WorldWideScience

Sample records for plasma study applications

  1. Studying surface glow discharge for application in plasma aerodynamics

    Science.gov (United States)

    Tereshonok, D. V.

    2014-02-01

    Surface glow discharge in nitrogen between two infinite planar electrodes occurring on the same plane has been studied in the framework of a diffusion-drift model. Based on the results of numerical simulations, the plasma structure of this discharge is analyzed and the possibility of using it in plasma aerodynamics is considered.

  2. Application of nonlinear methods to the study of ionospheric plasma

    Science.gov (United States)

    Chernyshov, A. A.; Mogilevsky, M. M.; Kozelov, B. V.

    2015-01-01

    Most of the processes taking place in the auroral region of Earth's ionosphere are reflected in a variety of dynamic forms of the aurora borealis. In order to study these processes it is necessary to consider temporary and spatial variations of the characteristics of ionospheric plasma. Most traditional methods of classical physics are applicable mainly for stationary or quasi-stationary phenomena, but dynamic regimes, transients, fluctuations, selfsimilar scaling could be considered using the methods of nonlinear dynamics. Special interest is the development of the methods for describing the spatial structure and the temporal dynamics of auroral ionosphere based on the ideas of percolation theory and fractal geometry. The fractal characteristics (the Hausdorff fractal dimension and the index of connectivity) of Hall and Pedersen conductivities are used to the description of fractal patterns in the ionosphere. To obtain the self-consistent estimates of the parameters the Hausdorff fractal dimension and the index of connectivity in the auroral zone, an additional relation describing universal behavior of the fractal geometry of percolation at the critical threshold is applied. Also, it is shown that Tsallis statistics can be used to study auroral ionosphere

  3. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    Science.gov (United States)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and

  4. Laser Diagnostics Study of Plasma Assisted Combustion for Scramjet Applications

    Science.gov (United States)

    2011-12-01

    treatment of the fuel or reactants into hydrogen rich syngas prior to thermal oxidation [11-12], enhanced ignition of hydrocarbon fuels [9,13-14...dramatically, and a significant rise of OH in the post combustion gas region is evident. It is 532 nm Power Supply N d: YA G L as er Dye Laser...plasma, ne~1014-1015 cm-3). The power supply is a 2 kW magnetron (2.45 GHz), although no more than 40 W seems to be required for most test conditions due

  5. Plasma pharmacy - physical plasma in pharmaceutical applications.

    Science.gov (United States)

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  6. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    Energy Technology Data Exchange (ETDEWEB)

    Jahanbakhsh, Sina, E-mail: sinajahanbakhsh@gmail.com; Satir, Mert; Celik, Murat [Department of Mechanical Engineering, Bogazici University, Istanbul 34342 (Turkey)

    2016-02-15

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  7. Determination of desmethyldiazepam in plasma by electron-capture GLC: application to pharmacokinetic studies of clorazepate.

    Science.gov (United States)

    Greenblatt, D J

    1978-03-01

    Plasma desmethyldiazepam concentrations were quantitated by a rapid and sensitive technique using electron-capture GLC. Following addition of diazepam as the internal standard, plasma is extracted at physiological pH into benzene-isoamyl alcohol. The extract is evaporated to dryness and reconstituted with toluene-isoamyl alcohol prior to chromatography. Both diazepam and desmethyldiazepam are quantitatively extracted. The variation of identical samples is 5%, and the sensitivity is 5 ng of desmethyldiazepam/ml of original sample. The method is applicable to pharmacokinetic studies of clorazepate, a benzodiazepine derivative transformed to desmethyldiazepam prior to absorption.

  8. Study on the application of plasma technology to advanced global environmental harmony type technology; Kankyo chowagata gijutsu no kodoka eno plasma no oyo ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Plasma application technology is systematically investigated. Fundamental feature of plasma, method of plasma generation, special features of plasma, and its application area are arranged. The present application area of plasma chemical reaction in industry has been arranged for each utilization and process according to the patents research and scientific journals. For the global environmental harmony type technology, functions required for the membrane separators are investigated by assuming the recovery of environmental load substances, and possible manufacturing process of the membrane by using plasma technology is also investigated. For the improvement of catalysis by the plasma process, the requirement for the catalyst, a fine particle effect for catalyst, production of catalyst, plasma technology applicable to the improvement of catalyst, thermal plasma, and low-temperature plasma are described. For the application of plasma to enhance the catalysis reaction, synthesis of ammonia and methanol are described. 177 refs., 67 figs., 18 tabs.

  9. Study on an Atmospheric Pressure Plasma Jet and its Application in Etching Photo-Resistant Materials

    Institute of Scientific and Technical Information of China (English)

    李海江; 王守国; 赵玲利; 叶甜春

    2004-01-01

    An atmospheric pressure radio-frequency plasma jet that can eject cold plasma has been developed. In this paper, the configuration of this type of plasma jet is illustrated and its discharge characteristics curves are studied with a current and a voltage probe. A thermal couple is used to measure the temperature distribution along the axis of the jet stream. The temperature distribution curve is generated for the He/O2 jet stream at the discharge power of 150W. This jet can etch the photo-resistant material at an average rate of 100nm/min on the surface of silicon wafers at a right angle.

  10. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 2.Sterilization by Electrical Discharges and Plasmas

    Science.gov (United States)

    Watanabe, Takayuki

    The use of electrical discharges and plasmas for sterilization is reviewed. Plasmas generated by a silent discharge, a pulse discharge, and a radio frequency discharge under atmospheric pressure have been used for sterilization. Furthermore, a microwave plasma, a radio frequency plasma, and a low temperature plasma with hydrogen peroxide under low pressure conditions have been also used for sterilization. Sterilization results from injury caused by the discharge current, and from the reaction of species affected by the discharge. A silent discharge with air or oxygen is most effective for the sterilization. Nitrogen discharge also has a significant effect, however, argon discharge does not have a significant effect.

  11. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application

    Science.gov (United States)

    Ulliac, G.; Calero, V.; Ndao, A.; Baida, F. I.; Bernal, M.-P.

    2016-03-01

    Lithium Niobate (LN) exhibits unique physical properties such as remarkable electro-optical coefficients and it is thus an excellent material for a wide range of fields like optic communications, lasers, nonlinear optical applications, electric field optical sensors etc. In order to further enhance the optical device performance and to be competitive with silicon photonics, sub-micrometric thickness lithium niobate films are crucial. A big step has been achieved with the development of LN thin films by using smart cut technology and wafer bonding and these films are nowadays available in the market. However, it is a challenge to obtain the requirements of the high quality thin LN film waveguide. In this letter, we show smooth ridge waveguides fabricated on 700 nm thickness thin film lithium niobate (TFLN). The fabrication has been done by developing and optimizing three steps of the technological process, the mask fabrication, the plasma etching, and a final cleaning wet etching step in order to remove the lithium niobate redeposition on the side walls. We have obtained single mode propagation with light overall losses of only 5 dB/cm.

  12. Aerospace applications of pulsed plasmas

    Science.gov (United States)

    Starikovskiy, Andrey

    2012-10-01

    The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems. The same principles are still applied today to achieve high efficiency in various applications. Recently, the potential use of nonequilibrium plasma for ignition and combustion control has garnered increasing interest due to the possibility of plasma-assisted approaches for ignition and flame stabilization. During the past decade, significant progress has been made toward understanding the mechanisms of plasma chemistry interactions, energy redistribution and the nonequilibrium initiation of combustion. In addition, a wide variety of fuels have been examined using various types of discharge plasmas. Plasma application has been shown to provide additional combustion control, which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine (GTE) relight, detonation initiation in pulsed detonation engines (PDE) and distributed ignition control in homogeneous charge-compression ignition (HCCI) engines, among others. The present paper describes the current understanding of the nonequilibrium excitation of combustible mixtures by electrical discharges and plasma-assisted ignition and combustion. Nonequilibrium plasma demonstrates an ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions.

  13. Quantitation of Metformin in Human Plasma and Urine by Hydrophilic Interaction Liquid Chromatography and Application to a Pharmacokinetic Study

    DEFF Research Database (Denmark)

    Nielsen, Flemming; Hougaard Christensen, Mette Marie; Brøsen, Kim

    2014-01-01

    : We describe an analytical method for the quantification of the widely used antihyperglycemic agent, metformin, in human plasma and urine. The separation was performed using isocratic hydrophilic interaction liquid chromatography on a Luna hydrophilic interaction liquid chromatography column (125.......5% in plasma and 1.6% to 6.2% in urine. Between-day reproducibility ranged from 2.9% to 5.3% in plasma and 0.6% to 1.8% in urine. The inaccuracy expressed as bias ranged from -3.1% to 1.9% in plasma and from -7.2% to 0.7% in urine. The lower limit of quantification for metformin in plasma was 5 ng....../mL and in urine was 40 ng/mL. The method was therefore considered to be precise, accurate, reproducible, and sensitive enough to be appropriate for pharmacokinetic studies of metformin. The applicability of the method for human pharmacokinetic studies was demonstrated by dosing a healthy male volunteer with 500...

  14. Study of the plasma interference with high voltage electrode array for space power application

    OpenAIRE

    Iwasa, Minoru; TANAKA, KOJI; Sasaki, Susumu; ODAWARA, OSAMU; 岩佐 稔; 田中 孝治; 佐々木 進; 小田原 修

    2005-01-01

    We are studying the problems associated with high voltage power systems in space. Especially we are interested in the potential distribution of the solar array that is resistant to the electrical discharge. We have carried out experiments on the interaction between the high voltage solar array and the ambient plasma. In the experiment, an array of electrodes distributed on the insulation panel was used to simulate the inter-connectors of the solar array. An electrode array without the insulat...

  15. Numerical study of capacitive coupled HBr/Cl2 plasma discharge for dry etch applications

    Science.gov (United States)

    Gul, Banat; Ahmad, Iftikhar; Zia, Gulfam; Aman-ur-Rehman

    2016-09-01

    HBr/Cl2 plasma discharge is investigated to study the etchant chemistry of this discharge by using the self-consistent fluid model. A comprehensive set of gas phase reactions (83 reactions) including primary processes such as excitation, dissociation, and ionization are considered in the model along with 24 species. Our findings illustrate that the densities of neutral species (i.e., Br, HCl, Cl, H, and H2) produced in the reactor are higher than charged species (i.e., Cl2+, Cl-, HBr+, and Cl+). Density profile of neutral and charged species followed bell shaped and double humped distributions, respectively. Increasing Cl2 fraction in the feedback gases (HBr/Cl2 from 90/10 to 10/90) promoted the production of Cl, Cl+, and Cl2+ in the plasma, indicating that chemical etching pathway may be preferred at high Cl-environment. These findings pave the way towards controlling/optimizing the Si-etching process.

  16. Chamber for in situ WAXS, SAXS and GISAXS studies: application to plasma induced transformations in steels

    CERN Document Server

    Kellermann, G; Feugeas, J; Craievich, A F

    2001-01-01

    A chamber for in situ WAXS, SAXS and GISAXS studies of polycrystalline and amorphous materials was designed and constructed. It is used under vacuum or filled with a gas mixture to operate as a reactor where a plasma for materials surface treatment is produced. The WAXS intensity is recorded by an external imaging plate moving parallel to the chamber axis, making it possible to obtain successive patterns during in situ studies of structural transformations. The chamber is also used for classical SAXS and GISAXS studies of thin films.

  17. Comparative study of non-thermal atmospheric pressure discharge plasmas for life science applications

    Science.gov (United States)

    Koga, Kazunori; Katayama, Ryu; Sarinont, Thapanut; Seo, Hyunwoong; Itagaki, Naho; Attri, Pankaj; Leal-Quiros, Edbertho; Tanaka, Akiyo; Shiratani, Masaharu

    2016-09-01

    We are comparing several non-thermal atmospheric pressure discharge plasmas for life science applications. Here we measured discharge period dependence of pH value and 750 nm absorbance of KI-starch solution of deionized water after plasma irradiation with two discharge devices; a dielectric barrier discharge (DBD) jet device and a scalable DBD device. The pH and the absorbance of KI-starch solution are useful indicator of their oxidizability. We have obtained a map of the absorbance and proton concentration [H+] which is deduced from pH value. For the scalable DBD, the range of the absorbance is between 0.7 and 1.3 and that of [H+] is between 10-7 and 10-5 mol/L. For the DBD jet, the range of the absorbance and [H+] are 2.0-3.2 and 10-4-10-3 mol/L, respectively. Measured data for both devices shows same tendency in the map, while the range of values for the scalable DBD is smaller than that for the DBD jet. The results indicate the oxidazability for the scalable DBD is much weaker than that for the DBD jet.

  18. High-performance liquid chromatographic assay for metamizol metabolites in rat plasma: application to pharmacokinetic studies.

    Science.gov (United States)

    Domínguez-Ramírez, Adriana Miriam; Calzadilla, Patricia Carrillo; Cortés-Arroyo, Alma Rosa; Hurtado Y de la Peña, Marcela; López, José Raúl Medina; Gómez-Hernández, Martín; López-Muñoz, Francisco Javier

    2012-12-01

    In order to evaluate the pharmacokinetics of metamizol in the presence of morphine in arthritic rats, after subcutaneous administration of the drugs, an easy, rapid, sensitive and selective analytical method was proposed and validated. The four main metamizol metabolites (4-methylaminoantipyrine, 4-aminoantipyrine, 4-acetylaminoantipyrine and 4-formylaminoantipyrine) were extracted from plasma samples (50-100μl) by a single solid-phase extraction method prior to reverse-phase high performance liquid chromatography with diode-array detection. Standard calibration graphs for all metabolites were linear within a range of 1-100μg/ml (r(2)≥0.99). The intra-day coefficients of variation (CV) were in the range of 1.3-8.4% and the inter-day CV ranged from 1.5 to 8.4%. The intra-day assay accuracy was in the range of 0.6-9.6% and the inter-day assay accuracy ranged from 0.9 to 7.5% of relative error. The lower limit of quantification was 1μg/ml for all metabolites using a plasma sample of 100μl. Plasma samples were stable at least for 4 weeks at -20°C. This method was found to be suitable for studying metamizol metabolites pharmacokinetics in arthritic rats, after simultaneous administration of metamizol and morphine, in single dose. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. HPLC-UV determination of metformin in human plasma for application in pharmacokinetics and bioequivalence studies.

    Science.gov (United States)

    Porta, Valentina; Schramm, Simone Grigoleto; Kano, Eunice Kazue; Koono, Eunice Emiko; Armando, Yara Popst; Fukuda, Kazuo; Serra, Cristina Helena Dos Reis

    2008-01-07

    In this study, a simple, rapid and sensitive HPLC method with UV detection is described for determination of metformin in plasma samples from bioequivalence assays. Sample preparation was accomplished through protein precipitation with acetonitrile and chromatographic separation was performed on a reversed-phase phenyl column at 40 degrees C. Mobile phase consisted of a mixture of phosphate buffer and acetonitrile at flow rate of 1.0 ml/min. Wavelength was set at 236 nm. The method was applied to a bioequivalence study of two drug products containing metformin, and allowed determination of metformin at low concentrations with a higher throughput than previously described methods.

  20. Antimicrobial Applications of Ambient--Air Plasmas

    Science.gov (United States)

    Pavlovich, Matthew John

    The emerging field of plasma biotechology studies the applications of the plasma phase of matter to biological systems. "Ambient-condition" plasmas created at or near room temperature and atmospheric pressure are especially promising for biomedical applications because of their convenience, safety to patients, and compatibility with existing medical technology. Plasmas can be created from many different gases; plasma made from air contains a number of reactive oxygen and nitrogen species, or RONS, involved in various biological processes, including immune activity, signaling, and gene expression. Therefore, ambient-condition air plasma is of particular interest for biological applications. To understand and predict the effects of treating biological systems with ambient-air plasma, it is necessary to characterize and measure the chemical species that these plasmas produce. Understanding both gaseous chemistry and the chemistry in plasma-treated aqueous solution is important because many biological systems exist in aqueous media. Existing literature about ambient-air plasma hypothesizes the critical role of reactive oxygen and nitrogen species; a major aim of this dissertation is to better quantify RONS by produced ambient-air plasma and understand how RONS chemistry changes in response to different plasma processing conditions. Measurements imply that both gaseous and aqueous chemistry are highly sensitive to operating conditions. In particular, chemical species in air treated by plasma exist in either a low-power ozone-dominated mode or a high-power nitrogen oxide-dominated mode, with an unstable transition region at intermediate discharge power and treatment time. Ozone (O3) and nitrogen oxides (NO and NO2, or NOx) are mutually exclusive in this system and that the transition region corresponds to the transition from ozone- to nitrogen oxides-mode. Aqueous chemistry agrees well with to air plasma chemistry, and a similar transition in liquid-phase composition

  1. [Plasma technology for biomedical material applications].

    Science.gov (United States)

    Liu, Z; Li, X

    2000-03-01

    In this paper is introduced the plasma technology for the applications of several species biomaterial such as ophthalmological material, drug delivery system, tissue culture material, blood anticoagulant material as well as plasma surface clearing and plasma sterilization, and so on.

  2. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Allain, J.P., E-mail: allain@purdue.ed [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Rokusek, D.L.; Harilal, S.S. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Nieto-Perez, M. [CICATA-IPN, Cerro Blanco 141 Cimatario, Queretaro, QRO 76090 (Mexico); Skinner, C.H.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2009-06-15

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  3. Development and Validation of Acyclovir HPLC External Standard Method in Human Plasma: Application to Pharmacokinetic Studies

    Directory of Open Access Journals (Sweden)

    Selvadurai Muralidharan

    2014-01-01

    Full Text Available A simple, rapid, and selective RP-HPLC method was developed for the estimation of acyclovir in human plasma. The method involves a simple protein precipitation technique. Chromatographic separation was carried out on a reverse phase C18 column using mixture of 5 mM ammonium acetate (pH 4.0 and acetonitrile (40 : 60, v/v at a flow rate of 1.0 mL/min with UV detection at 290 nm. The retention time of acyclovir was 4.12 minutes. The method was validated and found to be linear in the range of 25.0–150.0 ng/mL. Validation studies were achieved by using the fundamental parameters, including accuracy, precision, selectivity, sensitivity, linearity and range, stability studies, limit of detection (LOD, and limit of quantitation (LOQ. It shows recovery at 91.0% which is more precise and accurate compared to the other method. These results indicated that the bioanalytical method was linear, precise, and accurate. The new bioanalytical method was successfully applied to a pharmacokinetic linearity study in human plasma.

  4. Analysis of nabumetone in human plasma by HPLC. Application to single dose pharmacokinetic studies.

    Science.gov (United States)

    Kobylińska, Kamila; Barlińska, Małgorzata; Kobylińska, Maria

    2003-06-01

    A simple and sensitive high performance liquid chromatography method for the determination of nabumetone in human plasma is described. The procedure involves liquid-liquid extraction with ethyl acetate and reversed-phase chromatography with fluorimetric detection (excitation 230 nm, emission 356 nm). The chromatographic conditions and the extraction procedure gave a clean chromatogram for the compound. The limit of quantitation was established as 0.313 ng/ml and the calibration curve was linear up to 20 ng/ml. The within-day and between-day relative standard deviations were less than 10% and the accuracy of the assay was in the range of 99-104%. The suitability of the method is shown for pharmacokinetic studies.

  5. Laboratory studies of stagnating plasma flows with applications to inner solar system and stellar bow shocks

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2016-10-01

    Supercritical magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe by converting flow kinetic energy to other forms such as thermal and supra-thermal populations, magnetic field enhancement, turbulence, and energetic particles. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those of inner solar system and stellar bow shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to 100s of km/s; resulting in β 1, collisionless plasma flows with Msonic and MAlfvén 10. The drifting FRC can be made to impinge upon a variety of static obstacles including: a strong mirror or cusp magnetic field (mimicking magnetically excited shocks such as the Earth's bow shock), plasma pileup from a solid obstacle (similar to the bow shocks of Mercury and the Moon), and a neural gas puff (bow shocks of Venus or the comets). Characteristic shock length and time scales that are both large enough to observe yet small enough to fit within the experiment, enabling study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental program will be presented, including recent results. This work is supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences under Contract No. DE-AC52-06NA25369.

  6. Novel LC- ESI-MS/MS method for desvenlafaxine estimation human plasma: application to pharmacokinetic study.

    Science.gov (United States)

    Kancharla, Pushpa Kumari; Kondru, Venu Gopal Raju; Dannana, Gowri Sankar

    2016-02-01

    A simple, sensitive and specific liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS) method was developed for the quantification of desvenlafaxine in human plasma using desvenlafaxine d6 as an internal standard (IS). Chromatographic separation was performed using a Thermo-BDS hypersil C8 column (50 × 4.6 mm, 3 µm) with an isocratic mobile phase composed of 5 mM ammonium acetate buffer: methanol (20:80, v/v), at a flow rate of 0.80 mL/min. Desvenlafaxine and desvenlafaxine d6 were detected with proton adducts at m/z 264.2/58.1 and 270.2/ 64.1 in multiple reaction monitoring positive mode, respectively. Liquid-liquid extraction was used to extract the drug and the IS. The method was linear over the concentration range 1.001-400.352 ng/mL with a correlation coefficient of ≥0.9994. This method demonstrated intra and inter-day precision within 0.7-5.5 and 1.9-6.8%, and accuracy within 95.3-107.4 and 93.4-99.5%. Desvenlafaxine was found to be stable throughout the freeze-thaw cycles, bench-top and long-term matrix stability studies. The developed and validated method can be successfully applied for the bioequivalence/pharmacokinetic studies of desvenlafaxine in pharmaceutical dosage forms. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Application of liquid chromatography method with electrochemical detection for bioequivalence study of trimetazidine in human plasma.

    Science.gov (United States)

    Grabowski, Tomasz; Swierczewska, Anna; Borucka, Beata; Sawicka, Renata; Sasinowska-Motyl, Małgorzata; Gumułka, Stanisław Witold

    2012-01-01

    A method to estimate trimetazidine (CAS: 13171-25-0) levels in human plasma by means of HPLC with electrochemical detection was developed. Trimethoprim (CAS: 26807-65-8) was used as an internal standard. This method of analysis was fully validated according to the guidelines of the United States Food and Drug Administration, European Medicines Agency and Organization for Economic Co-operation and Development and Good Laboratory Practice rules. The accuracy and precision of the developed method were found to be satisfactory and stability studies showed acceptable variation (below 15%) of trimetazidine concentrations when samples were stored frozen at -75 degrees C for 54 days. The developed method was successfully used for a comparative 2 x 2 period, crossover bioequivalence study of two extended-release preparations of trimetazidine performed on 24 healthy volunteers at the steady state after multiple dosing of 35 mg twice daily for 4 days and a single 35 mg dose on the 5th day and after a single dose of 35 mg under fasting or postprandial conditions.

  8. Quantification of mesembrine and mesembrenone in mouse plasma using UHPLC-QToF-MS: Application to a pharmacokinetic study.

    Science.gov (United States)

    Manda, Vamshi K; Avula, Bharathi; Ashfaq, Mohammad K; Abe, Naohito; Khan, Ikhlas A; Khan, Shabana I

    2017-03-01

    Sceletium tortuosum, is an indigenous herb of South Africa which is widely used as an herbal supplement in the treatment of anxiety and stress. Mesembrenone and mesembrine are the two main pharmacologically active alkaloids present in the extract. Despite the wide therapeutic applications of Sceletium extract, there are no reports of in vivo pharmacokinetic properties or analytical methods to quantify these two important alkaloids in plasma. Therefore, the current study aimed to develop and validate a simple and sensitive analytical method for simultaneous quantification of mesembrenone and mesembrine in mouse plasma. Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC/QToF-MS) was employed to achieve our objectives. The compounds were extracted using protein precipitation by methanol (100%) with quinine as an internal standard. The lower limit of quantification for both the compounds was 10 ng/mL. The extraction recovery was between 87 and 93% for both compounds with no matrix effects on the analysis. The accuracy was between 89.5 and 106% and precision was alkaloids was poor and the plasma levels were below the detection limits.

  9. Approximate models for the study of exponential changed quantities: Application on the plasma waves growth rate or damping

    Energy Technology Data Exchange (ETDEWEB)

    Xaplanteris, C. L., E-mail: cxaplanteris@yahoo.com [Plasma Physics Laboratory, IMS, NCSR “Demokritos”, Athens, Greece and Hellenic Army Academy, Vari Attica (Greece); Xaplanteris, L. C. [School of Physics, National and Kapodistrian University of Athens, Athens (Greece); Leousis, D. P. [Technical High School of Athens, Athens (Greece)

    2014-03-15

    Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples.

  10. Plasma applications for biochip technology

    Energy Technology Data Exchange (ETDEWEB)

    Ichiki, T.; Sugiyama, Y.; Taura, R.; Koidesawa, T.; Horiike, Y

    2003-07-01

    Biochip technology has emerged from the fusion of biotechnology and micro/nanofabrication technology. Biochips enable us to realize revolutionary new bioanalysis systems that can directly manipulate and analyze the micro/nano-scale world of biomolecules, organelles and cells. This paper describes a few bioanalysis systems and the microfabrication technology being developed as examples of the application of plasma technologies for upcoming nanobiotechnology. Deep dry etching of glass plates has been developed and applied to fabricate microfluidic devices that can manipulate biological cells. Moreover, ultra-high-rate localized etching of silicon wafers has been developed using a microplasma jet apparatus for rapid micromachining.

  11. Low temperature plasma technology methods and applications

    CERN Document Server

    Chu, Paul K

    2013-01-01

    Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induce

  12. Atmospheric pressure plasma jet applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  13. The study of FTO surface texturing fabrication using Argon plasma etching technique for DSSC applications

    Science.gov (United States)

    Jayanti, Lindha; Kusumandari; Sujitno, Tjipto; Suryana, Risa

    2016-02-01

    This paper is aimed to investigate the fabrication of the fluorine-doped tin oxide (FTO) texturing by using Argon (Ar) plasma etching. The pressure and temperature of Ar gas during plasma etching were 1.6 mbar and 240-285oC, respectively. The plasma etching time was varied from 3 and 10 min. We also prepared without etching samples as reference. UV-Vis spectrophotometer showed that the transmittances of etching samples are higher than the without etching samples. The root mean square roughness (Rq) of etching samples are lower than the without etching samples. It is considered that the Ar ions bombardment can modify the FTO surfaces. However, the etching time does not significantly affect the FTO surfaces for 3 min and 10 min. The Rq of the without etching sample, the etching sample for 3 min, and the etching sample for 10 min are 11.697 nm, 9.859 nm, and 9.777 nm, respectively. These results are good agreement with the four point probe measurement that indicated that the sheet resistance (RS) for each the without sample, the etching sample for 3 min, and the etching sample for 10 min are 16.817 Ωsq, 16.067 Ω/sq, and 15.990 Ω/sq. In addition, the optical transmittance of the etching sample for 3 min and the etching sample for 10 min at wavelengths of 350 - 850 nm are almost similar. This is evidence that the etching time below 10 min cannot significantly change the morphology, optical and electrical properties.

  14. Studies of inductive plasmas and their application to theta-pinch devices via numerical modeling

    Science.gov (United States)

    Meeks, Warner Charles

    First, a globally-averaged RF plasma model is used to investigate exit conditions immediately following a RF pre-ionization stage. Analysis shows that reducing pulse duration from 10-6 to 10-7 seconds increases peak ion energy fraction by 17% (from 16 to 33%) and doubles final conductivity. Pulse waveforms are square in nature, and ion energy fraction is defined in this work as the percentage of total input energy entrained in ions. Increasing total energy deposition from 5 to 160 mJ increases ion energy fraction from 33% to 58% at a 200 ns pulse duration. This increase is not linear however, showing instead a diminishing return with a peak fraction plateau estimated at 65% to 70%. A constant (time-average) power analysis reveals that, across all power levels (10 to 100 kW), energies (5 mJ to 1 joule), and durations (0.05 to 10 µs), peak ion energy fraction consistently occurs approximately 1 to 2 µs before peak conductivity. Second, single particle and particle-in-cell simulations are used to elucidate breakdown physics in a ringing theta-pinch with bias magnetic field. The analyses presented here agree with previously conducted experimental results showing that gas breakdown occurs only upon approximate nullification of the bias magnetic field by the pulsed theta-pinch magnetic field. Parametric analysis of the peak electron energy as a function of the bias and pre-ionization magnetic fields reveals that; 1.) when bias magnetic field is ≈ 97% of the pre-ionization magnetic field the peak electron energy is highly erratic, and 2.) high electron energy levels require a pre-ionization to bias magnetic field ratio of 2 to 1 or higher. This second work went on to be published in the Phys. of Plasmas Journal, Vol. 19 (2012, http://link.aip.org/link/doi/10.1063/1.4717731).

  15. Liquid Chromatography Tandem Mass Spectrometry Method for Quantification of Solifenacin in Human Plasma and its Application to Bioequivalence Study

    Directory of Open Access Journals (Sweden)

    Nishant Paliwal

    2013-06-01

    Full Text Available A hasty, specific and robust assay based on liquid-liquid extraction and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS-MS has been developed and validated for the quantitative analysis of Solifenacin ( a drug used for urinary incontinence in human plasma using Solifenacin D5 as internal standard (ISTD. The precursor to product ion transitions of m/z 363.20/110.10 and m/z 368.14/110.20 were used to measure the analyte and the ISTD, respectively. The method was validated in terms of selectivity, matrix effect, sensitivity, linearity, precision and accuracy, various stabilities (standard stock solution stability in refrigerator and at room temperature, stock dilution stability at refrigerator and room temperature, auto sampler stability, freeze thaw stability, long term stability- 65 o C ± 10o C & long term stability- 22 o C ± 5°C, reagent stability, bench top stability, dry extract stability, wet extract stability in refrigerator, effect of potentially interfering drugs, dilution integrity, recovery, lon suppression through infusion, and blood Stability. The mean percentage recovery of Solifenacin and the internal standard was 65.39 ± 3.646% and 66.24 ± 2.209% respectively. The assay exhibited a linear dynamic range of 0.200 to 30.361 ng mL-1. The RSD % of intra-day and inter-day assay was ≤15%. The application of this assay was demonstrated in a bioequivalence study and will be ideal for clinical pharmacokinetic studies in study population with as lower as 0.200 ng mL-1 analytical sensitivity and as little as 300 μL plasma sample.

  16. Practical applications of plasma surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.D.

    1993-12-01

    Radio frequency activated gas plasma is an environmentally conscious manufacturing process which provides surface treatments for improved product quality. Plasma processing offers significant potential for reducing the use of solvents and other wet processing chemicals now used in surface treatments such as cleaning, activation for bonding, and moisture removal. Plasma treatments are generally accomplished without creating hazardous waste streams to dispose of. Plasma process development and application is ongoing at Allied Signal Inc., Kansas City Division.

  17. Industrial Applications of Low Temperature Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bardsley, J N

    2001-03-15

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.

  18. Comparative study of nanocomposites prepared by pulsed and dc sputtering combined with plasma polymerization suitable for photovoltaic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Amreen A. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Pal, Arup R., E-mail: arpal@iasst.gov.in [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Kar, Rajib [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India); Bailung, Heremba; Chutia, Joyanti [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Patil, Dinkar S. [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)

    2014-12-15

    Plasma processing, a single step method for production of large area composite films, is employed to deposit plasma polymerized aniline-Titanium dioxide (PPani-TiO{sub 2}) nanocomposite thin films. The deposition of PPani-TiO{sub 2} nanocomposite films are made using reactive magnetron sputtering and plasma polymerization combined process. This study focuses on the direct comparison between continuous and pulsed dc magnetron sputtering techniques of titanium in combination with rf plasma polymerization of aniline. The deposited PPani-TiO{sub 2} nanocomposite films are characterized and discussed in terms of structural, morphological and optical properties. A self powered hybrid photodetector has been developed by plasma based process. The proposed method provides a new route where the self-assembly of molecules, that is, the spontaneous association of atomic or molecular building blocks under plasma environment, emerge as a successful strategy to form well-defined structural and morphological units of nanometer dimensions. - Highlights: • PPani-TiO{sub 2} nanocomposite by pulsed and dc sputtering with rf plasma polymerization. • In-situ and Ex-situ H{sub 2}SO{sub 4} doping in PPani-TiO{sub 2} nanocomposite. • PPani-TiO{sub 2} nanocomposite based self-powered-hybrid photodetector.

  19. Test of prototype ITER vacuum ultraviolet spectrometer and its application to impurity study in KSTAR plasmas.

    Science.gov (United States)

    Seon, C R; Hong, J H; Jang, J; Lee, S H; Choe, W; Lee, H H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2014-11-01

    To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a prototype VUV spectrometer was developed. The sensitivity calibration curve of the spectrometer was calculated from the mirror reflectivity, the grating efficiency, and the detector efficiency. The calibration curve was consistent with the calibration points derived in the experiment using the calibrated hollow cathode lamp. For the application of the prototype ITER VUV spectrometer, the prototype spectrometer was installed at KSTAR, and various impurity emission lines could be measured. By analyzing about 100 shots, strong positive correlation between the O VI and the C IV emission intensities could be found.

  20. Atmospheric Pressure Plasma Process And Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  1. Application of capillary gas chromatography to the study of hydrolysis of the nerve agent VX in rat plasma.

    Science.gov (United States)

    Bonierbale, E; Debordes, L; Coppet, L

    1997-01-24

    We present here a gas chromatography technique allowing the detection and quantification of VX [O-ethyl S-(2-diisopropylaminoethyl)methylphosphonothiolate] as well as its P-S bond hydrolysis product diisopropylaminoethanethiol directly from spiked rat plasma. This technique was applied to study VX hydrolysis in rat plasma. We observed that 53 +/- 4% of 374 microM VX disappeared from spiked plasma after 2 h. VX disappearance was mainly related to enzymatic cleavage of the P-S bond (Km = 2.5 mM and Vmax = 13.3 nmol min-1 ml-1 of rat plasma). The activity was totally inhibited by 1 mM Hg2+ and was also inhibited by metal chelators.

  2. The diverse applications of plasma

    Science.gov (United States)

    Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar

    2015-07-01

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  3. The diverse applications of plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mukul, E-mail: mukulsharma@acropolis.edu.in; Darwhekar, Gajanan, E-mail: gdarwhekar@acropolis.edu.in [Acropolis Institute of Pharmaceutical Education & Research, Indore MP India (India); Dubey, Shivani, E-mail: dubeyshivani08@rediffmail.com [Mata Gujri College of Professional Studies, Indore MP India (India); Jain, Sudhir Kumar, E-mail: sudhirkjain1@rediffmail.com [School of Studies in Microbiology, Vikram University, Ujjain MP India (India)

    2015-07-31

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  4. Bodies in flowing plasmas - Laboratory studies

    Science.gov (United States)

    Stone, N. H.; Samir, U.

    1981-01-01

    A brief review of early rudimentary laboratory studies of bodies in flowing, rarefied plasmas is presented (e.g., Birkeland, 1908), along with a discussion of more recent parametric studies conducted in steady plasma wind tunnels, which includes the study by Hall et al. (1964), in which a strong ion density enhancement in the center of the ion void created downstream from the body was observed. Good agreement was found between the experimental results and theoretical calculations which omit ion thermal motion. Examples in which in situ data on the interaction between satellites and the ionospheric plasma have been elucidated by the laboratory results are presented, and include evidence for a midwake axial ion peak, and ion current density in the near-wake region. The application of the ionospheric laboratory to basic space plasma physics is discussed, and its application to some types of solar system plasma phenomena is illustrated.

  5. LC-ESI-MS/MS method for quantification of ambrisentan in plasma and application to rat pharmacokinetic study.

    Science.gov (United States)

    Nirogi, Ramakrishna; Kandikere, Vishwottam; Komarneni, Prashanth; Aleti, Raghupathi; Padala, Nagasuryaprakash; Kalaikadhiban, Ilayaraja

    2012-10-01

    A sensitive high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of ambrisentan in plasma. The analyte and the internal standard (armodafinil) were extracted from plasma by acetonitrile precipitation and they were separated on a reversed-phase C(18) column with a gradient program. The MS acquisition was performed with multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 379-347 for ambrisentan and m/z 274-167 for the IS. The assay exhibited a linear dynamic range of 1-2000 ng/mL for ambrisentan in plasma. Acceptable precision (<10%) and accuracy (100 ± 8%) were obtained for concentrations over the standard curve range. The method was successfully applied to quantify ambrisentan concentrations in a rodent pharmacokinetic study after a single oral administration of ambrisentan at 2.5 mg/kg to rats. Following oral administration the maximum mean concentration in plasma (C(max) ; 1197 ± 179 ng/mL) was achieved at 1.0 ± 0.9 h (T(max) ), and the area under the curve (AUC) was 6013 ± 997 ng h/mL. Therefore, development of such a simple and sensitive method in rat plasma should translate into a method for ambrisentan in human plasma for clinical trials.

  6. Fundamental processes of fuel removal by cyclotron frequency range plasmas and integral scenario for fusion application studied with carbon co-deposits

    Science.gov (United States)

    Möller, S.; Wauters, T.; Kreter, A.; Petersson, P.; Carrasco, A. G.

    2015-08-01

    Plasma impact removal using radio frequency heated plasmas is a candidate method to control the co-deposit related tritium inventory in fusion devices. Plasma parameters evolve according to the balance of input power to losses (transport, radiation, collisions). Material is sputtered by the ion fluxes with impact energies defined by the plasma sheath. H2, D2 and 18O2 plasmas are produced in the carbon limiter tokamak TEXTOR. Pre-characterised a-C:D layers are exposed to study local removal rates. The D2 plasma exhibits the highest surface release rate of 5.7 ± 0.9 ∗ 1019 D/m2s. Compared to this the rate of the O2 plasma is 3-fold smaller due to its 11-fold lower ion flux density. Re-deposition of removed carbon is observed, indicating that pumping and ionisation are limiting the removal in TEXTOR. Presented models can explain the observations and allow tailoring removal discharges. An integral application scenario using ICWC and thermo-chemical removal is presented, allowing to remove 700 g T from a-C:DT co-deposits in 20 h with fusion compatible wall conditions using technical specifications similar to ITER.

  7. Study of nanosecond discharges in different H2 air mixtures at atmospheric pressure for plasma-assisted applications

    Science.gov (United States)

    Bourdon, Anne; Kobayashi, Sumire; Bonaventura, Zdenek; Tholin, Fabien; Popov, Nikolay

    2016-09-01

    This paper presents 2D simulations of nanosecond pulsed discharges between two point electrodes in different H2/air mixtures and in air at atmospheric pressure. A fluid model is coupled with detailed kinetic schemes for air and different H2/air mixtures to simulate the discharge dynamics. First, as the positive and negative ionization waves propagate in the interelectrode gap, it has been observed that in H2/air mixtures with equivalence ratios between 0.3 and 2, major positive ions produced by the nanosecond discharge are N2+,O2+and HN2+.The discharge dynamics is shown to vary only slightly for equivalence ratios of the H2/air mixture between 0.3 and 2. Then, as the discharge transits to a nanosecond spark discharge, we have studied the different chemical reactions that lead to fast gas heating and to the production of radicals, as O,H and OH. Both thermal and chemical effects of the nanosecond spark discharge are of interest for plasma assisted combustion applications. This work has been supported by the project DRACO (Grant No. ANR-13-IS09-0004) and the french russian LIA Kappa.

  8. Novel and sensitive UPLC-MS/MS method for quantification of sofosbuvir in human plasma: application to a bioequivalence study.

    Science.gov (United States)

    Rezk, Mamdouh R; Basalious, Emad B; Amin, Mohammed E

    2016-09-01

    A novel and sensitive LC-MS/MS method was developed and validated for determination of sofosbuvir (SF) using eplerenone as an internal standard. The Xevo TQD LC-MS/MS was operated under the multiple-reaction monitoring mode using electrospray ionization. Extraction with tert-butyl methyl ether was used in sample preparation. The prepared samples were chromatographed on Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column by pumping 0.1% formic acid and acetonitrile in an isocratic mode at a flow rate of 0.35 mL/min. Method validation was performed as per the US Food and Drug Administration guidelines and the standard curves were found to be linear in the range of 0.25-3500 ng/mL for SF. The intra- and inter-day precision and accuracy results were within the acceptable limits. A very short run time of 1 min made it possible to analyze more than 500 human plasma samples per day. A very low quantification limit of SF allowed the applicability of the developed method for determination of SF in a bioequivalence study in human volunteers. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Application of the CALUX bioassay for epidemiological study. Analyses of Belgian human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wouwe, N. van; Debacker, N.; Sasse, A. [Scientific Institute of Public Health, Brussels (BE)] (and others)

    2004-09-15

    The CALUX bioassay is a promising screening method for the detection of dioxin-like compounds. The observed good sensitivity, low number of false negative results as well as the good correlations with the GC-HRMS TEQ-values in case of feed and food analyses allow this method to climb in the first assessment methods' scale. The low amount of sample needed in addition to those latest advantages suggest that the CALUX bioassay could be a good screening method for epidemiological studies. The Belgian epidemiological study concerning the possible effect of the dioxin incident on the body burden of the Belgian population was an opportunity to test this method in comparison to the gold reference one: the GC-HRMS. The first part of this abstract presents epidemiological parameters (sensibility, specificity,) of the CALUX bioassay using CALUX TEQ-values as estimators of the TEQ-values of the 17 PCDD/Fs. The second part examines epidemiological determinants observed for CALUX and GCHRMS TEQ-values.

  10. Determination of roxithromycin in human plasma by HPLC with fluorescence and UV absorbance detection: application to a pharmacokinetic study.

    Science.gov (United States)

    Główka, Franciszek K; Karaźniewicz-Łada, Marta

    2007-06-01

    A selective HPLC method with fluorescence detection for the determination of roxithromycin (ROX) in human plasma was described. After solid-phase extraction (SPE), ROX and erythromycin (internal standard, I.S.) were derivatized by treatment with 9-fluorenylmethyl chloroformate (FMOC-Cl). Optimal resolution of fluorescence derivatives of ROX and I.S. was obtained during one analytical run using reversed phase, C(18) column. The mobile phase was composed of potassium dihydrogenphosphate solution, pH 7.5 and acetonitrile. Fluorescence of the compounds was measured at the maximum excitation, 255 nm and emission, 313 nm, of ROX derivatives. Validation parameters of the method were also established. After SPE, differences in recoveries of ROX and erythromycin from human plasma were observed. The linear range of the standard curve of ROX in plasma was 0.5-10.0 mg/l. The validated method was successfully applied for pharmacokinetic studies of ROX after administration of a single tablet of ROX.

  11. Plasma Cathode Electron Sources Physics, Technology, Applications

    CERN Document Server

    Oks, Efim

    2006-01-01

    This book fills the gap for a textbook describing this kind of electron beam source in a systematic and thorough manner: from physical processes of electron emission to examples of real plasma electron sources and their applications.

  12. Clinical applications of plasma based electrosurgical systems

    Science.gov (United States)

    Woloszko, Jean; Endler, Ashley; Ryan, Thomas P.; Stalder, Kenneth R.

    2013-02-01

    Over the past 18 years, several electrosurgical systems generating a low temperature plasma in an aqueous conductive solution have been commercialized for various clinical applications and have been used in over 10 million patients to date. The most popular utilizations are in arthroscopic surgery, otorhinolaryngology surgery, spine and neurosurgery, urology and wound care. These devices can be configured to bring saline to the tip and to have concomitant aspiration to remove by-products and excess fluid. By tuning the electrode geometry, waveform and fluid dynamic at the tip of the devices, tissue resection and thermal effects can be adjusted individually. This allows one to design products that can operate as precise tissue dissectors for treatment of articular cartilage or debridement of chronic wounds, as well as global tissue debulking devices providing sufficient concomitant hemostasis for applications like tonsillectomies. Effects of these plasma based electrosurgical devices on cellular biology, healing response and nociceptive receptors has also been studied in various models. This talk will include a review of the clinical applications, with product descriptions, results and introductory review of some of the research on the biological effects of these devices.

  13. Laser-plasma interactions and applications

    CERN Document Server

    Neely, David; Bingham, Robert; Jaroszynski, Dino

    2013-01-01

    Laser-Plasma Interactions and Applications covers the fundamental and applied aspects of high power laser-plasma physics. With an internationally renowned team of authors, the book broadens the knowledge of young researchers working in high power laser-plasma science by providing them with a thorough pedagogical grounding in the interaction of laser radiation with matter, laser-plasma accelerators, and inertial confinement fusion. The text is organised such that the theoretical foundations of the subject are discussed first, in Part I. In Part II, topics in the area of high energy density physics are covered. Parts III and IV deal with the applications to inertial confinement fusion and as a driver of particle and radiation sources, respectively. Finally, Part V describes the principle diagnostic, targetry, and computational approaches used in the field. This book is designed to give students a thorough foundation in the fundamental physics of laser-plasma interactions. It will also provide readers with knowl...

  14. Application of Plasma finishing on Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Ajay Shankar Joshi,

    2015-04-01

    Full Text Available “Plasma” word is derived from the Greek and referring to the “something molded or fabricated”. Plasma treatments are gaining popularity in the textile industry. Plasma treatment has to be controlled carefully to avoid detrimental action of the plasma onto the substrate. Plasma surface treatments show distinct advantages, because they are able to modify the surface properties of inert materials, sometimes with environment friendly devices. For fabrics, cold plasma treatments require the development of reliable and large systems. Application of “Plasma Technology” in chemical processing of textiles is one of the revolutionary ways to boost the textile wet processing right from pre-treatments to finishing.

  15. Aerospace Applications of Non-Equilibrium Plasma

    Science.gov (United States)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  16. Biomedical applications and diagnostics of atmospheric pressure plasma

    Science.gov (United States)

    Petrović, Z. Lj; Puač, N.; Lazović, S.; Maletić, D.; Spasić, K.; Malović, G.

    2012-03-01

    Numerous applications of non-equilibrium (cold, low temperature) plasmas require those plasmas to operate at atmospheric pressure. Achieving non-equilibrium at atmospheric pressure is difficult since the ionization growth is very fast at such a high pressure. High degree of ionization on the other hand enables transfer of energy between electrons and ions and further heating of the background neutral gas through collisions between ions and neutrals. Thus, all schemes to produce non-equilibrium plasmas revolve around some form of control of ionization growth. Diagnostics of atmospheric pressure plasmas is difficult and some of the techniques cannot be employed at all. The difficulties stem mostly from the small size. Optical emission spectroscopy and laser absorption spectroscopy require very high resolution in order to resolve the anatomy of the discharges. Mass analysis is not normally applicable for atmospheric pressure plasmas, but recently systems with triple differential pumping have been developed that allow analysis of plasma chemistry at atmospheric pressures which is essential for numerous applications. Application of such systems is, however, not free from problems. Applications in biomedicine require minimum heating of the ambient air. The gas temperature should not exceed 40 °C to avoid thermal damage to the living tissues. Thus, plasmas should operate at very low powers and power control is essential. We developed unique derivative probes that allow control of power well below 1 W and studied four different sources, including dielectric barrier discharges, plasma needle, atmospheric pressure jet and micro atmospheric pressure jet. The jet operates in plasma bullet regime if proper conditions are met. Finally, we cover results on treatment of bacteria and human cells as well as treatment of plants by plasmas. Localized delivery of active species by plasmas may lead to a number of medical procedures that may also involve removal of bacteria, fungi and

  17. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    Science.gov (United States)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  18. Determination of phenobarbital in human plasma by a specific liquid chromatography method: application to a bioequivalence study

    Directory of Open Access Journals (Sweden)

    Sérgio Luiz Dalmora

    2010-01-01

    Full Text Available A liquid chromatography method was developed and validated for the determination of phenobarbital in human plasma using phenytoin as internal standard. The drugs were extracted from plasma by liquid-liquid extraction and separated isocratically on a C12 analytical column, maintained at 35 ºC, with water:acetonitrile:methanol (58.8:15.2:26, v/v/v as mobile phase, run at a flow rate of 1.2 mL/min with detection at 205 nm. The method was linear in the range of 0.1-4 μg/mL (r²=0.9999 and demonstrated acceptable results for the precision, accuracy and stability studies. The method was successfully applied for the bioequivalence study of two tablet formulations (test and reference of phenobarbital 100 mg after single oral dose administration to healthy human volunteers.

  19. Systematic comparison of photoionised plasma codes with application to spectroscopic studies of AGN in X-rays

    CERN Document Server

    Mehdipour, M; Kallman, T

    2016-01-01

    Atomic data and plasma models play a crucial role in diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the universe. In this investigation we present a systematic comparison of the leading photoionisation codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionisation equilibrium. We carry out our computations using the Cloudy, SPEX and XSTAR photoionisation codes, and compare their derived thermal and ionisation states for various ionising spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionised outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionisation parameter $\\xi$, we find that on average there is about 30% deviation between the codes in $\\xi$ where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in $\\xi$ is smaller at about 10% on average. The comparison of the absorp...

  20. Quantification of Lumefantrine in Human Plasma Using LC-MS/MS and Its Application to a Bioequivalence Study.

    Science.gov (United States)

    Pingale, Satish G; Mangaonkar, Kiran V

    2013-01-01

    An analytical method based on protein precipitation has been developed and validated for analysis of lumefantrine in human plasma. Artesunate was used as an internal standard for lumefantrine. Inertsil ODS column provided chromatographic separation of analytes followed by detection with mass spectrometry. The method involves simple isocratic chromatographic condition and mass spectrometric detection in the positive ionization mode using an API-3000 system. The total run time was 2.5 minutes. The proposed method has been validated with linear range of 200-20000 ng/mL for lumefantrine. The intrarun and interrun precision values are within 6.66% and 5.56%, respectively, for lumefantrine at the lower limit of quantification level. The overall recovery for lumefantrine and artesunate was 93.16% and 91.05%, respectively. This validated method was used successfully for analysis of plasma samples from a bioequivalence study.

  1. Quantification of Lumefantrine in Human Plasma Using LC-MS/MS and Its Application to a Bioequivalence Study

    Directory of Open Access Journals (Sweden)

    Satish G. Pingale

    2013-01-01

    Full Text Available An analytical method based on protein precipitation has been developed and validated for analysis of lumefantrine in human plasma. Artesunate was used as an internal standard for lumefantrine. Inertsil ODS column provided chromatographic separation of analytes followed by detection with mass spectrometry. The method involves simple isocratic chromatographic condition and mass spectrometric detection in the positive ionization mode using an API-3000 system. The total run time was 2.5 minutes. The proposed method has been validated with linear range of 200–20000 ng/mL for lumefantrine. The intrarun and interrun precision values are within 6.66% and 5.56%, respectively, for lumefantrine at the lower limit of quantification level. The overall recovery for lumefantrine and artesunate was 93.16% and 91.05%, respectively. This validated method was used successfully for analysis of plasma samples from a bioequivalence study.

  2. Formation and emission characteristics of CN molecules in laser induced low pressure He plasma and its applications to N analysis in coal and fossilization study.

    Science.gov (United States)

    Lahna, Kurnia; Idroes, Rinaldi; Idris, Nasrullah; Abdulmadjid, Syahrun Nur; Kurniawan, Koo Hendrik; Tjia, May On; Pardede, Marincan; Kagawa, Kiichiro

    2016-03-01

    Presented in this paper are the results of an experimental study on the laser induced plasma emission of a number of CN free samples (urea, sucrose) with 40 mJ pulse energy using He and N₂ ambient gases. It is shown that the CN emission has its exclusive sources in the molecules produced as the result of chemical bonding either between the ablated C and N ions in the He plasma or between the ablated C and dissociated N from the N₂ ambient gas. The emission intensities in both cases are found to have the highest values at the low gas pressure of 2 kPa. The emission in He gas is shown to exhibit the typical characteristics related to a shockwave generated excitation mechanism. The experiments using He ambient gas further demonstrate the feasible laser-induced breakdown spectroscopy application to quantitative and sensitive N analysis of coal and promising application for practical in situ carbon dating of fossils.

  3. APLICACIÓN DEL MÉTODO DE COÁGULO DE PLASMA PARA ESTUDIOS DE ULTRAESTRUCTURA CELULAR APPLICATION OF PLASMA COAGULATE METHOD FOR CELULAR ULTRASTRUCTURE STUDIES

    Directory of Open Access Journals (Sweden)

    GERARDO ANDRÉS TORRES RODRÍGUEZ

    2009-06-01

    Full Text Available Los estudios de ultraestructura celular en material particulado como bacterias, virus y células en suspensión requieren de un manejo especial, es por esto que se han desarrollado técnicas como la de coágulo de plasma, la cual se aplicó en un modelo experimental de fagocitosis. Se realizaron análisis de Microscopia Electrónica de Transmisión y de Barrido observándose claramente cuatro etapas de la fagocitosis. Se consideró una relación de 10 partículas de levadura por PMN como la proporción más eficiente para la observación del proceso fagocítico, igualmente se determinó muy corto el periodo de incubación de 20 minutos para alcanzar la fagocitosis en su totalidad. La técnica del coágulo de plasma mostró muy buenos resultados en preparaciones para TEM conservando la integridad de las células, no obstante, esta técnica presentó inconvenientes al observarse en MEB debido a los componentes fibrosos del coágulo que impiden una observación de la muestra, adhiriéndose a las superficies produciendo artefactos y deterioro en éstas.Studying ultrastructure cell in particle material such as bacteria, virus and cells suspension require special handling. For that reason, it has been developed techniques like plasma coagulate with phagocytosis as experimental model and analyzed by transmission electronic microscopy (TEM and scanning electronic microscopy (SEM. Four stages of phagocytosis were observed. The efficient proportion to observe the phagocytosis process was 10 particles per NPM (Nuclear Polymorphic, although 20 min as a incubation period was very short to reaching the total process. Applying this technique, cells conserved their integrity to obtain good quality preparation for TEM. In contrast for SEM samples which kept coagulate fiber components adhered to the surface, producing devices and cell deterioration was observed.

  4. Overview of current applications in plasma medicine

    Science.gov (United States)

    Ryan, Thomas P.; Stalder, Kenneth R.

    2017-02-01

    Plasma medicine is a rapidly growing field of treatment, with the number and type of medical applications growing annually, such as dentistry, cancer treatment, wound treatment, Antimicrobial (bacteria, biofilm, virus, fungus, prions), and surface sterilization. Work promoting muscle and blood vessel regeneration and osteointegration is being investigated. This review paper will cover the latest treatments using gas-based plasmas in medicine. Disinfection of water and new commercial systems will also be reviewed, as well as vaccine deactivation. With the rapid increase in new investigators, development of new devices and systems for treatment, and wider clinical applications, Plasma medicine is becoming a powerful tool in in the field of medicine. There are a wide range of Plasma sources that allows customization of the effect. These variations include frequency (DC to MHz), voltage capacity (kV), gas source (He, Ar; O2, N2, air, water vapor; combinations), direct/indirect target exposure, and water targets.

  5. Atmospheric plasma processes for environmental applications

    OpenAIRE

    Shapoval, Volodymyr

    2012-01-01

    Plasma chemistry is a rapidly growing field which covers applications ranging from technological processing of materials, including biological tissues, to environmental remediation and energy production. The so called atmospheric plasma, produced by electric corona or dielectric barrier discharges in a gas at atmospheric pressure, is particularly attractive for the low costs and ease of operation and maintenance involved. The high concentrations of energetic and chemically active species (e.g...

  6. Atmospheric plasma processes for environmental applications

    OpenAIRE

    Shapoval, Volodymyr

    2012-01-01

    Plasma chemistry is a rapidly growing field which covers applications ranging from technological processing of materials, including biological tissues, to environmental remediation and energy production. The so called atmospheric plasma, produced by electric corona or dielectric barrier discharges in a gas at atmospheric pressure, is particularly attractive for the low costs and ease of operation and maintenance involved. The high concentrations of energetic and chemically active species (e.g...

  7. A high-performance liquid chromatographic method for determination of scopolin in rat plasma: application to pharmacokinetic studies.

    Science.gov (United States)

    Xia, Yu-Feng; Dai, Yue; Wang, Qiang; Cai, Fei

    2008-10-01

    An analytical method based on high-performance liquid chromatographic (HPLC) with ultraviolet (UV) detection was developed for determination of scopolin in rat plasma using aesculin as internal standard (IS). After protein precipitation of plasma sample with methanol, the supernatant was directly injected and analyzed. Chromatographic separation was achieved on a C18 column using methanol and distilled water (22:78, v/v) containing 0.2% (v/v) glacial acetic acid as mobile phase with a column temperature of 30 degrees C. The UV detector was set at 338 nm. The calibration curve was linear over the range of 0.105-13.125 microg/mL with a correlation coefficient of 0.9998. The retention times of aesculin and scopolin were 10.4 and 12.8 min, respectively. The recoveries for plasma samples of 0.105, 4.725 and 13.125 microg/mL were 91.08, 95.30 and 96.10%, respectively. The RSD of intra- and inter-day assay variations was less than 7.35%. The lower limit of detection was 0.03 microg/mL .This HPLC assay is a simple, sensitive and accurate and was successfully applied to the pharmacokinetic study of scopolin in rats.

  8. Determination of atractylon in rat plasma by a GC-MS method and its application to a pharmacokinetic study

    Institute of Scientific and Technical Information of China (English)

    Han Yan; Yuanyuan Sun; Yuying Ma; Bin Ji; Xiaohong Hou; Zhiguo Yu; Yunli Zhao

    2015-01-01

    A sensitive and selective method based on gas chromatography hyphenated to mass spectrometry (GC-MS) was developed and validated for the determination of atractylon in rat plasma. Plasma samples were processed by liquid-liquid extraction with ethyl acetate-n-hexane (1:1, v/v) using acetophenone as an internal standard (IS). Analytes were determined in selective ion monitoring (SIM) mode using target ions at m/z 108.1 for atractylon and m/z 105.1 for acetophenone. The calibration curve was linear over the concentration range of 10-1000 ng/mL with lower limit of quantification of 10 ng/mL. The intra- and inter-day precision variations were not more than 10.4% and 9.6%, respectively, whilst accuracy values ranged from -6.5% to 4.9%. Extraction recovery of the assay was satisfactory. This method was suc-cessfully applied to quantification and pharmacokinetic study of atractylon in rat plasma after in-tragastric administration of Atractylodis extract.

  9. Determination of atractylon in rat plasma by a GC–MS method and its application to a pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    Han Yan

    2015-10-01

    Full Text Available A sensitive and selective method based on gas chromatography hyphenated to mass spectrometry (GC–MS was developed and validated for the determination of atractylon in rat plasma. Plasma samples were processed by liquid–liquid extraction with ethyl acetate-n-hexane (1:1, v/v using acetophenone as an internal standard (IS. Analytes were determined in selective ion monitoring (SIM mode using target ions at m/z 108.1 for atractylon and m/z 105.1 for acetophenone. The calibration curve was linear over the concentration range of 10–1000 ng/mL with lower limit of quantification of 10 ng/mL. The intra- and inter-day precision variations were not more than 10.4% and 9.6%, respectively, whilst accuracy values ranged from −6.5% to 4.9%. Extraction recovery of the assay was satisfactory. This method was successfully applied to quantification and pharmacokinetic study of atractylon in rat plasma after intragastric administration of Atractylodis extract.

  10. Determination of salvianolic acid C in rat plasma using liquid chromatography-mass spectrometry and its application to pharmacokinetic study.

    Science.gov (United States)

    Song, Junke; Zhang, Wen; Sun, Jialin; Zhang, Xue; Xu, Xiaona; Zhang, Li; Feng, Zhangying; Du, Guanhua

    2016-03-01

    A sensitive and reliable LC-ESI-MS method for the determination of salvianolic acid C in rat plasma has been developed and validated. Plasma samples were prepared by liquid-liquid extraction with ethyl acetate and separated on a Zorbax SB-C18 column (3.5 µm, 2.1 × 100 mm) at a flow rate of 0.3 mL/min using acetonitrile-water as mobile phase. The detection was carried out by a single quadrupole mass spectrometer with electrospray ionization source and selected ion monitoring mode. Linearity was obtained for salvianolic acid C ranging from 5 to 1000 ng/mL. The intra- and inter-day precisions (RSD, %) didn't exceed 9.96%, and the accuracy (RE, %) were all within ±3.64%. The average recoveries of the analyte and internal standard were >89.13%. Salvianolic acid C was proved to be stable during all sample storage, preparation and analytic procedures. The validated method was successfully applied to pharmacokinetic study after oral and intravenous administration of salvianolic acid C to rats. The absolute oral bioavailability of salvianolic acid C was 0.29 ± 0.05%. This method was further applied to simultaneous determination of salvianolic acid A, salvianolic acid B and salvianolic acid C in rat plasma and showed good practicability.

  11. Determination of pinocembrin in human plasma by solid-phase extraction and LC/MS/MS: application to pharmacokinetic studies.

    Science.gov (United States)

    Yan, Bei; Cao, Guoying; Sun, Taohua; Zhao, Xi; Hu, Xin; Yan, Jiling; Peng, Yueying; Shi, Aixin; Li, Yang; Xue, Wei; Li, Min; Li, Kexin; Liu, Yingfa

    2014-12-01

    A sensitive, fast and specific method for the quantitation of pinocembrin in human plasma based on high-performance liquid chromatography-tandem mass spectrometry (LC/MS/MS) was developed and validated. Clonazepam was used as the internal standard (IS). After solid-phase extraction of 500 μL plasma, pinocembrin and the IS were separated on a Luna C8 column using the mobile phase composed of acetonitrile-0.3 mm ammonium acetate solution (65:35, v/v) at a flow rate of 0.25 mL/min in isocratic mode. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring via an electrospray ionization source in negative mode by AB SCIEX Qtrap 5500. The assay was linear from 1 to 400 ng/mL, with within- and between-run accuracy (relative error) from -1.82 to 0.54%, and within- and between-run precision (CV) below 5.25%. The recovery was above 88% for the analyte at 1, 50 and 300 ng/mL. This analytical method was successful for the determination of pinocembrin in human plasma and applied to a pharmacokinetic study of pinocembrin injection in healthy volunteers after intravenous drip administration. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Determination of fenticonazole in human plasma by HPLC–MS/MS and its application to pharmacokinetic studies

    Directory of Open Access Journals (Sweden)

    Weixing Mao

    2017-02-01

    Full Text Available Two simple and sensitive high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS methods were developed and validated for the determination of fenticonazole in human plasma after percutaneous and intravaginal administration. Mifepristone was used as an internal standard (IS, and simple protein precipitation by acetonitrile containing 2% acetic acid was utilized for extracting the analytes from the plasma samples. Chromatographic separation was performed on a Kinetex XB-C18 column. The quantitation was performed by a mass spectrometer equipped with an electrospray ionization source in multiple reactions monitoring (MRM positive ion mode using precursor-to-product ion transitions of m/z 455.2–199.1 for fenticonazole and m/z 430.2–372.3 for mifepristone. The validated linear ranges were 5–1000 pg/mL and 0.1–20 ng/mL fenticonazole in plasma for the methods A and B, respectively. For the two methods, the accuracy data ranged from 85% to 115%, the intra- and inter-batch precision data were less than 15%, the recovery data were more than 90%, and no matrix interference was observed. The methods A and B were successfully validated and applied to the pharmacokinetic studies of fenticonazole gel in Chinese healthy volunteers after percutaneous and intravaginal administration, respectively.

  13. Determination and validation of chikusetsusaponin IVa in rat plasma by UPLC-MS/MS and its application to pharmacokinetic study.

    Science.gov (United States)

    Wang, Ying; Liu, Shi-Ping; Guo, Mei-Hua; Wang, Zhuo

    2016-09-01

    A novel, sensitive and rapid ultra-performance liquid chromatography-tandem mass spectrometric method for the quantification of chikusetsusaponin IVa (CHS-IVa) in rat plasma was established and validated. Plasma samples were pre-treated by precipitation of protein with acetonitrile and chromatographed on a Waters Symmetry C18 analytical column (4.6 × 50 mm, i.d., 3.5 μm) using a mobile phase consisting of methanol and water containing 0.05% formic acid (55:45, v/v) at a flow rate of 0.4 mL/min. The deprotonated molecular ions [M - H](-) were employed in electrospray negative ionization mode and selected reaction monitoring transitions were performed for detection. The calibration curves exhibited good linearity (r > 0.99) over the range of 0.5-1000 ng/mL for CHS-IVa. The recoveries of CHS-IVa were >92.5% and exhibited no severe matrix effect. This method was successfully applied in the pharmacokinetic study of CHS-IVa in rats. For oral administration, the plasma concentrations of CHS-IVa increased to a peak value at 0.35 ± 0.14 h, followed by a gradual decrease to the lower limit of quantitation in 24 h. For intravenous administration, the plasma concentrations of CHS-IVa decreased quickly (t1/2 , 1.59 ± 0.25 h). The absolute bioavailability of CHS-IVa in rats was 8.63%. Copyright © 2016 John Wiley & Sons, Ltd.

  14. A Rapid and Sensitive HPLC Method for the Analysis of Celecoxib in Human Plasma: Application to Pharmacokinetic Studies

    Directory of Open Access Journals (Sweden)

    A Ajami

    2008-09-01

    Full Text Available Background and the purpose of the study: A suitable high-performance liquid chromatography (HPLC method for determination of celecoxib levels in plasma is of prime need for the pharmacokinetics and bioequivalence studies of celecoxib preparations. The present study describes a simple, rapid, sensitive, reliable, and economic HPLC method for determination of celecoxib in human plasma which is more feasible than reported celecoxib HPLC assays. Methods: The drug and internal standard were extracted using n-hexane /isoamyl alcohol (97:3 and analyzed on a C18 µ-Bondapak HPLC column with KH2PO4 (0.01M, pH= 4 - acetonitrile (60:40 as the mobile phase, at 260 nm. The method involved simple one-step liquid-liquid extraction procedure with extraction recovery of greater than 90%. Results:  The standard curve covering 0.01-2.0 μg/ml concentration range was linear. The coefficients of variation and relative errors for inter- and intra-day assay ranged from 5.67 to 9.83 and 0.35 to 7.89 %, respectively. Conclusions: HPLC assay was performed isocratically on a reversed-phase column with UV detection. By this method a limit of quantification of 10 ng/ml of a sample size of 0.5 ml is achieved which is comparable or even better than the reported methods. The developed method was applied to the analysis of celecoxib levels in plasma collected from healthy volunteers who participated in a pharmacokinetic study.

  15. Accuracy assessment on the analysis of unbound drug in plasma by comparing traditional centrifugal ultrafiltration with hollow fiber centrifugal ultrafiltration and application in pharmacokinetic study.

    Science.gov (United States)

    Zhang, Lin; Zhang, Zhi-Qing; Dong, Wei-Chong; Jing, Shao-Jun; Zhang, Jin-Feng; Jiang, Ye

    2013-11-29

    In present study, accuracy assessment on the analysis of unbound drug in plasma was made by comparing traditional centrifugal ultrafiltration (CF-UF) with hollow fiber centrifugal ultrafiltration (HFCF-UF). We used metformin (MET) as a model drug and studied the influence of centrifugal time, plasma condition and freeze-thaw circle times on the ultrafiltrate volume and related effect on the measurement of MET. Our results demonstrated that ultrafiltrate volume was a crucial factor which influenced measurement accuracy of unbound drug in plasma. For traditional CF-UF, the ultrafiltrate volume cannot be well-controlled due to a series of factors. Compared with traditional CF-UF, the ultrafiltrate volume by HFCF-UF can be easily controlled by the inner capacity of the U-shaped hollow fiber inserted into the sample under enough centrifugal force and centrifugal time, which contributes to a more accurate measurement. Moreover, the developed HFCF-UF method achieved a successful application in real plasma samples and exhibited several advantages including high precision, extremely low detection limit and perfect recovery. The HFCF-UF method offers the advantage of highly satisfactory performance in addition to being simple and fast in pretreatment, with these characteristics being consistent with the practicability requirements in current scientific research.

  16. Quantification of neomangiferin in rat plasma by liquid chromatography–tandem mass spectrometry and its application to bioavailability study

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2016-10-01

    Full Text Available Neomangiferin, a natural C-glucosyl xanthone, has recently received a great deal of attention due to its multiple biological activities. In this study, a rapid and sensitive ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS method for the quantification of neomangiferin in rat plasma was developed. Using chloramphenicol as an internal standard (IS, plasma samples were subjected to a direct protein precipitation process using methanol (containing 0.05% formic acid. Quantification was performed by multiple reactions monitoring (MRM method, with the transitions of the parent ions to the product ions of m/z 583.1→330.9 for NG and m/z 321.1→151.9 for IS. The assay was shown to be linear over the range of 0.2–400 ng/mL, with a lower limit of quantification of 0.2 ng/mL. Mean recovery of neomangiferin in plasma was in the range of 97.76%–101.94%. Relative standard deviations (RSDs of intra-day and inter-day precision were both <10%. The accuracy of the method ranged from 94.20% to 108.72%. This method was successfully applied to pharmacokinetic study of neomangiferin after intravenous (2 mg/kg and intragastric (10 mg/kg administration for the first time. The oral absolute bioavailability of neomangiferin was estimated to be 0.53%±0.08% with an elimination half-life (t1/2 value of 2.74±0.92 h, indicating its poor absorption and/or strong metabolism in vivo.

  17. Simultaneous Quantification of Baricitinib and Methotrexate in Rat Plasma by LC-MS/MS: Application to a Pharmacokinetic Study.

    Science.gov (United States)

    Veeraraghavan, Sridhar; Thappali, Satheeshmanikandan R S; Viswanadha, Srikant; Vakkalanka, Swaroop; Rangaswamy, Manivannan

    2016-01-01

    Efficacy assessments using a combination of baricitinib and methotrexate necessitate the development of an analytical method for the determination of both drugs in plasma with precision. A high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of baricitinib and methotrexate in rat plasma. Extraction of baricitinib, methotrexate, and tolbutamide (internal standard; IS) from 50 µL of rat plasma was carried out by protein precipitation with methanol. Chromatographic separation of the analytes was performed on the YMC pack ODS AM (150 mm × 4.6 mm, 5 µm) column under gradient conditions with methanol: 2.0 mM ammonium acetate buffer as the mobile phases at a flow rate of 1 mL/min. The precursor ion and product ion transition for both analytes and IS were monitored on a triple quadrupole mass spectrometer, operated with selective reaction monitoring in positive ionization mode. The method was validated over a concentration range of 0.5-250.00 ng/mL for baricitinib and methotrexate. Mean extraction recoveries for baricitinib, methotrexate, and IS of 86.8%, 89.4%, and 91.8% were consistent across low, medium, and high QC levels, respectively. Precision and accuracy at low, medium, and high quality control levels were less than 15% across the analytes. Benchtop, wet, freeze-thaw, and long-term stability were evaluated for both of the analytes. The analytical method was applied to support the pharmacokinetic study of simultaneous estimation of baricitinib and methotrexate in Wistar rats. Assay reproducibility was demonstrated by reanalysis of 18 incurred samples.

  18. Simultaneous determination of mangiferin and neomangiferin in rat plasma by UPLC-MS/MS and its application for pharmacokinetic study.

    Science.gov (United States)

    Qiu, Xiangjun; Zhao, Jian-long; Hao, Cong; Yuan, Canli; Tian, Nuan; Xu, Zhi-sheng; Zou, Ruan-min

    2016-05-30

    In this study, a sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed to determine mangiferin and neomangiferin in rat plasma simultaneously. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column and mass spectrometric analysis was performed using a Xevo TQD triple quadruple mass spectrometer coupled with an electrospray ionization (ESI) source. The MRM transitions of m/z 423.2 → 303.1 and m/z 585.0 → 273.1 were used to quantify for mangiferin and neomangiferin, respectively. The linearity of this method was found to be within the concentration range of 5-2000 ng/mL for mangiferin, and 2-1000 ng/mL for neomangiferin in rat plasma, respectively. Only 3.0 min was needed for an analytical run. This assay was used to support a preclinical study to investigate the pharmacokinetics of mangiferin and neomangiferin in rats.

  19. Quantification of roxatidine in human plasma by liquid chromatography electrospray ionization tandem mass spectrometry: application to a bioequivalence study.

    Science.gov (United States)

    Ryu, Ju-Hee; Choi, Sang-Jun; Lee, Heon-Woo; Choi, Seung-Ki; Lee, Kyung-Tae

    2008-12-01

    A sensitive and specific method using a one-step liquid-liquid extraction (LLE) with ethyl acetate followed by high-performance liquid chromatography (HPLC) coupled with positive ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) detection was developed and validated for the determination of roxatidine in human plasma using famotidine as an internal standard (IS). Data acquisition was carried out in multiple reaction monitoring (MRM) mode, by monitoring the transitions m/z 307.3-->107.1 for roxatidine and m/z 338.4-->189.1 for famotidine. Chromatographic separation was performed on a reverse phase Hydrosphere C(18) column at 0.2 mL min(-1) using a mixture of methanol-ammonium formate buffer as mobile phase (20:80, v/v; adjusted to pH 3.9 with formic acid). The achieved lower limit of quantification (LLOQ) was 1.0 ng mL(-1) and the standard calibration curve for roxatidine was linear (r(2)=0.998) over the studied range (1-1000 ng mL(-1)) with acceptable accuracy and precision. Roxatidine was found to be stable in human plasma samples under short-, long-term storage and processing conditions. The developed method was validated and successfully applied to the bioequivalence study of roxatidine administrated as a single oral dose (75 mg as roxatidine acetate hydrochloride) to healthy female Korean volunteers.

  20. Experimental study of plasma window

    CERN Document Server

    Ben-Liang, Shi; Kun, Zhu; Yuan-Rong, Lu

    2013-01-01

    Plasma window is an advanced apparatus which can work as the interface between vacuum and high pressure region. It can be used in many applications which need atmosphere-vacuum interface, such as gas target, electron beam welding, synchrotron radiation and spallation neutron source. A test bench of plasma window is constructed in Peking University. A series of experiments and corresponding parameter measurements have been presented in this article. The experiment result indicates the feasibility of such a facility acting as an interface between vacuum and high pressure region.

  1. Simultaneous quantification of picfeltarraenins IA and IB in rat plasma by UPLC-MS/MS: Application to a pharmacokinetic study.

    Science.gov (United States)

    He, Xin; Zhang, Yingjie; Gao, Hang; Li, Keyan; Zhang, Yazhuo; Sun, Limin; Tao, Guizhou

    2016-02-20

    A simple and rapid quantitative UPLC-MS/MS method for simultaneous determination of picfeltarraenins IA and IB in rat plasma was developed and validated in accordance with the US FDA Bioanalytical Guidance (2001). Analytes were extracted from rat plasma by using methanol and separated on Agilent ZORBAX SB-C18 (50mm×2.1mm, 1.8μm) column by using a mobile phase composed of methanol and water (70:30, v/v). Eluents were monitored by ESI tandem mass spectrometry detection with SRM mode using ion transitions m/z 785.4→639.5, m/z 815.5→669.5, and m/z 763.5→455.3 for picfeltarraenin IA, picfeltarraenin IB, and internal standard, respectively. The method was validated over the linear range of 11.5-1150ng/mL and 13.0-1300ng/mL. The developed analytical method was applied to support a pharmacokinetic study on simultaneous estimation of picfeltarraenins IA and IB in rats.

  2. Determination of rutin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and application to pharmacokinetic study.

    Science.gov (United States)

    Chen, Mengchun; Zhang, Xiaoqian; Wang, Hao; Lin, Baoli; Wang, Shuanghu; Hu, Guoxin

    2015-04-01

    A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS-MS) method for the determination of rutin in rat plasma was developed and validated. After addition of tolbutamide as internal standard (IS), protein precipitation by acetonitrile was used as sample preparation. The chromatographic separation was performed on an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm particle size), using acetonitrile-0.1% formic acid as the mobile phase with gradient elution, delivered at a flow-rate of 0.4 mL/min. Mass spectrometric analysis was performed using a XEVO TQD mass spectrometer coupled with an electro-spray ionization (ESI) source in the positive ion mode. The MRM transitions of m/z 610.91→302.98 and m/z 271.2→155.1 were used to quantify for rutin and tolbutamide, respectively. This assay method has been fully validated in terms of specificity, linearity, recovery and matrix effect, accuracy, precision and stability. Calibration curves were linear in the concentration ranges of 25-2000 ng/mL for rutin. Only 3 min was needed for an analytical run. This developed method was successfully used for determination of rutin in rat plasma for pharmacokinetic study.

  3. Rapid Determination of Imatinib in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry: Application to a Pharmacokinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jeong Soo; Cho, Eun Gi; Huh, Wooseong; Ko, Jaewook; Jung, Jin Ah; Lee, Sooyoun [Samsung Medical Center, Seoul (Korea, Republic of)

    2013-08-15

    A simple, fast and robust analytical method was developed to determine imatinib in human plasma using liquid chromatography-tandem mass spectrometry with electrospray ionization in the positive ion mode. Imatinib and labeled internal standard were extracted from plasma with a simple protein precipitation. The chromatographic separation was performed using an isocratic elution of mobile phase involving 5.0 mM ammonium formate in water -5.0 mM ammonium formate in methanol (30:70, v/v) over 3.0 min on reversed-stationary phase. The detection was performed using a triple-quadrupole tandem mass spectrometer in multiple-reaction monitoring mode. The developed method was validated with lower limit of quantification of 10 ng/mL. The calibration curve was linear over 10-2000 ng/mL (R{sup 2} > 0.99). The method validation parameters met the acceptance criteria. The spiked samples and standard solutions were stable under conditions for storage and handling. The reliable method was successfully applied to real sample analyses and thus a pharmacokinetic study in 27 healthy Korean male volunteers.

  4. Simultaneous determination of irbesartan and hydrochlorothiazide in human plasma using HPLC coupled with tandem mass spectrometry: Application to bioequivalence studies.

    Science.gov (United States)

    Tutunji, Lara F; Tutunji, Maha F; Alzoubi, Mamoun I; Khabbas, Manal H; Arida, Adi I

    2010-03-11

    A sensitive, specific and selective liquid chromatography/tandem mass spectrometric method has been developed and validated for the simultaneous determination of irbesartan and hydrochlorothiazide in human plasma. Plasma samples were prepared using protein precipitation with acetonitrile, the two analytes and the internal standard losartan were separated on a reverse phase C(18) column (50mmx4mm, 3microm) using water with 2.5% formic acid, methanol and acetonitrile (40:45:15, v/v/v (%)) as a mobile phase (flow rate of 0.70mL/min). Irbesartan and hydrochlorothiazide were ionized using ESI source in negative ion mode, prior to detection by multiple reaction monitoring (MRM) mode while monitoring at the following transitions: m/z 296-->269 and m/z 296-->205 for hydrochlorothiazide, 427-->175 for irbesartan. Linearity was demonstrated over the concentration range 0.06-6.00microg/mL for irbesartan and 1.00-112.00ng/mL for hydrochlorothiazide. The developed and validated method was successfully applied to a bioequivalence study of irbesartan (300mg) with hydrochlorothiazide (12.5mg) tablet in healthy volunteers (N=36).

  5. Determination of roxatidine in human plasma by liquid chromatography/electrospray mass spectrometry and application to a clinical pharmacokinetic study.

    Science.gov (United States)

    Shin, Beom Soo; Choi, Jin Won; Balthasar, Joseph P; Hong, Deok Ki; Kim, Jung Jun; Yoo, Sun Dong

    2007-01-01

    A rapid and sensitive liquid chromatography/mass spectrometry (LC/MS) method was developed and validated for the determination of roxatidine in human plasma. Roxatidine was extracted by single liquid-liquid extraction with tert-butyl methyl ether, and the chromatographic separation was performed on a C8 column. The total analytical run time was relatively short (5 min), and the limit of assay quantification was 2 ng/mL using 0.1 mL of human plasma. Roxatidine and the internal standard, propranolol, were monitored in selected ion monitoring (SIM) mode at m/z 307.3 and 260.3, respectively. The standard curve was linear over a concentration range from 2-500 ng/mL, and the correlation coefficients were >0.999. The mean intra- and inter-day assay accuracy ranged from 103.4-108.8% and 102.3-110.0%, respectively, and the mean intra- and inter-day precision was between 3.3-8.8% and 5.3-6.2%, respectively. The developed assay method was successfully applied to a pharmacokinetic study in human volunteers after oral administration of roxatidine acetate hydrochloride at a dose of 75 mg.

  6. Liquid chromatography–tandem mass spectrometry method for the estimation of adefovir in human plasma: Application to a pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    Dipanjan Goswami

    2015-06-01

    Full Text Available An analytical method based on solid phase extraction was developed and validated for analysis of adefovir in human plasma. Adefovir-d4 was used as an internal standard and Synergi MAX RP80A (150 mm×4.6 mm, 4 µm column provided the desired chromatographic separation of compounds followed by detection with mass spectrometry. The method used simple isocratic chromatographic condition and mass spectrometric detection in the positive ionization mode. The calibration curves were linear over the range of 0.50–42.47 ng/mL with the lower limit of quantitation validated at 0.50 ng/mL. Matrix effect was assessed by post-column infusion experiment to monitor phospholipids and post-extraction addition experiment was performed. The degree of matrix effect for adefovir was determined as 7.5% and ion-enhancement in five different lots of human plasma was 7.1% and had no impact on study samples analysis with 4.5 min run time. The intra- and inter-day precision values were within 7.7% and 7.8%, respectively, for adefovir at the lower limit of quantification level. Validated bioanalytical method was successfully applied to clinical sample analysis.

  7. LC–MS/MS assay for olanzapine in human plasma and its application to a bioequivalence study

    Directory of Open Access Journals (Sweden)

    Dinesh S. Patel

    2012-10-01

    Full Text Available This paper describes a selective and sensitive assay for the determination of olanzapine (OLZ in human plasma based on liquid chromatography–tandem mass spectrometry (LC–MS/MS. The analyte and quetiapine as internal standard (IS were extracted from 200 μL plasma via solid phase extraction on Waters Oasis HLB cartridges. Chromatographic separation was achieved on an ACE 5C18-300 column (100 mm×4.6 mm, 5 μm under isocratic conditions in a run time of 3.5 min. Mass spectrometric detection involved electrospray ionization in the positive ion mode followed by multiple reaction monitoring (MRM of the transitions at m/z 313/256 for OLZ and m/z 384/253 for the IS. The assay was linear in the range 0.10–40.0 ng/mL with a lower limit of quantitation and limit of detection of 0.10 and 0.012 ng/mL, respectively. Intra- and inter-day precision (as coefficient of variation and relative recovery were 90%, respectively. The method was successfully applied to a bioequivalence study of 5 and 10 mg OLZ disintegrating tablets in 40 healthy Indian males with reproducibility by incurred sample reanalysis in the range −7.43 to 8.07%.

  8. Simple and Robust Analysis of Cefuroxime in Human Plasma by LC-MS/MS: Application to a Bioequivalence Study.

    Science.gov (United States)

    Hu, Xingjiang; Huang, Mingzhu; Liu, Jian; Chen, Junchun; Shentu, Jianzhong

    2014-01-01

    A simple, robust LC-MS/MS assay for quantifying cefuroxime in human plasma was developed. Cefuroxime and tazobactam, as internal standard (IS), were extracted from human plasma by methanol to precipitate protein. Separation was achieved on a Zorbax SB-Aq (4.6 × 250 mm, 5  μ m) column under isocratic conditions. The calibration curve was linear in the concentration range of 0.0525-21.0  μ g/mL (r = 0.9998). The accuracy was higher than 90.92%, while the intra- and interday precision were less than 6.26%. The extraction procedure provides recovery ranged from 89.44% to 92.32%, for both analyte and IS. Finally, the method was successfully applied to a bioequivalence study of a single 500 mg dose of cefuroxime axetil in 22 healthy Chinese male subjects under fasting condition. Bioequivalence was determined by calculating 90% Cls for the ratios of C max, AUC0-t , and AUC0-∞ values for the test and reference products, using logarithmic transformed data. The 90% Cls for the ratios of C max (91.4%~104.2%), AUC0-t (97.4%~110.9%), and AUC0-∞ (97.6%~111.1%) values were within the predetermined range. It was concluded that the two formulations (test for capsule, reference for tablet) analyzed were bioequivalent in terms of rate and extent of absorption and the method met the principle of quick and easy clinical analysis.

  9. A simplified HPLC method for quantification of torsemide from human plasma and its application to a bioequivalence study

    Directory of Open Access Journals (Sweden)

    Khan I

    2008-01-01

    Full Text Available A simple, rapid and selective method was developed. The method was validated and found to be linear in the range of 100-4000 ng/ml. Chromatographic peaks were separated by means of a 5 µm, C18 silica column using acetonitrile and phosphate buffer (0.05 M in proportion of 40:60 (pH 4.0 as a mobile phase. The retention time of torsemide was 5.00±0.20 min. The chromatograms showed good resolution and no interference from plasma. The mean recovery from human plasma was found to be above 82%. Both inter-day and intra-day accuracy and precision data showed good reproducibility. This method was applied to a single dose bioequivalence study. Log transformed values were compared by ANOVA followed by classical 90% confidence interval. Confidence limits for C max , AUC 0-t and AUC 0-inf ranged from 98.6 to 102.8, 101.8 to 105.3 and 102.4 to 105.5 respectively. These results suggested that the analytical method was linear, precise and accurate. Test and reference product were found to be bioequivalent.

  10. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    Science.gov (United States)

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  11. Short-term stability studies of ampicillin and cephalexin in aqueous solution and human plasma: Application of least squares method in Arrhenius equation.

    Science.gov (United States)

    do Nascimento, Ticiano Gomes; de Jesus Oliveira, Eduardo; Basílio Júnior, Irinaldo Diniz; de Araújo-Júnior, João Xavier; Macêdo, Rui Oliveira

    2013-01-25

    A limited number of studies with application of the Arrhenius equation have been reported to drugs and biopharmaceuticals in biological fluids at frozen temperatures. This paper describes stability studies of ampicillin and cephalexin in aqueous solution and human plasma applying the Arrhenius law for determination of adequate temperature and time of storage of these drugs using appropriate statistical analysis. Stability studies of the beta-lactams in human plasma were conducted at temperatures of 20°C, 2°C, -20°C and also during four cycles of freeze-thawing. Chromatographic separation was achieved using a Shimpak C(18) column, acetonitrile as organic modifier and detection at 215nm. LC-UV-MS/MS was used to demonstrate the conversion of ampicillin into two diastereomeric forms of ampicilloic acid. Stability studies demonstrated degradation greater than 10% for ampicillin in human plasma at 20°C, 2°C and -20°C after 15h, 2.7days, 11days and for cephalexin at the same temperatures after 14h, 3.4days and 19days, respectively, and after the fourth cycle of freezing-thawing. The Arrhenius plot showed good prediction for the ideal temperature and time of storage for ampicillin (52days) and cephalexin (151days) at a temperature of -40°C, but statistical analysis (least squares method) must be applied to avoid incorrect extrapolations and estimated values out uncertainty limits. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Quantitation of eleven active compounds of Aidi injection in rat plasma and its application to comparative pharmacokinetic study.

    Science.gov (United States)

    Liu, Ran; Ma, Ran; Yu, Chunyu; Bi, Cathy Wenchuan; Yin, Yidi; Xu, Huarong; Shang, Hongwei; Bi, Kaishun; Li, Qing

    2016-07-15

    Aidi injection has been widely used for the treatment of colorectal cancer. The purpose of this study was to develop a sensitive and reliable method for simultaneous quantitation of 11 main active ingredients in Aidi injection and to compare the pharmacokinetics of these ingredients in normal and colorectal model cancer rats after tail vein injection. After being extracted by isopropanol-ethyl acetate (1:1, v/v), the plasma samples were analyzed with domperidone as internal standard. Then the analytes were separated on a Venusil MP C18 column with 0.15% formic acid and methanol. The detection was performed on HPLC-MS/MS system with turbo ion spray source in the positive ion and multiple reaction-monitoring mode. The assay was shown to be linear over the range of 0.004-4.0μgmL(-1) of syringin B, astragaloside II and isofraxidin; 0.01-10.0μgmL(-1) of calycosin-7-O-β-d-glucoside and astragaloside IV; 0.02-20.0μgmL(-1) of ginsenoside Rg1, Rb1, Rc and Rd; 0.04-40.0μgmL(-1) of syringin E; 0.06-60.0μgmL(-1) of ginsenoside Re. And the validated method has been successfully applied to compare pharmacokinetic profiles of the 11 ingredients in plasma. The pharmacokinetic results showed here were significant differences in pharmacokinetic parameters for eight analytes between two groups after injection, while no significant differences for astragaloside II, astragaloside IV and ginsenoside Rc. The present study has the advantages of short analysis time and easy sample preparation, which could more comprehensively reflect the quality of Aidi injection in single run. The method proposed could be of great use for pharmacokinetics, bioavailability or bioequivalence studies of Aidi injection in biological samples.

  13. Simultaneous determination of borneol and its metabolite in rat plasma by GC-MS and its application to pharmacokinetic study

    Institute of Scientific and Technical Information of China (English)

    Xiu-Man Sun; Qiong-Feng Liao; Yu-Ting Zhou; Xue-Jiao Deng; Zhi-Yong Xie

    2014-01-01

    A gas chromatography mass spectrometry (GC-MS) method has been developed and fully validated for the simultaneous determination of natural borneol (NB) and its metabolite, camphor, in rat plasma. Following a single liquid-liquid extraction, the analytes were separated using an HP-5MS capillary column (0.25 mm ? 30 m ? 0.25μm) and analyzed by MS in the selected ion monitoring mode. Selected ion monitor (m/z) of borneol, camphor and internal standard was 95, 95 and 128, respectively. Linearity, accuracy, precision and extraction recovery of the analytes were all satisfactory. The method was successfully applied to pharmacokinetic studies of NB after oral administration to Wistar rats.

  14. Simultaneous determination of borneol and its metabolite in rat plasma by GC–MS and its application to pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    Xiu-Man Sun

    2014-10-01

    Full Text Available A gas chromatography mass spectrometry (GC–MS method has been developed and fully validated for the simultaneous determination of natural borneol (NB and its metabolite, camphor, in rat plasma. Following a single liquid–liquid extraction, the analytes were separated using an HP-5MS capillary column (0.25 mm×30 m×0.25 μm and analyzed by MS in the selected ion monitoring mode. Selected ion monitor (m/z of borneol, camphor and internal standard was 95, 95 and 128, respectively. Linearity, accuracy, precision and extraction recovery of the analytes were all satisfactory. The method was successfully applied to pharmacokinetic studies of NB after oral administration to Wistar rats.

  15. Theoretical Studies of Long Lived Plasma Structures

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We construct the model of a long lived plasma structure based on spherically symmetric oscillations of electrons in plasma. Oscillations of electrons are studied in frames of both classical and quantum approaches. We obtain the density profile of electrons and the dispersion relations for these oscillations. The differences between classical and quantum approaches are discussed. Then we study the interaction between electrons participating in spherically symmetric oscillations. We find that this interaction can be attractive and electrons can form bound states. The applications of the obtained results to the theory of natural plasmoids are considered.

  16. Determination of levetiracetam in human plasma by liquid chromatography/electrospray tandem mass spectrometry and its application to bioequivalence studies.

    Science.gov (United States)

    Jain, Deepak S; Subbaiah, Gunta; Sanyal, Mallika; Pal, Usha; Shrivastav, Pranav S

    2006-01-01

    The first liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the determination of levetiracetam, an antiepileptic drug, in human plasma is described. The plasma filtrate obtained after solid-phase extraction (SPE), using a polymer-based, hydrophilic-lipophilic balanced (HLB) cartridge, was submitted directly to a short column LC/MS/MS assay. There was no significant matrix effect on the analysis. For validation of the method, the recovery of the free analytes was compared to that from an optimized extraction method, and the analyte stability was examined under conditions mimicking sample storage, handling, and analytical procedures. The extraction procedure yielded extremely clean extracts with a recovery of 79.95% and 89.02% for levetiracetam and the internal standard (IS), respectively. The intra-assay and inter-assay precision for the samples at the lower limit of quantitation (LLOQ) were 6.33 and 6.82%, respectively. The calibration curves were linear for the dynamic range of 0.5 to 50 microg/mL with a correlation coefficient r >/= 0.9971. The intra-assay accuracy at LLOQ, LQC, MQC, and HQC levels ranged from 81.60 to 95.40, 93.00 to 103.47, 95.97 to 104.09, and 91.15 to 95.18%, respectively, while the inter-assay accuracy at LLOQ, LQC, MQC and HQC levels varied from 80.20 to 95.40, 88.53 to 107.53, 95.97 to 108.45, and 91.15 to 112.70%, respectively. The method is rugged and fast with a total instrumental run time of 2 min. The method was successfully applied for bioequivalence studies in human subject samples after oral administration of 1000 mg immediate release (IR) formulations.

  17. Systematic comparison of photoionised plasma codes with application to spectroscopic studies of AGN in X-rays

    Science.gov (United States)

    Mehdipour, M.; Kaastra, J. S.; Kallman, T.

    2016-12-01

    Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionisation codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionisation equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionisation codes, and compare their derived thermal and ionisation states for various ionising spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionised outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionisation parameter ξ, we find that on average there is about 30% deviation between the codes in ξ where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in ξ is smaller at about 10% on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30% deviation between the codes in the optical depth of the lines produced at log ξ 1 to 2, reducing to about 20% deviation at log ξ 3. We also simulate spectra of the ionised outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionisation codes, which is about 10 to 40%. We compare the modelling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionisation codes for the upcoming era of X-ray astronomy with Athena.

  18. Systematic Comparison of Photoionized Plasma Codes with Application to Spectroscopic Studies of AGN in X-Rays

    Science.gov (United States)

    Mehdipour, M.; Kaastra, J. S.; Kallman, T.

    2016-01-01

    Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.

  19. Simple and Robust Analysis of Cefuroxime in Human Plasma by LC-MS/MS: Application to a Bioequivalence Study

    Directory of Open Access Journals (Sweden)

    Xingjiang Hu

    2014-01-01

    Full Text Available A simple, robust LC-MS/MS assay for quantifying cefuroxime in human plasma was developed. Cefuroxime and tazobactam, as internal standard (IS, were extracted from human plasma by methanol to precipitate protein. Separation was achieved on a Zorbax SB-Aq (4.6×250 mm, 5 μm column under isocratic conditions. The calibration curve was linear in the concentration range of 0.0525–21.0 μg/mL (r=0.9998. The accuracy was higher than 90.92%, while the intra- and interday precision were less than 6.26%. The extraction procedure provides recovery ranged from 89.44% to 92.32%, for both analyte and IS. Finally, the method was successfully applied to a bioequivalence study of a single 500 mg dose of cefuroxime axetil in 22 healthy Chinese male subjects under fasting condition. Bioequivalence was determined by calculating 90% Cls for the ratios of Cmax, AUC0-t, and AUC0-∞ values for the test and reference products, using logarithmic transformed data. The 90% Cls for the ratios of Cmax (91.4%~104.2%, AUC0-t (97.4%~110.9%, and AUC0-∞ (97.6%~111.1% values were within the predetermined range. It was concluded that the two formulations (test for capsule, reference for tablet analyzed were bioequivalent in terms of rate and extent of absorption and the method met the principle of quick and easy clinical analysis.

  20. Application of plasma focus installations for a study of the influence of deuterium cumulative flows on materials

    Indian Academy of Sciences (India)

    L I Ivanov; A I Dedyurin; I V Borovitskaya; O N Krokhin; V Ya Nikulin; S N Polukhin; A A Tikhomirov; A S Fedotov

    2003-12-01

    In this work, as an example of an application of the plasma focus (PF) device, we study the influence on alloys of vanadium of a cumulative flow producing in the PF device. The experiment was done in a 4-kJ PF device with various gas fillings and various anode shapes. It was found that the velocity of the axial cumulative flow depends on the type of gas and is about $5\\cdot 10^{7}$ cm/s for deuterium and $2\\cdot 10^{7}$ cm/s for argon fillings of plasma focus chamber; the shape of the flow is changed from a broad conical fly for deuterium to a quasi-one-directional stream for argon. The dynamics and structure of such flows are investigated by means of laser diagnostics and an image converter camera. The experiments show that cumulative flows produce various defects in tested samples. The appearance of a large number of cracks on the surface of vanadium under the impulse influence of deuterium plasma shows that pure vanadium cannot be used for the construction of thermonuclear fusion reactors. Such PF installations could also be used effectively for the study of other material and construction elements proposed for the use in thermonuclear machines.

  1. Near-infrared spectroscopy for burning plasma diagnostic applications.

    Science.gov (United States)

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  2. Novel application of plasma treatment for pharmaceutical and biomedical engineering.

    Science.gov (United States)

    Kuzuya, Masayuki; Sasai, Yasushi; Kondo, Shin-Ichi; Yamauchi, Yukinori

    2009-06-01

    The nature of plasma-induced surface radicals formed on a variety of organic polymers has been studied by electron spin resonance (ESR), making it possible to provide a sound basis for future experimental design of polymer surface processing using plasma treatment. On the basis of the findings from such studies, several novel bio-applications in the field of drug- and biomedical- engineering have been developed. Applications for drug engineering include the preparation of reservoir-type drug delivery system (DDS) of sustained- and delayed-release, and floating drug delivery system (FDDS) possessing gastric retention capabilities, followed by preparation of "Patient-Tailored DDS". Furthermore, the preparation of composite powders applicable to matrix-type DDS was developed by making a mechanical application to the surface radical-containing polymer powders with drug powders. In applications for biomedical engineering, the novel method to introduce the durable surface hydrophilicity and lubricity on hydrophobic biomedical polymers was developed by plasma-assisted immobilization of carboxyl group-containing polymer on the polymer substrate. The surfaces thus prepared were further used for the covalent immobilization of oligo-nucleotides (DNA) onto the polymer surfaces applicable to constructing DNA diagnosis system, and also plasma-assisted preparation of functionalized chemo-embolic agent of vinyl alcohol-sodium acrylate copolymer (PVA- PAANa).

  3. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications

    Science.gov (United States)

    Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne

    2017-07-01

    This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non

  4. Simultaneous determination of telmisartan and amlodipine in human plasma by LC-MS]MS and its application in a human pharmacokinetic study

    Institute of Scientific and Technical Information of China (English)

    Vasu Babu Ravi; Jaswanth Kumar Inamadugu; Nageswara Rao Pilli; Vudagandla Sreenivasulu; Venkateswarlu Ponnerid

    2012-01-01

    A rapid and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay method has been developed and fully validated for the simultaneous quantification of telmisartan and amlodipine in human plasma. Carbamazepine was used as an internal standard. Analytes and the internal standard were extracted from human plasma by solid-phase extraction technique using Waters Oasis HLB 1 cm3 (30 mg) extraction cartridge. The reconstituted samples were chromatographed on a Hypurity advance C18 column (50mm × 4.6mm, 5 gm) using a mixture of acetonitrile -5 mM ammonium acetate buffer (pH-4.0) (50:50, v/v) as the mobile phase at a flow rate of 0.8mL/min. The calibration curve obtained was linear (r_〉0.99) over the concentration range of 2.01-400.06 ng/mL for telmisartan and 0.05 -10.01 ng/mL for amlodipine. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The proposed method was found to be applicable to clinical studies.

  5. Reliable LC-MS/MS assay for the estimation of rilpivirine in human plasma: application to a bioequivalence study and incurred sample reanalysis.

    Science.gov (United States)

    Gupta, Ajay; Guttikar, Swati; Patel, Yogesh; Shrivastav, Pranav S; Sanyal, Mallika

    2015-04-01

    A simple, precise, and rapid stable isotope dilution liquid chromatography-tandem mass spectrometry method has been developed and validated for the quantification of rilpivirine, a non-nucleoside reverse transcriptase inhibitor in human plasma. Rilpivirine and its deuterated analogue, rilpivirine-d6, used as an internal standard (IS) were quantitatively extracted by liquid-liquid extraction with methyl-tert-butyl ether and diethyl ether solvent mixture from 50 μL plasma. The chromatography was achieved on Gemini C18 (150 × 4.6 mm, 5 µm) analytical column in a run time of 2.2 min. The precursor → product ion transitions for rilpivirine (m/z 367.1 → 128.0) and IS (m/z 373.2 → 134.2) were monitored on a triple quadrupole mass spectrometer in the positive ionization mode. The linearity of the method was established in the concentration range of 0.5-200 ng/mL. The mean extraction recovery for rilpivirine (94.9%) and IS (99.9%) from spiked plasma samples was consistent and reproducible. The IS-normalized matrix factors for rilpivirine ranged from 0.98 to 1.02 across three quality controls. Bench top, freeze-thaw, wet extract, and long-term stability of rilpivirine was examined in spiked plasma samples. The application of the method was demonstrated by a bioequivalence study with 25 mg rilpivirine tablet formulation in 40 healthy subjects. The assay reproducibility was shown by reanalysis of 200 study samples and the % change in the concentration of repeat values from the original values was within ±15%.

  6. Application of piezodetectors for diagnostics of pulsed and quasi-steady-state plasma streams

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Tereshin, V.I.; Ladygina, M.S. [NSC KIPT, Kharkov (Ukraine). Inst. of Plasma Physics

    2006-04-15

    The paper reports on studies of the plasma streams generated by two experimental devices: the quasi-steady-state plasma accelerator (QSPA) Kh-50 and the pulsed plasma gun PROSVET. The radial distributions of the plasma pressure for different times and varied distances from the accelerator output have been used for investigation of the plasma stream dynamics and study the plasma compression in the focus region for different operational regimes of plasma accelerators. In experiments for the application of pulsed plasma streams for surface modification of different industrial steels, optimal regimes of surface processing have been chosen on the basis of the plasma pressure measurements. Examples of application of the piezodetectors in simulation experiments on plasma surface interaction under high heat loads are presented.

  7. Determination of Sertraline in Human Plasma by UPLC-MS/MS and its Application to a Pharmacokinetic Study.

    Science.gov (United States)

    Yue, Xiao-Hong; Wang, Zhen; Tian, Dong-Dong; Zhang, Jian-Wei; Zhu, Kang; Ye, Qiang

    2016-02-01

    A sensitive and rapid ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS-MS) method was developed to determine sertraline in human plasma. Sample preparation was accomplished through a simple liquid-liquid extraction with ethyl acetate. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using a gradient mobile phase system composed of acetonitrile and 1% formic acid in water at a flow rate of 0.40 mL/min. Mass spectrometric analysis was performed using a XEVO TQD mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 306.3 → 275.2 and 326.2 → 291.1 were used to quantify for sertraline and midazolam (internal standard), respectively. The linearity of this method was found to be within the concentration range of 1.0-100.0 ng/mL with a lower limit of quantification of 1.0 ng/mL. Only 2.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after an oral administration of 100 mg sertraline to 20 Chinese healthy male volunteers.

  8. UPLC-MS/MS determination of phentolamine in human plasma and its application to a pharmacokinetic study.

    Science.gov (United States)

    Kan, X; Zheng, S-L; Zhou, C-Y

    2014-11-01

    A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed to determine phentolamine in human plasma. Sample preparation was accomplished through a simple liquid-liquid extraction with ethyl acetate. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and 1% formic acid in water (33:67, v/v) at a flow rate of 0.45 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electro-spray ionization (ESI) source in the positive ion mode. The MRM transitions of m/z 282.1 → 212.0 and m/z 237.1 → 194.2 were used to quantify for phentolamine and carbamazepine (internal standard, IS), respectively. The linearity of this method was found to be within the concentration range of 0.5-100.0 ng/mL with a lower limit of quantification of 0.5 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 60 mg phentolamine to 20 Chinese healthy male volunteers.

  9. Determination of cyclovirobuxine D in human plasma by liquid chromatography tandem mass spectrometry and application in a pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    Ling-li Mu

    2011-10-01

    Full Text Available A sensitive and reliable method based on liquid chromatography tandem mass spectrometry (LC–MS/MS for the quantitation of cyclovirobuxine D in human plasma has been developed and validated. Sample preparation by solid phase extraction was followed by separation on a CN column with a mobile phase of methanol–water (95:5, v/v containing 0.2% formic acid. Mass spectrometric detection in the positive ion mode was carried out by selected reaction monitoring (SRM of the transitions at m/z 403.0→372.0 for cyclovirobuxine D and m/z 325.0→234.0 for citalopram (internal standard. The method was linear in the range 10–200 ng/L with LLOQ of 10 ng/L, recovery >85%, and no significant matrix effects. Intra- and inter-day precisions were all <9% with accuracies of 94.0–104.8%. The method was successfully applied to a pharmacokinetic study involving a single oral administration of a 2 mg cyclovirobuxine D tablet to twenty-two healthy Chinese volunteers.

  10. LC-MS/MS method for determination of megestrol in human plasma and its application in bioequivalence study.

    Science.gov (United States)

    Li, Fan; Zou, Xiao-juan; Zheng, Heng; Xiang, Yi

    2013-12-01

    A rapid and highly selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the determination of megestrol in human plasma was described using medrysone as internal standard (IS). Blood samples were collected from 20 healthy volunteers after oral administration of 160 mg megestrol acetate dispersible tablets. The analytes were extracted by liquid-liquid extraction procedure and separated on a hanbon lichrospher column with the mobile phase of methanol and water containing 0.1% formic acid and 20 mmol/L ammonium acetate (5:1, v/v). Positive ion electrospray ionization with multiple reaction-monitoring mode (MRM) was employed by monitoring the transitions m/z 385.5-325.4 and m/z 387.5-327.4 for megestrol and medrysone, respectively. Under the isocratic separation conditions, the chromatographic run time was approximately 2.54 min for megestrol and 2.59 min for medrysone. The calibration curve range was from 0.5 to 200.0 ng/mL. The inter-batch and intra-batch precision and accuracy were less than 5.2% relative standard deviation (RSD) and 6.4% relative error (RE). The proposed method was successfully applied in the bioequivalence study of megestrol acetate dispersible tablets.

  11. Studies on the preparation and plasma spherodization of yttrium aluminosilicate glass microspheres for their potential application in liver brachytherapy

    Science.gov (United States)

    Sreekumar, K. P.; Saxena, S. K.; Kumar, Yogendra; Thiyagarajan, T. K.; Dash, Ashutosh; Ananthapadmanabhan, P. V.; Venkatesh, Meera

    2010-02-01

    Plasma spheroidization exploits the high temperature and high enthalpy available in the thermal plasma jet to melt irregularly shaped powder particles and quench them to get dense spherical particles. Plasma spheroidization is a versatile process and can be applied to metals, ceramics, alloys and composites to obtain fine spherical powders. Radioactive microspheres incorporated with high energetic beta emitting radioisotopes have been reported to be useful in the palliative treatment of liver cancer. These powders are to be prepared in closer range of near spherical morphology in the size range 20-35 microns. Inactive glass samples were prepared by heating the pre-calculated amount of glass forming ingredients in a recrystallized alumina crucible. The glass was formed by keeping the glass forming ingredients at 1700°C for a period of three hours to form a homogeneous melt. After cooling, the glass was recovered from the crucible by crushing and was subsequently powdered mechanically with the help of mortar and pestle. This powder was used as the feed stock for plasma spheroidization using an indigenously developed 40 kW plasma spray system. Experiments were carried out at various operating parameters. The operating parameters were optimised to get spheroidised particles. The powder was sieved to get the required size range before irradiation.

  12. Studies on the preparation and plasma spherodization of yttrium aluminosilicate glass microspheres for their potential application in liver brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sreekumar, K P; Saxena, S K; Kumar, Yogendra; Thiyagarajan, T K; Dash, Ashutosh; Ananthapadmanabhan, P V; Venkatesh, Meera, E-mail: nair.sreekumar@gmail.co [Laser and Plasma Technology Division, Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)

    2010-02-01

    Plasma spheroidization exploits the high temperature and high enthalpy available in the thermal plasma jet to melt irregularly shaped powder particles and quench them to get dense spherical particles. Plasma spheroidization is a versatile process and can be applied to metals, ceramics, alloys and composites to obtain fine spherical powders. Radioactive microspheres incorporated with high energetic beta emitting radioisotopes have been reported to be useful in the palliative treatment of liver cancer. These powders are to be prepared in closer range of near spherical morphology in the size range 20-35 microns. Inactive glass samples were prepared by heating the pre-calculated amount of glass forming ingredients in a recrystallized alumina crucible. The glass was formed by keeping the glass forming ingredients at 1700{sup 0}C for a period of three hours to form a homogeneous melt. After cooling, the glass was recovered from the crucible by crushing and was subsequently powdered mechanically with the help of mortar and pestle. This powder was used as the feed stock for plasma spheroidization using an indigenously developed 40 kW plasma spray system. Experiments were carried out at various operating parameters. The operating parameters were optimised to get spheroidised particles. The powder was sieved to get the required size range before irradiation.

  13. Laboratory Plasma Studies

    Science.gov (United States)

    1993-11-30

    arrVanemat is electron beam loses an amount of energy corresponding to shown in frig. 1. The VERA pulseline accelerato (V-0.6- the capacitive voltage drop...the finite transverse disk, similar to that studied in Subsection 4.&. Over the size, how well is the diffractionless property preserved . same distance...Boeing Aerospace Lean. VA, USA. Company (RAC) is alo shown. Elsevier Science Publishers B.V. (North-Holland) IlL THEORY 9 478 C. . Rob R . Haf•z / Electron

  14. Clinical application of plasma thermograms. Utility, practical approaches and considerations.

    Science.gov (United States)

    Garbett, Nichola C; Mekmaysy, Chongkham S; DeLeeuw, Lynn; Chaires, Jonathan B

    2015-04-01

    Differential scanning calorimetry (DSC) studies of blood plasma are part of an emerging area of the clinical application of DSC to biofluid analysis. DSC analysis of plasma from healthy individuals and patients with various diseases has revealed changes in the thermal profiles of the major plasma proteins associated with the clinical status of the patient. The sensitivity of DSC to the concentration of proteins, their interactions with other proteins or ligands, or their covalent modification underlies the potential utility of DSC analysis. A growing body of literature has demonstrated the versatility and performance of clinical DSC analysis across a range of biofluids and in a number of disease settings. The principles, practice and challenges of DSC analysis of plasma are described in this article.

  15. Plasma in dentistry: a review of basic concepts and applications in dentistry.

    Science.gov (United States)

    Kim, Jae-Hoon; Lee, Mi-Ae; Han, Geum-Jun; Cho, Byeong-Hoon

    2014-01-01

    Plasma-related technologies are essential in modern industries. Recently, plasma has attracted increased attention in the biomedical field. This paper provides a basic knowledge of plasma and a narrative review of plasma applications in dentistry. To review plasma applications in dentistry, an electronic search in PubMed, SCOPUS and Google scholar up to December 2012 was done. This was followed by extensive hand searching using reference lists from relevant articles. There have been attempts to apply plasma technology in various fields of dentistry including surface modifications of dental implants, adhesion, caries treatment, endodontic treatment and tooth bleaching. Although many studies were in early stages, the potential value of plasma for dental applications has been demonstrated. To enlarge the scope of plasma applications and put relevant research to practical use, interdisciplinary research with participation of dental professionals is required.

  16. Fluorescence detection of Zabofloxacin, a novel fluoroquinolone antibiotic, in plasma, bile, and urine by HPLC: the first oral and intravenous applications in a pharmacokinetic study in rats.

    Science.gov (United States)

    Jin, Hyo Eon; Kang, In Hyul; Shim, Chang Koo

    2011-01-01

    To develop an HPLC method using fluorescence detection for the pharmacokinetic evaluation of levels of zabofloxacin, a novel broad spectrum fluoroquinolone antibiotic, in the plasma, bile and urine of rats. A simple reversed-phase HPLC method using a C18 column with fluorescence detection was developed and validated for the simultaneous determination of zabofloxain and enrofloxacin as an internal standard. The plasma sample was treated with methanol for protein precipitation, and treatment of the bile and urine samples included deproteinization and extraction using chloroform. The applicability of the developed assay method to pharmacokinetic studies of zabofloxacin in rats was examined. Zabofloxacin was intravenously and orally administered to rats at a dose of 20 mg/kg. The limits of quantification (LOQ) was determined to be 50 ng/mL for the plasma with acceptable linearity ranging from 50 to 25,000 ng/mL (R>0.999), and 0.5 μg/mL for the bile and urine samples with acceptable linearity ranging from 0.5 to 100 μg/mL (R>0.999). The validation parameters for zabofloxacin were found to be acceptable according to FDA assay validation (2001). While zabofloxacin in plasma and urine has been stable in all tested handling conditions, it has been unstable in bile during freeze-thaw cycles for 24 h at room temperature. Following intravenous and oral administration of zabofloxacin to rats at a dose of 20 mg/kg, concentration was quantifiable in plasma for up to 8 h. The bioavailability of zabofloxacin was 27.7%, and it was excreted into bile and urine at about 8% each per oral administration. These observations suggest that a validated assay can be used in pharmacokinetic studies of zabofloxacin in small animals. Due to the limited stability of zabofloxcin in rat bile, freeze-thaw cycles or prolonged handling at room temperature is not recommended. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on

  17. Development and validation of sensitive LC/MS/MS method for quantitative bioanalysis of levonorgestrel in rat plasma and application to pharmacokinetics study.

    Science.gov (United States)

    Ananthula, Suryatheja; Janagam, Dileep R; Jamalapuram, Seshulatha; Johnson, James R; Mandrell, Timothy D; Lowe, Tao L

    2015-10-15

    Rapid, sensitive, selective and accurate LC/MS/MS method was developed for quantitative determination of levonorgestrel (LNG) in rat plasma and further validated for specificity, linearity, accuracy, precision, sensitivity, matrix effect, recovery efficiency and stability. Liquid-liquid extraction procedure using hexane:ethyl acetate mixture at 80:20 v:v ratio was employed to efficiently extract LNG from rat plasma. Reversed phase Luna column C18(2) (50×2.0mm i.d., 3μM) installed on a AB SCIEX Triple Quad™ 4500 LC/MS/MS system was used to perform chromatographic separation. LNG was identified within 2min with high specificity. Linear calibration curve was drawn within 0.5-50ng·mL(-1) concentration range. The developed method was validated for intra-day and inter-day accuracy and precision whose values fell in the acceptable limits. Matrix effect was found to be minimal. Recovery efficiency at three quality control (QC) concentrations 0.5 (low), 5 (medium) and 50 (high) ng·mL(-1) was found to be >90%. Stability of LNG at various stages of experiment including storage, extraction and analysis was evaluated using QC samples, and the results showed that LNG was stable at all the conditions. This validated method was successfully used to study the pharmacokinetics of LNG in rats after SubQ injection, providing its applicability in relevant preclinical studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Determination of the unstable drug otilonium bromide in human plasma by LC-ESI-MS and its application to a pharmacokinetic study.

    Science.gov (United States)

    Zhao, Yan-Rong; Ding, Li; Fan, Hong-Wei; Yu, Yong; Qi, Xie-Min; Leng, Ye; Rao, Ya-Kun

    2010-10-15

    Otilonium bromide (OB) degrades rapidly in plasma and readily undergoes hydrolysis by the plasma esterase. In this paper, an LC-ESI-MS method has been developed for the determination of OB in human plasma. The rapid degradation of OB in plasma was well prevented by immediate addition of potassium fluoride (KF, an inhibitor of plasma esterase) to the freshly collected plasma before prompt treatment with acetonitrile. The method was validated over the concentration range of 0.1-20ng/ml. The data of intra-run and inter-run precision and accuracy were within ±15%. The mean extraction recoveries for OB and the internal standard were higher than 93.0% and the matrix effects were negligible. The method has been successfully used in a pharmacokinetic study. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Study of selective chemical downstream plasma etching of silicon nitride and silicon oxide for advanced patterning applications

    Science.gov (United States)

    Prévost, Emilie; Cunge, Gilles; De-Buttet, Côme; Lagrasta, Sebastien; Vallier, Laurent; Petit-Etienne, Camille

    2017-03-01

    The evolution of integrated components in the semiconductors industry is nowadays looking for ultra-high selective etching processes in order to etch high aspect ratio structures in complicated stacks of ultrathin layers. For ultra-high selective processes, typical plasma etching show limitations, while wet etching processes reach limitations due to capillary forces. For these reasons there is a great regain of interest today in chemical downstream etching systems (CDE), which combine the advantages of plasma and wet treatments. The absence of photons and ions allow to minimize damages and to achieve very high selectivity (in isotropic etching). In this work we investigated the parameters enabling to etch selectively the Si3N4 to the SiO2 by CDE. We shown that the correlation between the gas mixture and the wafer temperature is the key to obtain the desired selectivity. In order to optimize the processing window, the mixture composition (NF3/N2/O2/He) and the temperatures were screened by several DOE (Designs Of Experiments). Conditions are found in which the etching selectivity between the two silicon alloys is higher than 100, which allowed us to clean out sacrificial Si3N4 layers in very high aspect ratio (about 100) silicon trenches of nanometric size (60nm) without damaging the 10nm thin SiO2 caping layer (between the Si and the Si3N4). This demonstrates that downstream plasma etching can perform better than wet treatments in this case.

  20. Bioanalytical method development and validation of alimemazine in human plasma by LC-MS/MS and its application in bioequivalence studies

    Directory of Open Access Journals (Sweden)

    Bhupinder Singh

    2013-01-01

    Full Text Available Background: The use of anti-histaminic agents has been increased significantly from last decades and till now no method is available for quantitation of ALZ in human plasma which can be applied in a bioequivalence study using LC-MS/MS. Objective: The present study is concerned with the development and validation of ALZ in human plasma by high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS. Materials and Methods: Sample preparation involved the extraction with liquid-liquid extraction method by using ethyl acetate as an organic solvent. Chromatographic separation was performed on Atlantis; T3 5 ΅m 4.6 mm Χ 150 mm column with the mobile phase consisting of acetonitrile: (10 mm ammonium formate buffer: Formic acid: 99.9:00.1 v/v 50:50 v/v. The interface used with the application programming interface 4000 LC-MS/MS was a turbo ion spray in which positive ions were measured in multiple reaction monitoring mode. The precursor to product ions transition of m/z 299.30 → 100.20 amu and 305.30 → 106.30 amu were used for ALZ and ALZ D6 respectively. Results: The method was validated over the concentration range of 20.013-10006.551 pg/mL. The mean percent recovery of ALZ was found 77.771% with a precision of 7.71% and the lower limit of quantification was 20.013 pg/mL. The intra- and inter-day precision of the method at three concentrations was 0.98-4.50% and 1.57-5.72% while the intra- and inter-day % accuracy was 99.02-93.82% and 101.78-106.96%. Stability of compounds was established in a series of stability studies. The application of this method was demonstrated in the bioequivalence study and was found suitable in a study of sample size as big as 30 enrolled volunteers. Conclusion: For the very first time, a sensitive, selective and robust Liquid Chromatography- Mass Spectrometry method for the determination of alimemazine (ALZ in human plasma has been developed and validated using ALZ D6 as an internal standard.

  1. Studies of high repetition rate laser-produced plasma soft-X-ray amplifiers; Etudes d'amplificateurs plasma laser a haute cadence dans le domaine X-UV et applications

    Energy Technology Data Exchange (ETDEWEB)

    Cassou, K

    2006-12-15

    The progress made as well on the Ti:Sa laser system, as in the control and the knowledge of laser produced X-UV sources allowed the construction of a X-UV laser station dedicated to the applications. My thesis work falls under the development of this station and more particularly on the characterization of a X-UV laser plasma amplifier. The experimental study relates to the coupling improvement of the pump infra-red laser with plasma within the framework of the transient collisional X-UV laser generation. These X-UV lasers are generated in a plasma formed by the interaction of a solid target and a laser pulse of approximately 500 ps duration, followed by a second infra-red laser pulse known as of pump (about 5 ps) impinging on the target in grazing incidence. For the first time, a complete parametric study was undertaken on the influence of the grazing angle on the pumping of the amplifying medium. One of the results was to reach very high peak brightness about 10{sup 28} ph/s/mm{sup 2}/mrad{sup 2}/(0.1%bandwidth), which compares well with the free-electron laser brightness. Moreover, we modified then used a new two-dimensional hydrodynamic code with adaptive mesh refinement in order to understand the influence of the space-time properties of the infra-red laser on the formation and the evolution of the amplifying plasma. Our modeling highlighted the interest to use a super Gaussian transverse profile for the line focus leading to an increase in a factor two of the gain region size and a reduction of the electron density gradient by three orders of magnitude. These improvements should strongly increase the energy contained in X-UV laser beam. We thus used X-UV laser to study the appearance of transient defects produced by a laser IR on a beam-splitter rear side. We also began research on the mechanisms of DNA damage induced by a very intense X-UV radiation. (author)

  2. Simultaneous determination of asenapine and valproic acid in human plasma using LC-MS/MS:Application of the method to support pharmacokinetic study

    Institute of Scientific and Technical Information of China (English)

    Ambavaram Vijaya Bhaskar Reddy; Nandigam Venugopal; Gajulapalle Madhavin

    2013-01-01

    Combination of asenapine with valproic acid received regulatory approval for acute treatment of schizophrenia and maniac episodes of bipolar disorders. A simple LC-MS/MS method was developed and validated for simultaneous quantification of asenapine and valproic acid in human plasma. Internal standards were added to 300μL of plasma sample prior to liquid-liquid extraction using methyl tertiary butyl ether (MTBE). Chromatographic separation was achieved on Phenomenex C18 column (50 mm ? 4.6 mm, 5μm) in isocratic mode at 40 1C. The mobile phase used was 10 mM ammonium formate-acetonitrile (5:95, v/v) at a constant flow rate of 0.8 mL/min monitored on triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) mode. The injection volume used for LC-MS/MS analysis was 15μL and the run time was 2.5 min. These low run time and small injection volume suggest the high efficiency of the proposed method. The method was validated over the concentration range of 0.1-10.02 ng/mL and 10-20,000 ng/mL for asenapine and valproic acid respectively. The method recoveries of asenapine (81.33%), valproic acid (81.70%), gliclazide (78.45%) and benzoic acid (79.73) from spiked plasma samples were consistent and reproducible. The application of this method was demonstrated by a pharmacokinetic study in 8 healthy male volunteers with 5 mg asenapine and 250 mg valproic acid administration.

  3. Development and validation of sensitive and rapid UPLC-MS/MS method for quantitative determination of daclatasvir in human plasma: Application to a bioequivalence study.

    Science.gov (United States)

    Rezk, Mamdouh R; Bendas, Ehab R; Basalious, Emad B; Karim, Iman A

    2016-09-05

    A rapid and sensitive UPLC-MS/MS method was developed and validated for determination of daclatasvir (DAC) in human plasma using sofosbuvir (SOF) as an internal standard (IS). The Xevo TQD LC-MS/MS was operated under the multiple-reaction monitoring mode using electrospray ionization. Precipitation with acetonitrile was used in sample preparation. The prepared samples were chromatographed on Acquity UPLC HSS C18 (50×2.1mm, 1.8μm) column by pumping 10mM ammonium formate (pH 3.5) and acetonitrile in an isocratic mode at a flow rate of 0.30ml/min. Method validation was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 5-4000ng/ml for DAC. The intra-day and inter-day precision and accuracy results were within the acceptable limits. A very short run time of 1.2min made it possible to analyze more than 500 human plasma samples per day. The wider range of quantification of DAC allowed the applicability of the developed method for its determination in a bioequivalence study in human volunteers.

  4. Determination of Clarithromycin in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry: Validation and Application in Clinical Pharmacokinetic Study

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang-rong; CHENXiao-yan; LIXiao-yan; ZHONGDa-fang

    2004-01-01

    Aim To develop a liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method to determine clarithromycin in human plasma. Methods The analyte and internal standard roxithromycin were extracted from plasma samples by n-nexane-dichloromethane-isopropanel (300:150:15, V/V/V) and chromatographed on a C18 column. The mobile phase consisted of methanol-water-formic acid (80:20:1, V/V/V). Detection was performed on a triple quadrupole tandem mass spectrometer via electrospray ionization source (ESI) in the positive mode. Results The method had a lower limit of quantification of 10.0 ng·mL-1 when 0.2 mL plasma was used. The linear calibration curves were obtained in the concentration range of 10.0-5000 ng·mL-1. The intra-and inter-rum precisions were lower than 3.3% in terms of relative standard deviation (RSD), and the accuracy ranged±0.7% in terms of relative error (RE). Tmax, Cmax, T1/2 and AUC0-24h values were found to be (3.1±2.7)h, (8 750±4 734)ng·mL-1, (5.3±2.2)h, and (5932±2 449)ng·mL-1, respectively, after a single oral dose of 250 mg clarithromycin tablet to 18 volunteers. Conclusion This validated method was successful in the evaluation of pharmacokinetic profiles of clarithromycin tablets administered to 18 healthy male volubteers.

  5. Development and Validation of a HPLC Method to Determine Griseofulvin in Rat Plasma: Application to Pharmacokinetic Studies

    Directory of Open Access Journals (Sweden)

    Bo Wei

    2008-01-01

    Full Text Available A simple, specific, sensitive, and rapid high performance liquid chromatography (HPLC method for the determination of griseofulvin in small volumes of rat plasma was developed and validated using warfarin as an internal standard. Biological sample preparation involved simple extraction with acetonitrile, followed by dilution with aqueous mobile phase buffer (20 mM sodium dihydrogen phosphate, pH 3.5 to eliminate any chromatographic solvent effects. Griseofulvin and warfarin were baseline separated and quantitated on a C18 reversed phase column (4.6 × 150 mm, 3.5 µ m, using a mobile phase composed of a 20 mM aqueous solution of sodium dihydrogen phosphate-acetonitrile (55:45, v/v, pH 3.5 delivered at a flow rate of 1.0 mL/min, and with fluorescence detection (λexcitation = 300 nm, λemission = 418 nm. The method was proven to be linear over a plasma griseofulvin concentration range of 10 to 2500 ng/mL with a mean correlation coefficient of 0.9996. The intra-day and inter-day accuracy (relative error were in the range of 0.89% to 9.26% and 0.71% to 7.68%, respectively. The within-day precision (coefficient of variation was less than 3.0% and the between-day precision was less than 7.5%. The mean recovery of griseofulvin from rat plasma was found to be 99.2%. The limit of detection (LOD and the limit of quantification (LOQ of griseofulvin were determined to be 1 ng/mL and 10 ng/mL, respectively. The developed method was successfully applied to quantitatively assess the pharmacokinetics of griseofulvin in rats following a single 50 mg/kg oral dose of the drug.

  6. Determination of rizatriptan in human plasma by liquid chromatographic-eletrospray tandem mass spectrometry: application to a pharmacokinetic study.

    Science.gov (United States)

    Guo, Ji-fen; Zhang, Ai-jun; Zhao, Ling; Sun, Xiao-hong; Zhao, Yi-min; Gao, Hong-zhi; Liu, Ze-yuan; Qiao, Shan-yi

    2006-01-01

    A sensitive liquid chromatographic-tandem mass spectrometry(LC-MS/MS) method was developed for the determination of rizatriptan in human plasma. The analytes were extracted from plasma samples by liquid-liquid extraction, separated on a Zorbax XDB C8 column (150 x 4.6 mm i.d.) and detected by tandem mass spectrometry with an electrospray ionization interface. Zomitriptan was used as the internal standard. The method had a lower limit of quantitation of 50 pg/mL for rizatriptan, which showed more sensitivity and speed of analysis compared with reported methods. The within- and between-day precision was measured to be below 11.71% and accuracy between -5.87 and 0.86% for all quality control samples. This quantitation method was successfully applied to the evaluation of the pharmacokinetic profiles of rizatriptan after single oral administration of 5, 10 and 15 mg rizatriptan tablets to 10 healthy volunteers (five males and five females).

  7. Application of non-equilibrium plasmas in medicine

    Directory of Open Access Journals (Sweden)

    Mojsilović S.

    2012-01-01

    Full Text Available We review the potential of plasma medical applications, the connections to nanotechnologies and the results obtained by our group. A special issue in plasma medicine is the development of the plasma sources that would achieve non-equilibrium at atmospheric pressure in atmospheric gas mixture with no or only marginal heating of the gas, and with desired properties and mechanisms that may be controlled. Our studies have shown that control of radicals or chemically active products of the discharge such as ROS (reactive oxygen species and/or NO may be used to control the growth of the seeds. At the same time specially designed plasma needle and other sources were shown to be efficient to sterilize not only colonies of bacteria but also planctonic samples (microorganisms protected by water or bio films. Finally we have shown that plasma may induce differentiation of stem cells. Non-equilibrium plasmas may be used in detection of different specific markers in medicine. For example proton transfer mass spectroscopy may be employed in detection of volatile organic compounds without their dissociation and thus as a technique for instantaneous measurement of the presence of markers for numerous diseases. [Projekat Ministarstva nauke Republike Srbije, br. ON171037 i br. III41011

  8. Rapid and sensitive ultra-high-pressure liquid chromatography method for quantification of antichagasic benznidazole in plasma: application in a preclinical pharmacokinetic study.

    Science.gov (United States)

    Davanço, Marcelo Gomes; de Campos, Michel Leandro; Peccinini, Rosângela Gonçalves

    2015-07-01

    Benznidazole (BNZ) and nifurtimox are the only drugs available for treating Chagas disease. In this work, we validated a bioanalytical method for the quantification of BNZ in plasma aimed at improving sensitivity and time of analysis compared with the assays already published. Furthermore, we demonstrated the application of the method in a preclinical pharmacokinetic study after administration of a single oral dose of BNZ in Wistar rats. A Waters® Acquity UHPLC system equipped with a UV-vis detector was employed. The method was established using an Acquity® UHPLC HSS SB C18 protected by an Acquity® UHPLC HSS SB C18 VanGuard guard column and detection at 324 nm. The mobile phase consisted of ultrapure water-acetonitrile (65:35), and elution was isocratic. The mobile phase flow rate was 0.55 mL/min, the volume of injection was 1 μL, and the run time was just 2 min. The samples were kept at 25°C until injection and the column at 45°C for the chromatographic separation. The sample preparation was performed by a rapid protein precipitation with acetonitrile. The linear concentration range was 0.15-20 µg/mL. The pharmacokinetic parameters of BNZ in rats were determined and the method was considered sensitive, fast and suitable for application in pharmacokinetic studies.

  9. Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application

    Institute of Scientific and Technical Information of China (English)

    Dipak Kumar; KN Pandey; Dipak Kumar Das

    2016-01-01

    In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying (APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited CoNiCrAlY bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of theγ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in CoNiCrAlY bond-coatings with excellent thermal cy-clic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.

  10. Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application

    Science.gov (United States)

    Kumar, Dipak; Pandey, K. N.; Das, Dipak Kumar

    2016-08-01

    In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying (APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited CoNiCrAlY bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ'-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in CoNiCrAlY bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.

  11. Method development and validation of liquid chromatography-tandem/mass spectrometry for aldosterone in human plasma: Application to drug interaction study of atorvastatin and olmesartan combination

    Directory of Open Access Journals (Sweden)

    Rakesh Das

    2014-01-01

    Full Text Available In the present investigation, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC/MS/MS method was developed for the quantification of aldosterone (ALD a hormone responsible for blood pressure in human plasma. The developed method was validated and extended for application on human subjects to study drug interaction of atorvastatin (ATSV and olmesartan (OLM on levels of ALD. The ALD in plasma was extracted by liquid-liquid extraction with 5 mL dichloromethane/ethyl ether (60/40% v/v. The chromatographic separation of ALD was carried on Xterra, RP-Column C18 (150 mm× 4.6 mm × 3.5 μm at 30°C followed by four-step gradient program composed of methanol and water. Step 1 started with 35% methanol for first 1 min and changed linearly to 90% in next 1.5 min in Step 2. Step 3 lasted for next 2 min with 90% methanol. The method finally concluded with Step 4 to achieve initial concentration of methanol that is, 35% thus contributing the total method run time of 17.5 min. The flow rate was 0.25 mL/min throughout the process. The developed method was validated for specificity, accuracy, precision, stability, linearity, sensitivity, and recovery. The method was linear and found to be acceptable over the range of 50-800 ng/mL. The method was successfully applied for the drug interaction study of ATSV + OLM in combination against OLM treatment on blood pressure by quantifying changes in levels of ALD in hypertensive patients. The study revealed levels of ALD were significantly higher in ATSV + OLM treatment condition when compared to OLM as single treated condition. This reflects the reason of low effectiveness of ATSV + OLM in combination instead of synergistic activity.

  12. Determination of swertianolin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study.

    Science.gov (United States)

    He, Jun; Tian, Chengwang; Ouyang, Huizi; Adelakun, Tiwalade A; Yu, Bin; Chang, Yanxu; Pan, Guixiang; Jiang, Linghuo; Gao, Xiumei

    2014-10-01

    A sensitive and rapid LC-MS/MS method has been developed and validated for quantifying swertianolin in rat plasma using rutin as an internal standard (IS). Following liquid-liquid extraction with ethyl acetate, chromatographic separation for swertianolin was achieved on a C18 column with a gradient elution using 0.1% formic acid as mobile phase A and acetonitrile as mobile phase B at a flow rate of 0.3 mL/min. The detection was performed on a tandem mass spectrometer using multiple reaction monitoring via an electrospray ionization source and operating in the negative ionization mode. The optimized mass transition ion pairs (m/z) for quantitation were 435.1/272.0 for swertianolin and 609.2/300.1 for IS. The lower limit of quantitation was 0.5 ng/mL within a linear range of 0.5-500 ng/mL. Intra-day and inter-day precision was less than 6.8%. The accuracy was in the range of -13.9 to 12.0%. The mean recovery of swertianolin was >66.7%. The proposed method was successfully applied in evaluating the pharmacokinetics of swertianolin after an oral dose of 50 mg/kg Swertia mussotii extract in rats.

  13. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 4. Destruction of Weeds by High Voltage Discharge

    Science.gov (United States)

    Mizuno, Akira

    In an attempt to replace chemicals for weed control, high voltage spark discharge has been applied. With the application of high voltage, discharge takes place, and current flows through the stem and root. Microscopic observation indicates that cells are damaged. The electrical resistance of the damage plant’s stems and roots decreased significantly. Several different types of apparatus were constructed, and field test results show the effectiveness of electrical discharge for weed control.

  14. Study on Ceramic Cutting by Plasma Arc

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engineering ceramics are typical difficult-to-machine materials because of high hardness and brittleness. PAC (Plasma Arc Cutting) is a very important thermal cutting process and has been successfully used in cutting stainless steel and other difficult-to-machine alloys. PAC's application in cutting ceramics, however, is still limited because the most ceramics are not good electronic conducts, and transferred plasma arc cannot be produced between cathode and work-piece. So we presented a method of plasma ...

  15. Application of Plasma Waveguides to High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  16. Applications of plasma sources for nitric oxide medicine

    Science.gov (United States)

    Vasilets, Victor; Shekhter, Anatoly; Pekshev, Alexander

    2013-09-01

    Nitric oxide (NO) has important roles in the function of many tissues and organs. Wound healing processes are always accompanying by the increase of nitric oxide concentration in wound tissue. These facts suggest a possible therapeutic use of various NO donors for the acceleration of the wound healing and treatment of other diseases. Our previous studies indicated that gaseous NO flow produced by air-plasma generators acts beneficially on the wound healing. This beneficial effect could be caused by the mechanism involving peroxynitrite as an intermediate. As a result of mobilization of various antioxidant reactions more endogenous NO molecules become available as signaling molecules. to regulate the metabolic processes in wound tissue. In this paper different air plasma sources generated therapeutic concentrations of NO are discussed. The concentration of NO and other therapeutically important gas products are estimated by thermodynamic simulation. Synergy effects of NO with other plasma components are discussed as a factor enhancing therapeutic results. Some new medical application of plasma devices are presented. Advanced Plasma Therapies Inc.

  17. A Global Modeling Framework for Plasma Kinetics: Development and Applications

    Science.gov (United States)

    Parsey, Guy Morland

    The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization

  18. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications.

    Science.gov (United States)

    Kortshagen, Uwe R; Sankaran, R Mohan; Pereira, Rui N; Girshick, Steven L; Wu, Jeslin J; Aydil, Eray S

    2016-09-28

    Nonthermal plasmas have emerged as a viable synthesis technique for nanocrystal materials. Inherently solvent and ligand-free, nonthermal plasmas offer the ability to synthesize high purity nanocrystals of materials that require high synthesis temperatures. The nonequilibrium environment in nonthermal plasmas has a number of attractive attributes: energetic surface reactions selectively heat the nanoparticles to temperatures that can strongly exceed the gas temperature; charging of nanoparticles through plasma electrons reduces or eliminates nanoparticle agglomeration; and the large difference between the chemical potentials of the gaseous growth species and the species bound to the nanoparticle surfaces facilitates nanocrystal doping. This paper reviews the state of the art in nonthermal plasma synthesis of nanocrystals. It discusses the fundamentals of nanocrystal formation in plasmas, reviews practical implementations of plasma reactors, surveys the materials that have been produced with nonthermal plasmas and surface chemistries that have been developed, and provides an overview of applications of plasma-synthesized nanocrystals.

  19. Plasma medicine—current state of research and medical application

    Science.gov (United States)

    Weltmann, K.-D.; von Woedtke, Th

    2017-01-01

    Plasma medicine means the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. Further, the field interacts strongly with results gained for biological decontamination. Experimental research as well as first practical application is realized using two basic principles of CAP sources: dielectric barrier discharges (DBD) and atmospheric pressure plasma jets (APPJ). Originating from the fundamental insights that the biological effects of CAP are most probably caused by changes of the liquid environment of cells, and are dominated by reactive oxygen and nitrogen species (ROS, RNS), basic mechanisms of biological plasma activity are identified. It was demonstrated that there is no increased risk of cold plasma application and, above all, there are no indications for genotoxic effects. The most important biological effects of cold atmospheric pressure plasma were identified: (1) inactivation of a broad spectrum of microorganisms including multidrug resistant ones; (2) stimulation of cell proliferation and tissue regeneration with lower plasma treatment intensity (treatment time); (3) inactivation of cells by initialization of programmed cell death (apoptosis) with higher plasma treatment intensity (treatment time). In recent years, the main focus of clinical applications was in the field of wound healing and treatment of infective skin diseases. First CAP sources are CE-certified as medical devices now which is the main precondition to start the introduction of plasma medicine into clinical reality. Plasma application in dentistry and, above all, CAP use for cancer treatment are becoming more and more important research fields in plasma medicine. A further in-depth knowledge of control and adaptation of plasma parameters and plasma geometries is needed to obtain suitable and reliable plasma sources for the different therapeutic indications and to open up new fields of medical application.

  20. Application of nonlinear dynamic techniques to high pressure plasma jets

    Science.gov (United States)

    Ghorui, S.; Das, A. K.

    2010-02-01

    Arcs and arc plasmas have been known and used for welding, cutting, chemical synthesis and multitude of other industrial applications for more than hundred years. Though a copious source of heat, light and active species, plasma arc is inherently unstable, turbulent and difficult to control. During recent years, primarily driven by the need of new and energy efficient materials processing, various research groups around the world have been studying new and innovative ways of looking at the issues related to arc dynamics, arc stabilization, species non equilibrium, flow and heat transfer in a stabilized arc plasma device. In this context, experimental determination of nature of arc instabilities using tools of non-linear dynamics, theoretical model formulation, prediction of instability behavior under given operating conditions and possible control methods for the observed instabilities in arcs are reviewed. Space selective probing of the zones inside arc plasma devices without disturbing the system is probably the best way to identify the originating zone of instabilities inside such devices. Existence of extremely high temperature and inaccessibility to direct experimentations due to mechanical obstructions make this task extremely difficult. Probing instabilities in otherwise inaccessible inner regions of the torches, using binary gas mixture as plasma gas is a novel technique that primarily rests on a process known as demixing in arcs. Once a binary gas mixture enters the constricted plasma column, the demixing process sets in causing spatial variations for each of the constituent gases depending on the diffusion coefficients and the gradient of the existing temperature field. By varying concentrations of the constituent gases in the feeding line, it is possible to obtain spatial variations of the plasma composition in a desired manner, enabling spatial probing of the associated zones. Detailed compositional description of different zones inside the torch may be

  1. Characteristics and potential applications of an ORNL microwave ECR multicusp plasma ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.

    1990-01-01

    A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source that has two ECR plasma production regions and uses multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasma over large areas of 300 to 400 cm{sup 2} and could be scaled up to produce uniform plasma over 700 cm{sup 2} or larger. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The working gases used were argon, helium, hydrogen, and oxygen. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of the discharge parameters. The discharge characteristics and a hypothetical discharge mechanism for this plasma source are described and discussed. Potential applications, including plasma and ion-beam sources for manufacturing advanced microelectronics, for space electric propulsion, and for fusion research, are discussed. 10 refs., 10 figs.

  2. Aqueous Plasma Pharmacy: Preparation Methods, Chemistry, and Therapeutic Applications

    Science.gov (United States)

    Joslin, Jessica M.; McCall, James R.; Bzdek, Justin P.; Johnson, Derek C.; Hybertson, Brooks M.

    2017-01-01

    Plasma pharmacy is a subset of the broader field of plasma medicine. Although not strictly defined, the term aqueous plasma pharmacy (APP) is used to refer to the generation and distribution of reactive plasma-generated species in an aqueous solution followed by subsequent administration for therapeutic benefits. APP attempts to harness the therapeutic effects of plasma-generated oxidant species within aqueous solution in various applications, such as disinfectant solutions, cell proliferation related to wound healing, and cancer treatment. The subsequent use of plasma-generated solutions in the APP approach facilitates the delivery of reactive plasma species to internal locations within the body. Although significant efforts in the field of plasma medicine have concentrated on employing direct plasma plume exposure to cells or tissues, here we focus specifically on plasma discharge in aqueous solution to render the solution biologically active for subsequent application. Methods of plasma discharge in solution are reviewed, along with aqueous plasma chemistry and the applications for APP. The future of the field also is discussed regarding necessary research efforts that will enable commercialization for clinical deployment. PMID:28428835

  3. Fundamental studies of fusion plasmas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aamodt, R.E.

    1998-01-30

    Lodestar has carried out a vigorous research program in the areas of rf, edge plasma and divertor physics, with emphasis largely geared towards improving the understanding and performance of ion-cyclotron heating and current drive (ICRF) systems. Additionally, a research program in the field of edge plasma and divertor modeling was initiated. Theoretical work on high power rf sheath formation for multi-strap rf arrays was developed and benchmarked against recent experimental data from the new JET A2 antennas. Sophisticated modeling tools were employed to understand the sheath formation taking into account realistic three-dimensional antenna geometry. A novel physics explanation of an observed anomaly in the low power loading of antennas was applied to qualitatively interpret data on DIII-D in terms of rf sheaths, and potential applications of the idea to develop a near-field sheath diagnostic were explored. Other rf-wave related topics were also investigated. Full wave ICRF modeling studies were carried out in support of ongoing and planned tokamaks experiments, including the investigation of low frequency plasma heating and current drive regimes for IGNITOR. In a cross-disciplinary study involving both MHD and ICRF physics, ponderomotive feedback stabilization by rf was investigated as a potential means of controlling external kink mode disruptions. In another study, the instability of the ion hybrid wave (IHW) in the presence of fusion alpha particles was studied. In the field of edge plasma and divertor modeling studies, Lodestar began the development of a theory of generalized ballooning and sheath instabilities in the scrape off layer (SOL) of divertor tokamaks. A detailed summary of the technical progress in these areas during the contract period is included, as well as where references to published work can be found. A separate listing of publications, meeting abstracts, and other presentations is also given at the end of this final report.

  4. Determination of manassantin B in rat plasma using a high performance liquid chromatography with fluorescence detection and its quantitative application to pharmacokinetic study.

    Science.gov (United States)

    Lee, Jae-Young; Song, Jae-Hyoung; Yoon, In-Soo; Ko, Hyun-Jeong; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-02-01

    A simple, sensitive, rapid, and reproducible analytical method of manassantin B in rat plasma by high performance liquid chromatography with fluorescence detection (HPLC-FL) was developed for its application to pharmacokinetic study in rats. Valsartan (VST) was used as an internal standard (IS) in this quantitative analytical method. Manassantin B and VST were extracted by simple and efficient protein precipitation method. Manassantin B was detected at 282/322nm (excitation/emission) wavelengths using FL detector. The chromatographic separation was obtained with reverse phase C18 column and the mobile phase composed of potassium phosphate buffer containing 0.025% trifluoroacetic acid (pH 2.5; 5mM) and acetonitrile including 0.025% trifluoroacetic acid (20:80, v/v) at 1.0mL/min flow rate. The linearity was established at 25.0-10000ng/mL and the lower limit of detection (LLOD) was 7ng/mL. The intra- and inter-day accuracy and precision values of manassantin B were within±15% of the theroretical values and manassantin B after stability tests were also within the acceptable ranges. Developed assay was also successfully applied to pharmacokinetic study after intravenous administration of manassantin B in rats.

  5. The study of helicon plasma source.

    Science.gov (United States)

    Miao, Ting-Ting; Zhao, Hong-Wei; Liu, Zhan-Wen; Shang, Yong; Sun, Liang-Ting; Zhang, Xue-Zhen; Zhao, Huan-Yu

    2010-02-01

    Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10(13) cm(-3) have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10(-3) Pa, and rf power of 1200 W with a frequency of 27.12 MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.

  6. Determination of Acyclovir in Human Plasma Samples by HPLC Method with UV Detection: Application to Single-Dose Pharmacokinetic Study

    Directory of Open Access Journals (Sweden)

    Dragica Zendelovska

    2015-03-01

    CONCLUSION: Good precision, accuracy, simplicity, sensitivity and shorter time of analysis of the method makes it particularly useful for processing of multiple samples in a limited period of time for pharmacokinetic study of acyclovir.

  7. Study of Coupling between a Plasma Source and Plasma Fluctuations

    Science.gov (United States)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Rogers, Anthony; Skiff, Fred

    2014-10-01

    An experimental study on the coupling between a plasma source and plasma fluctuations in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional is presented. Typical plasma conditions are n ~1010 cm-3 Te ~ 3 eV and B ~ 1 kG. Amplitude Modulation (AM) of the inductively-coupled RF plasma source is produced near the fundamental-mode ion-acoustic wave frequency (~1 kHz) to study the effects of the source-wave interaction and plasma production. Density fluctuation measurements are implemented using Laser-Induced Fluorescence techniques and Langmuir probes. We apply coherent detection with respect to the wave frequency to obtain the perturbed ion distribution function associated with the waves. Measurements of fluctuating I-V traces from a Langmuir probe array and antenna current load are also used to show the effects of the interaction. We would like to acknowledge DOE DE-FG02-99ER54543 for their financial support throughout this research.

  8. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  9. The Study on Inhibition of Planktonic Bacterial Growth by Non-Thermal Atmospheric Pressure Plasma Jet Treated Surfaces for Dental Application.

    Science.gov (United States)

    Yoo, Eun-Mi; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Hye-Sook; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-02-01

    Investigation of the effects by non-thermal atmospheric pressure plasma jet (NTAPPJ) treatment on the titanium dental implant surfaces for the inhibition of two common pathogens related with dental infections, Streptococcus mutans and Staphylococcus aureus, was carried out in this study. The commercially pure titanium was used as specimen, which were irradiated by NTAPPJ for 30, 60 and 120 seconds. Specimen without being treated with NTAPPJ was assigned as the control group. The X-ray photoelectron spectroscope and surface contact angle goniometer were used to analyze the effects of NTAPPJ treatment on surface chemistry and hydrophilicity of the specimen. The effects of the NTAPPJ treatment on surfaces, in terms of bacterial attachment, growth, morphology and structural changes were evaluated by the number of colony forming units (CFU) and scanning electron microscopy (SEM) observations. The results showed that there was a reduction of CFUs and the significant change in morphology of bacteria as they were cultured on the titanium surfaces treated with NTAPPJ. These results were related to surface chemical changes and hydrophilicity changes by NTAPPJ. The NTAPPJ treatment is very effective on the dental implant titanium surface treatment that resulted in the inhibition of bacteria and has a great potential to be a promising technique in various clinical dental applications.

  10. A simple and sensitive HPLC method for analysis of imipramine in human plasma with UV detection and liquid-liquid extraction: Application in bioequivalence studies

    Directory of Open Access Journals (Sweden)

    Mahboubeh Rezazadeh

    2016-01-01

    Full Text Available High-performance liquid chromatography (HPLC methods employing ultraviolet (UV detector are not sufficiently sensitive to measure the low plasma concentrations following single oral dose of imipramine. Therefore, in the present study a simple, rapid and yet sensitive HPLC method with UV detection was developed and validated for quantitation of imipramine in human plasma samples. An efficient liquid-liquid extraction (LLE of imipramine from plasma with the mixture of hexane/isoamyl alcohol (98:2 and back extraction of the drug in acidic medium concomitant with evaporation of organic phase allowed the use of UV detector to conveniently measure plasma levels of this compound as low level as 3 ng/ml. Separation was achieved on a μ-Bondapak C 18 HPLC column using sodium hydrogen phosphate solution (0.01 M/acetonitrile (60/40 v/v at pH 3.5 ± 0.1 at 1.5 ml/min. Trimipramine was used as the internal standard for analysis of plasma samples. The retention times for imipramine and trimipramine were 4.3 and 5.2 min, respectively. Calibration curve was linear in the range of 3-40 ng/ml using human plasma with the average extraction recovery of 85 ± 5%. Imipramine was found to be stable in plasma samples with no evidence of degradation during three freeze-thaw cycles and three months storage at -70 °C. The current validated method was finally applied in bioequivalence studies of two different imipramine products according to a standard two-way crossover design with a two weeks washout period.

  11. A simple and sensitive HPLC method for analysis of imipramine in human plasma with UV detection and liquid-liquid extraction: Application in bioequivalence studies.

    Science.gov (United States)

    Rezazadeh, Mahboubeh; Emami, Jaber

    2016-01-01

    High-performance liquid chromatography (HPLC) methods employing ultraviolet (UV) detector are not sufficiently sensitive to measure the low plasma concentrations following single oral dose of imipramine. Therefore, in the present study a simple, rapid and yet sensitive HPLC method with UV detection was developed and validated for quantitation of imipramine in human plasma samples. An efficient liquid-liquid extraction (LLE) of imipramine from plasma with the mixture of hexane/isoamyl alcohol (98:2) and back extraction of the drug in acidic medium concomitant with evaporation of organic phase allowed the use of UV detector to conveniently measure plasma levels of this compound as low level as 3 ng/ml. Separation was achieved on a μ-Bondapak C18 HPLC column using sodium hydrogen phosphate solution (0.01 M)/acetonitrile (60/40 v/v) at pH 3.5 ± 0.1 at 1.5 ml/min. Trimipramine was used as the internal standard for analysis of plasma samples. The retention times for imipramine and trimipramine were 4.3 and 5.2 min, respectively. Calibration curve was linear in the range of 3-40 ng/ml using human plasma with the average extraction recovery of 85 ± 5%. Imipramine was found to be stable in plasma samples with no evidence of degradation during three freeze-thaw cycles and three months storage at -70°C. The current validated method was finally applied in bioequivalence studies of two different imipramine products according to a standard two-way crossover design with a two weeks washout period.

  12. A simple and sensitive HPLC method for analysis of imipramine in human plasma with UV detection and liquid-liquid extraction: Application in bioequivalence studies

    Science.gov (United States)

    Rezazadeh, Mahboubeh; Emami, Jaber

    2016-01-01

    High-performance liquid chromatography (HPLC) methods employing ultraviolet (UV) detector are not sufficiently sensitive to measure the low plasma concentrations following single oral dose of imipramine. Therefore, in the present study a simple, rapid and yet sensitive HPLC method with UV detection was developed and validated for quantitation of imipramine in human plasma samples. An efficient liquid-liquid extraction (LLE) of imipramine from plasma with the mixture of hexane/isoamyl alcohol (98:2) and back extraction of the drug in acidic medium concomitant with evaporation of organic phase allowed the use of UV detector to conveniently measure plasma levels of this compound as low level as 3 ng/ml. Separation was achieved on a μ-Bondapak C18 HPLC column using sodium hydrogen phosphate solution (0.01 M)/acetonitrile (60/40 v/v) at pH 3.5 ± 0.1 at 1.5 ml/min. Trimipramine was used as the internal standard for analysis of plasma samples. The retention times for imipramine and trimipramine were 4.3 and 5.2 min, respectively. Calibration curve was linear in the range of 3-40 ng/ml using human plasma with the average extraction recovery of 85 ± 5%. Imipramine was found to be stable in plasma samples with no evidence of degradation during three freeze-thaw cycles and three months storage at -70°C. The current validated method was finally applied in bioequivalence studies of two different imipramine products according to a standard two-way crossover design with a two weeks washout period. PMID:27168757

  13. Platelet-rich plasma: applications in dermatology.

    Science.gov (United States)

    Conde Montero, E; Fernández Santos, M E; Suárez Fernández, R

    2015-03-01

    In recent years, the use of platelet-rich plasma has increased notably in a range of diseases and settings. Uses of these products now go beyond skin rejuvenation therapy in patients with facial ageing. Good outcomes for other dermatological indications such as skin ulcers and, more recently, alopecia have been reported in case series and controlled studies. However, these indications are not currently included in the labeling given that stronger scientific evidence is required to support their real benefits. With the increased use of these products, dermatologists need to become familiar with the underlying biological principles and able to critically assess the quality and outcomes of the studies of these products in different skin diseases.

  14. Potential applications of an electron cyclotron resonance multicusp plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Stirling, W.L. (Oak Ridge National Laboratory, Oak Ridge, TN (USA))

    1990-05-01

    An electron cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produces large (about 25 cm diam), uniform (to within {plus minus}10%), dense ({gt}10{sup 11} cm{sup {minus}3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7 cm (5 in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Results and potential applications of this new ECR plasma source for plasma processing of thin films are discussed.

  15. Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses

    Science.gov (United States)

    Volotskova, Olga

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same

  16. Validation of a high-performance liquid chromatographic ultraviolet detection method for the quantification of vandetanib in rat plasma and its application to pharmacokinetic studies

    Directory of Open Access Journals (Sweden)

    Hongjun Lin

    2014-01-01

    Conclusion: A simple and sensitive HPLC assay with ultraviolet detection method was developed for the determination of vandetanib in rat plasma. This method is sufficient for pharmacokinetic studies of vandetanib in small animals and may be applied to human pharmacokinetic studies.

  17. Determination of flunarizine in plasma by a new high-performance liquid chromatography method. Application to a bioavailability study in the rat.

    Science.gov (United States)

    Aparicio, X; Gras, J; Campos, A; Fernandez, E; Gelpí, E

    1988-01-01

    A reversed-phase high performance liquid chromatographic (HPLC) method is described for the study of the pharmacokinetics of flunarizine. The method involves selective liquid-solid extraction of flunarizine and meclizine (as internal standard) from samples of rat plasma. The optimization of the extraction and HPLC separation parameters are discussed. Recoveries were satisfactory and the relative standard deviation for replicate assays was below 10%. The sensitivity of the method would allow the detection of flunarizine in plasma at 13 ng ml(-1). Kinetic parameters for a bioequivalency study between flunarizine and a liquid formulation (oral drops) have been evaluated; the relative bioavailability was 88%.

  18. Determination of levocetirizine in human plasma by LC-MS-MS: validation and application in a pharmacokinetic study.

    Science.gov (United States)

    Wichitnithad, Wisut; Jithavech, Ponsiree; Sanphanya, Kingkan; Vicheantawatchai, Petploy; Rojsitthisak, Pornchai

    2015-01-01

    A fast and simple sample cleanup approach for levocetirizine in human was developed using protein precipitation coupled with LC-MS-MS. Samples were treated with 6% trichloroacetic acid in water prior to LC-MS-MS analysis. Chromatographic separation was performed on a reverse phase column with an isocratic mobile phase of acetonitrile and 10 mM ammonium formate pH 3.5 (80:20, v/v) at a flow rate of 1.0 mL/min. The run time was 3.5 min. Mass parameters were optimized to monitor transitions at m/z [M+H](+) 389.0→201.0 for levocetirizine and m/z [M+H](+) 375.3→201.0 for hydroxyzine as internal standard. The lower limit of quantification and the dynamic range were 1.00 and 1.00-500 ng/mL, respectively. Linearity was good for intraday and interday validations (r(2) ≥ 0.995). The mean recoveries were 59 and 69% for levocetirizine and hydroxyzine, respectively. Matrix effect was acceptable with %CV bioequivalence studies.

  19. Introduction to Plasma Technology Science, Engineering and Applications

    CERN Document Server

    Harry, John Ernest

    2011-01-01

    Written by a university lecturer with more than forty years experience in plasma technology, this book adopts a didactic approach in its coverage of the theory, engineering and applications of technological plasmas. The theory is developed in a unified way to enable brevity and clarity, providing readers with the necessary background to assess the factors that affect the behavior of plasmas under different operating conditions. The major part of the book is devoted to the applications of plasma technology and their accompanying engineering aspects, classified by the various pressure and densit

  20. A comparative study of capacitively coupled HBr/He, HBr/Ar plasmas for etching applications: Numerical investigation by fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Banat, E-mail: banatgul@gmail.com [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Aman-ur-Rehman, E-mail: amansadiq@gmail.com [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2015-10-15

    Fluid model has been applied to perform a comparative study of hydrogen bromide (HBr)/He and HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. This model has been used to identify the most dominant species in HBr based plasmas. Our simulation results show that the neutral species like H and Br, which are the key player in chemical etching, have bell shape distribution, while ions like HBr{sup +}, Br{sup +}, which play a dominant rule in the physical etching, have double humped distribution and show peaks near electrodes. It was found that the dilution of HBr by Ar and/or He results in an increase in electron density and electron temperature, which results in more ionization and dissociation and hence higher densities of neutral and charged species can be achieved. The ratio of positive ion flux to the neutral flux increases with an increase in additive gas fraction. Compare to HBr/He plasma, the HBr/Ar plasma shows a maximum change in the ion density and flux and hence the etching rate can be considered in the ion-assisted and in the ion-flux etch regime in HBr/Ar discharge. The densities of electron and other dominant species in HBr/Ar plasma are higher than those of HBr/He plasma. The densities and fluxes of the active neutrals and positive ions for etching and subsequently chemical etching versus physical sputtering in HBr/Ar and HBr/He plasmas discharge can be controlled by tuning gas mixture ratio and the desire etching can be achieved.

  1. Plasma Science and Applications at the Intel

    Science.gov (United States)

    Berry, Lee

    2006-10-01

    The Coalition for Plasma Science (CPS) has established a plasma prize at the annual Intel International Science and Engineering Fair (ISEF). The 2006 prize was awarded for a project that investigated the correlation of GPS errors with various measures of near-earth plasma activity. The CPS is a broadly-based group of institutions and individuals whose goal is to increase the understanding of plasmas for non-technical audiences. In addition to the ISEF plasma award, CPS activities include maintaining a website, http://www.plasmacoalition.org; developing educational literature; organizing educational luncheon presentations for Members of Congress and their staffs; and responding to questions about plasmas. In addition, the CPS has begun as effort to examine the plasma content of state education standards with the goal of promoting the adoption of standards with appropriate plasma conten; e.g. are there three or four states of matter. The success of this and other activities depend on the voluntary labor of CPS members and associates. Please send an e-mail to the CPS at CPS@plasmacoalition.org for information if you would like to become involved in spreading the good word about plasmas.

  2. Potential applications of a new microwave ECR (electron cyclotron resonance) multicusp plasma ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.

    1990-01-01

    A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source using two ECR plasma production regions and multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasmas over large areas of 300 to 400 cm{sup 2}. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of discharge parameters. Together with the discharge characteristics observed, a hypothetical discharge mechanism for this plasma source is reported and discussed. Potential applications, including plasma and ion-beam processing for manufacturing advanced microelectronics and for space electric propulsion, are discussed. 7 refs., 6 figs.

  3. Potential applications of a new microwave ECR multicusp plasma ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C. (Fusion Energy Div., Oak Ridge National Lab., TN (USA))

    1991-05-01

    A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source using two ECR plasma production regions and multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasmas over large areas of 300-400 cm{sup 2}. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of discharge parameters. Together with the discharge characteristics observed, a hypothetical discharge mechanism for this plasma source is reported and discussed. Potential applications, including plasma and ion-beam processing for manufacturing advanced microelectronics and for space electric propulsion, are discussed. (orig.).

  4. A Novel Atmospheric Pressure Plasma Fluidized Bed and Its Application in Mutation of Plant Seeds

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-Liang; WANG Zhen-Quan; HAN Er-Li; FU Ya-Bo; YANG Si-Ze; FAN Song-Hua; LI Chun-Ling; GU Wei-Chao; FENG Wen-Ran; ZHANG Gu-Ling; WANG Jiu-Li; Latif K.; ZHANG Shu-Gen

    2005-01-01

    @@ An atmospheric pressure plasma fluidized bed (APPFB) is designed to generate plasma using a dielectric barrier discharge (DBD) with one liquid electrode. In the APPFB system, the physical properties of DBD discharge and its application in plant-seed mutating are studied fundamentally. The results show that the generated plasma is a typical glow discharge free from filament and arc plasma, and the macro-temperature of the plasma fluidized bed is nearly at room temperature. There are no obvious changes in the pimientos when their seeds are treated by APPFB, but great changes are found for coxcombs.

  5. Plasma chemistry study of PLAD processes

    Energy Technology Data Exchange (ETDEWEB)

    Qin Shu; Brumfield, Kyle; Liu, Lequn Jennifer; Hu, Yongjun Jeff; McTeer, Allen; Hsu, Wei Hui; Wang Maoying [Nanya Technology Inc., Santa Clara, CA 95054 (United States); Micron Technology Inc., Boise, ID 83707 (United States)

    2012-11-06

    Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B{sub 2}H{sub 6}, BF{sub 3}, AsH{sub 3}, and PH{sub 3}, and two non-dopant plasmas including CH{sub 4} and GeH{sub 4} are studied and demonstrated.

  6. A Rapid and Selective LC-MS/MS Method for Quantification of Quetiapine in Human Plasma and its Application to Pharmacokinetic Study on Indian Schizophrenia Patients

    Directory of Open Access Journals (Sweden)

    S. Ravinder

    2011-01-01

    Full Text Available A rapid, robust and selective high pressure liquid chromatography–positive electrospray ionization tandem mass spectrometry method has been developed and validated for the quantification of quetiapine (QUE in human plasma with K2EDTA using oxcarbazepine (IS as an internal standard. Analyte and internal standard were extracted from human plasma by solid-phase extraction using acetonitrile. The eluted samples were chromatographed on a C18 column by using a 10:75:15v/v mixture of ammonium formate buffer (5 mM, pH 4.50 and acetonitrile and methanol as an isocratic mobile phase at a flow rate of 0.4 mL/min and analyzed by mass spectrometry in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 384.3/253.2 for Quetiapine and m/z 253.1/208.1 for the internal standard. The assay exhibited a linear dynamic range of 5.01 - 2501.04 ng/mL for quetiapine in human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.5 min for each sample made it possible to analyze 300 patient plasma samples per day. The validated method has been successfully used for the estimation of quetiapine in real time schizophrenia patient’s plasma samples for pharmacokinetic study.

  7. Determination of Epimedin B in Rat Plasma and Tissue by LC-MS/MS: Application in Pharmacokinetic and Tissue Distribution Studies

    Directory of Open Access Journals (Sweden)

    Qianru Feng

    2017-01-01

    Full Text Available A simple, sensitive, and specific liquid chromatography tandem mass-spectrometric method was developed and validated for the determination of epimedin B in rat plasma and tissue samples. After being processed with a protein precipitation method, these samples were separated on an Agilent Eclipse XDB-C18 column with an isocratic mobile phase consisting of acetonitrile and 0.1% formic acid aqueous solution (32 : 68, v/v. The calibration curve of epimedin B was linear over the concentration range from 1 to 500 ng/mL in plasma and tissue homogenate. The method was then applied to pharmacokinetic and tissue distribution studies after a single oral administration of Herba Epimedii extract to SD rats. Results showed that epimedin B reached the plasma peak concentration at 0.4 h and the terminal elimination half-life was 1.6 h in rat plasma, and the plasma area under the curve from time zero to infinity (AUC0–∞ was 14.35 μg/L·h. The concentration distribution of epimedin B in rat tissue was in the following order: liver > ovary > womb > lung > kidney > spleen > heart > brain, indicating that the compound could be widely distributed in rat, and the reproductive system may be the principal target of epimedin B for female rat.

  8. Semiconductor applications of plasma immersion ion implantation technology

    Indian Academy of Sciences (India)

    Mukesh Kumar; Rajkumar; Dinesh Kumar; P J George

    2002-11-01

    Many semiconductor integrated circuit manufacturing processes require high dose of implantation at very low energies. Conventional beam line ion implantation system suffers from low beam current at low energies, therefore, cannot be used economically for high dose applications. Plasma immersion ion implantation (PIII) is emerging as a potential technique for such implantations. This method offers high dose rate irrespective of implantation energy. In the present study nitrogen ions were implanted using PIII in order to modify the properties of silicon and some refractory metal films. Oxidation behaviour of silicon was observed for different implantation doses. Diffusion barrier properties of refractory barrier metals were studied for copper metallization.

  9. Determination of levodopa in human plasma by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS: application to a bioequivalence study

    Directory of Open Access Journals (Sweden)

    Heliana F. Martins

    2013-01-01

    Full Text Available A sensitive, accurate and simple method using HPLC-MS/MS was developed and validated for levodopa quantitation in human plasma. Analysis was achieved on a pursuit® C18 analytical column (5 µm; 150 x 4.6 mm i.d. using a mobile phase (methanol and water , 90:10, v/v containing formic acid 0.5% v/v, after extracting the samples using a simple protein plasma precipitation with perchloric acid. The developed method was validated in accordance with ANVISA guidelines and was successfully applied to a bioequivalence study in 60 healthy volunteers demonstrating the feasibility and reliability of the proposed method.

  10. Theoretical study of nonlinear waves and shock-like phenomena in hot plasmas

    Science.gov (United States)

    Fried, B. D.; Banos, A., Jr.; Kennel, C. F.

    1973-01-01

    Summaries are presented of research in basic plasma physics. Nonlinear waves and shock-like phenomena were studied which are pertinent to space physics applications, and include specific problems of magnetospheric and solar wind plasma physics.

  11. LC-MS/MS determination of cinacalcet enantiomers in rat plasma on Chirobiotic V column in polar ionic mode: application to a pharmacokinetic study.

    Science.gov (United States)

    Ramisetti, Nageswara Rao; Bompelli, Sravan

    2014-12-01

    A simple and selective polar ionic liquid chromatography-tandem mass spectrometric method for separation and determination of cinacalcet enantiomers in rat plasma was developed and validated. The chromatographic separation was accomplished on a Chirobiotic V column packed with vancomycin as a chiral stationary phase using 2.5 mm ammonium formate in 100% methanol as a mobile phase in an isocratic mode of elution at a flow rate of 1.0 mL/min. The analytes were extracted from rat plasma by precipitating the proteins with acetonitrile. The developed method exhibited a linear dynamic range over 0.5-500 ng/mL in rat plasma for both enantiomers. The method was successfully applied to study the pharmacokinetics after a single dose by oral administration of 10 mg/kg of cinacalcet enantiomers to healthy male Wistar rats.

  12. CLOSURE OF SMALL CENTRAL PERFORATIONS OF TYMPANIC MEMBRANE WITH GELFILM PATCH AND APPLICATION OF PLATELET RICH PLASMA VERSUS CHEMICAL CAUTERIZATION: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Jeena Kunnathully

    2016-03-01

    Full Text Available BACKGROUND Small central perforation of tympanic membrane is a common finding in patients approaching Otolaryngologists. Even though tympanoplasty can provide a disease free ear and restore hearing loss, most of these cases are either left alone or not surgically treated due to lack of patient compliance. OBJECTIVES In the present study conducted in the Department of Otolaryngology and Head and Neck Surgery, Academy of Medical Sciences, Pariyaram, Kerala, India, we have compared the results of two office procedures for closure of small central perforations. STUDY DESIGN Randomised control trial. METHODS Out of 35 cases with small central perforations of tympanic membrane, 18 were subjected to chemical cauterization with Gelfoam patching and 17 underwent freshening with application of Gelfilm patch and Platelet Rich Plasma (PRP. RESULTS Results were measured in terms of healing of perforation and hearing gain at the end of 3 months. Complete closure was achieved in 54% for chemical cauterization and 53% for Gelfilm patching. The mean hearing gain was 2.17 dB and 2.29 dB respectively. CONCLUSION Smaller size, traumatic aetiology and antero-inferior locations of tympanic membrane perforation showed better results, whereas larger perforations, comorbidities like diabetes mellitus and posteroinferior locations showed poorer results. The complications noted were vertigo, more in chemical cauterization group and otomycosis, more in the freshening and Gelfilm patching group. We thus conclude that all cases of dry small central perforations should be given a trial of either of these cost effective nonsurgical methods before resorting to surgery, depending upon patient compliance.

  13. Preface to Special Topic: Plasmas for Medical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Keidar, Michael, E-mail: keidar@gwu.edu [Mechanical and Aerospace Engineering, Department of Neurological Surgery, The George Washington University, Washington, DC 20052 (United States); Robert, Eric [GREMI, CNRS/Université d' Orleans, 45067 Orléans Cedex 2 (France)

    2015-12-15

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  14. Preface to Special Topic: Plasmas for Medical Applications

    Science.gov (United States)

    Keidar, Michael; Robert, Eric

    2015-12-01

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  15. Development and validation of an UPLC-Q/TOF-MS assay for the quantitation of neopanaxadiol in beagle dog plasma: Application to a pharmacokinetic study.

    Science.gov (United States)

    Geng, Cong; Wang, Chun-Hong; Hu, Hong; Gao, Xiao-Ping; Gong, Ai-Hua; Lin, Ying-Wei; Fan, Xiu-Shuang; Li, Heng; Yin, Jian-Yuan

    2016-10-27

    Neopanaxadiol (NPD), the main panaxadiol constituent of Panax ginseng C. A. Meyer (Araliaceae), has been regarded as the active component for the treatment of Alzheimer's disease. However, few references are available about pharmacokinetic evaluation for NPD. Accordingly, a rapid and sensitive method for quantitative analysis of NPD in beagle dog plasma based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry was developed and validated. Analytes were extracted from plasma by liquid-liquid extraction and chromatographic separation was achieved on an Agilent Zorbax Stable Bond C18 column. Detection was performed in the positive ion mode using multiple reaction monitoring of the transitions both at m/z 461.4 → 425.4 for NPD and internal standard of panaxadiol. All validation parameters, such as lower limit of quantitation, linearity, specificity, precision, accuracy, extraction recovery, matrix effect and stability, were within acceptable ranges and the method was appropriate for multitude sample determination. After oral intake, NPD was slowly absorbed and eliminated from circulatory blood system and corresponding plasma exposure was low. Application of this quantitative method will yield the first pharmacokinetic profile after oral administration of NPD to beagle dog. The information obtained here will be useful to understand the pharmacological effects of NPD.

  16. High-frequency underwater plasma discharge application in antibacterial activity

    Science.gov (United States)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli ( E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  17. High-frequency underwater plasma discharge application in antibacterial activity

    Science.gov (United States)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  18. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  19. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  20. A rapid and sensitive HPLC method for the analysis of metronidazole in human plasma: application to single dose pharmacokinetic and bioequivalence studies

    Directory of Open Access Journals (Sweden)

    Jaber Emami

    2006-03-01

    Full Text Available A sensitive, accurate and rapid reverse phase HPLC method was developed to quantitate plasma levels of metronidazole in order to conduct a comparative bioavailability studies. The drug and internal standard were added to plasma samples, vortexed and then zinc sulfate solution was added in order to precipitate the plasma proteins. Samples were centrifuged at 3000 rpm for 10 min. The supernatant layer was separated and analyzed on a phenyl (300 × 4.6mm column, with 5% acetonitrile in 0.1 M KH2PO4 buffer (pH = 4.5 at 324 nm. The standard curve covering 0.15 – 30 μg/ml concentration range, was linear (r2 = 0.9999, relative errors were within 2.48 to 9.15 % and the CV% ranged from 2.999 to 10.796. The method is suitable for bioavailability, pharmacokinetic, and bioequivalent studies in human. The in-vivo study was carried out in 12 healthy volunteers according to a single dose, two-sequence, cross over randomized design. The bioavailability was compared using the total area under the plasma level versus time curve (AUC0-48, AUC0-, peak plasma concentration (Cmax and time to Cmax (Tmax. No statistically significant difference was found between the AUC0- , Cmax and Tmax values of the test and reference, Flagyl® (p > 0.05. The 90% CI for the ratio of the AUC0- (0.94-1.07 and Cmax (0.88-1.03 and the logarithmically transformed AUC0- (0.99-1.01 and Cmax (0.94-1.01 values of the generic product over those of Flagyl® was calculated to be within the acceptable limit of 0.80-1.20 and 0.80-1.25, respectively. It was, therefore, concluded that the generic metronidazole was bioequivalent with the innovator formulation.

  1. Development, diagnostic and applications of radio-frequency plasma reactor

    Science.gov (United States)

    Puac, N.

    2008-07-01

    In many areas of the industry, plasma processing of materials is a vital technology. Nonequilibrium plasmas proved to be able to produce chemically reactive species at a low gas temperature while maintaining highly uniform reaction rates over relatively large areas (Makabe and Petrovic 2006). At the same time nonequilibrium plasmas provide means for good and precise control of the properties of active particles that determine the surface modification. Plasma needle is one of the atmospheric pressure sources that can be used for treatment of the living matter which is highly sensitive when it comes to low pressure or high temperatures (above 40 C). Dependent on plasma conditions, several refined cell responses are induced in mammalian cells (Sladek et al. 2005). It appears that plasma treatment may find many biomedical applications. However, there are few data in the literature about plasma effects on plant cells and tissues. So far, only the effect of low pressure plasmas on seeds was investigated. It was shown that short duration pretreatments by non equilibrium low temperature air plasma were stimulative in light induced germination of Paulownia tomentosa seeds (Puac et al. 2005). As membranes of plants have different properties to those of animals and as they show a wide range of properties we have tried to survey some of the effects of typical plasma which is envisaged to be used in biotechnological applications on plant cells. In this paper we will make a comparison between two configurations of plasma needle that we have used in treatment of biological samples (Puac et al. 2006). Difference between these two configurations is in the additional copper ring that we have placed around glass tube at the tip of the needle. We will show some of the electrical characteristics of the plasma needle (with and without additional copper ring) and, also, plasma emission intensity obtained by using fast ICCD camera.

  2. Determination of Sodium Tanshinone IIA Sulfonate in human plasma by LC-MS/MS and its application to a clinical pharmacokinetic study.

    Science.gov (United States)

    Qin, WeiWei; Wang, Bin; Lu, XiaoPei; Liu, HaiMing; Wang, Li; Qi, WeiLin

    2016-03-20

    An assay based on protein precipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed and validated for the quantitative analysis of Sodium Tanshinone IIA Sulfonate (STS) in human plasma. After the addition of dehydroepiandrosterone-D5-3-sulfate sodium salt (DHEAS-D5) as internal standard (IS) and formic acid, plasma samples were prepared by one-step protein precipitation with a mixture of acetonitrile and methanol. Isocratic mobile phase consisted of 0.4 mmol/L ammonium formate buffer (16 ppm formic acid)/acetonitrile (40/60, v/v) on a XSELECT™ HSS T3 column. Detection was performed on a triple-quadrupole mass spectrometer utilizing an electrospray ionization (ESI) interface operating in positive ion and selected reaction monitoring (SRM) mode with the precursor to product ion transitions m/z 373.3→357.1 for STS and m/z 373.0→97.8 for the IS. Calibration curves of STS in human plasma were linear (r=0.9957-0.9998) over the concentration range of 2-1000 ng/mL with acceptable accuracy and precision. The lower limit of quantification in human plasma was 2 ng/mL. The validated LC-MS/MS method has been successfully applied to a pharmacokinetic study of STS in Chinese healthy male volunteers.

  3. Validation of a fully automated high throughput liquid chromatographic/tandem mass spectrometric method for roxithromycin quantification in human plasma. Application to a bioequivalence study.

    Science.gov (United States)

    Kousoulos, Constantinos; Tsatsou, Georgia; Dotsikas, Yannis; Apostolou, Constantinos; Loukas, Yannis L

    2008-05-01

    A fully automated high-throughput liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed for the determination of roxithromycin in human plasma. The plasma samples were treated by liquid-liquid extraction (LLE) in 2.2 mL 96-deep-well plates. Roxithromycin and the internal standard clarithromycin were extracted from 100 microL of human plasma by LLE, using methyl t-butyl ether as the organic solvent. All liquid transfer steps were performed automatically using robotic liquid handling workstations. After vortexing, centrifugation and freezing, the supernatant organic solvent was evaporated and reconstituted. Sample analysis was performed by reversed-phase LC-MS/MS, with positive ion electrospray ionization, using multiple-reaction monitoring. The method had a very short chromatographic run time of 1.6 min. The calibration curve was linear for the range of concentrations 50.0-20.0x10(3) ng mL(-1). The proposed method was fully validated and it was proven to be selective, accurate, precise, reproducible and suitable for the determination of roxithromycin in human plasma. Therefore, it was applied to the rapid and reliable determination of roxithromycin in a bioequivalence study after per os administration of 300 mg tablet formulations of roxithromycin.

  4. A sensitive and selective UPLC-MS/MS method for simultaneous determination of 10 alkaloids from Rhizoma Menispermi in rat plasma and its application to a pharmacokinetic study.

    Science.gov (United States)

    Wei, Jinxia; Fang, Linlin; Liang, Xinlei; Su, Dan; Guo, Xingjie

    2015-11-01

    A sensitive and selective liquid chromatography-tandem mass spectrometry method has been developed and validated for simultaneous quantitation of 10 alkaloids (dauricine, daurisoline, N-desmethyldauricine, dauricicoline, dauriporphinoline, bianfugecine, dauricoside, stepholidine, acutumine and acutumidine) from Rhizoma Menispermi in rat plasma. After addition of internal standard (verapamil), plasma samples were pretreated by a single-step protein precipitation with acetonitrile. Chromatographic separation was performed on a Waters BEH C18 column with gradient elution using a mobile phase composed of acetonitrile and water (containing 0.1% formic acid) at a flow rate of 0.3 mL/min. The analytes were detected without interference in the multiple reaction monitoring (MRM) mode with positive electrospray ionization. The validated method exhibited good linearity over a wide concentration range (r≥0.9914), and the lower limits of quantification were 0.01-5.0 ng/mL for all the analytes. The intra-day and inter-day precisions (RSD) at three different levels were both less than 13.4% and the accuracies (RE) ranged from -12.8% to 13.5%. The mean extraction recoveries of analytes and IS from rat plasma were all more than 77%. The validated method was successfully applied to a comparative pharmacokinetic study of 10 alkaloids in rat plasma after oral administration of Rhizoma Menispermi extract.

  5. Simultaneous determination of irbesartan and hydrochlorothiazide in human plasma by ultra high performance liquid chromatography tandem mass spectrometry and its application to a bioequivalence study.

    Science.gov (United States)

    Qiu, Xiangjun; Wang, Zhe; Wang, Bing; Zhan, Hui; Pan, Xiaofeng; Xu, Ren-ai

    2014-04-15

    An ultra high performance liquid chromatography tandem mass spectrometry (U-HPLC-MS/MS) method was developed and validated to determine irbesartan (IRB) and hydrochlorothiazide (HCTZ) in human plasma simultaneously. Plasma samples were prepared using protein precipitation with acetonitrile, the two analytes and the internal standard losartan were separated on an Acquity U-HPLC BEH C18 column and mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electro-spray ionization (ESI) source in the negative ion mode. The MRM transitions of m/z 427.2→206.9 and m/z 296.1→204.9 were used to quantify for IRB and HCTZ, respectively. The linearity of this method was found to be within the concentration range of 5-3000ng/mL for IRB, and 0.5-300ng/mL for HCTZ in human plasma, respectively. The lower limit of quantification (LLOQ) was 5ng/mL and 0.5ng/mL for IRB and HCTZ in human plasma, respectively. The relative standard deviations (RSD) of intra and inter precision were less than 12% for both IRB and HCTZ. The analysis time of per sample was 2.5min. The developed and validated method was successfully applied to a bioequivalence study of IRB (300mg) with HCTZ (12.5mg) tablet in Chinese healthy volunteers (N=20).

  6. Development and validation of an RP-HPLC method for the quantitation of odanacatib in rat and human plasma and its application to a pharmacokinetic study.

    Science.gov (United States)

    Police, Anitha; Gurav, Sandip; Dhiman, Vinay; Zainuddin, Mohd; Bhamidipati, Ravi Kanth; Rajagopal, Sriram; Mullangi, Ramesh

    2015-11-01

    A simple, specific, sensitive and reproducible high-performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of odanacatib in rat and human plasma. The bioanalytical procedure involves extraction of odanacatib and itraconazole (internal standard, IS) from a 200 μL plasma aliquot with simple liquid-liquid extraction process. Chromatographic separation was achieved on a Symmetry Shield RP18 using an isocratic mobile phase at a flow rate of 0.7 mL/min. The UV detection wave length was 268 nm. Odanacatib and IS eluted at 5.5 and 8.6 min, respectively with a total run time of 10 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 50.9-2037 ng/mL (r(2) = 0.994). The intra- and inter-day precisions were in the range of 2.06-5.11 and 5.84-13.1%, respectively, in rat plasma and 2.38-7.90 and 6.39-10.2%, respectively, in human plasma. The validated HPLC method was successfully applied to a pharmacokinetic study in rats.

  7. Coblation technology: plasma-mediated ablation for otolaryngology applications

    Science.gov (United States)

    Woloszko, Jean; Gilbride, Charles

    2000-05-01

    Coblation is a unique method of delivering radio frequency energy to soft tissue for applications in Otolaryngology (ENT). Using radio frequency in a bipolar mode with a conductive solution, such as saline, Coblation energizes the ions in the saline to form a small plasma field. The plasma has enough energy to break the tissue's molecular bonds, creating an ablative path. The thermal effect of this process is approximately 45 - 85 degrees Celsius, significantly lower than traditional radio-frequency techniques. Coblation has been used for Otolaryngological applications such as Uvulopalatopharyngoplasty (UPPP), tonsillectomy, turbinate reduction, palate reduction, base of tongue reduction and various Head and Neck cancer procedures. The decreased thermal effect of Coblation anecdotally has led to less pain and faster recovery for cases where tissue is excised. In cases where Coblation is applied submucosally to reduce tissue volume (inferior turbinate, soft palate), the immediate volume reduction may lead to immediate clinical benefits for the patient. Coblation is currently being tested in various clinical studies to document the benefits for otolaryngological applications.

  8. The contribution of Nikola Tesla to plasma physics and current status of plasmas that he studied

    Directory of Open Access Journals (Sweden)

    Petrović Zoran Lj.

    2006-01-01

    Full Text Available One of the main Interests in science of Nikola Tesla were gas discharges plasmas, their application in lighting and in production of ozone as well as their role in conduction of electricity through the atmosphere. In particular Tesla is well known as the first person to produce rf plasmas. Such plasmas in the present day constitute the main technology required to produce integrated circuits (IC and have been essential in the revolution that resulted from IC technologies. In addition Tesla participated in studies of arcs especially arcs used as a source of light, corona discharges required to induce plasma chemical reactions and produce ozone and was involved in various aspects of gas breakdown and gaseous dielectrics. His ideas, level of his understanding and current status of these fields are discussed in this review.

  9. Potential applications of an electron cyclotron resonance multicusp plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Schechter, D.E.; Stirling, W.L.

    1990-03-01

    An electric cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produces large (about 25-cm- diam), uniform (to within {plus minus}10%), dense (>10{sup 11}--cm{sup {minus}3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7-cm (5-in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Following a brief review of the large plasma source developed at Oak Ridge National Laboratory, the configuration and operation of the source are described and a discharge model is presented. Results from this new ECR plasma source and potential applications for plasma processing of thin films are discussed. 21 refs., 10 figs.

  10. Simultaneous determination of leucine, isoleucine and valine in Beagle dog plasma by HPLC-MS/MS and its application to a pharmacokinetic study.

    Science.gov (United States)

    Wang, Ting; Xie, Huiru; Chen, Xu; Jiang, Xuehua; Wang, Ling

    2015-10-10

    Leucine (Leu), isoleucine (Ile) and valine (Val) are three branched-chain amino acids (BCAAs), which have been widely used as dietary supplements for professional athletes and patients with liver failure or catabolic diseases. To date, no pharmacokinetic studies of BCAAs in vivo useful for the assessment of clinical effect following daily intake has been reported. Thus in this study, an HPLC-MS/MS method for simultaneous determination of Leu, Ile and Val in Beagle dog plasma using homoarginine as the internal standard was developed and validated in terms of specificity, linearity, precision, accuracy, and stability. This assay method was then applied to a pharmacokinetic study of BCAAs in dogs following oral administration of 0.25 g/kg and 0.50 g/kg BCAAs. The HPLC-MS/MS method was found to be sensitive and reproducible for quantification of BCAAs in dog plasma and successfully applied to the pharmacokinetic study. All these BCAAs were well absorbed with a substantial increase in the plasma concentration after a baseline modification. No statistical significance was identified in different gender group and no drug accumulation was observed following multiple doses.

  11. Applications and challenges of plasma processes in nanobiotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F; Colpo, P, E-mail: francois.rossi@jrc.ec.europa.eu [European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), I-21020, Ispra (Italy)

    2011-05-04

    We present an overview of the possibilities offered by plasma technologies, in particular the combination plasma polymers deposition, colloidal lithography, e-beam lithography and microcontact printing, to produce micro- and nanostructured surfaces with chemical and topographical contrast for applications in nanobiotechnology. It is shown that chemical and topographical patterns can be obtained on different substrates, with dimensions down to a few tenths of 10 nm. The applications of these nanostructured surfaces in biology, biochemistry and biodetection are presented and the advantages and limitation of the plasma techniques in this context underlined.

  12. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    Energy Technology Data Exchange (ETDEWEB)

    Villar Colome, J. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Universitat Polytechnica de Catalunya (Spain)

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  13. Plasma fibrinogen in NIDDM - The Rotterdam Study

    NARCIS (Netherlands)

    Missov, RM; Stolk, RP; vanderBom, JG; Hofman, A; Bots, ML; Pols, HAP; Grobbee, DE

    1996-01-01

    OBJECTIVE - To compare plasma fibrinogen levels across groups of subjects with and without NIDDM with respect to diabetes therapy and to evaluate the influence of metabolic control and other selected factors. RESEARCH DESIGN AND METHODS - In a cross-sectional study, plasma fibrinogen was measured in

  14. Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion: Laminar Flow Reactor and Nanoparticle Studies at Low to Intermediate Temperatures. Program Overview

    Science.gov (United States)

    2009-11-04

    dip asma   ue  ox at on an   gn t on mec an sms,  nc u ng  surrogate fuels ‐Development of reduced plasma chemical fuel oxidation...Studies will be conducted to investigate the effects of nanoparticles th l h t i ti d ti ki ti l ion e p asma c arac er s cs an reac on ne cs, e.g

  15. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Artemenko, A. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Kylian, O., E-mail: ondrej.kylian@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Choukourov, A.; Gordeev, I.; Petr, M. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Vandrovcova, M. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Polonskyi, O. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Bacakova, L. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Slavinska, D.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic)

    2012-10-01

    This study is focused on the evaluation of resistance of plasma polymers toward common sterilization techniques, i.e. property important for possible use of such materials in biomedical applications. Three kinds of plasma polymers having different bioadhesive natures were studied: plasma polymerized poly(ethylene oxide), fluorocarbon plasma polymers, and nitrogen-rich plasma polymers. These plasma polymers were subjected to dry heat, autoclave and UV radiation treatment. Their physical, chemical and bioresponsive properties were determined by means of different techniques (ellipsometry, atomic force microscopy, wettability measurements, X-ray photoelectron spectroscopy and biological tests with osteoblast-like cells MG63). The results clearly show that properties of thin films of plasma polymers may be significantly altered by a sterilization process. Moreover, observed changes induced by selected sterilization methods were found to depend strongly on the sterilized plasma polymer. - Highlights: Black-Right-Pointing-Pointer Effect of common sterilization methods on three kinds of plasma polymers is studied. Black-Right-Pointing-Pointer Physical, chemical and bioresponsive properties of plasma polymers are analyzed. Black-Right-Pointing-Pointer Changes induced by sterilization depend strongly on type of the plasma polymer.

  16. Development of atmospheric pressure plasma needle jet for sterilization applications

    Science.gov (United States)

    Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Soon, Chin Fhong; Sahdan, Mohd Zainizan; Lias, Jais; Wibowo, Kusnanto Mukti; Bakar, Ahmad Shuhaimi Abu; Arshad, Mohd Khairuddin Md; Hashim, Uda; Nayan, Nafarizal

    2017-09-01

    Inactivation of bacteria or sterilization has been a major issue in the medical field, especially regarding of human safety, whereby, in a huge scenario fatality can be caused by hazardous bacteria. Often, E-coli as gram-negative bacteria are selected as a key indicator of proper sterilization process as E-coli is tough and dormant bacteria. The technology in sterilization has moved on from chemical, wet and irradiation sterilization to a high promising device such as atmospheric pressure plasma needle jet (APPNJ). It has been reported that atmospheric pressure plasma has provided bundle of advantages over earlier sterilization process. The APPNJ is developed in our lab using high frequency and high voltage neon transformer power supply connected to copper needle and copper sheet electrodes. The gas discharge is Ar gas flowing at 40 L/min through a quartz glass tube. The E-coli bacteria are self-cultured from waste water and then treated with APPNJ. The treatment processes are run into two difference gaps between the plasma orifice and sample with various treatment times. Only 40s is required by direct treatment to achieve 100% killing of E-coli. On the other hand, indirect treatment has inactivated 50% of the E-coli in 40s. In this study, direct and indirect effect of APPNJ to the E-coli can be observed which can be utilized into sterilization of bio-compatible material applications.

  17. Plasma process optimization for N-type doping applications

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Deven; Persing, Harold; Salimian, Siamak; Lacey, Kerry; Qin Shu; Hu, Jeff Y.; McTeer, Allen [Applied Materials, Inc., Varian Semiconductor Business Unit, 35 Dory Road, Gloucester, MA 01930 (United States); Micron Technology, Inc., 8000 S. Federal Way, Boise, ID 83707 (United States)

    2012-11-06

    Plasma doping (PLAD) has been adopted across the implant technology space and into high volume production for both conventional DRAM and NAND doping applications. PLAD has established itself as an alternative to traditional ion implantation by beamline implantation. The push for high doping concentration, shallow doping depth, and conformal doping capability expand the need for a PLAD solution to meet such requirements. The unique doping profile and doping characteristics at high dose rates allow for PLAD to deliver a high throughput, differentiated solution to meet the demand of evolving transistor technology. In the PLAD process, ions are accelerated to the wafer as with a negative wafer bias applied to the wafer. Competing mechanisms, such as deposition, sputtering, and etching inherent in plasma doping require unique control and process optimization. In this work, we look at the distinctive process tool control and characterization features which enable an optimized doping process using n-type (PH{sub 3} or AsH{sub 3}) chemistries. The data in this paper will draw the relationship between process optimization through plasma chemistry study to the wafer level result.

  18. Liquid Chromatography Tandem mass spectrometry method for Quantification of Buproprion and Hydroxy Buproprion in Human Plasma and its application to Bioequivalence Study

    Directory of Open Access Journals (Sweden)

    Peeyush Jain

    2012-06-01

    Full Text Available A rapid, specific and robust assay based on solid phase extraction and liquid chromatography-electronspray ionization tandem mass spectrometry (LC-ESI MS-MS has been developed and validated for the quantitative analysis of Buproprion (a drug used for smoking cessation in human plasma using Buproprion D9 as internal standard (ISTD. The precursors to product ion transitions of m/z 240.20/183.90 and m/z 256.10/237.90 were used to measure the analyte (Buproprion and hydroxy Buproprion and the precursor to product ion transition of m/z 249.20/131.00 was used to measure the ISTD. The method was validated over a concentration range of 1.00ng mL-1 to 304.65ng mL-1 for Bupropion and 3.00ng mL-1 to 801.78ng mL-1 for hydroxy Bupropion. The method was validated over the various parameters like selectivity, matrix effect, sensitivity, linearity, precision, accuracy, stabilities (bench-top stability, standard stock solution stability in refrigerator and at room temperature, stock dilution stability, auto-sampler stability, freeze thaw stability, long-term stability at -65°C ± 10°C & -22°C ± 5°C, reagent stability, dry-extract stability, wet-extract stability and blood stability, effect of potentially interfering drugs, dilution integrity, recovery, reinjection reproducibility, ruggedness, extended batch verification, ion-suppression through infusion and inter-conversion check etc. The mean percent recovery of Bupropion was found 58.443% with a precision of 1.01% whereas the mean percent recoveries of hydroxy Bupropion and Bupropion D9 were found 62.327% and 66.513% with a precision of 2.99% and 3.91% respectively. The RSD percent of intra-day and inter-day assay was ;15%. The application of this assay was demonstrated in a bioequivalence study and it was found suitable for a study of sample size as big as sixty enrolled volunteers.

  19. Development and validation of a liquid chromatography-tandem mass spectrometry method for topotecan determination in beagle dog plasma and its application in a bioequivalence study.

    Science.gov (United States)

    Ye, Ling; Shi, Jian; Wan, Shanhe; Yang, Xiaoshan; Wang, Ying; Zhang, Jiajie; Zheng, Dayong; Liu, Zhongqiu

    2013-11-01

    Topotecan (TPT) is an important anti-cancer drug that inhibits topoisomerase I. A sensitive and robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method that potentially determines TPT in beagle dog plasma is needed for a bioequivalence study of TPT formulations. We developed and validated LC-MS/MS to evaluate TPT in beagle dog plasma in terms of specificity, linearity, precision, accuracy, stability, extraction recovery and matrix effect. Plasma samples were treated with an Ostro(TM) sorbent plate (a robust and effective tool) to eliminate phospholipids and proteins before analysis. TPT and camptothecin (internal standard) were separated on an Acquity UPLC BEH C18 column (1.7 µm, 2.1 × 50 mm) with 0.1% formic acid and methanol as the mobile phase at a flow rate of 0.25 mL/min. TPT was analyzed using positive ion electrospray ionization in multiple-reaction monitoring mode. The obtained lower limit of quantitation was 1 ng/mL (signal-to-noise ratio > 10). The standard calibration curve for TPT was linear (correlation coefficient > 0.99) at the concentration range of 1-400 ng/mL. The intra-day and inter-day precision, accuracy, stability, extraction recovery and matrix effect of TPT were within the acceptable limits. The validated method was successfully applied in a bioequivalence study of TPT in healthy beagle dogs.

  20. A rapid and simple UPLC-MS-MS method for determination of glipizide in human plasma and its application to bioequivalence study.

    Science.gov (United States)

    Qiu, Xiangjun; Zheng, Shuang-li; Wang, Yingfei; Wang, Rong; Ye, Lei

    2015-01-01

    In this study, a simple, rapid and sensitive ultra performance liquid chromatography-tandem mass spectrometry method is described for the determination of glipizide in human plasma samples using carbamazepine as the internal standard (IS) from bioequivalence assays. Sample preparation was accomplished through protein precipitation with methanol, and chromatographic separation was performed on an Acquity BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with gradient profile at a flow rate of 0.4 mL/min. Mass spectrometric analysis was performed using an QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 446.1 → 321.0 and m/z 237.1 → 194.2 were used to quantify for glipizide and IS. The linearity of this method was found to be within the concentration range of 10-1,500 ng/mL for glipizide in human plasma. Only 1.0 min was needed for an analytical run. The method was applied to a bioequivalence study of two drug products containing glipizide in human plasma samples.

  1. Basic Studies in Plasma Physics

    Science.gov (United States)

    2013-01-31

    close to a Maxwellian parametrized by a temperature T and mean velocity u which satisfy certain non -linear equations, which are the macroscopic equations...Simulations with Particle-to-Grid Methods 17 E. Microscopic-Shock Profiles: Exact Solution of a Non -Equilibrium System 18 IV. List of Publications...Investigator ABSTRACT An improved understanding of equilibrium and non -equilibrium properties of plasmas is central to many areas of basic science as

  2. Determination of ASP3258, a novel phosphodiesterase type 4 inhibitor, in rat plasma by high-performance liquid chromatography with fluorescence detection and its application to pharmacokinetic study.

    Science.gov (United States)

    Ohtsu, Yoshiaki; Takanuki, Fumiyo; Fukunaga, Yasuhisa; Noguchi, Kiyoshi

    2015-02-01

    The potent phosphodiesterase 4 inhibitor ASP3258 contains a carboxylic acid moiety and a naphthyridine ring and is a novel therapeutic agent for asthma and chronic obstructive pulmonary disease. To support the drug development of ASP3258, we developed and validated a simple method for its determination in rat plasma. Following the addition of the analog AS1406604-00 as an internal standard, plasma samples were processed using C18 -bonded solid-phase extraction cartridges under acidic conditions and injected into a high-performance liquid chromatography system with fluorescence detection. Chromatographic separation was achieved on a Shiseido Capcell Pak C18 UG120 column (3.0 × 150 mm, 5 µm) with a mobile phase consisting of acetonitrile-0.5% acetic acid (50:50, v/v). HPLC eluent was monitored with a fluorescence detector set at a wavelength of 315 nm for excitation and 365 nm for emission. The calibration curve was linear over a range of 2.5-250 ng/mL. Validation data demonstrated that the method is selective, sensitive and accurate. In addition, the present method was successfully applied to rat plasma samples from a pharmacokinetic study.

  3. Quantitation of niflumic acid in human plasma by high-performance liquid chromatography with ultraviolet absorbance detection and its application to a bioequivalence study of talniflumate tablets.

    Science.gov (United States)

    Lee, H W; Won, K J; Cho, S H; Ha, Y H; Park, W S; Yim, H T; Baek, M; Rew, J H; Yoon, S H; Yim, S V; Chung, J H; Lee, K T

    2005-07-25

    A rapid and simple HPLC method with UV detection (288 nm) was developed and validated for quantitation of niflumic acid in human plasma, the active metabolite of talniflumate. After precipitation with 100% methanol containing the internal standard, indomethacin, the analysis of the niflumic acid level in the plasma samples was carried out using a reverse phase C18 CAPCELL PAK (5 microm, 4.6 mm x 250 mm) column. The chromatographic separation was accomplished with an isocratic mobile phase consisting of a mixture of 0.1M sodium acetate in water and acetonitrile (37:63, v/v), adjusted to pH 6.4. This HPLC method was validated by examining its precision and accuracy for inter- and intra-day runs in a linear concentration range of 0.02-5.00 microg/mL. Stability of niflumic acid in plasma was excellent, with no evidence of degradation during sample processing (autosampler) and 30 days storage in a freezer. This validated method was successfully applied to the bioequivalence study of talniflunate in healthy volunteers.

  4. Quantification of sofosbuvir and ledipasvir in human plasma by UPLC-MS/MS method: Application to fasting and fed bioequivalence studies.

    Science.gov (United States)

    Rezk, Mamdouh R; Bendas, Ehab R; Basalious, Emad B; Karim, Iman A

    2016-08-15

    A rapid and sensitive LC-MS/MS method was developed, optimized and validated for quantification of sofosbuvir (SF) and ledipasvir (LD) in human plasma using eplerenone as an internal standard (IS). Analytes and IS were extracted from plasma by simple liquid-liquid extraction technique using methyl tertiary butyl ether. The prepared samples were chromatographed on Acquity UPLC BEH C18 column. Separation was done using a mobile phase formed of 0.1% formic acid and acetonitrile (50:50, v/v) in an isocratic mode at a flow rate of 0.4ml/min. The Xevo TQD LC-MS/MS was operated under the multiple-reaction monitoring mode using electrospray ionization. A full validation of the method was performed according to the FDA guidelines. Linearity was found to be in the range of 0.25-3500ng/ml for SF and 5-2000ng/ml for LD. The intra-day and inter-day precision and accuracy results were within the acceptable limits. A short run time of 2min allows analysis of more than 400 plasma samples per day. The developed method was successfully applied to both fasting and fed bioequivalence studies in healthy human volunteers.

  5. Concurrent determination of olanzapine, risperidone and 9-hydroxyrisperidone in human plasma by ultra performance liquid chromatography with diode array detection method: application to pharmacokinetic study.

    Science.gov (United States)

    Siva Selva Kumar, M; Ramanathan, M

    2016-02-01

    A simple and sensitive ultra-performance liquid chromatography (UPLC) method has been developed and validated for simultaneous estimation of olanzapine (OLZ), risperidone (RIS) and 9-hydroxyrisperidone (9-OHRIS) in human plasma in vitro. The sample preparation was performed by simple liquid-liquid extraction technique. The analytes were chromatographed on a Waters Acquity H class UPLC system using isocratic mobile phase conditions at a flow rate of 0.3 mL/min and Acquity UPLC BEH shield RP18 column maintained at 40°C. Quantification was performed on a photodiode array detector set at 277 nm and clozapine was used as internal standard (IS). OLZ, RIS, 9-OHRIS and IS retention times were found to be 0.9, 1.4, .1.8 and 3.1 min, respectively, and the total run time was 4 min. The method was validated for selectivity, specificity, recovery, linearity, accuracy, precision and sample stability. The calibration curve was linear over the concentration range 1-100 ng/mL for OLZ, RIS and 9-OHRIS. Intra- and inter-day precisions for OLZ, RIS and 9-OHRIS were found to be good with the coefficient of variation <6.96%, and the accuracy ranging from 97.55 to 105.41%, in human plasma. The validated UPLC method was successfully applied to the pharmacokinetic study of RIS and 9-OHRIS in human plasma.

  6. Determination of secnidazole in human plasma by high-performance liquid chromatography with UV detection and its application to the bioequivalence studies.

    Science.gov (United States)

    Li, Xiaoyu; Sun, Jianguo; Wang, Guangji; Zheng, Yuanting; Yan, Bei; Xie, Haitang; Gu, Yi; Ren, Hongchan

    2007-03-01

    A simple, accurate, precise and sensitive HPLC-UV method was developed for the determination of secnidazole in human plasma. Secnidazole and tinidazole (IS) were extracted from 0.2 mL of human plasma by ethyl acetate. Secnidazole was then separated by HPLC on a Diamond C(18) column and quantified by ultraviolet detection at 319 nm. The mobile phase consisted of acetonitrile-aqueous 5 mm sodium acetate (30:70, v/v) containing of 0.1% acetic acid adjusted to pH 4.0, and the flow rate was 1.0 mL/min. The low limit of quantification was 0.1 microg/mL. The method was linear over the concentration range 0.1-25.0 microg/mL (R(2) = 1.000). The recovery of secnidazole from human plasma ranged from 76.5 to 89.1%. Inter- and intra-assay precision ranged from 3.3 to 10.7%. Secnidazole in plasma was stable when stored at ambient temperature for 8 h, at -20 degrees C for 2 weeks and at -20 degrees C for three freeze-thaw cycles. The developed method was successfully applied to the pharmacokinetic and bioequivalence studies between test and reference secnidazole tablets following a single 500 mg oral dosage to 20 healthy volunteers of both genders. Pharmacokinetics parameters T(max), C(max), AUC(0-)t, AUC(0-infinity), T(1/2) were determined of both preparations. The analysis of variance (ANOVA) did not show any significant difference between the two preparations and 90% confidence intervals fell within the acceptable range for bioequivalence. It was concluded that the two secnidazole preparations are bioequivalence and may be used interchangeably.

  7. Application of plasma technology for the modification of polymer and textile materials

    Directory of Open Access Journals (Sweden)

    Radetić Maja M.

    2004-01-01

    Full Text Available Plasma treatment is based on the physico-chemical changes of the material surface and as an ecologically and economically acceptable process it can be an attractive alternative to conventional modifications. The possibilities of plasma technology application to the modification of polymer and textile materials are discussed. Different specific properties of the material can be achieved by plasma cleaning, etching, functionalization or polymerization. The final effects are strongly influenced by the treatment parameters (treatment time, pressure, power, gas flow, the applied gas and nature of the material. The plasma treatment of polymers is predominantly focused on cleaning and activation of the surfaces to increase adhesion, binding, wettability, dye ability and printability. Current studies deal more with plasma polymerization where an ultra thin film of plasma polymer is deposited on the material surface and, depending on the applied monomer, different specific properties can be obtained (i.e. chemical and thermal resistance, abrasion resistance, antireflexion, water repellence, etc.. Plasma application to textiles is mostly oriented toward wool and synthetic fibres, though some studies also consider cotton, hemp, flax and silk. The main goal of plasma treatment is to impart a more hydrophilic fibre surface and accordingly increase wettability, dye ability, printability and particularly, shrink resistance in the case of wool. Recent studies have favored technical textiles, where plasma polymerization can offer a wide range of opportunities.

  8. Plasma-etched nanostructures for optical applications (Presentation Recording)

    Science.gov (United States)

    Schulz, Ulrike; Rickelt, Friedrich; Munzert, Peter; Kaiser, Norbert

    2015-08-01

    A basic requirement for many optical applications is the reduction of Fresnel-reflections. Besides of interference coatings, nanostructures with sub-wavelength size as known from the eye of the night-flying moth can provide antireflective (AR) properties. The basic principle is to mix a material with air on a sub-wavelength scale to decrease the effective refractive index. To realize AR nanostructures on polymers, the self-organized formation of stochastically arranged antireflective structures using a low-pressure plasma etching process was studied. An advanced procedure involves the use of additional deposition of a thin oxide layer prior etching. A broad range of different structure morphologies exhibiting antireflective properties can be generated on almost all types of polymeric materials. For applications on glass, organic films are used as a transfer medium. Organic layers as thin film materials were evaluated to identify compounds suitable for forming nanostructures by plasma etching. The vapor deposition and etching of organic layers on glass offers a new possibility to achieve antireflective properties in a broad spectral range and for a wide range of light incidence.

  9. Novel applications of atmospheric pressure plasma on textile materials

    Science.gov (United States)

    Cornelius, Carrie Elizabeth

    Various applications of atmospheric pressure plasma are investigated in conjunction with polymeric materials including paper, polypropylene non-woven fabric, and cotton. The effect of plasma on bulk and surface properties is examined by treating both cellulosic pulp and prefabricated paper with various plasma-gas compositions. After treatment, pulp is processed into paper and the properties are compared. The method of pulp preparation is found to be more significant than the plasma, but differences in density, strength, and surface roughness are apparent for the pulp vs. paper plasma treatments. The plasma is also used to remove sizes of PVA and starch from poly/cotton and cotton fabric respectively. In both cases plasma successfully removes a significant amount of size, but complete size removal is not achieved. Subsequent washes (PVA) or scouring (cotton) to remove the size are less successful than a control, suggesting the plasma is crosslinking the size that is not etched away. However, at short durations in cold water using an oxygen plasma, slightly more PVA is removed than with a control. For the starch sized samples, plasma and scouring are never as successful at removing starch as a conventional enzyme, but plasma improves dyeability without need for scouring. Plasma is also used to graft chemicals to the surface of polypropylene and cotton fabric. HTCC, an antimicrobial is grafted to polypropylene with successful grafting indicated by x-ray photoemission spectroscopy (XPS), dye tests, and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the grafted samples is also characterized. 3ATAC, a vinyl monomer is also grafted to polypropylene and to cotton. Additives including Mohr's salt, potassium persulfate, and diacrylate are assessed to increase yield. Successful grafting of 3ATAC is confirmed by XPS and dye testing. A combination of all three additives is identified as optimum for maximizing graft yield.

  10. Plasma characterization studies for materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Pfender, E.; Heberlein, J. [Univ. of Minnesota, Minneapolis, MN (United States)

    1995-12-31

    New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torch model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.

  11. Investigation of the AC Plasma Torch Working Conditions for the Plasma Chemical Applications

    Science.gov (United States)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Shiryaev, V. N.; Subbotin, D. I.; Pavlov, A. V.

    2017-04-01

    The presented design and parameters of a three-phase AC plasma torch with the power up to 500 kW, flow rate of air 30-50 g/s (temperature up to 5000 K) could be used in different plasma chemical processes. Range of measured plasma temperature is 3500-5000 K. The paper presents investigations of the plasma torch operation modes for its application in plasma chemical technologies. Plasma chemical technologies for various purposes (processing, destruction of various wastes, including technological and hazardous waste, conversion or production of chemicals to obtain nanoscale materials, etc.) are very promising in terms of the process efficiency. Their industrial use is difficult due to the lack of inexpensive and reliable plasma torches providing the desired level of temperature, enthalpy of the working gas and other necessary conditions for the process. This problem can be solved using a considered design of a three-phase alternating current plasma torch with power of 150-500 kW with working gas flow rate of 30-50 g/s with mass average temperature up to 5000K on the basis of which an industrial plasma chemical plant can be created. The basis of the plasma torch operation is a railgun effect that is the principle of arc movement in the field of its own current field. Thanks to single supply of power to the arc, arcs forming in the discharge chamber of the plasma torch move along the electrodes under the action of electrodynamic forces resulting from the interaction of the arc current with its own magnetic field. Under the condition of the three-phase supply voltage, arc transits from the electrode to the electrode with change in the anodic and cathodic phases with frequency of 300 Hz. A special feature of this design is the ability to organize the movement of the arc attachment along the electrode, thus ensuring an even distribution of the thermal load and thus achieve long time of continuous operation of the plasma torch. The parameters of the plasma jet of the

  12. Experimental study of the plasma window

    Science.gov (United States)

    Shi, Ben-Liang; Huang, Sheng; Zhu, Kun; Lu, Yuan-Rong

    2014-01-01

    The plasma window is an advanced apparatus that can work as the interface between a vacuum and a high pressure region. It can be used in many applications that need atmosphere-vacuum interface, such as a gas target, electron beam welding, synchrotron radiation and a spallation neutron source. A test bench of the plasma window is constructed in Peking University. A series of experiments and the corresponding parameter measurements have been presented in this article. The experiment result indicates the feasibility of such a facility acting as an interface between a vacuum and a high pressure region.

  13. Supported plasma-made 1D heterostructures: perspectives and applications

    OpenAIRE

    Borras, Ana; Macias-Montero, Manuel; Romero-Gomez, Pablo; Gonzalez-Elipe, Agustin R.

    2011-01-01

    Abstract Plasma related methods have been widely used in the fabrication of carbon nanotubes and nanofibres and semiconducting inorganic nanowires. A natural progression of the research in the field of 1D nanostructures is the synthesis of multicomponent nanowires and nanofibres. In this article we review the state of the art of the fabrication by plasma methods of 1D heterostructures including applications and perspectives. Furthermore, recent developments on the use of metal seeds (Ag, A...

  14. PLATELET RICH PLASMA (PRP) APPLICATION IN TOTAL KNEE ARTHROPLASTY (TKA)

    OpenAIRE

    2015-01-01

    PURPOSE: To find out the PRP application effects in TKA on pain syndrome, wound healing, postoperative blood loss, range of motion and the knee circumference (centimetry). MATERIAL AND METHOD: The preparation of the platelet-rich plasma is based on our treatment algorithm. 20 patients have been subject to TKA within the period from October 2012 to November 2014 and underwent TKA, as platelet rich plasma was used intraoperatively. The average patient age is 72,3; 9 male and 11 female patien...

  15. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  16. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  17. Surface studies of plasma processed Nb samples

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Puneet V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Doleans, Marc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Hannah, Brian S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Afanador, Ralph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Stewart, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Mammosser, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Howell, Matthew P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Saunders, Jeffrey W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Degraff, Brian D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  18. Reverse-phase liquid chromatography with electrospray ionization/mass spectrometry for the quantification of pseudoephedrine in human plasma and application to a bioequivalence study.

    Science.gov (United States)

    Kim, Jin-Ki; Jee, Jun-Pil; Park, Jeong-Sook; Kim, Hyung Tae; Kim, Chong-Kook

    2011-01-01

    A sensitive and selective reverse-phase liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method was developed and validated to quantify pseudoephedrine (CAS 90-82-4) in human plasma. Phenacetin was used as the internal standard (I.S.). Sample preparation was performed with a deproteinization step using acetonitrile. Pseudoephedrine and I.S. were successfully separated using gradient elution with 0.5% trifluoroacetic acid (TFA) in water and 0.5% TFA in methanol at a flow-rate of 0.2 mL/min. Detection was performed on a single quadrupole mass spectrometer by a selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The ESI source was set at positive ionization mode. The ion signals of m/z 166.3 and 180.2 were measured for the protonated molecular ions of pseudoephedrine and I.S., respectively. The lower limit of quantification (LLOQ) of pseudoephedrine in human plasma was 10 ng/mL and good linearity was observed in the range of concentrations 10-500 ng/mL (R2 = 1). The intra-day accuracy of the drug containing plasma samples was more than 97.60% with a precision of 3.99-11.82%. The inter-day accuracy was 99.36% or more, with a precision of 7.65-18.42%. By using this analytical method, the bioequivalence study of the pseudoephedrine preparation was performed and evaluated by statistical analysis of the log transformed mean ratios of pharmacokinetic parameters. All the results fulfilled the standard criteria of bioequivalence, being within the 80-125% range which is required by the Korea FDA, US FDA, and EMEA to conclude bioequivalence. Consequently, the developed reverse-phase LC-ESI-MS method was successfully applied to bioequivalence studies of pseudoephedrine in healthy male volunteers.

  19. Simultaneous quantification of VX and its toxic metabolite in blood and plasma samples and its application for in vivo and in vitro toxicological studies.

    Science.gov (United States)

    Reiter, Georg; Mikler, John; Hill, Ira; Weatherby, Kendal; Thiermann, Horst; Worek, Franz

    2011-09-15

    The present study was initiated to develop a sensitive and highly selective method for the simultaneous quantification of the nerve agent VX (O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate) and its toxic metabolite (EA-2192) in blood and plasma samples in vivo and in vitro. For the quantitative detection of VX and EA-2192 the resolution was realized on a HYPERCARB HPLC phase. A specific procedure was developed to isolate both toxic analytes from blood and plasma samples. The limit of detection was 0.1 pg/ml and the absolute recovery of the overall sample preparation procedure was 74% for VX and 69% for EA-2192. After intravenous and percutaneous administration of a supralethal doses of VX in anaesthetised swine both VX and EA-2192 could be quantified over 540 min following exposure. This study is the first to verify the in vivo formation of the toxic metabolite EA-2192 after poisoning with the nerve agent VX. Further toxicokinetic and therapeutic studies are required in order to determine the impact of EA-2192 on the treatment of acute VX poisoning.

  20. Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer.

    Science.gov (United States)

    Gay-Mimbrera, Jesús; García, Maria Carmen; Isla-Tejera, Beatriz; Rodero-Serrano, Antonio; García-Nieto, Antonio Vélez; Ruano, Juan

    2016-06-01

    Plasma-based electrosurgical devices have long been employed for tissue coagulation, cutting, desiccation, and cauterizing. Despite their clinical benefits, these technologies involve tissue heating and their effects are primarily heat-mediated. Recently, there have been significant developments in cold atmospheric pressure plasma (CAP) science and engineering. New sources of CAP with well-controlled temperatures below 40 °C have been designed, permitting safe plasma application on animal and human bodies. In the last decade, a new innovative field, often referred to as plasma medicine, which combines plasma physics, life science, and clinical medicine has emerged. This field aims to exploit effects of mild plasma by controlling the interactions between plasma components (and other secondary species that can be formed from these components) with specific structural elements and functionalities of living cells. Recent studies showed that CAP can exert beneficial effects when applied selectively in certain pathologies with minimal toxicity to normal tissues. The rapid increase in new investigations and development of various devices for CAP application suggest early adoption of cold plasma as a new tool in the biomedical field. This review explores the latest major achievements in the field, focusing on the biological effects, mechanisms of action, and clinical evidence of CAP applications in areas such as skin disinfection, tissue regeneration, chronic wounds, and cancer treatment. This information may serve as a foundation for the design of future clinical trials to assess the efficacy and safety of CAP as an adjuvant therapy for skin cancer.

  1. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    Science.gov (United States)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  2. Final technical report on studies of plasma transport

    Energy Technology Data Exchange (ETDEWEB)

    O`Neil, T.M.; Driscoll, C.F.; Malmberg, J.H.

    1997-04-01

    This document gives an overview of the scientific results obtained under the DOE grant, and references the journal articles which give more complete descriptions of the various topics. Recently, the research has been focused on 2-dimensional vortices and turbulence: experiments using a new camera-diagnosed electron plasma apparatus have given surprising results which both clarify and challenge theories. Here, the crossfield E x B flow of the electron plasma is directly analogous to the 2-d flow of an ideal fluid such as water, and may also give insight into more complicated poloidal flows exhibited in toroidal plasmas. The shear-flow instabilities, turbulence, and vortices can be accurately observed, and the free relaxation of this turbulence has been characterized. The physical processes underlying the complicated turbulent evolution can also be studied in more controlled near-linear regimes. The original experimental focus of this program was on radial particle transport from applied external field asymmetries. Here, this research program clearly identified the importance of the collective response of the plasma, giving smaller fields from shielding, or enhanced fields from resonant modes. Experiments and theory work have also elucidated the flow of a plasma along the magnetic field. Finally, some theory was pursued for direct application to fusion plasmas, and to gravitating gas clouds in astrophysics. This program was highly successful in clarifying basic plasma transport processes.

  3. Surface Plasma Arc by Radio-Frequency Control Study (SPARCS)

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, David N. [University of Illinois at Urbana-Champaign, IL (United States)

    2013-04-29

    This paper is to summarize the work carried out between April 2012 and April 2013 for development of an experimental device to simulate interactions of o -normal detrimental events in a tokamak and ICRF antenna. The work was mainly focused on development of a pulsed plasma source using theta pinch and coaxial plasma gun. This device, once completed, will have a possible application as a test stand for high voltage breakdown of an ICRF antenna in extreme events in a tokamak such as edge-localized modes or disruption. Currently, DEVeX does not produce plasma with high temperature enough to requirement for an ELM simulator. However, theta pinch is a good way to produce high temperature ions. The unique characteristic of plasma heating by a theta pinch is advantageous for an ELM simulator due to its effective ion heating. The objective of the proposed work, therefore, is to build a test facility using the existing theta pinch facility in addition to a coaxial plasma gun. It is expected to produce a similar pulsed-plasma heat load to the extreme events in tokamaks and to be applied for studying interactions of hot plasma and ICRF antennas.

  4. Validation of a liquid chromatographic/tandem mass spectrometric method for the determination of scopolamine butylbromide in human plasma: application of the method to a bioequivalence study.

    Science.gov (United States)

    Manfio, Josélia Larger; Dos Santos, Mauricio Bedim; Favreto, Wagner Alex Jann; Hoffmann, Fabiane Ines; Mertin, Adriana Cristina

    2009-01-01

    A sensitive and specific LC/MS/MS method was developed and validated for the determination of scopolamine butylbromide in human plasma. Scopolamine butylbromide and propanolol (internal standard) were extracted from the plasma by liquid-liquid extraction with dichloromethane as the extraction solvent and separated on a C18 analytical column (50 x 4.6 mm id) maintained at 40 degrees C. The analytes were eluted at a constant flow rate of 0.45 mL/min; the mobile phase consisted of acetonitrile and a buffer of 5 mM ammonium acetate and 0.1% formic acid (60 + 40, v/v). The mass spectrometer, equipped with an electrospray source in the positive ionization mode, was set up in the multiple-reaction monitoring mode to monitor the transitions m/z 360.6 > 102.5 (scopolamine butylbromide) and m/z 259.7 > 115.6 (propanolol). The chromatographic separation was obtained within 2.0 min, and the responses were linear over the concentration range of 0.10-40.00 ng/mL. The mean extraction recoveries of scopolamine butylbromide and propanolol from plasma were 69.00 and 80.76%, respectively. Method validation parameters, such as specificity, linearity, precision, accuracy, and stability, were within the acceptable range. Moreover, when the proposed method was successfully applied to a pharmacokinetic study of healthy human volunteers, the results showed that the two scopolamine butylbromide formulations tested are not bioequivalent in rate and extent of absorption.

  5. Simultaneous determination of six flavonoids from Paulownia tomentosa flower extract in rat plasma by LC-MS/MS and its application to a pharmacokinetic study.

    Science.gov (United States)

    Dai, Bin; Hu, Zhiqiang; Li, Haiyan; Yan, Chong; Zhang, Liwei

    2015-01-26

    A simple, rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous determination of six components including apigenin, quercetin, apigenin-7-O-β-D-glucoside, quercetin-3-O-β-D-glucoside, 3'-methoxyluteolin-7-O-β-D-glucoside, and tricin-7-O-β-D-glucopyranoside in rat plasma using formononetin as the internal standard (IS). The plasma samples were pretreated by a one-step liquid-liquid extraction with dichloromethane. The chromatographic separation was carried out on a ZORBAX SB-Aq column with a gradient mobile phase consisting of acetonitrile and 2mM aqueous ammonium acetate. All analytes and IS were quantitated through electrospray ionization in negative ion multiple reaction monitoring mode. The mass transitions were as follows: m/z 269.1→117.2 for apigenin, m/z 301.2→151.2 for quercetin, m/z 431.3→311.2 for apigenin-7-O-β-D-glucoside, m/z 463.2→300.2 for quercetin-3-O-β-D-glucoside, m/z 461.3→283.1 for 3'-methoxyluteolin-7-O-β-D-glucoside, m/z 491.3→313.1 for tricin-7-O-β-D-glucopyranoside, and m/z 267.2→252.2 for IS, respectively. All calibration curves exhibited good linearity with correlation coefficient (r)>0.995. The intra-day and inter-day precisions (RSD) at three QC levels were both less than 14.0% and the accuracies ranged from 89.8% to 113.8%. The extraction recoveries of six compounds ranged from 82.3% to 92.5%. The validated method was successfully applied to pharmacokinetic study of the six components in male rat plasma after oral administration of Paulownia tomentosa flower extract.

  6. Analysis of 21-hydroxy deflazacort in human plasma by UPLC-MS/MS: application to a bioequivalence study in healthy volunteers.

    Science.gov (United States)

    Patel, Daxesh P; Sharma, Primal; Patel, Bhargav M; Sanyal, Mallika; Singhal, Puran; Shrivastav, Pranav S

    2013-11-01

    A sensitive and rapid ultra performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method has been developed for the determination of 21-hydroxy deflazacort in human plasma using betamethasone as the internal standard (IS). After solid-phase extraction from 100 μL human plasma, the analyte and IS were analyzed on Waters Acquity UPLC BEH C18 (50 mm × 2.1 mm, 1.7 μm) column using acetonitrile-4.0mM ammonium formate, pH 3.5 (90:10, v/v) as the mobile phase. The protonated analyte was quantified by selected reaction monitoring in the positive ionization mode by triple quadrupole mass spectrometer. The calibration plots were linear over the concentration range 0.50-500 ng/mL. Intra-batch and inter-batch precision (% CV) and accuracy (%) for five quality control samples ranged within 1.40-4.82% and 98.0-102.0% respectively. The overall mean extraction recovery of 21-hydroxy deflazacort from plasma ranged from 95.3 to 97.3%. Matrix effect was assessed by post-column analyte infusion and the extraction recovery was >95.0% across four quality control levels for the analyte and IS. Stability was evaluated under different conditions like bench top, autosampler, processed sample (at room temperature and in cooling chamber), freeze-thaw and long term stability. The method was applied to support a bioequivalence study of 30 mg deflazacort tablet formulation in 28 healthy subjects. Assay reproducibility was demonstrated by reanalysis of 115 incurred samples.

  7. A rapid and sensitive UHPLC-MS/MS assay for the determination of trelagliptin in rat plasma and its application to a pharmacokinetic study.

    Science.gov (United States)

    Hu, Xiao-Xia; Lan, Tian; Chen, Zhe; Yang, Cheng-Cheng; Tang, Peng-Fei; Yuan, Ling-Jing; Hu, Guo-Xin; Cai, Jian-Ping

    2016-10-15

    This study aims to develop and validate a simple, rapid and sensitive ultra-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method for exploring pharmacokinetic characteristics of trelagliptin. Protein precipitation by acetonitrile was used to prepare plasma sample. A RRHD Eclipse Plus C18 (2.1×50mm, 1.8μ) column with gradient mobile phase (containing acetonitrile and 0.1% formic acid) help to achieve the separation of trelagliptin and carbamazepine (IS) with high selectivity. Detection of target fragment ions m/z 358.2→133.9 for trelagliptin, and m/z 237.1→194.0 for IS was performed in positive-ion electrospray ionization mass spectrometry by multiple reaction monitoring. Linear calibration plots were achieved in the range of 5-4000ng/mL for trelagliptin (R(2)=0.999) in rat plasma. The recovery of trelagliptin ranged from 87.8% to 93.7%. The method was showed to be accurate, precise and stable. No obvious matrix effect was found. It has been fully validated and successfully applied to pharmacokinetic study of trelagliptin.

  8. Development of an LC-MS/MS method for the quantitation of deoxyglycychloxazol in rat plasma and its application in pharmacokinetic study$

    Institute of Scientific and Technical Information of China (English)

    Rongshan Li; Ruixue Ran; Quansheng Li; Yurong Huang; Yuan Gu; Duanyun Si

    2016-01-01

    Deoxyglycychloxazol (TY501) is a glycyrrhetinic acid derivative which exhibits high anti-inflammatory activity and reduced pseudoaldosteronism compared to glycyrrhetinic acid. In this study, a sensitive and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was established for the quantitation of TY501 in rat plasma. Plasma samples were treated by precipitating protein with methanol and supernatants were separated by a Symmetry C8 column with the mobile phase consisting of me-thanol and 10 mM ammonium formate (containing 0.1%of formic acid) (90:10, v/v). The selected reaction monitoring (SRM) transitions were performed at m/z 647.4-191.2 for TY501 and m/z 473.3-143.3 for astragaloside aglycone (IS) in the positive ion mode with atmospheric pressure chemical ionization (APCI) source. Calibration curve was linear over the concentration range of 5–5000 ng/mL. The lower limit of quantification was 5 ng/mL. The mean recovery was over 88%. The intra-and inter-day precisions were lower than 6.0% and 12.8%, respectively, and the accuracy was within 71.3%. TY501 was stable under usual storage conditions and handling procedure. The validated method has been successfully applied to a pharmacokinetic study after oral administration of TY501 to rats at a dosage of 10 mg/kg.

  9. Quick and simple LC-MS/MS method for the determination of simvastatin in human plasma: application to pharmacokinetics and bioequivalence studies

    Directory of Open Access Journals (Sweden)

    Suéllen Cristina Rennó Silva

    2014-09-01

    Full Text Available A simple, rapid, and sensitive method based on liquid chromatography-tandem mass spectrometry for the quantitative determination of simvastatin in human plasma was developed and validated. After a simple extraction with methyl tert-butyl ether, the analyte and internal standard (lovastatin were analyzed using reverse-phase liquid chromatography, on a Kinetex C18column (100 × 4.6 mm, 2.6 μm using acetonitrile: ammonium acetate (2 mM + 0.025 % formic acid (70: 30, v/v as a mobile phase in a run time of 3.5 min. Detection was carried out using electrospray positive ionization mass spectrometry in the multiple-reaction monitoring mode. The method was linear over 0.04-40.0 ng/mL concentration range. The mean extraction recovery of simvastatin was 82% (RSD within 15%. Intraday and interday precisions (as relative standard deviation were all ≤8,7% with accuracy (as relative error of ±8%. This rapid and reliable method was successfully applied for a bioequivalence study of 40 mg of simvastatin orally disintegrating tablets in 44 healthy volunteers, showing that this method is suitable for the quantification of simvastatin in human plasma samples for pharmacokinetics and bioequivalence studies.

  10. Validated LC-MS/MS method for quantification of gabapentin in human plasma: application to pharmacokinetic and bioequivalence studies in Korean volunteers.

    Science.gov (United States)

    Park, Jin-Hee; Jhee, Ok-Hwa; Park, Song-Hee; Lee, Jung-Sik; Lee, Min-Ho; Shaw, Leslie M; Kim, Kwang-Hyun; Lee, Jong-Ho; Kim, Yong-Seok; Kang, Ju-Seop

    2007-08-01

    A sensitive validated liquid chromatography-tandem mass spectrometric method (LC-MS/MS) for gabapentin (GB) in human plasma has been developed and applied to pharmacokinetic (PK) and bioequivalence (BE) studies in human. In a randomized crossover design with a 1-week period, each subject received a 300 mg GB capsule. The procedure involves a simple protein precipitation with acetonitrile and separated by LC with a Gemini C(18) column using acetonitrile-10 mm ammonium acetate (20:80, v/v, pH 3.2) as mobile phase. The GB and internal standard [(S)-(+)-alpha-aminocyclohexanepropionic acid hydrate] were analyzed using an LC-API 2000 MS/MS in multiple reaction monitoring mode. The ionization was optimized using ESI(+) and selectivity was achieved using MS/MS analysis, m/z 172.0 --> 154.0 and m/z 172.0 --> 126.0 for GB and IS, respectively. The assay exhibited good linearity over a working range of 20-5000 ng/mL for GB in human plasma with a lower limit of quantitation of 20 ng/mL. No endogenous compounds were found to interfere with the analysis. The accuracy and precision were shown for concentrations over the standard ranges. This method was successfully applied for the PK and BE studies by analysis of blood samples taken up to 36 h after an oral dose of 300 mg of GB in 24 healthy volunteers.

  11. Determination of tulobuterol in rat plasma using a liquid chromatography-tandem mass spectrometry method and its application to a pharmacokinetic study of tulobuterol patch.

    Science.gov (United States)

    Han, Xiao; Liu, Ran; Ji, Lifang; Hui, Mei; Li, Qing; Fang, Liang; Bi, Kaishun

    2016-01-01

    A sensitive and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for determination of tulobuterol in rat plasma for the first time. Plasma samples were extracted by liquid-liquid extraction method with methyl tert-butyl ether and the analyte and clenbuterol (IS) were separated on a Venusil MP C18 column (100mm×2.1mm, 3μm) using 0.1% formic acid-water-methanol as mobile phase, with a runtime of 5min. The analyte was detected in multiple reaction monitoring (MRM) mode with positive electrospray ionization. Transitions of m/z 228.2→154.0 for tulobuterol and m/z 277.1→203.0 for the clenbuterol were monitored. The linear range was 0.5-100ng/ml (r=0.9967) for tulobuterol with the lower limit of quantitation of 0.5ng/ml. The intra-day and inter-day precisions were less than 10.3% for the analyte and the accuracy was less than -8.6%. The RSD of matrix effect and recovery yield were within ±15% of nominal concentrations and tulobuterol was stable during stability studies. The validated method has been successfully applied to a pharmacokinetic study of three doses of tulobuterol patch in rats for the first time.

  12. Formation of Imploding Plasma Liners for HEDP and MIF Application

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas [HyperV Technologies Corp., Chantilly, VA (United States); Case, Andrew [HyperV Technologies Corp., Chantilly, VA (United States); Brockington, Samuel [HyperV Technologies Corp., Chantilly, VA (United States); Messer, Sarah [HyperV Technologies Corp., Chantilly, VA (United States); Bomgardner, Richard [HyperV Technologies Corp., Chantilly, VA (United States); Phillips, Mike [HyperV Technologies Corp., Chantilly, VA (United States); Wu, Linchun [HyperV Technologies Corp., Chantilly, VA (United States); Elton, Ray [Univ. of Maryland, College Park, MD (United States)

    2014-11-11

    Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the target plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achieving velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 μg of argon or xenon to 50 km

  13. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-06-01

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.

  14. Application of non-equilibrium plasmas in treatment of wool fibers and seeds

    Science.gov (United States)

    Petrović, Zoran

    2003-10-01

    While large effort is under way to achieve stable, large area, non-equilibrium plasma reactors operating at atmospheric pressure we should still consider application of low pressure reactors, which provide well defined, easily controlled reactive plasmas. Therefore, the application of low pressure rf plasmas for the treatment of wool and seed was investigated. The studies were aimed at establishing optimal procedure to achieve better wettability, dyeability and printability of wool. Plasma treatment led to a modification of wool fiber topography and formation of new polar functional groups inducing the increase of wool hydrophylicity. Plasma activation of fiber surface was also used to achieve better binding of biopolymer chitosan to wool in order to increase the content of favorable functional groups and thus improving sorption properties of recycled wool fibers for heavy metal ions and acid dyes. In another study, the increase of germination percentage of seeds induced by plasmas was investigated. We have selected dry (unimbibed) Empress tree seeds (Paulownia tomentosa Steud.). Empress tree seed has been studied extensively and its mechanism of germination is well documented. Germination of these seeds is triggered by light in a limited range of wavelengths. Interaction between activated plasma particles and seed, inside the plasma reactor, leads to changes in its surface topography, modifies the surface layer and increases the active surface area. Consequently, some bioactive nitrogeneous compounds could be bound to the activated surface layer causing the increment of germination percentage.

  15. Theoretical Study of a Spherical Plasma Focus

    Science.gov (United States)

    Ay, Yasar

    A theoretical model is developed for two concentric electrodes spherical plasma focus device in order to investigate the plasma sheath dynamics, radiative emission, and the ion properties. The work focuses on the model development of the plasma sheath dynamics and its validation, followed by studying of the radiation effects and the beam-ion properties in such unique geometry as a pulsed source for neutrons, soft and hard x-rays, and electron and ion beams. Chapter 1 is an introduction on fusion systems including plasma focus. Chapter 2 is an extensive literature survey on plasma focus modeling and experiments including the various radiations and their mechanism. Chapter 3 details modeling and validation of the plasma sheath dynamics model with comparison between hydrogen, deuterium, tritium and deuterium-tritium mixture for the production of pulsed neutrons. Chapter 4 is a study of the radiative phase, in which neutron yield is investigated, as well as the predicted beam-ion properties. Chapter 5 summarizes and discusses the results. Chapter 6 provides concluding remarks and proposed future works. The phases of the developed model are the rundown phase I, rundown phase II, the reflected phase and a radiative phase. The rundown phase I starts immediately after the completion of the gas breakdown and ends when the current sheath reaches the equator point of the spherical shape. Then immediately followed by rundown phase II to start and it ends when the shock front hits the axis, which is the beginning of the reflected shock phase. Reflected shock front moves towards the incoming current sheath and meets it which is both the end of the reflected shock phase and the beginning of the radiative phase. After the reflected shock front and the current sheath meet, the current sheath continues to move radially inward by compressing the produced plasma column until it reaches the axis. Since the discharge current contains important information about the plasma dynamic

  16. Plasma processes and applications in NanoBiotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F; Colpo, P, E-mail: francois.rossi@jrc.ec.europa.eu [European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), I-21020, Ispra (Italy)

    2010-11-01

    Nanostructured surfaces presenting chemical or topographical patterns are now being increasingly developed in nanobiotechnology. Major applications are related to cell culture models and biodetection. We show that plasma technologies, in particular the combination plasma polymers deposition and etching, together with colloidal lithography, e-beam lithography and microcontact printing, are essential tools to produce nanostructured surfaces. We show that chemical and topographical patterns can be obtained on different substrates, with dimensions down to some 10 nm. The applications of these nanostructured surfaces in biology and bio-detection are reviewed and the advantages and limitation of the techniques underlined.

  17. Formation of Imploding Plasma Liners for HEDP and MIF Application

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas [HyperV Technologies Corp.; Case, Andrew [HyperV Technologies Corp.; Brockington, Samuel [HyperV Technologies Corp.y; Messer, Sarah [HyperV Technologies Corp.; Bomgardner, Richard [HyperV Technologies Corp.; Phillips, Mike [HyperV Technologies Corp.; Wu, Linchun [HyperV Technologies Corp.; Elton, Ray [University of Maryland

    2014-11-11

    Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the target plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achieving velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 μg of argon or xenon to 50 km

  18. Application of Atmospheric-Pressure Microwave Line Plasma for Low Temperature Process

    Science.gov (United States)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2015-09-01

    Atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. In various kinds of plasma production technique, pulsed-microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production. In this plasma source, however, size of the plasma has been limited up to a few cm in length due to standing wave inside a waveguide. To solve this, we have proposed a newly-developed AP microwave plasma source that utilizes not standing wave but travelling wave. By using this plasma source, spatially-uniform AP line plasma with 40 cm in length was realized by pure helium discharge in 60 cm slot and with nitrogen gas additive of 1%. Furthermore, gas temperature as low as 400 K was realized in this device. In this study, as an example of low temperature processes, hydrophilic treatment of PET films was performed. Processing speed increased with pulse frequency and a water contact angle of ~20° was easily obtained within 5 s with no thermal damage to the substrate. To evaluate treatment-uniformity of long line length, PET films were treated by 90 cm slot-antenna plasma and uniform treatment performance was confirmed.

  19. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    Science.gov (United States)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  20. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    Science.gov (United States)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  1. Simultaneous quantitation of lamivudine, zidovudine and nevirapine in human plasma by liquid chromatography–tandem mass spectrometry and application to a pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    Murali Krishna Matta

    2012-10-01

    Full Text Available A rapid and sensitive LC–MS/MS method for the simultaneous quantitation of lamivudine, zidovudine and nevirapine in human plasma using abacavir as internal standard has been developed and validated. The analytes and IS were extracted from plasma by solid phase extraction using Oasis HLB cartridges and separated on a Hypurity Advance C18 column using a mixture of acetonitrile:0.1% formic acid (76:24, v/v at a flow rate of 0.8 mL/min. Detection involved an API-4000 LC–MS/MS with electrospray ionization in the positive ion mode and multiple-reaction monitoring for analysis. The method was validated according to FDA guidelines and shown to provide intra- and inter-day precision and accuracy within acceptable limits in a run time of only 3.5 min. The method was successfully applied to a pharmacokinetic study involving a single oral administration of a combination tablet to human male volunteers.

  2. Simultaneous determination of atorvastatin, amlodipine, ramipril and benazepril in human plasma by LC-MS/MS and its application to a human pharmacokinetic study.

    Science.gov (United States)

    Pilli, Nageswara Rao; Inamadugu, Jaswanth Kumar; Mullangi, Ramesh; Karra, Vijaya Kumari; Vaidya, Jayathirtha Rao; Rao, J V L N Seshagiri

    2011-04-01

    A rapid, simple, sensitive and specific LC-MS/MS method has been developed and validated for the simultaneous estimation of atorvastatin (ATO), amlodipine (AML), ramipril (RAM) and benazepril (BEN) using nevirapine as an internal standard (IS). The API-4000 LC-MS/MS was operated under the multiple-reaction monitoring mode using electrospray ionization. Analytes and IS were extracted from plasma by simple liquid-liquid extraction technique using ethyl acetate. The reconstituted samples were chromatographed on C(18) column by pumping 0.1% formic acid-acetonitrile (15:85, v/v) at a flow rate of 1 mL/min. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 0.26-210 ng/mL for ATO; 0.05-20.5 ng/mL for AML; 0.25-208 ng/mL for RAM and 0.74-607 ng/mL for BEN with mean correlation coefficient of ≥0.99 for each analyte. The intra-day and inter-day precision and accuracy results were well with in the acceptable limits. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The developed assay method was successfully applied to a pharmacokinetic study in human male volunteers.

  3. Simultaneous quantification of methylene blue and its major metabolite, azure B, in plasma by LC-MS/MS and its application for a pharmacokinetic study.

    Science.gov (United States)

    Kim, Soo-Jin; Ha, Dong-Jin; Koo, Tae-Sung

    2014-04-01

    A simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of methylene blue (MB) and its major metabolite, azure B (AZB), in rat plasma. A simple protein precipitation using acetonitrile was followed by injection of the supernatant on to a Zorbax HILIC Plus column (3.5 µm, 2.1 × 100 mm) with isocratic mobile phase consisting of 5 mM ammonium acetate in 10:90 (v/v) water:methanol at a flow rate of 0.3 mL/min and detection in positive ionization mode. The standard curve was linear over the concentration range from 1 to 1000 ng/mL for MB and AZB with coefficient of determination above 0.9930. The lower limit of quantification was 1 ng/mL using 20 μL of rat plasma sample. The intra- and inter-assay precision and accuracy were <12%. The developed analytical method was successfully applied to the pharmacokinetic study of MB and AZB in rats.

  4. HPLC determination of five polyphenols in rat plasma after intravenous administration of hawthorn leaves extract and its application to pharmacokinetic study.

    Science.gov (United States)

    Wang, Si-Yuan; Chai, Ji-Yan; Zhang, Wen-Jie; Liu, Xun; DU, Yang; Cheng, Zhong-Zhe; Ying, Xi-Xiang; Kang, Ting-Guo

    2010-11-01

    A simple and specific HPLC-UV method was developed to simultaneously determine five active compounds including vitexin-4"-O-glucoside (VG), vitexin-2"-O-rhamnoside (VR), vitexin (VIT), rutin (RUT) and hyperoside (HP) in rat plasma after intravenous administrating the hawthorn leaves extract (HLE). With baicalin as internal standard (I.S.), sample pretreatment involved a one-step extraction with methanol of 0.2 ml plasma. The HPLC assay was carried out using a Phenomsil C18 analytical column with UV detection at 332 nm. The mobile phase consisted of methanol-acetonitrile-tetrahydrofuran-1% glacial acetic acid (6:1.5:18.5:74, v/v/v/v). The calibration curves were liner over the range of 2.030-500.5, 0.1513-75.64, 0.2507-12.54, 0.5128-25.64 and 0.4032-20.16 µg/ml for VG, VR, VIT, RUT and HP, respectively. The relative standard deviations (RSD) of the intra- and inter-day precisions for the analysis of the five analytes were between 1.0 and 8.9% with accuracies (relative error) below 8.2% for the analysis of the five analytes. The average extraction recoveries of five analytes were more than 82.67 ± 4.74%. The HPLC method herein described was fully validated and successfully applied to the pharmacokinetic studies after intravenous administration of HLE solution to rats over three doses.

  5. Liquid Chromatography/Tandem Mass Spectrometry for the Simultaneous Determination of Alverine and its Metabolite, Monohydroxy Alverine, in Human Plasma: Application to a Pharmacokinetic Study

    Directory of Open Access Journals (Sweden)

    Rahul C. Gavhane

    2011-01-01

    Full Text Available A rapid and sensitive LC-MS-MS method for the determination of alverine (ALV and its major metabolite, monohydroxy alverine (MHA, in human plasma using imipramine as an internal standard was developed and validated. The analytes were extracted from 0.5 mL aliquots of human plasma by solid phase extraction, using oasis cartridge. Chromatographic separation was carried on Thermo Gold C18 column (50 × 4.6 mm, 5 μ at 30 °C, with isocratic mobile phase, a flow rate of 0.4 mL/min and a total run time of 3.5 min. Detection and quantification were performed using a mass spectrometer in the selected reaction-monitoring mode with positive electrospray ionization at m/z 282.3 → 91.11 for alverine, m/z 298.3 → 106.9 for mono-hydroxy-alverine, and m/z 281.0 → 86.0 for internal standard (IS respectively. This assay was linear over a concentration range of 0.060-10 ng/mL with a lower limit of quantification of 0.060 ng/mL for both alverine and monohydroxy alverine. The coefficient of variation for the assay precision were 104.66% and >100.38% for alverine and monohydroxy alverine respectively. This method was successfully applied to a pharmacokinetic study after oral administration of alverine citrate 60 mg capsule in healthy male subjects.

  6. Simultaneous quantification of two canthinone alkaloids of Picrasma quassioides in rat plasma by liquid chromatography-tandem mass spectrometry and its application to a rat pharmacokinetic study.

    Science.gov (United States)

    Shi, Yuanyuan; Hong, Chunyan; Xu, Jian; Yang, Xiaoling; Xie, Ning; Feng, Feng; Liu, Wenyuan

    2015-04-01

    Picrasma quassioides (D. Don) Benn. is used in traditional Chinese medicine for the treatment of inflammation. Characteristic components of the medicinal extract are canthinone alkaloids. In this study, a sensitive and rapid liquid chromatography with tandem mass spectrometry method has been developed for simultaneous quantification of two major canthinone alkaloids, 5-hydroxy-4-methoxycanthin-6-one and 4,5-dimethoxycanthin-6-one, in rat plasma after oral administration of P. quassioides extract (200 mg/kg). The chromatographic separation was performed on a C18 column using acetonitrile-aqueous 0.1% formic acid (90:10, v/v) as the mobile phase. Plasma samples were prepared for analysis using a simple liquid-liquid extraction with ethyl acetate. Analytes were detected using tandem mass spectrometry in positive multiple reaction monitoring mode. Method validation revealed excellent linearity over the range 1.25-900 ng/mL for 5-hydroxy-4-methoxycanthin-6-one and 0.5-800 ng/mL for 4,5-dimethoxycanthin-6-one with satisfactory intra- and inter-day precision, accuracy and recovery. Samples were stable under the conditions tested. The pharmacokinetic profiles of the analytes in rats showed that both canthinones were rapidly absorbed and that 4,5-dimethoxycanthin-6-one was eliminated faster than 5-hydroxy-4-methoxycanthin-6-one.

  7. High-throughput determination of carbocysteine in human plasma by liquid chromatography/tandem mass spectrometry: application to a bioequivalence study of two formulations in healthy volunteers.

    Science.gov (United States)

    Bi, Hui-Chang; Zhao, Li-zi; Zhong, Guo-ping; Zhou, Shufeng; Li, Bo; Deng, Ying; Chen, Xiao; Huang, Min

    2006-01-01

    A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method to determine carbocysteine in human plasma was developed and fully validated. After methanol-induced protein precipitation of the plasma samples, carbocysteine was subjected to LC/MS/MS analysis using electrospray ionization (ESI). The MS system was operated in the selected ion monitoring (SRM) mode. Chromatographic separation was performed on a Hypurity C18 column (i.d. 2.1 mm x 50 mm, particle size 5 microm). The method had a chromatographic running time of 2.0 min and linear calibration curves over the concentration ranges of 0.1-20 microg/mL for carbocysteine. The lower limit of quantification (LLOQ) of the method was 0.1 microg/mL for carbocysteine. The intra- and inter-day precision was less than 7% for all quality control samples at concentrations of 0.5, 2.0, and 10.0 microg/mL. These results indicate that the method was efficient with a simple preparation procedure and a very short running time (2.0 min) for carbocysteine compared with methods reported in the literature and had high selectivity, acceptable accuracy, precision and sensitivity. The validated LC/MS/MS method has been successfully used to a bioequivalence study of two tablet formulations of carbocysteine in healthy volunteers. Copyright 2006 John Wiley & Sons, Ltd.

  8. SPE-UPLC-MS/MS assay for determination of letrozole in human plasma and its application to bioequivalence study in healthy postmenopausal Indian women$

    Institute of Scientific and Technical Information of China (English)

    Pravin G. Vanol; Puran Singhal; Priyanka A. Shah; Jaivik V. Shah; Pranav S. Shrivastav; Mallika Sanyal

    2016-01-01

    A rapid and sensitive ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method is described for determination of letrozole in human plasma. Following solid phase ex-traction (SPE) of letrozole and letrozole-d4 on Orochem DVB-LP cartridges, chromatography was per-formed on Acquity UPLC BEH C18 (50 mm ? 2.1 mm, 1.7 mm) column using methanol-0.1%formic acid in water (85:15, v/v) as the mobile phase. Detection was carried out on a triple quadrupole mass spec-trometer with an electrospray source, operated under positive ionization mode. Quantitation of letrozole and letrozole-d4 was done using multiple reaction monitoring (MRM) following the transitions at m/z 286.2-217.0 and m/z 290.2-221.0, respectively. The calibration plots were linear through the con-centration range of 0.10–100 ng/mL (r2Z0.9990) using 100 mL human plasma. The extraction recovery of letrozole ranged from 94.3% to 96.2% and the intra-batch and inter-batch precision was r 5.2%. The method was successfully applied to a bioequivalence study of letrozole after oral administration of 2.5 mg tablet formulation to 16 healthy postmenopausal Indian women. The assay reproducibility was also established through incurred sample reanalysis (ISR) of 74 subject samples.

  9. Development and validation of an improved method for the quantitation of sertraline in human plasma using LC-MS-MS and its application to bioequivalence studies.

    Science.gov (United States)

    Zhang, Mengliang; Gao, Feng; Cui, Xiangyong; Zhang, Yunhui; Sun, Yantong; Gu, Jingkai

    2011-02-01

    A rapid and sensitive LC-MS-MS method for the quantitation of sertraline in human plasma was developed and validated. Sertraline and the internal standard, telmisartan, were cleaned up by protein precipitation from 100 μL of plasma sample, and analyzed on a TC-C18 column (5 μm, 150 × 4.6 mm i.d.) using 70% acetonitrile and 30% 10 mM ammonium acetate (0.1% formic acid) as mobile phase. The method was demonstrated to be linear from 0.1 ng/mL to 50 ng/mL with the lower limit of quantitation of 0.1 ng/mL. Intra- and inter-day precision were below 4.40% and 3.55%. Recoveries of sertraline at low, medium, and high levels were 88.0 ± 2.3%, 88.2 ± 1.9%, and 90.0 ± 2.0%, respectively. The method was successfully applied to a bioequivalence study of sertraline after a single oral administration of 50 mg sertraline hydrochloride tablets.

  10. Quantification of 3-n-butylphthalide in beagle plasma samples by supercritical fluid chromatography with triple quadruple mass spectrometry and its application to an oral bioavailability study.

    Science.gov (United States)

    Li, Yun; Zhao, Longshan; Li, Xiaoting; Guo, Bei; Zhao, Juanhang; Wang, Xianglin; Zhang, Tianhong

    2015-02-01

    A high-throughput, rapid, sensitive, environmentally friendly, and economical supercritical fluid chromatography with triple quadruple mass spectrometry method was established and validated for the first time to determine a cerebral stroke treatment drug named 3-n-butylphthalide in dog plasma. Plasma samples were prepared by protein precipitation with methanol and the analytes were eluted on an ACQUITY UPC(2TM) HSS-C(18) SB column (3 × 100 mm, 1.8 μm) maintained at 50°C. The mobile phase comprised supercritical carbon dioxide/methanol (90:10, v/v) at a flow rate of 1.5 mL/min, the compensation solvent was methanol at a flow rate of 0.2 mL/min and the total run time was 1.5 min per sample. The detection was carried out on a tandem mass spectrometer with an electrospray ionization source. Calibration curves were linear over the concentration range of 1.02-1021.00 ng/mL (r(2) ≥ 0.993) with the lower limit of quantification of 1.02 ng/mL. The intra- and inter-day precision values were below 15% and the accuracy was from 97.90 to 103.70% at all quality control levels. The method was suitable for a pharmacokinetic study of 3-n-butylphthalide in beagle dogs.

  11. High-throughput LC-MS/MS assay for 6-methoxy-2-naphthylacetic acid, an active metabolite of nabumetone in human plasma and its application to bioequivalence study.

    Science.gov (United States)

    Patel, Bhavin N; Sharma, Naveen; Sanyal, Mallika; Prasad, Arpana; Shrivastav, Pranav S

    2008-11-01

    A simple, precise and accurate assay for the determination of 6-methoxy-2-naphthylacetic acid (6-MNA), an active metabolite of nabumetone in human plasma, was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analyte (6-MNA) and propranolol (internal standard, IS) were extracted from 200 microL aliquot of human plasma via solid-phase extraction employing HLB Oasis cartridges and separated on a Discovery HS C18 (50 x 4.6 mm, 5 microm) column. Detection of analyte and IS was done by tandem mass spectrometry with a turbo ion spray interface operating in positive ion and multiple reaction monitoring acquisition mode. The total chromatographic runtime was 3.0 min with retention time for 6-MNA and IS at 1.97 and 1.26 min, respectively. The method was validated over a dynamic linear range of 0.20-60.00 microg/mL for 6-MNA with mean correlation coefficient r > or = 0.9986. The intra-batch and inter-batch precision (%CV) across five validation runs (lower limit of quantiation, low-, medium- and high-quality controls and upper limit of quantitation) was less than 7.5%. The accuracy determined at these levels was within -5.8 to +0.2% in terms of percentage bias. The method was successfully applied for a bioequivalence study of 750 mg nabumetone tablet formulation in 12 healthy Indian male subjects under fasted condition.

  12. Bioanalytical Method Development and Validation of Memantine in Human Plasma by High Performance Liquid Chromatography with Tandem Mass Spectrometry: Application to Bioequivalence Study

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Konda

    2012-01-01

    Full Text Available A simple, sensitive, and rapid HPLC-MS/MS method was developed and validated for quantitative estimation of memantine in human plasma. Chromatography was performed on Zorbax SB-C18 (4.6×75 mm, 3.5 μm column. Memantine (ME and internal standard Memantine-d6(MED6 were extracted by using liquid-liquid extraction and analyzed by LC-ESI-MS/MS using multiple-reaction monitoring (MRM mode. The assay exhibited a linear dynamic range of 50.00–50000.00 pg/ml for ME in human plasma. This method demonstrated an intra- and interday precision within the range of 2.1–3.7 and 1.4–7.8%, respectively. Further intra- and interday accuracy was within the range of 95.6–99.8 and 95.7–99.1% correspondingly. The mean recovery of ME and MED6 was 86.07±6.87 and 80.31±5.70%, respectively. The described method was successfully employed in bioequivalence study of ME in Indian male healthy human volunteers under fasting conditions.

  13. A rapid and sensitive LC-MS/MS method for determination of lercanidipine in human plasma and its application in a bioequivalence study in Chinese healthy volunteers.

    Science.gov (United States)

    Li, Xiaobing; Shi, Fuguo; He, Xiaojing; Jian, Lingyan; Ding, Li

    2016-09-05

    A rapid and highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the determination of lercanidipine (LER) in human plasma. The plasma sample was deproteinized with methanol after addition of diazepam (internal standard, IS) and separated on a 38°C Hedera ODS-2 analytical column with a mobile phase of methanol and 5mM ammonium acetate buffer solution containing 0.1% formic acid at an isocratic flow rate of 400μL/min. The detection was performed on an API 4000 tandem mass spectrometer coupled with electrospray ionization (ESI) source in positive ESI mode. Quantification was conducted by multiple reaction monitoring (MRM) of the transitions of m/z 612.2→280.2 for LER and m/z 285.1→193.1 for IS, respectively. The method exhibited high sensitivity (LLOQ of 0.015ng/mL) and good linearity over the concentration range of 0.015-8.0ng/mL. No matrix effect and carry-over effect were observed. The values on both the occasions (intra- and inter-day) were all within 15% at three concentration levels. This robust method was successfully applied in a bioequivalence study to evaluate the pharmacokinetics of LER in 59 healthy male Chinese volunteers after a single oral administration of 10mg LER.

  14. Application of a high performance liquid chromatography-tandem mass spectrometry method for determination of buflomedil in human plasma for a bioequivalence study.

    Science.gov (United States)

    Ren, Li; Yang, Chun; Peng, Yan; Li, Fan; Li, Ying-Hui; Zheng, Heng

    2013-09-15

    A rapid, simple and sensitive method based on ultra fast liquid chromatography-tandem spectrometry for the determination of buflomedil in human plasma has been developed and validated using carbamazepine as internal standard. After the precipitation of plasma sample with methanol, the analyte and IS were separated on an Ultimate C18 column (5μm, 2.1mm×50mm, MD, USA) with an isocratic mobile phase composed of acetonitrile and 5mM ammonium acetate in water (60:40, v/v) at a flow rate of 0.25ml/min. The analyte and IS were detected with proton adducts at m/z 308.3-237.1 and m/z 237.2-194.2 in positive ion electrospray ionization and multiple reaction monitoring acquisition mode, respectively. The lower limit of quantification of the method was 23.64ng/ml with a linear dynamic range of 23.64-1182ng/ml for buflomedil. The intra- and inter-batch precisions were less than 5.8%. The developed method was successfully applied to a bioequivalence study of two buflomedil hydrochloride preparations (150mg) in 22 healthy Chinese male volunteers.

  15. Study of x-ray emission from a table top plasma focus and its application as an x-ray backlighter

    Science.gov (United States)

    Beg, F. N.; Ross, I.; Lorenz, A.; Worley, J. F.; Dangor, A. E.; Haines, M. G.

    2000-09-01

    A study of a 2 kJ, 200 kA, table top plasma focus device as an intense x-ray source is reported. The x-ray yield from a number of gases, (deuterium, nitrogen, neon, argon, and xenon) is measured as a function of filling pressure and in neon as a function of anode length. In gases with Zplasma implodes to form a uniform cylindrical column, whereas for Z⩾18, the plasma consists of a number of hot spots. A maximum x-ray yield of 16.6 J and pulse length of 10-15 ns was obtained in neon. The x-ray emission was established to be due to H- and He-like line radiation. The temperature estimated from spectroscopic observations was about 300-400 eV at an electron density of (3-5)×1020cm-3 in neon. At low pressures in neon, hard x-ray radiation, presumably due to electron beams was dominant. Mesh images of different wire materials were recorded at the optimum pressure in neon as a proof of principle for x-ray backlighting.

  16. A rapid and sensitive HPLC-APCI-MS/MS method determination of fluticasone in human plasma: application for a bioequivalency study in nasal spray formulations.

    Science.gov (United States)

    Byrro, Ricardo Martins Duarte; César, Isabela Costa; de Santana e Silva Cardoso, Fabiana Fernandes; Mundim, Iram Moreira; Teixeira, Leonardo de Souza; Bonfim, Ricardo Rodrigues; Gomes, Sandro Antônio; Pianetti, Gerson Antônio

    2012-03-05

    A sensitive method for the determination of fluticasone in plasma was developed using high performance liquid chromatography with tandem mass spectrometric detection, whereas beclomethasone was used as internal standard. The analytes were extracted with a simple liquid-liquid extraction from the plasma samples and separated on an ACE C(18) 50 × 4.6 mm i.d.; 5 μm particle size column with a mobile phase consisting of acetonitrile - 0.01% formic acid (48:52, v/v) at a flow rate of 1 ml/min. Detection was achieved by an Applied Biosystems API 5000 mass spectrometer (LC-MS/MS) set at unit resolution in the multiple reaction monitoring mode. Atmospheric pressure chemical ionization (APCI) was used for ion production. The mean recovery for fluticasone propionate was 85%, with a lower limit of quantification set at 2 pg/mL. The validated analytical method was applied to a bioequivalence study of fluticasone propionate administered by nasal spray formulations in human volunteers.

  17. High-performance liquid chromatographic determination of clindamycin in human plasma or serum: application to the bioequivalency study of clindamycin phosphate injections.

    Science.gov (United States)

    Liu, C M; Chen, Y K; Yang, T H; Hsieh, S Y; Hung, M H; Lin, E T

    1997-08-29

    This paper presents an assay of clindamycin phosphate injection in human plasma or serum. A 0.5-ml volume of plasma was used with the internal standard, propranolol. The sample was loaded onto a silica extraction column. The column was washed with deionized water and then eluted with methanol. The eluates were evaporated under nitrogen gas. The residue was reconstituted with the mobile phase and injected onto the high-performance liquid chromatographic system: a 5-micron, 25 cm X 4.6 mm I.D. ODS2 column was used with acetonitrile, tetrahydrofuran and 0.05 M phosphate buffer as the mobile phase and with ultraviolet detection at 204 nm. A limit of quantitation of 0.05 microgram/ml was found, with a coefficient of variation of 11.6% (n = 6). The linear range is between 0.05 and 20.00 micrograms/ml and gives a coefficient of determination (r2) or 0.9992. The method has been successfully applied to the bioavailability study of two commercial preparations of clindamycin phosphate injection (300 mg each) in twelve healthy adult male volunteers.

  18. Effects of plasma on polyethylene fiber surface for prosthodontic application

    Science.gov (United States)

    SPYRIDES, Silvana Marques Miranda; do PRADO, Maíra; de ARAUJO, Joyce Rodrigues; SIMÃO, Renata Antoun; BASTIAN, Fernando Luis

    2015-01-01

    ABSTRACT Plasma technology has the potential to improve the adherence of fibers to polymeric matrices, and there are prospects for its application in dentistry to reinforce the dental particulate composite. Objectives This study aimed to investigate the effect of oxygen or argon plasma treatment on polyethylene fibers. Material and Methods Connect, Construct, InFibra, and InFibra treated with oxygen or argon plasma were topographically evaluated by scanning electron microscopy (SEM), and chemically by X-ray photoelectron spectroscopy (XPS). For bending analysis, one indirect composite (Signum) was reinforced with polyethylene fiber (Connect, Construct, or InFibra). The InFibra fiber was subjected to three different treatments: (1) single application of silane, (2) oxygen or argon plasma for 1 or 3 min, (3) oxygen or argon plasma and subsequent application of silane. The samples (25x2x2 mm), 6 unreinforced and 60 reinforced with fibers, were subjected to three-point loading tests to obtain their flexural strength and deflection. The results were statistically analyzed with ANOVA and the Bonferroni correction for multiple comparison tests. Results SEM analysis showed that oxygen and argon plasma treatments promote roughness on the polyethylene fiber surface. X-ray photoelectron spectroscopy (XPS) analysis shows that both plasmas were effective in incorporating oxygenated functional groups. Argon or oxygen plasma treatment affected the flexural strength and deflection of a fiber reinforced composite. The application of silane does not promote an increase in the flexural strength of the reinforced composites. Conclusions Oxygen and argon plasma treatments were effective in incorporating oxygenated functional groups and surface roughness. The highest strength values were obtained in the group reinforced with polyethylene fibers treated with oxygen plasma for 3 min. PMID:26814463

  19. Effects of plasma on polyethylene fiber surface for prosthodontic application

    Directory of Open Access Journals (Sweden)

    Silvana Marques Miranda SPYRIDES

    2015-12-01

    Full Text Available ABSTRACT Plasma technology has the potential to improve the adherence of fibers to polymeric matrices, and there are prospects for its application in dentistry to reinforce the dental particulate composite. Objectives This study aimed to investigate the effect of oxygen or argon plasma treatment on polyethylene fibers. Material and Methods Connect, Construct, InFibra, and InFibra treated with oxygen or argon plasma were topographically evaluated by scanning electron microscopy (SEM, and chemically by X-ray photoelectron spectroscopy (XPS. For bending analysis, one indirect composite (Signum was reinforced with polyethylene fiber (Connect, Construct, or InFibra. The InFibra fiber was subjected to three different treatments: (1 single application of silane, (2 oxygen or argon plasma for 1 or 3 min, (3 oxygen or argon plasma and subsequent application of silane. The samples (25x2x2 mm, 6 unreinforced and 60 reinforced with fibers, were subjected to three-point loading tests to obtain their flexural strength and deflection. The results were statistically analyzed with ANOVA and the Bonferroni correction for multiple comparison tests. Results SEM analysis showed that oxygen and argon plasma treatments promote roughness on the polyethylene fiber surface. X-ray photoelectron spectroscopy (XPS analysis shows that both plasmas were effective in incorporating oxygenated functional groups. Argon or oxygen plasma treatment affected the flexural strength and deflection of a fiber reinforced composite. The application of silane does not promote an increase in the flexural strength of the reinforced composites. Conclusions Oxygen and argon plasma treatments were effective in incorporating oxygenated functional groups and surface roughness. The highest strength values were obtained in the group reinforced with polyethylene fibers treated with oxygen plasma for 3 min.

  20. Development and validation of a high performance liquid chromatography quantification method of levo-tetrahydropalmatine and its metabolites in plasma and brain tissues: application to a pharmacokinetic study.

    Science.gov (United States)

    Abdallah, Inas A; Huang, Peng; Liu, Jing; Lee, David Y; Liu-Chen, Lee-Yuan; Hassan, Hazem E

    2017-04-01

    Levo-tetrahydropalmatine (l-THP) is an alkaloid isolated from Chinese medicinal herbs of the Corydalis and Stephania genera. It has been used in China for more than 40 years mainly as an analgesic with sedative/hypnotic effects. Despite its extensive use, its metabolism has not been quantitatively studied, nor there a sensitive reliable bioanalytical method for its quantification simultaneously with its metabolites. As such, the objective of this study was to develop and validate a sensitive and selective HPLC method for simultaneous quantification of l-THP and its desmethyl metabolites l-corydalmine (l-CD) and l-corypalmine (l-CP) in rat plasma and brain tissues. Rat plasma and brain samples were processed by liquid-liquid extraction using ethyl acetate. Chromatographic separation was achieved on a reversed-phase Symmetry® C18 column (4.6 × 150 mm, 5 μm) at 25°C. The mobile phase consisted of acetonitrile-methanol-10 mm ammonium phosphate (pH 3) (10:30:60, v/v) and was used at a flow rate of 0.8 mL/min. The column eluent was monitored at excitation and emission wavelengths of 230 and 315 nm, respectively. The calibration curves were linear over the concentration range of 1-10,000 ng/mL. The intra- and interday reproducibility studies demonstrated accuracy and precision within the acceptance criteria of bioanalytical guidelines. The validated HPLC method was successfully applied to analyze samples from a pharmacokinetic study of l-THP in rats. Taken together, the developed method can be applied for bioanalysis of l-THP and its metabolites in rodents and potentially can be transferred for bioanalysis of human samples.

  1. [Application of platelet-rich plasma in clinical orthopedics].

    Science.gov (United States)

    Fu, Weili; Li, Qi; Li, Jian

    2014-10-01

    To summarize the application status and progress of platelet-rich plasma (PRP) in clinical orthopedics. The recent related literature concerning the application of PRP in clinical orthopedics was extensively reviewed and analyzed. Recently, a large number of clinical studies on PRP have been carried out, which are applied in bone defects or nonunion, spinal fusion, osteoarthritis and cartilage injuries, ligament reconstruction, muscle strain, tendon terminal diseases, and a variety of acute and chronic soft tissue injuries. Some results show certain effectiveness, while others demonstrate invalid. Easily drawing, achieving autologous transplantation, and the biological repair potential of the musculoskeletal tissues make PRP to be widely used in clinical orthopedics. However, there are still no uniform standards accepted and reliable clinical guidelines about the application of PRP. Furthermore, a variety of PRP products and their respective indications are also different. The clinical evidences with the greater sample size and higher quality are still needed to further support the safety and effectiveness of PRP in clinical orthopedics.

  2. Application of atmospheric pressure plasma in polymer and composite adhesion

    Science.gov (United States)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  3. Simultaneous determination of Eleutheroside B and Eleutheroside E in rat plasma by high performance liquid chromatography-electrospray ionization mass spectrometry and its application in a pharmacokinetic study.

    Science.gov (United States)

    Ma, Bo; Zhang, Qi; Liu, Yinhui; Li, Jing; Xu, Qiuyu; Li, Xiaotian; Yang, Xiaojing; Yao, Di; Sun, Jingjing; Cui, Guangbo; Ying, Hanjie

    2013-02-15

    Eleutheroside B and Eleutheroside E, two kinds of the major bioactive saponins of Eleutherococcus senticosus, play a pivotal role in biologic activity. In this study, a specific and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry method (HPLC-MS/MS) was developed and validated for simultaneous determination of Eleutheroside B and Eleutheroside E in rat plasma. The analytes were extracted from rat plasma via a simple protein precipitation procedure with methanol and polygonin was used as internal standard. Chromatographic separation was achieved on a C18 column using a gradient elution program with acetonitrile and water containing 0.1% ammonium hydroxide solution as the mobile phase, with a flow rate of 0.2mL/min. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reactions monitoring (MRM) mode in a negative ion mode via electrospray ionization (ESI). The transition monitored were m/z 371 [M-H](-)→209 for Eleutheroside B, m/z 741[M-H](-)→579 for Eleutheroside E and m/z 389[M-H](-)→277 for internal standard. Linear calibration curves were obtained in the concentration range of 1-2000ng/mL for both (Eleutheroside B and Eleutheroside E), with a lower limit of quantification of 1ng/mL. Extraction recovery was over 80% in plasma. The intra- and inter-day precision (RSD) values were below 12% and accuracy (RE) was -2.80 to 5.70% at three QC levels for both. The assay was successfully applied to study pharmacokinetics behavior in rats after oral and intravenous administration of the single substances (Eleutheroside B and Eleutheroside E). And further research was performed by comparing the difference in pharmacokinetic behavior between the single substances and an aqueous extract of E. senticosus after oral administration. Significant difference in pharmacokinetic characteristics between the single substances and an aqueous extract was found in rat, which would be beneficial for

  4. A sensitive and robust lc-ms/ms method with monolithic column and electrospray ionization for the quantitation of efavirenz in human plasma: application to a bioequivalence study

    Directory of Open Access Journals (Sweden)

    Danilo Cesar Galindo Bedor

    2011-01-01

    Full Text Available An LC-MS/MS method has been developed for the determination of efavirenz (EFZ in human plasma using hydrochlorothiazide as internal standard (I.S.. An ESI negative mode with multiple reaction-monitoring was used monitoring the transitions m/z 313.88→69.24 (EFZ and 296.02→204.76 (I.S.. Samples were extracted using liquid-liquid extraction. The total run time was 2.0 min. The separation was achieved with HPLC-RP using a monolithic column. The assay was linear in the concentration range of 100 - 5000 ng mL-1. The mean recovery was 83%. Intra- and inter-day precision were < 9.5% and < 8.9%, respectively and accuracy was in the range ± 8.33%. The method was successfully applied to a bioequivalence study.

  5. An ultra-sensitive LC-MS/MS method to determine midazolam levels in human plasma: development, validation and application to a clinical study.

    Science.gov (United States)

    Chen, Mu; Lu, Wenzhe; Lu, Yang; Kang, Lijuan; Zhao, Harry; Lin, Zhongping John; Wang, Weimin; Fraier, Daniela; Ottaviani, Giorgio

    2017-02-01

    Midazolam is a commonly used marker substrate for the in vivo assessment of CYP3A activity. Reliable pharmacokinetic assessment at sub-pharmacological doses of midazolam requires an ultra-sensitive analytical method. A new, ultra-sensitive LC-MS/MS method for the determination of midazolam in human plasma using SPE was developed and fully validated. The lowest limit of quantitation is 0.1 pg/ml with a sample volume of 500 μl. The following parameters were validated: sensitivity, assay accuracy and precision, linearity, selectivity, and stability of midazolam at pertinent analytical and storage conditions. The validated method was utilized successfully for the sample assay during a midazolam microdosing study for the evaluation of CYP3A4 activity of a clinical candidate.

  6. Determination of levamisole, aminorex, and pemoline in plasma by means of liquid chromatography-mass spectrometry and application to a pharmacokinetic study of levamisole.

    Science.gov (United States)

    Hess, Cornelius; Ritke, Natalie; Sydow, Konrad; Mehling, Lena-Maria; Ruehs, Hauke; Madea, Burkhard; Musshoff, Frank

    2014-10-01

    Levamisole is an anti-helminthic drug and gained forensic interest after it was found that it was used as a cocaine adulterant. A liquid chromatography-mass spectrometry (LC-MS) method for the determination of levamisole and its metabolite aminorex in human plasma is described. Selectivity is given; calibration curves were linear within a calibration range of 1 ng/mL-500 ng/mL. Limits of detection and quantification (LODs, LOQs) were 0.85 ng/mL for levamisole and 0.09 ng/mL, and 0.34 ng/mL for aminorex, respectively. Precision data was in accordance with the GTFCh guidelines. The validated method was successfully applied to study the pharmacokinetics of levamisole after administration of 100 mg of levamisole orally. Levamisole could be detected up to 36 h after ingestion in serum, while aminorex never exceeded the LOQ. A one-compartment model best described levamisole pharmacokinetics. The following parameters were calculated: ka = 1.2 [1/h], CL/F = 52 l/h, V/F = 347 l, f (renal) = 0.0005, t ½ = 2.0 h, AUC = 1923 ng/mL*h, cmax = 214 ng/mL, tmax = 1.98 h. Levamisole could be quantified in 42.5% of cocaine--positive plasma samples (2.2 to 224 ng/mL). Aminorex was positive in only 11.3% of the cases; however, it was never found higher than the LOQ. Pemoline, another stimulant detected in horse urine samples after administration of levamisole, was not found either in serum or in urine of this pharmacokinetic study. In post-mortem cases, levamisole and aminorex could be detected in femoral blood and the urine of cocaine users. Pemoline was not detected.

  7. Simultaneous determination of harpagoside and cinnamic acid in rat plasma by high-performance liquid chromatography: application to a pharmacokinetic study.

    Science.gov (United States)

    Li, Peifan; Zhang, Yunhui; Xiao, Li; Jin, Xinghua; Yang, Kun

    2007-12-01

    Radix Scrophulariae (xuanshen) is one of the famous Chinese herbal medicines widely used to treat rheumatism, tussis, pharyngalgia, arthritis, constipation, and conjunctival congestion. Harpagoside and cinnamic acid are the main bioactive components of xuanshen. The purpose of this study was to develop an HPLC-UV method for simultaneous determination of harpagoside and cinnamic acid in rat plasma and investigate pharmacokinetic parameters of harpagoside and cinnamic acid after oral administration of xuanshen extract (760 mg kg(-1)). After addition of syringin as internal standard, the analytes were isolated from plasma by liquid-liquid extraction. Separation was achieved on a Kromasil C18 column, and detection was by UV absorption at 272 nm. The described assay was validated in terms of linearity, accuracy, precision, recovery, and limit of quantification according to the FDA validation guidelines. Calibration curves for both analytes were linear with the coefficient of variation (r) for both was greater than 0.999. Accuracy for harpagoside and cinnamic acid ranged from 100.7-103.5% and 96.9-102.9%, respectively, and precision for both analytes were less than 8.5%. The main pharmacokinetic parameters found for harpagoside and cinnamic acid after oral infusion of xuanshen extract were as follows: Cmax 1488.7 +/- 205.9 and 556.8 +/- 94.2 ng mL(-1), Tmax 2.09 +/- 0.31 and (1.48 +/- 0.14 h, AUC(0-24) 10,336.4 +/- 1426.8 and 3653.1 +/- 456.4 ng h mL(-1), AUC(0-infinity) 11,276.8 +/- 1321.4 and 3704.5 +/- 398.8 ng h mL(-1), and t(1/2) 4.9 +/- 1.3 and 2.5 +/- 0.9 h, respectively. These results indicated that the proposed method is simple, selective, and feasible for pharmacokinetic study of radix Scrophulariae extract in rats.

  8. Simultaneous determination of dextromethorphan, dextrorphan and doxylamine in human plasma by HPLC coupled to electrospray ionization tandem mass spectrometry: application to a pharmacokinetic study.

    Science.gov (United States)

    Donato, J L; Koizumi, F; Pereira, A S; Mendes, G D; De Nucci, G

    2012-06-15

    In the present study, a fast, sensitive and robust method to quantify dextromethorphan, dextrorphan and doxylamine in human plasma using deuterated internal standards (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction (LLE) using diethyl-ether/hexane (80/20, v/v). Extracted samples were analyzed by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase (acetonitrile/water/formic acid (90/9/1, v/v/v) during 4.0min at a flow-rate of 1.5 mL min⁻¹ into a Phenomenex Gemini® C18, 5 μm analytical column (150 × 4.6 mm i.d.). The calibration curve was linear over the range from 0.2 to 200 ng mL⁻¹ for dextromethorphan and doxylamine and 0.05 to 10 ng mL⁻¹ for dextrorphan. The intra-batch precision and accuracy (%CV) of the method ranged from 2.5 to 9.5%, and 88.9 to 105.1%, respectively. Method inter-batch precision (%CV) and accuracy ranged from 6.7 to 10.3%, and 92.2 to 107.1%, respectively. The run-time was for 4 min. The analytical procedure herein described was used to assess the pharmacokinetics of dextromethorphan, dextrorphan and doxylamine in healthy volunteers after a single oral dose of a formulation containing 30 mg of dextromethorphan hydrobromide and 12.5mg of doxylamine succinate. The method has high sensitivity, specificity and allows high throughput analysis required for a pharmacokinetic study.

  9. Application of a UPLC-MS/MS method for the analysis of alosetron in human plasma to support a bioequivalence study in healthy males and females.

    Science.gov (United States)

    Chaudhary, Darshan V; Patel, Daxesh P; Shah, Jaivik V; Shah, Priyanka A; Sanyal, Mallika; Shrivastav, Pranav S

    2015-10-01

    A simple, rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed and validated for the determination of alosetron (ALO) in human plasma. The assay method involved solid-phase extraction of ALO and ALO 13C-d3 as internal standard (IS) on a LichroSep DVB-HL (30 mg, 1 cm(3) ) cartridge. The chromatography was performed on an Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile and 2.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (80:20, v/v) as the mobile phase in an isocratic mode. For quantitative analysis, the multiple reaction monitoring transitions studied were m/z 295.1/201.0 for ALO and m/z 299.1/205.1 for IS in the positive ionization mode. The method was validated over a concentration range of 0.01-10.0 ng/mL for ALO. Post-column infusion experiment showed no positive or negative peaks in the elution range of the analyte and IS after injection of extracted blank plasma. The extent of ion-suppression/enhancement, expressed as IS-normalized matrix factor, varied from 0.96 to 1.04. The assay recovery was within 97-103% for ALO and IS. The method was successfully applied to support a bioequivalence study of 1.0 mg alosetron tablets in 28 healthy Indian male and female subjects.

  10. Development of a simple LC-MS/MS method for the determination of febuxostat in human plasma and its application to a bioequivalence study.

    Science.gov (United States)

    Shi, Zheng; Liu, Jian; Hu, Xing-Jiang; ShenTu, Jian-Zhong

    2013-06-01

    The purpose of this study was to design a simple, sensitive and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for a febuxostat bioequivalence study in healthy Chinese male volunteers. In this method, febuxostat and etodolac (internal standard) were isolated from plasma samples by protein precipitation with acetonitrile. The supernatant was chromatographed on a Zorbax SB-C18 (150 x 3.0 mm, 3.5-microm particle size, Agilent) column with a SecurityGuard Inertsil Symmetry C18 column (12.5 x 4.6 mm, 5-microm particle size, Waters). The lower limit of quantification for febuxostat in 0.2 mL of human plasma was 13.40 ng x mL(-1), and the linearity was achieved over a concentration range from 13.40 to 21440 ng x mL(-1). Febuxostat tablets from Hengrui Medicine Co., Ltd (test, Jiangsu, China) and from Takeda pharmaceuticals america, Inc. (reference, Deerfield, IL) were evaluated following a single 80 mg oral dose to 18 healthy volunteers. Bioequivalence was determined by calculating 90% confidence intervals (90% CI) for the ratio of C(max), AUC(0-t), and AUC(0-infinity) values for the test and reference products, using logarithmic transformed data. The calculated 90% CIs for the ratio of C(max) (88.7-131.2%), AUC(0-t) (99.2-122.7%) and AUC(0-infinity) (99.5-123.1%) values for the test and reference products were all located within the bioequivalence criteria range (80-125% for AUC, and 70-143% for Ca(mzax)), proposed by State of Food and Drug Administration [SFDA, 2005. China]. It was concluded that the two febuxostat formulations (test and reference) analyzed were bioequivalent in terms of rate and extent of absorption and the method met the principle of quick and easy clinical analysis.

  11. Vacuum plasma spray applications on liquid fuel rocket engines

    Science.gov (United States)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  12. Industrial application of electron sources with plasma emitters

    CERN Document Server

    Belyuk, S I; Rempe, N G

    2001-01-01

    Paper contains a description, operation, design and parameters of electron sources with plasma emitters. One presents examples of application of these sources as part of automated electron-beam welding lines. Paper describes application of such sources for electron-beam deposition of composite powders. Electron-beam deposition is used to rebuild worn out part and to increase strength of new parts of machines and tools. Paper presents some examples of rebuilding part and the advantages gained in this case

  13. Spectroscopic studies of non-thermal plasma jet at atmospheric pressure formed in low-current nonsteady-state plasmatron for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Demkin, V. P.; Melnichuk, S. V.; Demkin, O. V. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Kingma, H.; Van de Berg, R. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Department of Otolaryngology, Head and Neck Surgery, Maastricht University Medical Centre, Minderbroedersberg 4-6, 6211 LK Maastricht (Netherlands)

    2016-04-15

    The optical and electrophysical characteristics of the nonequilibrium low-temperature plasma formed by a low-current nonsteady-state plasmatron are experimentally investigated in the present work. It is demonstrated that experimental data on the optical diagnostics of the plasma jet can provide a basis for the construction of a self-consistent physical and mathematical plasma model and for the creation of plasma sources with controllable electrophysical parameters intended for the generation of the required concentration of active particles. Results of spectroscopic diagnostics of plasma of the low-current nonsteady-state plasmatron confirm that the given source is efficient for the generation of charged particles and short-wavelength radiation—important plasma components for biomedical problems of an increase in the efficiency of treatment of biological tissues by charged particles. Measurement of the spatial distribution of the plasma jet potential by the probe method has demonstrated that a negative space charge is formed in the plasma jet possibly due to the formation of electronegative oxygen ions.

  14. Perturbative Transport Studies in Fusion Plasmas

    NARCIS (Netherlands)

    Cardozo, N. J. L.

    1995-01-01

    Studies of transport in fusion plasmas using perturbations of an equilibrium state reviewed. Essential differences between steady-state and perturbative transport studies are pointed out. Important transport issues that can be addressed with perturbative experiments are identified as: (i) Are the tr

  15. Simultaneous determination of harpagoside and cinnamic acid in rat plasma by liquid chromatography electrospray ionization mass spectrometry and its application to pharmacokinetic studies.

    Science.gov (United States)

    Wang, Su-Jun; Ruan, Jin-Xiu; Zhao, Yan-Hong; Zhang, Zhen-Qing

    2008-01-01

    A simple and sensitive method was developed for the simultaneous quantification of harpagoside and cinnamic acid in rat plasma using high-performance liquid chromatography system coupled to a negative ion electrospray mass spectrometric analysis. The plasma sample preparation was a simple deproteinization by the addition of two volumes of acetonitrile. The analytes were separated on an Intersil C8-3 column (2.1 mm i.d.x250 mm, 5 microm) with acetonitrile-5 mm ammonium formate aqueous solution (60:40, v/v) as mobile phase at a flow-rate of 0.2 mL/min. Detection was performed on a quadrupole mass spectrometer equipped with electrospray ionization (ESI) source operated under selected ion monitoring (SIM) mode. [M+HCOO]- at m/z 539 for harpagoside, [M-H]- at m/z 147 for cinnamic acid and [M-H]- at m/z 137 for salylic acid (internal standard) were selected as detecting ions, respectively. The method was validated over the concentration range 7-250 ng/mL for harpagoside and 5-500 ng/mL for cinnamic acid. The lower limits of quantitation for harpagoside and cinnamic acid were 7 and 5 ng/mL, respectively. The intra- and inter-day precisions (RSD%) were within 9.5% and the assay accuracies (RE%) ranged from -5.3 to 3.0% for both analytes. Their average recoveries were greater than 86%. Both analytes were proved to be stable during all sample storage, preparation and analysis procedures. The method was successfully applied to the pharmacokinetic study of harpagoside and cinnamic acid following oral administration of Radix Scrophulariae extract to rats.

  16. Method development for quantification of the environmental neurotoxin annonacin in Rat plasma by UPLC-MS/MS and application to a pharmacokinetic study.

    Science.gov (United States)

    Bonneau, Natacha; Schmitz-Afonso, Isabelle; Brunelle, Alain; Touboul, David; Champy, Pierre

    2015-11-01

    Annonacin is an environmental neurotoxin identified in the pulp of several fruits of the Annonaceae family (for example in Annona muricata, Asimina triloba), whose consumption was linked with the occurrence of sporadic atypical Parkinsonism with dementia. Pharmacokinetic parameters of this molecule are unknown. A method for its quantification in Rat plasma was developed, using its analogue annonacinone as an internal standard. Extraction from plasma was performed using ethylacetate with a good recovery. Quantification was performed by UPLC-MS/MS in SRM mode, based on the loss of the γ-methyl-γ-lactone (-112amu) from the sodium-cationized species [M+Na](+) of both annonacin and internal standard. The limit of quantification was 0.25ng/mL. Despite strong matrix effects, a good linearity was obtained over two distinct ranges 0.25-10ng/mL and 10-100ng/mL. The intra- and inter-day precisions (RSD) were lower than 10%, while accuracy was within ±10%. This method was applied to a pharmacokinetic study in the Rat. After oral administration of 10mg/kg annonacin, a Cmax of 7.9±1.5ng/mL was reached at Tmax 0.25h; T1/2 was 4.8±0.7h and apparent distribution volume was 387.9±64.6L. The bioavailability of annonacin was estimated to be 3.2±0.3% of the ingested dose.

  17. SPE–UPLC–MS/MS assay for determination of letrozole in human plasma and its application to bioequivalence study in healthy postmenopausal Indian women

    Directory of Open Access Journals (Sweden)

    Pravin G. Vanol

    2016-08-01

    Full Text Available A rapid and sensitive ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS method is described for determination of letrozole in human plasma. Following solid phase extraction (SPE of letrozole and letrozole-d4 on Orochem DVB-LP cartridges, chromatography was performed on Acquity UPLC BEH C18 (50 mm×2.1 mm, 1.7 µm column using methanol-0.1% formic acid in water (85:15, v/v as the mobile phase. Detection was carried out on a triple quadrupole mass spectrometer with an electrospray source, operated under positive ionization mode. Quantitation of letrozole and letrozole-d4 was done using multiple reaction monitoring (MRM following the transitions at m/z 286.2→217.0 and m/z 290.2→221.0, respectively. The calibration plots were linear through the concentration range of 0.10–100 ng/mL (r2≥0.9990 using 100 µL human plasma. The extraction recovery of letrozole ranged from 94.3% to 96.2% and the intra-batch and inter-batch precision was ≤5.2%. The method was successfully applied to a bioequivalence study of letrozole after oral administration of 2.5 mg tablet formulation to 16 healthy postmenopausal Indian women. The assay reproducibility was also established through incurred sample reanalysis (ISR of 74 subject samples.

  18. Study on the ignition process of a segmented plasma torch

    Science.gov (United States)

    Cao, Xiuquan; Yu, Deping; Xiang, Yong; Li, Chao; Jiang, Hui; Yao, Jin

    2017-07-01

    Direct current plasma torches have been applied to generate unique sources of thermal energy in many industrial applications. Nevertheless, the successful ignition of a plasma torch is the key process to generate the unique source (plasma jet). However, there has been little study on the underlying mechanism of this key process. A thorough understanding of the ignition process of a plasma torch will be helpful for optimizing the design of the plasma torch structure and selection of the ignition parameters to prolong the service life of the ignition module. Thus, in this paper, the ignition process of a segmented plasma torch (SPT) is theoretically and experimentally modeled and analyzed. Corresponding electrical models of different stages of the ignition process are set up and used to derive the electrical parameters, e.g. the variations of the arc voltage and arc current between the cathode and anode. In addition, the experiments with different ignition parameters on a home-made SPT have been conducted. At the same time, the variations of the arc voltage and arc current have been measured, and used to verify the ones derived in theory and to determine the optimal ignition parameters for a particular SPT.

  19. Plasma assisted deposition of metal fluorides for 193nm applications

    Science.gov (United States)

    Bischoff, Martin; Sode, Maik; Gaebler, Dieter; Kaiser, Norbert; Tuennermann, Andreas

    2008-10-01

    The ArF lithography technology requires a minimization of optical losses due to scattering and absorption. Consequently it is necessary to optimize the coating process of metal fluorides. The properties of metal fluoride thin films are mainly affected by the deposition methods, their parameters, and the vacuum conditions. Until now the best results were achieved by metal boat evaporation with high substrate temperature and without plasma assistance. In fact, it was demonstrated that the plasma assisted deposition process results in optical thin films with high packing density but the losses due to absorption were extremely high for deep and vacuum ultraviolet applications. This paper will demonstrate that most of the common metal fluorides can be deposited by electron beam evaporation with plasma assistance. In comparison to other deposition methods, the prepared thin films show low absorption in the VUV spectral range, high packing density, and less water content. The densification of the thin films was performed by a Leybold LION plasma source. As working gas, a variable mixture of fluorine and argon gas was chosen. To understand the deposition process and the interaction of the plasma with the deposition material, various characterization methods like plasma emission spectroscopy and ion current measurements were implemented.

  20. Application of Nonlocal Electron Kinetics to Plasma Technologies

    Science.gov (United States)

    Kaganovich, Igor D.

    2011-10-01

    Partially ionized plasmas are typically in a highly non-equilibrium thermodynamic state: the electrons are not in equilibrium with the neutral particle species or the ions, and the electrons are also not in equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function (EVDF) from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas-discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Significant progress in understanding the formation of non-Maxwellian EVDF in the self-consistent electric fields has been one of the major achievements in the low-temperature plasmas during the last decade. This progress was made possible by a synergy between full-scale particle-in-cell simulations, analytical models, and experiments. Specific examples include rf discharges, dc discharges with auxiliary electrodes, Hall thruster discharges. In each example, nonlocal kinetic effects are identified as the main mechanisms responsible for the surprising degree of discharge self-organization. These phenomena include: explosive generation of cold electrons with rf power increase in low-pressure rf discharges; abrupt changes in discharge structure with increased bias voltage on a third electrode in a dc discharge with hot cathode; absence of a steady-state regime in Hall thruster discharges with intense secondary electron emission due to coupling of the sheath properties and the EVDF. In collaboration with Y. Raitses, A.V. Khrabrov, M. Campanell, V. I. Demidov, D. Sydorenko, I. Schweigert, and A. S. Mustafaev. Research supported by the U.S. Department of Energy.

  1. Current and Perspective Applications of Dense Plasma Focus Devices

    Science.gov (United States)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  2. Development and validation of amisulpride in human plasma by HPLC coupled with tandem mass spectrometry and its application to a pharmacokinetic study.

    Science.gov (United States)

    Mogili, Ramakotaiah; Kanala, Kanchanamala; Challa, Balasekhara Reddy; Chandu, Babu Rao; Bannoth, Chandrasekhar Kottapalli

    2011-09-01

    In this study, authors developed a simple, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantification of Amisulpride in human plasma using Amisulpride-d(5) as an internal standard (IS). Chromatographic separation was performed on Zorbax Bonus-RP C18, 4.6 × 75 mm, 3.5 μm column with an isocratic mobile phase composed of 0.2% formic acid:methanol (35:65 v/v), at a flow-rate of 0.5 mL/min. Amisulpride, Amisulpride-d(5) was detected at m/z 370.1→242.1 and 375.1→242.1. The drug and the IS were extracted by a liquid-liquid extraction method. The method was validated over a linear concentration range of 2.0-2500.0 ng/mL for Amisulpride with a correlation coefficient of (r(2)) ≥ 0.9982. This method demonstrated intra- and inter-day precision within 0.9 to 1.7 and 1.5 to 2.8 % and intra- and inter-day accuracy within 98.3 to 101.5 and 96.0 to 101.0 % for Amisulpride. Amisulpride was found to be stable at 3 freeze-thaw cycles, bench top and auto sampler stability studies. The developed method was successfully applied to a pharmacokinetic study.

  3. Plasma Surface Treatment of Powder Materials — Process and Application

    Directory of Open Access Journals (Sweden)

    Monika Pavlatová

    2012-01-01

    Full Text Available Polyolefin particles are hydrophobic, and this prevents their use for various applications. Plasma treatment is an environment-friendly polyolefin hydrophilisation method. We developed an industrial-scale plant for plasma treatment of particles as small as micrometers in diameter. Materials such as PE waxes, UHMWPE and powders for rotomolding production were tested to verify their new surface properties. We achieved significantly increased wettability of the particles, so that they are very easily dispersive in water without agglomeration, and their higher surface energy is retained even after sintering in the case of rotomolding powders.

  4. Development of an LC/MS/MS method in order to determine arctigenin in rat plasma: its application to a pharmacokinetic study.

    Science.gov (United States)

    Zou, Quanfei; Gu, Yuan; Lu, Rong; Zhang, Tiejun; Zhao, Guang-Rong; Liu, Changxiao; Si, Duanyun

    2013-09-01

    In this study, a simple and sensitive LC/MS/MS method was developed and validated for the determination of arctigenin in rat plasma. The MS detection was performed using multiple reaction monitoring at the transitions of m/z 373.2 → 137.3 for arctigenin and m/z 187.1 → 131.0 for psoralen (internal standard) with a Turbo IonSpray electrospray in positive mode. The calibration curves fitted a good linear relationship over the concentration range of 0.2-500 ng/mL. It was found that arctigenin is not stable enough at both room temperature and -80 °C unless mixed with methanol before storage. The validated LC/MS/MS method was successfully applied for the pharmacokinetic study of arctigenin in rats. After intravenous injection of 0.3 mg/kg arctigenin injection to rats, the maximum concentration, half-life and area under the concentration-time curve were 323 ± 65.2 ng/mL, 0.830 ± 0.166 and 81.0 ± 22.1 h ng/mL, respectively.

  5. Validated LC-MS/MS method for simultaneous quantification of resveratrol levels in mouse plasma and brain and its application to pharmacokinetic and brain distribution studies.

    Science.gov (United States)

    Ramalingam, Prakash; Ko, Young Tag

    2016-02-01

    A rapid, selective, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously determine resveratrol levels in plasma and brain tissue in mice for supporting pharmacokinetic and brain distribution studies. Analytes were separated using a Sepax BR-C18 analytical column (5μm, 120Å, 1.0×100mm) and eluted using an isocratic elution mobile phase acetonitrile and 0.01% formic acid [60:40, v/v] at a flow rate of 0.1mL/min. Precursor and product ion transitions for analyte resveratrol m/z 226.9>184.8 and curcumin m/z 367.1>148.9 were monitored using triple quadrupole mass spectrometer with multiple reaction monitoring (MRM) in negative ionization mode. The method was validated with respect to accuracy, within- and between-day precision, linearity, limit of quantification, recovery, and matrix effects of analyte. The inter- and intra-day accuracy and precision were within the range of the US Food and Drug Administration (FDA) acceptance criteria, for both matrices. The method was also successfully applied to pharmacokinetic and brain distribution studies of resveratrol after intravenous administration of free resveratrol and resveratrol-loaded solid lipid nanoparticles to mice. The combined use of serial blood sampling, small sample volume, simple extraction, and capillary depletion method drastically improved resveratrol analysis from biological matrices.

  6. Development, validation of liquid chromatography-tandem mass spectrometry method for simultaneous determination of rosuvastatin and metformin in human plasma and its application to a pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    P Pavan Kumar

    2015-01-01

    Full Text Available A new, simple and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS method for simultaneous determination of rosuvastatin (ROS and metformin (MET in human plasma was developed. The assay procedure involved simple protein precipitation with acetonitrile. Following precipitation, fraction of supernatant was decanted and evaporated under gentle stream of nitrogen at 40΀C. The residue was reconstituted in mobile phase and injected. The chromatographic separation was achieved with Thermo Hypurity C18 column (50 mm Χ 4.6 mm, 5 μ using a mobile phase composition containing 0.1% v/v formic acid in water and acetonitrile (30:70, v/v at a flow rate of 0.4 mL/min. The total run time was 3.5 min. The method showed good linearity in the range 0.5-200 ng/mL for ROS and 2-2000 ng/mL for MET with correlation coefficient (r >0.9994 for both the analytes. The intra and inter-day precision values for ROS and MET met the acceptance criteria as per regulatory guidelines. The battery of stability studies viz., bench-top, freeze-thaw and long term stability were performed. The developed method was applied to a pharmacokinetic study.

  7. High-throughput liquid chromatography tandem mass spectrometry method for simultaneous determination of fampridine, paroxetine, and quinidine in rat plasma: Application to in vivo perfusion study

    Directory of Open Access Journals (Sweden)

    Suneetha Achanti

    2016-10-01

    Full Text Available A selective and high-throughput liquid chromatography–mass spectrometry method has been developed and validated for the simultaneous quantification of paroxetine, fampridine, and quinidine in rat plasma using imipramine as an internal standard. Following protein precipitation extraction, the analytes and internal standard were run on XBridge C18 column (150 mm × 4.6 mm, 5 μm using a gradient mobile phase consisting of 5mM ammonium formate in water (pH 9.0 and acetonitrile in a flow gradience program. The precursor and product ions of the drugs were monitored on a triple quadrupole instrument operated in the positive ionization mode. The method was validated over a concentration range of 0.1–100 ng/mL for all the three analytes, with relative recoveries ranging from 69% to 82%. The intra- and interbatch precision (percent coefficient of variation across four validation runs were less than 13.4%. The accuracy determined at four quality control (QC levels (lower limit of quantitation, low QC, medium QC, and high QC was within ±6.5% of coefficient of variation values. The method proved highly reproducible and sensitive, and was successfully applied in a pharmacokinetic study after single-dose oral administration to rats and also in perfusion study sample analysis.

  8. Development of a LC-MS/MS method for the determination of CKD-712 in rat plasma: Application to a pharmacokinetic study in rats.

    Science.gov (United States)

    Chae, Jung-Woo; Yun, Hwi-Yeol; Eom, Han Young; Jeong, Eun Ju; Koo, Tae-Sung; Kwon, Kwang-Il; Lee, Jong-Hwa

    2017-09-01

    CKD-712 is a potential treatment for sepsis, as it exhibits protective effects against lipopolysaccharide-mediated platelet aggregation, inducible nitric oxide synthase expression, and cecum-ligation puncture-induced septic mortality in mice. In this study, we develop a rapid and sensitive LC-MS/MS method for determining CKD-712 in rat plasma. CKD-712 and papaverine hydrochloride (an internal standard) were analyzed using an LC-MS/MS system consisting of an Agilent HPLC system (HP-1100) equipped with an Atlantis HILIC Silica (2.1×50mm, 3μm) column and a API 4000 (Applied Biosystems/MDS Sciex, USA) in a positive ESI mode. We utilized multiple reaction monitoring (MRM) at m/z transitions of 306.2-164.0 to analyze CKD-712, and 340.3-202.1 m/z for IS, with a mobile phase of acetonitrile (0.025% trifluoroacetic acid):20mM ammonium acetate (94:6, v/v) at a flow rate of 0.25mL/min. The lower limit of quantification (LLOQ) was 5ng/mL, with a linearity ranging from 5 to 1000ng/mL (r>0.999). Validation parameters including specificity, precision, accuracy, matrix effect, recovery, dilution effect and stability results were well within acceptance criteria, and applied successfully on a pharmacokinetic study in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sensitive LC-MS/MS-ESI method for simultaneous determination of montelukast and fexofenadine in human plasma: application to a bioequivalence study.

    Science.gov (United States)

    Muppavarapu, Rajendraprasad; Guttikar, Swati; Rajappan, Manavalan; Kamarajan, Kannan; Mullangi, Ramesh

    2014-08-01

    A rapid, simple, sensitive and selective LC-MS/MS method was developed and validated for simultaneous quantification of montelukast (MT) and fexofenadine (FF) in human plasma (200 μL) using montelukast-d6 (MT-d6 ) and fexofenadine-d10 (FF-d10 ), respectively as an internal standard (IS) as per the US Food and Drug Administration guidelines. The chromatographic resolution was achieved on a Chromolith RP18e column using an isocratic mobile phase consisting of 20 mm ammonium formate-acetonitrile (20:80, v/v) at flow rate of 1.2 mL/min. The LC-MS/MS was operated under the multiple-reaction monitoring mode using electrospray ionization. The total run time of analysis was 4 min and elution of MT, FF, MT-d6 and FF-d10 occurred at 2.5, 1.2, 2.4 and 1.2 min, respectively. The standard curve found to be linear in the range 2.00-1000 ng/mL with a coefficient of correlation of ≥0.99 for both the drugs. The intra- and inter-day accuracy and precision values for MT and FF met the acceptance as per FDA guidelines. MT and FF were found to be stable in a battery of stability studies viz., bench-top, auto-sampler and repeated freeze-thaw cycles. The validated assay was applied to an oral bioequivalence study in humans.

  10. Simultaneous determination of diosmin and diosmetin in human plasma by ion trap liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry: Application to a clinical pharmacokinetic study.

    Science.gov (United States)

    Campanero, Miguel Angel; Escolar, Manuel; Perez, Guiomar; Garcia-Quetglas, Emilio; Sadaba, Belen; Azanza, Jose Ramon

    2010-03-11

    Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone) is the aglycone of the flavonoid glycoside diosmin (3',5,7-trihydroxy-4'-methoxyflavone-7-ramnoglucoside). Diosmin is hydrolyzed by enzymes of intestinal micro flora before absorption of its aglycone diosmetin. A specific, sensitive, precise, accurate and robust HPLC assay for the simultaneous determination of diosmin and diosmetin in human plasma was developed and validated. Plasma samples were incubated with beta-glucuronidase/sulphatase. The analytes were isolated by liquid-liquid extraction with tert-butyl methyl ether at pH 2, and separated on a C(18) reversed-phase column using a mixture of methanol/1% formic acid (58:42, v/v) at a flow rate of 0.5ml/min. APCI in the positive ion mode and multiple reaction monitoring (MRM) method was employed. The selected transitions for diosmin, diosmetin and the internal standard (7-ethoxycoumarin) at m/z were: 609.0-->463.0, 301.2-->286.1 and 191, respectively. A good linearity was found in the range of 0.25-500ng/ml (R(2)>0.992) for both compounds. The intra-batch assay precision (CV) for diosmin and diosmetin ranged from 1.5% to 11.2% and from 2.8% to 12.5%, respectively, and the inter-batch precision were from 5.2% to 11.5% and 8.5% to 9.8%, respectively. The accuracy was well within the acceptable range the accuracies (from -2.7% to 4.2% and -1.6% to 3.5% for diosmin and diosmetin, respectively). The mean recoveries of diosmin, diosmetin and the internal standard were 87.5%, 89.2% and 67.2%. Stability studies showed that diosmin and diosmetin were stable in different conditions. Finally, the method was successfully applied to the pharmacokinetic study of diosmin in healthy volunteers following a single oral administration (Daflon).

  11. Computational Center for Studies of Plasma Microturbulence

    Energy Technology Data Exchange (ETDEWEB)

    William Dorland

    2006-10-11

    The Maryland Computational Center for Studies of Microturbulence (CCSM) was one component of a larger, multi-institutional Plasma Microturbulence Project, funded through what eventually became DOE's Scientific Discovery Through Advanced Computing Program. The primary focus of research in CCSM was to develop, deploy, maintain, and utilize kinetic simulation techniques, especially the gyrokinetic code called GS2.

  12. Application of particle image velocimetry to dusty plasma systems

    Science.gov (United States)

    Williams, Jeremiah D.

    2016-06-01

    > Particle image velocimetry is a fluid measurement technique that has been used for more than 20 years to characterize the particle transport and thermal state of dusty plasma systems. This manuscript provides an overview of this diagnostic technique, highlighting the strengths and limitations that are associated with its use. Additionally, the variations of this technique that have been applied in the study of dusty plasma systems will be discussed, along with a small selection of measurements that can be made with the technique. Potential future directions for this diagnostic tool within the dusty plasma community will also be discussed.

  13. A sensitive liquid chromatographic-mass spectrometric method for simultaneous quantification of six iridoid glycosides from Zhi-zi-chi Decoction in rat plasma and its application to a pharmacokinetic study.

    Science.gov (United States)

    Qu, Kankan; Dai, Jinna; Zhao, Longshan; Lu, Yanan; Li, Bin; Zhao, Xu; Hou, Pengyi; Zhang, Yuanting; Bi, Kaishun; Chen, Xiaohui

    2013-05-01

    A sensitive liquid chromatographic-mass spectrometric (LC-MS) method was developed and validated for simultaneous determination of geniposide, geniposidic acid, scandoside methyl ester, gardenoside, deacetyl asperulosidic acid methyl ester and genipin-1-β-gentiobioside after oral administration of Zhi-zi-chi Decoction in rat plasma. The six iridoid glycosides were extracted from plasma samples by protein precipitation, and then separated on an Apollo C18 column (250 mm × 4.6mm, 5 μm) through the application of a gradient elution. The analytes were monitored in positive electrospray ionization by selected ion monitoring mode (SIM). The lower limits of quantitation (LLOQ) of the six analytes were all lower than 6 ng/mL. The accuracy (relative error, RE%) was between -7.0% and 9.9%, while the intra- and inter-day precisions (relative standard deviation, RSD%) were less than 6.3% and 9.8% for the six analytes, respectively. The developed method was successfully applied to a comparative pharmacokinetic study of the six iridoids in rat plasma after oral administration of Zhi-zi-chi Decoction and Gardenia jasminoides extract.

  14. Selective Plasma Etching of Polymeric Substrates for Advanced Applications.

    Science.gov (United States)

    Puliyalil, Harinarayanan; Cvelbar, Uroš

    2016-06-07

    In today's nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a "zoo" of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance.

  15. Selective Plasma Etching of Polymeric Substrates for Advanced Applications

    Directory of Open Access Journals (Sweden)

    Harinarayanan Puliyalil

    2016-06-01

    Full Text Available In today’s nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a “zoo” of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance.

  16. Low voltage drop plasma switch for inverter and modulator applications

    Science.gov (United States)

    Goebel, D. M.; Poeschel, R. L.; Schumacher, R. W.

    1993-08-01

    A low forward voltage drop plasma switch has been developed for high-efficiency inverter and modulator applications. The switch, called the HOLLOTRON, is based on a grid-controlled, thermionic hollow-cathode discharge. A low forward voltage drop (10-20 V) is achieved by operating the hollow-cathode discharge in a static gas pressure of xenon. The dense plasma generated in the Ba-oxide dispenser hollow cathode is spread over a relatively large control grid area by a diverging magnetic field superimposed on the discharge. Interruption of the discharge current at high current densities (≳4 A/cm2) over the grid area is achieved by biasing the control grid sufficiently negative with respect to the plasma. The HOLLOTRON switch has demonstrated voltage stand-off of up to 20 kV, switching times of ≤0.3 μs, and pulse repetition frequencies of 20 kHz at 50% duty.

  17. Advanced targets, diagnostics and applications of laser-generated plasmas

    Science.gov (United States)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  18. Simultaneous determination of harmine, harmaline and their metabolites harmol and harmalol in beagle dog plasma by UPLC-ESI-MS/MS and its application to a pharmacokinetic study.

    Science.gov (United States)

    Zhang, Lei; Teng, Liang; Gong, Can; Liu, Wei; Cheng, Xuemei; Gu, Shenghua; Deng, Zhongping; Wang, Zhengtao; Wang, Changhong

    2013-11-01

    Harmine (HAR) and harmaline (HAL) were metabolized by demethylation to form harmol (HOL) and harmalol (HAM) both in vivo and in vitro. It has been demonstrated tremendous value of HAR, HAL and their metabolites in the therapy of Alzheimer's disease. A rapid, selective and sensitive UPLC-ESI-MS/MS method was firstly developed and validated for the simultaneous determination of HAR, HAL, HOL, and HAM in beagle dog plasma with 9-aminoacridine as the internal standard (IS). After protein precipitation with acetonitrile, the analytes were separated within 4.5 min on an ACQUITY UPLC BEH C18 column with a gradient elution system composed of 0.1% formic acid and acetonitrile at a flow rate of 0.4 ml/min. Detection was performed using multiple reactions monitoring mode under a positive ionization condition. The calibration curves of four analytes showed good linearity (r(2)>0.9959) within the tested concentration ranges. The low limit of quantification for HAR, HAL, HOL, and HAM were all 1.00 ng/ml. The mean accuracy of the analytes was within the range of 94.56-112.23%, the R.S.D. values of intra-day and the inter-day precision were less than 6.26% and 7.51%, respectively. Matrix effects and extraction recoveries of the analytes from the beagle dog plasma were within the range of 94.48-105.77% and 89.07-101.44%, respectively. The validated method was successfully applied to a pharmacokinetic study of HAR, HAL, HOL, and HAM in beagle dogs after intravenous administration of HAR and HAL both of 1.0mg/kg. The main pharmacokinetic parameters of Cmax, Vd, CL, AUC and MRT, except Ke and t1/2 values, showed significant difference between the two parent drug HAR and HAL, respectively (p<0.05-0.001). Because of the different metabolic rate of HAR and HAL in vivo, the two metabolites, HOL and HAM, exhibited unique pharmacokinetic properties.

  19. Simultaneous determination of timosaponin B-II and A-III in rat plasma by LC-MS/MS and its application to pharmacokinetic study.

    Science.gov (United States)

    Feng, Yi; Chen, Baoting; Lin, Aihua; Liu, Yiming

    2014-08-15

    A rapid, specific and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the simultaneous determination of timosaponin B-II (TB-II) and A-III (TA-III) in rat plasma. Plasma samples were pretreated via simple protein precipitation with acetonitrile and ginsenoside Rg2 was used as internal standard. Chromatographic separation was carried out on an Agilent XDB-C8 (150 mm × 2.1mm i.d., 5 μm) column by isocratic elution with acetonitrile-2 mmol/L ammonium acetate (55:45, v/v). The detection was performed on a Sciex API 4000(+) triple-quadrupole tandem mass spectrometer with TurboIonSpray ionization (ESI) inlet via the negative ion multiple reaction monitoring (MRM) mode. The results showed that the calibration curve was linear in the concentration range of 3-3,000 ng/mL for TB-II and 0.3-3,000 ng/mL for TA-III, respectively. The intra- and inter-day precisions were less than 13.25%, and the accuracy ranged from 100.88% to 104.07% at three QC levels for both. The pharmacokinetic profiles of TB-II and TA-III in timosaponins (total timosaponin) at three dose levels (TB-II 150, 300, 600 mg/kg and TA-III 0.59, 1.17, 2.34 mg/kg, respectively) and in timosaponins-Huangbai alkaloids mixtures (1:1, 1:3, w/w, TB-II 300 mg/kg and TA-III 1.17 mg/kg) were studied for the first time in rats by this LC-MS/MS method. After single oral administration of timosaponins, mean Cmax and AUC0-t of TB-II and TA-III increased but non-proportional to the oral doses. When timosaponins-Huangbai alkaloids (1:1, 1:3, w/w) mixtures were administered, Cmax and AUC0-t of TB-II in the mixtures were obviously higher than the corresponding values in timosaponins at the same dose level. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Simultaneous determination of two epimeric furofuran lignans (sesamin and asarinin) of Asarum heterotropoides extract in rat plasma by LC/MS/MS: application to pharmacokinetic study.

    Science.gov (United States)

    Ma, Yingyan; Xu, Kai; Wang, Shumin; Han, Yaling

    2014-09-01

    A rapid, sensitive and selective liquid chromatography-tandem mass spectrometry was developed to determine two epimeric furofuran lignans (sesamin and asarinin) simultaneously from Asarum heterotropoides extract in rat plasma. Simple protein precipitation with acetonitrile was performed to extract analytes by using alantolactone as an internal standard. Chromatographic separation was achieved using a DIKMA Diamonsil C18 analytical column (4.6 mm × 150 mm, i.d., 5 µm) by isocratically eluting with a mobile phase consisting of methanol/5 mM ammonium acetate/formic acid (75:25:0.1, v/v/v) at a flow rate of 0.8 mL/min. Tandem mass spectrometric detection with an electrospray ionization interface was performed by multiple reaction monitoring in positive ionization mode. This method was validated according to specificity, sensitivity, linearity, intra- and inter-day precision (sesamin and 5.00-3 000 ng/mL for asarinin. This method has been successfully applied in a pharmacokinetic study of A. heterotropoides extract containing sesamin and asarinin after this extract was orally administrated in rats.

  1. Determination of lansoprazole enantiomers in dog plasma by column-switching liquid chromatography with tandem mass spectrometry and its application to a preclinical pharmacokinetic study.

    Science.gov (United States)

    Wang, Hao; Sun, Yantong; Meng, Xiangjun; Yang, Bo; Wang, Jian; Yang, Yan; Gu, Jingkai

    2015-09-01

    Lansoprazole, a selective proton pump inhibitor, has a chiral benzimidazole sulfoxide structure and is used for the treatment of gastric acid hypersecretory related diseases. To investigate its stereoselective pharmacokinetics, a column-switching liquid chromatography with tandem mass spectrometry method was developed for the determination of lansoprazole enantiomers in dog plasma using (+)-pantoprazole as an internal standard. After a simple protein precipitation procedure with acetonitrile, matrix components left behind after sample preparation were further eliminated from the sample by reversed-phase chromatography on a C18 column. The fluent was fed to a chiral column for the separation of lansoprazole enantiomers. Baseline separation of lansoprazole enantiomers was achieved on a Chiralcel OZ-RH column using acetonitrile/0.1% formic acid in water (35:65, v/v) as the mobile phase at 40°C. The linearity of the calibration curves ranged from 3 to 800 ng/mL for each enantiomer. Intra- and inter-day precisions ranged from 2.1 to 7.3% with an accuracy of ±1.7% for (+)-lansoprazole, and from 1.6 to 6.9% with an accuracy of ±3.5% for (-)-lansoprazole, respectively. The validated method was successfully applied for the stereoselective pharmacokinetic study of lansoprazole in beagle dog after intravenous infusion.

  2. Using UPLC-MS/MS for Characterization of Active Components in Extracts of Yupingfeng and Application to a Comparative Pharmacokinetic Study in Rat Plasma after Oral Administration

    Directory of Open Access Journals (Sweden)

    Meng-Qi Jia

    2017-05-01

    Full Text Available Yupingfeng (YPF, a famous traditional Chinese medicine, which contains a large array of compounds, has been effectually used in health protection. A two-dimensional liquid chromatography (2D-LC combined with quadrupole time-of-flight mass spectrometry (QTOF-MS method was firstly established to separate and identify chemical components in YPF. A total of 33 compounds were identified, including 15 constituents (flavonoids and saponins in Astragali radix; seven constituents (sesquiterpenoids and polysaccharide in Atractylodis rhizoma; and 11 constituents (chromone and coumarins in Saposhnikoviae radix. The corresponding fragmentation pathway of typical substances was investigated. Then, seven active constituents (astragaloside, calycosin, formononetin, cimicifugoside, 4-O-beta-d-glucosyl-5-O-methylvisamminol, sec-O-glucosylhamaudol, and atractylenolide II derived from three medicinal plants were chosen to further investigate the pharmacokinetic behavior of YPF formula using ultrahigh-performance liquid chromatography with triple quadrupole mass spectrometry system. The method was sensitive, accurate and reliable. We also used the area under the plasma concentration–time curve from zero to infinity (AUC0−∞ as weighting factor to make an integrated pharmacokinetic curve. Results show that the constituents of Saposhnikoviae radix have the best absorption and pharmacokinetic behavior and may play important role in leading to the changes of overall therapeutic effects of YPF. Further study is needed to confirm the association between them.

  3. Rapid high performance liquid chromatographic method for determination of clarithromycin in human plasma using amperometric detection: application in pharmacokinetic and bioequivalence studies.

    Science.gov (United States)

    Foroutan, Seyed Mohsen; Zarghi, Afshin; Shafaati, Alireza; Madadian, Babak; Abolfathi, Farshid

    2013-01-01

    A rapid, sensitive and reproducible HPLC method using amperometric detector was developed and validated for the analysis of clarithromycin in human plasma. The separation was achieved on a monolithic silica column (MZ- C8 125×4.0 mm) using acetonitrile-methanol-potassium dihydrogen phosphate buffer (40:6:54,v/v), with pH of 7.5, as the mobile phase at a flow rate of 1.5 mL/min. The assay enables the measurement of clarithromycin for therapeutic drug monitoring with a minimum quantification limit of 20 ng/mL. The method involves simple, protein precipitation procedure and analytical recovery was complete. The calibration curve was linear over the concentration range of 0.1-6 μg/mL. The coefficients of variation for inter-day and intra-day assay were found to be less than 6%. This method was used in bioequivalency and pharmacokinetic studies of the test (generic) product 2 × 500 mg clarithromycin tablets, with respect to the reference product.

  4. Simultaneous determination of ambroxol and salbutamol in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study.

    Science.gov (United States)

    Guo, Zhening; Chen, Yangsheng; Ding, Xiaoliang; Huang, Chenrong; Miao, Liyan

    2016-11-01

    A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry assay method was developed for simultaneous determination of ambroxol and salbutamol in human plasma using citalopram hydrobromide as internal standard (IS). The sample was alkalinized with ammonia water (33:67, v/v) and extracted by single liquid-liquid extraction with ethyl acetate. Separation was achieved on Waters Acquity UPLC BEH C18 column using a gradient program at a flow rate of 0.2 mL/min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the ion transitions m/z 378.9 → 263.6 (ambroxol), m/z 240.2 → 147.7 (salbutamol) and m/z 325.0 → 261.7 (IS). The total analytical run time was relatively short (3 min). Calibration curves were linear in the concentration range of 0.5-100.0 ng/mL for ambroxol and 0.2-20.0 ng/mL for salbutamol, with intra- and inter-run precision (relative standard deviation) salbutamol. The method was successfully applied in a clinical pharmacokinetic study of the compound ambroxol and salbutamol tablets.

  5. Development and Validation of a LC-MS/MS Method for the Simultaneous Estimation of Amlodipine and Valsartan in Human Plasma: Application to a Bioequivalence Study.

    Science.gov (United States)

    Jangala, Hemanth; Vats, Poonam; Khuroo, Arshad Hussain; Monif, Tausif

    2014-01-01

    A reliable, simple, and robust liquid chromatography-tandem mass spectro-metric (LC-MS/MS) method has been developed and validated that employs solid-phase extraction for the simultaneous estimation of amlodipine and valsartan in human K3EDTA plasma using amlodipine-d4 and valsartan-d9 as internal standards. Chromatographic separation of amlodipine and valsartan was achieved on the Luna C18 (2)100A (150 × 4.6 mm, 5 μm) column using acetonitrile: 5 mM ammonium formate solution (80:20, v/v) as the mobile phase at a flow rate of 0.8 mL/min in isocratic mode. Quantification was achieved using an electrospray ion interface operating in positive mode, under multiple reaction monitoring (MRM) conditions. The assay was found to be linear over the range of 0.302-20.725 ng/mL for amlodipine and 6.062-18060.792 ng/mL for valsartan. The method has shown good reproducibility, as intra- and interday precisions were within 10% and accuracies were within 8% of nominal values for both analytes. The method was successfully applied for the bioequivalence study of amlodipine and valsartan after oral administration of a fixed dose of the combination. Additionally, as required by the current regulatory bodies, incurred sample reanalysis was performed and found to be acceptable.

  6. Development of a sensitive UPLC-ESI-MS/MS method for quantification of sofosbuvir and its metabolite, GS-331007, in human plasma: Application to a bioequivalence study.

    Science.gov (United States)

    Rezk, Mamdouh R; Basalious, Emad B; Karim, Iman A

    2015-10-10

    A rapid and simple LC-MS/MS method was developed and validated for the simultaneous estimation of sofosbuvir (SF) and its metabolite GS-331007 (GS) using famotidine as an internal standard (IS). The Xevo TQD LC-MS/MS was operated under the multiple-reaction monitoring mode using electrospray ionization. Extraction with ethyl acetate was used in sample preparation. The prepared samples were chromatographed on Acquity UPLC HSS C₁₈ (50 mm × 2.1 mm, 1.8 μm) column by pumping 0.1% formic acid and acetonitrile (50:50, v/v) in an isocratic mode at a flow rate of 0.3 ml/min. Method validation was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 10-2500 ng/ml for both SF and its metabolite. The intra-day and inter-day precision and accuracy results were within the acceptable limits. A very short run time of 1.2 min made it possible to analyze more than 300 human plasma samples per day. The developed assay method was successfully applied to a bioequivalence study in human volunteers.

  7. Liquid chromatography-tandem mass spectrometry simultaneous determination of repaglinide and metformin in human plasma and its application to bioequivalence study.

    Science.gov (United States)

    Liang, Xiao-Rong; Dai, Xiao-Jian; Zhang, Yi-Fan; Ding, Jue-Fang; Chen, Xiao-Yan; Zhong, Da-Fang

    2013-04-01

    A simple, sensitive, selective, and reproducible liquid chromatography-tandem mass spectrometric method was developed for the simultaneous determination of repaglinide and metformin in human plasma using d5-repaglinide and d6-metformin as internal standards (ISs). After a simple protein precipitation using acetonitrile as the precipitation solvent, both analytes and ISs were separated on a Venusil ASB C 18 (150 mm x 4.6 mm, 5 microm) via gradient elution using acetonitrile--10 mmol x L(-1) ammonium acetate as the mobile phase. A chromatographic total run time of 7.5 min was achieved. Mass spectrometric detection was conducted with atmospheric pressure chemical ionization under positive-ion and multiple-reaction monitoring modes. The method was linear over the 0.2 to 60.0 ng x mL(-1) concentration range for repaglinide and over the 4 to 1 000 ng x mL(-1) range for metformin. For both analytes, the intra- and inter-accuracies and precisions were within the +/- 15% acceptable limit across all concentrations. The validated method was successfully applied to a clinical bioequivalence study.

  8. Determination of bevantolol in human plasma using liquid chromatography-electrospray ionization tandem mass spectrometry and its application to a bioequivalence study.

    Science.gov (United States)

    Ren, Li; Wang, Zheng; Lou, Yiceng; Zheng, Lu; Zheng, Heng; Yin, Chunping

    2014-05-15

    A liquid chromatography-electrospray ionization tandem mass spectrometry method was established and validated for the determination of bevantolol in human plasma using propranolol as the internal standard. The optimal chromatographic behavior of bevantolol and propranolol was achieved on a Welch Ultimate XB-C18 column (5 μm, 150 mm × 2.1mm, Maryland, USA) with a mobile phase of acetonitrile-water (40:60, v/v) containing 10mM ammonium acetate and 0.1% formic acid. The mass spectrometer was operated in selected reaction monitoring mode using the transition m/z 346.1>165.1 for bevantolol and m/z 260.3>116.1 for propranolol. Sample preparation was carried out through protein precipitation with acetonitrile. The calibration curves were linear over the range of 5.00-1,000 ng/ml. The intra- and inter-day precisions were less than 6.7% and 6.6%, respectively. This method was successfully applied to the bioequivalence study of two kinds of bevantolol hydrochloride tablets in 24 Chinese male volunteers in fasting and postprandial experiment.

  9. Plasma promoted manufacturing of hydrogen and vehicular applications

    Science.gov (United States)

    Bromberg, Leslie

    2003-10-01

    Plasmas can be used for promoting reformation of fuels. Plasma-based reformers developed at MIT use a low temperature, low power, low current electrical discharge to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The very fuel rich mixture is hard to ignite, and the plasmatron provides a volume-ignition. To minimize erosion and to simplify the power supply, a low current high voltage discharge is used, with wide area electrodes. The plasmatron fuel reformer operates at or slightly above atmospheric pressure. The plasma-based reformer technology provides the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels. These advantages enable use of hydrogen-manufacturing reformation technology in cars using available fuels, such as gasoline and diesel. This plasma-based reformer technology can provide substantial throughputs even without the use of a catalyst. The electrical power consumption of the device is minimized by design and operational characteristics (less than 500 W peak and 200 W average). The product from these plasma reactors is a hydrogen rich mixture that can be used for combustion enhancement and emissions aftertreatment in vehicular applications. By converting a small fraction of the fuel to hydrogen rich gas, in-cylinder combustion can be improved. With minor modification of the engine, use of hydrogen rich gas results in increased fuel efficiency and decreased emissions of smog producing gases. The status of plasma based reformer technology and its application to vehicles will be described.

  10. Determination of 6258-70, a new semi-synthetic taxane, in rat plasma and tissues: Application to the pharmacokinetics and tissue distribution study

    Directory of Open Access Journals (Sweden)

    Simin Zhao

    2016-08-01

    Full Text Available Cancer is the leading cause of death all over the world. Among the chemotherapy drugs, taxanes play an important role in cancer treatment. 6258-70 is a new semi-synthetic taxane which has a broad spectrum of antitumor activity. A fast and reliable high performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS method was developed for quantification of 6258-70 in rat plasma and tissues in this paper. After extraction by liquid-liquid extraction method with methyl tert-butyl ether, the samples were separated on a Kinetex C18 column (50 mm×2.1 mm, 2.6 µm, Phenomenex, USA within 3 min. The method was fully validated with the matrix effect between 87.7% and 99.5% and the recovery ranging from 80.3% to 90.1%. The intra- and inter-day precisions were less than 9.5% and the accuracy ranged from −3.8% to 6.5%. The reliable method was successfully applied to the pharmacokinetics and tissue distribution studies of 6258-70 after intravenous administration in rats. The pharmacokinetic results indicated that the pharmacokinetic behavior of 6258-70 in rats was in accordance with linear features within tested dosage of 1 to 4 mg/kg, and there was no significant difference between the two genders. The tissue distribution study showed that 6258-70 had an effective penetration, spread widely and rapidly and could cross blood-brain barrier. The results of pharmacokinetics and tissue distribution may provide a guide for future study.

  11. Quantitative determination of isorhamnetin, quercetin and kaempferol in rat plasma by liquid chromatography with electrospray ionization tandem mass spectrometry and its application to the pharmacokinetic study of isorhamnetin.

    Science.gov (United States)

    Lan, Ke; Jiang, Xuehua; He, Jianling

    2007-01-01

    A simple and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of quercetin, kaempferol and isorhamnetin in rat plasma. After being treated with beta-glucuronidase and sulfatase, the analytes were extracted by liquid/liquid extraction with the internal standard (IS; baicalein). The chromatographic separation was performed on a Diamonsil C(18) column with a mobile phase consisting of 2% formic acid/methanol (10:90, v/v) at a flow rate of 1.00 mL/min, with a split of 200 microL to the mass spectrometer. Validation results indicated that the lower limit of quantification (LLOQ) was 1 ng . mL(-1). The assay exhibited a linear range of 1-200 ng . mL(-1) and gave a correlation coefficient of 0.9980 or better for each analyte. Quality control samples (1, 5, 20 and 100 ng . mL(-1)) in six replicates from each of three different runs demonstrated an intra-assay precision (RSD) of 1.1-8.9%, an inter-assay precision of 1.6-10.8%, and an overall accuracy (bias) of isorhamnetin after oral application in rats equipped with a jugular catheter. After oral dosing of isorhamnetin, the mean values (n = 10) of C(max) were 57.8, 64.8 and 75.2 ng . mL(-1) which were achieved at a T(max) of 8.0, 6.4 and 7.2 h for oral doses of 0.25, 0.5 and 1.0 mg . kg(-1) body weight, respectively. The corresponding mean values for isorhamnetin area under the curver (AUC) from 0 to 60 h were 838.2, 1262.8, 1623.4 ng . h . mL(-1). Our results further demonstrated that the samples analyzed showed isorhamnetin could not be transformed into quercetin or kaempferol in rats, indicating that the demethylation of the 3'-oxymethyl group of isorhamnetin does not occur in Wistar rats.

  12. Supported plasma-made 1D heterostructures: perspectives and applications

    Energy Technology Data Exchange (ETDEWEB)

    Borras, Ana; Macias-Montero, Manuel; Romero-Gomez, Pablo; Gonzalez-Elipe, Agustin R, E-mail: anaisabel.borras@icmse.csic.es [Materials Science Institute of Seville (CSIC-Universidad Sevilla), C/Americo Vespucio 49 41092, Sevilla (Spain)

    2011-05-04

    Plasma-related methods have been widely used in the fabrication of carbon nanotubes and nanofibres (NFs) and semiconducting inorganic nanowires (NWs). A natural progression of the research in the field of 1D nanostructures is the synthesis of multicomponent NWs and NFs. In this paper we review the state of the art of the fabrication by plasma methods of 1D heterostructures including applications and perspectives. Furthermore, recent developments on the use of metal seeds (Ag, Au, Pt) to obtain metal-oxide nanostructures are also extensively described. Results are shown for various metal substrates, either metal foils or supported nanoparticles/thin films of the metal where the effects of the size, surface coverage, percolation degree and thickness of the metal seeds have been systematically evaluated. The possibilities of the process are illustrated by the preparation of nanostructured films and supported NFs of different metal-oxides (Ag, Au and SiO{sub 2}, TiO{sub 2}, ZnO). Particularly, in the case of silver, the application of an oxygen plasma treatment prior to the deposition of the oxide was critical for efficiently controlling the growth of the 1D heterostructures. A phenomenological model is proposed to account for the thin-film nanostructuring and fibre formation by considering basic phenomena such as stress relaxation, inhomogeneities in the plasma sheath electrical field and the local disturbance of the oxide growth.

  13. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José [Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Centro de Investigación y Aplicaciones en Física de Plasmas y Potencia Pulsada, P" 4, Santiago-Talca (Chile); Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile); Inestrosa-Izurieta, María José [Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Centro de Investigación y Aplicaciones en Física de Plasmas y Potencia Pulsada, P" 4, Santiago-Talca (Chile); Veloso, Felipe [Instituto de Física, Pontificia Universidad Católica de Chile, Santiago (Chile); Gutiérrez, Gonzalo [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Vergara, Julio [Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago (Chile); Clausse, Alejandro [CNEA-CONICET and Universidad Nacional del Centro, 7000 Tandil (Argentina); Bruzzone, Horacio [CONICET and Universidad de Mar del Plata, Mar del Plata (Argentina); Castillo, Fermín [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos (Mexico); and others

    2014-12-15

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{sup 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.

  14. The plasma focus as a tool for plasma-wall-interaction studies

    Science.gov (United States)

    Ramos, G.; Martinez, M.; Herrera, J. J. E.; Castillo, F.

    2015-03-01

    The study of the interaction of magnetized plasmas with candidate materials for fusion reactors, as for example tungsten, is a main topic in fusion research. Many studies simulate the plasma wall interaction using ion beams, while only a few use plasma simulators. Plasma foci can produce dense magnetized plasmas of deuterium and helium among other species. We used the plasma focus Fuego-Nuevo II, to expose tungsten samples to deuterium and helium plasmas. The samples were analysed by means of SEM, RBS and NRA, evidencing surface erosion, surface melting and retention of deuterium in a shallow surface layer of 250 nm amounting 6.5·1016 D/cm2. The plasma temperature has been measured at the position of the samples using a triple Langmuir probe and compared to calculations of a snowplow model. The modelling of the electrode to reach desired plasma parameters is discussed.

  15. A fully validated HPLC method for the simultaneous determination of acitretin and etretinate in plasma and its application to a pharmacokinetic study in healthy Korean subjects.

    Science.gov (United States)

    Park, H-D; Kim, H-K; Chun, M-R; Kim, J-W; Kim, D-W; Lee, J-H; Huh, W S; Youn, J-I; Kim, H-G; Kim, Y G; Kim, M-H; Lee, S-Y

    2009-07-01

    Acitretin is used for the treatment of psoriasis. The purpose of this study was to validate an HPLC method for the determination of acitretin and etretinate and to investigate the pharmacokinetic characteristics of acitretin in healthy Korean subjects. Plasma samples or calibrators were mixed with acetonitrile and retinyl acetate (internal standard). Butanol: acetonitrile (1:1 v/v) and K2HPO4 were added later. After vortexing, 30 microl of the supernatant was injected directly into the analytical column of an HPLC system. The samples were separated by C18 reversed phase HPLC and UV detection was performed at 350 nm. Various assay performances were evaluated. The linearity of acitretin and etretinate was adequate up to 500 ng/ml (R2 = 0.9937 for acitretin and R2 = 0.9923 for etretinate). The accuracy was 89.5 - 113.5% and the precision was satisfactory (within-run CV, 4.4 - 15.8%; between-run CV, 3.3 - 17.4%). The LLOQ was 2 ng/ml and the stability and specificity were satisfactory. However, after storage at room temperature for 24 h under light exposure, the concentrations of acitretin and etretinate decreased by 26.0 - 66.5%. Extraction recovery was 75.1 - 91.5%. Nine healthy Korean subjects were evaluated to study the pharmacokinetics of acitretin. A single oral dose of 30 mg acitretin (Neotigason, Roche Pharmaceuticals) was given to all volunteers. The mean +/- SD pharmacokinetics of acitretin in Koreans were as follows: Cmax 148.7 +/- 93.0 ng/ml, tmax 3.2 +/- 1.3 h, t1/2 81.2 +/- 26.5 h, and AUClast 2641.9 +/- 1274.8 ng h/ml. A simple HPLC method for the simultaneous determination of acitretin and etretinate was validated, and the pharmacokinetic characteristics of acitretin in the Korean population were investigated.

  16. Development of a Supercritical Fluid Chromatography-Tandem Mass Spectrometry Method for the Determination of Azacitidine in Rat Plasma and Its Application to a Bioavailability Study

    Directory of Open Access Journals (Sweden)

    Dongpo Li

    2013-12-01

    Full Text Available Azacitidine is widely used for the treatment of myelodysplastic syndromes (MDS and acute myelogenous leukaemia (AML. The analysis of azacitidine in biological samples is subject to interference by endogenous compounds. Previously reported high-performance liquid chromatography/tandem mass spectrometric (HPLC-MS/MS bioanalytical assays for azacitidine suffer from expensive sample preparation procedures or from long separation times to achieve the required selectivity. Herein, supercritical fluid chromatography with tandem mass spectrometry (SFC-MS/MS was explored as a more promising technique for the selective analysis of structure-like or chiral drugs in biological matrices. In this study, a simple, rapid and specific SFC/MS/MS analytical method was developed for the determination of azacitidine levels in rat plasma. Azacitidine was completely separated from the endogenous compounds on an ACQUITY UPLC™ BEH C18 column (100 mm × 3.0 mm, 1.7 μm; Waters Corp., Milford, MA, USA using isocratic elution with CO2/methanol as the mobile phase. The single-run analysis time was as short as 3.5 min. The sample preparation for protein removal was accomplished using a simple methanol precipitation method. The lower limit of quantification (LLOQ of azacitidine was 20 ng/mL. The intra-day and inter-day precisions were less than 15%, and the relative error (RE was within ±15% for the medium- and high-concentration quality control (QC samples and within ±20% for the low-concentration QC samples. Finally, the developed method was successfully applied to a pharmacokinetic study in rats following the intravenous administration of azacitidine.

  17. Characterizations of atmospheric pressure low temperature plasma jets and their applications

    Science.gov (United States)

    Karakas, Erdinc

    2011-12-01

    Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a donut-shaped makeup. The nature of the plasma bullet is especially interesting because it propagates in the ambient air at supersonic velocities without any externally applied electric field. In this dissertation, experimental insights are reported regarding the physical and chemical characteristics of the APLTPJs. The dynamics of the plasma bullet are investigated by means of a high-speed ICCD camera. A plasma bullet propagation model based on the streamer theory is confirmed with adequate explanations. It is also found that a secondary discharge, ignited by the charge accumulation on the dielectric electrode surfaces at the end of the applied voltage, interrupts the plasma bullet propagation due to an opposing current along the ionization channel. The reason for this interesting phenomenon is explained in detail. The plasma bullet comes to an end when the helium mole fraction along the ionization channel, or applied voltage, or both, are less than some critical values. The presence of an inert gas channel in the surrounding air, such as helium or argon, has a critical role in plasma bullet formation and propagation. For this reason, a fluid dynamics study is employed by a commercially available simulation software, COMSOL, based on finite element method. Spatio

  18. Method development and validation for naratriptan determination in human plasma by HPLC with tandem mass spectrometry detection, and its application to bioequivalence study

    Directory of Open Access Journals (Sweden)

    Balasekhara Reddy Challa

    2011-03-01

    Full Text Available The authors developed a simple, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS method for the quantification of naratriptan (NP in human plasma using naratriptan-d3 (NPD3 as an internal standard (IS. Chromatographic separation was performed on a Zorbax SB-C18, 75 x 4.6 mm, 3.5 µm column with an isocratic mobile phase composed of 0.1% formic acid : acetonitrile (50:50 v/v, at a flow-rate of 0.6 mL/min. NP and NPD3 were detected with proton adducts at m/z 336.5→98.0 and 339.4→101.0 in selected reaction monitoring (SRM positive mode, respectively. The liquid-liquid extraction method was used to extract the NP and NPD3. This method was validated over a linear concentration range of 0.1-25.0 ng/mL with a correlation coefficient of (r2 > 0.9998. The Intra-day and Interday precision was found to be 1.8 to 3.6%, and 2.3 to 2.6%, and accuracy to be 101.7- 104.2% and 101.8 to 102.9%, respectively. NP was found to be stable throughout freeze-thaw (three cycles, bench top and auto sampler stability studies. This method was successfully applied for the analysis of plasma samples following oral administration of NP (2.5 mg in 31 healthy Indian male human volunteers under fasting conditions.Os autores desenvolveram um método simples, sensível e específico de cromatografia líquida-espectrometria de massa-tandem (LC-MS/MS para a quantificação de naratriptan (NP em plasma humano empregando naratriptan-d3 (NPD3 como padrão interno de referência (IS. A separação cromatográfica foi realizada em coluna Zorbax SB-C18, 75 x 4,6 mm, 3,5 μm com fase móvel isocrática composta por 0,1% ácido fórmico : acetronitrila (50:50 v/v e taxa de fluxo de 0,6 mL/min. NP e NPD3 foram detectados com adutos de prótons a m/z 336.5→98.0 e 339.4→101.0 in em modo positivo do tipo monitoramento de reação selecionada (SRM, respectivamente. Extração líquido-líquido foi empregada para extrair NP e NPD3, sendo o método validado

  19. Quantification and clinical application of carboplatin in plasma ultrafiltrate.

    Science.gov (United States)

    Downing, Kim; Jensen, Berit Packert; Grant, Sue; Strother, Matthew; George, Peter

    2017-05-10

    Carboplatin is a chemotherapy drug used in a variety of cancers with the primary toxicity being exposure-dependant myelosuppression. We present the development and validation of a simple, robust inductively coupled plasma mass spectrometry (ICP-MS) method to measure carboplatin in plasma ultrafiltrate. Plasma ultrafiltrates samples were prepared using Amicon Ultra 30,000da cut-off filters and then diluted with ammonia EDTA before ICP-MS analysis. The assay was validated in the range 0.19-47.5mg/L carboplatin in ultrafiltrate. The assay was linear (r(2)>0.9999), accurate (plasma ultrafiltrate and aqueous platinum calibrators and recovery was complete. The assay was applied to 10 clinical samples from patients receiving carboplatin. Incurred sample reanalysis showed reproducible values over 3 analysis days (plasma stability prior to ultrafiltration has been a major concern in previous clinical studies this was studied extensively at room temperature (22°C) over 24h. Carboplatin was found to be stable in both spiked plasma (n=3) and real patient samples (n=10) at room temperature for up to 8h before ultrafiltration. This makes routine measurement of carboplatin concentrations in clinical settings feasible. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development and Validation of a Method for Simultaneous Estimation of Metformin and Sitagliptin in Human Plasma by LC-MS-MS and Its Application in a Bioequivalence Study.

    Science.gov (United States)

    Reddy, Srinivasa; Ahmed, Imran; Ahmad, Iqbal; Mukhopadhyay, Arindam; Thangam, Saral

    2015-10-01

    A simple, sensitive, precise and accurate method for simultaneous estimation of metformin and sitagliptin from human plasma was developed and validated. Samples extracted from plasma using acetonitrile were separated on an SCX column and estimated using API 4000 Mass Spectrometer in the positive atmospheric pressure ionization mode (Turboionspray) by following multiple reaction monitoring transitions for both parent and daughter ions. A linear calibration plot was achieved for both the analytes in the concentration ranges of 10-2,206 ng/mL (for metformin) and 3-800.5 ng/mL (for sitagliptin) prepared in K2EDTA pooled plasma. Mean recovery for metformin was 92% and for sitagliptin was 104.5%. It is a fully validated method and successfully applied for estimation of these drug molecules during biostudies.

  1. Carbon fiber composites application in ITER plasma facing components

    Science.gov (United States)

    Barabash, V.; Akiba, M.; Bonal, J. P.; Federici, G.; Matera, R.; Nakamura, K.; Pacher, H. D.; Rödig, M.; Vieider, G.; Wu, C. H.

    1998-10-01

    Carbon Fiber Composites (CFCs) are one of the candidate armour materials for the plasma facing components of the International Thermonuclear Experimental Reactor (ITER). For the present reference design, CFC has been selected as armour for the divertor target near the plasma strike point mainly because of unique resistance to high normal and off-normal heat loads. It does not melt under disruptions and might have higher erosion lifetime in comparison with other possible armour materials. Issues related to CFC application in ITER are described in this paper. They include erosion lifetime, tritium codeposition with eroded material and possible methods for the removal of the codeposited layers, neutron irradiation effect, development of joining technologies with heat sink materials, and thermomechanical performance. The status of the development of new advanced CFCs for ITER application is also described. Finally, the remaining R&D needs are critically discussed.

  2. Antenna coupling study for ICWC plasma characterization in TEXTOR

    Indian Academy of Sciences (India)

    Manash Kumar Paul; A Lyssoivan; R Koch; G Van Wassenhove; M Vervier; G Bertschinger; R Laengner; B Unterberg; G Sergienko; V Philipps; T Wauters; the TEXTOR Team

    2013-01-01

    Ion cyclotron wall conditioning (ICWC) discharges, in pulsed-mode operation, were carried out in the limiter tokamak TEXTOR to explore safe operational regimes for the experimental parameters for possible ICWC-discharge cleaning in International Thermonuclear Experimental Reactor (ITER) at half field. Antenna coupling properties obtained during the ion cyclotron range of frequencies (ICRF) wall conditioning experiments performed in helium–hydrogen mixture in TEXTOR were analysed in relation to the obtained ICWC-plasma characterization results. Satisfactory antenna coupling in the mode conversion scenario along with reproducible generation of ICRF plasmas for wall conditioning, were achieved by coupling radio frequency (RF) power from one or two ICRF antennas. The plasma breakdown results obtained in the TEXTOR tokamak have been compared with the predictions of a zero-dimensional RF plasma production model. The present study of ICWC emphasizes the beneficial effect of application of an additional (along with toroidal magnetic field) stationary vertical ($B_{V} \\ll B_{T}$) or oscillating poloidal magnetic field ($B_{P} \\ll B_{T}$) on antenna coupling and relevant plasma parameters.

  3. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    Science.gov (United States)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  4. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  5. Study on Fe-Based Coating Produced by Plasma Surface Metallurgy

    Institute of Scientific and Technical Information of China (English)

    LI Hui-qi; LIU Bang-wu; LI Hui-dong; ZHANG Li-min; LI Min; SUN Yu-zong

    2004-01-01

    In the paper, plasma surface metallurgy was performed using Fe-based powder on steel substrate. The microstructure and microhardness of the coating have been analyzed. On the base of orthogonal comparison tests,influences of many factors on the cracking sensibility of plasma metallurgy coating have also been studied. The results indicate that substrate and its surface condition, processing parameters and components of plasma metallurgy coating have great effects on cracking sensibility of plasma metallurgy coating. Through changing these factors, it is possible to reduce cracks and promote the applications of this technology.Key Words: plasma surface metallurgy, microstructure, microhardness, cracking sensibility

  6. Treatment of textile surfaces by plasma technology for biomedical applications

    OpenAIRE

    Labay, Cédric

    2014-01-01

    Medical applications of technical textiles are an expanding field of research. One of the added values of these new materials would be that they were suitable to contain and release active compounds in a controlled and sustained manner. Drug incorporation and release from synthetic fibers is related to the interaction of the drug with the polymer and probably greatly depends on the surface chemistry of the fiber. Plasma technology is a tool that enables to modify physical and chemical prop...

  7. Numerical Study of Suspension Plasma Spraying

    CERN Document Server

    Farrokhpanah, Amirsaman; Mostaghimi, Javad

    2016-01-01

    A numerical study of suspension plasma spraying (SPS) is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for particles as they travel towards the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate are investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power are studied. Additionally, effect of injector parameters like injection location, flow rate, and angle are examined. The model used in current study takes high temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, s...

  8. A simple, rapid and sensitive RP-HPLC-UV method for the simultaneous determination of sorafenib & paclitaxel in plasma and pharmaceutical dosage forms: Application to pharmacokinetic study.

    Science.gov (United States)

    Khan, Ismail; Iqbal, Zafar; Khan, Abad; Hassan, Muhammad; Nasir, Fazle; Raza, Abida; Ahmad, Lateef; Khan, Amjad; Akhlaq Mughal, Muhammad

    2016-10-15

    A simple, economical, fast, and sensitive RP-HPLC-UV method has been developed for the simultaneous quantification of Sorafenib and paclitaxel in biological samples and formulations using piroxicam as an internal standard. The experimental conditions were optimized and method was validated according to the standard guidelines. The separation of both the analytes and internal standard was achieved on Discovery HS C18 column (250mm×4.6mm, 5μm) using Acetonitrile and TFA (0.025%) in the ratio of (65:35V/V) as the mobile phase in isocratic mode at a flow rate of 1ml/min, with a wavelength of 245nm and at a column oven temperature of 25°Cin a short run time of 12min. The limits of detection (LLOD) were 5 and 10ng/ml while the limits of quantification (LLOQ) were 10 and 15ng/ml for sorafenib and paclitaxel, respectively. Sorafenib, paclitaxel and piroxicam (IS) were extracted from biological samples by applying acetonitrile as a precipitating and extraction solvent. The method is linear in the range of 15-20,000ng/ml for paclitaxel and 10-5000ng/ml for sorafenib, respectively. The method is sensitive and reliable by considering both of its intra-day and inter-day co-efficient of variance. The method was successfully applied for the quantification of the above mentioned drugs in plasma. The developed method will be applied towards sorafenib and paclitaxel pharmacokinetics studies in animal models.

  9. Simultaneous stereoselective analysis of tramadol and its primary phase I metabolites in plasma by liquid chromatography. Application to a pharmacokinetic study in humans.

    Science.gov (United States)

    Campanero, Miguel Angel; García-Quetglas, Emilio; Sádaba, Belén; Azanza, Jose Ramón

    2004-03-26

    This paper describes a bioanalytical method involving a simple liquid-liquid extraction for the simultaneous HPLC determination of the enantiomers of tramadol, the active metabolite O-desmethyltramadol (M1), and the other main metabolite N-desmethyltramadol (M2) in biological samples. Chromatography was performed at 5 degrees C on a Chiracel OD-R column containing cellulose tris(3,5-dimethylphenylcarbamate) as chiral selector, preceded by a achiral end-capped C8 column (LiChrospher 60-RP-selected B 5 microm, 250 mm x 4 mm). The mobile phase was a mixture of phosphate buffer containing sodium perchlorate (1 M) adjusted to pH 2.5-acetonitrile-N,N-dimethyloctylamine (74.8:25:0.2). The flow rate was 0.5 ml/min. Fluorescence detection (lambda(ex) 200 nm/lambda(em) 301 nm) was used. Fluconazol was selected as internal standard. The limit of quantitation of each enantiomer of tramadol and their metabolites was 0.5 ng/ml (sample size = 0.5 ml). The chiral conditions and the LC optimisation were investigated in order to select the most appropriate operating conditions. The method developed has also been validated. Mean recoveries above of 95% for each enantiomer were obtained. Calibration curves for tramadol enantiomers (range 1-500 ng/ml), M1 enantiomers (range 0.5-100 ng/ml), and M2 enantiomers (range 0.5-250 ng/ml) were linear with coefficients of correlation better than 0.996. Within-day variation determined on four different concentrations showed acceptable values. The relative standard deviation (R.S.D.) was determined to be less than 10%. This method was successfully used to investigate plasma concentration of enantiomers of tramadol, O-desmethyltramadol and N-desmethyltramadol in a pharmacokinetic study.

  10. Determination of 21-hydroxydeflazacort in human plasma by high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. Application to bioequivalence study.

    Science.gov (United States)

    Ifa, D R; Moraes, M E; Moraes, M O; Santagada, V; Caliendo, G; de Nucci, G

    2000-03-01

    A liquid chromatographic atmospheric pressure chemical ionization tandem mass spectrometric method is described for the determination of 21-hydroxydeflazacort in human plasma using dexamethasone 21-acetate as an internal standard. The procedure requires a single diethyl ether extraction. After evaporation of the solvent under a nitrogen flow, the analytes are reconstituted in the mobile phase, chromatographed on a C18 reversed-phase column and analyzed by mass spectrometry via a heated nebulizer interface where they are detected by multiple reaction monitoring. The method has a chromatographic run time of less than 5 min and a linear calibration curve with a range of 1-400 ng ml(-1) (r>0.999). The between-run precision, based on the relative standard deviation for replicate quality controls, was Comercio, Brazil, as a test formulation, and Calcort from Merrell Lepetit, Brazil, as a reference formulation) in 24 healthy volunteers of both sexes who received a single 30 mg dose of each formulation. The study was conducted using an open, randomized, two-period crossover design with a 7-day washout interval. The 90% confidence interval (CI) of the individual geometric mean ratio for Denacen/Calcort was 89.8-109.5% for area under the curve AUC(0-24 h) and 80.7-98.5% for Cmax. Since both the 90% CI for AUC(0-24 h) and Cmax were included in the 80-125% interval proposed by the US Food and Drug Administration, Denacen was considered bioequivalent to Calcort according to both the rate and extent of absorption.

  11. A rapid and simple high-performance liquid chromatography method for the determination of human plasma levofloxacin concentration and its application to bioequivalence studies.

    Science.gov (United States)

    Zhou, Zhi-Ling; Yang, Min; Yu, Xi-Yong; Peng, Huai-Yan; Shan, Zhi-Xin; Chen, Shu-Zhen; Lin, Qiu-Xiong; Liu, Xiao-Ying; Chen, Tie-Feng; Zhou, Shu-Feng; Lin, Shu-Guang

    2007-10-01

    A high-performance liquid chromatography method with fluorescence detection (HPLC-FLD) for the determination of levofloxacin in human plasma is described. Neutralized with phosphate buffer (pH 7.0), the sample (0.1 mL) was extracted with dichlormethane (1 mL). After voltex-mixing and centrifuged at 3000g for 6 min at 4 degrees C, the upper aqueous layer was aspirated using a micro vacuum pump and the organic layer was directly transferred to a clean test tube without pipetting. The organic solvent was evaporated and the residues were reconstituted with the mobile phase. Levofloxacin and terazosin (internal standard, IS) were chromatographically separated on a C(18) column with a mobile phase containing phosphate buffer (pH 3.0, 10 mm), acetonitrile and triethylamine (76:24:0.076, v/v/v) at a flow rate of 1 mL/min. The analytes were detected using fluorescence detection at an excitation and emission wavelength of 295 and 440 nm, respectively. The linear range of the calibration curves was 0.0521-5.213 microg/mL for levofloxacin with a lower limit of quantitation (0.0521 microg/mL). The retention times of levofloxacin and terazosin were 2.5 and 3.1 min, respectively. Within- and between-run precision was less than 12 and 11%, respectively. Accuracy ranged from -6.3 to 4.5%. The recovery ranged from 86 to 89% at the concentrations of 0.0521, 0.5213 and 5.213 microg/mL. The present HPLC-FLD method is sensitive, efficient and reliable. The method described herein has been successfully used for the pharmacokinetic and bioequivalence studies of a levofloxacin formulation product after oral administration to healthy Chinese volunteers.

  12. Development of a rapid and sensitive UPLC-MS/MS assay for the determination of TM-2 in beagle dog plasma and its application to a pharmacokinetic study.

    Science.gov (United States)

    Lin, Hongli; Zhao, Yunli; Men, Lei; Yang, Mingjing; Liu, Hui; Shao, Yanjie; Wang, Pei; Tang, Xing; Yu, Zhiguo

    2015-01-01

    A simple and sensitive method based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) has been developed for the determination of TM-2, which was a novel semi-synthetic taxane derivative in beagle dog plasma. Cabazitaxel was chosen as internal standard. Following extraction by methyl tert-butyl ether, the chromatographic separation was achieved on a Thermo Syncronis C18 column (50 × 2.1 mm, 1.7 µm) by gradient elution within a runtime of 3.5 min. The mobile phase consisted of (A) acetonitrile and (B) 2 mmol/L ammonium acetate in water. The detection was accomplished using positive ion electrospray ionization in multiple reaction monitoring mode. The MS/MS ion transitions were monitored at m/z 812.39 → 551.35 for TM-2 and 836.36 → 555.26 for IS, respectively. The method was linear for TM-2 (r = 0.9924) ranging from 2.5 to 1000 ng/mL. The intra-day and inter-day precisions (relative standard deviation) were within 8.0 and 17.6%, respectively, and the accuracy (relative error) was less than 2.3%. The extraction recovery ranged from 83.1 to 97.1%. The reliable method was successfully applied to a pharmacokinetic study of TM-2 in beagle dogs after intravenous drip with different doses of 0.6, 1.2, and 2.4 mg/kg, respectively.

  13. A UPLC/MS/MS method for determination of protosappanin B in rat plasma and its application of a pharmacokinetic and bioavailability study.

    Science.gov (United States)

    Chen, Wei-Ying; Zhou, Xian-Zhen; Wu, Li-Lan; Wu, Yun-Shan; Wang, Shu-Mei; Liu, Bo; Guo, De-An

    2016-12-14

    Caesalpinia sappan L. is a traditional medicinal plant which is used for promoting blood circulation and cerebral apoplexy therapy in China. Previous reports showed that the extracts of Caesalpinia sappan L. could exert vasorelaxant activity and anti-inflammation activity. Protosappanin B is a major constituent of C. sappan L., and showed several important bioactivities. The separation was achieved by an Acquity UPLC BEH Symmetry Shield RP18 column (1.7 μm, 2.1 × 100 mm) column with the gradient mobile phase consisting of 5 mm ammonium acetate aqueous solution and acetonitrile. Detection was carried out by using negative-ion electrospray tandem mass spectrometry via multiple reaction monitoring. Plasma samples were preprocessed by an extraction with ethyl acetate, and apigenin was used as internal standard. The current UPLC-MS/MS assay was validated for linearity, accuracy, intraday and interday precisions, stability, matrix effects and extraction recovery. After oral and intravenous administration, the main pharmacokinetic parameters were as follows: peak concentrations, 83.5 ± 46.2 and 1329.6 ± 343.6 ng/mL; areas under the concentration-time curve, 161.9 ± 69.7 and 264.9 ± 56.3 μg h/L; and half-lives, 3.4 ± 0.9 and 0.3 ± 0.1 h, respectively. The absolute bioavailability in rats of protosappanin B was 12.2%. The method has been successfully applied to a pharmacokinetic and bioavailability study of protosappanin B in rats.

  14. Detection and analysis of neutral and charged particles. Application to the study of hot plasmas; Detection et analyse des particules chargees et neutres appliquees a l'etude des plasmas chauds

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, C. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires. Groupe de recherches de l' association EURATOM-CEA sur la fusion controlee

    1966-12-01

    To measure the energy spectrum of ions in a plasma, one must extract the ions without altering the spectrum. For a dense plasma this presents difficulties, one method is the measurement of the energy spectrum of atoms produced by charge-exchange reactions of ions with residual gas. The measurements of both the energy spectrum and the flux of atoms leaving the magnetic configuration of the device DECA II (Dispositif d'Etude de Compression Adiabatique) are made by: an ion detector which permits the measurement of ion currents {>=} 10{sup -16} A, an electrostatic analyser of energy range 10 eV - 10 keV, a magnetic analyser for ion momentum {<=} 10{sup 5} gauss-cm, and a gas cell to convert fast atoms into ions. (author) [French] Pour mesurer le spectre en energie des ions dans un plasma on doit extraire des ions sans en modifier l'energie. Dans le cas de plasmas denses cela presente certaines difficultes. Une mesure du spectre en energie des ions est alors possible a partir du spectre en energie des atomes produits par collision d'echange de charge entre les ions du plasma et le gaz residuel. Pour effectuer la mesure du spectre en energie et du flux d'atomes s'echappant de la configuration magnetique du Dispositif d'Etude de Compression Adiabatique (DECA II) nous avons mis au point: un detecteur d'ions permettant la mesure de courant {>=} 10{sup -16} A, d'un analyseur electrostatique dont la gamme d'analyse en energie est comprise entre 10 eV et 10 keV, d'un analyseur magnetique capable d'analyser des ions d'une quantite de mouvement {<=} 10{sup 5} gauss cm, ainsi qu'une cellule a gaz permettant l'ionisation des atomes rapides. (auteur)

  15. Computational studies of plasma lipoprotein lipids.

    Science.gov (United States)

    Pan, Lurong; Segrest, Jere P

    2016-10-01

    Plasma lipoproteins are macromolecular assemblies of proteins and lipids found in the blood. The lipid components of lipoproteins are amphipathic lipids such as phospholipids (PLs), and unesterified cholesterols (UCs) and hydrophobic lipids such as cholesteryl esters (CEs) and triglycerides (TGs). Since lipoproteins are soft matter supramolecular assemblies easily deformable by thermal fluctuations and they also exist in varying densities and protein/lipid components, a detailed understanding of their structure/function is experimentally difficult. Molecular dynamics (MD) simulation has emerged as a particularly promising way to explore the structure and dynamics of lipoproteins. The purpose of this review is to survey the current status of computational studies of the lipid components of the lipoproteins. Computational studies aim to explore three levels of complexity for the 3-dimensional structural dynamics of lipoproteins at various metabolic stages: (i) lipoprotein particles consist of protein with minimal lipid; (ii) lipoprotein particles consist of PL-rich discoidal bilayer-like lipid particles; (iii) mature circulating lipoprotein particles consist of CE-rich or TG-rich spheroidal lipid-droplet-like particles. Due to energy barriers involved in conversion between these species, other biomolecules also participate in lipoprotein biological assembly. For example: (i) lipid-poor apolipoprotein A-I (apoA-I) interacts with ATP-binding cassette transporter A1 (ABCA1) to produce nascent discoidal high density lipoprotein (dHDL) particles; (ii) lecithin-cholesterol acyltransferase (LCAT) mediates the conversion of UC to CE in dHDL, driving spheroidal HDL (sHDL) formation; (iii) transfer proteins, cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), transfer both CE and TG and PL, respectively, between lipoprotein particles. Computational studies have the potential to explore different lipoprotein particles at each metabolic stage in

  16. Highly sensitive HPLC-DAD method for the assay of gefitinib in patient plasma and cerebrospinal fluid: application to a blood-brain barrier penetration study.

    Science.gov (United States)

    Fang, Luo; Song, Yu; Weng, Xu; Li, Fanzhu; Xu, Yaping; Lin, Nengming

    2015-12-01

    The quantification of intracranial gefitinib (GEF) exposure is limited owing to the sensitivity of analytical equipment. Although mass spectrometry (MS) is the preferred method because of its high sensitivity, the equipment is not available in many laboratories, especially in developing Asian countries. In this paper, we developed a highly sensitive high performance liquid chromatography-diode array detector (HPLC-DAD) method for the assay of GEF in human cerebrospinal fluid (CSF) and plasma. GEF was extracted from CSF and plasma by solid-phase extraction and liquid-liquid extraction, respectively. The chromatographic separation was performed on a C18 column with gradient elution of 0.1% triethylamine solution and acetonitrile, then finally detected at 344 nm. This method was validated and proved to be highly sensitive with a lower limit of quantitation value of 0.11 ng/mL in CSF and 11 ng/mL in plasma. The blood-brain barrier penetration ratio of GEF ranged from 1.48 to 2.41%. This method provides a reliable MS-independent solution for the quantitation of GEF in patients' CSF and plasma.

  17. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    Science.gov (United States)

    Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.

    2010-01-01

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  18. Simultaneous determination of seven alkaloids in rat plasma by UFLC-MS/MS and its application to a pharmacokinetic study after oral administration of Cerebralcare Granule.

    Science.gov (United States)

    Xiaowen, Li; Ling, Tong; Yunfei, Li; Guoxiang, Sun; Dailin, Yang; Herry, Sun

    2016-04-01

    An ultra fast liquid chromatography-tandem mass sepectrometry (UFLC-MS/MS) method was developed for simultaneous determination of seven active alkaloid components (tetrahydropalmatine, corydaline, α-allocryptopine, tetrahydroberberine, tetrahydrocoptisine, tetrahydrocolumbamine and dehydrocorydaline) in rat plasma after oral administration of Cerebralcare Granule. Plasma samples were pretreated by protein precipitation with acetronitrile containing the internal standard diazepam. Chromatographic separation was achieved on a Phenomenex Kinetex C18 column (100×2.1mm, 2.6μm) with gradient elution using mobile phase consisting of acetonitrile -0.1% formic acid in water at a flow rate of 0.3mL/min. The detection was performed on an electrospray ionization triple quadrupole tandem mass spectrometer using multiple reaction monitoring (MRM) with positive ionization mode. The established method was fully validated and proved to be sensitive and specific with lower limits of quantification (LLOQs) all less than 0.0265ng/mL in rat plasma. Good linearities of seven alkaloids were obtained in respective concentration ranges (r>0.9923). The intra- and inter-day precisions were below of 15% for all the seven alkaloids in terms of relative standard deviation (RSD), and the accuracies were ranged from -2.7% to 8.3% in terms of relative error (RE). Extraction recovery, matrix effect and stability were within the required limits in rat plasma. The validated method was successfully applied to investigate the pharmacokinetics of the seven alkaloids in rat plasma after oral administration of Cerebralcare Granule (CG).

  19. Dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fortov, Vladimir E; Khrapak, Aleksei G; Molotkov, Vladimir I; Petrov, Oleg F [Institute for High Energy Densities, Associated Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Khrapak, Sergei A [Max-Planck-Institut fur Extraterrestrische Physik, Garching (Germany)

    2004-05-31

    The properties of dusty plasmas - low-temperature plasmas containing charged macroparticles - are considered. The most important elementary processes in dusty plasmas and the forces acting on dust particles are investigated. The results of experimental and theoretical investigations of different states of strongly nonideal dusty plasmas - crystal-like, liquid-like, gas-like - are summarized. Waves and oscillations in dusty plasmas, as well as their damping and instability mechanisms, are studied. Some results on dusty plasma investigated under microgravity conditions are presented. New directions of experimental research and potential applications of dusty plasmas are discussed. (reviews of topical problems)

  20. Microplasmas, a platform technology for a plethora of plasma applications

    Science.gov (United States)

    Becker, Kurt

    2017-08-01

    Publications describing microplasmas, which are commonly defined as plasmas with at least one dimension in the submillimeter range, began to appear to the scientific literature about 20 years ago. As discussed in a recent review by Schoenbach and Becker [1], interest and activities in basic microplasma research as well as in the use of microplasma for a variety of application has increased significatly over the past 20 years. The number of papers devoted to basic microplasma science increased by an order of magnitude between 1995 and 2015, a count that excludes publications dealing exclusively with technological applications of microplasmas, where the microplasma is used solely as a tool. In reference [1], the authors limited the topical coverage largely to the status of microplasma science and our understanding of the physics principles that enable microplasma operation and further stated that the rapid proliferation of microplasma applications made it impossible to cover both basic microplasma science and their application in a single review article.

  1. Naphthalene and acenaphthene decomposition by electron beam generated plasma application

    Energy Technology Data Exchange (ETDEWEB)

    Ostapczuk, A.; Hakoda, T.; Shimada, A.; Kojima, T. [Institute for Nuclear Chemistry and Technology, Warsaw (Poland)

    2008-08-15

    The application of non-thermal plasma generated by electron beam (EB) was investigated in laboratory scale to study decomposition of polycyclic aromatic hydrocarbons like naphthalene and acenaphthene in flue gas. PAH compounds were treated by EB with the dose up to 8 kGy in dry and humid base gas mixtures. Experimentally established G-values gained 1.66 and 3.72 mol/100 eV for NL and AC at the dose of 1 kGy. NL and AC removal was observed in dry base gas mixtures showing that the reaction with OH radical is not exclusive pathway to initialize PAH decomposition; however in the presence of water remarkably higher decomposition efficiency was observed. As by-products of NL decomposition were identified compounds containing one aromatic ring and oxygen atoms besides CO and CO{sub 2}. It led to the conclusion that PAH decomposition process in humid flue gas can be regarded as multi-step oxidative de-aromatization analogical to its atmospheric chemistry.

  2. Applications of continuous and orthogonal wavelet transforms to MHD and plasma turbulence

    Science.gov (United States)

    Farge, Marie; Schneider, Kai

    2016-10-01

    Wavelet analysis and compression tools are presented and different applications to study MHD and plasma turbulence are illustrated. We use the continuous and the orthogonal wavelet transform to develop several statistical diagnostics based on the wavelet coefficients. We show how to extract coherent structures out of fully developed turbulent flows using wavelet-based denoising and describe multiscale numerical simulation schemes using wavelets. Several examples for analyzing, compressing and computing one, two and three dimensional turbulent MHD or plasma flows are presented. Details can be found in M. Farge and K. Schneider. Wavelet transforms and their applications to MHD and plasma turbulence: A review. Support by the French Research Federation for Fusion Studies within the framework of the European Fusion Development Agreement (EFDA) is thankfully acknowledged.

  3. Scalable graphene production: perspectives and challenges of plasma applications

    Science.gov (United States)

    Levchenko, Igor; Ostrikov, Kostya (Ken); Zheng, Jie; Li, Xingguo; Keidar, Michael; B. K. Teo, Kenneth

    2016-05-01

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h-1 m-2 was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various

  4. A solar powered handheld plasma source for microbial decontamination applications

    Science.gov (United States)

    Ni, Y.; Lynch, M. J.; Modic, M.; Whalley, R. D.; Walsh, J. L.

    2016-09-01

    A fully portable atmospheric pressure air plasma system is reported to be suitable for the microbial decontamination of both surfaces and liquids. The device operates in quiescent air, and includes an integrated battery which is charged from a solar cell and weighs less than 750 g, making it highly amenable for a wide variety of applications beyond the laboratory. Using particle imaging velocimetry to visualise air flows around the device, the geometric configuration of the plasma generating electrodes was enhanced to induce a gas flow on the order of 0.5 m s-1 directed towards a sample placed downstream, thus improving the transport of plasma generated reactive species to the sample. The microbial decontamination efficiency of the system was assessed using potable water samples inoculated with common waterborne organisms Escherichia coli and Pseudomonas fluorescens. The reduction in the number of microorganisms was found to be in the range of 2-8 log and was strongly dependent on the plasma generation conditions.

  5. Simultaneous determination of six alkaloid components in rat plasma and its application to pharmacokinetic study of Danmu preparations by an ultra fast liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Yin, Rong; Chen, Jiaquan; Zhao, Yonggang; Jia, Xiaobin; Zhang, Zhiyuan; Feng, Liang; Wang, Hui; Wang, Jingjing; Zhu, Fenxia

    2015-03-01

    Danmu injection and Danmu tablet are two widely used traditional Chinese medicine made of Nauclea officinalis (commonly known as Danmu), in which the alkaloids are the major active substances. In this paper, an ultra fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method was developed for simultaneous determination and the pharmacokinetic characteristics study of six main active alkaloids (naucleamide A-10-O-β-d-glucopyranosid, naucleamide G, pumiloside, 3-epi-pumiloside, strictosamide and vincosamide) of the two above-mentioned Danmu preparations in rat plasma. In the course of the experiment, following sample preparation by protein precipitation with methanol-ethyl acetate (2:1, v/v), the nitrogen-dried extraction was reconstituted in methanol and assayed on a C18 column using a gradient elution program with mobile phase consisting of acetonitrile and water containing 0.1% formic acid. The MS detection was performed in positive ionization mode with selected ion transitions. The established method was fully validated and proved to be sensitive and specific with lower limits of quantification (LLOQs) all less than 0.32ng/mL in rat plasma and matrix effects ranged from 88.87 to 108.27%. Good linearities of six alkaloids were obtained in respective concentration ranges (r(2)>0.995). The average extract recoveries for each compound at three quality control concentration levels were no less than 79.70%, and the precision and accuracy were within the acceptable limits. The validated method was successfully applied to the pharmacokinetic study of six alkaloid components of Danmu injection and tablet in rat plasma. The obtained results may be helpful to reveal the action mechanism and guide the clinical application of Danmu preparations.

  6. Fiber-based liquid-phase micro-extraction of mebeverine enantiomers followed by chiral high-performance liquid chromatography analysis and its application to pharmacokinetics study in rat plasma.

    Science.gov (United States)

    Hatami, Mehdi; Farhadi, Khalil; Tukmechi, Amir

    2012-08-01

    The applicability of two-phase liquid-phase micro-extraction (LPME) in porous hollow polypropylene fiber for the sample preparation and the stereoselective pharmacokinetics of mebeverine (MEB) enantiomers (an antispasmodic drug) in rat after intramuscular administration were studied. Plasma was assayed for MEB enantiomer concentrations using stereospecific high-performance liquid chromatography with ultraviolet detection after a simple, inexpensive, and efficient preconcentration and clean-up hollow fiber-based LPME. Under optimized micro-extraction conditions, MEB enantiomers were extracted with 25 µl of 1-octanol within a lumen of a hollow fiber from 0.5 ml of plasma previously diluted with 4.5 ml alkalized water (pH 10). The chromatographic analysis was carried out through chiral liquid chromatography using a DELTA S column and hexane-isopropyl alcohol (85:15 v/v) containing 0.2% triethylamine as mobile phase. The mean recoveries of (+)-MEB and (-)-MEB were 75.5% and 71.0%, respectively. The limit of detection (LOD) was 3.0 ng/ml with linear response over the concentration range of 10-2500 ng/ml with correlation coefficient higher than 0.993 for both enantiomers. The pharmacokinetic studies showed that the mean plasma levels of (+)-MEB were higher than those of (-)-MEB at almost all time points. Also, (+)-MEB exhibited greater t(max) (peak time in concentration-time profile), C(max) (peak concentration in concentration-time profile), t(1/2) (elimination half-life), and AUC(0-240 min) (area under the curve for concentration versus time) and smaller CL (clearance) and V(d) (apparent distribution volume) than its antipode. The obtained results implied that the absorption, distribution, and elimination of (-)-MEB were more rapid than those of (+)-MEB and there were stereoselective differences in pharmacokinetics.

  7. Plasma Diagnostic in laser ablation plumes for isotope separation applications

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Juliana B. de [Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil)]. E-mail: juliana@ieav.cta.br; Rodrigues, Nicolau A.S.; Neri, Jose W.; Silveira, Carlos A.B. [Instituto de Estudos Avancados (IEAv/EFO), Sao Jose dos Campos, SP (Brazil). Div. de Fotonica

    2008-07-01

    The plasma plume produced in vacuum by ablation of copper, aluminum and tungsten samples, illuminated by copper laser pulses, was investigated. A Langmuir probe was used to study the macroscopic parameters electron number density (Ne) and electron temperature (Te). Plasma expansion velocity (Vp) was also investigated and it was studied the dependence of these parameters with the laser irradiance. Typical values are respectively N{sub e} {approx} 10{sup 8}-10{sup 9}/cm{sup 3}, T{sub e} {approx} 15 eV and Vp {approx} 10 km/s. (author)

  8. Liquid chromatography-mass spectrometric method for the sensitive determination of niflumic acid in human plasma and its application to pharmacokinetic study of talniflumate tablet.

    Science.gov (United States)

    Park, Eun Ji; Na, Dong Hee; Shin, Young-Hee; Lee, Kang Choon

    2008-12-15

    A sensitive LC-MS method was developed and validated for the determination of niflumic acid (NFA), the active metabolite of the talniflumate formulation, in human plasma. The analyses were performed on C(18) column using acetonitrile-ammonium acetate buffer (pH 5.7, 40:60) as a mobile phase with quadrupole MS detection of NFA at m/z 281 in a negative ion-monitoring mode. Calibration curve was linear in the concentration range of 1-1000ng/mL in human plasma. The higher sensitivity of LC-MS allowed low concentrations of NFA to be determined at initial drug absorption and terminal elimination phases following oral administration of talniflumate tablet.

  9. A Novel HPLC Method for the Concurrent Analysis and Quantitation of Seven Water-Soluble Vitamins in Biological Fluids (Plasma and Urine: A Validation Study and Application

    Directory of Open Access Journals (Sweden)

    Margherita Grotzkyj Giorgi

    2012-01-01

    Full Text Available An HPLC method was developed and validated for the concurrent detection and quantitation of seven water-soluble vitamins (C, B1, B2, B5, B6, B9, B12 in biological matrices (plasma and urine. Separation was achieved at 30°C on a reversed-phase C18-A column using combined isocratic and linear gradient elution with a mobile phase consisting of 0.01% TFA aqueous and 100% methanol. Total run time was 35 minutes. Detection was performed with diode array set at 280 nm. Each vitamin was quantitatively determined at its maximum wavelength. Spectral comparison was used for peak identification in real samples (24 plasma and urine samples from abstinent alcohol-dependent males. Interday and intraday precision were <4% and <7%, respectively, for all vitamins. Recovery percentages ranged from 93% to 100%.

  10. A validated high-performance liquid chromatographic method for the determination of glibenclamide in human plasma and its application to pharmacokinetic studies.

    Science.gov (United States)

    Niopas, Ioannis; Daftsios, Athanasios C

    2002-05-15

    Glibenclamide is a potent second generation oral sulfonylurea antidiabetic agent widely used for the treatment of type II diabetes melitus. A rapid, sensitive, precise, accurate and specific HPLC assay for the determination of glibenclamide in human plasma was developed and validated. After addition of flufenamic acid as internal standard, the analytes were isolated from human plasma by liquid-liquid extraction. The method was linear in the 10-400 ng/ml concentration range (r > 0.999). Recovery for glibenclamide was greater than 91.5% and for internal standard was 93.5%. Within-day and between-day precision, expressed as the relative standard deviation (RSD%), ranged from 1.4 to 5.9% and 5.8 to 6.6%, respectively. Assay accuracy was better than 93.4%. The assay was used to estimate the pharmacokinetics of glibenclamide after oral administration of a 5 mg tablet of glibenclamide to 18 healthy volunteers.

  11. Determination of Retinol, α-Tocopherol, Lycopene, and β-Carotene in Human Plasma Using HPLC with UV-Vis Detection: Application to a Clinical Study

    Directory of Open Access Journals (Sweden)

    Roman Kand’ár

    2013-01-01

    Full Text Available A method is described here for the simultaneous determination of retinol, α-tocopherol, lycopene, and β-carotene in human plasma. The effectiveness of various protein precipitants and extraction solvents was tested. After adequate sample preparation, the samples were injected directly into the HPLC system. The separation was realized on an analytical reversed-phase column with a UV-Vis detection. The analytical performance of this method was satisfactory. The intraassay and interassay coefficients of variation were below 10%. The recoveries were as follows: 97.0% (CV 2.4% for retinol, 94.6% (CV 1.7% for α-tocopherol, 91.9% (CV 3.6% for lycopene, and 93.9% (CV 4.2% for β-carotene. The levels of selected fat-soluble vitamins in plasma of patients with cardiovascular disease were measured and discussed.

  12. STUDY ON THE PRESSURE IN PLASMA ARC

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The axial pressure in plasma arc is measured under different conditions. The effects of the parameters, such as welding current, plasma gas flow rate, electrode setback and arc length, on the pressure in plasma arc are investigated and quantitative analyzed to explain the relationship between the quality of weld and the matching of parameters in plasma arc welding process.

  13. Simultaneous determination of blonanserin and its metabolite in human plasma and urine by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study.

    Science.gov (United States)

    Wen, Yu-Guan; Ni, Xiao-Jia; Zhang, Ming; Liu, Xia; Shang, De-Wei

    2012-08-15

    Blonanserin is a novel atypical antipsychotic with highly selective receptor antagonist activity to dopamine D₂ and 5-HT(2A). N-desethyl blonanserin (blonanserin C) is its major active metabolite in human plasma. Herein we report a new highly sensitive, selective, and rapid liquid chromatography-tandem mass spectrometry method to determine blonanserin and blonanserin C simultaneously in human plasma and urine, with N-desethyl-chlor-blonanserin (blonanserin D) as internal standard (IS). Blonanserin and blonanserin C were extracted from aliquots of plasma and urine with ethyl acetate and dichloromethane (4:1) as the solvent and chromatographic separation was performed using an Agilent Eclipse Plus C₁₈ column. The mobile phase was composed of: acetonitrile and ammonium formate-formic acid buffer containing 5mM ammonium formate and 0.1% formic acid (87:13, v/v). To quantify blonanserin, blonanserin C, and blonanserin D, respectively, multiple reaction monitoring (MRM) transition of m/z 368.2→297.2, m/z 340.2→297.1, and m/z 356.2→313.3 was performed in positive mode. The analysis time was about 5.5 min. The calibration curve was linear in the concentration range of 0.01-2 ng/ml. The lower limit of quantification reached 0.01 ng/ml. The intra and inter-day precision and relative errors were less than 8.0% and 6.6% for three QC levels in plasma and urine. The current LC-MS/MS method was validated as simple, sensitive, and accurate and has been successfully applied to investigate the pharmacokinetics of blonanserin and blonanserin C in humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Simultaneous determination of ivabradine and N-desmethylivabradine in human plasma and urine using a LC-MS/MS method: application to a pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    Chengtao Lu

    2012-04-01

    Full Text Available A sensitive and specific liquid-chromatography tandem mass spectrometry (LC-MS/MS assay has been developed and validated for the simultaneous quantification of ivabradine and its active metabolite N-desmethylivabradine in human plasma and urine. The assay employed a single liquid–liquid extraction of the analytes from plasma and urine samples, and diazepam was used as internal standard (IS. The chromatographic separation was achieved on a Diamonsil C18 column (150 mm×4.6 mm, 5 μm, Dikma using a mixture of methanol and aqueous 5 mM ammonium acetate buffer containing 0.2% formic acid (80:20, v/v as mobile phase. The assay for ivabradine and N-desmethylivabradine in plasma showed good linearity (r≥0.99 over the ranges 0.1013–101.3 ng/mL and 0.085–25.5 ng/mL, respectively. The assay for ivabradine and N-desmethylivabradine in urine showed good linearity (r≥0.99 over the ranges 10.13–6078 ng/mL and 8.5–850 ng/mL, respectively. The intra- and inter-day accuracy and precision values were found to be within the assay variability limits (RSD<15% in accordance with FDA guidelines. The methods were successfully used for evaluating the pharmacokinetic properties of ivabradine and N-desmethylivabradine in human plasma and urine in Chinese healthy volunteers.

  15. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, Sangeeta B. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India); Joshi, N. K. [Faculty of Engineering and technology, MITS, lakshmangarh, (Sikar), Rajasthan 332311 (India); Mangalvedekar, H. A.; Lande, B. K. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Das, A. K. [Laser and Plasma Technology Division, BARC, Mumbai 400085 (India); Kothari, D. C. [Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India)

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  16. Non-thermal atmospheric pressure plasma jet and its application for polymer treatment

    OpenAIRE

    Sarani, Abdollah

    2010-01-01

    Non-thermal atmospheric pressure plasma jet is a suitable source for polymer treatment. The main characteristic of this plasma jet is the remote operation and its scalable dimension, thus, allowing local treatment of 3D surfaces. In this work an atmospheric pressure DBD plasma jet has been constructed and the application of the plasma jet for polymer treatment is investigated.

  17. Simultaneous determination of imperatorin and its metabolite xanthotoxol in rat plasma and urine by LC-MS/MS and its application to pharmacokinetic studies.

    Science.gov (United States)

    Ngo, Lien; Tran, Phuong; Ham, Seong-Ho; Cho, Jung-Hee; Cho, Hea-Young; Lee, Yong-Bok

    2017-02-15

    An accurate, precise, selective, and sensitive liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of imperatorin (IMP) and its metabolite, xanthotoxol (XAN), in rat plasma and urine samples. The analytes, along with psoralen as an internal standard, were determined by multiple reaction monitoring (MRM) operated in the positive electrospray ionization (ESI) mode. Chromatographic separation was performed on an Acquity UPLC BEH C18 column (50mm×2.1mm, 1.7μm) with a mobile phase consisting of 0.1% formic acid solution and 0.1% formic acid in methanol at a flow rate of 0.3mL/min. The run time was 6min per sample and the injection volume was 5μL. The method had a lower limit of quantification (LLOQ) of 0.25ng/mL for IMP in plasma and urine, and 1ng/mL for XAN in urine. The linear calibration curves were fitted over the range of 0.25-1000ng/mL for IMP in plasma, 0.25-1000ng/mL for IMP in urine, and 1-1000ng/mL for XAN in urine, with correlation coefficients greater than 0.995. The inter- and intra-day accuracies (relative error, RE%) were between -8.5% and 3.5%, and the precisions (relative standard deviation, RSD%) were less than 10.0% for all quality control samples (QCs). The analytes were extracted from rat plasma and urine samples using a liquid-liquid extraction method with the extraction recovery in the range of 60.3-79.1%. A good stability of the analytes was observed in all the analysis procedures. The method was successfully validated and applied to determine the pharmacokinetics of IMP in rat plasma and, for the first time, the metabolite kinetics of IMP to XAN in rat urine after IMP administration.

  18. The theta-pinch - a versatile tool for the generation and study of high temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hintz, E. [Inst. fuer Plasmaphysik, Forschungszentrum-Juelich GmbH (Germany)

    2004-07-01

    The more general technical and physical features of theta-pinches are described. Special field of their application are high-ss plasmas. Two examples are analysed and studied in more detail: a high density plasma near thermal equilibrium and a low density plasma far from equilibrium. The latter is of special interest for future investigations. Possibilities of field-reversed configurations are pointed out. (orig.)

  19. Effects of repetitive platelet-rich plasma application on human tenocyte proliferation.

    Science.gov (United States)

    Mazzocca, Augustus D; O'Malley, Michael; Beitzel, Knut; McCarthy, Mary Beth R; Chowaniec, David M; Cote, Mark P; Bradley, James P; Romeo, Anthony; Arciero, Robert A

    2015-01-01

    Current clinical application of platelet-rich plasma is showing a trend toward multiple treatments. The goal of this study was to show the benefit of interval platelet-rich plasma application in the healing and recovery of human tenocytes using an in vitro cell model. Eight volunteers (6 men and 2 women) were included in this study (mean±SD age, 31.6±10.9 years). Venous blood was collected from new blood draws at 3 different times. Two blood products were prepared on each day of treatment: platelet-rich plasma derived from a single-spin process (PRPSS) and platelet-rich plasma derived from a double-spin process (PRPDS). The study had 2 limbs: 2-day and 4-day intervals. Cell proliferation, measured as disintegrations per minute, was then examined via a radioactive thymidine assay. In the 2-day-interval group, the difference in disintegrations per minute between days 0 and 2 in the PRPSS group reached statistical significance (P =.006). In the PRPDS group, statistical difference was seen between days 0 and 4 (P=.001) and between days 2 and 4 (P=.030). In the 4-day-interval group, the difference in disintegrations per minute between days 4 and 8 in the PRPSS group reached statistical significance, showing a decrease in cell proliferation (P =.013). In the PRPDS group, a statistical difference was seen between days 0 and 8 (P=.021), also showing a decrease in cell proliferation. The greatest effect of platelet-rich plasma, which has a positive effect on tenocyte proliferation and recovery, is seen on initial application. Its effect is diminished with repetitive application, and this finding leads to questioning of the efficacy of interval platelet-rich plasma dosing.

  20. Atmospheric-pressure plasma jet characterization and applications on melanoma cancer treatment (B/16-F10)

    Energy Technology Data Exchange (ETDEWEB)

    Mashayekh, Shahriar [Physics Department, Shahid Beheshti University, G.C., Evin, 19839-63113 Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Rajaee, Hajar; Hassan, Zuhir M. [Imonology Department, Faculty of Medical Science, Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Akhlaghi, Morteza [Laser-Plasma Research Institute, Shahid Beheshti University, G.C., Evin, 19839-63113 Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Shokri, Babak [Physics Department and Laser-Plasma Research Institute, Shahid Beheshti University, G.C., Evin, 19839-63113 Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-09-15

    A new approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper, a pin-to-hole plasma jet for biological applications has been designed and manufactured and characterized. The characterization includes power consumption via Lissajous method, thermal behavior of atmospheric-pressure plasma jet by using Infra-red camera as a novel method and using Speicair software to determine vibrational and transitional temperatures, and optical emission spectroscopy to determine the generated species. Treatment of Melanoma cancer cells (B16/F10) was also implemented, and tetrazolium salt dye (MTT assay) and flow cytometry were used to evaluate viability. Effect of ultraviolet photons on cancerous cells was also observed using an MgF{sub 2} crystal with MTT assay. Finally, in-vivo studies on C57 type mice were also done in order to have a better understanding of the effects in real conditions.

  1. Atmospheric-pressure plasma jet characterization and applications on melanoma cancer treatment (B/16-F10)

    Science.gov (United States)

    Mashayekh, Shahriar; Rajaee, Hajar; Akhlaghi, Morteza; Shokri, Babak; Hassan, Zuhir M.

    2015-09-01

    A new approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper, a pin-to-hole plasma jet for biological applications has been designed and manufactured and characterized. The characterization includes power consumption via Lissajous method, thermal behavior of atmospheric-pressure plasma jet by using Infra-red camera as a novel method and using Speicair software to determine vibrational and transitional temperatures, and optical emission spectroscopy to determine the generated species. Treatment of Melanoma cancer cells (B16/F10) was also implemented, and tetrazolium salt dye (MTT assay) and flow cytometry were used to evaluate viability. Effect of ultraviolet photons on cancerous cells was also observed using an MgF2 crystal with MTT assay. Finally, in-vivo studies on C57 type mice were also done in order to have a better understanding of the effects in real conditions.

  2. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    Science.gov (United States)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  3. NEW CATHODE MATERIALS FOR INERT AND OXIDIZING ATMOSPHERE PLASMA APPLICATION

    OpenAIRE

    1990-01-01

    This study has been carried out to develop new cathode materials for two types of thermionic cathode. First is concerning to the tungsten electrodes for the plasma furnace and welding torches. The second one is the electrodes for air plasma cutting torch. Tungsten electrodes activated with a single and combined additives of rare earth metal oxides, such as La2O3, Y2O3 and CeO2, are produced and pared with pure and thoriated tungsten electrode conventionally used, from the point of view of ele...

  4. Simultaneous determination of 14-thienyl methylene matrine and matrine in rat plasma by high-performance liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study.

    Science.gov (United States)

    Jiang, Minjie; Wang, Lisheng; Jiang, Weizhe; Huang, Shulin

    2015-01-01

    A rapid, sensitive and selective high-performance liquid chromatography-tandem mass spectrometric method (HPLC-MS) has been developed and validated for the simultaneous determination of 14-thienyl methylene matrine (TMM) and matrine (MT) in rat plasma in the present study. The analytes were separated on a C18 column (1.9 μm, 2.1 mm × 100 mm) with a security guard C18 column (5 μm, 2.1 mm × 10 mm) and a triple-quadrupole mass spectrometry equipped with an electrospray ionization (ESI) source was applied for detection. With pseudoephedrine hydrochloride as internal standard, sample pretreatment involved in a one-step protein precipitation with isopropanol:ethyl acetate (v/v, 20:80). The method was linear over the concentration ranges of 5-1000 ng/ml for TMM and 10-2000 ng/ml for MT. The intra-day and inter-day relative standard deviations (RSD) were less than 15% and the relative errors (RE) were all within 15%. The proposed method enables unambiguous identification and quantification of TMM and MT in vivo. This was the first report on determination of the TMM and MT in rat plasma after oral administration of TMM. The results provided a meaningful basis for evaluating the clinical applications of the medicine.

  5. Electrical discharges of plasma ozonizer and its application

    Directory of Open Access Journals (Sweden)

    Tirawanichakul, S.

    2007-05-01

    Full Text Available Ozone synthesis is one of the applications of near atmospheric plasma processing. An ozone generator in this research comprised two annular cylindrical-shaped electrodes. The inner electrode was made ofstainless steel covered with the dielectric glass and the outer electrode was also made of stainless steel. The electric spacing gap was 0.0075 m and length of ozonizer was 0.21 m. Oxygen gas passing through thedischarge gap between two electrodes supplied by an alternating current (AC high voltage power supply, frequency 50 Hz, ranging of 6-10 kVAC was used for producing ozone. The amount of ozone was determinedby the KI standard method. The result showed that the concentration of ozone is proportional to the AC applied voltage. For determining effect of purified oxygen feed rate of 6-10 L/min on quantity of ozone, theresults indicated that at the volumetric flow rate of 8 L/min produced the largest amount of ozone. In addition, ozone concentration at a flow rate of 8 L/min and an electrical discharge time of 3 minutes wasapproximately determined as 41, 60, 80 and 135 mg/L at 8, 9, 10 and 11 kVAC, respectively. Moreover, study of dye wastewater of Krajud mat was proposed and treated by three different methods. Firstly, dye wastewater was solely treated by a plasma ozonation. Secondly, a combination ofozonation and alum coagulation was used for dye wastewater treatment. Finally, the combined ozonation and activated carbon adsorption were used for dye wastewater treatment. The experimental results showedthat the percentage of light absorbance reduction of pink dyed wastewater for these three different methods was about 56%, 35% and 10%, respectively compared to the reference sample. In addition, For thesemethods, the percentage of BOD of treated dye wastewater could be reduced to 64%, 54% and 46% respectively, the percentage of COD could be reduced to approximately 78%, 62% and 27%, respectively, comparedto the reference sample. In conclusion, the

  6. Quantification of theobromine and caffeine in saliva, plasma and urine via liquid chromatography-tandem mass spectrometry: a single analytical protocol applicable to cocoa intervention studies.

    Science.gov (United States)

    Ptolemy, Adam S; Tzioumis, Emma; Thomke, Arjun; Rifai, Sami; Kellogg, Mark

    2010-02-01

    Targeted analyses of clinically relevant metabolites in human biofluids often require extensive sample preparation (e.g., desalting, protein removal and/or preconcentration) prior to quantitation. In this report, a single ultra-centrifugation based sample pretreatment combined with a designed liquid chromatography-tandem mass spectrometry (LC-MS/MS) protocol provides selective quantification of 3,7-dimethylxanthine (theobromine) and 1,3,7-trimethylxanthine (caffeine) in human saliva, plasma and urine samples. The optimized chromatography permitted elution of both analytes within 1.3 min of the applied gradient. Positive-mode electrospray ionization and a triple quadruple MS/MS instrument operated in multiple reaction mode were used for detection. (13)C(3) isotopically labeled caffeine was included as an internal standard to improve accuracy and precision. Implementing a 20-fold dilution of the isolated low MW biofluid fraction prior to injection effectively minimized the deleterious contributions of all three matrices to quantitation. The assay was linear over a 160-fold concentration range from 2.5 to 400 micromol L(-1) for both theobromine (average R(2) 0.9968) and caffeine (average R(2) 0.9997) respectively. Analyte peak area variations for 2.5 micromol L(-1) caffeine and theobromine in saliva, plasma and urine ranged from 5 and 10% (intra-day, N=10) to 9 and 13% (inter-day, N=25) respectively. The intra- and inter-day precision of theobromine and caffeine elution times were 3 and theobromine ranged from 114 to 118% and 99 to 105% at concentration levels of 10 and 300 micromol L(-1). This validated protocol also permitted the relative saliva, plasma and urine distribution of both theobromine and caffeine to be quantified following a cocoa intervention.

  7. Development and Validation of a LC/MS/MS Method for the Determination of Duloxetine in Human Plasma and Its Application to Pharmacokinetic Study

    Directory of Open Access Journals (Sweden)

    D. Chandrapal Reddy

    2012-01-01

    Full Text Available A selective, high sensitive and high throughput liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS method has been developed and validated for the chromatographic separation and quantitation of duloxetine in human EDTA plasma using fluoxetine (IS as an internal standard. Analyte and IS were extracted from human plasma by liquid-liquid extraction using MTBE-n Hexane (80:20.The eluted samples were chromatographed on X-terra RP8 (50 mmx4.6 mm, 5 μm particle size column by using mixture of 30 mM ammonium formate (pH-5.0±0.05 and acetonitrile as an isocratic mobile phase at a flow rate of 0.40 mL/min and analyzed by mass spectrometer in the multiple reaction monitoring (MRM using the respective m/z 298.08→154.0 for duloxetine and 310.02→148.07 for IS. The linearity of the response/ concentration curve was established in human plasma over the concentration range 0.100-100.017 ng/mL. The lower detection limit (LOD,S/N>3 was 0.04 ng/mL and the lower limit of quantization (LOQ,S/N>10 was 0.100 ng/mL. This LC-MS/MS method was validated with Intra-batch and Inter-batch precision of 5.21-7.02. The Intra-batch and Inter-batch accuracy was 97.14-103.50 respectively. Recovery of duloxetine in human plasma is 80.31% and ISTD recovery is 81.09%. The main pharmacokinetic parameters were Tmax (hr = (7.25±1.581, Cmax (ng/mL (44.594±18.599, AUC0→t, = (984.702±526.502 and AUC0→∞, (1027.147±572.790 respectively.

  8. SPE–UPLC–MS/MS assay for determination of letrozole in human plasma and its application to bioequivalence study in healthy postmenopausal Indian women

    OpenAIRE

    2016-01-01

    A rapid and sensitive ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method is described for determination of letrozole in human plasma. Following solid phase extraction (SPE) of letrozole and letrozole-d4 on Orochem DVB-LP cartridges, chromatography was performed on Acquity UPLC BEH C18 (50 mm×2.1 mm, 1.7 µm) column using methanol-0.1% formic acid in water (85:15, v/v) as the mobile phase. Detection was carried out on a triple quadrupole mass spectrometer with ...

  9. Plasma-generated reactive oxygen species for biomedical applications

    Science.gov (United States)

    Sousa, J. S.; Hammer, M. U.; Winter, J.; Tresp, H.; Duennbier, M.; Iseni, S.; Martin, V.; Puech, V.; Weltmann, K. D.; Reuter, S.

    2012-10-01

    To get a better insight into the effects of reactive oxygen species (ROS) on cellular components, fundamental studies are essential to determine the nature and concentration of plasma-generated ROS, and the chemistry induced in biological liquids by those ROS. In this context, we have measured the absolute density of the main ROS created in three different atmospheric pressure plasma sources: two geometrically distinct RF-driven microplasma jets (μ-APPJ [1] and kinpen [2]), and an array of microcathode sustained discharges [3]. Optical diagnostics of the plasma volumes and effluent regions have been performed: UV absorption for O3 and IR emission for O2(a^1δ) [4]. High concentrations of both ROS have been obtained (10^14--10^17cm-3). The effect of different parameters, such as gas flows and mixtures and power coupled to the plasmas, has been studied. For plasma biomedicine, the determination of the reactive species present in plasma-treated liquids is of great importance. In this work, we focused on the measurement of the concentration of H2O2 and NOX radicals, generated in physiological solutions like NaCl and PBS.[4pt] [1] N. Knake et al., J. Phys. D: App. Phys. 41, 194006 (2008)[0pt] [2] K.D. Weltmann et al., Pure Appl. Chem. 82, 1223 (2010)[0pt] [3] J.S. Sousa et al., Appl. Phys. Lett. 97, 141502 (2010)[0pt] [4] J.S. Sousa et al., Appl. Phys. Lett. 93, 011502 (2008)

  10. Dielectric barrier Discharge Plasma Actuator Characterization and Application

    NARCIS (Netherlands)

    Correale, G.

    2016-01-01

    An experimental investigation about nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuator is presented in this thesis. This work aimed to answer fundamental questions on the actuation mechanism of this device. In order to do so, parametric studies in a quiescent air as well as laminar

  11. Dielectric barrier Discharge Plasma Actuator Characterization and Application

    NARCIS (Netherlands)

    Correale, G.

    2016-01-01

    An experimental investigation about nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuator is presented in this thesis. This work aimed to answer fundamental questions on the actuation mechanism of this device. In order to do so, parametric studies in a quiescent air as well as laminar bou

  12. Plasma Synthesis of Nanoparticles for Nanocomposite Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Alex W. Kawczak

    2008-09-01

    The nanocomposite energy applications for plasma reactor produced nanoparticles are reviewed. Nanoparticles are commonly defined as particles less than 100 nm in diameter. Due to this small size, nanoparticles have a high surface-to-volume ratio. This increases the surface energy compared to the bulk material. The high surface-to-volume ratio and size effects (quantum effects) give nanoparticles distinctive chemical, electronic, optical, magnetic and mechanical properties from those of the bulk material. Nanoparticles synthesis can be grouped into 3 broad approaches. The first one is wet phase synthesis (sol-gel processing), the second is mechanical attrition, and the third is gas-phase synthesis (aerosol). The properties of the final product may differ significantly depending on the fabrication route. Currently, there are no economical large-scale production processes for nanoparticles. This hinders the widespread applications of nanomaterials in products. The Idaho National Laboratory (INL) is engaging in research and development of advanced modular hybrid plasma reactors for low cost production of nanoparticles that is predicted to accelerate application research and enable the formation of technology innovation alliances that will result in the commercial production of nanocomposites for alternative energy production devices such as fuel cells, photovoltaics and electrochemical double layer capacitors.

  13. Progress in the applicability of plasma X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, T., E-mail: T.Kuehl@gsi.de; Aurand, B.; Bagnoud, V.; Ecker, B.; Eisenbarth, U. [GSI (Germany); Guilbaud, O. [Universite Paris Sud (France); Fils, J.; Goette, S. [GSI (Germany); Habib, J. [Universite Paris Sud (France); Hochhaus, D.; Javorkova, D. [GSI (Germany); Neumayer, P. [Extreme Matter Institute, EMMI (Germany); Kazamias, S.; Pittman, M.; Ros, D. [Universite Paris Sud (France); Seres, J.; Spielmann, Ch. [Friedrich Schiller-University (Germany); Zielbauer, B.; Zimmer, D. [GSI (Germany)

    2010-02-15

    Proposed as satellite-based weapons during the 1980s, X-ray lasing was for a long time only achieved with enormous amounts of pump energy in either nuclear explosions or at kilojoule-class laser installations. During the last few years a tremendous development was achieved, most visible in the realisation of the FEL lasers at DESY and SLAC. As important for a wider applicability is the enormous reduction in pump energy for laser pumped plasma X-ray lasers, which now brings such devices into the range of applications for diagnostics and spectroscopy even in smaller laboratories. Main developments were the transient excitation scheme and the optimized pumping concepts. This paper concentrates on developments at the GSI Helmholtzcenter at Darmstadt aiming towards reliable X-ray laser sources in the range from 50 to several 100 eV. The main driving forces for the laser development at GSI are the possible application for the spectroscopy of Li-like ions in the storage ring ESR and the future storage ring NESR at FAIR, and the interest in novel plasma diagnostics.

  14. Validated liquid chromatography-tandem mass spectrometry method for quantitative determination of dauricine in human plasma and its application to pharmacokinetic study.

    Science.gov (United States)

    Liu, Xiaoying; Liu, Qian; Wang, Dongmei; Wang, Xueya; Zhang, Peng; Xu, Haiyan; Zhao, Hui; Zhao, Huaiqing

    2010-05-01

    A highly sensitive and selective LC-MS/MS method was developed and validated for the determination of dauricine in human plasma, using protopine as internal standard (IS). The analyte and IS were extracted by liquid-liquid extraction and analyzed by LC-MS/MS. Chromatographic separation was performed on Agilent TC-C(18) column with a mobile phase of methanol-water-glacial acetic acid (60:40:0.8, v/v/v) at a flow rate of 0.7 mL/min. Detection was performed on a triple quadrupole tandem mass spectrum by multiple reaction monitoring (MRM) mode using the electrospray ionization technique in positive mode. The method was linear over the concentration range of 1-200 ng/mL. The lower limit of quantification (LLOQ) was 1 ng/mL in human plasma with acceptable precision and accuracy. The intra- and inter-day precision was less than 5.9% determined from quality control (QC) samples at concentrations of 2.0, 20.0 and 160 ng/mL, and the accuracy was within +/-9.9%. This method was successfully applied for the evaluation of pharmacokinetics of dauricine after oral doses of 100, 300 and 600 mg phenolic alkaloids of menispermum dauricum tablet (PAMDT) to 12 Chinese healthy volunteers.

  15. A sensitive LC-MS/MS method for simultaneous determination of six flavonoids in rat plasma: application to a pharmacokinetic study of total flavonoids from mulberry leaves.

    Science.gov (United States)

    He, Jun; Feng, Ying; Ouyang, Hui-Zi; Yu, Bin; Chang, Yan-Xu; Pan, Gui-Xiang; Dong, Gai-Ying; Wang, Tao; Gao, Xiu-Mei

    2013-10-01

    A simple and sensitive LC-MS/MS method has been developed and validated for the determination of rutin, isoquercitrin, astragalin, quercetin, kaempferol and isorhamnetin in rat plasma using naringin as the internal standard (IS). The plasma samples were pretreated and extracted by liquid-liquid extraction. Chromatographic separation was accomplished on a C18 column with a 10 min gradient elution using acetonitrile and 0.1% formic acid aqueous solution as mobile phase at a flow rate of 0.3 mL min(-1). A tandem mass spectrometric detection was conducted using multiple reaction monitoring (MRM) via an electrospray ionization (ESI) source and operating in the negative ionization mode. The lower limit of quantitation (LLOQ) of each analyte was lower than 1 ng mL(-1). Intra-day and inter-day precisions were less than 11.9%. The relative errors of accuracy were in the range of -9.2% to 6.1%. The mean recoveries of flavonoids and IS were higher than 53.8%. The proposed method was further applied to investigate the pharmacokinetics of all analytes after a single oral administration of total flavonoids from mulberry leaves to rats.

  16. Development and validation of a reliable high-performance liquid chromatographic method for determination of nodakenin in rat plasma and its application to pharmacokinetic study.

    Science.gov (United States)

    Liu, Zhigang; Li, Famei

    2011-10-01

    A simple and reliable high-performance liquid chromatographic (HPLC) method has been developed for the determination of nodakenin in rat plasma. The concentration of nodakenin was determined in plasma samples after deproteinization with methanol using hesperidin as internal standard. HPLC analysis was performed on a Diamonsil C(18) analytical column using acetonitrile-water (25:75, v/v) as the mobile phase and a UV detection at 330 nm. This method was validated in terms of recovery, linearity, accuracy and precision (intra- and inter-day variation). The extraction recoveries were 91.3 ± 10, 87.8 ± 4.8 and 92.6 ± 5.1 at concentrations of 0.500, 5.00 and 40.0 μg/mL, respectively. The standard curve for nodakenin was linear (r(2) ≥ 0.99) over the concentration range 0.250-50.0 μg/mL with a lower limit of quantification of 0.250 μg/mL. The intra- and inter-day precision (relative standard deviation, RSD) values were not higher than 12% and the accuracy (relative error, RE) was within ± 5.8% at three quality control levels. The validated method was successfully applied for the evaluation of the pharmacokinetics of nodakenin in rats after oral administration of Rhizoma et Radix Notopterygii decoction and nodakenin solution.

  17. HPLC method with solid-phase extraction for determination of (R)- and (S)-ketoprofen in plasma without caffeine interference: application to pharmacokinetic studies in rats.

    Science.gov (United States)

    López-Muñoz, Francisco Javier; Vara Gama, Nancy; Soria-Arteche, Olivia; Hurtado y de la Peña, Marcela; Domínguez-Ramírez, Adriana Miriam; Medina López, José Raúl

    2014-01-01

    A fast and reproducible high-performance liquid chromatography method has been developed for the determination of (R)- and (S)-ketoprofen. Ketoprofen enantiomers were determined in plasma samples (50 µL), after solid-phase extraction, using diclofenac as internal standard. Analyses were performed on a (S, S)-Whelk-O 1 stainless steel column (5 µm, 250 × 4.6 mm) using hexane-ethanol-acetic acid (93:7:0.5, v/v/v) as the mobile phase and detection at 254 nm. The method was selective for ketoprofen enantiomers in the presence of caffeine and endogenous plasma compounds. Standard curves were linear (R(2) > 0.999) over the concentration range of 0.25-12.50 and 0.25 µg/mL was taken as the limit of quantification. The intra- and interday precision (relative standard deviation) values were 0.05). The validated method was successfully applied in determination of (S)-ketoprofen in Wistar rats after oral administration of 3.2 mg/kg of (S)-ketoprofen alone or 3.2 mg/kg of (S)-ketoprofen + 17.8 mg/kg of caffeine.

  18. Improved simultaneous quantitation of candesartan and hydrochlorthiazide in human plasma by UPLC–MS/MS and its application in bioequivalence studies

    Directory of Open Access Journals (Sweden)

    Bhupinder Singh

    2014-04-01

    Full Text Available A validated ultra-performance liquid chromatography mass spectrometric method (UPLC–MS/MS was used for the simultaneous quantitation of candesartan (CN and hydrochlorothiazide (HCT in human plasma. The analysis was performed on UPLC–MS/MS system using turbo ion spray interface. Negative ions were measured in multiple reaction monitoring (MRM mode. The analytes were extracted using a liquid–liquid extraction (LLE method by using 0.1 mL of plasma volume. The lower limit of quantitation for CN and HCT was 1.00 ng/mL whereas the upper limit of quantitation was 499.15 ng/mL and 601.61 ng/mL for CN and HCT respectively. CN d4 and HCT-13Cd2 were used as the internal standards for CN and HCT respectively. The chromatography was achieved within 2.0 min run time using a C18 Phenomenex, Gemini NX (100 mm×4.6 mm, 5 µm column with organic mixture:buffer solution (80:20, v/v at a flow rate of 0.800 mL/min. The method has been successfully applied to establish the bioequivalence of candesartan cilexetil (CNC and HCT immediate release tablets with reference product in human subjects.

  19. Improved simultaneous quantitation of candesartan and hydrochlorthiazide in human plasma by UPLC-MS/MS and its application in bioequivalence studies

    Institute of Scientific and Technical Information of China (English)

    Bhupinder Singh; Rama S. Lokhandae; Ashish Dwivedi; Sandeep Sharma; Naveen Dubey

    2014-01-01

    A validated ultra-performance liquid chromatography mass spectrometric method (UPLC-MS/MS) was used for the simultaneous quantitation of candesartan (CN) and hydrochlorothiazide (HCT) in human plasma. The analysis was performed on UPLC-MS/MS system using turbo ion spray interface. Negative ions were measured in multiple reaction monitoring (MRM) mode. The analytes were extracted using a liquid-liquid extraction (LLE) method by using 0.1 mL of plasma volume. The lower limit of quantitation for CN and HCT was 1.00 ng/mL whereas the upper limit of quantitation was 499.15 ng/mL and 601.61 ng/mL for CN and HCT respectively. CN d4 and HCT-13Cd2 were used as the internal standards for CN and HCT respectively. The chromatography was achieved within 2.0 min run time using a C18 Pheno-menex, Gemini NX (100 mm ~ 4.6 mm, 5 mm) column with organic mixture:buffer solution (80:20, v/v) at a flow rate of 0.800 mL/min. The method has been successfully applied to establish the bioequivalence of candesartan cilexetil (CNC) and HCT immediate release tablets with reference product in human subjects.

  20. Optimizing high-performance liquid chromatography method with fluorescence detection for quantification of tamoxifen and two metabolites in human plasma: application to a clinical study.

    Science.gov (United States)

    Zhu, Yu-Bing; Zhang, Qian; Zou, Jian-Jun; Yu, Cui-Xia; Xiao, Da-Wei

    2008-01-22

    We set an improved high-performance liquid chromatography method with fluorescence detection HPLC-FLU assay with more sensitivity and precision for the quantification of tamoxifen and two metabolites: 4-hydroxytamoxifen and N-desmethyltamoxifen. The compounds and internal standard, mexiletine, were separated with an Agilent Extend C18 column set at 65 degrees C and a mobile phase of methanol-1% triethylamine aqueous solution (pH 11; 82:18, v/v). The detection system utilized offline ultraviolet irradiation to convert the analytes to their respective photocyclisation products, followed by fluorescence detection (lambda ex=260 nm and lambda em=375 nm). The limits of quantification for tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen in plasma were improved to 0.5, 0.5 and 0.1 ng/ml, respectively. And the retention times for tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen were minimized to 11, 10 and 3.9 min, respectively. A single stage liquid-liquid extraction method for determination of these triphenylethylene drugs in plasma was developed, with high extraction efficiency and rapid sample treatment for target compounds. The method has been validated for use in a clinical bioavailability research of tamoxifen.

  1. Development and validation of an LC-MS/MS method for the determination of mesalazine in beagle dog plasma and its application to a pharmacokinetic study.

    Science.gov (United States)

    Qin, Juan; Di, Xin; Wang, Xin; Liu, Youping

    2015-02-01

    A simple, specific and sensitive LC-MS/MS method was developed and validated for the determination of mesalazine in beagle dog plasma. The plasma samples were prepared by protein precipitation, then the separation of the analyte was achieved on a Waters Spherisorb C6 column (150 × 4.6 mm, 5 µm) with a mobile phase consisting of 0.2% formic acid in water-methanol (20:80, v/v). The flow rate was set at 1.0 mL/min with a split ratio of 3:2. Mass spectrometric detection was achieved by a triple-quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. Quantitation was performed using selected reaction monitoring of precursor-product ion transitions at m/z 154 → m/z 108 for mesalazine and m/z 285 → m/z 193 for diazepam (internal standard). The linear calibration curve of mesalazine was obtained over the concentration range 50-30,000 ng/mL. The matrix effect of mesalazine was within ±9.8%. The intra- and inter-day precisions were beagle dogs after rectal administration of mesalazine suppository.

  2. Rapid and sensitive determination of acetylsalicylic acid and salicylic acid in plasma using liquid chromatography-tandem mass spectrometry: application to pharmacokinetic study.

    Science.gov (United States)

    Xu, Xiangrong; Koetzner, Lee; Boulet, Jamie; Maselli, Harry; Beyenhof, Jessica; Grover, Gary

    2009-09-01

    A simple and sensitive analytical method using liquid chromatography-tandem mass spectrometry (LC/MS/MS) for determination of acetylsalicylic acid (aspirin, ASA) and its major metabolite, salicylic acid (SA), in animal plasma has been developed and validated. Both ASA and SA in plasma samples containing potassium fluoride were extracted using acetonitrile (protein precipitation) with 0.1% formic acid in it. 6-Methoxysalicylic acid was used as the internal standard (IS). The compounds were separated on a reversed-phase column. The multiple reaction monitoring mode was used with ion transitions of m/z 178.9 --> 136.8, 137.0 --> 93.0 and 167.0 --> 123.0 for ASA, SA and IS, respectively. The lower limits of quantification for ASA and SA were 3 and 30 ng/mL, respectively. The developed method was successfully applied for the evaluation of pharmacokinetics of ASA and SA after p.o. and i.v. administration of 1 mg/kg to rats.

  3. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    Science.gov (United States)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  4. Experimental Study on Plasma Surface Treatment of Capacitors Film

    Science.gov (United States)

    Ling, Dai; Ting, Yin; Fuchang, Lin; Fei, Yan

    Plasma surface treatment is an optional way to change the electrical performance of the film capacitors used widely in pulse power application. This paper presents the experimental study of glow discharge plasma treatment to polyphenylene sulfide (PPS) film. By using infrared spectra and scanning electron microscope (SEM), the chemical component and microstructure of material surface has detected to be changed with different treatment strength and various discharge gas. After treatment, the film surface tends to be rougher and some sorts of polar radicals or groups found to be introduced. But there is no obvious change of the electrical strength of the film. At last, theoretical analysis has been carried out with polypropylene film experimental treatment results in author's former work.

  5. [Study of ignition characteristic of DC voltage plasma ignitor].

    Science.gov (United States)

    Wang, Feng; He, Li-Ming; Lan, Yu-Dan; Du, Hong-Liang

    2011-09-01

    The changing law between interelectrode current, discharge characteristic and jet characteristic of plasma ignitor under different inlet Ar pressure and working current was researched by adopting self-made plasma ignitor. Still, four channels CCD spectrometer was adopted to measure the spectrum characteristic at the exit of ignitor and electron temperature of plasma was calculated according to the spectrum characteristic. The results show that the interelectrode current gradually reduced with rising inlet Ar pressure; The jet length of plasma ignitor firstly increased then reduced with rising inlet Ar flowrate, and also increased with rising working current; The working current of plasma ignitor reduced with rising inlet Ar flowrate, and increased with rising source output current; the electron temperature of plasma ignitor jet increased with rising working current and reduced with rising Ar flowrate. The research results are of certain guidance meanings and reference values for the practical application of plasma ignition system in aeroengine.

  6. Simultaneous determination of pirfenidone and its metabolite in human plasma by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study.

    Science.gov (United States)

    Wen, Yu-Guan; Liu, Xia; He, Xiu-Ling; Shang, De-Wei; Ni, Xiao-Jia; Zhang, Ming; Wang, Zhan-Zhang; Hu, Jin-Qing; Qiu, Chang

    2014-01-01

    A simple and rapid analytical method for the simultaneous determination of pirfenidone and its metabolite, 5-carboxy-pirfenidone, in human plasma using liquid chromatography-tandem mass spectrometry has been developed and validated. Aliquots of plasma (0.1 mL) containing pirfenidone and 5-carboxy-pirfenidone, as well as deuterium-labeled internal standards (ISs), were deproteinized using acetonitrile. An Agilent Zorbax Plus C18 column was used for the chromatography, with isocratic elution. The mobile phase was a mixture of acetonitrile and aqueous ammonium formate solution (5 mM) containing 0.1% formic acid (60 : 40, v/v). Using multiple reaction monitoring in positive ionization mode, transitions m/z 186.1 → 65.1, m/z 216.0 → 77.0, m/z 191.1 → 65.1 and m/z 221.0 → 81.0 were chosen to quantify pirfenidone, 5-carboxy-pirfenidone and the two ISs, respectively. The time of analysis was pirfenidone, and 0.005-15 μg/mL for 5-carboxy-pirfenidone. The lower limit of quantification for both analytes was 0.005 μg/mL. The intra- and interday precision and relative errors in quality control samples were between -11.7 and 1.3% for pirfenidone and between -5.6 and 2.5% for 5-carboxy-pirfenidone, with mean recoveries ≥90%. The method that has been developed is easy to carry out, sensitive and rapid, and has been successfully used to investigate the pharmacokinetics of pirfenidone in healthy human volunteers.

  7. Numerical Study of Suspension Plasma Spraying

    Science.gov (United States)

    Farrokhpanah, Amirsaman; Coyle, Thomas W.; Mostaghimi, Javad

    2017-01-01

    A numerical study of suspension plasma spraying is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for droplets and particles as they travel toward the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate is investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power is studied. Additionally, effect of injector parameters like injection location, flow rate, and angle is examined. The model used in the current study takes high-temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, several test cases have been considered to better evaluate the effect of different parameters on the quality of particles during flight and upon impact on the substrate.

  8. Studies of Particle Wake Potentials in Plasmas

    Science.gov (United States)

    Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren

    2011-10-01

    Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (PPPM) code ddcMD and the particle-in-cell (PIC) code BEPS to perform these simulations. As a starting point in our study, we examine the wake of a particle passing through a plasma in 3D electrostatic simulations performed with ddcMD and with BEPS using various cell sizes. In this poster, we compare the wakes we observe in these simulations with each other and predictions from Vlasov theory. Prepared by LLNL under Contract DE-AC52-07NA27344 and by UCLA under Grant DE-FG52-09NA29552.

  9. Wavelet transforms and their applications to MHD and plasma turbulence: a review

    CERN Document Server

    Farge, Marie

    2015-01-01

    Wavelet analysis and compression tools are reviewed and different applications to study MHD and plasma turbulence are presented. We introduce the continuous and the orthogonal wavelet transform and detail several statistical diagnostics based on the wavelet coefficients. We then show how to extract coherent structures out of fully developed turbulent flows using wavelet-based denoising. Finally some multiscale numerical simulation schemes using wavelets are described. Several examples for analyzing, compressing and computing one, two and three dimensional turbulent MHD or plasma flows are presented.

  10. Application of atmospheric plasma sources in growth and differentiation of plant and mammalian stem cells

    Science.gov (United States)

    Puac, Nevena

    2014-10-01

    The expansion of the plasma medicine and its demand for in-vivo treatments resulted in fast development of various plasma devices that operate at atmospheric pressure. These sources have to fulfill all demands for application on biological samples. One of the sources that meet all the requirements needed for treatment of biological material is plasma needle. Previously, we have used this device for sterilization of planctonic samples of bacteria, MRSA biofilm, for improved differentiation of human periodontal stem cells into osteogenic line and for treatment of plant meristematic cells. It is well known that plasma generates reactive oxygen species (ROS) and reactive nitrogen species (RNS) that strongly affect metabolism of living cells. One of the open issues is to correlate external plasma products (electrons, ions, RNS, ROS, photons, strong fields etc.) with the immediate internal response which triggers or induces effects in the living cell. For that purpose we have studied the kinetics of enzymes which are typical indicators of the identity of reactive species from the plasma created environment that can trigger signal transduction in the cell and ensue cell activity. In collaboration with Suzana Zivkovicm, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; Nenad Selakovic, Institute of Physics, University of Belgrade; Milica Milutinovic, Jelena Boljevic, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; and Gordana Malovic, Zoran Lj. Petrovic, Institute of Physics, University of Belgrade. Grants III41011, ON171037 and ON173024, MESTD, Serbia.

  11. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications.

    Science.gov (United States)

    Valence, Sarra de; Tille, Jean-Christophe; Chaabane, Chiraz; Gurny, Robert; Bochaton-Piallat, Marie-Luce; Walpoth, Beat H; Möller, Michael

    2013-09-01

    Biodegradable synthetic scaffolds are being evaluated by many groups for the application of vascular tissue engineering. In addition to the choice of the material and the structure of the scaffold, tailoring the surface properties can have an important effect on promoting adequate tissue regeneration. The objective of this study was to evaluate the effect of an increased hydrophilicity of a polycaprolactone vascular graft by treatment with a cold air plasma. To this end, treated and untreated scaffolds were characterized, evaluated in vitro with smooth muscle cells, and implanted in vivo in the rat model for 3 weeks, both in the subcutaneous location and as an aortic replacement. The plasma treatment significantly increased the hydrophilicity of the scaffold, with complete wetting after a treatment of 60 sec, but did not change fiber morphology or mechanical properties. Smooth muscle cells cultured on plasma treated patches adopt a spread out morphology compared to a small, rounded morphology on untreated patches. Subcutaneous implantation revealed a low foreign body reaction for both types of scaffolds and a more extended and dense cellular infiltrate in the plasma treated scaffolds. In the vascular position, the plasma treatment induced a better cellularization of the graft wall, while it did not affect endothelialization rate or intimal hyperplasia. Plasma treatment is therefore an accessible tool to easily increase the biocompatibility of a scaffold and accelerate tissue regeneration without compromising mechanical strength, which are valuable advantages for vascular tissue engineering.

  12. Development of validated HPLC-UV method for simultaneous determination of Metformin, Amlodipine, Glibenclamide and Atorvastatin in human plasma and application to protein binding studies

    Directory of Open Access Journals (Sweden)

    Pawan K. Porwal

    2017-06-01

    Full Text Available A simple, sensitive, fast, and economical HPLC method was developed and validated for simultaneous estimation of two fixed dose combinations frequently prescribed in diabetes (Metformin plus Glibenclamide and hypertension with dyslipidemia (Amlodipine plus Atorvastatin in Human plasma for the first time. The validated HPLC method was used to quantify the concentration of selected actives in ultrafiltrate. Optimum separation conditions were obtained with Water’s Novapack Phenyl (150 mm × 4.6 mm, i.d., 5.0 μm column with mobile phase consisting of 0.1% Phosphoric acid (pH 3.0 and acetonitrile (ACN in gradient mode with column oven temperature maintained at 30 °C and elution monitored by a UV detector at 227 nm. Protein precipitation was employed to extract the selected analyte form human plasma. The recoveries were more than 90% for all analytes in cold aqueous 10% trichloroacetic acid (TCA and acetonitrile. The optimized HPLC-UV was validated in the calibration range of 10–10,000 ng mL−1 for Metformin, 25–5000 ng mL−1 for amlodipine, 50–10,000 ng mL−1 for glibenclamide and 10–5000 ng mL−1 for atorvastatin. The mean relative error was least when weighing of 1/×2 was applied for calibration curve. The accuracy of samples for six replicate measurements at LLOQ level was within limit. The precision and accuracy of samples for six replicate measurements at LLOQ level was within limit. The validated method was applied for quantitation of selected analytes in ultrafiltrate from protein binding experiments. A four to five fold increase in unbound fraction was observed when spiked to human serum albumin. Further the unbound fraction of highly albumin bound drugs was increased nearly to double when incubated with Gly-HSA as compare to HSA.

  13. Study on Fe-Based Coating Produced by Plasma Surface Metallurgy

    Institute of Scientific and Technical Information of China (English)

    LIHui-qi; LIUBang-wu; LIHui-dong; ZHANGLi-min; LIMin; SUNYu-zong

    2004-01-01

    In the paper, plasma surface metallurgy was performed using Fe-based powder on steel substrate. The microstructure and microhardness of the coating have been analyzed. On the base of orthogonal comparison tests, influences of many factors on the cracking sensibility of plasma metallurgy coating have also been studied. The results indicate that substrate and its surface condition, processing parameters and components of plasma metallurgy coating have great effects on cracking sensibility of plasma metallurgy coating. Through changing these factors, it is possible to reduce cracks and promote the applications of this technology.

  14. M3D project for simulation studies of plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, W.; Belova, E.V.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Strauss, H.R. [New York Univ., NY (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1998-12-31

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  15. Development and Validation of an HPLC Method for Simultaneous Quantification of Clopidogrel Bisulfate, Its Carboxylic Acid Metabolite, and Atorvastatin in Human Plasma: Application to a Pharmacokinetic Study

    Directory of Open Access Journals (Sweden)

    Octavian Croitoru

    2015-01-01

    Full Text Available A simple, sensitive, and specific reversed phase liquid chromatographic method was developed and validated for simultaneous quantification of clopidogrel, its carboxylic acid metabolite, and atorvastatin in human serum. Plasma samples were deproteinized with acetonitrile and ibuprofen was chosen as internal standard. Chromatographic separation was performed on an BDS Hypersil C18 column (250 × 4.6 mm; 5 μm via gradient elution with mobile phase consisting of 10 mM phosphoric acid (sodium buffer solution (pH = 2.6 adjusted with 85% orthophosphoric acid : acetonitrile : methanol with flow rate of 1 mL·min−1. Detection was achieved with PDA detector at 220 nm. The method was validated in terms of linearity, sensitivity, precision, accuracy, limit of quantification, and stability tests. Calibration curves of the analytes were found to be linear in the range of 0.008–2 μg·mL−1 for clopidogrel, 0.01–4 μg·mL−1 for its carboxylic acid metabolite, and 0.005–2.5 μg·mL−1 for atorvastatin. The results of accuracy (as recovery with ibuprofen as internal standard were in the range of 96–98% for clopidogrel, 94–98% for its carboxylic acid metabolite, and 90–99% for atorvastatin, respectively.

  16. Quantification of 17-desacetyl norgestimate in human plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and its application to bioequivalence study

    Institute of Scientific and Technical Information of China (English)

    Ashish Saxena; Arun Kumar Gupta; V. Praveen Kumar; M. Sundaramoorthi Nainar; Manoj Bob; Ravisekhar Kasibhatta

    2015-01-01

    A rapid and sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for the estimation of 17-desacetyl norgestimate in human plasma using solid-phase extraction technique. 17-desacetyl norgestimate D6 was used as the internal standard. Simple gradient chromatographic conditions and mass spectrometric detection enabled accurate and precise measurement of 17-desacetyl norgestimate at sub-picogram levels. The proposed method was validated for a linear range of 20–5000 pg/mL with a correlation coefficient Z 0.9988. The intra-run and inter-run precision and accuracy were within 10%. The overall recoveries for 17-desacetyl norgestimate and 17-desacetyl norgestimate D6 were 96.30%and 93.90%, respectively. The total run time was 4.5 min. The developed method was applied for the determination of the pharmacokinetic parameters of 17-desacetyl norgestimate following a single oral administration of a norgestimate and ethinyl estradiol 0.250 mg/0.035 mg tablets in 35 healthy female volunteers.

  17. Quantification of 17-desacetyl norgestimate in human plasma by liquid chromatography–tandem mass spectrometry (LC–MS/MS and its application to bioequivalence study

    Directory of Open Access Journals (Sweden)

    Ashish Saxena

    2015-04-01

    Full Text Available A rapid and sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS method was developed and validated for the estimation of 17-desacetyl norgestimate in human plasma using solid-phase extraction technique. 17-desacetyl norgestimate D6 was used as the internal standard. Simple gradient chromatographic conditions and mass spectrometric detection enabled accurate and precise measurement of 17-desacetyl norgestimate at sub-picogram levels. The proposed method was validated for a linear range of 20–5000 pg/mL with a correlation coefficient ≥0.9988. The intra-run and inter-run precision and accuracy were within 10%. The overall recoveries for 17-desacetyl norgestimate and 17-desacetyl norgestimate D6 were 96.30% and 93.90%, respectively. The total run time was 4.5 min. The developed method was applied for the determination of the pharmacokinetic parameters of 17-desacetyl norgestimate following a single oral administration of a norgestimate and ethinyl estradiol 0.250 mg/0.035 mg tablets in 35 healthy female volunteers.

  18. Microwave plasma: its characteristics and applications in thin film technology

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J.

    Microwave plasmas differ significantly from other plasmas, exhibit many interesting properties and so offer new possibilities for the plasma processing of thin films. Plasma properties strongly depend on the conditions and methods used to excite the gas. Due to the existence of a direct connection between the properties of plasma-prepared thin films and plasma micro-parameters a perfect knowledge of the plasma generation is a basic requirement for mastering a plasma deposition process. Therefore, different methods of generating microwave isotropic and anisotropic plasmas are discussed. Special attention is devoted to the mechanisms of plasma excitation and to the generation of a dense and homogeneous plasma in thin film technology are also presented.

  19. Simultaneous determination of ledipasvir, sofosbuvir and its metabolite in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study.

    Science.gov (United States)

    Pan, Chenwei; Chen, Yongping; Chen, Weilai; Zhou, Guangyao; Jin, Lingxiang; Zheng, Yi; Lin, Wei; Pan, Zhenzhen

    2016-01-01

    In this work, a rapid and sensitive ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the determination of ledipasvir, sofosbuvir and its metabolite GS-331007 in rat plasma was developed. The analytes and the internal standard (diazepam) were separated on an Acquity UPLC BEH C18 chromatography column (2.1mm×50mm, 1.7μm) using gradient elution with a mobile phase of acetonitrile and 0.1% formic acid in water at a flow rate of 0.4mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode to monitor the precursor-to-product ion transitions of m/z 889.8→130.1 for ledipasvir, m/z 530.3→243.1 for sofosbuvir, m/z 261.5→113.1 for GS-331007 and m/z 285.2→193.1 for diazepam (IS) using a positive electrospray ionization interface. The method was validated over a concentration range of 2-500ng/mL for ledipasvir, 10-2000ng/mL for sofosbuvir and 10-2000ng/mL for GS-331007. Total time for each chromatography was 3.0min. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels exhibited relative standard deviations (RSD)sofosbuvir and GS-331007 in rats.

  20. Development and validation of a LC-MS/MS method for determination of pinoresinol diglucoside in rat plasma: Application to pharmacokinetic study.

    Science.gov (United States)

    Song, Yanqing; Yan, Huiyu; Sun, Zhihui; Teng, Shiyong; Sun, Lirui; Zhang, Sixi

    2015-11-01

    Pinoresinol diglucoside (PD), a typical marker compound in Ecommia ulmoides Oliv., is an important and natural antihypertensive drug. A selective, sensitive, and rapid liquid chromatography tandem mass spectrometric (LC-MS/MS) analytical method was developed for the determination of PD in rats. After simple protein precipitation with acetonitrile, chromatographic separation of PD was conducted using a reversed-phase ZORBAX SB C18 analytical column (4.6mm × 150 mm, 5 μm particles) with a mobile phase of 10mM ammonium acetate-methanol-acetic acid (50:50:0.15, v/v/v) and quantified by selected reaction monitoring mode under positive electrospray ionization condition. The chromatographic run time was 3.4 min for each sample, in which the retention times of PD and the internal standard were 2.87 and 2.65 min, respectively. The calibration curves were linear over the range of 1.00~3000 ng/mL and the lower limit of quantification was 1.00 ng/mL in rat plasma. The precision expressed by relative standard deviations were <8.9% for intra-batch precision and <2.0% for inter-batch precision, and the intra- and inter-batch accuracy by relative error was within the range of -3.9% ~7.3%, which met acceptable criteria. The LC-MS/MS method was successfully applied to investigate the pharmacokinetics and oral bioavailability of PD in rats, with the bioavailability being only 2.5%.

  1. Simultaneous quantification of cefpodoxime proxetil and clavulanic acid in human plasma by LC-MS using solid phase extraction with application to pharmacokinetic studies.

    Science.gov (United States)

    Dubala, Anil; Nagarajan, Janaki Sankarachari Krishnan; Vimal, Chandran Sathish; George, Renjith

    2013-03-15

    A simple, rapid and selective high performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS) method was developed and validated for the simultaneous estimation of cefpodoxime proxetil (CDPX) and clavulanic acid (CA) in human plasma. Extraction of samples was done by solid phase extraction technique (SPE) and chloramphenicol used as internal standard. Chromatographic separation was carried out on a reverse phase Princeton SPHER C18 (150mm×4mm i.d., 5μm) column using mixture of methanol: acetonitrile: 2mM ammonium acetate (25:25:50, v/v, pH 3.5) at 0.8mL/min flow rate. Detection was performed on a single quadrupole MS by selected ion monitoring (SIM) mode via APCI source. The calibration curve was linear within the concentration range, 0.04-4.4μg/mL and 0.1-10.0μg/mL for CDPX and CA respectively. Pharmacokinetic parameters of tablet (CDPX 200mg, CA 125mg) were evaluated. Cmax, Tmax, T1/2, elimination rate constant (Kel), AUC0-t, and AUC0-∞ of tablet were 2.13±0.06μg/mL, 2h, 3.05±0.15h, 0.24±0.37h(-1), 6.81±0.14μg h/mL and 7.72±0.23μg h/mL respectively for cefpodoxime (CP), 5.34±0.28μg/mL, 2h, 2.73±0.25h, 0.26±0.31h(-1), 15.37±0.16μg h/mL and 16.59±0.53μg h/mL respectively for CA.

  2. Liquid chromatography tandem mass spectrometry method for the quantitation of mycophenolate mofetil in human plasma: Application to a bioequivalence study and metabolite identification.

    Science.gov (United States)

    Partani, Pankaj; Verma, Saurabh Manaswita; Monif, Tausif

    2015-10-01

    We established a sensitive, selective, and rapid analytical method for the quantitation and pharmacokinetic investigation of mycophenolate mofetil in human plasma. To our knowledge, this is the first method that characterizes presence of mycophenolate mofetil glucuronide in clinical samples through tandem mass spectrometry detection and resolves mycophenolate mofetil from its glucuronide metabolite. Liquid chromatography coupled to tandem mass spectrometry detection in positive ion mode was selected to provide optimal selectivity and sensitivity. Due to the ionizable characteristics of the mycophenolate mofetil, a mixed-mode cation-exchange disposable extraction cartridge was prudently chosen. The chromatographic separation was achieved on Luna(®) C18(2) (100×4.60 mm) column using mobile phase consisting of a mixture of 1±0.05 mM ammonium formate in water, titrated to pH 3.1±0.1 with formic acid, and methanol (20:80, v/v), at a flow rate of 0.7 mL/min. The detection was led at m/z ratios of 434.4→ 114.2 and 438.4→ 118.3, for mycophenolate mofetil and mycophenolate mofetil-D4, respectively. The developed method was linear between 40.2-4986.0 pg/mL. All validation parameters were within the defined limits. The validated method was then successfully applied for the evaluation of bioequivalence parameters of mycophenolate mofetil after an oral administration of 500 mg mycophenolate mofetil tablet to healthy male Indian volunteers.

  3. 2-D studies of Relativistic electron beam plasma instabilities in an inhomogeneous plasma

    CERN Document Server

    Shukla, Chandrashekhar; Patel, Kartik

    2015-01-01

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [Phys. Rev Letts. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nano tube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and simulations with the help of 2-D Particle - In - Cell code. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks...

  4. A 1D (radial) Plasma Jet Propagation Study for the Plasma Liner Experiment (PLX)

    Science.gov (United States)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.; Welch, D. R.; Thoma, C.; Golovkin, I.; Macfarlane, J. J.; Case, A.; Messer, S. J.; Witherspoon, F. D.; Cassibry, J. T.; Awe, T. J.; Hsu, S. C.

    2011-10-01

    The Plasma Liner Experiment will explore the formation of imploding spherical ``plasma liners'' that reach peak pressures of 0.1 Mbar upon stagnation. The liners will be formed through the merging of dense, high velocity plasma jets (n ~1017 cm-3, T ~3 eV, v ~50 km/s) in a spherically convergent geometry. The focus of this 1D (radial) study is argon plasma jet evolution during propagation from the rail gun source to the jet merging radius. The study utilizes the Large Scale Plasma (LSP) PIC code with atomic physics included through the use of a non-Local Thermal Equilibrium (NLTE) Equation of State (EOS) table. We will present scenarios for expected 1D (radial) plasma jet evolution, from upon exiting the PLX rail gun to reaching the jet merging radius. The importance of radiation cooling early in the simulation is highlighted. Work supported by US DOE grant DE-FG02-05ER54835.

  5. Plasma-Assisted Combustion Studies at AFRL

    Science.gov (United States)

    2009-11-04

    important for lean, gas-turbine ( powerplant ) operation Might one also mitigate/influence acoustic fluctuations? Potential for uniform performance with...Thermometry with pulsed -W Source No -W Pulsed -W Direct coupled plasma torch: flame OH vs. - wave power: Plasma-assisted Ignition Cathey, Gundersen, Wang...Determine physical mechanism, primarily for transient plasma ignition  What is role of humidity: XH2O affects detonation wave speed in PDE but not

  6. Advances in experimental spectroscopy of Z-pinch plasmas and applications

    Science.gov (United States)

    Kantsyrev, V. L.; Safronova, A. S.; Safronova, U. I.; Shrestha, I.; Weller, M. E.; Osborne, G. C.; Shlyaptseva, V. V.; Wilcox, P. G.; Stafford, A.

    2012-06-01

    Recent advances in experimental work on plasma spectroscopy of Z-pinches are presented. The results of experiments on the 1.7 MA Z-pinch Zebra generator at UNR with wire arrays of various configurations and X-pinches are overviewed. A full x-ray and EUV diagnostic set for detailed spatial and temporal monitoring of such plasmas together with theoretical support from relativistic atomic structure and non-LTE kinetic codes used in the analysis are discussed. The use of a variety of wire materials in a broad range from Al to W provided an excellent opportunity to observe and study specific atomic and plasma spectroscopy features. In addition, the applications of such features to fusion and astrophysics will be considered.

  7. An improved LC-MS/MS method for quantitative determination of ilaprazole and its metabolites in human plasma and its application to a pharmacokinetic study

    Institute of Scientific and Technical Information of China (English)

    Gan ZHOU; Zhi-rong TAN; Wei ZHANG; Dong-sheng OU-YANG; Yao CHEN; Dong GUO; Ying-zi LIU; Lan FAN; Han-wu DENG

    2009-01-01

    Aim: To improve and validate an analytical method based on liquid chromatography and electrospray ionization tandem mass spec-trometry (LC-ESI-MS/MS) for the quantitative measurement of ilaprazole and its two metablites in human plasma. Methods: Separation of analytes and the internal standard (IS), omeprazole, was performed on a Thermo HyPURITY C18 column (150×2.1 mm, 5 μm) with a mobile phase consisting of 10 mmol/L ammonium formate water-acetonitrile solution (50:50, v/v) at a flow rate of 0.25 mL/min. The API4000 triple quadruple mass spectrometer was operated in multiple reactions monitoring mode via positive electrospray ionization interface using the transition m/z 367.2 → m/z 184.0 for ilaprazole, m/z 383.3 → m/z 184.1 for ilaprazole sulfone, m/z 351.2 → m/z 168.1 for ilaprazole thiol ether and m/z 346.2 → m/z 198.0 for omeprazole. Results: The method was linear over the concentration range of 0.23-2400.00 ng/mL for ilaprazole, 0.05-105.00 ng/mL for ilapra-zole thiol ether and 0.06-45.00 ng/mL for ilaprazole sulfone. The intra-and inter-day precisions were all less than 15% in terms of relative standard deviation (RSD), and the accuracy was within 15% in terms of relative error (RE) for ilaprazole, ilaprazole sulfone and ilaprazole thiol ether. The lower limit of quantification (LLOQ) was identifiable and reproducible at 0.23, 0.05 and 0.06 ng/mL with acceptable precision and accuracy for ilaprazole, ilaprazole sulfone and ilaprazole thiol ether, respectively. Conclusion: The validated method offered sensitivity and a wide linear concentration range. This method was successfully applied for the evaluation of the pharmacokinetics of ilaprazole and its two metabolites after single oral doses of 5 mg ilaprazole to 12 healthy Chinese volunteers.

  8. Development of a LC-MS/MS method for simultaneous determination of metoprolol and its metabolites, α-hydroxymetoprolol and O-desmethylmetoprolol, in rat plasma: application to the herb-drug interaction study of metoprolol and breviscapine.

    Science.gov (United States)

    Rao, Zhi; Ma, Yan-rong; Qin, Hong-yan; Wang, Ya-feng; Wei, Yu-hui; Zhou, Yan; Zhang, Guo-qiang; Wang, Xing-dong; Wu, Xin-an

    2015-09-01

    A simple, specific and sensitive LC-MS/MS method was developed and validated for the simultaneous determination of metoprolol (MET), α-hydroxymetoprolol (HMT) and O-desmethylmetoprolol (DMT) in rat plasma. The plasma samples were prepared by protein precipitation, then the separation of the analytes was performed on an Agilent HC-C18 column (4.6 × 250 mm, 5 µm) at a flow rate of 1.0 mL/min, and post-column splitting (1:4) was used to give optimal interface flow rates (0.2 mL/min) for MS detection; the total run time was 8.5 min. Mass spectrometric detection was achieved using a triple-quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. The method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, matrix effect and recovery over a concentration range of 3.42-7000 ng/mL for MET, 2.05-4200 ng/mL for HMT and 1.95-4000 ng/mL for DMT. The analytical method was successfully applied to herb-drug interaction study of MET and breviscapine after administration of breviscapine (12.5 mg/kg) and MET (40 mg/kg). The results suggested that breviscapine have negligible effect on pharmacokinetics of MET in rats; the information may be beneficial for the application of breviscapine in combination with MET in clinical therapy.

  9. Plasma in dentistry

    OpenAIRE

    Cha, Seunghee; Park, Young-Seok

    2014-01-01

    This review describes the contemporary aspects of plasma application in dentistry. Previous studies on plasma applications were classified into two categories, surface treatment and direct applications, and were reviewed, respectively according to the approach. The current review discussed modification of dental implant surface, enhancing of adhesive qualities, enhancing of polymerization, surface coating and plasma cleaning under the topics of surface treatment. Microbicidal activities, deco...

  10. High speed cine film studies of plasma behaviour and plasma surface interactions in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Goodall, D.H.J. (Euratom/UKAEA Fusion Association, Abingdon (UK). Culham Lab.)

    High speed cine photography is a useful diagnostic aid for studying plasma behaviour and plasma surface interactions. Several workers have filmed discharges in tokamaks including ASDEX, DITE, DIVA, ISX, JFT2, TFR and PLT. These films are discussed and examples given of the observed phenomena which include plasma limiter interactions, diverted discharges, disruptions, magnetic islands and moving glowing objects often known as 'UFOs'. Examples of plasma structures in ASDEX and DITE not previously published are also given. The paper also reports experiments in DITE to determine the origin of UFOs.

  11. Kinetic theory of twisted waves: Application to space plasmas having superthermal population of species

    Science.gov (United States)

    Arshad, Kashif; Poedts, Stefaan; Lazar, Marian

    2017-04-01

    Nowadays electromagnetic (EM) fields have various applications in fundamental research, communication, and home appliances. Even though, there are still some subtle features of electromagnetic field known to us a century ago, yet to be utilized. It is because of the technical complexities to sense three dimensional electromagnetic field. An important characteristic of electromagnetic field is its orbital angular momentum (OAM). The angular momentum consists of two distinct parts; intrinsic part associated with the wave polarization or spin, and the extrinsic part associated with the orbital angular momentum (OAM). The orbital angular momentum (OAM) is inherited by helically phased light or helical (twisted) electric field. The investigations of Allen on lasers carrying orbital angular momentum (OAM), has initiated a new scientific and technological advancement in various growing fields, such as microscopy and imaging, atomic and nano-particle manipulation, ultra-fast optical communications, quantum computing, ionospheric radar facility to observe 3D plasma dynamics in ionosphere, photonic crystal fibre, OAM entanglement of two photons, twisted gravitational waves, ultra-intense twisted laser pulses and astrophysics. Recently, the plasma modes are also investigated with orbital angular momentum. The production of electron vortex beams and its applications are indicated by Verbeeck et al. The magnetic tornadoes (rotating magnetic field structures) exhibit three types of morphology i.e., spiral, ring and split. Leyser pumped helical radio beam carrying OAM into the Ionospheric plasma under High Frequency Active Auroral Research Program (HAARP) and characteristic ring shaped morphology is obtained by the optical emission spectrum of pumped plasma turbulence. The scattering phenomenon like (stimulated Raman and Brillouin backscattering) is observed to be responsible for the interaction between electrostatic and electromagnetic waves through orbital angular momentum. The

  12. Capillary plasma jet: A low volume plasma source for life science applications

    Energy Technology Data Exchange (ETDEWEB)

    Topala, I., E-mail: ionut.topala@uaic.ro, E-mail: tmnagat@ipc.shizuoka.ac.jp [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Iasi Plasma Advanced Research Center (IPARC), Bd. Carol I No. 11, Iasi 700506 (Romania); Nagatsu, M., E-mail: ionut.topala@uaic.ro, E-mail: tmnagat@ipc.shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan)

    2015-02-02

    In this letter, we present results from multispectroscopic analysis of protein films, after exposure to a peculiar plasma source, i.e., the capillary plasma jet. This plasma source is able to generate very small pulsed plasma volumes, in kilohertz range, with characteristic dimensions smaller than 1 mm. This leads to specific microscale generation and transport of all plasma species. Plasma diagnosis was realized using general electrical and optical methods. Depending on power level and exposure duration, this miniature plasma jet can induce controllable modifications to soft matter targets. Detailed discussions on protein film oxidation and chemical etching are supported by results from absorption, X-ray photoelectron spectroscopy, and microscopy techniques. Further exploitation of principles presented here may consolidate research interests involving plasmas in biotechnologies and plasma medicine, especially in patterning technologies, modified biomolecule arrays, and local chemical functionalization.

  13. Fundamental Study of Nuclear Pumped Laser Plasmas.

    Science.gov (United States)

    1980-12-23

    rate of up to 2pps. The plasma cell/gas- handling system obtains base pressures of 5xlO 8 Torr prior to high purity gas fill. The plasma cell is...synchronization problems, etc.). Due to the exceptional reproducibility of e-beam characteristics, todate , only prefire has caused data rejection. IV. Recent

  14. Transport studies in fusion plasmas: Perturbative experiments

    NARCIS (Netherlands)

    Cardozo, N. L.

    1998-01-01

    By inducing in a small temperature perturbation in a plasma in a steady state one can determine the conductive and convective components of the heat flux, and the associated thermal diffusivity and convection velocity. The same can be done for the density, and in principle also other plasma paramete

  15. Robust regression with CUDA and its application to plasma reflectometry.

    Science.gov (United States)

    Ferreira, Diogo R; Carvalho, Pedro J; Fernandes, Horácio

    2015-11-01

    In many applications, especially those involving scientific instrumentation data with a large experimental error, it is often necessary to carry out linear regression in the presence of severe outliers which may adversely affect the results. Robust regression methods do exist, but they are much more computationally intensive, making it difficult to apply them in real-time scenarios. In this work, we resort to graphics processing unit (GPU)-based computing to carry out robust regression in a time-sensitive application. We illustrate the results and the performance gains obtained by parallelizing one of the most common robust regression methods, namely, least median of squares. Although the method has a complexity of O(n(3)logn), with GPU computing, it is possible to accelerate it to the point that it becomes usable within the required time frame. In our experiments, the input data come from a plasma diagnostic system installed at Joint European Torus, the largest fusion experiment in Europe, but the approach can be easily transferred to other applications.

  16. Plasma treatments of wool fiber surface for microfluidic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Boo, Jin-Hyo, E-mail: jhboo@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Yun, Sang H., E-mail: shy@kth.se [Institute of Basic Science, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of)

    2015-09-15

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For this reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.

  17. Simultaneous determination of paeoniflorin, albiflorin, ferulic acid, tetrahydropalmatine, protopine, typhaneoside, senkyunolide I in Beagle dogs plasma by UPLC-MS/MS and its application to a pharmacokinetic study after Oral Administration of Shaofu Zhuyu Decoction.

    Science.gov (United States)

    Huang, Xiaochen; Su, Shulan; Cui, Wenxia; Liu, Pei; Duan, Jin-ao; Guo, Jianming; Li, Zhenhao; Shang, Erxin; Qian, Dawei; Huang, Zhijun

    2014-07-01

    In this present study, a sensitive and rapid UPLC-MS/MS method was developed for simultaneous quantification of paeoniflorin, albiflorin, ferulic acid, tetrahydropalmatine, protopine, typhaneoside and senkyunolide I in Beagle dog plasma after oral administration of the Shao-Fu-Zhu-Yu Decoction. Chloramphenicol and clarithromycin were used as internal standards. Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100mm×2.1mm, 1.7μm) at a flow-rate of 0.4mL/min, using 0.1% formic acid-acetonitrile as mobile phase. Method validation was performed as per Food and Drug Administration guidelines and the results met the acceptance criteria. After validation, this method was successfully applied to a pharmacokinetic study. The results showed that the apparent plasma clearance of paeoniflorin, albiflorin, typhaneoside and senkyunolide I were significantly higher than others. Double peak was observed in plasma concentration curves of tetrahydropalmatine, the ferulic acid had a good absorption in Beagle dog plasma, and senkyunolide I was detected in plasma from the first blood sampling time (15min) and rapidly reached Tmax. The compound of typhaneoside has a low bioavailability according to the results.

  18. Study of the Active Screen Plasma Nitriding

    Institute of Scientific and Technical Information of China (English)

    Zhao Cheng; C. X. Li; H. Dong; T. Bell

    2004-01-01

    Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carder in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.

  19. PLATELET RICH PLASMA (PRP APPLICATION IN TOTAL KNEE ARTHROPLASTY (TKA

    Directory of Open Access Journals (Sweden)

    Pencho Kosev

    2015-07-01

    Full Text Available PURPOSE: To find out the PRP application effects in TKA on pain syndrome, wound healing, postoperative blood loss, range of motion and the knee circumference (centimetry. MATERIAL AND METHOD: The preparation of the platelet-rich plasma is based on our treatment algorithm. 20 patients have been subject to TKA within the period from October 2012 to November 2014 and underwent TKA, as platelet rich plasma was used intraoperatively. The average patient age is 72,3; 9 male and 11 female patients. Control group consisted of 17 patients, who underwent surgery in the same period but no platelet rich plasma was used during surgery. Average patient age 73,1; 8 male and 9 female patients. RESULTS: The following results have been reported for the PRP group of patients: the average amount of blood in the aspiration drainage tube in 24 hours - 285 ml.; postoperative pain on the 1st postoperative day was - 7 p., on the 5th day - 5 p., on the 10th day - 2 p., average circumference (centimetry of the knee between the 1st and the 10th postoperative day decreased on average by 1,5-2 cm., range of motion – reported average degrees per patient on the 1st postoperative day in sagittal plane: 0-10-20 degrees; on the 10th postoperative day: 0-0-55 degrees, surgical wounds of all patients healed primarily without any complications. No PRP group: average amount of blood in the aspiration drainage in 24 hours – 300 pl., postoperative pain on the 1st, 5th , and 10th postoperative day - 8 p., on the 5th day - 6 p., on the 10th day - 3 p., average knee circumference (centimetry between 1 and 10 postoperative day has decreased by 1 cm on average, range of motion - reported average degrees per patient on the 1st postoperative day in sagittal plane 0-5-20 degrees, on the 10th: 0-0-50 degrees, surgical wounds healed primarily without any complications in 10 patients, but in 7 patients we observed superficial wound edge skin necrosis. CONCLUSION: Our results unequivocally

  20. Determination of a novel anticancer c-Met inhibitor LS-177 in rat plasma and tissues with a validated UPLC-MS/MS method: application to pharmacokinetics and tissue distribution study.

    Science.gov (United States)

    Ju, Ping; Liu, Zhenzhen; Jiang, Yu; Zhao, Simin; Zhang, Lunhui; Zhang, Yuanyuan; Gu, Liqiang; Tang, Xing; Bi, Kaishun; Chen, Xiaohui

    2015-07-01

    LS-177 is a novel small-molecule kinase inhibitor employed to interrupt the c-Met signaling pathway. A rapid and sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for determination of LS-177 in rat plasma and tissues. The biosamples were extracted by liquid-liquid extraction with methyl tert-butyl ether and separated on a C18 column (50 × 4.6 mm, 2.6 µm) using a gradient elution mobile phase consisting of acetonitrile-0.1% formic acid water. Under the optimal conditions, the selectivity of the method was satisfactory with no endogenous interference. The intraday and interday precisions (relative standard deviation) were LS-177 was stable during the preparation and analytical processes. The UPLC-MS/MS method was successfully applied to pharmacokinetic and tissue distribution studies. The results indicated that there was no significant drug accumulation after multiple-dose oral administration of LS-177. The tissue distribution study exhibited significant higher uptakes of LS-177 in stomach, intestine, lung and liver among all of the tissues. The results in pharmacokinetics and tissue distribution may provide a meaningful basis for clinical application.

  1. Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device

    Science.gov (United States)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-06-01

    The effect of the electrostatic confinement potential on the charging of dust grains and its relationship with the plasma parameters has been studied in an electrostatically plugged multicusp dusty plasma device. Electrostatic plugging is implemented by biasing the electrically isolated magnetic multicusp channel walls. The experimental results show that voltage applied to the channel walls can be a controlling parameter for dust charging.

  2. A comparative study of CF{sub 4}/O{sub 2}/Ar and C{sub 4}F{sub 8}/O{sub 2}/Ar plasmas for dry etching applications

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Inwoo [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-Ro, Sejong 339-700 (Korea, Republic of); Efremov, Alexander [Department of Electronic Devices & Materials Technology, State University of Chemistry & Technology, 7F. Engels St., 153000 Ivanovo (Russian Federation); Yeom, Geun Young [Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kwon, Kwang-Ho, E-mail: kwonkh@korea.ac.kr [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-Ro, Sejong 339-700 (Korea, Republic of)

    2015-03-31

    The effect of the O{sub 2}/Ar mixing ratio in CF{sub 4}/O{sub 2}/Ar and C{sub 4}F{sub 8}/O{sub 2}/Ar inductively coupled plasmas with a 50% fluorocarbon gas content on plasma parameters and active species densities, which influence dry etching mechanisms, was analyzed. The investigation combined plasma diagnostics using Langmuir probes and zero-dimensional plasma modeling. It was found that, in both gas systems, the substitution of Ar for O{sub 2} results in a similar change in the ion energy flux but causes the opposite behavior for the F atom flux. The mechanisms of these phenomena are discussed with regards to plasma chemistry. - Highlights: • The goal was to conduct a comparative study of CF{sub 4}/O{sub 2}/Ar and C{sub 4}F{sub 8}/O{sub 2}/Ar plasmas. • The focus was on the parameters directly influencing dry etching mechanisms. • Model-based analysis for neutral species was used in this paper.

  3. Spectroscopic Studies of Laser Produced Plasma Metasurfaces

    Science.gov (United States)

    Colon Quinones, Roberto; Underwood, Thomas; Cappelli, Mark

    2016-10-01

    In this presentation, we describe the spatial and temporal plasma characteristics of the dense plasma kernels that are used to construct a laser produced plasma metasurface (PM) that is intended to serve as a tunable THz reflector. The PM is an n x n array of plasmas generated by focusing the light from a 2 J/p Q-switched Nd:YAG laser through a multi-lens array (MLA) and into a gas of varying pressure. A gated CCD camera coupled to a high-resolution spectrometer is used to obtain chord-averaged H α broadening data for the cross section of a single plasma element at the lens focal point. The data is then Abel inverted to derive the radial plasma density distribution. Measurements are repeated for a range of pressures, laser energies, and lens f-number, with a time resolution of 100 ns and a gate width of 20 ns. Results are presented for the variation of plasma density and size over these different conditions. Work supported by the Air Force Office of Scientific Research (AFOSR). R. Colon Quinones and T. Underwood acknowledge the support of the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  4. Integration of ammonia-plasma-functionalized graphene nanodiscs as charge trapping centers for nonvolatile memory applications

    KAUST Repository

    Wang, Jer-Chyi

    2016-11-23

    Graphene nanodiscs (GNDs), functionalized using NH3 plasma, as charge trapping sites (CTSs) for non-volatile memory applications have been investigated in this study. The fabrication process relies on the patterning of Au nanoparticles (Au-NPs), whose thicknesses are tuned to adjust the GND density and size upon etching. A GND density as high as 8 × 1011 cm−2 and a diameter of approximately 20 nm are achieved. The functionalization of GNDs by NH3 plasma creates Nsingle bondH+ functional groups that act as CTSs, as observed by Raman and Fourier transform infrared spectroscopy. This inherently enhances the density of CTSs in the GNDs, as a result, the memory window becomes more than 2.4 V and remains stable after 104 operating cycles. The charge loss is less than 10% for a 10-year data retention testing, making this low-temperature process suitable for low-cost non-volatile memory applications on flexible substrates.

  5. Low temperature plasma vapor treatment of thermo-sensitive poly(N-isopropylacrylamide) and its application

    Science.gov (United States)

    Chen, Y.; Tang, X. L.; Chen, B. T.; Qiu, G.

    2013-03-01

    In this study, the novel methods of depositing poly(N-isopropylacrylamide) (PNIPAAm) coatings on the surface of glass slides and PS petri dish by plasma polymerization are provided. PNIPAAm can be obtained by plasma polymerization of N-isopropylacrylamide by using the self-made equipment of plasma vapor treatment. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. SEM analysis has revealed that the poly(N-isopropylacrylamide) (PNIPAAm) coatings were formed on the surface of the smooth glass slides. Further evaluation by using XPS, it has shown the presence of PNIPAAm. The wettability can be significantly modified by changing of the temperatures at above and below of the lower critical solution temperature (LCST) from the data of the contact angle test. These results have advantage for further application on the thermo-sensitive textile materials. On the deposition of PNIPAAm onto Polybutylene Terephthalate (PBT) melt-blown nonwovens in atmospheric pressure plasma, water permeability was significantly modified at around LCST. Due to the LCST is close to the temperature of human body, it has advantage on application of PBT melt-blown nonwovens.

  6. Studies of Wettability of Medical PVC by Remote Nitrogen Plasma

    Science.gov (United States)

    Li, Ru; Chen, Jierong

    2006-05-01

    The effects of remote nitrogen plasma and nitrogen plasma on medical PVC's surface modification are studied. The surface properties are characterized by the contact angle measurement, X-ray photoelectron spectroscopy and scanning electron microscopy. Results show that the remote nitrogen plasma treatments modify the PVC surface in both morphology and composition and the treatment by the remote nitrogen plasma in PVC surface modification is more effective than that by the nitrogen plasma. Remote nitrogen plasma can modify the surface more uniformly. After the PVC surface is treated for 2 min by remote nitrogen plasma, the [w(O)+ w(N)]/w(C)] value increases from 0.13 to 0.51 and the water contact angle decreases from 89o to 18o.

  7. Study of Multi-Function Micro-Plasma Spraying Technology

    Institute of Scientific and Technical Information of China (English)

    WANG Liuying; WANG Hangong; HUA Shaochun; CAO Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.

  8. Collisionless expansion of pulsed radio frequency plasmas. II. Parameter study

    Science.gov (United States)

    Schröder, T.; Grulke, O.; Klinger, T.; Boswell, R. W.; Charles, C.

    2016-01-01

    The plasma parameter dependencies of the dynamics during the expansion of plasma are studied with the use of a versatile particle-in-cell simulation tailored to a plasma expansion experiment [Schröder et al., J. Phys. D: Appl. Phys. 47, 055207 (2014); Schröder et al., Phys. Plasmas 23, 013511 (2016)]. The plasma expansion into a low-density ambient plasma features a propagating ion front that is preceding a density plateau. It has been shown that the front formation is entangled with a wave-breaking mechanism, i.e., an ion collapse [Sack and Schamel, Plasma Phys. Controlled Fusion 27, 717 (1985); Sack and Schamel, Phys. Lett. A 110, 206 (1985)], and the launch of an ion burst [Schröder et al., Phys. Plasmas 23, 013511 (2016)]. The systematic parameter study presented in this paper focuses on the influence on this mechanism its effect on the maximum velocity of the ion front and burst. It is shown that, apart from the well known dependency of the front propagation on the ion sound velocity, it also depends sensitively on the density ratio between main and ambient plasma density. The maximum ion velocity depends further on the initial potential gradient, being mostly influenced by the plasma density ratio in the source and expansion regions. The results of the study are compared with independent numerical studies.

  9. Development of plasma needle to be used for biomedical applications

    Science.gov (United States)

    Bora, B.; Jain, J.; Inestrosa-Izurieta, M. J.; Avaria, G.; Moreno, J.; Pavez, C.; Marcelain, K.; Armisen, R.; Soto, L.

    2016-05-01

    Plasma needle is a novel design of a plasma source at atmospheric pressure to achieve a non-thermal plasma jet. The advantage of the plasma needle is that it can be operated in open air, outside a vessel. The plasma that is generated with the plasma needle is small (about one millimetre) and non-thermal, the temperature of the neutral particles and ions is in about room temperature and suitably can interact with living biological cell without damaging the cell. In this work, we report the development of a plasma needle, which is operated by a dc power source and produced a stable plasma jet on water surface. Argon gas is used to operate the plasma needle. The preliminary electrical diagnostics of the plasma needle shows that the discharge is filamentary in nature. For diagnostic of the plasma jet produced by the developed plasma needle, the produced plasma jet is directed to water surface and characterization are carried out by means of electrical discharge characteristics and optical emission spectroscopy. In this work, preliminary results of the diagnostic will be presented.

  10. Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid

    Science.gov (United States)

    Gu, Ling

    2014-03-01

    This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.

  11. Nanosecond Pulsed Discharge in Water without Bubbles: A Fundamental Study of Initiation, Propagation and Plasma Characteristics

    Science.gov (United States)

    Seepersad, Yohan

    The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this

  12. Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhong; Robert C. O' Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

    2011-11-01

    The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

  13. Controlling plasma stimulated media in cancer treatment application

    Science.gov (United States)

    Yan, Dayun; Sherman, Jonathan H.; Cheng, Xiaoqian; Ratovitski, Edward; Canady, Jerome; Keidar, Michael

    2014-12-01

    Cold atmospheric plasma (CAP) constitutes a "cocktail" of various reactive species. Accumulating evidence shows the effectiveness of CAP in killing cancer cells and decreasing the tumor size, which provides a solid basis for its potential use in cancer treatment. Currently, CAP is mainly used to directly treat cancer cells and trigger the death of cancer cells via apoptosis or necrosis. By altering the concentration of fetal bovine serum in Dulbecco's modified Eagle's medium and the temperature to store CAP stimulated media, we demonstrated controllable strategies to harness the stimulated media to kill glioblastoma cells in vitro. This study demonstrated the significant role of media in killing cancer cells via the CAP treatment.

  14. Quantum theory of the dielectric constant of a magnetized plasma and astrophysical applications. I.

    Science.gov (United States)

    Canuto, V.; Ventura, J.

    1972-01-01

    A quantum mechanical treatment of an electron plasma in a constant and homogeneous magnetic field is considered, with the aim of (1) defining the range of validity of the magnetoionic theory (2) studying the deviations from this theory, in applications involving high densities, and intense magnetic field. While treating the magnetic field exactly, a perturbation approach in the photon field is used to derive general expressions for the dielectric tensor. Numerical estimates on the range of applicability of the magnetoionic theory are given for the case of the 'one-dimensional' electron gas, where only the lowest Landau level is occupied.

  15. Physico-chemical study of coating plasma duplex alumina/hydroxyapatite for medical applications relation elaboration/structure/properties(dissolution/adherence/residual constraints); Etude physico-chimique de depots plasma duplex alumine/hydroxyapatite pour applications medicales relations elaboration/structure/proprietes (dissolution/adherence/contraintes residuelles)

    Energy Technology Data Exchange (ETDEWEB)

    Demonet, N

    1998-11-19

    The physico-chemical behavior of porous ceramics depositing is studied in order to use them to favour the biological fixing of hip prosthesis fixed without cement. Alumina depositing, hydroxyapatite depositing and duplex (the both together) have been realized by plasma projection on a substrate in Ti-6Al-V. Tests of dissolution have been made. An original method of sound followed by radioactive tracers has allowed to establish an order of phases degradation and to consider the kinetics of calcium ions in function of several parameters of tests. (N.C.)

  16. Numerical studies of wall-plasma interactions and ionization phenomena in an ablative pulsed plasma thruster

    Science.gov (United States)

    Yang, Lei; Zeng, Guangshang; Tang, Haibin; Huang, Yuping; Liu, Xiangyang

    2016-07-01

    Wall-plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall-plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall-plasma interaction results based on this modified model were found to be more realistic than for the unmodified model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.

  17. Numerical studies of wall–plasma interactions and ionization phenomena in an ablative pulsed plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei [Beijing Research Institute of Precise Mechatronic Controls, Beijing 100076 (China); School of Astronautics, Beihang University, Beijing 100191 (China); Zeng, Guangshang; Huang, Yuping [Beijing Research Institute of Precise Mechatronic Controls, Beijing 100076 (China); Tang, Haibin [School of Astronautics, Beihang University, Beijing 100191 (China); Liu, Xiangyang [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-07-15

    Wall–plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall–plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall–plasma interaction results based on this modified model were found to be more realistic than for the unmodified model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.

  18. Two-dimensional studies of relativistic electron beam plasma instabilities in an inhomogeneous plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-11-15

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/k{sub s} of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω{sub 0}) scale. At such small scale lengths channelization of currents is also observed in simulation.

  19. Development of a simple LC-MS/MS method for determination of rebamipide in human plasma and its application to a bioequivalence study.

    Science.gov (United States)

    Liu, Jian; Shen-Tu, Jianzhong; Wu, Lihua; Dou, Jing; Xu, Qiyang; Zhou, Huili; Wu, Guolan; Hu, Xingjiang

    2012-11-01

    The purpose of this study was to design a simple and rapid liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for a rebamipide bioequivalence study in healthy Chinese male volunteers. In this method, sample pretreatment involved simple protein precipitation with venlafaxine as the internal standard. Analysis was achieved on a ZORBAX SB-C18 column with a concentration range of 6-1200 ng/mL. Rebamipide tablets from Yuanlijian (test, Hangzhou, China) and from Otsuka (reference, Hangzhou, China) were evaluated following a single 300 mg oral dose to 20 healthy volunteers. Bioequivalence was determined by calculating 90% confidence intervals (90% CI) for the ratio of Cmax, AUC(0-t) and AUC(0-infinity) values for the test and reference products, using logarithmic transformed data. The 90% confidence intervals for the ratio of Cmax (83.7-118.4%), AUC(0-t) (91.1-113.4%) and AUC(0-infinity) (90.6-113.2%) values for the test and reference products were within the interval (80.0-125.0% for AUC, and 70-143% for Cmax), proposed by State of Food and Drug Administration [SFDA, 2005. China]. It was concluded that the two rebamipide tablets were bioequivalent in their rate and extent of absorption and the method met the principle of quick and easy clinical analysis.

  20. Determination of risperidone in human plasma by HPLC-MS/MS and its application to a pharmacokinetic study in Chinese volunteers

    Institute of Scientific and Technical Information of China (English)

    Ming-zhu HUANG; Jian-zhong SHENTU; Junc-hun CHEN; Jian LIU; Hui-li ZHOU

    2008-01-01

    This study presents a rapid, specific and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) assay for determination of risperidone (RIS) in human serum using paroxetine as an internal standard (IS). An Alltima-C 18separation. The analysis was performed by selected reaction monitoring (SRM) method, and the peak area of the m/z 411.3→ 191.1 transition for RIS was measured versus that of the m/z 330.1→192.1 transition for IS to generate the standard curves. The assay linearity of RIS was confirmed over the range 0.25~50.00 ng/ml and the limit of quantitation was 0.05 ng/ml. The linear range corresponds well with the serum concentrations of the analytes obtained in clinical pharmacokinetic studies. Intraday and interday relative standard deviations were 1.85%~9.09% and 1.56%~4.38%, respectively. The recovery of RIS from serum was in the range of 70.20%~84.50%. The method was successfully applied to investigate the bioequivalence between two kinds of tablets (test versus reference products) in 18 healthy male Chinese volunteers. The result suggests that two formulations are bioequivalent.

  1. X-ray Studies of Flaring Plasma

    Indian Academy of Sciences (India)

    B. Sylwester; J. Sylwester; K. J. H. Phillips

    2008-03-01

    We present some methods of X-ray data analysis employed in our laboratory for deducing the physical parameters of flaring plasma. For example, we have used a flare well observed with Polish instrument RESIK aboard Russian CORONAS-F satellite. Based on a careful instrument calibration, the absolute fluxes in a number of individual spectral lines have been obtained. The analysis of these lines allows us to follow the evolution of important thermodynamic parameters characterizing the emitting plasma throughout this flare evolution.

  2. Study on Performance Parameters of the Plasma Source for a Short-Conduction-Time Plasma Opening Switch

    Institute of Scientific and Technical Information of China (English)

    LUO Weixi; ZENG Zhengzhong; WANG Liangping; LEI Tianshi; HU Yixiang; HUANG Tao; SUN Tieping

    2012-01-01

    Plasma source performance parameters, including plasma ejection density and velocity, greatly affect the operation of a short-conduction-time plasma opening switch (POS). In this paper, the plasma source used in the POS of Qiangguang I generator is chosen as the study object. At first the POS working process is analyzed. The result shows that the opening performance of the POS can be improved by increasing the plasma ejection velocity and decreasing the plasma density. The influence of the cable plasma gun structure and number on the plasma ejection parameters is experimentally investigated with two charge collectors. Finally a semi-empirical model is proposed to describe the experimental phenomenon.

  3. Studies on Nitrogen Oxides Removal Using Plasma Assisted Catalytic Reactor

    Institute of Scientific and Technical Information of China (English)

    V. Ravi; Young Sun Mok; B. S. Rajanikanth; Ho-Chul Kang

    2003-01-01

    An electric discharge plasma reactor combined with a catalytic reactor was studied for removing nitrogen oxides. To understand the combined process thoroughly, discharge plasma and catalytic process were separately studied first, and then the two processes were combined for the study. The plasma reactor was able to oxidize NO to NO2 well although the oxidation rate decreased with temperature. The plasma reactor alone did not reduce the NOx (NO+NO2)level effectively, but the increase in the ratio of NO2 to NO as a result of plasma discharge led to the enhancement of NOx removal efficiency even at lower temperatures over the catalyst surface (V2O5-WOa/TiO2). At a gas temperature of 100℃, the NOx removal efficiency obtained using the combined plasma catalytic process was 88% for an energy input of 36 eV/molecule or 30 J/1.

  4. Study of scattering cross section of a plasma column using Green's function volume integral equation method

    Science.gov (United States)

    Soltanmoradi, Elmira; Shokri, Babak

    2017-05-01

    In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

  5. Acceleration of compact toroid plasma rings for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, C.W.; Barr, W.L.; Eddleman, J.L.; Gee, M.; Hammer, J.H.; Ho, S.K.; Logan, B.G.; Meeker, D.J.; Mirin, A.A.; Nevins, W.M.

    1988-08-26

    We describe experimental results for a new type of collective accelerator based on magnetically confined compact torus (CT) plasma rings and discuss applications to both inertial and magnetic fusion. We have demonstrated the principle of CT acceleration in the RACE device with acceleration of 0.5 mg ring masses to 400 km/s and 0.02 mg ring masses to 1400 km/s at greater than or equal to30% efficiency. Scaling the CT accelerator to the multi-megajoule level could provide an efficient, economical driver for inertial fusion (ICF) or magnetically insulated inertial fusion. Efficient conversion to x-rays for driving hohlraum-type ICF targets has been modeled using a radiation-hydrodynamics code. At less demanding conditions than required for ICF, a CT accelerator can be applied to fueling and current drive in tokamaks. Fueling is accomplished by injecting CTs at the required rate to sustain the particle inventory and at a velocity sufficient to penetrate to the magnetic axis before CT dissolution. Current drive is a consequence of the magnetic helicity content of the CT, which is approximately conserved during reconnection of the CT fields with the tokamak. Major areas of uncertainty in CT fueling and current drive concern the mechanism by which CTs will stop in a tokamak plasma and the effects of the CT on energy confinement and magnetic stability. Bounds on the required CT injection velocity are obtained by considering drag due to emission of an Alfven-wave wake and rapid reconnection and tilting on the internal Alfven time scale of the CT. Preliminary results employing a 3-D, resistive MHD code show rapid tilting with the CT aligning its magnetic moment with the tokamak field. Requirements for an experimental test of CT injection and scenarios for fueling a reactor will also be discussed. 14 refs., 4 figs.

  6. Development and validation of a high-performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of irinotecan and its main metabolites in human plasma and its application in a clinical pharmacokinetic study.

    Directory of Open Access Journals (Sweden)

    Elena Marangon

    Full Text Available Irinotecan is currently used in several cancer regimens mainly in colorectal cancer (CRC. This drug has a narrow therapeutic range and treatment can lead to side effects, mainly neutropenia and diarrhea, frequently requiring discontinuing or lowering the drug dose. A wide inter-individual variability in irinotecan pharmacokinetic parameters and pharmacodynamics has been reported and associated to patients' genetic background. In particular, a polymorphism in the UGT1A1 gene (UGT1A1*28 has been linked to an impaired detoxification of SN-38 (irinotecan active metabolite to SN-38 glucuronide (SN-38G leading to increased toxicities. Therefore, therapeutic drug monitoring of irinotecan, SN-38 and SN-38G is recommended to personalize therapy. In order to quantify simultaneously irinotecan and its main metabolites in patients' plasma, we developed and validated a new, sensitive and specific HPLC-MS/MS method applicable to all irinotecan dosages used in clinic. This method required a small plasma volume, addition of camptothecin as internal standard and simple protein precipitation. Chromatographic separation was done on a Gemini C18 column (3 μM, 100 mm x 2.0 mm using 0.1% acetic acid/bidistilled water and 0.1% acetic acid/acetonitrile as mobile phases. The mass spectrometer worked with electrospray ionization in positive ion mode and selected reaction monitoring. The standard curves were linear (R2 ≥0.9962 over the concentration ranges (10-10000 ng/mL for irinotecan, 1-500 ng/mL for SN-38 and SN-38G and 1-5000 ng/mL for APC and had good back-calculated accuracy and precision. The intra- and inter-day precision and accuracy, determined on three quality control levels for all the analytes, were always <12.3% and between 89.4% and 113.0%, respectively. Moreover, we evaluated this bioanalytical method by re-analysis of incurred samples as an additional measure of assay reproducibility. This method was successfully applied to a pharmacokinetic study in

  7. Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review

    Energy Technology Data Exchange (ETDEWEB)

    Roepcke, J [INP-Greifswald, 17489 Greifswald, Friedrich-Ludwig-Jahn-Str. 19 (Germany); Lombardi, G [CNRS LIMHP, Universite Paris XIII, 99, av. J.B. Clement, 93430 Villetaneuse (France); Rousseau, A [Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Davies, P B [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2006-11-01

    Within the last decade mid-infrared absorption spectroscopy over a region from 3 to 17{mu}m and based on tuneable lead salt diode lasers, often called tuneable diode laser absorption spectroscopy or TDLAS, has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry in molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, organo-silicon and boron compounds has led to further applications of TDLAS because most of these compounds and their decomposition products are infrared active. TDLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetic phenomena. Information about gas temperature and population densities can also be derived from TDLAS measurements. A variety of free radicals and molecular ions have been detected by TDLAS. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of quantum cascade lasers (QCLs) offers an attractive new option for the monitoring and control of industrial plasma processes. The aim of the present paper is threefold: (i) to review recent achievements in our understanding of molecular phenomena in plasmas (ii) to report on selected studies of the spectroscopic properties and kinetic behaviour of radicals and (iii) to describe the current status of advanced instrumentation for TDLAS in the mid-infrared.

  8. Electron cyclotron resonance breakdown studies in a linear plasma system

    Indian Academy of Sciences (India)

    Vipin K Yadav; K Sathyanarayana; D Bora

    2008-03-01

    Electron cyclotron resonance (ECR) plasma breakdown is studied in a small linear cylindrical system with four different gases - hydrogen, helium, argon and nitrogen. Microwave power in the experimental system is delivered by a magnetron at 2.45 ± 0.02 GHz in TE10 mode and launched radially to have extra-ordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the fundamental ECR surface ( = 875.0 G) resides at the geometrical centre of the plasma system. ECR breakdown parameters such as plasma delay time and plasma decay time from plasma density measurements are carried out at the centre using a Langmuir probe. The operating parameters such as working gas pressure (1 × 10-5 -1 × 10-2 mbar) and input microwave power (160{800 W) are varied and the corresponding effect on the breakdown parameters is studied. The experimental results obtained are presented in this paper.

  9. The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics.

    Science.gov (United States)

    Gekelman, W; Pribyl, P; Lucky, Z; Drandell, M; Leneman, D; Maggs, J; Vincena, S; Van Compernolle, B; Tripathi, S K P; Morales, G; Carter, T A; Wang, Y; DeHaas, T

    2016-02-01

    In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

  10. Refined Study of ECR Wave Propagation and Absorption in the Weakly Relativistic Plasma

    Institute of Scientific and Technical Information of China (English)

    SHIBingren; LONGYongxin

    2001-01-01

    The ECR wave heating is now a routine method for plasma heating and profile control in fusion devices and also in plasma applications. Theoretical study of ECR wave propagation and absorption began very early in 1950's. Basic theoretical work had accomplished in 1970~1980. For toroidal devices like the tokamak, the fundamental O-mode and X-mode with nearly perpendicular propagation were used very often. For pure O-mode and X-mode with kx=O,

  11. Simulation study of the plasma brake effect

    CERN Document Server

    Janhunen, Pekka

    2014-01-01

    The plasma brake is a thin negatively biased tether which has been proposed as an efficient concept for deorbiting satellites and debris objects from low Earth orbit. We simulate the interaction with the ionospheric plasma ram flow with the plasma brake tether by a high performance electrostatic particle in cell code to evaluate the thrust. The tether is assumed to be perpendicular to the flow. We perform runs for different tether voltage, magnetic field orientation and plasma ion mass. We show that a simple analytical thrust formula reproduces most of the simulation results well. The interaction with the tether and the plasma flow is laminar when the magnetic field is perpendicular to the tether and the flow. If the magnetic field is parallel to the tether, the behaviour is unstable and thrust is reduced by a modest factor. The case when the magnetic field is aligned with the flow can also be unstable, but does not result in notable thrust reduction. We also fix an error in an earlier reference. According to...

  12. PLASMA-2013: International Conference on Research and Applications of Plasmas (Warsaw, Poland, 2-6 September 2013)

    Science.gov (United States)

    Sadowski, Marek J.

    2014-05-01

    The PLASMA-2013 International Conference on Research and Applications of Plasmas was held in Warsaw (Poland) from 2 to 6 September 2013. The conference was organized by the Institute of Plasma Physics and Laser Microfusion, under the auspices of the Polish Physical Society. The scope of the PLASMA conferences, which have been organized every two years since 1993, covers almost all issues of plasma physics and fusion research as well as selected problems of plasma technology. The PLASMA-2013 conference topics included: •Elementary processes and general plasma physics. •Plasmas in tokamaks and stellarators (magnetic confinement fusion). •Plasmas generated by laser beams and inertial confinement fusion. •Plasmas produced by Z-pinch and plasma-focus discharges. •Low-temperature plasma physics. •Space plasmas and laboratory astrophysics. •Plasma diagnostic methods and applications of plasmas. This conference was designed not only for plasma researchers and engineers, but also for students from all over the world, in particular for those from Central and Eastern Europe. Almost 140 participants had the opportunity to hear 9 general lectures, 11 topical talks and 26 oral presentations, as well as to see and discuss around 120 posters. From about 140 contributions, after the preparation of about 100 papers and the peer review process, only 74 papers have been accepted for publication in this topical issue. Acknowledgments Acting on behalf of the International Scientific Committee I would like to express our thanks to all the invited speakers and all the participants of the PLASMA-2013 conference for their numerous contributions. In particular, I wish to thank all of the authors of papers submitted for publication in this topical issue of Physica Scripta . Particular thanks are due to all of the reviewers for their valuable reports and comments, which helped to improve the quality of many of the papers. International Scientific Committee Marek J Sadowski, NCBJ

  13. Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma

    Science.gov (United States)

    Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.; Clark, S. E.; Lee, B. R.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Winske, D.; Niemann, C.

    2017-08-01

    The explosive expansion of a localized plasma cloud into a relatively tenuous, magnetized, ambient plasma characterizes a variety of astrophysical and space phenomena. In these rarified environments, collisionless electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the expanding "debris" plasma to the surrounding ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms, compliment in situ measurements of space phenomena, and provide validation of previous computational and theoretical work, the present research jointly utilizes the Large Plasma Device and the Raptor laser facility at the University of California, Los Angeles to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and a magnetic flux probe. Doppler shifts detected in a He1+ ion spectral line indicate that the ambient ions initially accelerate transverse to both the debris plasma flow and the background magnetic field. A qualitative analysis in the framework of a "hybrid" plasma model (kinetic ions and inertia-less fluid electrons) demonstrates that the ambient ion trajectories are consistent with the large-scale laminar electric field expected to develop due to the expanding debris. In particular, the transverse ambient ion motion provides direct evidence of Larmor coupling, a collisionless momentum exchange mechanism that has received extensive theoretical and numerical investigation. In order to quantitatively evaluate the observed Doppler shifts, a custom simulation utilizing a detailed model of the laser-produced debris plasma evolution calculates the laminar electric field and computes the initial response of a distribution of ambient test ions. A synthetic Doppler

  14. Electron scattering by biomass molecular fragments: useful data for plasma applications?*

    Science.gov (United States)

    Ridenti, Marco A.; Amorim Filho, Jayr; Brunger, Michael J.; da Costa, Romarly F.; Varella, Márcio T. do N.; Bettega, Márcio H. F.; Lima, Marco A. P.

    2016-08-01

    Recent data obtained for electron scattering by biomass molecular fragments, indicated that low-energy resonances may have an important role in the de-lignification of biomass through a plasma pre-treatment. To support these findings, we present new experimental evidence of the predicted dissociation pathways on plasma treatment of biomass. An important question is how accurate must the experimental and/or the theoretical data be in order to indicate that plasma modelings can be really useful in understanding plasma applications? In this paper, we initiate a discussion on the role of data accuracy of experimental and theoretical electron-molecule scattering cross sections in plasma modeling. First we review technological motivations for carrying out electron-molecule scattering studies. Then we point out the theoretical and experimental limitations that prevent us from obtaining more accurate cross sections. We present a few examples involving biomass molecular fragments, to illustrate theoretical inaccuracies on: resonances positions and widths, electronic excitation, superelastic cross sections from metastable states and due to multichannel effects on the momentum transfer cross sections. On the experimental side we briefly describe challenges in making absolute cross sections measurements with biomass species and radicals. And finally, through a simulation of a N2 plasma, we illustrate the impact on the simulation due to inaccuracies on the resonance positions and widths and due to multichannel effects on the momentum transfer cross sections. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf and two mp4 files available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70272-8

  15. The incomplete plasma dispersion function: properties and application to waves in bounded plasmas

    OpenAIRE

    Baalrud, Scott D.

    2013-01-01

    The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near...

  16. Classical Methods of Statistics With Applications in Fusion-Oriented Plasma Physics

    CERN Document Server

    Kardaun, Otto J W F

    2005-01-01

    Classical Methods of Statistics is a blend of theory and practical statistical methods written for graduate students and researchers interested in applications to plasma physics and its experimental aspects. It can also fruitfully be used by students majoring in probability theory and statistics. In the first part, the mathematical framework and some of the history of the subject are described. Many exercises help readers to understand the underlying concepts. In the second part, two case studies are presented exemplifying discriminant analysis and multivariate profile analysis. The introductions of these case studies outline contextual magnetic plasma fusion research. In the third part, an overview of statistical software is given and, in particular, SAS and S-PLUS are discussed. In the last chapter, several datasets with guided exercises, predominantly from the ASDEX Upgrade tokamak, are included and their physical background is concisely described. The book concludes with a list of essential keyword transl...

  17. Plasma etching to enhance the surface insulating stability of alumina for fusion applications

    Directory of Open Access Journals (Sweden)

    M. Malo

    2016-12-01

    Full Text Available A significant increase in the surface electrical conductivity of alumina, considered one of the most promising insulating materials for numerous applications in fusion devices, has been observed during ion bombardment in vacuum due to oxygen loss by preferential sputtering. Although this is expected to cause serious limitations to insulating components functionality, recent studies showed it is possible to restore the damaged lattice by oxygen reincorporation during thermal treatments in air. These studies also revealed a correlation between conductivity and ion beam induced luminescence, which is being used to monitor surface electrical conductivity degradation and help qualify the post irradiation recovery. Work now carried out for Wesgo alumina considers oxygen implantation and plasma etching as additional methods to improve recovered layer depth and quality. Both conductivity and luminescence results indicate the potential use of plasma etching not only for damage recovery, but also as a pre-treatment to enhance material stability during irradiation.

  18. Simultaneous determination of ten alkaloids of crude and wine-processed Rhizoma Coptidis aqueous extracts in rat plasma by UHPLC-ESI-MS/MS and its application to a comparative pharmacokinetic study.

    Science.gov (United States)

    Qian, Xiao-Cui; Zhang, Liang; Tao, Yi; Huang, Ping; Li, Jun-Song; Chai, Chuan; Li, Wen; Di, Liu-Qing; Cai, Bao-Chang

    2015-02-01

    Rhizoma coptidis (R.C.), a widely used traditional Chinese medicine, has been used for centuries in the treatment of hypertension, inflammation, dysentery and liver diseases, etc. Wine-processing is a specialized technology by sautéing crude herbal medicine using Chinese rice wine. This paper was designed to establish a simultaneous quantitative method of ten alkaloids (berberine, coptisine, palmatine, jatrorrhizine, epiberberine, magnoflorine, columbamine, noroxyhydrastinine, oxyberberine and 8-oxocoptisine) in rat plasma. Furthermore, the pharmacokinetics of those alkaloids after administration of crude and wine-processed R.C. aqueous extracts was compared. As a result, a ultra high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method was developed and validated for the first time. Chromatographic separation was achieved on a C18 column using gradient elution with the mobile phase consisting of acetonitrile and water (containing 0.2% formic acid) at a flow rate of 0.2 ml/min. The validated method showed good linearity over a wide concentration range (r>0.99), and lower limits of quantification less than 5.46 ng/ml for the each analyte. The intra- and inter-day assay variability was below 9.9% and 10.5% for all analytes, respectively. The extraction recovery of those alkaloids and I.S. ranged from 65.3% to 90.7%. The validated method has been successfully applied to pharmacokinetic comparison after administration of crude and wine-processed R.C. aqueous extracts. Pharmacokinetic comparative study showed that Cmax of coptisine and 8-oxocoptisine and AUC0-t of coptisine, palmatine and 8-oxocoptisine were increased significantly (palkaloids. These results might be helpful for R.C.' clinical reasonable application and further studies on its wine-processing mechanism.

  19. Numerical studies on divertor plasmas in helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Noriaki (Mitsubishi Atomic Power Industries, Inc., Tokyo (Japan)); Itoh, Kimitaka; Itoh, Sanae

    1989-12-01

    Scrape-off layer and divertor plasmas in helical systems are studied by using the two-dimensional (2D) numerical simulation code. Unified edge divertor analysis code (UEDA code) is applied to the straight helical model of torsatron/helical heliotron configurations. 2D profiles of plasma parameter, neutrals and impurities are obtained. Erosion rate and neutral back flow rate to the core plasma are also evaluated. Various shapes of the buffle plate are examined from the view point of the establishment of 'dense-cold divertor plasma' by which we can avoid the damage of the target plate. (author).

  20. Numerical study of Si nanoparticle formation by SiCl4 hydrogenation in RF plasma

    Science.gov (United States)

    Rehmet, Christophe; Cao, Tengfei; Cheng, Yi

    2016-04-01

    Nanocrystalline silicon (nc-Si) is a promising material for many applications related to electronics and optoelectronics. This work performs numerical simulations in order to understand a new process with high deposition rate production of nc-Si in a radio-frequency plasma reactor. Inductive plasma formation, reaction kinetics and nanoparticle formation have been considered in a sophisticated model. Results show that the plasma parameters could be adjusted in order to improve selectivity between nanoparticle and molecule formation and, thus, the deposition rate. Also, a parametric study helps to optimize the system with appropriate operating conditions.

  1. Vacuum Plasma Spray (VPS) Material Applications for Thruster Components

    Science.gov (United States)

    Elam, Sandra; Holmes, Richard; Hickman, Robert

    2006-01-01

    A variety of vacuum plasma spray (VPS) material systems have been successfully applied to injector and thrust chamber components. VPS offers a versatile fabrication process with relatively low costs to produce near net shape parts. The materials available with VPS increase operating margins and improve component life by providing superior thermal and oxidation protection in specific engine environments. Functional gradient materials (FGM) formed with VPS allow thrust chamber liners to be fabricated with GRCop-84 (an alloy of copper, chrome, and niobium) and a protective layer of NiCrAlY on the hot wall. A variety of thrust chamber liner designs have been fabricated to demonstrate the versatility of the process. Hot-fire test results have confined the improved durability and high temperature performance of the material systems for thrust chamber liners. Similar FGM s have been applied to provide superior thermal protection on injector faceplates with NiCrAlY and zirconia coatings. The durability of the applied materials has been demonstrated with hot-fire cycle testing on injector faceplates in high temperature environments. The material systems can benefit the components used in booster and main engine propulsion systems. More recent VPS efforts are focused on producing rhenium based material systems for high temperature applications to benefit in-space engines like reaction control system (RCS) thrusters.

  2. Experimental Study of Plasma/Propellant Interactions

    Science.gov (United States)

    2007-11-02

    silica windows from ESCO Products (one is 1/16” thick, whereas the other is 3/16” thick); this window material is very pure and allows transmission...0.92 at 200 nm to 0.94 at 700 nm (data from ESCO Products). Hence, the effect of the direction of the radiant energy emitted by the plasma on the

  3. Transport Studies in Fusion Plasmas - Perturbative Experiments

    NARCIS (Netherlands)

    Cardozo, N. J. L.

    1994-01-01

    By subjecting a plasma in steady state to small perturbations and measuring the response, it is possible to determine elements of the matrix of transport coefficients. Experimentally this is difficult, and results are mainly limited to tranpsport driven by the pressure and temperature gradients. Imp

  4. Transport studies in fusion plasmas: Perturbative experiments

    NARCIS (Netherlands)

    Cardozo, N. J. L.

    1996-01-01

    By subjecting a plasma in steady state to small perturbations and measuring the response, it is possible to determine elements of the matrix of transport coefficients. Experimentally this is difficult, and results are mainly limited to tranpsport driven by the pressure and temperature gradients. Imp

  5. Survey report of FY 1997 on the application of plasma to advanced environmentally acceptable technologies. 2; 1997 nendo chosa hokokusho (kankyo chowagata gijutsu no kodoka eno plasma no oyo ni kansuru chosa). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report describes the latest technological trend of plasma which will be useful for a better global environment. Novel application field of plasma technology has been studied in detail. A definite research plan for a better global environment has been proposed. At first, current global environmental issues are reviewed, and the background and the purpose of present investigation are described. Then, are described the plasma generation, measurement and control technology, and the application of plasma technology for a chemical reaction, especially, the promising chemical reaction with highly sensitive and/or highly selective process. In addition, is reviewed the development of a multi-functional membrane using energy control technology of plasma particles, and an advanced catalyst made by plasma-based technology. Is also described the application of plasma to the fixation of CO2 and reuse of greenhouse gases such as CO2 and CH4. Are described the results of the study on capture and reuse of environmental pollutants. The contribution of plasma technology to the production process with low environmental load is provided. Finally, a research plan for plasma technology aiming at a better global environment is proposed on the basis of present investigation. 138 refs., 113 figs., 15 tabs.

  6. Plasma buprenorphine concentrations after the application of a 70 microg/h transdermal patch in dogs. Preliminary report.

    Science.gov (United States)

    Andaluz, A; Moll, X; Ventura, R; Abellán, R; Fresno, L; García, F

    2009-10-01

    The objective of the present study was to evaluate the plasma concentrations and pharmacokinetics of buprenorphine after transdermal application in dogs (n = 4). A 70 microg/h transdermal buprenorphine patch was applied to the ventral abdomen of four healthy beagles. Blood samples were collected through a preplaced jugular catheter before and at 1, 2, 4, 8, 12, 24, 36, 48 and every 6 h until 108 h after the patch application. Plasma buprenorphine concentrations were measured using a (125)I-labelled radioimmunoassay (RIA) assay. No adverse effects were observed in any of the dogs. Concentrations of buprenorphine were detected in plasma after the application of the transdermal buprenorphine patch on the four experimental animals. Buprenorphine plasma concentrations increased during the first 36 h and then remained in the 0.7-1.0 ng/mL range during the study period. A decrease in plasma buprenorphine concentration was not observed during the study. Although analgesia could not be demonstrated the present study shows the ability of buprenorphine transdermal delivery systems developed for human use to deliver measurable concetrations of buprenorphine in dogs.

  7. Rare-earth plasma light source for VUV applications.

    Science.gov (United States)

    O'Sullivan, G; Carroll, P K; McLlrath, T J; Ginter, M L

    1981-09-01

    A compact versatile light source for producing VUV radiation from laser produced plasmas is described. Measurements of the spectral irradiance from CO(2) laser-produced plasmas on targets of gadolinium and ytterbium in the 115-220-nm range are given, and a comparison is made with analogous results obtained using a ruby laser.

  8. Surface Modification of Graphene Oxides by Plasma Techniques and Their Application for Environmental Pollution Cleanup.

    Science.gov (United States)

    Wang, Xiangxue; Fan, Qiaohui; Chen, Zhongshan; Wang, Qi; Li, Jiaxing; Hobiny, Aatef; Alsaedi, Ahmed; Wang, Xiangke

    2016-02-01

    Graphene oxides (GOs) have come under intense multidisciplinary study because of their unique physicochemical properties and possible applications. The large amount of oxygen-containing functional groups on GOs leads to a high sorption capacity for the removal of various kinds of organic and inorganic pollutants from aqueous solutions in environmental pollution cleanup. However, the lack of selectivity results in difficulty in the selective removal of target pollutants from aqueous solutions in the presence of other coexisting pollutants. Herein, the surface grafting of GOs with special oxygen-containing functional groups using low-temperature plasma techniques and the application of the surface-modified GOs for the efficient removal of organic and inorganic pollutants in environmental pollution are reviewed. This paper gives an account of our research on the application of GO-based nanomaterials in environmental pollution cleanup, including: (1) the synthesis and surface grafting of functional groups on GOs, summarizing various types of low-temperature plasma techniques for the synthesis of graphene/GOs; and (2) the application of graphene/GOs and their composites for the efficient removal of organic and inorganic pollutants from aqueous solutions, including the interaction mechanism according to recently published results.

  9. Numerical Studies of High-Z Plasma in the HyperV Plasma Guns

    Science.gov (United States)

    Wu, Linchun; Messer, Sarah; Witherspoon, F. Douglas; Welch, Dale; Thoma, Carsten; Phillips, Mike; Bogatu, I. Nick; Galkin, Sergei; Macfarlane, Joe; Golovkin, Igor

    2010-11-01

    Numerical studies of railguns and coaxial guns at HyperV Technologies Corp. include simulations of hypervelocity plasma transport in the gun, plasma expansion out of the nozzle, and two or more jets merging in vacuum. Plasma detachment, merging jets temperature and charge state evolution are examined in these processes. High-Z materials, such as argon and xenon, are used throughout these simulations. The plasma moves with an initial velocity of 0-10 km/s (80-100 km/s for jet merging), the initial number density ranges from 10^15cm-3 to 10^18cm-3, and the merging jets are several centimeters in radius. The LSP code is used to perform the simulations using improved fluid algorithms and equation-of-state models from Voss and atomic data from Prism.

  10. Study of positive and negative plasma catalytic oxidation of ethylene.

    Science.gov (United States)

    Van Wesenbeeck, K; Hauchecorne, B; Lenaerts, S

    2017-06-01

    The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15 kV. This shows the potential of plasma catalysis as indoor air purification technology.

  11. Application of plasma technology for the modification of polymer and textile materials

    OpenAIRE

    Radetić Maja M.; Petrović Zoran Lj.

    2004-01-01

    Plasma treatment is based on the physico-chemical changes of the material surface and as an ecologically and economically acceptable process it can be an attractive alternative to conventional modifications. The possibilities of plasma technology application to the modification of polymer and textile materials are discussed. Different specific properties of the material can be achieved by plasma cleaning, etching, functionalization or polymerization. The final effects are strongly influenced ...

  12. Effects of a Nonthermal Atmospheric Pressure Plasma Jet on Human Gingival Fibroblasts for Biomedical Application

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    2016-01-01

    Full Text Available Nonthermal atmospheric pressure plasma jets (APPJ have been developed and applied in biomedical research as a cancer treatment or bacterial sterilization. However, the drawback of APPJ on normal oral cells during plasma treatment and underlying cell death mechanisms have not been studied and clearly explained, although there is known to be an influence from reactive oxygen species (ROS. Hence, this study investigates whether and how a nonthermal atmospheric pressure air plasma jet kills human normal gingival cells using immortalized human gingival fibroblasts (hTERT-hNOF cells. In this study, a set of physicochemical or biological methods were used to illuminate the killing mechanisms. It was found that ROS were induced intracellularly without a breakdown of the cell wall and apoptosis was involved in cell death when an air APPJ treatment was performed on the cells directly without media; the air treatment only supported a detachment of the cells without increase of ROS. It was also revealed that a correlation between intracellular ROS concentration and cells viability existed. These results indicated that the direct air APPJ treatment possibly raises safety issue to normal tissue and thereby APPJ application in biomedical field needs more in vitro and in vivo study to optimize it.

  13. Effects of a Nonthermal Atmospheric Pressure Plasma Jet on Human Gingival Fibroblasts for Biomedical Application.

    Science.gov (United States)

    Lee, Jung-Hwan; Kim, Kyoung-Nam

    2016-01-01

    Nonthermal atmospheric pressure plasma jets (APPJ) have been developed and applied in biomedical research as a cancer treatment or bacterial sterilization. However, the drawback of APPJ on normal oral cells during plasma treatment and underlying cell death mechanisms have not been studied and clearly explained, although there is known to be an influence from reactive oxygen species (ROS). Hence, this study investigates whether and how a nonthermal atmospheric pressure air plasma jet kills human normal gingival cells using immortalized human gingival fibroblasts (hTERT-hNOF cells). In this study, a set of physicochemical or biological methods were used to illuminate the killing mechanisms. It was found that ROS were induced intracellularly without a breakdown of the cell wall and apoptosis was involved in cell death when an air APPJ treatment was performed on the cells directly without media; the air treatment only supported a detachment of the cells without increase of ROS. It was also revealed that a correlation between intracellular ROS concentration and cells viability existed. These results indicated that the direct air APPJ treatment possibly raises safety issue to normal tissue and thereby APPJ application in biomedical field needs more in vitro and in vivo study to optimize it.

  14. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    Energy Technology Data Exchange (ETDEWEB)

    Jung, S., E-mail: jung73@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Christenson, M.; Curreli, D. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Bryniarski, C. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Andruczyk, D.; Ruzic, D.N. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States)

    2014-12-15

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m{sup 2} and 0.43 ± 0.01 GW/m{sup 2}. A few ways to further increase the plasma heat flux for LiMIT experiments are discussed.

  15. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    Science.gov (United States)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  16. Gliding arc triggered microwave plasma arc at atmospheric pressure for coal gasification application

    Science.gov (United States)

    Jain, Vishal; Visani, A.; Patil, C.; Patel, B. K.; Sharma, P. K.; John, P. I.; Nema, S. K.

    2014-08-01

    Plasma torch is device that efficiently converts electrical energy in to thermal energy for various high temperature applications. The conventional plasma torch comprises of consumable electrodes namely anode and cathode electrodes. The replacement of these electrodes is a complex process owing to its cooling and process shut down requirements. However, microwave plasma arc is electrode-less plasma arc system that is an alternative method to conventional arc technology for generating plasma arc. In this technique, microwave power is efficiently coupled to generate plasma arc by using the property of polar molecule to absorb microwave power. The absorption of microwave power is in form of losses due to intermolecular friction and high collisions between the molecules. This is an efficient method because all microwave power can be absorbed by plasma arc. The main feature of microwave plasma arc is its large uniform high temperature column which is not possible with conventional arc discharge methods. Such type of plasma discharge is very useful in applications where sufficient residence time for treat materials is required. Microwave arc does not require any consumable electrodes and hence, it can be operated continuously that makes it very useful for hazardous effluent treatment applications. Further, microwave cannot ionize neutral particles at atmospheric pressure and hence, a gliding arc is initiated between two thin electrodes in the cavity by applying very low power high voltage (3kV) AC source. In this report, the method for generating microwave arc of 1kW power using commercial microwave oven is elaborated.

  17. Properties and Commercial Application of Manual Plasma Hardening

    Science.gov (United States)

    Korotkov, V. A.

    2016-11-01

    A new method and a device for plasma hardening of various parts are considered. Installation of the new device does not require too much investment (the active mechanical productions are appropriate for its accommodation) and special choice of personnel (welders train to use it without difficulty). Plasma hardening does not deform and worsen the smoothness of the surface, which makes it possible to employ many hardened parts without finishing mechanical treatment required after bulk or induction hardening. The hardened layer (about 1 mm) produced by plasma hardening exhibits better wear resistance than after bulk hardening with tempering, which prolongs the service life of the parts.

  18. The incomplete plasma dispersion function: properties and application to waves in bounded plasmas

    CERN Document Server

    Baalrud, Scott D

    2013-01-01

    The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near boundary sheaths or double layers, where the passing interval can be modeled as Maxwellian with a lower temperature than the trapped interval. The depleted Maxwellian is used as an example to demonstrate the utility of using the incomplete plasma dispersion function for calculating modifications to wave dispersion relations.

  19. Neutron emission in neutral beam heated KSTAR plasmas and its application to neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jong-Gu, E-mail: jgkwak@nfri.re.kr; Kim, H.S.; Cheon, M.S.; Oh, S.T.; Lee, Y.S.; Terzolo, L.

    2016-11-01

    Highlights: • We measured the neutron emission from KSTAR plasmas quantitatively. • We confirmed that neutron emission is coming from neutral beam-plasma interactions. • The feasibility study shows that the fast neutron from KSTAR could be used for fast neutron radiography. - Abstract: The main mission of Korea Superconducting Tokamak Advanced Research (KSTAR) program is exploring the physics and technologies of high performance steady state Tokamak operation that are essential for ITER and fusion reactor. Since the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 s which corresponds to a few times of current diffusion time and surpassing the current conventional Tokamak operation. In addition to long-pulse operation, the operational boundary of the H-mode discharge is further extended over MHD no-wall limit(β{sub N} ∼ 4) transiently and higher stored energy region is obtained by increased total heating power (∼6 MW) and plasma current (I{sub p} up to 1 MA for ∼10 s). Heating system consists of various mixtures (NB, ECH, LHCD, ICRF) but the major horse heating resource is the neutral beam(NB) of 100 keV with 4.5 MW and most of experiments are conducted with NB. So there is a lot of production of fast neutrons coming from via D(d,n){sup 3}He reaction and it is found that most of neutrons are coming from deuterium beam plasma interaction. Nominal neutron yield and the area of beam port is about 10{sup 13}–10{sup 14}/s and 1 m{sup 2} at the closest access position of the sample respectively and neutron emission could be modulated for application to the neutron radiography by varying NB power. This work reports on the results of quantitative analysis of neutron emission measurements and results are discussed in terms of beam-plasma interaction and plasma confinement. It also includes the feasibility study of neutron radiography using KSTAR.

  20. Study of MHD activities in the plasma of SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Dhongde, Jasraj; Bhandarkar, Manisha; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Kumar, Sameer

    2016-10-15

    Highlights: • An account of MHD activity in the plasma of SST-1 • Observation of MHD instabilities with mode m = 2, n = 1 in SST-1 plasma. • MHD instabilities study of characteristic growth time, growth rate of island and island width etc. in SST-1 plasma. - Abstract: Steady State Superconducting Tokamak (SST-1) is a medium size Tokamak in operation at the Institute for Plasma Research, India. SST-1 has been consistently producing plasma currents in excess of 60 kA, with plasma durations above 400 ms and a central magnetic field of 1.5 T over last few experimental campaigns of 2014. Investigation of these experimental data suggests the presence of MHD activity in the SST-1 plasma. Further analysis clearly explains the behavior of MHD instabilities observed (i.e. tearing modes with m = 2, n = 1), estimating the growth rate and the island width in the SST-1 plasma. Poloidal magnetic field and Toroidal magnetic field fluctuations in SST-1 are observed using Mirnov coils. Onsets of disruptions in connection with MHD activities have been correlated with other diagnostics such as ECE, Density and Hα etc. The observations have been cross compared with the theoretical calculations and are found to be in good agreement.