control theory in burn control research

  20. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    Science.gov (United States)

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  1. Treatment of mixed wastes by thermal plasma discharges; Tratamiento de desechos mixtos por descargas de plasma termico

    Energy Technology Data Exchange (ETDEWEB)

    Diaz A, L.V.; Pacheco S, J.O.; Pacheco P, M.; Monroy G, F.; Emeterio H, M. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: lauradiazarch@yahoo.com.mx

    2007-07-01

    The National Institute of Nuclear Research (ININ) uses an ion exchange resin: IRN 150 (copolymer styrene Divynilbencene) in the TRIGA Mark III reactor to absorb polluted particles with heavy metals and radioactive particles of low level. Once the capacity of filtrate of the resin is exceeded, it is replaced and considered with a mixed waste. This work is based on taking advantage of the advantages of the technique of the thermal plasma in a unique process: (high energy density 105W/cm{sup 3} high enthalpy, high reactivity chemical, high operation temperatures 6000-11500K and quick quenching 106K/s) for the degradation and vitrification of the resin IRN 150. The reactor of plasma is compact and it works to atmospheric pressure and reduced thermal inertia. Therefore, the main parameters involved during the degradation tests and vitrification are: plasma current, voltage, gas flow and distance among the electrodes. The used vitreous matrix, is obtained from a ceramic clay composed by an oxides mixture which are characterized by their good resistance to mechanical impacts and erosion caused by the water. The ceramic clay and the resin IRN 150 were analyzed before the treatment by Scanning Electron Microscopy (MEB), X-ray Diffraction (DRX), Thermal gravimetry (TGA) once vitrified the materials were also analyzed by MEB and DRX. It is obtained as a result that the material more appropriate to be used as vitreous matrix it is a ceramic clay formed by several oxides, being operated the plasma system with a current of 115A, voltage of 25V, flow of the argon gas of 5 l/m and a distance among electrodes of 10mm. With the development of the proposed technology and the material for the vitreous matrix, be rotted to try in a future a great variety of mixed waste. (Author)

  2. Multigroup analysis of nuclear elastic scattering effects in Cat-D and DD3He fusion plasmas

    International Nuclear Information System (INIS)

    Nakano, Yasuyuki; Hanada, Takahiro; Hori, Hidetoshi; Kudo, Kazuhiko; Ohta, Masao

    1987-01-01

    Effects of nuclear elastic scattering (NES) on the slowing down of charged fusion products in a typical deuterium plasma and the burn dynamics of ignited Cat-D and DD 3 He plasmas are investigated. A time-dependent multigroup method is used to take into account the effect of finite (non-zero) slowing-down time as well as the discrete nature of NES. It is shown that adequate treatment of the slowing-down process, especially consideration of NES and slowing-down time delay, is essential for an accurate prediction of the dynamic behavior and thermal instability of the plasmas. NES accelerates the temporal plasma behavior and enhances the thermal instability, leading to 20∼30 keV increase in the critical temperature. (author)

  3. Dielectric effects on Thomson scattering in a relativistic magnetized plasma

    DEFF Research Database (Denmark)

    Bindslev, H.

    1991-01-01

    The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...... power accepted by the receiving antenna are derived for a plasma with spatial dispersion. The resulting expressions allow thermal motion to be included in the description of the plasma and remain valid for frequencies of the probing radiation in the region of omega(p) and omega(ce), provided...... the absorption is small. Symmetry between variables relating to incident and scattered fields is demonstrated and shown to be in agreement with the reciprocity relation. Earlier results are confirmed in the cold plasma limit. Significant relativistic effects, of practical importance to the scattering...

  4. Induction of Immunogenic Cell Death with Non-Thermal Plasma for Cancer Immunotherapy

    Science.gov (United States)

    Lin, Abraham G.

    Even with the recent advancements in cancer immunotherapy, treatments are still associated with debilitating side effects and unacceptable fail rates. Induction of immunogenic cell death (ICD) in tumors is a promising approach to cancer treatment that may overcome these deficiencies. Cells undergoing ICD pathways enhance the interactions between cancerous cells and immune cells of the patient, resulting in the generation of anti-cancer immunity. The goal of this therapy relies on the engagement and reestablishment of the patient's natural immune processes to target and eliminate cancerous cells systemically. The main objective of this research was to determine if non-thermal plasma could be used to elicit immunogenic cancer cell death for cancer immunotherapy. My hypothesis was that plasma induces immunogenic cancer cell death through oxidative stress pathways, followed by development of a specific anti-tumor immune response. This was tested by investigating the interactions between plasma and multiple cancerous cells in vitro and validating anti-tumor immune responses in vivo. Following plasma treatment, two surrogate ICD markers, secreted adenosine triphosphate (ATP) and surface exposed calreticulin (ecto-CRT), were emitted from all three cancerous cell lines tested: A549 lung carcinoma cell line, CNE-1 radiation-resistant nasopharyngeal cell line and CT26 colorectal cancer cell line. When these cells were co-cultured with macrophages, cells of the innate immune system, the tumoricidal activity of macrophages was enhanced, thus demonstrating the immunostimulatory activity of cells undergoing ICD. The underlying mechanisms of plasma-induced ICD were also evaluated. When plasma is generated, four major components are produced: electromagnetic fields, ultraviolet radiation, and charged and neutral reactive species. Of these, we determined that plasma-generated charged and short-lived reactive oxygen species (ROS) were the major effectors of ICD. Following plasma

  5. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation

    Science.gov (United States)

    Choi, Jae Won; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Yang, Sang Sik; Kim, Yeon Soo; Lee, Yun Sang; Lee, Yuijina; Kim, Chul-Ho

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies. PMID:27349181

  6. Chemically different non-thermal plasmas target distinct cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Lunov, O.; Zablotskyy, V.; Chrupina, O.; Lunova, M.; Jirsa, M.; Dejneka, A.; Kubinová, Šárka

    2017-01-01

    Roč. 7, apr (2017), s. 600 ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : chemically different * non-thermal plasmas * target distinct cell death pathways Subject RIV: FP - Other Medical Disciplines OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  7. Temperature simulation of thermal plasma melting furnace for disposal of radioactive waste and preliminary research of vitrification formula

    International Nuclear Information System (INIS)

    Lin Peng; Lu Yonghong; Xiang Wenyuan; Chen Mingzhou; Liu Xiajie; Qin Yuxin

    2013-01-01

    Radioactive waste treatment techniques currently used in nuclear power plant increase the volume greatly and bring much pressure on final disposal; Thermal plasma treatment as a crucial technique to reduce the waste volume is introduced. How to improve the efficiency of the plasma energy is the limiting factor of concern. In this paper, the temperature field of thermal plasma melting furnace is simulated, the maximal temperature of fixed bed melting furnace is calculated (about 1445 ℃). According to the optional fire-resistant materials, the feasibility of furnace fabrication is discussed. Vitrification formulas for three typical radioactive wastes are tested with their feasibilities being analyzed then. Finally, the prospect of thermal plasma techniques of radioactive waste is discussed, and issues for future study are raised. (authors)

  8. Direct plasma interaction with living tissue

    Science.gov (United States)

    Fridman, Gregory

    For some time, plasma has been used in medicine to cauterize or cut tissue using heat and mechanical energy. In the recent decade, some researchers around the world have started to investigate how gas jets that pass through thermal plasma can be employed in medicine. This thesis presents the first investigation of biomedical uses of non-thermal plasma discharge which comes in direct contact with living tissue. It is demonstrated that the direct application of non-thermal plasma in air can cause rapid deactivation of bacteria on surfaces of tissues without causing any visible tissue damage. Medical need for such a device is discussed. Construction and operation of various types of non-thermal plasma power supplies and many types of treatment electrodes are presented as well. Application of this plasma to living organisms is shown to be safe from both the electrical perspective and from the biological perspective. Biological safety is revealed through a series of differential skin toxicity trials on human cadaver tissue, live hairless mouse skin tissue, live pig skin tissue, and finally in an open wound model on pigs. Direct non-thermal plasma in air is shown to deactivate bacteria about 100 times faster than indirect application using jets. A series of experiments reveal that this effectiveness is due to the ability of direct discharge to bring charges to tissue surfaces. It is demonstrated that neither ultraviolet (UV) radiation nor neutral active species such as hydroxyl radicals or ozone produced in plasma are responsible for the main effect on bacteria. Although much additional work remains on establishing detailed mechanism by which charges from plasma achieve this effect, the work carried out in this thesis clearly demonstrates that direct application of non-thermal plasma in air can be a very useful tool in medicine.

  9. On reliability of 3D reconstructions of thermal plasma jet radiation by inverse Radon transform

    Czech Academy of Sciences Publication Activity Database

    Sekerešová, Zuzana; Hlína, Jan

    2011-01-01

    Roč. 56, č. 2 (2011), s. 171-183 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : thermal plasma jet * tomography * image reconstruction Subject RIV: BL - Plasma and Gas Discharge Physics

  10. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    Science.gov (United States)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  11. Measurement of thermal plasma jet temperature and velocity by laser light lineshape analysis

    International Nuclear Information System (INIS)

    Snyder, S.C.; Reynolds, L.D.

    1991-01-01

    Two important parameters of thermal plasma jets are kinetic or gas temperatures and flow velocity. Gas temperatures have been traditionally measured using emission spectroscopy, but this method depends on either the generally unrealistic assumption of the existence of local thermodynamic equilibrium (LTE) within the plasma, or the use of various non-LTE or partial LTE models to relate the intensity of the emission lines to the gas temperature. Plasma jet velocities have been measured using laser Doppler velocimetry on particles injected into the plasma. However, this method is intrusive and it is not known how well the particle velocities represent the gas velocity. Recently, plasma jet velocities have been measured from the Doppler shift of laser light scattered by the plasma. In this case, the Doppler shift was determined from the difference in the transmission profile of a high resolution monochromator between red shifted and blue shifted scattered light. A direct approach to measuring localized temperatures and velocities is afforded by high resolution scattered light lineshape measurements. The linewidth of laser light scattered by atoms and ions can be related to the kinetic temperature without LTE assumptions, while a shift in the peak position relative to the incident laser lineshape yields the gas velocity. We report in this paper work underway to measure gas temperatures and velocities in an argon thermal plasma jet using high resolution lineshape analysis of scattered laser light

  12. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400 019 (India); Arunkumar, A.; Ramkumar, M.C. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Ruzybayev, I.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Periayah, Mercy Halleluyah; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-08-30

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O{sub 2}, air and Ar + O{sub 2} for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility

  13. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    International Nuclear Information System (INIS)

    Navaneetha Pandiyaraj, K.; Deshmukh, R.R.; Arunkumar, A.; Ramkumar, M.C.; Ruzybayev, I.; Ismat Shah, S.; Su, Pi-Guey; Periayah, Mercy Halleluyah; Halim, A.S.

    2015-01-01

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O 2 , air and Ar + O 2 for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility as well

  14. Magnetic field approaches in dc thermal plasma modelling

    International Nuclear Information System (INIS)

    Freton, P; Gonzalez, J J; Masquere, M; Reichert, Frank

    2011-01-01

    The self-induced magnetic field has an important role in thermal plasma configurations generated by electric arcs as it generates velocity through Lorentz forces. In the models a good representation of the magnetic field is thus necessary. Several approaches exist to calculate the self-induced magnetic field such as the Maxwell-Ampere formulation, the vector potential approach combined with different kinds of boundary conditions or the Biot and Savart (B and S) formulation. The calculation of the self-induced magnetic field is alone a difficult problem and only few papers of the thermal plasma community speak on this subject. In this study different approaches with different boundary conditions are applied on two geometries to compare the methods and their limitations. The calculation time is also one of the criteria for the choice of the method and a compromise must be found between method precision and computation time. The study shows the importance of the current carrying path representation in the electrode on the deduced magnetic field. The best compromise consists of using the B and S formulation on the walls and/or edges of the calculation domain to determine the boundary conditions and to solve the vector potential in a 2D system. This approach provides results identical to those obtained using the B and S formulation over the entire domain but with a considerable decrease in calculation time.

  15. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Science.gov (United States)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  16. Investigating the Plasma-Assisted and Thermal Catalytic Dry Methane Reforming for Syngas Production: Process Design, Simulation and Evaluation

    Directory of Open Access Journals (Sweden)

    Evangelos Delikonstantis

    2017-09-01

    Full Text Available The growing surplus of green electricity generated by renewable energy technologies has fueled research towards chemical industry electrification. By adapting power-to-chemical concepts, such as plasma-assisted processes, cheap resources could be converted into fuels and base chemicals. However, the feasibility of those electrified processes at large scale has not been investigated yet. Thus, the current work strives to compare, for first time in the literature, plasma-assisted production of syngas, from CH4 and CO2 (dry methane reforming, with thermal catalytic dry methane reforming. Specifically, both processes are conceptually designed to deliver syngas suitable for methanol synthesis (H2/CO ≥ 2 in mole. The processes are simulated in the Aspen Plus process simulator where different process steps are investigated. Heat integration and equipment cost estimation are performed for the most promising process flow diagrams. Collectively, plasma-assisted dry methane reforming integrated with combined steam/CO2 methane reforming is an effective way to deliver syngas for methanol production. It is more sustainable than combined thermal catalytic dry methane reforming with steam methane reforming, which has also been proposed for syngas production of H2/CO ≥ 2; in the former process, 40% more CO2 is captured, while 38% less H2O is consumed per mol of syngas. Furthermore, the plasma-assisted process is less complex than the thermal catalytic one; it requires higher amount of utilities, but comparable capital investment.

  17. Thermal energy and bootstrap current in fusion reactor plasmas

    International Nuclear Information System (INIS)

    Becker, G.

    1993-01-01

    For DT fusion reactors with prescribed alpha particle heating power P α , plasma volume V and burn temperature i > ∼ 10 keV specific relations for the thermal energy content, bootstrap current, central plasma pressure and other quantities are derived. It is shown that imposing P α and V makes these relations independent of the magnitudes of the density and temperature, i.e. they only depend on P α , V and shape factors or profile parameters. For model density and temperature profiles analytic expressions for these shape factors and for the factor C bs in the bootstrap current formula I bs ∼ C bs (a/R) 1/2 β p I p are given. In the design of next-step devices and fusion reactors, the fusion power is a fixed quantity. Prescription of the alpha particle heating power and plasma volume results in specific relations which can be helpful for interpreting computer simulations and for the design of fusion reactors. (author) 5 refs

  18. Nonlinear electron-acoustic rogue waves in electron-beam plasma system with non-thermal hot electrons

    Science.gov (United States)

    Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.

    2014-11-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  19. The effect of electron thermal conduction on plasma pressure gradient during reconnection of magnetic field lines

    International Nuclear Information System (INIS)

    Chu, T.K.

    1987-12-01

    The interplay of electron cross-field thermal conduction and the reconnection of magnetic field lines around an m = 1 magnetic island prior to a sawtooth crash can generate a large pressure gradient in a boundary layer adjacent to the reconnecting surface, leading to an enhanced gradient of poloidal beta to satisfy the threshold condition for ideal MHD modes. This narrow boundary layer and the short onset time of a sawtooth crash can be supported by fine-grained turbulent processes in a tokamak plasma. 11 refs

  20. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water.

    Science.gov (United States)

    Hao, Xiao Long; Zhou, Ming Hua; Lei, Le Cheng

    2007-03-22

    TiO(2) photocatalyst (P-25) (50mgL(-1)) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO(2) were obviously increased. Pulsed high-voltage discharge process with TiO(2) had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10x10(-6) to 1.50x10(-6)Ms(-1), the ozone formation rate from 1.99x10(-8) to 2.35x10(-8)Ms(-1), respectively. In addition, this process had no influence on the photocatalytic properties of TiO(2). The introduction of TiO(2) photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  1. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    International Nuclear Information System (INIS)

    Hao Xiaolong; Zhou Ming Hua; Lei Lecheng

    2007-01-01

    TiO 2 photocatalyst (P-25) (50 mg L -1 ) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO 2 were obviously increased. Pulsed high-voltage discharge process with TiO 2 had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10 -6 to 1.50 x 10 -6 M s -1 , the ozone formation rate from 1.99 x 10 -8 to 2.35 x 10 -8 M s -1 , respectively. In addition, this process had no influence on the photocatalytic properties of TiO 2 . The introduction of TiO 2 photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants

  2. Chemically different non-thermal plasmas target distinct cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Lunova, M.; Jirsa, M.; Dejneka, Alexandr; Kubinová, Šárka

    2017-01-01

    Roč. 7, č. 1 (2017), s. 1-17, č. článku 600. ISSN 2045-2322 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : chemically different * non-thermal plasmas * target distinct cell death pathways Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  3. Synthesis of ZnO nanopowders by DC thermal plasma for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo-Jung; Choi, Jinsub [Department of Chemical Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Dong-Wha, E-mail: dwpark@inha.ac.kr [Department of Chemical Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2013-05-01

    Highlights: ► ZnO nanopowders were synthesized using DC thermal plasma process. ► Type and flow rate of reaction gas were controlled as experimental variables. ► Various morphologies were identified by changing the reaction gas. ► The photovoltaic performances were promoted by removing the unreacted precursors. ► DSSCs based on 1D nanostructure ZnO show the enhanced energy conversion efficiency. -- Abstract: Zinc oxide (ZnO) nanopowders were synthesized from commercially available micro-sized zinc powders (Aldrich Co., 98%, 10 μm) by a DC thermal plasma process at atmospheric pressure. The micro-sized zinc powders were vaporized in the plasma region, after which the plasma processing equipment was rapidly quenched, resulting in the formation of ZnO nanopowders with a size of less than 300 nm. Two different reaction gases of oxygen and carbon dioxide were used as the oxygen source and each gas flow rate was controlled as a process variable. The obtained ZnO nanopowders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). All synthesized ZnO nanopowders showed high crystalline wurtzite structures and the differences in their morphologies were strongly dependent on the operating variables. The photocurrent–voltage (J–V) curve of the ZnO nanopowders with a dye of ruthenium (II) 535 bis-TBA (N719, Solaronix) in redox electrolyte showed an overall energy conversion efficiency (η) of 2.54%, demonstrating that the application of the mass-producible ZnO nanopowders by thermal plasma processing to DSSC was feasible.

  4. Chemical durability of slag produced by thermal plasma melting of low-level miscellaneous solid wastes. Effects of slag composition

    International Nuclear Information System (INIS)

    Amakawa, Tadashi; Yasui, Shinji

    2001-01-01

    Low-level radioactive miscellaneous solid wastes are generated from commercial operation of nuclear power plants and will be generated from decommissioning of nuclear power plants in future. Static leaching tests were carried out in deionized water of 10degC on slag obtained by thermal plasma melting of simulating materials of the miscellaneous solids wastes with surrogate elements of radionuclides. It is found that logarithm of normalized elemental mass loss from the slag is proportional to the basicity represented by mole fractions of main structural oxides of the slag, such as SiO 2 , Al 2 O 3 , CaO, FeO and MgO. The range of static leaching rates from the slag is determined based on the above results and the basicity range of the miscellaneous solid wastes. Then we compared the leaching rates form the slag and from high level waste glasses. On these grounds, we concluded that the slag obtained by thermal plasma melting of miscellaneous solid wastes can stabilize radio-nuclides in it by no means inferior to the high level waste glasses. (author)

  5. Effects of plasma disruption events on ITER first wall materials

    International Nuclear Information System (INIS)

    Cardella, A.; Gorenflo, H.; Lodato, A.; Ioki, K.; Raffray, R.

    2000-01-01

    In ITER, plasma disruption events may occur producing large fast thermal transients on plasma facing materials. Particularly important for the integrity of the first wall (FW) are relatively 'long' duration off-normal events such as plasma vertical displacement events (VDE) and runaway electrons (RE). An analytical methodology has been developed to specifically assess the effect of these events on FW plasma facing materials. For the typical energy densities and event duration expected for the primary and baffle FW, some melting and evaporation of the FW armor will occur without the beneficial effect of vapor shielding, and the metallic heat sink may also be damaged due to over-heating. The method is able to calculate the amount of melted and evaporated material, taking into account the evolution of the evaporated and melted layer and to evaluate possible effects of local temporary loss of cooling. The method has been used to analyze the effects of VDE and RE events for ITER, to study recent disruption simulation experiments and to benchmark experimental and analytical results

  6. The thermal response of the first wall of a fusion reactor blanket to plasma disruptions

    International Nuclear Information System (INIS)

    Klippel, H.Th.

    1983-09-01

    Major plasma disruptions in Tokamak power reactors are potentially dangerous because high thermal overloading of the first wall may occur, resulting in melting and evaporation. The present uncertainties of the disruption characteristics, in particular the space and time dependence of the energy deposition, lead to a wide variation in the prospective surface energy loads. The thermal response of a first wall of aluminium, stainless steel and of graphite subjected to disruption energy loads up to 1000 J cm -2 has been analysed including the effects of melting and surface evaporation, vapour recondensation, vapour shielding, and the moving of the surface boundary caused by the evaporation. A special calculation model has been developed for this purpose. The main results are the following: by values of local transient energy depositions over 1500 J cm -2 bare stainless steel walls are damaged severely. Further calculations are needed to estimate the endurance limit of several candidate first wall materials. Applications of coatings on surfaces need special attention. For the reference INTOR disruption (approx. 100 J cm -2 ) evaporation is not significant. The effect of vapour shielding on evaporation has been found to be significant. The effect on melting is less pronounced. In a complete analysis the stability and dynamic behaviour of the melted layer under electromagnetic forces should be included. Also a reliable set of plasma disruption characteristics should be gathered

  7. On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components

    Science.gov (United States)

    Kumar, Nagendra; Sikka, Himanshu

    2007-12-01

    The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.

  8. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  9. Thermophysical property calculation in thermal plasmas: status, applications, and availability of basic data

    International Nuclear Information System (INIS)

    Murphy, Anthony B.

    2002-01-01

    The status of the calculation of the composition, thermodynamic properties and transport coefficients of thermal plasmas is reviewed. The availability of the required basic data, i.e., thermodynamic properties of individual species and collision integrals for pairs of species, is surveyed. The calculation of diffusion coefficients, required in mixed-gas plasmas, is discussed, and the advantages of the combined diffusion coefficient formulation are outlined. The specific application of demixing is presented. Recent work addressing the difficulties that arise in calculating the composition and transport coefficients of two-temperature plasmas is briefly reviewed. (author)

  10. Thermal Structure of Supra-Arcade Plasma in Two Solar Flares

    Science.gov (United States)

    Reeves, Katharine K.; Savage, Sabrina; McKenzie, David E.; Weber, Mark A.

    2012-01-01

    In this work, we use Hinode/XRT and SDO/AIA data to determine the thermal structure of supra-arcade plasma in two solar flares. The first flare is a Ml.2 flare that occurred on November 5, 2010 on the east limb. This flare was one of a series of flares from AR 11121, published in Reeves & Golub (2011). The second flare is an XI.7 flare that occurred on January 27, 2012 on the west limb. This flare exhibits visible supra-arcade downflows (SADs), where the November 2010 flare does not. For these two flares we combine XRT and AlA data to calculate DEMs of each pixel in the supra-arcade plasma, giving insight into the temperature and density structures in the fan of plasma above the post-flare arcade. We find in each case that the supra-arcade plasma is around 10 MK, and there is a marked decrease in the emission measure in the SADs. We also compare the DEMs calculated with the combined AIA/XRT dataset to those calculated using AIA alone.

  11. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  12. Ignition phase and steady-state structures of a non-thermal air plasma

    CERN Document Server

    Lu Xin Pei

    2003-01-01

    An AC-driven, non-thermal, atmospheric pressure air plasma is generated within the gap separating a disc-shaped metal electrode and a water electrode. The ignition phase and the steady-state are studied by a high-speed CCD camera. It is found that the plasma always initiates at the surface of the water electrode. The plasma exhibits different structures depending on the polarity of the water electrode: when the water electrode plays the role of cathode, a relatively wide but visibly dim plasma column is generated. At the maximum driving voltage, the gas temperature is between 800 and 900 K, and the peak current is 67 mA; when the water electrode is anode, the plasma column narrows but increases its light emission. The gas temperature in this case is measured to be in the 1400-1500 K range, and the peak current is 81 mA.

  13. Thermal Plasma Decomposition Of Nickel And Cobalt Compounds

    Directory of Open Access Journals (Sweden)

    Woch M.

    2015-06-01

    Full Text Available The paper presents the study on manufacturing of nickel and cobalt powders by thermal plasma decomposition of the carbonates of these metals. It was shown the dependence of process parameters and grain size of initial powder on the composition of final product which was ether metal powder, collected in the container as well as the nanopowder with crystallite size of 70 - 90 nm, collected on the inner wall of the reaction chamber. The occurrence of metal oxides in the final products was confirmed and discussed.

  14. Near-surface thermal characterization of plasma facing components using the 3-omega method

    International Nuclear Information System (INIS)

    Dechaumphai, Edward; Barton, Joseph L.; Tesmer, Joseph R.; Moon, Jaeyun; Wang, Yongqiang; Tynan, George R.; Doerner, Russell P.; Chen, Renkun

    2014-01-01

    Near-surface regime plays an important role in thermal management of plasma facing components in fusion reactors. Here, we applied a technique referred to as the ‘3ω’ method to measure the thermal conductivity of near-surface regimes damaged by ion irradiation. By modulating the frequency of the heating current in a micro-fabricated heater strip, the technique enables the probing of near-surface thermal properties. The technique was applied to measure the thermal conductivity of a thin ion-irradiated layer on a tungsten substrate, which was found to decrease by nearly 60% relative to pristine tungsten for a Cu ion dosage of 0.2 dpa

  15. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  16. Research on electric and thermal characteristics of plasma torch based on similarity theory

    International Nuclear Information System (INIS)

    Cheng Changming; Tang Deli; Lan Wei

    2007-01-01

    Configuration and working principle of a DC non-transferred plasma torch have been introduced. Based on similarity theory, connections between the electric-thermal characteristics and operational parameter such as flowing gas rate and arc power have been investigated. Calculation and experiment are compared. The results indicate that the calculation results are in agreement with experimental ones. The formulas can be used for plasma torch improvement and optimization. (authors)

  17. Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil.

    Science.gov (United States)

    Melrose, D B; Mushtaq, A

    2010-11-01

    The longitudinal response function for a thermal electron gas is calculated including two quantum effects exactly, degeneracy, and the quantum recoil. The Fermi-Dirac distribution is expanded in powers of a parameter that is small in the nondegenerate limit and the response function is evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum is performed in terms of polylogarithms in the long-wavelength and quasistatic limits, giving results that apply for arbitrary degeneracy. The results are applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the nondegenerate and completely degenerate limits, and generalizing them to arbitrary degeneracy.

  18. Radial effects in heating and thermal stability of a sub-ignited tokamak

    International Nuclear Information System (INIS)

    Fuchs, V.; Shoucri, M.M.; Thibaudeau, G.; Harten, L.; Bers, A.

    1982-02-01

    The existence of thermally stable sub-ignited equilibria of a tokamak reactor, sustained in operation by a feedback-controlled supplementary heating source, is demonstrated. The establishment of stability depends on a number of radially non-uniform, nonlinear processes whose effect is analyzed. One-dimensional (radial) stability analyses of model transport equations, together with numerical results from a 1-D transport code, are used in studying the heating of DT-plasmas in the thermonuclear regime. Plasma core supplementary heating is found to be a thermally more stable process than bulk heating. In the presence of impurity line radiation, however, core-heated temperature profiles may collapse, contracting inward from the limiter, the result of an instability caused by the increasing nature of the radiative cooling rate, with decreasing temperature. Conditions are established for the realization of a sub-ignited high-Q, toroidal reactor plasma with appreciable output power

  19. Rocket-borne thermal plasma instrument "MIPEX" for the ionosphere D, E layer in-situ measurements

    Science.gov (United States)

    Fang, H. K.; Chen, A. B. C.; Lin, C. C. H.; Wu, T. J.; Liu, K. S.; Chuang, C. W.

    2017-12-01

    In this presentation, the design concepts, performances and status of a thermal plasma particle instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)", which is going to be installed onboard a NSPO-funded hybrid rocket, to investigate the electrodynamic processes in ionosphere D, E layers above Taiwan are reported. MIPEX is capable of measuring plasma characteristics including ion temperature, ion composition, ion drift, electron temperature and plasma density at densities as low as 1-10 cm-1. This instrument package consists of an improved retarding potential analyzer with a channel electron multiplier (CEM), a simplified ion drift meter and a planar Langmuir probe. To achieve the working atmospheric pressure of CEM at the height of lower D layer ( 70km), a portable vacuum pump is also placed in the package. A prototype set of the MIPEX has been developed and tested in the Space Plasma Operation Chamber (SPOC) at NCKU, where in ionospheric plasma is generated by back-diffusion plasma sources. A plasma density of 10-106 cm-1, ion temperature of 300-1500 K and electron temperature of 1000-3000K is measured and verified. Limited by the flight platform and the performance of the instruments, the in-situ plasma measurements at the Mesosphere and lower Thermosphere is very challenging and rare. MIPEX is capable of extending the altitude of the effective plasma measurement down to 70 km height and this experiment can provide unique high-quality data of the plasma environment to explore the ion distribution and the electrodynamic processes in the Ionosphere D, E layers at dusk.

  20. Landau quantization effects on hole-acoustic instability in semiconductor plasmas

    Science.gov (United States)

    Sumera, P.; Rasheed, A.; Jamil, M.; Siddique, M.; Areeb, F.

    2017-12-01

    The growth rate of the hole acoustic waves (HAWs) exciting in magnetized semiconductor quantum plasma pumped by the electron beam has been investigated. The instability of the waves contains quantum effects including the exchange and correlation potential, Bohm potential, Fermi-degenerate pressure, and the magnetic quantization of semiconductor plasma species. The effects of various plasma parameters, which include relative concentration of plasma particles, beam electron temperature, beam speed, plasma temperature (temperature of electrons/holes), and Landau electron orbital magnetic quantization parameter η, on the growth rate of HAWs, have been discussed. The numerical study of our model of acoustic waves has been applied, as an example, to the GaAs semiconductor exposed to electron beam in the magnetic field environment. An increment in either the concentration of the semiconductor electrons or the speed of beam electrons, in the presence of magnetic quantization of fermion orbital motion, enhances remarkably the growth rate of the HAWs. Although the growth rate of the waves reduces with a rise in the thermal temperature of plasma species, at a particular temperature, we receive a higher instability due to the contribution of magnetic quantization of fermions to it.

  1. Thermal loads on tokamak plasma-facing components during normal operation and disruptions

    International Nuclear Information System (INIS)

    McGrath, R.T.

    1990-01-01

    Power loadings experienced by tokamak plasma-facing components during normal operation and during off-normal events are discussed. A model for power and particle flow in the tokamak boundary layer is presented and model predictions are compared to infrared measurements of component heating. The inclusion of the full three-dimensional geometry of the components and of the magnetic flux surface is very important in the modeling. Experimental measurements show that misalignment of component armour tile surfaces by only a millimeter can lead to significant localized heating. An application to the design of plasma-facing components for future machines is presented. Finally, thermal loads expected during tokamak disruptions are discussed. The primary problems are surface melting and vaporization due to localized intense heating during the disruption thermal quench and volumetric heating of the component armour and structure due to localised impact of runaway electrons. (author)

  2. Thermal effects on parallel-propagating electron cyclotron waves

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1987-01-01

    Thermal effects on the dispersion of right-handed electron cyclotron waves propagating parallel to a uniform, ambient magnetic field are investigated in the strictly non-relativistic ('classical') and weakly relativistic approximations for real frequency and complex wave vector. In each approximation, the two branches of the RH mode reconnect near the cyclotron frequency as the plasma temperature is increased or the density is lowered. This reconnection occurs in a manner different from that previously assumed at parallel propagation and from that at perpendicular propagation, giving rise to a new mode near the cold plasma cut-off frequency ωsub(xC). For both parallel and perpendicular propagation, it is noted that reconnection occurs approximately when the cyclotron linewidth equals the width of the stop-band in the cold plasma dispersion relation. Inclusion of weakly relativistic effects is found to be necessary for quantitative calculations and for an accurate treatment of the new mode near ωsub(xC). Weakly relativistic effects also modify the analytic properties of the dispersion relation so as to introduce a new family of weakly damped and undamped solutions. (author)

  3. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xiaolong [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Zhou Ming Hua [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Lei Lecheng [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China)]. E-mail: lclei@zju.edu.cn

    2007-03-22

    TiO{sub 2} photocatalyst (P-25) (50 mg L{sup -1}) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO{sub 2} were obviously increased. Pulsed high-voltage discharge process with TiO{sub 2} had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10{sup -6} to 1.50 x 10{sup -6} M s{sup -1}, the ozone formation rate from 1.99 x 10{sup -8} to 2.35 x 10{sup -8} M s{sup -1}, respectively. In addition, this process had no influence on the photocatalytic properties of TiO{sub 2}. The introduction of TiO{sub 2} photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  4. IAEA consultants' meeting on thermal response of plasma facing materials and components

    International Nuclear Information System (INIS)

    Janev, R.K.

    1990-07-01

    The present Summary Report contains brief proceedings and the main conclusions and recommendations of the IAEA Consultants' Meeting on ''Thermal Response of Plasma Facing Materials and Components'', which was organized by the IAEA Atomic and Molecular Data Unit and held on June 11-13, 1990, in Vienna, Austria. The Report also includes a categorization and assessment of currently studied plasma facing materials, a classification scheme of material properties data, required in fusion reactor design, and a survey of the urgently needed material properties data. (author)

  5. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    Science.gov (United States)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  6. Plasma Thermal Conversion of Methane to Acetylene

    International Nuclear Information System (INIS)

    Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Detering, Brent Alan; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

    2002-01-01

    This paper describes a re-examination of a known process for the direct plasma thermal conversion of methane to acetylene. Conversion efficiencies (% methane converted) approached 100% and acetylene yields in the 90-95% range with 2-4% solid carbon production were demonstrated. Specificity for acetylene was higher than in prior work. Improvements in conversion efficiency, yield, and specificity were due primarily to improved injector design and reactant mixing, and minimization of temperature gradients and cold boundary layers. At the 60-kilowatt scale cooling by wall heat transfer appears to be sufficient to quench the product stream and prevent further reaction of acetylene resulting in the formation of heavier hydrocarbon products or solid carbon. Significantly increasing the quenching rate by aerodynamic expansion of the products through a converging-diverging nozzle led to a reduction in the yield of ethylene but had little effect on the yield of other hydrocarbon products. While greater product selectivity for acetylene has been demonstrated, the specific energy consumption per unit mass of acetylene produced was not improved upon. A kinetic model that includes the reaction mechanisms resulting in the formation of acetylene and heavier hydrocarbons, through benzene, is described

  7. Separation method in the problem of a beam-plasma interaction in bounded warm plasma under the effect of HF electric field

    International Nuclear Information System (INIS)

    EI-Shorbagy, Kh.H.

    2002-11-01

    The stabilization effect of a strong HP electric field on beam-plasma instability in a cylindrical warm plasma waveguide is discussed. A new mathematical technique 'separation method' which has been applied to the two-fluid plasma model to separate the equations, which describe the system, into two parts, temporal and space parts. Plasma electrons are considered to have a thermal velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a warm plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to cold plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem. (author)

  8. Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction

    DEFF Research Database (Denmark)

    Babaie, Meisam; Davari, Pooya; Talebizadeh, Poyan

    2015-01-01

    This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2...

  9. Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.

  10. Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites

    Science.gov (United States)

    Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi

    2017-12-01

    Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.

  11. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part II: Analysis of ITER plasma facing components

    Science.gov (United States)

    Federici, Gianfranco; Raffray, A. René

    1997-04-01

    The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the variuos ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness.

  12. Thermal equilibrium, stability and burn control

    International Nuclear Information System (INIS)

    Cohn, D.

    1982-01-01

    A number of aspects of the thermal stability and equilibrium control of ignited tokamak plasma have been investigated. Examined approaches were passive control (the effect of radial motion, the effect of radial motion and small additional transport loss), active control (the compression and decompression of plasma, subignited operation with small amount of variable external heating, and density control), and thermal equilibrium control (additional power loss from impurity radiation and enhanced transport from increased ripple). One-D calculation has been made on thermal instability eigen-modes. It was found that for electron thermal induction loss given by Alcator scaling and for neoclassical ion transport, there was at most one unstable mode with a temperature profile which maintains the temperature profile at thermal equilibrium. The effect of the coupling of temperature fluctuation and the fluctuation in major radius was investigated. Temperature driven radial motion combined with a small amount of ripple transport loss was found to be a very effective mechanism for passive thermal stability control. (Kato, T.)

  13. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-08-28

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  14. Non-thermal Power-Law Distributions in Solar and Space Plasmas

    Science.gov (United States)

    Oka, M.; Battaglia, M.; Birn, J.; Chaston, C. C.; Effenberger, F.; Eriksson, E.; Fletcher, L.; Hatch, S.; Imada, S.; Khotyaintsev, Y. V.; Kuhar, M.; Livadiotis, G.; Miyoshi, Y.; Retino, A.

    2017-12-01

    Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated particles often exhibit a power-law and are characterized by the power-law index δ, it remains unclear how particles are accelerated to high energies and how δ is determined. Here, we review previous observations of the power-law index δ in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the "above-the-looptop" solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (δ> 4). This is in contrast to the typically hard spectra (δuniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.

  15. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Felix, T., E-mail: tsfelix81@gmail.com [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Cassini, F.A.; Benetoli, L.O.B. [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Dotto, M.E.R. [Physics Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Debacher, N.A. [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil)

    2017-05-01

    Highlights: • Polymeric surfaces were etched using non-thermal plasma at different intensities. • Polymers of low mechanical hardness reached the saturation level faster. • A mathematical model based on scaling laws was proposed. - Abstract: The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, R{sub RMS} (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91{sub (PET)} and 0.88{sub (PEEK)}, β = 0.25{sub (PET)} and z = 3,64{sub (PET)}.

  16. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    International Nuclear Information System (INIS)

    Felix, T.; Cassini, F.A.; Benetoli, L.O.B.; Dotto, M.E.R.; Debacher, N.A.

    2017-01-01

    Highlights: • Polymeric surfaces were etched using non-thermal plasma at different intensities. • Polymers of low mechanical hardness reached the saturation level faster. • A mathematical model based on scaling laws was proposed. - Abstract: The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, R_R_M_S (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91_(_P_E_T_) and 0.88_(_P_E_E_K_), β = 0.25_(_P_E_T_) and z = 3,64_(_P_E_T_).

  17. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2018-01-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  18. The thermalization of soft modes in non-expanding isotropic quark gluon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul, E-mail: jean-paul.blaizot@cea.fr [Institut de Physique Théorique, CNRS/UMR 3681, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mehtar-Tani, Yacine [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States)

    2017-05-15

    We discuss the role of elastic and inelastic collisions and their interplay in the thermalization of the quark–gluon plasma. We consider a simplified situation of a static plasma, spatially uniform and isotropic in momentum space. We focus on the small momentum region, which equilibrates first, and on a short time scale. We obtain a simple kinetic equation that allows for an analytic description of the most important regimes. The present analysis suggests that the formation of a Bose condensate, expected when only elastic collisions are present, is strongly hindered by the inelastic, radiative, processes.

  19. Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.

    2002-02-01

    The mechanical response of plasma-enhanced chemical vapor deposited SiO2 to thermal cycling is examined by substrate curvature measurement and depth-sensing indentation. Film properties of deposition stress and stress hysteresis that accompanied thermal cycling are elucidated, as well as modulus, hardness, and coefficient of thermal expansion. Thermal cycling is shown to result in major plastic deformation of the film and a switch from a compressive to a tensile state of stress; both athermal and thermal components of the net stress alter in different ways during cycling. A mechanism of hydrogen incorporation and release from as-deposited silanol groups is proposed that accounts for the change in film properties and state of stress.

  20. Calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray and post-deposition thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ctibor, Pavel [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Pala, Zdenek [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Sedlacek, Josef [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Hajkova, Zuzana; Grygar, Tomas Matys [Institute of Inorganic Chemistry ASCR, v.v.i., Husinec-Rez 1001, Rez (Czech Republic)

    2015-12-15

    Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-ray diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.

  1. Failure Analysis of Multilayered Suspension Plasma-Sprayed Thermal Barrier Coatings for Gas Turbine Applications

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Rocchio-Heller, R.; Liu, J.; Li, X.-H.; Östergren, L.

    2018-02-01

    Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria-yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.

  2. Deposition stress effects on the life of thermal barrier coatings on burner rigs

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  3. HNS steelmaking process using thermal plasma in a ceramic crucible

    International Nuclear Information System (INIS)

    Siwka, J.; Svyazhin, A.G.; Jowsa, J.; Derda, W.

    1999-01-01

    The problems related to HNS (high nitrogen steels) steelmaking technology in a laboratory plasma furnace (100 kW DC, 25 kg liquid metal) are discussed in the paper. Results of investigations on mass transfer in the bath, modelling of the temperature fields by the FEM method, the dynamics of nitriding and refining of the liquid metal are presented. The results show many advantageous features of this technology and identify the necessary modifications. Realization of the one-stage production process of HNS is possible using thermal plasma. This means that any kind of metallic scrap can be used with simultaneous nitriding of liquid metal by nitrogen gas phase and its refining. A technological scheme of the discussed process is presented. (orig.)

  4. Effect of alpha drift and instabilities on tokamak plasma edge conditions

    International Nuclear Information System (INIS)

    Miley, G.H.; Choi, C.K.

    1983-01-01

    As suprathermal fusion products slow down in a Tokamak, their average drift is inward. The effect of this drift on the alpha heating and thermalization profiles is examined. In smaller TFTR-type devices, heating in the outer region can be cut in half. Also, the fusion-product energy-distribution near the plasma edge has a positive slope with increasing energy, representing a possible driving mechanism for micro-instabilities. Another instability that can seriously affect outer plasma conditions and shear Alfven transport of alphas is also considered

  5. Lyapunov stability and thermal stability of partially relaxed fluids and plasmas

    International Nuclear Information System (INIS)

    Elsaesser, K.; Spiess, P.

    1996-01-01

    The relation between the Lyapunov stability of a Hamiltonian system and the thermal stability of a fluid whose temperature is controlled from outside is explored: The free energy as a functional of the correct variables (specific volume, local entropy, and some Clebsch potentials of the velocity) may serve as a Lyapunov functional, depending on the open-quote open-quote Casimirs close-quote close-quote as exchanged quantities. For a multi-species plasma one obtains a sufficient condition for stability: γ(v 2 /c 2 s )-1 s the sound speed. Some features of partially relaxed (T=const) cylindrical plasmas are also discussed. copyright 1996 American Institute of Physics

  6. Final treatment of spent batteries by thermal plasma.

    Science.gov (United States)

    Cubas, Anelise Leal Vieira; Machado, Marina de Medeiros; Machado, Marília de Medeiros; Dutra, Ana Regina de Aguiar; Moecke, Elisa Helena Siegel; Fiedler, Haidi D; Bueno, Priscila

    2015-08-15

    The growth in the use of wireless devices, notebooks and other electronic products has led to an ever increasing demand for batteries, leading to these products being commonly found in inappropriate locations, with adverse effects on the environment and human health. Due to political pressure and according to the environmental legislation which regulates the destination of spent batteries, in several countries the application of reverse logistics to hazardous waste is required. Thus, some processes have been developed with the aim of providing an appropriate destination for these products. In this context, a method for the treatment of spent batteries using thermal plasma technology is proposed herein. The efficiency of the method was tested through the determination of parameters, such as total organic carbon, moisture content and density, as well as analysis by atomic absorption spectrometry, scanning electron microscopy and X-ray fluorescence using samples before and after inertization. The value obtained for the density was 19.15%. The TOC results indicated 8.05% of C in the batteries prior to pyrolisis and according to the XRF analysis Fe, S, Mn and Zn were the most stable elements in the samples (highest peaks). The efficiency of the paste inertization was 97% for zinc and 99.74% for manganese. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the electrolyte paste obtain from batteries. Copyright © 2015. Published by Elsevier Ltd.

  7. Tungsten oxide thin film exposed to low energy D and He plasma: evidence for a thermal enhancement of the erosion yield

    Science.gov (United States)

    Hijazi, Hussein; Martin, C.; Roubin, P.; Addab, Y.; Cabie, C.; Pardanaud, C.; Bannister, M.; Meyer, F.

    2017-10-01

    Nanocrystalline tungsten oxide thin films (25 nm - 250 nm thickness) produced by thermal oxidation of a tungsten substrate were exposed to low energy D and He plasma. Low energy D plasma exposure (11 eV/D+) of these films have resulted in the formation of a tungsten bronze (DxWO3) clearly observed by Raman microscopy. D plasma bombardment (4 1021 m-2) has also induced a color change of the oxide layer which is similar to the well-known electro-chromic effect and has been named ``plasma-chromic effect''. To unravel physical and chemical origins of the modifications observed under exposure, similar tungsten oxide films were also exposed to low energy helium plasma (20 eV/He+) . Due to the low fluence (4 1021 m-2) and low ion energy (20 eV), at room temperature, He exposure has induced only very few morphological and structural modifications. On the contrary, at 673 K, significant erosion is observed, which gives evidence for an unexpected thermal enhancement of the erosion yield. We present here new results concerning He beam exposures at low fluence (4 1021 m-2) varying the He+ energy from 20 eV to 320 eV to measure the tungsten oxide sputtering threshold energy. Detailed analyses before/after exposure to describe the D and He interaction with the oxide layer, its erosion and structural modification at the atomic and micrometer scale will be presented.

  8. Application of the thermal plasma technique in the treatment of stone surfaces; Aplicacion de la tecnica de plasmas termicos en el tratamiento de superficies petreas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez A, Z I

    2000-07-01

    The stone materials which form part of the cultural heritage of Mexico, are degraded under the united action of water, atmospheric gases, air pollution, temperature changes and the microorganisms action; provoking on the stone: fissures, crevices, scalings, fragmentations, pulverizations, etc. Therefore, the purpose of this work is to study the possibilities to apply a protective coating on the stone surfaces, previously clean and consolidated, through the thermal plasma technique. The purpose is to analyse the physical and chemical properties of three types of stone materials: quarry, tezontle and chiluca, usually used in constructions of cultural interest such as: historical monuments, churches, sculptures, etc., before and after to be submitted to the action of thermal plasma in order to examine the feasibility in the use of this coating technique in this type of applications. The application of conventional techniques to determine: porosity, density, absorption, low pressure water absorption and crystallization by total immersion of nuclear techniques such as: neutron activation analysis, x-ray diffraction and scanning electron microscopy as well as of instrumental techniques: optical microscopy, mechanical assays of compression, flexure and surface area calculations, allowed to know the chemical and physical properties of the stone material before and after to be treated through the thermal plasma technique, projecting quartz on the stones surface at different distances and current intensity and showing the effect caused by the modifications or surface alterations present by cause of the application of that coating. the obtained results provide a general panorama of the application of this technique as an alternative to the maintenance of the architectural inheritance built in stone. (Author)

  9. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    Science.gov (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  10. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    International Nuclear Information System (INIS)

    Visscher, A de; Dewulf, J; Durme, J van; Leys, C; Morent, R; Langenhove, H Van

    2008-01-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation

  11. Disinfection effect of non-thermal atmospheric pressure plasma for foodborne bacteria

    Science.gov (United States)

    Pervez, Mohammad Rasel; Inomata, Takanori; Ishijima, Tatsuo; Kakikawa, Makiko; Uesugi, Yoshihiko; Tanaka, Yasunori; Yano, Toshihiro; Miwa, Shoji; Noguchi, Akinori

    2015-09-01

    Non-thermal atmospheric pressure plasma (NAPP) exposure can be a suitable alternative for bacteria inactivation in food processing industry. Specimen placed in the enclosure are exposed to various reactive radicals produced within the discharge chamber. It is also exposed to the periodic variation of the electric field strength in the chamber. Dielectric barrier discharge is produced by high voltage pulse (Vpp = 18 kV, pulse width 20 μs, repetition frequency 10 kHz) in a polypropylene box (volume = 350 cm3) using helium as main feed gas. Inactivation efficiency of NAPP depends on the duration of NAPP exposure, applied voltage pulse strength and type, pulse duration, electrode separation and feed gas composition. In this study we have investigated inactivation of Bacillus lichenformis spore as an example of food borne bacteria. Keeping applied voltage, electrode configuration and total gas flow rate constant, spores are exposed to direct NAPP for different time duration while O2 concentration in the feed gas composition is varied. 10 minutes NAPP exposure resulted in ~ 3 log reduction of Bacillus lichenformis spores for 1% O2concentration (initial concentration ~ 106 / specimen). This work is supported by research and development promotion grant provided by the Hokuriku Industrial Advancement Center.

  12. Thermal diffusivity effect in opto-thermal skin measurements

    International Nuclear Information System (INIS)

    Xiao, P; Imhof, R E; Cui, Y; Ciortea, L I; Berg, E P

    2010-01-01

    We present our latest study on the thermal diffusivity effect in opto-thermal skin measurements. We discuss how thermal diffusivity affects the shape of opto-thermal signal, and how to measure thermal diffusivity in opto-thermal measurements of arbitrary sample surfaces. We also present a mathematical model for a thermally gradient material, and its corresponding opto-thermal signal. Finally, we show some of our latest experimental results of this thermal diffusivity effect study.

  13. Characteristics and Thermal Efficiency of a Non-transferred DC Plasma Spraying Torch Under Low Pressure

    International Nuclear Information System (INIS)

    Bao Shicong; Ye Minyou; Zhang Xiaodong; Guo Wenkang; Xu Ping

    2008-01-01

    Current-voltage (I-V) characteristics of a non-transferred DC arc plasma spray torch operated in argon at vacuum are reported. The arc voltage is of negative characteristics for a current below 200 A, flat for a current between 200 A to 250 A and positive for a current beyond 250 A. The voltage increases slowly with the increase in carrier gas of arc. The rate of change in voltage with currents is about 3∼4 V/100 A at a gas flow rate of about 1∼1.5 V/10 standard liter per minute (slpm). The I-V characteristics of the DC plasma torch are of a shape of hyperbola. Arc power increases with the argon flow rate, and the thermal efficiency of the torch acts in a similar way. The thermal efficiency of the non-transferred DC plasmatron is about 65∼78%. (low temperature plasma)

  14. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    International Nuclear Information System (INIS)

    Bai Suli; Huang Chengdu; Lv Jing; Li Zhenhua

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N 2 -physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500° C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/SiO 2 catalyst showed an enhanced activity, C 5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO 2 catalyst.

  15. Vlasov simulation of the relativistic effect on the breaking of large amplitude plasma waves

    International Nuclear Information System (INIS)

    Xu Hui; Sheng Zhengming; Zhang Jie

    2007-01-01

    The influence of relativistic and thermal effects on plasma wave breaking has been studied by solving the coupled Vlasov-Poisson equations. When the relativistic effect is not considered, the wave breaking will not occur, provided the initial perturbation is less than certain value as predicted previously, and the largest amplitude of the plasma wave will decrease with the increase of the initial temperature. When the relativistic effect is considered, wave breaking always occurs during the time evolution, irrespective of the initial perturbation amplitude. Yet the smaller the initial perturbation amplitude is, the longer is the time for wave breaking to occur. With large initial perturbations, wave breaking can always occur with the without the relativistic effect. However, the results are significantly different in the two cases. The thermal effects of electrons decrease the threshold value to initial amplitude for wave breaking and large phase velocity makes the nonlinear phenomenon occur more easily. (authors)

  16. Introduction to burning plasma physics

    International Nuclear Information System (INIS)

    Momota, Hiromu

    1982-01-01

    The free energy of fusion-produced charged particles, the critical plasma Q-value for the thermal instability, and the Cherenkov's emission are discussed. The free energy of fusion-produced charged particles is large even in DT burning plasma. The primary role of fusion-produced energetic charged particles is the heating of fuel plasma. If the charged particle heating is large, burning may be thermally unstable. A zero dimensional analysis shows that the critical plasma Q-values for this thermal instability are nearly 5 for DT burning plasma of 14 keV and 1.6 for D-He 3 burning plasma of 60 keV. These critical plasma Q-values are small as compared to that required for commercial reactors. Then, some methods of burning-control should be introduced to fusion plasma. Another feature of energetic charged particles may be Cherenkov's emission of various waves in fusion plasma. The relationship between this micro-instability and transport phenomena may be the important problem to be clarified. The fusion-produced energetic charged particles have large Larmor radii, and they may have effects on balooning mode instability. (Kato, T.)

  17. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2015-12-01

    monocytic leukemia cancer cells ( THP -1) were also tested and the results 19 demonstrate that a preference for apoptosis in plasma treated THP -1...unanswered questions. We have tested the effects of indirect exposure of non-thermal air plasma on monocytic leukemia cancer cells ( THP -1) and deciphering... tested and the results are shown in Fig. above. The results demonstrate that a preference for apoptosis in plasma treated THP -1 cells under

  18. Self-organization process of a magnetohydrodynamic plasma in the presence of thermal conduction

    International Nuclear Information System (INIS)

    Zhu, Shao-ping; Horiuchi, Ritoku; Sato, Tetsuya; Watanabe, K.; Hayashi, T.; Todo, Y.; Watanabe, T.H.; Kageyama, A.; Takamaru, H.

    1995-12-01

    A self-organization process of a magnetohydrodynamic(MHD) plasma with a finite thermal conductivity is investigated by means of a three-dimensional MHD simulation. With no thermal conduction an MHD system self-organizes to a non-Taylor's state in which the electric current perpendicular to the magnetic field remains comparable to the parallel electric current. In the presence of thermal conductivity the perpendicular component of electric current and the nonuniformity of thermal pressure generated by driven reconnection tend to be smoothened. Thus, the self-organized state approaches to a force-free minimum energy state under the influence of thermal conduction. Detailed energy conversion processes are also studied to find that the rapid decay of magnetic energy during the self-organization process is caused not only through the ohmic heating, but also through the work done by the j x B force. (author)

  19. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Vaidhyanathan, V.; Markocsan, N.; Gupta, M.; Pala, Zdeněk; Lukáč, František

    2018-01-01

    Roč. 44, č. 3 (2018), s. 3161-3172 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Columnar Thermal Barrier Coatings * Axial Suspension Plasma spraying * Thermal Cyclic Fatigue * High Velocity Air Fuel Spraying Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.986, year: 2016 https://www.sciencedirect.com/science/article/pii/S0272884217325403

  20. Thermal effects in intense laser-plasma interactions

    International Nuclear Information System (INIS)

    Shadwick, B.A.; Tarkenton, G.M.; Esarey, E.H.

    2004-01-01

    We present an overview of a new warm fluid model that incorporates leading-order kinetic corrections to the cold fluid model without making any near-equilibrium assumptions. In the quasi-static limit we obtain analytical expressions for the momentum spread and show excellent agreement with solutions of the full time-dependant equations. It is shown that over a large range of initial plasma temperatures, the fields are relatively insensitive to the pressure force. We discuss implications of this work for model validation

  1. Nonthermal fusion reactor concept based on Hall-effect magnetohydrodynamics plasma theory

    International Nuclear Information System (INIS)

    Witalis, E.A.

    1988-01-01

    The failure of magnetic confinement controlled thermonuclear fusion research to achieve its goal is attributed to its foundation on the incomplete MHD plasma description instead of the more general HMHD (Hall-effect magnetohydrodynamics) theory. The latter allows for a certain magnetic plasma self-confinement under described stringent conditions. A reactor concept based on the formation, acceleration, and forced disintegration of magnetized whirl structures, plasmoids, is proposed. The four conventional MHD theory objections, i.e., absence of dynamo action, fast decay caused by resistivity, non-existence of magnetic self-confinement, and negligible non-thermal fusion yield, are shown not to apply. Support for the scheme from dense plasma focus research is pointed out. (orig.) [de

  2. Effect of high voltage atmospheric cold plasma on white grape juice quality.

    Science.gov (United States)

    Pankaj, Shashi Kishor; Wan, Zifan; Colonna, William; Keener, Kevin M

    2017-09-01

    This study focuses on the effects of novel, non-thermal high voltage atmospheric cold plasma (HVACP) processing on the quality of grape juice. A quality-based comparison of cold plasma treatment with thermal pasteurization treatment of white grape juice was done. HVACP treatment of grape juice at 80 kV for 4 min resulted in a 7.4 log 10 CFU mL -1 reduction in Saccharomyces cerevisiae without any significant (P > 0.05) change in pH, acidity and electrical conductivity of the juice. An increase in non-enzymatic browning was observed, but total color difference was very low and within acceptable limits. Spectrophotometric measurements showed a decrease in total phenolics, total flavonoids, DPPH free radical scavenging and antioxidant capacity, but they were found to be comparable to those resulting from thermal pasteurization. An increase in total flavonols was observed after HVACP treatments. HVACP treatment of white grape juice at 80 kV for 2 min was found to be comparable to thermal pasteurization in all analyzed quality attributes. HVACP has shown the potential to be used as an alternative to thermal treatment of white grape juice. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Plasma spheroidization of iron powders in a non-transferred DC thermal plasma jet

    International Nuclear Information System (INIS)

    Kumar, S.; Selvarajan, V.

    2008-01-01

    In this paper, the results of plasma spheroidization of iron powders using a DC non-transferred plasma spray torch are presented. The morphology of the processed powders was characterized through scanning electron microscopy (SEM) and optical microscopy (OM). The percentages of spheroidized powders were calculated by the shape factors such as the Irregularity Parameter (IP) and Roundness (RN). A maximum of 83% of spheroidization can be achieved. The spheroidization results are compared with the theoretical estimation and they are found to be in good agreement. The phase composition of the spheroidized powder was analyzed by XRD. The effect of plasma jet temperature and plasma gas flow rate on spheroidization is discussed. At low plasma gas flow rates and at high plasma jet temperatures, the percentage of spheroidization is high

  4. SUPPRESSION OF PARALLEL TRANSPORT IN TURBULENT MAGNETIZED PLASMAS AND ITS IMPACT ON THE NON-THERMAL AND THERMAL ASPECTS OF SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Nicolas H.; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Emslie, A. Gordon, E-mail: n.bian@physics.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2016-06-20

    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares.

  5. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-07-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  6. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  7. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Pt. II. Analysis of ITER plasma facing components

    International Nuclear Information System (INIS)

    Federici, G.; Raffray, A.R.

    1997-01-01

    For pt.I see ibid., p.85-100, 1997. The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the various ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness. (orig.)

  8. Protective properties of the plasma of burnt and irradiated rats with respect to the lethal effect of endotoxins in vivo

    International Nuclear Information System (INIS)

    Budagov, R.S.; Chureeva, L.N.

    1984-01-01

    Intraperitoneal injection of endotoxins s. typhimurium and E. coli to preliminarily irradiated rats resulted in death of 80% of animals during 24 hours. At combined injection of endoxins with heterologic plasma of intact rats death decreased to 12 and 19% respectively. Deep burn of skin, acute radiation sickness and combined radiation-thermal injury did not eliminate the given phenomenon of humoral detoxication; at different periods after thermal, radiation and combined effects plasma of test rats produced protective effect practically the same as at the control

  9. Mechanical characterization of W-armoured plasma-facing components after thermal fatigue

    International Nuclear Information System (INIS)

    Serret, D; Richou, M; Missirlian, M; Loarer, T

    2011-01-01

    The future fusion device ITER is aimed at demonstrating the scientific and technical feasibility of fusion power. Tens of thousands of W-armoured plasma-facing components (PFCs) will be installed in the vertical targets of the ITER divertor and subjected to a high heat flux. The purpose of this paper is to present the results of mechanical and microstructural characterization of tungsten PFCs after thermal fatigue tests. On each component, Vickers hardness measurements are made. In parallel, the mean grain diameter in the corresponding zone of tungsten material is determined. The empirical Hall-Petch relation was adapted to experimental data. However, due to the plateau effect on recrystallization hardness, this relation does not seem to be relevant once recrystallization is complete: a new approach is proposed for predicting the margin to the tungsten melting onset.

  10. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    Science.gov (United States)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  11. Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal.

    Science.gov (United States)

    Sun, Yongli; Zhou, Libo; Zhang, Luhong; Sui, Hong

    2012-01-01

    A wire-mesh catalyst coated by La0.8Sr0.2MnO3 was combined with a dielectric barrier discharge (DBD) reactor for toluene removal at atmospheric pressure. It was found that toluene removal efficiency and carbon dioxide selectivity were enhanced in the catalytic packed-bed reactor. In addition, ozone and nitrogen monoxide from the gas effluent byproducts decreased. This is the first time that ultrasound combined with plasma has been used for toluene removal. A synergistic effect on toluene removal was observed in the plasma-assisted ultrasound system. At the same time, the system increased toluene conversion and reduced ozone emission.

  12. Modeling and Data Needs of Atmospheric Pressure Gas Plasma and Biomaterial Interaction

    International Nuclear Information System (INIS)

    Sakiyama, Yukinori; Graves, David B.

    2009-01-01

    Non-thermal atmospheric pressure plasmas have received considerable attention recently. One promising application of non-thermal plasma devices appears to be biomaterial and biomedical treatment. Various biological and medical effects of non-thermal plasmas have been observed by a variety of investigators, including bacteria sterilization, cell apoptosis, and blood coagulation, among others. The mechanisms of the plasma-biomaterial interaction are however only poorly understood. A central scientific challenge is therefore how to answer the question: 'What plasma-generated agents are responsible for the observed biological effects?' Our modeling efforts are motivated by this question. In this paper, we review our modeling results of the plasma needle discharge. Then, we address data needs for further modeling and understanding of plasma-biomaterial interaction

  13. Chemical and physical reactions under thermal plasmas conditions

    International Nuclear Information System (INIS)

    Fauchais, P.; Vardelle, A.; Vardelle, M.; Coudert, J.F.

    1987-01-01

    Basic understanding of the involved phenomena lags far behind industrial development that requires now a better knowledge of the phenomena to achieve a better control of the process allowing to improve the quality of the products. Thus the authors try to precise what is their actual knowledge in the fields of: plasma generators design; plasma flow models with the following key points: laminar or turbulent flow, heat transfer to walls, 2D or 3D models, non equilibrium effects, mixing problems when chemical reactions are to be taken into account with very fast kinetics, electrode regions, data for transport properties and kinetic rates; nucleation problems; plasma flow characteristics measurements: temperature or temperatures and population of excited states (automatized emission spectroscopy, LIF, CARS) as well as flow velocity (LDA with small particles, Doppler effects...); plasma and particles momentum and heat transfer either with models taking into account particles size and injection velocity distributions, heat propagation, vaporization, Kundsen effect, turbulences ... or with measurements: particles velocity and flux distributions (Laser Anemometry) as well as surface temperature distributions (two colour pyrometry in flight statistical or not)

  14. Study of the thermal and suprathermal electron density fluctuations of the plasma in the Focus experiment

    International Nuclear Information System (INIS)

    Jolas, A.

    1981-10-01

    An experiment on Thomson scattering of ruby laser light by the electrons of a plasma produced by an intense discharge between the electrodes of a coaxial gun in a gas at low pressure has been carried out. It is shown that the imploding plasma is made up of layers with different characteristics: a dense plasma layer where the density fluctuations are isotropic and have a thermal level, and a tenuous plasma layer where the fluctuations are anisotropic, and strongly suprathermal. The suprathermal fluctuations are attributed to microscopic instabilities generated by the electric current circulating in the transition zone where the magnetic field penetrates the plasma [fr

  15. A simple spectroscopic method for determining the temperature in H2O-Ar thermal plasma jet

    Czech Academy of Sciences Publication Activity Database

    Sember, Viktor; Mašláni, Alan

    2009-01-01

    Roč. 13, č. 2 (2009), s. 217-228 ISSN 1093-3611. [European High Temperature Plasma Processes (HTPP)/10th./. Patras (Patras University), 07.07.2008-11.07.2008] R&D Projects: GA ČR GA202/08/1084; GA MPO FT-TA4/050 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma jets * spectroscopic diagnostics * mole-fraction gradients Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.333, year: 2009

  16. Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes

    Science.gov (United States)

    Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun

    2017-10-01

    Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.

  17. Effect of disruptions on plasma-facing components

    International Nuclear Information System (INIS)

    Gilligan, J.G.; Bourham, M.A.; Tucker, E.C.

    1995-01-01

    Erosion of plasma-facing components during disruptions is a limiting factor in the design of large tokamaks like ITER. During a disruption, much of the stored thermal energy of the plasma will be dumped onto divertor plates, resulting in local heat fluxes, which may exceed 100 GW/m 2 over a period of about 0.1--1.0 msec. Melted and/or vaporized material is produced which is redistributed in the divertor region. Simulation of disruption damage is summarized from code results and from experimental exposure of materials to high heat-flux plasmas in plasma guns. In the US several codes have been used to predict both melt/vaporization and heat transfer on surfaces as well as energy and momentum transport in the vapor/plasma shield produced at the surface

  18. On the effect of electron's runaway in partially ionized hydrogen semiclassical nonideal plasma

    International Nuclear Information System (INIS)

    Turekhanova, K.M.

    2011-01-01

    Complete text of publication follows. The effect of runaway electrons occurs frequently in tokamak plasmas. The majority of experiments in tokamak research have been devoted to the study of confinement properties of runaway electrons. Runaway electrons are reason of various destroying untolarance in tokamak plasmas. At high plasma density, when the critical energy is comparable with the rest energy the multiplication of runaway electrons accelerate at the sacrifice of increase of plasma density. The plasma conductivity is determined by electrons with energy several times higher than the thermal one and does not practically depend on slower electrons distribution. It is important to analyze the probability of runaway electrons at investigation of physical properties of nonideal plasmas under external electric field and running numerical simulations of their. The present paper is devoted to the investigation of effect of runaway electrons in partially ionized hydrogen dense plasma using the effective potentials of particle's interaction. At the investigation of composition of plasma we used the Saha equation with corrections to nonideality (lowering of ionization potentials). The Saha equation was solved for obtaining of plasma ionization stages at the different number density and temperature. As well, when take into account quantum-mechanical diffraction and screening effects, whereas free path of electrons increases with increase of plasma coupling parameter. The condition for appearance of runaway electrons in semiclassical partially ionized plasma is more favorable in regime of dense plasma. In summary it means that the probability of runaway electron in dense plasma is more than the same in rarified plasma that is possibly connected with formation of some ordered structures in dense plasma.

  19. The energy partitioning of non-thermal particles in a plasma: the Coulomb logarithm revisited

    International Nuclear Information System (INIS)

    Singleton, Robert L Jr; Brown, Lowell S

    2008-01-01

    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated exactly to leading and next-to-leading accuracy in the plasma density by Brown, Preston and Singleton (BPS). Since the calculational techniques of BPS might be unfamiliar to some, and since the same methodology can also be used for other energy transport phenomena, we will review the main ideas behind the calculation. BPS used their stopping power calculation to derive a Fokker-Planck equation, also accurate to leading and next-to-leading orders, and we will also review this. We use this Fokker-Planck equation to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion-more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible. One method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows down and becomes thermalized into the background plasma, this method of calculating the electron-ion energy splitting breaks down. As a result, it suffers a systematic error that may be as large as T/E 0 , where T is the plasma temperature and E 0 is the initial energy of the charged particle. The formalism presented here is designed to account for the thermalization process and it provides results that are near-exact.

  20. Influence of ECR-RF plasma modification on surface and thermal properties of polyester copolymer

    Directory of Open Access Journals (Sweden)

    Fray Miroslawa El

    2015-12-01

    Full Text Available In this paper we report a study on influence of radio-frequency (RF plasma induced with electron cyclotron resonance (ECR on multiblock copolymer containing butylene terephthalate hard segments (PBT and butylene dilinoleate (BDLA soft segments. The changes in thermal properties were studied by DSC. The changes in wettability of PBT-BDLA surfaces were studied by water contact angle (WCA. We found that ECR-RF plasma surface treatment for 60 s led to decrease of WCA, while prolonged exposure of plasma led to increase of WCA after N2 and N2O2 treatment up to 70°–80°. The O2 reduced the WCA to 50°–56°. IR measurements confirmed that the N2O2 plasma led to formation of polar groups. SEM investigations showed that plasma treatment led to minor surfaces changes. Collectively, plasma treatment, especially O2, induced surface hydrophilicity what could be beneficial for increased cell adhesion in future biomedical applications of these materials.

  1. The role of non-thermal atmospheric pressure biocompatible plasma in the differentiation of osteoblastic precursor cells, MC3T3-E1.

    Science.gov (United States)

    Han, Ihn; Choi, Eun Ha

    2017-05-30

    Non-thermal atmospheric pressure plasma is ionized matter, composed of highly reactive species that include positive ions, negative ions, free radicals, neutral atoms, and molecules. Recent reports have suggested that non-thermal biocompatible plasma (NBP) can selectively kill a variety of cancer cells, and promote stem cell differentiation. However as of yet, the regulation of proliferation and differentiation potential of NBP has been poorly understood.Here, we investigated the effects of NBP on the osteogenic differentiation of precursor cell lines of osteoblasts, MC3T3 E1 and SaOS-2. For in vitro osteogenic differentiation, precursor cell lines were treated with NBP, and cultured with osteogenic induction medium. After 10 days of treatment, the NBP was shown to be effective in osteogenic differentiation in MC3T3 E1 cells by von Kossa and Alizarin Red S staining assay. Real-time PCR was then performed to investigate the expression of osteogenic specific genes, Runx2, OCN, COL1, ALP and osterix in MC3T3 E1 cells after treatment with NBP for 4 days. Furthermore, analysis of the protein expression showed that NBP treatment significantly reduced PI3K/AKT signaling and MAPK family signaling. However, p38 controlled phosphorylation of transcription factor forkhead box O1 (FoxO1) that related to cell differentiation with increased phosphorylated p38. These results suggest that non-thermal atmospheric pressure plasma can induce osteogenic differentiation, and enhance bone formation.

  2. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process

    Science.gov (United States)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-01

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  3. Estimation of the thermal diffusion coefficient in fusion plasmas taking frequency measurement uncertainties into account

    International Nuclear Information System (INIS)

    Van Berkel, M; Hogeweij, G M D; Van den Brand, H; De Baar, M R; Zwart, H J; Vandersteen, G

    2014-01-01

    In this paper, the estimation of the thermal diffusivity from perturbative experiments in fusion plasmas is discussed. The measurements used to estimate the thermal diffusivity suffer from stochastic noise. Accurate estimation of the thermal diffusivity should take this into account. It will be shown that formulas found in the literature often result in a thermal diffusivity that has a bias (a difference between the estimated value and the actual value that remains even if more measurements are added) or have an unnecessarily large uncertainty. This will be shown by modeling a plasma using only diffusion as heat transport mechanism and measurement noise based on ASDEX Upgrade measurements. The Fourier coefficients of a temperature perturbation will exhibit noise from the circular complex normal distribution (CCND). Based on Fourier coefficients distributed according to a CCND, it is shown that the resulting probability density function of the thermal diffusivity is an inverse non-central chi-squared distribution. The thermal diffusivity that is found by sampling this distribution will always be biased, and averaging of multiple estimated diffusivities will not necessarily improve the estimation. Confidence bounds are constructed to illustrate the uncertainty in the diffusivity using several formulas that are equivalent in the noiseless case. Finally, a different method of averaging, that reduces the uncertainty significantly, is suggested. The methodology is also extended to the case where damping is included, and it is explained how to include the cylindrical geometry. (paper)

  4. Effect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available In an incoherent scattering radar experiment, the spectral measurement of the so-called up- and downshifted electron plasma lines provides information about their intensity and their Doppler frequency. These two spectral lines correspond, in the backscatter geometry, to two Langmuir waves travelling towards and away from the radar. In the daytime ionosphere, the presence of a small percentage of photoelectrons produced by the solar EUV of the total electron population can excite or damp these Langmuir waves above the thermal equilibrium, resulting in an enhancement of the intensity of the lines above the thermal level. The presence of photo-electrons also modifies the dielectric response function of the plasma from the Maxwellian and thus influences the Doppler frequency of the plasma lines. In this paper, we present a high time-resolution plasma-line data set collected on the Eiscat VHF radar. The analysed data are compared with a model that includes the effect of a suprathermal electron population calculated by a transport code. By comparing the intensity of the analysed plasma lines data to our model, we show that two sharp peaks in the electron suprathermal distribution in the energy range 20-30 eV causes an increased Landau damping around 24.25 eV and 26.25 eV. We have identified these two sharp peaks as the effect of the photoionisation of N2 and O by the intense flux of monochromatic HeII radiation of wavelength 30.378 nm (40.812 eV created in the chromospheric network and coronal holes. Furthermore, we see that what would have been interpreted as a mean Doppler drift velocity for a Maxwellian plasma is actually a shift of the Doppler frequency of the plasma lines due to suprathermal electrons.

    Key words. Ionosphere (electric fields and currents; solar radiation and cosmic ray effects

  5. Effect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    1999-07-01

    Full Text Available In an incoherent scattering radar experiment, the spectral measurement of the so-called up- and downshifted electron plasma lines provides information about their intensity and their Doppler frequency. These two spectral lines correspond, in the backscatter geometry, to two Langmuir waves travelling towards and away from the radar. In the daytime ionosphere, the presence of a small percentage of photoelectrons produced by the solar EUV of the total electron population can excite or damp these Langmuir waves above the thermal equilibrium, resulting in an enhancement of the intensity of the lines above the thermal level. The presence of photo-electrons also modifies the dielectric response function of the plasma from the Maxwellian and thus influences the Doppler frequency of the plasma lines. In this paper, we present a high time-resolution plasma-line data set collected on the Eiscat VHF radar. The analysed data are compared with a model that includes the effect of a suprathermal electron population calculated by a transport code. By comparing the intensity of the analysed plasma lines data to our model, we show that two sharp peaks in the electron suprathermal distribution in the energy range 20-30 eV causes an increased Landau damping around 24.25 eV and 26.25 eV. We have identified these two sharp peaks as the effect of the photoionisation of N2 and O by the intense flux of monochromatic HeII radiation of wavelength 30.378 nm (40.812 eV created in the chromospheric network and coronal holes. Furthermore, we see that what would have been interpreted as a mean Doppler drift velocity for a Maxwellian plasma is actually a shift of the Doppler frequency of the plasma lines due to suprathermal electrons.Key words. Ionosphere (electric fields and currents; solar radiation and cosmic ray effects

  6. Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension.

    Science.gov (United States)

    Galář, Pavel; Khun, Josef; Kopecký, Dušan; Scholtz, Vladimír; Trchová, Miroslava; Fučíková, Anna; Jirešová, Jana; Fišer, Ladislav

    2017-11-08

    Non-thermal plasma has proved its benefits in medicine, plasma assisted polymerization, food industry and many other fields. Even though, the ability of non-thermal plasma to modify surface properties of various materials is generally known, only limited attention has been given to exploitations of this treatment on conductive polymers. Here, we show study of non-thermal plasma treatment on properties of globular and nanostructured polypyrrole in the distilled water. We observe that plasma presence over the suspension level doesn't change morphology of the polymer (shape), but significantly influences its elemental composition and physical properties. After 60 min of treatment, the relative concentration of chloride counter ions decreased approximately 3 and 4 times for nanostructured and globular form, respectively and concentration of oxygen increased approximately 3 times for both forms. Simultaneously, conductivity decrease (14 times for globular and 2 times for nanostructured one) and changes in zeta potential characteristics of both samples were observed. The modification evolution was dominated by multi-exponential function with time constants having values approximately 1 and 10 min for both samples. It is expected that these time constants are related to two modification processes connected to direct presence of the spark and to long-lived species generated by the plasma.

  7. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  8. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  9. Evaluation of thermal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1H qNMR and GC-MS coupled to chemometrics.

    Science.gov (United States)

    Alves Filho, Elenilson G; Silva, Lorena Mara A; de Brito, Edy S; Wurlitzer, Nedio Jair; Fernandes, Fabiano A N; Rabelo, Maria Cristiane; Fonteles, Thatyane V; Rodrigues, Sueli

    2018-11-01

    The effects of thermal (pasteurization and sterilization) and non-thermal (ultrasound and plasma) processing on the composition of prebiotic and non-prebiotic acerola juices were evaluated using NMR and GC-MS coupled to chemometrics. The increase in the amount of Vitamin C was the main feature observed after thermal processing, followed by malic acid, choline, trigonelline, and acetaldehyde. On the other hand, thermal processing increased the amount of 2-furoic acid, a degradation product from ascorbic acid, as well as influenced the decrease in the amount of esters and alcohols. In general, the non-thermal processing did not present relevant effect on juices composition. The addition of prebiotics (inulin and gluco-oligosaccharides) decreased the effect of processing on juices composition, which suggested a protective effect by microencapsulation. Therefore, chemometric evaluation of the 1 H qNMR and GC-MS dataset was suitable to follow changes in acerola juice under different processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Partial local thermal equilibrium in a low-temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Hey, J.D.; Chu, C.C.; Rash, J.P.S.

    1999-01-01

    If the degree of ionisation is sufficient, competition between de-excitation by electron collisions and radiative decay determines the smallest principal quantum number (the so-called 'thermal limit') above which partial local thermodynamic equilibrium (PLTE) holds under the particular conditions of electron density and temperature. The LTE (PLTE) criteria of Wilson (JQSRT 1962;2:477-90), Griem (Phys Rev 1963;131:1170-6; Plasma Spectroscopy. New York: McGraw-Hill, 1964), Drawin (Z Physik 1969;228: 99-119), Hey (JQSRT 1976;16:69-75), and Fujimoto and McWhirter (Phys Rev A 1990;42:6588-601) are examined as regards their applicability to neutral atoms. For these purposes, we consider for simplicity an idealised, steady-state, homogeneous and primarily optically thin plasma, with some additional comments and numerical estimates on the roles of opacity and of atom-atom collisions. Particularly for atomic states of lower principal quantum number, the first two of the above criteria should be modified quite appreciably before application to neutral radiators in plasmas of low temperature, because of the profoundly different nature of the near-threshold collisional cross-sections for atoms and ions, while the most recent criterion should be applied with caution to PLTE of atoms in cold plasmas in ionisation balance. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Damage of first wall materials in fusion reactors under nonstationary thermal effects

    International Nuclear Information System (INIS)

    Maslaev, S.A.; Platonov, Yu.M.; Pimenov, V.N.

    1991-01-01

    The temperature distribution in the first wall of a fusion reactor was calculated for nonstationary thermal effects of the type of plasma destruction or the flow of 'running electrons' taking into account the melting of the surface layer of the material. The thickness of the resultant damaged layer in which thermal stresses were higher than the tensile strength of the material is estimated. The results were obtained for corrosion-resisting steel, aluminium and vanadium. Flowing down of the molten layer of the material of the first wall is calculated. (author)

  12. Direct synthesis of nano-sized glass powders with spherical shape by RF (radio frequency) thermal plasma

    International Nuclear Information System (INIS)

    Seo, J.H.; Kim, J.S.; Lee, M.Y.; Ju, W.T.; Nam, I.T.

    2011-01-01

    A new route for obtaining very small, spheroid glass powders is demonstrated using an RF (radio frequency) thermal plasma system. During the process, four kinds of chemicals, here SiO 2 , B 2 O 3 , BaCO 3 , and K 2 CO 3 , were mixed at pre-set weight ratios, spray-dried, calcined at 250 deg. C for 3 h, and crushed into fragments. Then, they were successfully reformed into nano-sized amorphous powders (< 200 nm) with spherical shape by injecting them along the centerline of an RF thermal plasma reactor at ∼ 24 kW. The as-synthesized powders show negligible (< 1%) composition changes when compared with the injected precursors of raw material compounds.

  13. Microstructural modifications induced by rapid thermal annealing in plasma deposited SiOxNyHz films

    International Nuclear Information System (INIS)

    Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G.; Bravo, D.; Lopez, F.J.; Fernandez, M.; Martinez, F.L.

    2003-01-01

    The effect of rapid thermal annealing (RTA) processes on the structural properties of SiO x N y H z films was investigated. The samples were deposited by the electron cyclotron resonance plasma method, using SiH 4 , O 2 and N 2 as precursor gases. For SiO x N y H z films with composition close to that of SiO 2 , which have a very low H content, RTA induces thermal relaxation of the lattice and improvement of the structural order. For films of intermediate composition and of compositions close to SiN y H z , the main effect of RTA is the release of H at high temperatures (T>700 deg. C). This H release is more significant in films containing both Si-H and N-H bonds, due to cooperative reactions between both kinds of bonds. In these films the degradation of structural order associated to H release prevails over thermal relaxation, while in those films with only N-H bonds, thermal relaxation predominates. For annealing temperatures in the 500-700 deg. C range, the passivation of dangling bonds by the nonbonded H in the films and the transition from the paramagnetic state to the diamagnetic state of the K center result in a decrease of the density of paramagnetic defects. The H release observed at high annealing temperatures is accompanied by an increase of density of paramagnetic defects

  14. Hyper-resistivity and electron thermal conductivity due to destroyed magnetic surfaces in axisymmetric plasma equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Weening, R. H. [Department of Radiologic Sciences, Thomas Jefferson University, 901 Walnut Street, Philadelphia, Pennsylvania 19107-5233 (United States)

    2012-06-15

    In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport in regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.

  15. Plasma technology for treatment of waste

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Fusion Center

    1997-12-31

    Meeting goals for waste cleanup will require new technology with improved environmental attractiveness and reduced cost. Plasma technology appears promising because of the high degree of controllability; capability to process waste without the adverse effects of combustion; and a very wide temperature range of operation. At the Plasma Fusion Center at the Massachusetts Institute of Technology, a range of plasma technologies are being investigated. `Hot` thermal plasmas produced by DC arc technology are being examined for treatment of solid waste. In conjunction with this activity, new diagnostics are being developed for monitoring arc furnace operating parameters and gaseous emissions. Electron-beam generated plasma technology is being investigated as a means of producing non-thermal `cold` plasmas for selective processing of dilute concentrations of gaseous waste. (author). 4 figs., 5 refs.

  16. Protective properties of plasma of burnt and irradiated rats against lethal effect of endotoxins in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Budagov, R S; Chureyeva, L N

    1984-10-01

    The purpose of this work was to estimate protective properties of plasma in disease with increased endotoxemia. Burns and acute radiation sickness were used as models of suppression of physiological mechanisms of detoxication. Experiments were performed on male Wistar rats and mice, which received 3rd degree burns over 15% of the body surface, whole body gamma irradiation at 7.5 Gr or both. At 3 hours, 3, 7 and 12 days after the exposure the animals were decapitated and blood collected. The irradiated mice received 0.2 ml endotoxin intraperitoneally, 1.0 ml freshly prepared rat plasma, then the lethality of the mice in 24 hours was observed. It was found that the plasma of intact rats was capable of decreasing the lethal effects of S. typhimurium and E. coli endotoxins in vivo in mice. Deep skin burns, acute radiation sickness and the combined effects of radiation and thermal injury did not change this phenomenon. The plasma of the experimental rats retained the protective properties at various periods of time after the thermal, radiation and combined exposures. The functioning of the humoral detoxication mechanism is radioresistant, indirectly indicating the nonimmunoglobulin nature of endotoxin inactivators. 19 references.

  17. Incineration/vitrification of radioactive wastes and combustion of pyrolysis gases in thermal plasmas; Incineration/vitrification de dechets radioactifs et combustion de gaz de pyrolyse en plasma d`arc

    Energy Technology Data Exchange (ETDEWEB)

    Girold, Ch. [CEA de la Vallee du Rhone, Departement de Retraitement des Dechets et du Demantelemnet, 30 - Marcoule (France)]|[Limoges Univ., 87 (France)

    1997-03-01

    Two thermal plasma processes used for incineration of radioactive technological wastes (cellulose, plastics, rubber...) have been investigated. First, the different types of radioactive wastes are presented, with a special attention to those which may benefit from a high temperature thermal treatment. The most significant thermal plasma processes, suitable for this goal, are described. Then, the author deals with the post-combustion, in an oxygen plasma jet reactor, of gases from burnable radioactive waste pyrolysis. An experimental planning method as been used to evaluate the combustion performances in the reactor, with a wide range of gas composition and running parameters such as oxygen excess and electrical power. The results of a modeling of kinetics, based on 116 chemicals reactions between 25 species, are compared with experimental values. Finally, an oxygen plasma reactor where the arc is transferred on a basalt melt is experimented. The efficiency of the combustion and the homogeneity of the glass are discussed. The volatility of some glass elements and tracers added to the wastes is also approached in two different ways: by post-trial material balance and by an optical emission spectroscopic method. The author built a diagnostic method that allows the following versus time of the metallic vapours above the melt. (author) 51 refs.

  18. Towards the understanding of non-thermal airplasma action: effects on bacteria and fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Jäger, Aleš; Polívka, Leoš; Syková, Eva; Terebova, N.; Kulikov, A.; Kubinová, Šárka; Dejneka, Alexandr

    2016-01-01

    Roč. 6, č. 30 (2016), 25286-25292 ISSN 2046-2069 R&D Projects: GA MŠk(CZ) LM2011026; GA MŠk(CZ) LO1309 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : non-thermal plasma * bactericidal effects * medical applications Subject RIV: BO - Biophysics Impact factor: 3.108, year: 2016

  19. Magnetic properties of nanocrystalline CoFe{sub 2}O{sub 4} synthesized by thermal plasma in large scale

    Energy Technology Data Exchange (ETDEWEB)

    Nawale, A.B.; Kanhe, N.S. [Department of Physics, University of Pune, Pune 411007 (India); Patil, K.R. [Center for Materials Characterizations, National Chemical Laboratory, Dr. Hommi Bhabha Road, Pashan, Pune 411008 (India); Reddy, V.R.; Gupta, A. [UGC-DAE Consortium for Scientific Research, Indore Centre, University Campus, Khandwa Road, Indore 452 017 (India); Kale, B.B. [Center for Materials for Electronics Technology, Department of Information Technology, Government of India, Panchawati, Off Pashan Road, Pune 411008 (India); Bhoraskar, S.V. [Department of Physics, University of Pune, Pune 411007 (India); Mathe, V.L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India); Das, A.K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2012-12-14

    The paper reports the large scale synthesis of nanoparticles of CoFe{sub 2}O{sub 4} using thermal plasma reactor by gas phase condensation method. The yield of formation was found to be around 15 g h{sup -1}. The magnetic properties of CoFe{sub 2}O{sub 4}, synthesized at different reactor powers, were investigated in view of studying the effect of operating parameters of plasma reactor on the structural reorganization leading to the different cation distribution. The values of saturation magnetization, coercivity and remanent magnetization were found to be influenced by input power in thermal plasma. Although the increase in saturation magnetization was marginal (61 emu g{sup -1} to 70 emu g{sup -1}) with increasing plasma power; a significant increase in the coercivity (552 Oe to 849 Oe) and remanent magnetization (16 emu g{sup -1} to 26 emu g{sup -1}) were also noticed. The Moessbauer spectra showed mixed spinel structure and canted spin order for the as synthesized nanoparticles. The detailed analysis of cation distribution using the Moessbauer spectroscopy and X-ray photoelectron spectroscopy leads to the conclusion that the sample synthesized at an optimized power shows the different site selective states. -- Highlights: Black-Right-Pointing-Pointer A rapid synthesis method for synthesizing magnetic nanoparticles of cobalt ferrite. Black-Right-Pointing-Pointer The average particle size ranges between 25 and 40 nm; as revealed by the FESEM analysis. Black-Right-Pointing-Pointer Magnetic properties are influenced by different operating parameters.

  20. The magnetic vapour shield effect at divertor plates during plasma disruptions

    International Nuclear Information System (INIS)

    Piazza, G.; Goel, B.; Hoebel, W.; Wuerz, H.; Landman, I.

    1995-01-01

    Hard disruptions in a TOKAMAK cause a large thermal load on the divertor plates with an instantaneous ablation of a part of the heated material. The produced vapour cloud screens the plasma facing component from the direct interaction with the disrupting plasma (vapour shield effect). In order to quantify the damage to the divertor the magneto-hydrodynamic behaviour of the expanding vapour cloud has been investigated using an extended version of the 1-dimensional Lagrangian hydrodynamic code KATACO. Modelling of the magnetic field effects on the expanding plasma takes into account that the magnetic field is oblique to the divertor (1 1/2 dimensional model). The ''Radiation Heat Conduction Approximation'' has been used for describing the radiative energy transport. In this paper results are presented assuming graphite as divertor material, irradiated with a proton beam of an energy density of 12MJ/m 2 and a duration of 100μs. (orig.)

  1. An investigation of the treatment of particulate matter from gasoline engine exhaust using non-thermal plasma

    International Nuclear Information System (INIS)

    Ye Dan; Gao Dengshan; Yu Gang; Shen Xianglin; Gu Fan

    2005-01-01

    A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 μm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions

  2. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang XiaoNing; Xia WeiDong [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Li HePing [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Murphy, Anthony B. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  3. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Science.gov (United States)

    Zhang, Xiao-Ning; Li, He-Ping; Murphy, Anthony B.; Xia, Wei-Dong

    2013-03-01

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that me/mh ≪ 1, where me and mh are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  4. Saturated Resin Ectopic Regeneration by Non-Thermal Dielectric Barrier Discharge Plasma

    Directory of Open Access Journals (Sweden)

    Chunjing Hao

    2017-11-01

    Full Text Available Textile dyes are some of the most refractory organic compounds in the environment due to their complex and various structure. An integrated resin adsorption/Dielectric Barrier Discharge (DBD plasma regeneration was proposed to treat the indigo carmine solution. It is the first time to report ectopic regeneration of the saturated resins by non-thermal Dielectric Barrier Discharge. The adsorption/desorption efficiency, surface functional groups, structural properties, regeneration efficiency, and the intermediate products between gas and liquid phase before and after treatment were investigated. The results showed that DBD plasma could maintain the efficient adsorption performance of resins while degrading the indigo carmine adsorbed by resins. The degradation rate of indigo carmine reached 88% and the regeneration efficiency (RE can be maintained above 85% after multi-successive regeneration cycles. The indigo carmine contaminants were decomposed by a variety of reactive radicals leading to fracture of exocyclic C=C bond, which could cause decoloration of dye solution. Based on above results, a possible degradation pathway for the indigo carmine by resin adsorption/DBD plasma treatment was proposed.

  5. Modulation instability of ion thermal waves in a pair-ion plasma containing charged dust impurities

    International Nuclear Information System (INIS)

    Sabry, R.

    2008-01-01

    Modulation instability of ion thermal waves (ITWs) is investigated in a plasma composed of positive and negative ions as well as a fraction of stationary charged (positive or negative) dust impurities. For this purpose, a linear dispersion relation and a nonlinear Schroedinger equation are derived. The latter admits localized envelope solitary wave solutions of bright (pulses) and dark (holes, voids) type. The envelope soliton depends on the intrinsic plasma parameters. It is found that modulation instability of ITWs is significantly affected by the presence of positively/negatively charged dust grains. The findings of this investigation should be useful in understanding the stable electrostatic wave packet acceleration mechanisms in pair-ion plasma, and also enhances our knowledge on the occurrence of instability associated to the existence of charged dust impurities in pair-ion plasmas. Our results should be of relevance for laboratory plasmas.

  6. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    Science.gov (United States)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  7. Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: The rigorous relativistic kinetic theory

    International Nuclear Information System (INIS)

    Yoon, P. H.; Schlickeiser, R.; Kolberg, U.

    2014-01-01

    Any fully ionized collisionless plasma with finite random particle velocities contains electric and magnetic field fluctuations. The fluctuations can be of three different types: weakly damped, weakly propagating, or aperiodic. The kinetics of these fluctuations in general unmagnetized plasmas, governed by the competition of spontaneous emission, absorption, and stimulated emission processes, is investigated, extending the well-known results for weakly damped fluctuations. The generalized Kirchhoff radiation law for both collective and noncollective fluctuations is derived, which in stationary plasmas provides the equilibrium energy densities of electromagnetic fluctuations by the ratio of the respective spontaneous emission coefficient and the true absorption coefficient. As an illustrative example, the equilibrium energy densities of aperiodic transverse collective electric and magnetic fluctuations in an isotropic thermal electron-proton plasmas of density n e are calculated as |δB|=√((δB) 2 )=2.8(n e m e c 2 ) 1/2 g 1/2 β e 7/4 and |δE|=√((δE) 2 )=3.2(n e m e c 2 ) 1/2 g 1/3 β e 2 , where g and β e denote the plasma parameter and the thermal electron velocity in units of the speed of light, respectively. For densities and temperatures of the reionized early intergalactic medium, |δB|=6·10 −18 G and |δE|=2·10 −16 G result

  8. Effects of nuclear forces on ion thermalization in high-temperature plasmas

    International Nuclear Information System (INIS)

    Gould, R.J.

    1982-01-01

    The energy loss rate is computed for a fast nonrelativistic ion traversing a plasma, with special emphasis on the basic problem of proton-proton ( p-p) interactions. Elastic p-p scattering is described in terms of the effective range r 0 and scattering length a 0 associated with the nuclear interaction. The nuclear s-wave phase shift (delta 0 ) in the presence of the Coulomb field is computed as a function of energy E 0 from the r 0 -a 0 formalism; delta 0 has a very weak energy dependence, essentially logarithmic, in the 1-100 MeV domain

  9. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  10. Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Akoshima, Megumi; Takahashi, Satoru

    2017-09-01

    Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.

  11. Effects of Warmness and Spatial Nonuniformity of the Plasma Waveguide on Periodic Absolute Parametric Instability

    International Nuclear Information System (INIS)

    Zaki, N.G.; Bekheit, A.H.

    2011-01-01

    The periodic absolute parametric instability (API) of the low-frequency oscillations excited by a monochromatic pumping field of arbitrary amplitude in a warm I-D nonuniform magneto active plasma is investigated. One can use the separation method to solve the two-fluid plasma equations which describe the system. The method used enables us to determine the frequencies and growth rates of unstable modes and the self-consistent electric field. Plasma electrons are considered to have a thermal velocity. One can examine different solutions for the spatial equation in the following cases: A) API in uniform Plasma B) API in nonuniform plasma, we study this case for two variants: B.1) Exact harmonic oscillator and B.2) Bounded harmonic oscillator (bounded plasma). Increment is found in the buildup of the oscillations, and it is shown that the spatial nonuniformity of the plasma exerts a stabilizing effect on the parametric instability. It is shown that the growth rate of API in warm plasma is reduced compared to cold plasma. It is found also that the warmness of the plasma has no effect on the solution of the space part of the problem ( only through the separation constant )

  12. Effects of warmness and spatial nonuniformity of plasma waveguide on periodic absolute parametric instability

    International Nuclear Information System (INIS)

    Zaki, N.G.; Bekheit, A.H.

    2011-01-01

    The periodic absolute parametric instability (API) of the low-frequency oscillations excited by a monochromatic pumping field of an arbitrary amplitude in a warm 1-D (one-dimensional) nonuniform magnetoactive plasma is investigated. The separation method can be used for solving the two-fluid plasma equations describing the system. By applying this method we were able to determine the frequencies and growth rates of unstable modes and the self-consistent electric field. Plasma electrons are considered to have a thermal velocity. Different solutions for the spatial equation can be obtained the following cases: A) API in a uniform plasma, B) API in a nonuniform plasma. The latter has been studied here for two cases: B.1) the exact harmonic oscillator and B.2) the bounded harmonic oscillator (a bounded plasma). An increment has been found in the build-up of the oscillations, and it has been shown that the spatial nonuniformity of the plasma exerts the stabilizing effect on the parametric instability. A reduced growth rate of API in the warm plasma, in comparison to the cold plasma, is reported. It has also been found that the warmness of the plasma has no effect on the solution of the space part of the problem (only through the separation constant). (authors)

  13. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  14. Effect of vapor plasma on the coupling of laser radiation with aluminum targets

    Energy Technology Data Exchange (ETDEWEB)

    Shui, V H; Kivel, B; Weyl, G M

    1978-12-01

    The effect of vapor plasma on thermal and impulse coupling of laser radiation with aluminum targets is studied to understand and explain experimental data showing anomalously high coupling to 10.6-micron laser radiation. Heating of vapor by inverse bremsstrahlung absorption of laser radiation, subsequent reradiation in the uv and deep uv by ionized species, and vapor layer growth are modeled. A computer code has been developed to solve the governing equations. Major conclusions include the following: (1) vapor plasma radiative transport can be an important mechanism for laser/target coupling, (2) aluminum vapor (density times thickness) approximately equal to 10 to the 17th power/sq cm (corresponding to about 0.01 micron of target material) can result in thermal coupling coefficients of 20% or more, and (3) too much vapor reduces the net flux at the target.

  15. THE STABILITY OF OPTICALLY THIN REACTING PLASMAS: EFFECTS OF THE BULK VISCOSITY

    International Nuclear Information System (INIS)

    Ibanez S, Miguel H.

    2009-01-01

    The thermochemical stability of reacting plasmas is analyzed by taking into account the change in the thermodynamical equilibrium values during the fluctuation. This shift in the equilibrium produces two main effects: a change in the four instability criteria for reacting gases resulting when the above effect is neglected and adds a fifth instability criterion due to the fact that the corresponding secular equation becomes a fifth-order polynomial. The above results are applied to several plasma models, in particular, to a photoionized hydrogen plasma for which the bulk viscosity can be more important than the dynamic viscosity and the thermometric conductivity. Therefore, the bulk viscosity may quench thermochemical instabilities were the thermal conduction is unable of stabilizing. This occurs for low values of the photoionizing energy E. The implications of the above results in explaining the formation of clump structures in different regions of the interstellar medium are outlined.

  16. Synthesis of cobalt boride nanoparticles using radio frequency thermal plasma

    International Nuclear Information System (INIS)

    Lapitan, Jr. Lorico DS.; Ying Ying Chen; Seesoek Choe; Watanabe, Takayuki

    2012-01-01

    Nano size cobalt boride particles were synthesized from vapor phase using a 30 kw-4 MHz radio frequency (RF) thermal plasma. Cobalt and boron powder mixtures used as precursors in different composition and feed rate were evaporated immediately in the high temperature plasma and cobalt boride nanoparticles were produced through the quenching process. The x-ray diffractometry (XRD) patterns of cobalt boride nanoparticles prepared from the feed powder ratio of 1:2 and 1:3 for Co: B showed peaks that are associated with the Co 2 B and CoB crystal phases of cobalt boride. The XRD analysis revealed that increasing the powder feed rate results in a higher mass fraction and a larger crystalline diameter of cobalt boride nanoparticles. The images obtained by field emission scanning electron microscopy (FE-SEM) revealed that cobalt boride nanoparticles have a spherical morphology. The crystallite size of the particles estimated with XRD was found to be 18-22 nm. (author)

  17. Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma

    KAUST Repository

    Lacoste, Deanna; Moeck, Jonas P.; Roberts, William L.; Chung, Suk-Ho; Cha, Min

    2016-01-01

    The step responses of lean methane-air flames to non-thermal plasma forcing is reported. The experimental setup consists of an axisymmetric burner, with a nozzle made of a quartz tube. The equivalence ratio is 0.95, allowing stabilization

  18. The subtle interplay of elastic and inelastic collisions in the thermalization of the quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul [Theoretical Physics, CEA, Saclay (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mehtar-Tani, Yacine [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States)

    2016-12-15

    Using kinetic theory, we analyze the interplay of elastic and inelastic collisions in the thermalization of the quark-gluon plasma. The main focus is the dynamics and equilibration of long wavelength modes.

  19. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process.

    Science.gov (United States)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-25

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  20. Beam-plasma discharge in a Kyoto beam-plasma-ion source

    International Nuclear Information System (INIS)

    Ishikawa, J.; Takagi, T.

    1983-01-01

    A beam-plasma type ion source employing an original operating principle has been developed by the present authors. The ion source consists of an ion extraction region with an electron gun, a thin long drift tube as the plasma production chamber, and a primary electron beam collector. An electron beam is effectively utilized for the dual purpose of high density plasma production as a result of beam-plasma discharge, and high current ion beam extraction with ion space-charge compensation. A high density plasma of the order of 10 11 --10 13 cm -3 was produced by virtue of the beam-plasma discharge which was caused by the interaction between a space-charge wave on the electron beam and a high frequency plasma wave. The plasma density then produced was 10 2 --10 3 times the density produced only by collisional ionization by the electron beam. In order to obtain a stable beam-plasma discharge, a secondary electron beam emitted from the electron collector should be utilized. The mechanism of the beam-plasma discharge was analyzed by use of a linear theory in the case of the small thermal energy of the electron beam, and by use of a quasilinear theory in the case of the large thermal energy. High current ion beams of more than 0.1 A were extracted even at a low extraction voltage of 1--5 kV

  1. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing

  2. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma

    NARCIS (Netherlands)

    Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantis, A.V.; Sanden, van de M.C.M.; De Hosson, J.T.M.

    2014-01-01

    Flexible hydrogenated amorphous carbon (a-C:H) thin film coated on rubbers has shown outstanding protection of rubber seals from friction and wear. This work concentrates on the potential advances of expanding thermal plasma (ETP) process for a high throughput deposition of a-C:H thin films in

  3. Influence of plasma-induced energy deposition effects, the equation of state, thermal ionization, pulse shaping, and radiation on ion-beam-driven expansions of plane metal targets

    International Nuclear Information System (INIS)

    Long, K.A.; Tahir, N.A.

    1986-01-01

    In a previous paper by Long and Tahir [Phys. Fluids 29, 275 (1986)], the motion of plane targets irradiated by ion beams whose energy deposition was assumed to be independent of the ion energy, and the temperature and density of the plasma, was analyzed. In this paper, the analytic solution is extended in order to include the effects of a temperature-and density-dependent energy deposition as a result of electron excitation, an improved equation of state, thermal ionization, a pulse shape, and radiation losses. The change in the energy deposition with temperature and density leads to range shortening and an increased power deposition in the target. It is shown how the analytic theory can be used to analyze experiments to measure the enhanced energy deposition. In order to further analyze experiments, numerical simulations are presented which include the plasma-induced effects on the energy deposition. It is shown that since the change in the range is due to both decrease in density and the increase in temperature, it is not possible to separate these two effects in present experiments. Therefore, the experiments which measure the time-dependent energy of the ions emerging from the back side of a plane target do not as yet measure the energy loss as a function of the density and temperature of the plasma or of the energy of the ion, but only an averaged loss over certain ranges of these physical quantities

  4. Complementary variational principle method applied to thermal conductivities of a plasma in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, A K; Gupta, S C [Punjabi Univ., Patiala (India). Dept. of Physics

    1982-12-14

    The complementary variational principles method (CVP) is applied to the thermal conductivities of a plasma in a uniform magnetic field. The results of computations show that the CVP derived results are very useful.

  5. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  6. Influence of non-equilibrium effects on plasma property functions in hybrid water-argon plasma torch

    Czech Academy of Sciences Publication Activity Database

    Křenek, Petr; Hrabovský, Milan

    2010-01-01

    Roč. 14, 1-2 (2010), s. 95-100 ISSN 1093-3611. [European High Temperature Plasma Processes (HTPP)/10th./. Patras (Patras University), 07.07.2008-11.07.2008] R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * material properties * non-equlibrium phenomena * dc arc torch Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.189, year: 2010 http://www.begellhouse.com/journals/57d172397126f956,227c67f42b79464a,5bbc4c7760b4b6cb.html

  7. The roles of turbulence on plasma heating

    International Nuclear Information System (INIS)

    Kawamura, Takaichi; Kawabe, Takaya.

    1976-06-01

    In this paper, the characteristic features of the turbulent heating are reviewed, which is considered to be one of the strong candidates of the further heating method in fusion reactor systems, referring to the works in the Institute of Plasma Physics, Nagoya University. The roles of turbulence in plasma heating including toroidal plasma heating are discussed from several points of view. The relation between the heating rate of plasma particles and the thermalization (randomization) frequency is theoretically investigated and the role of plasma turbulence in the fast thermalization is shown. The experimental results on fluctuation and heating of electrons and ions in turbulently heated plasmas are presented. The influence of turbulence, which is responsible for the particle heating, on the diffusion across the confinement magnetic field is considered for the application in the toroidal plasmas. It is pointed out that the turbulent fields in the fast turbulent heating give only a minor effect to the loss of particles across the magnetic field. It can be said that the enhanced fluctuation in turbulent plasma gives its field energy to the plasma particles while it can play the role of the fast thermalization of the ordered motion of particles that is produced in the plasma by some acceleration process. (Kato, T.)

  8. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    Science.gov (United States)

    Felix, T.; Cassini, F. A.; Benetoli, L. O. B.; Dotto, M. E. R.; Debacher, N. A.

    2017-05-01

    The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, RRMS (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91(PET) and 0.88(PEEK), β = 0.25(PET) and z = 3,64(PET).

  9. Deactivation of Escherichia coli by the plasma needle

    International Nuclear Information System (INIS)

    Sladek, R E J; Stoffels, E

    2005-01-01

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 10 4 -10 5 colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40 deg. C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60 deg. C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively

  10. Deactivation of Escherichia coli by the plasma needle

    Energy Technology Data Exchange (ETDEWEB)

    Sladek, R E J; Stoffels, E [Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2005-06-07

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 10{sup 4}-10{sup 5} colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40 deg. C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60 deg. C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively.

  11. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.A.; Cowgill, D.F.; Snead, L.L.

    1993-01-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1--5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits

  12. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.W.; Cowgill, D.F.

    1993-01-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1-5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits. (orig.)

  13. Transport coefficients for the plasma thermal energy and empirical scaling ''laws''

    International Nuclear Information System (INIS)

    Coppi, B.

    1989-01-01

    A set of transport coefficients has been identified for the electron and nuclei thermal energy of plasmas with temperatures in the multi-keV range, taking into account the available experimental information including the temperature spatial profiles and the inferred scaling ''laws'' for the measured energy replacement times. The specific form of these coefficients is suggested by the theory of a mode, so-called ''ubiquitous,'' that can be excited when a significant fraction of the electron population has magnetically trapped orbits. (author)

  14. Maximum thermal energy density in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Coppi, B.

    1977-01-01

    The consequences of the limiting value of β that follows from analyzing the onset of high temperature ballooning modes is examined in high temperature regimes where the ideal MHD approximation is not strictly valid and for finite-β configurations exhibiting the main features of those that are obtained by magnetic flux conservation. These modes are localized over periodically space intervals of a given magnetic field line and are driven by the combined effects of finite plasma pressure and the locally unfavorable magnetic curvature. The effects of finite β, insofar as they shorten the effective connection length, steepen the pressure gradient, and influence the magnetic well dug by the plasma, are studied using a model dispersion relation. 14 references

  15. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma

    Czech Academy of Sciences Publication Activity Database

    Lunov, O.; Zablotskyy, V.; Churpita, O.; Jäger, A.; Polívka, L.; Syková, Eva; Dejneka, A.; Kubinová, Šárka

    2016-01-01

    Roč. 82, mar. (2016), s. 71-83 ISSN 0142-9612 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : non-thermal plasma * bacteria * cytotoxicity Subject RIV: FP - Other Medical Disciplines Impact factor: 8.402, year: 2016

  16. Effect of Local Thermal Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves

    Energy Technology Data Exchange (ETDEWEB)

    Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Afanasyev, A. N. [Institute of Solar-Terrestrial Physics SB RAS, P.O. Box 291, Lermontov St. 126A, Irkutsk 664033 (Russian Federation); Kumar, S.; Moon, Y.-J., E-mail: V.Nakariakov@warwick.ac.uk [School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi (Korea, Republic of)

    2017-11-01

    Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that represents a coronal loop or plume, is modeled accounting for the effects of finite gas pressure, weak nonlinearity, dissipation by thermal conduction and viscosity, and the misbalance between the cooling by optically thin radiation and unspecified heating of the plasma. An evolutionary equation of the Burgers–Malthus type is derived. It is shown that the cooling/heating misbalance, determined by the derivatives of the combined radiative cooling and heating function, with respect to the density, temperature, and magnetic field at the thermal equilibrium affect the wave rather strongly. This effect may either cause additional damping, or counteract it, or lead to the gradual amplification of the wave. In the latter case, the coronal plasma acts as an active medium for the slow magnetoacoustic waves. The effect of the cooling/heating misbalance could be important for coronal slow waves, and could be responsible for certain discrepancies between theoretical results and observations, in particular, the increased or decreased damping lengths and times, detection of the waves at certain heights only, and excitation of compressive oscillations. The results obtained open up a possibility for the diagnostics of the coronal heating function by slow magnetoacoustic waves.

  17. Comment on “Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma” [Phys. Plasmas 20, 072703 (2013)

    International Nuclear Information System (INIS)

    Habibi, M.; Ghamari, F.

    2014-01-01

    Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)

  18. Enthalpy probe measurements and three-dimensional modelling on air plasma jets generated by a non-transferred plasma torch with hollow electrodes

    International Nuclear Information System (INIS)

    Kim, Keun Su; Park, Jin Myung; Choi, Sooseok; Kim, Jongin; Hong, Sang Hee

    2008-01-01

    Thermal flow characteristics of air plasma jets generated by a non-transferred plasma torch with hollow electrodes are experimentally and numerically investigated in order to provide more reliable scientific and technical information, which has been insufficient for their practical applications to material and environmental industries. In this work, a thermal plasma torch of hollow electrode type is first designed and fabricated, and similarity criteria for predicting operational conditions for the scale-up to high-power torches are derived from the arc voltage characteristics measured with various operating and geometry conditions of the torch. The thermal flow characteristics of air plasma jets ejected from the torch are measured by enthalpy probe diagnostics and turn out to have relatively low temperatures of around 3000-7000 K, but show features of other unique properties, such as high energy flux, broad high temperature region and long plasma jet with moderate axial velocity, which are promising for their applications to material syntheses and hazardous waste treatments. Such high enthalpy at a relatively low temperature of air thermal plasma compared with the argon one is due to the high thermal energy residing in the vibrational and rotational states and oxygen dissociation, besides the translational states in monatomic gases such as argon. It is expected that this high specific enthalpy of the air plasma will enable material and environmental industries to treat a large amount of precursors and waste materials effectively at a lower temperature for a longer residence time by the low plasma velocity. It is also found from the measurements that the turbulence intensity influenced by the size of the electrode diameter has a significant effect on the axial and radial profiles of plasma jet properties and that a longer plasma jet is more readily achievable with a larger electrode diameter reducing the turbulence intensity in the external region of the torch. In

  19. Thermal and nonthermal electron cyclotron emission by high-temperature tokamak plasmas

    International Nuclear Information System (INIS)

    Airoldi, A.; Ramponi, G.

    1997-01-01

    An analysis of the electron cyclotron emission (ECE) spectra emitted by a high-temperature tokamak plasma in the frequency range of the second and third harmonic of the electron cyclotron frequency is made, both in purely Maxwellian and in non-Maxwellian cases (i.e., in the presence of a current-carrying superthermal tail). The work is motivated mainly by the experimental observations made in the supershot plasmas of the Tokamak Fusion Test Reactor (TFTR), where a systematic disagreement is found between the T e measurements by second-harmonic ECE and Thomson scattering. We show that, by properly taking into account the overlap of superthermals-emitted third harmonic with second-harmonic bulk emission, the radiation temperature observed about the central frequency of the second harmonic may be enhanced up to 30%endash 40% compared to the corresponding thermal value. Moreover we show that, for parameters relevant to the International Thermonuclear Experimental Reactor (ITER) with T e (0)>7 keV, the overlap between the second and the downshifted third harmonic seriously affects the central plasma region, so that the X-mode emission at the second harmonic becomes unsuitable for local T e measurements. copyright 1997 American Institute of Physics

  20. Study on the effects of physical plasma on in-vitro cultivates cells

    International Nuclear Information System (INIS)

    Strassenburg, Susanne

    2014-03-01

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  1. Analysis of the flow structure of a turbulent thermal plasma jet

    International Nuclear Information System (INIS)

    Spores, R.A.

    1989-01-01

    The goal of this research project is to attain a better understanding of the fluid mechanics associated with the high temperature jet of a thermal plasma torch. The analysis of a plasma, which has the ability to vaporize anything placed inside it without proper cooling, presents a unique research challenge. Several types of non-intrusive diagnostic techniques has been used to examine the jet from different perspectives. To actually map out the mean gas velocities and turbulence intensities throughout the jet, laser Doppler anemometry has been employed. The plasma gas and entrained air him been seeded separately in order to conditionally sample the two fluids and attain information about the gas mixing process. Both radial and axial turbulence levels have been measured in order to analyze the non-isotropic nature of the jet. A parabolic numerical code has been modified and compared with the obtained experimental results. A new diagnostic technique for plasma torches, which involves the spectral analysis of voltage, optical (temperature), and acoustical (pressure) fluctuations, has been implemented. The acoustical spectrum can provide information about the existence of coherent structures in the flow while the cross correlation of the acoustical signal with the voltage fluctuations can tell one to what extent perturbations of the internal arc affect the external flow. Since temperature is a scalar that is dependent on the flow field, observing temperature fluctuations can likewise help one to understand the mechanics of the flow. Flow visualization of the plasma jet using a high speed video camera has also been undertaken in order to better understand the entrainment process

  2. Plasma Treatment of Agave Fiber Powder and Its Effect on the Mechanical and Thermal Properties of Composites Based on Polyethylene

    Directory of Open Access Journals (Sweden)

    Florentino Soriano Corral

    2016-01-01

    Full Text Available Composites based on low-density polyethylene (LDPE were prepared with Agave fiber powder (AFP that was coated by plasma polymerization process using ethylene gas. Treated and pristine AFP were analyzed by infrared spectroscopy, scanning electron microscopy, and contact water angle for the assessment of surface properties. The polymer composites were prepared by melt mixing using 0, 5, 10, and 20 wt% of AFP and their mechanical and thermal properties were measured. Dispersion evaluation in water confirmed that the AFP treated changed from hydrophilic to hydrophobic behavior and it was also corroborated with water contact angle tests. The addition of treated and untreated AFP (200 mesh at 20 wt% promotes an increase of Young’s modulus of the composites of up to 60% and 32%, respectively, in relation to the neat matrix. Also, an increase of crystallinity of LDPE was observed by the addition of treated and untreated AFP; however no significant effect on the crystallization temperature was observed in LDPE containing AFP.

  3. Wiedemann-Franz ratio in high-pressure and low-temperature thermal xenon plasma with 10% caesium

    International Nuclear Information System (INIS)

    Novakovic, N.V.; Milic, B.S.; Stojilkovic, S.M.

    1995-01-01

    Theoretical investigations of various transport properties of low-temperature noble-gas plasmas with additives has aroused a continuous interest over a considerable spall of time, due to numerous applications. In this paper the results of a theoretical evaluation of electrical conductivity, thermal conductivity and their ratio (the Wiedemann-Franz ratio) in xenon plasma with 10% of argon and 10% of caesium are presented, for the temperature range from 2000 K to 20000 K, and for pressures equal to or 5, 10, and 15 time higher than the normal atmospheric pressure. The plasma was regarded as weakly non-ideal and in the state of local thermodynamical equilibrium with the assumption that the equilibrium is attained with the pressure kept constant. The plasma composition was determined on the ground of a set of Saha equations; the ionization energy lowerings were expressed with the aid of a modified plasma Debye radius r* D (rather than the standard r D ), as proposed previously

  4. Spectroscopic diagnostics of industrial plasmas

    International Nuclear Information System (INIS)

    Joshi, N.K.

    2004-01-01

    Plasmas play key role in modern industry and are being used for processing micro electronic circuits to the destruction of toxic waste. Characterization of industrial plasmas which includes both 'thermal plasmas' and non-equilibrium plasmas or 'cold plasmas' in industrial environment offers quite a challenge. Numerous diagnostic techniques have been developed for the measurement of these partially ionized plasma and/or particulate parameters. The 'simple' non-invasive spectroscopic methods for characterization of industrial plasmas will be discussed in detail in this paper. The excitation temperature in thermal (DC/RF) plasma jets has been determined using atomic Boltzmann technique. The central axis temperature of thermal plasma jets in a spray torch can be determined using modified atomic Boltzmann technique with out using Abel inversion. The Stark broadening of H β and Ar-I (430 nm) lines have been used to determine the electron number density in thermal plasma jets. In low-pressure non-equilibrium argon plasma, electron temperature has been measured using the Corona model from the ratio of line intensities of atomic and ionic transitions. (author)

  5. Transfer anisotropy in a turbulent plasma

    International Nuclear Information System (INIS)

    Bychenkov, V.Y.; Gradov, O.M.; Silin, V.P.

    1982-01-01

    We formulate a theory for transfer phenomena in a plasma with developed ion-sound turbulence. A transfer anisotropy effect caused by a temperature gradient is revealed. The corresponding fluxes transverse to the effective force vector (1) which generates the turbulence turn out to be considerably larger than the longitudinal fluxes in a plasma with a relatively small degree of nonisothermality. For a strongly nonisothermal plasma a suppression of the transverse fluxes takes place and corresponds to a growth of the thermal insulation of the current-carrying plasma filaments

  6. The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling

    NARCIS (Netherlands)

    van Eden, G. G.; Morgan, T. W.; van der Meiden, H. J.; J Matejicek,; T Chraska,; Wirtz, M.; De Temmerman, G.

    2014-01-01

    The performance of the full-W ITER divertor may be significantly affected by the interplay between steady-state plasma exposure and transient events. To address this issue, the effect of a high-flux H plasma on the thermal shock response of W to ELM-like transients has been investigated. Transient

  7. Disinfection of Streptococcus mutans biofilm by a non-thermal atmospheric plasma brush

    Science.gov (United States)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Wang, Yong; Yu, Qingsong

    2016-07-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. Streptococcus mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite (HA) discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using 3-(4,5-dimethylazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% bacterial reduction in the biofilms was observed after 1 min plasma treatment. Scanning electron microscopy (SEM) examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. Confocal laser scanning microscopy (CLSM) showed that plasma treatment was effective as deep as 20 µm into the biofilms. When combined with antibiotic treatment using 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment.

  8. Preliminary degradation process study of infectious biological waste in a 5 k W thermal plasma equipment.; Estudio Preliminar de Proceso de degradacion de residuos biologico-infecciosos en un equipo de plasma termico de 5 kW

    Energy Technology Data Exchange (ETDEWEB)

    Xochihua S M, M C

    1998-12-31

    This work is a preliminary study of infectious biological waste degradation process by thermal plasma and was made in Thermal Plasma Applications Laboratory of Environmental Studies Department of the National Institute of Nuclear Research (ININ). Infectious biological waste degradation process is realized by using samples such polyethylene, cotton, glass, etc., but the present study scope is to analyze polyethylene degradation process with mass and energy balances involved. Degradation method is realized as follow: a polyethylene sample is put in an appropriated crucible localized inside a pyrolysis reactor chamber, the plasma jet is projected to the sample, by the pyrolysis phenomena the sample is degraded into its constitutive particles: carbon and hydrogen. Air was utilized as a recombination gas in order to obtain the higher percent of CO{sub 2} if amount of O{sub 2} is greater in the recombination gas, the CO generation is reduced. The effluent gases of exhaust pyrolysis reactor through are passed through a heat exchanger to get cooled gases, the temperature water used is 15 Centigrade degrees. Finally the gases was tried into absorption tower with water as an absorbent fluid. Thermal plasma degradation process is a very promising technology, but is necessary to develop engineering process area to avail all advantages of thermal plasma. (Author).

  9. Aging effects on vertical graphene nanosheets and their thermal stability

    Science.gov (United States)

    Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.

    2018-03-01

    The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

  10. Generation of poloidal magnetic field in a hot collisional plasma by inverse Faraday effect

    International Nuclear Information System (INIS)

    Srivastava, M.K.; Lawande, S.V.; Dutta, D.; Sarkar, S.; Khan, M.; Chakraborty, B.

    1996-01-01

    Generation of poloidal magnetic field in a hot and collisional plasma by an inverse Faraday effect is discussed. This field can either be induced by a circularly polarized laser beam (CPLB) or a plane-polarized laser beam (PPLB). For the CPLB, an average field left-angle Re x right-angle ∼I 0 λ∼11.6 MG could be produced in a DT plasma for a high intensity (I 0 =10 22 W/m 2 ) and shorter wavelength (λ=0.35 μm) laser. This field is essentially induced by the field inhomogeneity effect and dominates over that induced by the plasma inhomogeneity effect (left-angle Re x right-angle ∼I 2/3 0 λ 7/3 ∼2.42 MG). The collisional and thermal contribution to left-angle Re x right-angle is just negligible for the CPLB. However, in the case of PPLB the poloidal field is generated only for a hot and collisional plasma and can be quite large for a longer wavelength laser (e.g., CO 2 laser, λ=10.6 μm). The collisional effect induces a field left-angle Re x right-angle ∼0.08 kG, which dominates near the turning point and is independent of the laser parameters. However, in the outer cronal region the thermal pressure effect dominates (e.g., left-angle Re x right-angle ∼I 5/3 0 λ 4/3 ∼3.0 MG). Further, left-angle Re x right-angle for the p-polarized beam is, in general, relatively smaller than that for the s-polarized beam. Practical implications of these results and their limitations are discussed. copyright 1996 American Institute of Physics

  11. The effect of radiation induced electrical conductivity (RIC) on the thermal conductivity

    International Nuclear Information System (INIS)

    White, D.P.

    1993-01-01

    Microwave heating of plasmas in fusion reactors requires the development of microwave windows through which the microwaves can pass without great losses. The degradation of the thermal conductivity of alumina in a radiation environment is an important consideration in reliability studies of these microwave windows. Several recent papers have addressed this question at higher temperatures and at low temperatures. The current paper extends the low temperature calculations to determine the effect of phonon-electron scattering on the thermal conductivity at 77 K due to RIC. These low temperature calculations are of interest because the successful application of high power (>1 MW) windows for electron cyclotron heating systems in fusion reactors will most likely require cryogenic cooling to take advantage of the low loss tangent and higher thermal conductivity of candidate window materials at these temperatures

  12. Plasma effects on subcellular structures

    International Nuclear Information System (INIS)

    Gweon, Bomi; Kim, Dan Bee; Jung, Heesoo; Choe, Wonho; Kim, Daeyeon; Shin, Jennifer H.

    2010-01-01

    Atmospheric pressure helium plasma treated human hepatocytes exhibit distinctive zones of necrotic and live cells separated by a void. We propose that plasma induced necrosis is attributed to plasma species such as oxygen radicals, charged particles, metastables and/or severe disruption of charged cytoskeletal proteins. Interestingly, uncharged cytoskeletal intermediate filaments are only minimally disturbed by plasma, elucidating the possibility of plasma induced electrostatic effects selectively destroying charged proteins. These bona fide plasma effects, which inflict alterations in specific subcellular structures leading to necrosis and cellular detachment, were not observed by application of helium flow or electric field alone.

  13. Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind

    Science.gov (United States)

    Couturier, P.; Hoang, S.; Meyer-Vernet, N.; Steinberg, J. L.

    1983-01-01

    The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P.

  14. High-power heating experiment of spherical tokamaks by use of plasma merging

    International Nuclear Information System (INIS)

    Ueda, Yoshinobu; Ono, Yasushi

    1999-01-01

    High-power heating of spherical tokamaks (STs) has been investigated experimentally by use of plasma merging effect. When two STs were coaxially collided, thermal energy of a colliding ST was injected into a target ST during short reconnection time (Alfven time). Though the thermal energy increment increased with decreasing plasma q value, thermal energy loss during the following relaxation, tended to be smaller with increasing q. The produced high-β STs had hallower current profiles and weaker paramagnetic toroidal field than those of single STs. Those heating properties indicate the plasma merging to be a promising initial heating method of ST plasmas. (author)

  15. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus.

    Science.gov (United States)

    Xu, Yingyin; Tian, Ying; Ma, Ruonan; Liu, Qinghong; Zhang, Jue

    2016-04-15

    Non-thermal plasma is a new approach to improving microbiological safety while maintaining the sensory attributes of the treated foods. Recent research has reported that plasma activated water (PAW) can also efficiently inactivate a wide variety of microorganisms. This study invested the effects of plasma-activated water soaking on the postharvest preservation of button mushrooms (Agaricus bisporus) over seven days of storage at 20°C. Plasma activated water reduced the microbial counts by 1.5 log and 0.5 log for bacteria and fungi during storage, respectively. Furthermore, the corresponding physicochemical and biological properties were assessed between plasma activated water soaking groups and control groups. The results for firmness, respiration rate and relative electrical conductivity suggested that plasma activated water soaking can delay mushroom softening. Meanwhile, no significant change was observed in the color, pH, or antioxidant properties of A. bisporus treated with plasma activated water. Thus, plasma activated water soaking is a promising method for postharvest fresh-keeping of A. bisporus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. RMP-Flutter-Induced Pedestal Plasma Transport

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J. D.; Hegna, C., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison (United States); Cole, A. J. [Columbia University, New York (United States)

    2012-09-15

    Full text: Plasma toroidal rotation can prevent or limit reconnection of externally applied resonant magnetic perturbation (RMP) fields {delta}B on rational magnetic flux surfaces. Hence, it causes the induced radial perturbations to vanish or be small there, and thereby inhibits magnetic island formation and stochasticity in the edge of high (H-mode) confinement tokamak plasmas. However, the radial component of the spatial magnetic flutter induced by RMP fields off rational surfaces causes a radial electron thermal diffusivity of (1/2)({delta}B{sub p}/B){sup 2} times a magnetic-shear-influenced effective parallel electron thermal diffusivity. The resultant RMP-flutter-induced electron thermal diffusivity can be comparable to experimentally inferred values at the top of H-mode pedestals. This process also causes a factor of about 3 smaller RMP-induced electron density diffusivity there. Because this electron density transport is non-ambipolar, it produces a toroidal torque on the plasma, which is usually in the co-current direction. Kinetic-based cylindrical screw-pinch and toroidal models of these RMP-flutter-induced plasma transport effects have been developed. The RMP-induced increases in these diffusive plasma transport processes are typically spatially inhomogeneous in that they are strongly peaked near the rational surfaces in low collisionality pedestals, which may lead to resonant sensitivities to the local safety factor q. The effects can be large enough to reduce the radially averaged gradients of the electron temperature and density at the top of H-mode edge pedestals, and modify the plasma toroidal rotation and radial electric field there. At high collisionality the various effects are less strongly peaked at rational surfaces and thus less likely to exhibit RMP-induced resonant behavior. These RMP-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize

  17. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma

    International Nuclear Information System (INIS)

    Yin Yunpeng; Sawin, Herbert H.

    2008-01-01

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO 2 ), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followed the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide

  18. Formation of polyhedral ceria nanoparticles with enhanced catalytic CO oxidation activity in thermal plasma via a hydrogen mediated shape control mechanism

    International Nuclear Information System (INIS)

    Zheng Jie; Zhang Yaohua; Song Xubo; Li Xingguo

    2011-01-01

    Ceria nanoparticles with well defined facets are prepared in argon–hydrogen thermal plasma followed by controlled oxidation. With increasing hydrogen fraction in the plasma, a clear sphere-to-polyhedron shape transition is observed. The heat released during the hydrogenation of cerium, which significantly enhances the species mobility on the surface, favors the growth of well defined facets. The polyhedron ceria nanoparticles, though lower in specific surface area, exhibit superior catalytic performance for CO oxidation over the round particles, which is attributed to the higher density of the reactive {200} and {220} facets on the surface. The hydrogen mediated shape control mechanism provides new insights into the shape control of nanoparticles during thermal plasma processing.

  19. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Directory of Open Access Journals (Sweden)

    Jia Chengchang

    2010-01-01

    Full Text Available Abstract Carbon nanotube–copper (CNT/Cu composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

  20. Coulomb thermal properties and stability of the Io plasma torus

    Science.gov (United States)

    Barbosa, D. D.; Coroniti, F. V.; Eviatar, A.

    1983-01-01

    Coulomb collisional energy exchange rates are computed for a model of the Io plasma torus consisting of newly created pickup ions, a background of thermally degraded intermediary ions, and a population of cooler electrons. The electrons are collisionally heated by both the pickup ions and background ions and are cooled by electron impact excitation of plasma ions which radiate in the EUV. It is found that a relative concentration of S III pickup ions forbidden S III/electrons = 0.1 with a temperature of 340 eV can deliver energy to the electrons at a rate of 3 x 10 to the -13th erg/cu cm per sec, sufficient to power the EUV emissions in the Io torus. The model predicts a background ion temperature Ti of about 53 eV and an electron temperature Te of about 5.5 eV on the basis of steady-state energy balance relations at Coulomb rates. The model also predicts electron temperature fluctuations at the 30 percent level on a time scale of less than 11 hours, consistent with recent observations of this phenomenon.

  1. Functionalization of polymer surfaces by medium frequency non-thermal plasma

    Science.gov (United States)

    Felix, T.; Trigueiro, J. S.; Bundaleski, N.; Teodoro, O. M. N. D.; Sério, S.; Debacher, N. A.

    2018-01-01

    This work addresses the surface modification of different polymers by argon dielectric barrier discharge, using bromoform vapours. Atomic Force Microscopy and Scanning Electron Microscopy showed that plasma etching occurs in stages and may be related to the reach of the species generated and obviously the gap between the electrodes. In addition, the stages of flatten surface or homogeneity may be the result of the transient crosslinking promoted by the intense UV radiation generated by the non- thermal plasma. X-ray Photoelectron Spectroscopy analysis showed that bromine was inserted on the polymer surface as Csbnd Br bonds and as adsorbed HBr. The obtained results demonstrate that the highest degree of bromofunctionalization was achieved on polypropylene surface, which contains about 8,5% of Br. After its derivatization in ammonia, Br disappeared and about 6% of nitrogen in the form of amine group was incorporated at the surface. This result can be considered as a clear fingerprint of the Br substitution by the amine group, thus illustrating the efficiency of the proposed method for functionalization of polymer surfaces.

  2. Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Song, Mi-Young; Jung, Young-Dae

    2003-01-01

    Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4

  3. Covariant kinetic dispersion theory of linear transverse waves parallel propagating in magnetized plasmas with thermal anisotropy

    International Nuclear Information System (INIS)

    Lazar, M.; Schlickeiser, R.

    2006-01-01

    The properties of transverse waves parallel propagating in magnetized plasmas with arbitrary composition and thermally anisotropic, are investigated on the basis of relativistic Vlasov-Maxwell equations. The transverse dispersion relations for plasmas with arbitrary distribution functions are derived. These dispersion relations describe the linear response of the system to the initial perturbations and thus define all existing linear (transverse) plasma modes in the system. By analytic continuation the dispersion relations in the whole complex frequency plane are constructed. Further analysis is restricted to the important case of anisotropic bi-Maxwellian equilibrium plasma distribution functions. Explicit forms of the relativistically correct transverse dispersion relations are derived that hold for any values of the plasma temperatures and the temperature anisotropy. In the limit of nonrelativistic plasma temperatures the dispersion relations are expressed in terms of plasma dispersion function, however, the dependence on frequency and wave numbers is markedly different from the standard noncovariant nonrelativistic analysis. Only in the strictly unphysical formal limit of an infinitely large speed of light, c→∞, does the nonrelativistic dispersion relations reduce to the standard noncovariant dispersion relations

  4. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  5. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium

    International Nuclear Information System (INIS)

    Sodha, M. S.; Mishra, S. K.

    2011-01-01

    The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

  6. Remotely controlled cutting techniques in the field of nuclear decommissioning. Overview of effectively applied thermal cutting methods

    International Nuclear Information System (INIS)

    Bienia, H.; Klotz, B.

    2008-01-01

    This article describes 3 thermal cutting technologies that are effectively used in nuclear decommissioning projects: the autonomous flame cutting, the plasma arc cutting and the contact arc metal cutting. The autonomous flame cutting technology is based on a high pressure oxygen jet oxidizing the material in a small kerf. Not all metal types are appropriate for this technology. The plasma arc cutting, in contrast to the previous technology, uses an electronically induced plasma arc to melt a kerf in the material. Inside the plasma arc temperatures up to 30.000 K exist, so in theory, this temperature is sufficient to cut all materials. Contact arc metal cutting is a new thermal cutting technology for under-water cutting works. Here, a carbon blade cuts the components. An electric arc between the cutting blade and component melts a kerf into the material easing the cutting. This technology allows the cutting of complex structures with hollows. The applications in nuclear facility dismantling of these 3 cutting technologies and their limits are reported and their requirements (staff, investment) listed in a table. (A.C.)

  7. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

    Science.gov (United States)

    Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng

    2018-03-01

    This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

  8. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    Science.gov (United States)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  9. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics

    International Nuclear Information System (INIS)

    Cang Yu; Lu Xin; Wu Huichun; Zhang Jie

    2005-01-01

    Using a two-fluid two-temperature hydrodynamic code, authors studied the hydrodynamics in the interaction of intense (10 15 W/cm 2 ) ultrashort (150 fs) laser pulses and linear density plasmas. The simulation results show the ponderomotive force effect on the formation of the electron density ripples in under-dense region, such ripples increase the reflection of the laser pulse, and on the separation of the plasma in critical surface. Quasi-electroneutrality is not suitable in this case because of the different ponderomotive force and the gradient of thermal-pressure for ions and electrons. Ions are moved by the electrostatic force. Comparing with the simulation results from one-fluid two-temperature code, authors find that under strong ponderomotive force and gradient of thermo-pressure, two-fluid code is more suitable to simulate the hydrodynamics of plasmas. (authors)

  10. Weakly ionized plasmas in aerospace applications

    International Nuclear Information System (INIS)

    Semenov, V E; Bondarenko, V G; Gildenburg, V B; Gubchenko, V M; Smirnov, A I

    2002-01-01

    This paper is an overview of the activity and state-of-the-art in the field of plasma aerospace applications. Both experimental results and theoretical ideas are analysed. Principal attention is focused on understanding the physical mechanisms of the plasma effect on hypersonic aerodynamics. In particular, it is shown that drag reduction can be achieved using a proper distribution of heat sources around a flying body. Estimates of the energetic efficiency of the thermal mechanism of aerodynamic drag reduction are presented. The non-thermal effect caused by the interaction of a plasma flow with a magnetic field is also analysed. Specifically, it is shown that appropriate spatial distribution of volumetric forces around a hypersonic body allows for complete elimination of shock wave generation. It should be noted that in an ideal case, shock waves could be eliminated without energy consumption

  11. Electrothermal efficiency, temperature and thermal conductivity

    Indian Academy of Sciences (India)

    A study was made to evaluate the electrothermal efficiency of a DC arc plasma torch and temperature and thermal conductivity of plasma jet in the torch. The torch was operated at power levels from 4 to 20 kW in non-transferred arc mode. The effect of nitrogen in combination with argon as plasma gas on the above ...

  12. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-01-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω e τ e effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω e τ e as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics

  13. High Temperature Oxidation of Spark Plasma Sintered and Thermally Sprayed FeAl-Based Iron Aluminides

    Czech Academy of Sciences Publication Activity Database

    Haušild, P.; Karlík, M.; Skiba, T.; Sajdl, P.; Dubský, Jiří; Palm, M.

    2012-01-01

    Roč. 122, č. 3 (2012), s. 465-468 ISSN 0587-4246. [International Symposium on Physics of Materials (ISPMA)/12./. Prague, 04.09.2011-08.09.2011] Institutional support: RVO:61389021 Keywords : thermal spraying * plasma sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.531, year: 2012

  14. Effect of seminal plasma and egg yolk concentration on freezability of goat semen

    Directory of Open Access Journals (Sweden)

    Valéria da Silva Ferreira

    2014-10-01

    Full Text Available The objective of this study was to evaluate the effects of egg yolk and seminal plasma on the viability of cryopreserved goat semen. To this end, four fertile Saanen bucks, aged between 10 months and 1 year, and weighing 18 to 25 kg, were used. Semen was collected from each buck by the artificial vagina method at the end of breeding season (June-July. The extender used was the yolk citrate, which was split into two equal aliquots: 5% egg yolk (2.5 mL egg yolk: 47.5 mL citrate solution were added to one of the samples and 10% egg yolk (5.0 mL egg yolk: 45.0 mL citrate solution were added to another. The sperm motility and vigor after thawing and post thermal resistance test (TRT were evaluated and the data were subjected to analysis of variance and means were compared by the F test at 5.0% probability. The observed values for motility and vigor after thawing and post thermal resistance test (TRT, fast and slow, according to the presence of seminal plasma and egg yolk percentage were: 5% egg yolk with plasma (25.0% and 3.3; 1.60% and 0.7; 12.36% and 1.6, respectively; 5% egg yolk without plasma (23.61% and 3.1; 1.25% and 0.2; 9.93% and 1.3, respectively; 10% egg yolk with plasma (30.8% and 3.3; 4.4% and 1.9; 19.5% and 2.7, respectively; and 10% egg yolk without plasma (13.4% and 2.5; 4.1% and 0.5; 17.0% and 1.0, respectively. There were significant differences between the analyzed data in relation to semen with or without plasma at different percentages of egg yolk, and the group that presented the best results was 10% egg yolk citrate in extender with plasma. The presence of seminal plasma and higher concentration of egg yolk in extender provide a higher viability of cryopreserved goat semen.

  15. Negative ion beam formation using thermal contact ionization type plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Fukuura, Yoshiyuki; Murakami, Kazutugu; Masuoka, Toshio; Katsumata, Itsuo [Osaka City Univ. (Japan). Faculty of Engineering

    1997-02-01

    The small ion sources utilizing thermal ionization have been already developed, and at present, in order to increase ion yield, that being developed to the cylindrical plasma prototype having the inner surface of a Re foil cylinder as the ionization surface, and stably functioning at 3,000 K has been developed, and by using this plasma source, the research on the formation of various ions has been carried out. At present, the research on the formation of Li negative ion beam is carried out. The separation of negative ions from electrons is performed with the locally limited magnetic field using a small iron core electromagnet placed behind the electrostatic accelerating lens system. So for, the formation of about 2 {mu}A at maximum of negative ions was confirmed. It was decided to identify the kinds of ions by time of flight (TOF) process, and the various improvements for this purpose were carried out. The experimental setup, the structure of the plasma source, the circuits for TOF measurement and so on are explained. The experimental results are reported. The problems are the possibility of the formation of alkali metals, the resolution of the time axis of the TOF system and so on. (K.I.)

  16. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, Luis Otavio de Brito, E-mail: luskywalcker@yahoo.com.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Geremias, Reginaldo [Departamento de Ciencias Rurais, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil); Goncalvez de Souza, Ivan [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Debacher, Nito Angelo, E-mail: debacher@qmc.ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer We use O{sub 2} as the feed gas and pyrite was added to the non-thermal plasma reactor. Black-Right-Pointing-Pointer The methylene blue removal by NTP increased in the presence of pyrite. Black-Right-Pointing-Pointer The total organic carbon content decreased substantially. Black-Right-Pointing-Pointer The acute toxicity test showed that the treated solution is not toxic. Black-Right-Pointing-Pointer The dye degradation occurs via electron impact as well as successive hydroxylation. - Abstract: In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N{sub 2}, Ar, and O{sub 2}. The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N{sub 2} < Ar < O{sub 2}). Using O{sub 2} as the feed gas, pyrite was added to the reactor in acid medium resulting in an accentuated increase in the dye removal, which suggests that pyrite acts as a Fenton-like catalyst. The total organic carbon (TOC) content of the dye solution decreased slightly as the plasma treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O{sub 2} or O{sub 2}-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  17. Design and optimization of coating structure for the thermal barrier coatings fabricated by atmospheric plasma spraying via finite element method

    Directory of Open Access Journals (Sweden)

    L. Wang

    2014-06-01

    Full Text Available The first prerequisite for fabricating the thermal barrier coatings (TBCs with excellent performance is to find an optimized coating structure with high thermal insulation effect and low residual stress. This paper discusses the design and optimization of a suitable coating structure for the TBCs prepared by atmospheric plasma spraying (APS using the finite element method. The design and optimization processes comply with the rules step by step, as the structure develops from a simple to a complex one. The research results indicate that the suitable thicknesses of the bond-coating and top-coating are 60–120 μm and 300–420 μm, respectively, for the single ceramic layer YSZ/NiCoCrAlY APS-TBC. The embedded interlayer (50 wt.%YSZ + 50 wt.%NiCoCrAlY will further reduce the residual stress without sacrificing the thermal insulation effect. The double ceramic layer was further considered which was based on the single ceramic layer TBC. The embedded interlayer and the upper additional ceramic layer will have a best match between the low residual stress and high thermal insulation effect. Finally, the optimized coating structure was obtained, i.e., the La2Ce2O7(LC/YSZ/Interlayer/NiCoCrAlY coating structure with appropriate layer thickness is the best choice. The effective thermal conductivity of this optimized LC/YSZ/IL/BL TBC is 13.2% lower than that of the typical single ceramic layer YSZ/BL TBC.

  18. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruonan; Wang, Guomin; Tian, Ying; Wang, Kaile [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-12-30

    Highlights: • We propose a new approach to treat S. aureus inoculated on strawberries by PAW. • PAW could inactivate S. aureus on strawberries via the Log Reduction results, further confirmed by CLSM and SEM. • The short-lived ROS in PAW are considered the most important agents in inactivation process. • No significant change was found in color, firmness and pH of the PAW treated strawberries. - Abstract: Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.

  19. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce

    International Nuclear Information System (INIS)

    Ma, Ruonan; Wang, Guomin; Tian, Ying; Wang, Kaile; Zhang, Jue; Fang, Jing

    2015-01-01

    Highlights: • We propose a new approach to treat S. aureus inoculated on strawberries by PAW. • PAW could inactivate S. aureus on strawberries via the Log Reduction results, further confirmed by CLSM and SEM. • The short-lived ROS in PAW are considered the most important agents in inactivation process. • No significant change was found in color, firmness and pH of the PAW treated strawberries. - Abstract: Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.

  20. Study of mixed radiative thermal mass transfer in the case of spherical liquide particle evaporation in a high temperature thermal air plasma

    International Nuclear Information System (INIS)

    Garandeau, S.

    1984-01-01

    Radiative transfer in a semi-transparent non-isothermal medium with spherical configuration has been studied. Limit conditions have been detailed, among which the semi-transparent inner sphere case is a new case. Enthalpy and matter transfer equations related to these different cases have been established. An adimensional study of local conservation laws allowed to reveal a parameter set characteristic of radiation coupled phenomena thermal conduction, convection, diffusion. Transfer equations in the case of evaporation of a liquid spherical particle in an air thermal plasma have been simplified. An analytical solution for matter transfer is proposed. Numerical solution of radiative problems and matter transfer has been realized [fr

  1. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    Science.gov (United States)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  2. Study on the effects of physical plasma on in-vitro cultivates cells; Untersuchungen zum Einfluss von physikalischem Plasma auf in vitro kultivierte Zellen

    Energy Technology Data Exchange (ETDEWEB)

    Strassenburg, Susanne

    2014-03-15

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  3. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  4. Ion Acceleration in Plasmas with Alfven Waves

    International Nuclear Information System (INIS)

    Kolesnychenko, O.Ya.; Lutsenko, V.V.; White, R.B.

    2005-01-01

    Effects of elliptically polarized Alfven waves on thermal ions are investigated. Both regular oscillations and stochastic motion of the particles are observed. It is found that during regular oscillations the energy of the thermal ions can reach magnitudes well exceeding the plasma temperature, the effect being largest in low-beta plasmas (beta is the ratio of the plasma pressure to the magnetic field pressure). Conditions of a low stochasticity threshold are obtained. It is shown that stochasticity can arise even for waves propagating along the magnetic field provided that the frequency spectrum is non-monochromatic. The analysis carried out is based on equations derived by using a Lagrangian formalism. A code solving these equations is developed. Steady-state perturbations and perturbations with the amplitude slowly varying in time are considered

  5. Engineering design and thermal hydraulics of plasma facing components of SST-1

    International Nuclear Information System (INIS)

    Pragash, N. Ravi; Chaudhuri, P.; Santra, P.; Chenna Reddy, D.; Khirwadkar, S.; Saxena, Y.C.

    2001-01-01

    SST-1 is a medium size tokamak with super conducting magnetic field coils. All the subsystems of SST-1 are designed for quasi steady state (∼1000 s) operation. Plasma Facing Components (PFCs) of SST-1 consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be compatible for steady state operation. As SST-1 is designed to run double null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. All the PFC are made of copper alloys (CuCrZr and CuZr) on which graphite tiles are mechanically attached. These copper alloy back plates are actively cooled with water flowing in the channels grooved on them with the main consideration in the design of PFCs as the steady state heat removal of about 1.0 MW/m 2 . In addition to be able to remove high heat fluxes, the PFCs are also designed to be compatible for baking at 350 degree sign C. Extensive studies, involving different flow parameters and various cooling layouts, have been done to select the final cooling parameters and layout. Thermal response of the PFCs and vacuum vessel during baking, has been calculated using a FORTRAN code and a 2-D finite element analysis. The PFCs and their supports are also designed to withstand large electro-magnetic forces. Finite element analysis using ANSYS software package is used in this and other PFCs design. The engineering design including thermal hydraulics for cooling and baking of all the PFCs is completed. Poloidal limiters are being fabricated. The remaining PFCs, viz. divertors, stabilizers and baffles are likely to go for fabrication in the next few months. The detailed engineering design, the finite element calculations in the structural and thermal designs are presented in this paper

  6. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-01-01

    Roč. 4, NOV (2014), "7129-1"-"7129-11" ISSN 2045-2322 R&D Projects: GA MŠk LO1309 Grant - others:AV ČR(CZ) M100101219 Institutional support: RVO:68378271 ; RVO:61389013 ; RVO:68378041 Keywords : cell death * non-thermal plasma * therapeutic perspectives Subject RIV: BO - Biophysics; FH - Neurology (UEM-P); CD - Macromolecular Chemistry (UMCH-V) Impact factor: 5.578, year: 2014

  7. Numerical study of non-ideal Vlasov-BGK plasmas

    International Nuclear Information System (INIS)

    Levchenko, V.D.; Sigov, Y.S.; Premuda, F.

    1995-01-01

    A relatively simple quasi-classical description of quantum plasmas using as first approximation the Bhatnagar-Gross-Krook (BGK) collision integral, if combined with the modern numerical simulation methods, might be effective tool of a deep study of non-ideal plasma kinetics in a variety of urgent applications as inertial confinement and cold fusion, transport and collective properties of highly condensed plasmas in liquid metals, semi- and superconductors and others. Consider one-dimensional degenerate plasma consisting of thermal electrons and thermal bosons (deuterons) in the vicinity of the equilibrium Fermi- and Bose-type distributions respectively. In the frame of our rough mixed model we solve Vlasov-BGK-Poisson eqs using simplified version of the SUR code

  8. Effects of magnetic fields on the quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bali, G.S. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Bruckmann, F. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Endrődi, G., E-mail: gergely.endrodi@physik.uni-r.de [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Fodor, Z. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); Bergische Universität Wuppertal, Theoretical Physics, 42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich (Germany); Katz, S.D. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group (Hungary); Schäfer, A. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany)

    2014-11-15

    In this talk, the response of the thermal QCD medium to external (electro)magnetic fields is studied using continuum extrapolated lattice results at physical quark masses. The magnetic susceptibility of QCD is calculated, revealing a strong paramagnetic response at high temperatures. This paramagnetism is shown to result in an anisotropic squeezing of the quark–gluon plasma in non-central heavy-ion collisions, implying a sizeable contribution to the elliptic flow. Another aspect is the magnetic response of topologically non-trivial domains to the magnetic field. We quantify this effect on the lattice and compare the results to a simple model estimate.

  9. Synthesis of TiO2 Nanoparticles from Ilmenite Through the Mechanism of Vapor-Phase Reaction Process by Thermal Plasma Technology

    Science.gov (United States)

    Samal, Sneha

    2017-11-01

    Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.

  10. Exact evaluation of the rates of electrostatic decay and scattering off thermal ions for an unmagnetized Maxwellian plasma

    Energy Technology Data Exchange (ETDEWEB)

    Layden, B.; Cairns, Iver H.; Robinson, P. A. [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2013-08-15

    Electrostatic decay of Langmuir waves into Langmuir and ion sound waves (L→L′+S) and scattering of Langmuir waves off thermal ions (L+i→L′+i′, also called “nonlinear Landau damping”) are important nonlinear weak-turbulence processes. The rates for these processes depend on the quadratic longitudinal response function α{sup (2)} (or, equivalently, the quadratic longitudinal susceptibility χ{sup (2)}), which describes the second-order response of a plasma to electrostatic wave fields. Previous calculations of these rates for an unmagnetized Maxwellian plasma have relied upon an approximate form for α{sup (2)} that is valid where two of the wave fields are fast (i.e., v{sub φ}=ω/k≫V{sub e} where ω is the angular frequency, k is the wavenumber, and V{sub e} is the electron thermal speed) and one is slow (v{sub φ}≪V{sub e}). Recently, an exact expression was derived for α{sup (2)} that is valid for any phase speeds of the three waves in an unmagnetized Maxwellian plasma. Here, this exact α{sup (2)} is applied to the calculation of the three-dimensional rates for electrostatic decay and scattering off thermal ions, and the resulting exact rates are compared with the approximate rates. The calculations are performed using previously derived three-dimensional rates for electrostatic decay given in terms of a general α{sup (2)}, and newly derived three-dimensional rates for scattering off thermal ions; the scattering rate is derived assuming a Maxwellian ion distribution, and both rates are derived assuming arc distributions for the wave spectra. For most space plasma conditions, the approximate rate is found to be accurate to better than 20%; however, for sufficiently low Langmuir phase speeds (v{sub φ}/V{sub e}≈3) appropriate to some spatial domains of the foreshock regions of planetary bow shocks and type II solar radio bursts, the use of the exact rate may be necessary for accurate calculations. The relative rates of electrostatic decay

  11. Effects of external field on elastic electron-ion collision in a plasma

    International Nuclear Information System (INIS)

    Na, Sang-Chul; Jung, Young-Dae

    2008-01-01

    The field effects on elastic electron-ion collision are investigated in a plasma with the presence of the external field. The eikonal method and effective interaction potential including the far-field term caused by the external field is employed to obtain the eikonal phase shift and eikonal cross section as functions of the field strength, external frequency, impact parameter, collision energy, thermal energy and Debye length. The result shows that the effect of the external field on the eikonal cross section is given by the second-order eikonal phase. In addition, the external field effects suppress the eikonal cross section as well as eikonal phase for the elastic electron-ion collision. The eikonal phase and cross section are found to be increased with an increase of the frequency of the external field. It is also shown that the eikonal cross section increases with an increase of the thermal energy and Debye length.

  12. Effects of gap and elevated pressure on ethanol reforming in a non-thermal plasma reactor

    International Nuclear Information System (INIS)

    Hoang, Trung Q; Zhu Xinli; Lobban, Lance L; Mallinson, Richard G

    2011-01-01

    Production of hydrogen for fuel cell vehicles, mobile power generators and for hydrogen-enhanced combustion from ethanol is demonstrated using energy-efficient non-thermal plasma reforming. A tubular reactor with a multipoint electrode system operated in pulsed mode was used. Complete conversion can be achieved with high selectivity (based on ethanol) of H 2 and CO of 111% and 78%, respectively, at atmospheric pressure. An elevated pressure of 15 psig shows improvement of selectivity of H 2 and CO to 120% and 87%, with a significant reduction of C 2 H x side products. H 2 selectivity increased to 127% when a high ratio (29.2) of water-to-ethanol feed was used. Increasing CO 2 selectivity is observed at higher water-to-ethanol ratios indicating that the water gas shift reaction occurs. A higher productivity and lower C 2 H x products were observed at larger gas gaps. The highest overall energy efficiency achieved, including electrical power consumption, was 82% for all products or 66% for H 2 only.

  13. Two-fluid and parallel compressibility effects in tokamak plasmas

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.

    1998-01-01

    The MHD, or single fluid, model for a plasma has long been known to provide a surprisingly good description of much of the observed nonlinear dynamics of confined plasmas, considering its simple nature compared to the complexity of the real system. On the other hand, some of the supposed agreement arises from the lack of the detailed measurements that are needed to distinguish MHD from more sophisticated models that incorporate slower time scale processes. At present, a number of factors combine to make models beyond MHD of practical interest. Computational considerations still favor fluid rather than particle models for description of the full plasma, and suggest an approach that starts from a set of fluid-like equations that extends MHD to slower time scales and more accurate parallel dynamics. This paper summarizes a set of two-fluid equations for toroidal (tokamak) geometry that has been developed and tested as the MH3D-T code [1] and some results from the model. The electrons and ions are described as separate fluids. The code and its original MHD version, MH3D [2], are the first numerical, initial value models in toroidal geometry that include the full 3D (fluid) compressibility and electromagnetic effects. Previous nonlinear MHD codes for toroidal geometry have, in practice, neglected the plasma density evolution, on the grounds that MHD plasmas are only weakly compressible and that the background density variation is weaker than the temperature variation. Analytically, the common use of toroidal plasma models based on aspect ratio expansion, such as reduced MHD, has reinforced this impression, since this ordering reduces plasma compressibility effects. For two-fluid plasmas, the density evolution cannot be neglected in principle, since it provides the basic driving energy for the diamagnetic drifts of the electrons and ions perpendicular to the magnetic field. It also strongly influences the parallel dynamics, in combination with the parallel thermal

  14. Energetically resolved multiple-fluid equilibria of tokamak plasmas

    International Nuclear Information System (INIS)

    Hole, M J; Dennis, G

    2009-01-01

    In many magnetically confined fusion experiments, a significant fraction of the stored energy of the plasma resides in energetic, or non-thermal, particle populations. Despite this, most equilibrium treatments are based on MHD: a single fluid treatment which assumes a Maxwell-Boltzmann distribution function. Detailed magnetic reconstruction based on this treatment ignore the energetic complexity of the plasma and can result in model-data inconsistencies, such as thermal pressure profiles which are inconsistent with the total stored kinetic energy of the plasma. Alternatively, ad hoc corrections to the pressure profile, such as summing the energetic and thermal pressures, have poor theoretical justification. Motivated by this omission, we generalize ideal MHD one step further: we consider multiple quasi-neutral fluids, each in thermal equilibrium and each thermally insulated from each other-no population mixing occurs. Kinetically, such a model may be able to describe the ion or electron distribution function in regions of velocity phase space with a large number of particles, at the expense of more weakly populated phase space, which may have uncharacteristically high temperature and hence pressure. As magnetic equilibrium effects increase with the increase in pressure, our work constitutes an upper limit to the effect of energetic particles. When implemented into an existing solver, FLOW (Guazzotto et al 2004 Phys. Plasmas 11, 604-14), it becomes possible to qualitatively explore the impact of resolving the energetic populations on plasma equilibrium configurations in realistic geometry. Deploying the modified code, FLOW-M, on a high performance spherical torus configuration, we find that the effect of variations of the pressure, poloidal flow and toroidal flow of the energetic populations is qualitatively similar to variations in the background plasma. We also study the robustness of the equilibrium to uncertainties in the current profile and the energetic

  15. Net emission coefficient for CO–H2 thermal plasmas with the consideration of molecular systems

    International Nuclear Information System (INIS)

    Billoux, T.; Cressault, Y.; Gleizes, A.

    2015-01-01

    This paper deals with the calculation of net emission coefficients (NECs) for CO–H 2 thermal plasmas. This task required the elaboration of a complete spectroscopic database including atoms and molecules formed by carbon, oxygen and hydrogen elements. We have used a systematic line by line method to calculate all the main radiative contributions which are the atomic and molecular continua, the atomic lines and the molecular (diatomic and polyatomic) lines. The main diatomic electronic systems for CO–H 2 plasmas and the triatomic molecular bands were considered. We present some variations of the net emission coefficient versus temperature, for various pressures and for two relative proportions of the components. The role of the diatomic molecules is important at temperatures lower than 5000 K whereas the net emission coefficient presents an unusual peak at temperature around 1000 K, due to the presence of the CO 2 molecule presenting a strong infrared radiation. Finally, the results show that the NEC slightly depends on the relative proportion of CO and H 2 . - highlights: • We calculate radiative losses from CO–H 2 thermal plasmas. • We use the up-to-date atomic and molecular databases. • The influence of CO 2 molecule is very important at low temperature. • The relative maximum of the net emission coefficient at low temperature is unusual

  16. Experimental and numerical investigations of a plasma reactor for the thermal destruction of medical waste using a model substance

    International Nuclear Information System (INIS)

    Fiedler, J; Lietz, E; Bendix, D; Hebecker, D

    2004-01-01

    A demonstration plant for the thermal destruction of medical waste using dc plasma torches as the energy source has been developed and tested in several set-ups and under different conditions. Three-dimensional CFD modelling of the gaseous phase in the thermal plasma reactor has been carried out to investigate the experimentally observed phenomena, with the objective of improving the process with respect to conversion rate and power consumption per unit weight. Several models for energy release, and additional parameter studies required to approach the real process as closely as possible, will be discussed. Results for velocity, temperature, and residence time distribution are presented and qualitatively compared with images taken from the running process

  17. Heating of a dense plasma by an ultrashort laser pulse in the anomalous skin-effect regime

    International Nuclear Information System (INIS)

    Andreev, A.A.; Gamalii, E.G.; Novikov, V.N.; Semakhin, A.N.; Tikhonchuk, V.T.

    1992-01-01

    The absorption of laser light in an overdense plasma with a sharp boundary and the heating of the plasma under conditions corresponding to the anomalous skin effect are studied. Heat transfer from the absorption region near the surface into the interior of the plasma is studied in the kinetic approximation. At high intensities of the laser pulse, the electron distribution function is deformed, and the plasma is heated at a rate tens of times that predicted by classical heat-transfer theory, because of the severe limitation on thermal conductivity. The anisotropy of the electron distribution function in the skin layer leads to an increase in the absorption coefficient. The angular distribution and the polarization dependence of the absorption coefficient are discussed

  18. Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering

    Science.gov (United States)

    Xu, Hui; Chen, Jian-hao; Ren, Shu-bin; He, Xin-bo; Qu, Xuan-hui

    2018-04-01

    Nickel-coated graphite flakes/copper (GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes (GFs) being modified by Ni-P electroless plating. The effects of the phase transition of the amorphous Ni-P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity (TC) of the GN/Cu composites were systematically investigated. The introduction of Ni-P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650°C and slightly increased the TC of the X-Y basal plane of the GF/Cu composites with 20vol%-30vol% graphite flakes. However, when the graphite flake content was greater than 30vol%, the TC of the GF/Cu composites decreased with the introduction of Ni-P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.

  19. Thermal condensation mode in a dusty plasma

    Indian Academy of Sciences (India)

    We find that the charge variability of the grain reduces the growth rate ..... Thus, in the short wavelength regime, thermal conductivity has stabilizing effect .... dynamics is retained, and the reason being that the momentum exchange of the grain ...

  20. Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors

    Institute of Scientific and Technical Information of China (English)

    Jin Dong-Yue; Zhang Wan-Rong; Chen Liang; Fu Qiang; Xiao Ying; Wang Ren-Qing; Zhao Xin

    2011-01-01

    The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.

  1. Theoretical approach for plasma series resonance effect in geometrically symmetric dual radio frequency plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.

    2012-01-01

    Plasma series resonance (PSR) effect is well known in geometrically asymmetric capacitively couple radio frequency plasma. However, plasma series resonance effect in geometrically symmetric plasma has not been properly investigated. In this work, a theoretical approach is made to investigate the plasma series resonance effect and its influence on Ohmic and stochastic heating in geometrically symmetric discharge. Electrical asymmetry effect by means of dual frequency voltage waveform is applied to excite the plasma series resonance. The results show considerable variation in heating with phase difference between the voltage waveforms, which may be applicable in controlling the plasma parameters in such plasma.

  2. Chiral magnetic effect in the anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Taghavi, Seyed Farid

    2015-01-01

    An anisotropic thermal plasma phase of a strongly coupled gauge theory can be holographically modelled by an anisotropic AdS black hole. The temperature and anisotropy parameter of the AdS black hole background of interest http://dx.doi.org/10.1007/JHEP07(2011)054 is specified by the location of the horizon and the value of the Dilaton field at the horizon. Interestingly, for the first time, we obtain two functions for the values of the horizon and Dilaton field in terms of the temperature and anisotropy parameter. Then by introducing a number of spinning probe D7-branes in the anisotropic background, we compute the value of the chiral magnetic effect (CME). We observe that in the isotropic and anisotropic plasma the value of the CME is equal for the massless quarks. However, at fixed temperature, raising the anisotropy in the system will increase the value of the CME for the massive quarks.

  3. Interaction of supra-thermal ions with turbulence in a magnetized toroidal plasma

    International Nuclear Information System (INIS)

    Plyushchev, G.

    2009-01-01

    This thesis addresses the interaction of a supra-thermal ion beam with turbulence in the simple magnetized toroidal plasma of TORPEX. The first part of the Thesis deals with the ohmic assisted discharges on TORPEX. The aim of these discharges is the investigation of the open to closed magnetic field line transition. The relevant magnetic diagnostics were developed. Ohmic assisted discharges with a maximum plasma current up to 1 kA are routinely obtained. The equilibrium conditions on the vacuum magnetic field configuration were investigated. In the second part of the Thesis, the design of the fast ion source and detector are discussed. The accelerating electric field needed for the fast ion source was optimized. The fast ion source was constructed and commissioned. To detect the fast ions a specially designed gridded energy analyzer was used. The electron energy distribution function was obtained to demonstrate the efficiency of the detector. The experiments with the fast ion beam were conducted in different plasma regions of TORPEX. In the third part of the Thesis, numerical simulations are used to interpret the measured fast ion beam behavior. It is shown that a simple single particle equation of motion explains the beam behavior in the experiments in the absence of plasma. To explain the fast ion beam experiments with the plasma a turbulent electric field must be used. The model that takes into account this turbulent electrical field qualitatively explains the shape of the fast ion current density profile in the different plasma regions of TORPEX. The vertically elongated fast ion current density profiles are explained by a spread in the fast ion velocity distribution. The theoretically predicted radial fast ion beam spreading due to the turbulent electric field was observed in the experiment. (author)

  4. Numerical simulation on current spike behaviour of JT-60U disruptive plasmas

    International Nuclear Information System (INIS)

    Takei, N; Nakamura, Y; Tsutsui, H; Yoshino, R; Kawano, Y; Ozeki, T; Tobita, K; Tsuji-Iio, S; Shimada, R; Jardin, S C

    2004-01-01

    Characteristics and underlying mechanisms for plasma current spikes, which have been frequently observed during the thermal quench of JT-60U disruptions, were investigated through tokamak simulation code simulations including the passive shell effects of the vacuum vessel. Positive shear and reversed shear (PS and RS) plasmas were shown to have various current spike features in the experiments, e.g. an impulsive increase in the plasma current (positive spike) in the majority of thermal quenches, and a sudden decrease (negative spike), that has been excluded from past consideration, as an exception. It was first clarified that the shell effects, which become significant especially at a strong pressure drop due to the thermal quench of high β p plasmas, play an important role in the current spike in accordance with the initial relation of the radial location between the plasma equilibria and the vacuum vessel. As a consequence, a negative current spike may appear at thermal quench when the plasma is positioned further out from the geometric centre of the vacuum vessel. It was also pointed out that a further lowering in the internal inductance, in contradiction to previous interpretation in the past, is a plausible candidate for the mechanism for positive current spikes observed even in RS plasmas. The new interpretation enables us to reason out the whole character of current spikes of JT-60U disruptions

  5. THERMAL PLASMA IN THE GIANT LOBES OF THE RADIO GALAXY CENTAURUS A

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, S. P.; Feain, I. J.; McClure-Griffiths, N. M.; Ekers, R. D.; Carretti, E. [CSIRO Astronomy and Space Science, ATNF, P.O. Box 76, Epping, NSW 1710 (Australia); Robishaw, T. [Herzberg Institute of Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada); Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Gaensler, B. M.; Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Stawarz, L. [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2013-02-20

    We present a Faraday rotation measure (RM) study of the diffuse, polarized, radio emission from the giant lobes of the nearest radio galaxy, Centaurus A. After removal of the smooth Galactic foreground RM component, using an ensemble of background source RMs located outside the giant lobes, we are left with a residual RM signal associated with the giant lobes. We find that the most likely origin of this residual RM is from thermal material mixed throughout the relativistic lobe plasma. The alternative possibility of a thin-skin/boundary layer of magnetoionic material swept up by the expansion of the lobes is highly unlikely since it requires, at least, an order of magnitude enhancement of the swept-up gas over the expected intragroup density on these scales. Strong depolarization observed from 2.3 to 0.96 GHz also supports the presence of a significant amount of thermal gas within the lobes; although depolarization solely due to RM fluctuations in a foreground Faraday screen on scales smaller than the beam cannot be ruled out. Considering the internal Faraday rotation scenario, we find a thermal gas number density of {approx}10{sup -4} cm{sup -3}, implying a total gas mass of {approx}10{sup 10} M {sub Sun} within the lobes. The thermal pressure associated with this gas (with temperature kT {approx} 0.5 keV, obtained from recent X-ray results) is approximately equal to the non-thermal pressure, indicating that over the volume of the lobes, there is approximate equipartition between the thermal gas, radio-emitting electrons, and magnetic field (and potentially any relativistic protons present).

  6. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.

    Science.gov (United States)

    Hu, S X; Collins, L A; Boehly, T R; Kress, J D; Goncharov, V N; Skupsky, S

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ∼20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the

  7. Super-Gaussian transport theory and the field-generating thermal instability in laser–plasmas

    International Nuclear Information System (INIS)

    Bissell, J J; Ridgers, C P; Kingham, R J

    2013-01-01

    Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser–plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density n e , which we associate with a novel heat-flow q n ∝∇n e . Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇T e × ∇n e field generation mechanism by ∼30% (where T e is the electron temperature), and the diffusive and Righi–Leduc heat-flows by ∼80 and ∼90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux q n are checked against kinetic simulation using the Vlasov–Fokker–Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields. (paper)

  8. Super-Gaussian transport theory and the field-generating thermal instability in laser-plasmas

    Science.gov (United States)

    Bissell, J. J.; Ridgers, C. P.; Kingham, R. J.

    2013-02-01

    Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser-plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density ne, which we associate with a novel heat-flow qn∝∇ne. Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇Te × ∇ne field generation mechanism by ˜30% (where Te is the electron temperature), and the diffusive and Righi-Leduc heat-flows by ˜80 and ˜90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux qn are checked against kinetic simulation using the Vlasov-Fokker-Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields.

  9. Nonlinear wave coupling in a warm plasma in the fluid

    International Nuclear Information System (INIS)

    Malara, F.; Veltri, P.

    1984-01-01

    The general expression for nonlinear coupling between plasma modes is obtained. The nonlinear conductivity tensor is then calculated by means of the two-fluid plasma description taking into account the thermal pressure effects

  10. Synthesis of Ni-Zn ferrite nanoparticles in radiofrequency thermal plasma reactor and their use for purification of histidine-tagged proteins

    International Nuclear Information System (INIS)

    Feczko, Tivadar; Muskotal, Adel; Gal, Lorand; Szepvoelgyi, Janos; Sebestyen, Anett; Vonderviszt, Ferenc

    2008-01-01

    Superparamagnetic Ni-Zn ferrite nanoparticles were synthesized in radiofrequency thermal plasma reactor from aqueous solutions of Ni- and Zn-nitrates. The nanoparticles were studied for protein purification performance in both quantitative and qualitative terms. For comparison, experiments were also performed by Ni-charged affinity chromatography. It was proved that the Ni-Zn ferrite nanoparticles effectively purified histidine-tagged proteins with a maximum protein binding capacity of about 7% (w/w). Gel electrophoresis demonstrated better purification characteristics for magnetic nanoparticles than for affinity chromatography.

  11. Effects of plasma pretreatment on the process of self-forming Cu–Mn alloy barriers for Cu interconnects

    Directory of Open Access Journals (Sweden)

    Jae-Hyung Park

    2018-02-01

    Full Text Available This study investigated the effect of plasma pretreatment on the process of a self-forming Cu–Mn alloy barrier on porous low-k dielectrics. To study the effects of plasma on the performance of a self-formed Mn-based barrier, low-k dielectrics were pretreated with H2 plasma or NH3 plasma. Cu–Mn alloy materials on low-k substrates that were subject to pretreatment with H2 plasma exhibited lower electrical resistivity values and the formation of thicker Mn-based interlayers than those on low-k substrates that were subject to pretreatment with NH3 plasma. Transmission electron microscopy (TEM, X-ray photoemission spectroscopy (XPS, and thermal stability analyses demonstrated the exceptional performance of the Mn-based interlayer on plasma-pretreated low-k substrates with regard to thickness, chemical composition, and reliability. Plasma treating with H2 gas formed hydrophilic Si–OH bonds on the surface of the low-k layer, resulting in Mn-based interlayers with greater thickness after annealing. However, additional moisture uptake was induced on the surface of the low-k dielectric, degrading electrical reliability. By contrast, plasma treating with NH3 gas was less effective with regard to forming a Mn-based interlayer, but produced a Si–N/C–N layer on the low-k surface, yielding improved barrier characteristics.

  12. Antibacterial characteristics of thermal plasma spray system.

    Science.gov (United States)

    Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A

    2018-03-15

    The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an

  13. Effective field theories for heavy Majorana neutrinos in a thermal bath

    Energy Technology Data Exchange (ETDEWEB)

    Biondini, Simone

    2016-05-06

    In the leptogenesis framework Majorana neutrinos are at the origin of the baryon asymmetry in the universe. We develop an effective field theory for non-relativistic Majorana fermions and we apply it to the case of a heavy Majorana neutrino decaying in a hot plasma of Standard Model particles, whose temperature is much smaller than the mass of the Majorana neutrino but still much larger than the electroweak scale. Moreover we compute systematically thermal corrections to the CP asymmetries in the Majorana neutrino decays.

  14. Thermalization of the quark-gluon plasma and dynamical formation of Bose-Einstein Condensate

    OpenAIRE

    Liao, Jinfeng

    2012-01-01

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the pre-equilibrium gluonic matter (``glasma'') is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an {\\em emergent property} of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scatterin...

  15. Power supply controlled for plasma torch generation; Fuente de alimentacion controlada para la generacion de un plasma

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Z, S

    1997-12-31

    The high density of energy furnished by thermal plasma is profited in a wide range of applications, such as those related with welding fusion, spray coating and at the present in waste destruction. The waste destruction by plasma is a very attractive process because the remaining products are formed by inert glassy grains and non-toxic gases. The main characteristics of thermal plasmas are presented in this work. Techniques based on power electronics are utilized to achieve a good performance in thermal plasma generation. This work shown the design and construction of three phase control system for electric supply of thermal plasma torch, with 250 kw of capacity, as a part of the project named `Destruction of hazard wastes by thermal plasma` actually working in the Instituto Nacional de Investigaciones Nucleares (ININ). The characteristics of thermal plasma and its generation are treated in the first chapter. The A C controllers by thyristors applied in three phase arrays are described in the chapter II, talking into account the power transformer, rectifiers bank and aliasing coil. The chapter III is dedicated in the design of the trigger module which controls the plasma current by varying the trigger angle of the SCR`s; the protection and isolating unit are also presented in this chapter. The results and conclusions are discussed in chapter IV. (Author).

  16. Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004

    Directory of Open Access Journals (Sweden)

    E. Séran

    2007-01-01

    between atomic oxygen and hydrogen was re-established in favour of oxygen. As a consequence, the charge exchange between oxygen and hydrogen does not effectively limit the O+ production in the regions of the electron precipitation. According to Demeter observations, the O+ concentration is doubled inside the layers with upward currents (downward electrons. Such a density excess creates the pressure gradient which drives the plasma away from the overdense regions, i.e. first, from the layers of precipitating electrons and then upward along the layers of downward current. In addition, the downward currents are identified to be the source regions of hiss emissions, i.e. electron acoustic mode excited via the Landau resonance in the multi-component electron plasma. Such instabilities, which are often observed in the auroral region at 2–5 Earth radii, but rarely at ionospheric altitudes, are believed to be generated by an electron beam which moves through the background plasma with a velocity higher than its thermal velocity.

  17. Surface modification of gutta-percha cones by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Maíra, E-mail: maira@metalmat.ufrj.br [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Menezes, Marilia Santana de Oliveira [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Gomes, Brenda Paula Figueiredo de Almeida [Department of Restorative Dentistry, Endodontics Division, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP (Brazil); Barbosa, Carlos Augusto de Melo [Department of Clinical Dentistry, Endodontic Division, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Athias, Leonardo [Social Indicators Division, Brazilian Institute of Geography and Statistics, Rio de Janeiro, RJ (Brazil); Simão, Renata Antoun [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil)

    2016-11-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  18. Surface modification of gutta-percha cones by non-thermal plasma

    International Nuclear Information System (INIS)

    Prado, Maíra; Menezes, Marilia Santana de Oliveira; Gomes, Brenda Paula Figueiredo de Almeida; Barbosa, Carlos Augusto de Melo; Athias, Leonardo; Simão, Renata Antoun

    2016-01-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  19. Effects of Cold Plasma on Food Quality: A Review.

    Science.gov (United States)

    Pankaj, Shashi K; Wan, Zifan; Keener, Kevin M

    2018-01-01

    Cold plasma (CP) technology has proven very effective as an alternative tool for food decontamination and shelf-life extension. The impact of CP on food quality is very crucial for its acceptance as an alternative food processing technology. Due to the non-thermal nature, CP treatments have shown no or minimal impacts on the physical, chemical, nutritional and sensory attributes of various products. This review also discusses the negative impacts and limitations posed by CP technology for food products. The limited studies on interactions of CP species with food components at the molecular level offers future research opportunities. It also highlights the need for optimization studies to mitigate the negative impacts on visual, chemical, nutritional and functional properties of food products. The design versatility, non-thermal, economical and environmentally friendly nature of CP offers unique advantages over traditional processing technologies. However, CP processing is still in its nascent form and needs further research to reach its potential.

  20. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    to 1990 with only 31 papers per year on average, and a total of some 1300 papers, precedes a considerable growth of some 35-50% in research activity every five years, over the last 20 years or so. As shown in the table, the annual dissemination of the field is more than 1600 papers and the total number of papers is in excess of 20000. This upwards trajectory is typical of a strong and growing subject area in physical science, with considerable capacity in both fundamental science and applications. PeriodNumber of papersPapers per annum 1948-1990130031 1991-19952279456 1996-20003447689 2001-20054571914 2006-201066401328 2011 1658 In many of the dense plasma jets discussed above, strong physical forces generated by the plasma are often desired and this favours plasma generation at elevated gas pressure, including atmospheric pressure, which favours a high level of gas ionization. Historically it has been challenging to reduce and control the strong physical forces in high-pressure plasmas for applications where these are unwanted, for example, surface modification of polymeric sheets [5]. Indeed, there is a real need for a vast range of material processing applications at temperatures below 100oC (or below 400 K) and this favours atmospheric-pressure plasma jets sustained far from thermal equilibrium with the dissipated electrical energy largely used not in heat generation but in unleashing non-equilibrium chemical reactions. The long-standing difficulty of effectively controlling the level of gas ionization at atmospheric pressure was overcome by the technological breakthrough of achieving atmospheric-pressure glow discharges in the late 1980s [6]. A related challenge stemming from high collisionality of atmospheric-pressure plasmas (v >> ω0) means that large-area plasmas sustained between parallel-plate electrodes are very susceptible to strong plasma instabilities when molecular gases are introduced for processing applications. This led to an effective