WorldWideScience

Sample records for plasma states driven

  1. Analysis of plasma equilibrium based on orbit-driven current density profile in steady-state plasma on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others

    2016-11-01

    Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.

  2. Comparison of current density profiles based on particle orbit-driven current in steady-state plasma on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Md Mahbub, E-mail: m.alam@triam.kyushu-u.ac.jp [IGSES, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Nakamura, Kazuo [RIAM, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Xia, Fan [CFS, SWIP, P.O. Box 432, 610041 Chengdu (China); Mitarai, Osamu [Tokai University, Kumamoto 862-8652 (Japan); Hasegawa, Makoto; Tokunaga, Kazutoshi; Araki, Kuniaki; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Idei, Hiroshi; Nagashima, Yoshihiko; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki; Nagata, Takahiro [RIAM, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2016-11-01

    Highlights: • Electron cyclotron resonance heating (ECRH) of QUEST. • Particle guiding center orbit calculation. • Orbit-driven current density profile. • Hollow current density. • Equilibrium condition for steady-state operation of QUEST. - Abstract: In the present RF-driven divertor plasma of QUEST, it has been observed that orbit-driven current flows in the open magnetic surfaces outside of the closed magnetic surfaces. To observe this phenomenon and the characteristics of the orbit-driven current, current density profiles have been calculated on two different equilibrium conditions. We calculated current density profiles from particle guiding center orbits both for the fundamental and the second harmonic resonances for the 8.2 GHz electron cyclotron current drive. From this calculation, hollow current density profiles have been obtained with significant characteristics on both conditions. Only positive current distribution has been observed in the open magnetic surfaces outside of the closed magnetic surfaces.

  3. Steady-State Fully Noninductive Current Driven by Electron Cyclotron Waves in a Magnetically Confined Plasma

    Science.gov (United States)

    Sauter, O.; Henderson, M. A.; Hofmann, F.; Goodman, T.; Alberti, S.; Angioni, C.; Appert, K.; Behn, R.; Blanchard, P.; Bosshard, P.; Chavan, R.; Coda, S.; Duval, B. P.; Fasel, D.; Favre, A.; Furno, I.; Gorgerat, P.; Hogge, J.-P.; Isoz, P.-F.; Joye, B.; Lavanchy, P.; Lister, J. B.; Llobet, X.; Magnin, J.-C.; Mandrin, P.; Manini, A.; Marlétaz, B.; Marmillod, P.; Martin, Y.; Mayor, J.-M.; Martynov, A. A.; Mlynar, J.; Moret, J.-M.; Nieswand, C.; Nikkola, P.; Paris, P.; Perez, A.; Pietrzyk, Z. A.; Pitts, R. A.; Pochelon, A.; Pochon, G.; Refke, A.; Reimerdes, H.; Rommers, J.; Scavino, E.; Tonetti, G.; Tran, M. Q.; Troyon, F.; Weisen, H.

    2000-04-01

    A steady-state, fully noninductive plasma current has been sustained for the first time in a tokamak using electron cyclotron current drive only. In this discharge, 123 kA of current have been sustained for the entire gyrotron pulse duration of 2 s. Careful distribution across the plasma minor radius of the power deposited from three 0.5-MW gyrotrons was essential for reaching steady-state conditions. With central current drive, up to 153 kA of current have been fully replaced transiently for 100 ms. The noninductive scenario is confirmed by the ability to recharge the Ohmic transformer. The dependence of the current drive efficiency on the minor radius is also demonstrated.

  4. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  5. Confinement and stability of plasmas with externally driven steady-state elevated q-profiles

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Alexander; Stober, Joerg; Fischer, Rainer; Fable, Emiliano; Reich, Matthias [Max-Planck-Institut fuer Plasmaphysik, Garching bei Muenchen (Germany); Collaboration: ASDEX Upgrade Team

    2015-05-01

    The helicity profile of the magnetic field lines is an important quantity for the operation of Tokamak fusion devices and can be expressed as the so-called safety factor q. It has profound influence on both the stability of the fusion plasma, as well as its confinement properties. Operation scenarios with centrally elevated and flat, or even reversed q-profiles promise fewer central instabilities and better core confinement and are thus considered potentially attractive for future fusion power plants. To verify these predictions, centrally elevated q-profiles are created using external counter current drive, with additional heating power added afterwards to explore the stability limits and transport properties of the resulting plasmas. The tailored q-profiles are calculated using magnetic equilibrium reconstruction constrained by internal motional Stark effect data to confirm to the presence of the desired helicities. They are then used as a basis for simulations of the transport properties with the gyro-Landau-fluid code TGLF. The simulation results are then compared to the experimentally measured kinetic profiles.

  6. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  7. Microphysics of cosmic ray driven plasma instabilities

    CERN Document Server

    Bykov, A M; Malkov, M A; Osipov, S M

    2013-01-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  8. A pressure-driven model for the quasi periodical oscillations of the Single Helical States in Reversed Field Pinch plasmas

    Science.gov (United States)

    Paccagnella, Roberto

    2013-10-01

    In this work a model that could explain the experimentally observed quasi periodical oscillations in electron temperature and perturbed magnetic field in a Reversed Field Pinch is discussed. An ohmically heated plasma in which an interplay between thermal conduction and heat transport, on one side, and the magneto-hydro-dynamical stability, on the other side, is studied. It is shown that, by making some simple and physically reasonable assumptions, a set of equations can be obtained showing a variety of periodical or quasi periodical oscillations for the relevant dynamical variables.

  9. Proton driven plasma wakefield generation in a parabolic plasma channel

    Science.gov (United States)

    Golian, Y.; Dorranian, D.

    2016-11-01

    An analytical model for the interaction of charged particle beams and plasma for a wakefield generation in a parabolic plasma channel is presented. In the suggested model, the plasma density profile has a minimum value on the propagation axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. While previous works investigated on the simulation results and on the perturbation techniques in case of laser wakefield accelerations for a parabolic channel, we have carried out an analytical model and solved the accelerating field equation for proton beam in a parabolic plasma channel. The solution is expressed by Whittaker (hypergeometric) functions. Effects of plasma channel radius, proton bunch parameters and plasma parameters on the accelerating processes of proton driven plasma wakefield acceleration are studied. Results show that the higher accelerating fields could be generated in the PWFA scheme with modest reductions in the bunch size. Also, the modest increment in plasma channel radius is needed to obtain maximum accelerating gradient. In addition, the simulations of longitudinal and total radial wakefield in parabolic plasma channel are presented using LCODE. It is observed that the longitudinal wakefield generated by the bunch decreases with the distance behind the bunch while total radial wakefield increases with the distance behind the bunch.

  10. Wave-driven Countercurrent Plasma Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    A.J. Fetterman and N.J. Fisch

    2009-03-20

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  11. Plasma-driven ultrashort bunch diagnostic

    CERN Document Server

    Dornmair, I; Floettmann, K; Marchetti, B; Maier, A R

    2016-01-01

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  12. Plasma-driven ultrashort bunch diagnostics

    Science.gov (United States)

    Dornmair, I.; Schroeder, C. B.; Floettmann, K.; Marchetti, B.; Maier, A. R.

    2016-06-01

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  13. Simulations of a beam-driven plasma antenna in the regime of plasma transparency

    Science.gov (United States)

    Timofeev, I. V.; Berendeev, E. A.; Dudnikova, G. I.

    2017-09-01

    In this paper, the theoretically predicted possibility to increase the efficiency of electromagnetic radiation generated by a thin beam-plasma system in the regime of oblique emission, when a plasma column becomes transparent to radiation near the plasma frequency, is investigated using particle-in-cell simulations. If a finite-size plasma column has a longitudinal density modulation, such a system is able to radiate electromagnetic waves as a dipole antenna. This radiation mechanism is based on the conversion of an electron beam-driven potential plasma wave on the periodic perturbation of plasma density. In this case, the frequency of radiated waves appears to be slightly lower than the plasma frequency. That is why their fields enable the penetration into the plasma only to the skin-depth. This case is realized when the period of density modulation coincides with the wavelength of the most unstable beam-driven mode, and the produced radiation escapes from the plasma in the purely transverse direction. In the recent theoretical paper [I. V. Timofeev et al. Phys. Plasmas 23, 083119 (2016)], however, it has been found that the magnetized plasma can be transparent to this radiation at certain emission angles. It means that the beam-to-radiation power conversion can be highly efficient even in a relatively thick plasma since not only boundary layers but also the whole plasma volume can be involved in the generation of electromagnetic waves. Simulations of steady-state beam injection into a pre-modulated plasma channel confirm the existence of this effect and show limits of validity for the simplified theoretical model.

  14. Non-LTE modeling of radiatively driven dense plasmas

    Science.gov (United States)

    Scott, H. A.

    2017-03-01

    There are now several experimental facilities that use strong X-ray fields to produce plasmas with densities ranging from ˜1 to ˜103 g/cm3. Large laser facilities, such as the National Ignition Facility (NIF) and the Omega laser reach high densities with radiatively driven compression, short-pulse lasers such as XFELs produce solid density plasmas on very short timescales, and the Orion laser facility combines these methods. Despite the high densities, these plasmas can be very far from LTE, due to large radiation fields and/or short timescales, and simulations mostly use collisional-radiative (CR) modeling which has been adapted to handle these conditions. These dense plasmas present challenges to CR modeling. Ionization potential depression (IPD) has received much attention recently as researchers work to understand experimental results from LCLS and Orion [1,2]. However, incorporating IPD into a CR model is only one challenge presented by these conditions. Electron degeneracy and the extent of the state space can also play important roles in the plasma energetics and radiative properties, with effects evident in recent observations [3,4]. We discuss the computational issues associated with these phenomena and methods for handling them.

  15. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    CERN Document Server

    Hebner, G A

    1999-01-01

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s sub 5 and 1s sub 4 , in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s sub 5 level is metastable and the 1s sub 4 level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the disch...

  16. Beam-driven, Plasma-based Particle Accelerators

    CERN Document Server

    Muggli, P

    2016-01-01

    We briefly give some of the characteristics of the beam-driven, plasma-based particle accelerator known as the plasma wakefield accelerator (PWFA). We also mention some of the major results that have been obtained since the birth of the concept. We focus on high-energy particle beams where possible.

  17. Beam-driven, Plasma-based Particle Accelerators

    CERN Document Server

    Muggli, P.

    2016-01-01

    We briefly give some of the characteristics of the beam-driven, plasma-based particle accelerator known as the plasma wakefield accelerator (PWFA). We also mention some of the major results that have been obtained since the birth of the concept. We focus on high-energy particle beams where possible.

  18. Zonal flow driven by energetic particle during magneto-hydro-dynamic burst in a toroidal plasma

    Science.gov (United States)

    Ohshima, S.; Fujisawa, A.; Shimizu, A.; Nakano, H.; Iguchi, H.; Yoshimura, Y.; Nagaoka, K.; Minami, T.; Isobe, M.; Nishimura, S.; Suzuki, C.; Akiyama, T.; Takahashi, C.; Takeuchi, M.; Ito, T.; Watari, T.; Kumazawa, R.; Itoh, S.-I.; Itoh, K.; Matsuoka, K.; Okamura, S.

    2007-11-01

    The internal structural measurements of electric field and density using twin heavy ion beam probes have been performed to elucidate the nonlinear evolution of the magneto-hydro-dynamic (MHD) bursty phenomenon driven by the interaction with high-energy particles in a toroidal plasma. The results have given the finest observation of the internal structure of plasma quantities, such as electric field, density and magnetic field distortion, which nonlinearly develop during the MHD phenomenon. In particular, the finding of a new kind of oscillating zonal flow driven by interaction between energetic particles and MHD modes should be emphasized for burning state plasmas.

  19. On the drift kinetic equation driven by plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Shaing, K C [Plasma and Space Science Center and ISAPS, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Engineering Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2010-07-15

    A drift kinetic equation that is driven by plasma flows has previously been derived by Shaing and Spong 1990 (Phys. Fluids B 2 1190). The terms that are driven by particle speed that is parallel to the magnetic field B have been neglected. Here, such terms are discussed to examine their importance to the equation and to show that these terms do not contribute to the calculations of plasma viscosity in large aspect ratio toroidal plasmas, e.g. tokamaks and stellarators. (brief communication)

  20. Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Y. C. Francis; Cassibry, Jason; Eskridge, Richard; Kirkpatrick, Ronald C.; Knapp, Charles E.; Lee, Michael; Martin, Adam; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    For practical applications of magnetized target fusion, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Quasi-spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a quasi-spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). Theoretical analysis and computer modeling of the concept are presented. It is shown that, with the appropriate choice of the flow parameters in the liner and the target, the impact between the liner and the target plasma can be made to be shockless in the liner or to generate at most a very weak shock in the liner. Additional information is contained in the original extended abstract.

  1. The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation

    Science.gov (United States)

    Zheng, Dianfeng

    2016-11-01

    Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)

  2. Self-organization in a driven dissipative plasma system

    Science.gov (United States)

    Shaikh, Dastgeer; Dasgupta, B.; Hu, Q.; Zank, G. P.

    2010-02-01

    We perform a fully self-consistent three-dimensional numerical simulation for a compressible, dissipative magnetoplasma driven by large-scale perturbations, that contain a fairly broad spectrum of characteristic modes, ranging from largest scales to intermediate scales and down to the smallest scales, where the energy of the system is dissipated by collisional (ohmic) and viscous dissipations. Additionally, our simulation includes nonlinear interactions amongst a wide range of fluctuations that are initialized with random spectral amplitudes, leading to the cascade of spectral energy in the inertial range spectrum, and takes into account large-scale as well as small-scale perturbations that may have been induced by the background plasma fluctuations, as well as the non-adiabatic exchange of energy leading to the migration of energy from the energy-containing modes or randomly injected energy driven by perturbations and further dissipated by the smaller scales. Besides demonstrating the comparative decays of the total energy and the dissipation rate of the energy, our results show the existence of a perpendicular component of the current, thus clearly confirming that the self-organized state is non-force free.

  3. Vacuum ultraviolet radiation emitted by microwave driven argon plasmas

    Science.gov (United States)

    Espinho, S.; Felizardo, E.; Henriques, J.; Tatarova, E.

    2017-04-01

    Vacuum ultraviolet (VUV) radiation emitted by microwave driven argon plasmas has been investigated at low-pressure conditions (0.36 mbar). A classical surface-wave sustained discharge at 2.45 GHz has been used as plasma source. VUV radiation has been detected by emission spectroscopy in the 30-125 nm spectral range. The spectrum exhibits atomic and ionic argon emissions with the most intense spectral lines corresponding to the atomic resonance lines, at 104.8 nm and 106.7 nm, and to the ion lines, at 92.0 nm and 93.2 nm. Emissions at lower wavelengths were also detected, including lines with no information concerning level transitions in the well-known NIST database (e.g., the atomic line at 89.4 nm). The dependence of the lines' intensity on the microwave power delivered to the launcher was investigated. The electron density was estimated to be around 1012 cm-3 using the Stark broadening of the hydrogen Hβ line at 486.1 nm. The main population and loss mechanisms considered in the model for the excited argon atom and ion states emitting in the VUV range are discussed. The experimental results were compared to self-consistent model predictions, and a good agreement was obtained.

  4. Driven phase space vortices in plasmas with nonextensive velocity distribution

    Science.gov (United States)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2017-03-01

    The evolution of chirp-driven electrostatic waves in unmagnetized plasmas is numerically investigated by using a one-dimensional (1D) Vlasov-poisson solver with periodic boundary conditions. The initial velocity distribution of the 1D plasma is assumed to be governed by nonextensive q distribution [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]. For an infinitesimal amplitude of an external drive, we investigate the effects of chirp driven dynamics that leads to the formation of giant phase space vortices (PSV) for both Maxwellian (q = 1) and non-Maxwellian ( q ≠ 1 ) plasmas. For non-Maxwellian plasmas, the formation of giant PSV with multiple extrema and phase velocities is shown to be dependent on the strength of "q". Novel features such as "shark"-like and transient "honeycomb"-like structures in phase space are discussed. Wherever relevant, we compare our results with previous work.

  5. Plasma driven neutron/gamma generator

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  6. Dynamics of lane formation in driven binary complex plasmas

    NARCIS (Netherlands)

    Sutterlin, K. R.; Wysocki, A.; Ivlev, A. V.; Rath, C.; Thomas, H. M.; Rubin-Zuzic, M.; W. J. Goedheer,; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Lowen, H.

    2009-01-01

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation proces

  7. Collision and recombination driven instabilities in variable charged dusty plasmas

    Indian Academy of Sciences (India)

    S Bal; M Bose

    2013-04-01

    The dust-acoustic instability driven by recombination of electrons and ions on the surface of charged and variably-charged dust grains as well as by collisions in dusty plasmas with significant pressure of background neutrals have been theoretically investigated. The recombination driven instability is shown to be dominant in the long wavelength regime even in the presence of dust-neutral and ion-neutral collisions, while in the shorter wavelength regime, the dust-neutral collision is found to play a major role. In an earlier research work, the dust-neutral collision was neglected in comparison to the effect due to the recombination for estimating the dust-acoustic instability; later the other report shows that the recombination effect is negligible in the presence of dust-neutral collisions. In line of this present situation our investigation revealed that the recombination is more important than dust-neutral collisions in laboratory plasma and fusion plasma, while the dust-neutral collision frequency is dominant in the interstellar plasmas. The effects of ion and dust densities and ion streaming on the recombination and collision driven mode in parameter regimes relevant for many experimental studies on dusty plasmas have also been calculated.

  8. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Samulyak, Roman V. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Parks, Paul [General Atomics, San Diego, CA (United States)

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  9. Theory of a beam-driven plasma antenna

    Science.gov (United States)

    Timofeev, I. V.; Volchok, E. P.; Annenkov, V. V.

    2016-08-01

    In this paper, we propose a theory describing generation of electromagnetic waves in a thin beam-plasma system with a characteristic transverse size comparable with the radiation wavelength. In fact, a thin plasma column with a longitudinal density modulation works like a plasma antenna in which an electron beam can excite a superluminal wave of electric current. It has previously been shown that, if the period of this modulation coincides with the wavelength of the most unstable beam-driven mode, radiation at a frequency slightly below the plasma frequency is emitted transversely to the plasma column and generated in thin boundary layers. For the plasma thickness comparable with the skin-depth, generation of the terahertz radiation can reach high efficiency ( ˜10 % ) in such a scheme, but the absolute power of this radiation cannot be increased by increasing the transverse plasma size. In this paper, we study whether the power of such an antenna can be increased in the regime of oblique emission when the magnetized plasma is transparent to the radiated electromagnetic waves and the whole plasma volume may be involved in their generation.

  10. Neutrino-driven wakefield plasma accelerator

    Science.gov (United States)

    Rios, L. A.; Serbeto, A.

    2003-08-01

    Processos envolvendo neutrinos são importantes em uma grande variedade de fenômenos astrofísicos, como as explosões de supernovas. Estes objetos, assim como os pulsares e as galáxias starburst, têm sido propostos como aceleradores cósmicos de partículas de altas energias. Neste trabalho, um modelo clássico de fluidos é utilizado para estudar a interação não-linear entre um feixe de neutrinos e um plasma não-colisional relativístico de pósitrons e elétrons na presença de um campo magnético. Durante a interação, uma onda híbrida superior de grande amplitude é excitada. Para parâmetros típicos de supernovas, verificamos que partículas carregadas "capturadas" por essa onda podem ser aceleradas a altas energias. Este resultado pode ser importante no estudo de mecanismos aceleradores de partículas em ambientes astrofísicos.

  11. Modeling beam-driven and laser-driven plasma Wakefield accelerators with XOOPIC

    Energy Technology Data Exchange (ETDEWEB)

    Bruhwiler, David L.; Giacone, Rodolfo; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, Wim

    2000-06-01

    We present 2-D particle-in-cell simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approximately} 10{sup 16} W/cm{sup 2}) and high ({approximately} 10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling electron-neutral collisions in a particle-in-cell code.

  12. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    Science.gov (United States)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  13. Filamentation Instability of Counterstreaming Laser-Driven Plasmas

    Science.gov (United States)

    Fox, W.; Fiksel, G.; Bhattacharjee, A.; Chang, P.-Y.; Germaschewski, K.; Hu, S. X.; Nilson, P. M.

    2013-11-01

    Filamentation due to the growth of a Weibel-type instability was observed in the interaction of a pair of counterstreaming, ablatively driven plasma flows, in a supersonic, collisionless regime relevant to astrophysical collisionless shocks. The flows were created by irradiating a pair of opposing plastic (CH) foils with 1.8 kJ, 2-ns laser pulses on the OMEGA EP Laser System. Ultrafast laser-driven proton radiography was used to image the Weibel-generated electromagnetic fields. The experimental observations are in good agreement with the analytical theory of the Weibel instability and with particle-in-cell simulations.

  14. Filamentation instability of counter-streaming laser-driven plasmas

    CERN Document Server

    Fox, W; Bhattacharjee, A; Chang, P -Y; Germaschewski, K; Hu, S X; Nilson, P M

    2013-01-01

    Filamentation due to the growth of a Weibel-type instability was observed in the interaction of a pair of counter-streaming, ablatively-driven plasma flows, in a supersonic, collisionless regime relevant to astrophysical collisionless shocks. The flows were created by irradiating a pair of opposing plastic (CH) foils with 1.8 kJ, 2-ns laser pulses on the OMEGA EP laser system. Ultrafast laser-driven proton radiography was used to image the Weibel-generated electromagnetic fields. The experimental observations are in good agreement with the analytical theory of the Weibel instability and with particle-in-cell simulations.

  15. Fast Tunable Microwave Devices Using Self-driven Plasma Instabilities

    Science.gov (United States)

    Biggs, David; Cappelli, Mark

    2016-10-01

    Tunable electromagnetic devices using plasmas are of interest for various applications such as high frequency communications and analog signal processing. At microwave frequencies of tens of gigahertz, low-pressure plasmas must be employed in order to avoid high wave damping from collisions. The drawback of low-pressure plasmas is that their diffusion timescales are long, on the order of hundreds of microseconds. Other mechanisms than diffusion must be employed to achieve fast tuning capabilities of these devices. One candidate mechanism is to use a self-driven plasma instability, which may allow for fast tuning of microwave resonant cavities. In this work, a microwave resonant cavity is studied consisting of a rectangular waveguide with two conducting posts spaced along the propagation direction to form a rectangular cavity. The cavity acts as a band pass filter and transmits microwave signals around its resonant frequency. Plasma may be introduced into the cavity between the conducting posts in order to change the refractive index and thus the resonant and transmission frequency of the device. The location of the plasma and its plasma density are important parameters in determining the resonant frequency, and both parameters are capable of being tuned with plasma instabilities. This work is supported by the Air Force Office of Scientific Research.

  16. OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    LIN-LIU,YR; STAMBAUGH,RD

    2002-11-01

    OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.

  17. Energetic-ion-driven global instabilities in stellarator/helical plasmas and comparison with tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K. [National Institute for Fusion Science, Toki, Japan; Ogawa, K. [Nagoya University, Japan; Isobe, M. [National Institute for Fusion Science, Toki, Japan; Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Spong, Donald A [ORNL; Todo, Yasushi [National Institute for Fusion Science, Toki, Japan

    2011-01-01

    Comprehensive understanding of energetic-ion-driven global instabilities such as Alfven eigenmodes (AEs) and their impact on energetic ions and bulk plasma is crucially important for tokamak and stellarator/helical plasmas and in the future for deuterium-tritium (DT) burning plasma experiments. Various types of global modes and their associated enhanced energetic ion transport are commonly observed in toroidal plasmas. Toroidicity-induced AEs and ellipticity-induced AEs, whose gaps are generated through poloidal mode coupling, are observed in both tokamak and stellarator/helical plasmas. Global AEs and reversed shear AEs, where toroidal couplings are not as dominant were also observed in those plasmas. Helicity induced AEs that exist only in 3D plasmas are observed in the large helical device (LHD) and Wendelstein 7 Advanced Stellarator plasmas. In addition, the geodesic acoustic mode that comes from plasma compressibility is destabilized by energetic ions in both tokamak and LHD plasmas. Nonlinear interaction of these modes and their influence on the confinement of the bulk plasma as well as energetic ions are observed in both plasmas. In this paper, the similarities and differences in these instabilities and their consequences for tokamak and stellarator/helical plasmas are summarized through comparison with the data sets obtained in LHD. In particular, this paper focuses on the differences caused by the rotational transform profile and the 2D or 3D geometrical structure of the plasma equilibrium. Important issues left for future study are listed.

  18. Slowing of Magnetic Reconnection Concurrent with Weakening Plasma Inflows and Increasing Collisionality in Strongly Driven Laser-Plasma Experiments.

    Science.gov (United States)

    Rosenberg, M J; Li, C K; Fox, W; Zylstra, A B; Stoeckl, C; Séguin, F H; Frenje, J A; Petrasso, R D

    2015-05-22

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly driven, β≲20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (V_{jet}∼20V_{A}) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly driven regime.

  19. Intense tera-hertz laser driven proton acceleration in plasmas

    Science.gov (United States)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  20. Study on low temperature plasma driven permeation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    It is one of the most important problem in PWI of fusion devices from the point of view of tritium leakage that hydrogen diffuses in the wall of the device and permeates through it, which results in hydrogen being released to the coolant side. In this study, plasma driven permeation experiments were carried out with several kinds of metal membranes in the low temperature plasma where ionic and atomic hydrogen as well as electron existed in order to survey PDP mechanism from the many view points. In addition, incident flux rate from the plasma to the membrane surface was evaluated by calculation analysis. As a result the mechanism of low temperature PDP was found out and described as PDP models. The simulation of the membrane pump system was executed and the system performance was estimated with the models. (author). 135 refs.

  1. AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E

    2014-01-01

    Plasma wakefield acceleration is a promising alternative reaching accelerating fields a magnitude of up to 3 higher (GV/m) when compared to conventional RF acceleration. AWAKE, world’s first proton-driven plasma wakefield experiment, was launched at CERN to verify this concept. In this experiment proton bunches at 400 GeV/c will be extracted from the CERN SPS and sent to the plasma cell, where the proton beam drives the plasma wakefields and creates a large accelerating field. This large gradient of ~GV/m can be achieved by relying on the self-modulation instability (SMI) of the proton beam; when seeded by ionization through a short laser pulse, a train of micro-bunches with a period on the order of the plasma wavelength (~mm) develops, which can drive such a large amplitude wake from a long proton bunch (~12 cm). An electron beam will be injected into the plasma to probe the accelerating wakefield. The AWAKE experiment is being installed at CERN in the former CNGS facility, which must be modified to mat...

  2. Studying astrophysical particle acceleration with laser-driven plasmas

    Science.gov (United States)

    Fiuza, Frederico

    2016-10-01

    The acceleration of non-thermal particles in plasmas is critical for our understanding of explosive astrophysical phenomena, from solar flares to gamma ray bursts. Particle acceleration is thought to be mediated by collisionless shocks and magnetic reconnection. The microphysics underlying these processes and their ability to efficiently convert flow and magnetic energy into non-thermal particles, however, is not yet fully understood. By performing for the first time ab initio 3D particle-in-cell simulations of the interaction of both magnetized and unmagnetized laser-driven plasmas, it is now possible to identify the optimal parameters for the study of particle acceleration in the laboratory relevant to astrophysical scenarios. It is predicted for the Omega and NIF laser conditions that significant non-thermal acceleration can occur during magnetic reconnection of laser-driven magnetized plasmas. Electrons are accelerated by the electric field near the X-points and trapped in contracting magnetic islands. This leads to a power-law tail extending to nearly a hundred times the thermal energy of the plasma and that contains a large fraction of the magnetic energy. The study of unmagnetized interpenetrating plasmas also reveals the possibility of forming collisionless shocks mediated by the Weibel instability on NIF. Under such conditions, both electrons and ions can be energized by scattering out of the Weibel-mediated turbulence. This also leads to power-law spectra that can be detected experimentally. The resulting experimental requirements to probe the microphysics of plasma particle acceleration will be discussed, paving the way for the first experiments of these important processes in the laboratory. As a result of these simulations and theoretical analysis, there are new experiments being planned on the Omega, NIF, and LCLS laser facilities to test these theoretical predictions. This work was supported by the SLAC LDRD program and DOE Office of Science, Fusion

  3. The Nonlinear Landau Damping Rate of a Driven Plasma Wave

    Energy Technology Data Exchange (ETDEWEB)

    Benisti, D; Strozzi, D J; Gremillet, L; Morice, O

    2009-08-04

    In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.

  4. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  5. A compact and continuously driven supersonic plasma and neutral sourcea)

    Science.gov (United States)

    Asai, T.; Itagaki, H.; Numasawa, H.; Terashima, Y.; Hirano, Y.; Hirose, A.

    2010-10-01

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.

  6. A compact and continuously driven supersonic plasma and neutral source.

    Science.gov (United States)

    Asai, T; Itagaki, H; Numasawa, H; Terashima, Y; Hirano, Y; Hirose, A

    2010-10-01

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.

  7. Viscously driven plasma flows in the deep geomagnetic tail

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C.J.; Slavin, J.A. (NASA/Goddard Space Flight Center, Greenbelt, MD (United States))

    1992-07-24

    The authors present an analysis, based on the principles of stress balance in a 1-dimensional current sheet, which considers the problem of closed magnetic flux transport into the deep tail by a viscous'-like interaction between the solar wind and the magnetosphere. They illustrate the analysis with an example of ISEE-3 data showing strong tailward plasma sheet flows on apparently closed field lines in the deep tail. Apart from narrow regions adjacent to the magnetopause, these flows are not driven by the scattering of magnetosheath plasma into the magnetosphere. They estimate the fraction of the magnetosheath momentum flux needed to be anomalously transferred into the plasma sheet to drive the flows. In their example this is [approximately] 6%. No previously suggested mechanism (e.g., the Kelvin-Helmholtz Instability) has been shown capable of providing anomalous momentum transport of this magnitude. Their current understanding of the viscous' interaction between the solar wind and magnetosphere is thus insufficient to explain these observations.

  8. Plasma wakefields driven by intense, broadband, incoherent electromagnetic radiation

    CERN Document Server

    Trines, R M G M; Mendonça, J T; Mori, W B; Norreys, P A; Bingham, R

    2014-01-01

    Non-linear wave-driven processes in plasmas are normally described by either a monochromatic pump wave that couples to other monochromatic waves, or as a random phase wave coupling to other random phase waves. An alternative approach involves an incoherent, random or broadband pump coupling to monochromatic and/or coherent structures in the plasma. This approach can be implemented through the wave kinetic model. In this model, the incoming pump wave is described by either a bunch (for coherent waves) or a sea (for random phase waves) of quasi-particles. A particle-in-cell type code has been developed to perform numerical simulations of such interactions using the quasi-particle approach. This code allows for a comparatively easy description of both random phase and coherent pump pulses coupling to slow electrostatic plasma waves, while providing an extended range of powerful diagnostics leading to a deeper physical insight into the dynamics of the fast waves. As an example, the propagation of short, intense l...

  9. Electromagnetically Driven Plasma-Field Dynamics in Modified Ionosphere

    Science.gov (United States)

    Kochetov, Andrey; Terina, Galina

    Under sounding of an artificial ionospheric turbulence by short probing radio pulses of ordinary polarization the two types of scattered signals were observed: a "caviton" signal (CS) and a "plasma" signal (PS), which appeared with the heating transmitter switching on and disap-peared after its switching off (G.I. Terina J. Atm. Terr. Phys, 57, 1995, 273, Izv. VUZov, Radiofizika, 39, 1998, 203). The scattered signal of PS type was revealed also after the heating switching off. It was called an "aftereffect plasma signal" (AEPS) (G.I. Terina Izv .VUZov, Radiofizika, 43, 2000, 958). This signal had large time and spatial delays and appeared mostly when corresponding PS had envelope fluctuations. The aftereffect phenomenon was expressed at time on CS by amplitude increasing at once after the heating transmitter turning off. The theoretical model of this phenomenon is proposed in and some peculiarities of the aftereffect phenomena of the scattered signals in modified ionospheric plasma are considered and discussed. For theoretical interpretation of the characteristics of CS and AEPS the numerical solution of nonlinear Shrüdinger equation (NSE) with driven extension were carried out in inhomogeneous plasma layer with linear electron density profile (A.V. Kochetov, V.A. Mironov, G.I. Terina, Adv. Space Reseacrh, 29, 2002, 1369) and for the one with prescribed density depletion (and A.V. Kochetov, G.I. Terina, Adv. Space Reseacrh, 38, 2006, 2490). The simulation results obtained for linear inhomogeneous plasma layer and for plasma one with density depletion al-low us to interpret the aftereffect of CS and PS qualitatively. The field amplitude increase at relaxation stage displayed at calculations allows us to interpret of CS aftereffect. The large time delays of AEPS can be explained as a result of powerful radio waves trapping in the forming at the plasma resonance regions density depletions (E. Mjøhus, J. Geophys. Res. 103, 1998, 14711; B. Eliasson and L. Stenflo, J

  10. Colliding ionization injection in a beam driven plasma accelerator

    CERN Document Server

    Wan, Y; Li, F; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2015-01-01

    The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron bunches obtained using this technique can have extremely small slice energy spread, because each slice is mainly composed of electrons ionized at the same time. Another remarkable advantage is that the injection distance is changeable. A bunch with normalized emittance of 3.3 nm, slice energy spread of 15 keV and brightness of 7.2 A m$^{-2}$ rad$^{-2}$ is obtained with an optimal injection length which is achieved by adjusting the launch time of the drive beam or by changing the laser focal position. This makes the scheme a promising approach to generate high quality electron bunches for the fifth generation light source.

  11. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  12. Pulsed radiobiology with laser-driven plasma accelerators

    Science.gov (United States)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  13. Experimental observations of driven and intrinsic rotation in tokamak plasmas

    Science.gov (United States)

    Rice, J. E.

    2016-08-01

    Experimental observations of driven and intrinsic rotation in tokamak plasmas are reviewed. For momentum sources, there is direct drive from neutral beam injection, lower hybrid and ion cyclotron range of frequencies waves (including mode conversion flow drive), as well as indirect \\mathbf{j}× \\mathbf{B} forces from fast ion and electron orbit shifts, and toroidal magnetic field ripple loss. Counteracting rotation drive are sinks, such as from neutral drag and toroidal viscosity. Many of these observations are in agreement with the predictions of neo-classical theory while others are not, and some cases of intrinsic rotation remain puzzling. In contrast to particle and heat fluxes which depend on the relevant diffusivity and convection, there is an additional term in the momentum flux, the residual stress, which can act as the momentum source for intrinsic rotation. This term is independent of the velocity or its gradient, and its divergence constitutes an intrinsic torque. The residual stress, which ultimately responds to the underlying turbulence, depends on the confinement regime and is a complicated function of collisionality, plasma shape, and profiles of density, temperature, pressure and current density. This leads to the rich intrinsic rotation phenomenology. Future areas of study include integration of these many effects, advancement of quantitative explanations for intrinsic rotation and development of strategies for velocity profile control.

  14. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    Science.gov (United States)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  15. MTF Driven by Plasma Liner Dynamically Formed by the Merging of Plasma Jets: An Overview

    Science.gov (United States)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    One approach for standoff delivery of the momentum flux for compressing the target in MTF consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid (Figure 1). A 3-year experiment (PLX-1) to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets is described. An overview showing how this 3-year project (PLX-1) fits into the program plan at the national and international level for realizing MTF for energy and propulsion is discussed. Assuming that there will be a parallel program in demonstrating and establishing the underlying physics principles of MTF using whatever liner is appropriate (e.g. a solid liner) with a goal of demonstrating breakeven by 2010, the current research effort at NASA MSFC attempts to complement such a program by addressing the issues of practical embodiment of MTF for propulsion. Successful conclusion of PLX-1 will be followed by a Physics Feasibility Experiment (PLX-2) for the Plasma Liner Driven MTF.

  16. Three dimensional Simulations of Self-Organization in a Driven Dissipative Plasma System

    Science.gov (United States)

    Shaikh, Dastgeer; Dasgupta, B.; Hu, Q.; Zank, G. P.

    2009-11-01

    We perform a fully self-consistent 3-D numerical simulation for a compressible, driven dissipative magneto-plasma driven by large-scale perturbations, that contain a fairly broader spectrum of characteristic modes, ranging from largest scales to intermediate scales and down to the smallest scales, where the energy of the system are dissipated by collisional (Ohmic) and viscous dissipations. Additionally, our simulation includes nonlinear interactions amongst a wide range of ?uctuations that are initialized with random spectral amplitudes, leading to the cascade of spectral energy in the inertial range spectrum, and takes into account large scale as well as small scale perturbation that may have been induced by the background plasma ?uctuations, also the non adiabatic exchange of energy leading to the migration of energy from the energy containing modes or randomly injected energy driven by perturbations and further dissipated by the smaller scales. Besides demonstrating the comparative decays of total energy and dissipation rate of energy, our results show the existence of a perpendicular component of current, thus clearly con?rming that the self-organized state is non-force free.

  17. BRIEF COMMUNICATION: On the drift kinetic equation driven by plasma flows

    Science.gov (United States)

    Shaing, K. C.

    2010-07-01

    A drift kinetic equation that is driven by plasma flows has previously been derived by Shaing and Spong 1990 (Phys. Fluids B 2 1190). The terms that are driven by particle speed that is parallel to the magnetic field B have been neglected. Here, such terms are discussed to examine their importance to the equation and to show that these terms do not contribute to the calculations of plasma viscosity in large aspect ratio toroidal plasmas, e.g. tokamaks and stellarators.

  18. Pressure-driven reconnection and quasi periodical oscillations in plasmas

    Science.gov (United States)

    Paccagnella, R.

    2014-03-01

    This paper presents a model for an ohmically heated plasma in which a feedback exists between thermal conduction and transport, on one side, and the magneto-hydro-dynamical stability of the system, on the other side. In presence of a reconnection threshold for the magnetic field, a variety of periodical or quasi periodical oscillations for the physical quantities describing the system are evidenced. The model is employed to interpret the observed quasi periodical oscillations of electron temperature and perturbed magnetic field around the so called "Single Helical" state in the reversed field pinch, but its relevance for other periodical phenomena observed in magnetic confinement systems, especially in tokamaks, is suggested.

  19. A laboratory study of asymmetric magnetic reconnection in strongly driven plasmas.

    Science.gov (United States)

    Rosenberg, M J; Li, C K; Fox, W; Igumenshchev, I; Séguin, F H; Town, R P J; Frenje, J A; Stoeckl, C; Glebov, V; Petrasso, R D

    2015-02-04

    Magnetic reconnection, the annihilation and rearrangement of magnetic fields in a plasma, is a universal phenomenon that frequently occurs when plasmas carrying oppositely directed field lines collide. In most natural circumstances, the collision is asymmetric (the two plasmas having different properties), but laboratory research to date has been limited to symmetric configurations. In addition, the regime of strongly driven magnetic reconnection, where the ram pressure of the plasma dominates the magnetic pressure, as in several astrophysical environments, has also received little experimental attention. Thus, we have designed the experiments to probe reconnection in asymmetric, strongly driven, laser-generated plasmas. Here we show that, in this strongly driven system, the rate of magnetic flux annihilation is dictated by the relative flow velocities of the opposing plasmas and is insensitive to initial asymmetries. In addition, out-of-plane magnetic fields that arise from asymmetries in the three-dimensional plasma geometry have minimal impact on the reconnection rate, due to the strong flows.

  20. Current-less solar wind driven dust acoustic instability in cometary plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [Belgian Institute for Space Aeronomy, Ringlaan 3, 1180 Brussels (Belgium)

    2011-08-15

    A quantitative analysis is presented of the dust acoustic wave instability driven by the solar and stellar winds. This is a current-less kinetic instability which develops in permeating plasmas, i.e.., when one quasi-neutral electron-ion wind plasma in its propagation penetrates through another quasi-neutral plasma which contains dust, electrons, and ions.

  1. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    OpenAIRE

    Gschwendtner, E; Adli, E.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.(CERN, Geneva, Switzerland); Caldwell, A.; Cascella, M.; AMORIM, L.; Chevallay, E.; Cipiccia, S.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D; experiment at CERN and the world׳s first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of ...

  2. Laser plasma jet driven microparticles for DNA/drug delivery.

    Directory of Open Access Journals (Sweden)

    Viren Menezes

    Full Text Available This paper describes a microparticle delivery device that generates a plasma jet through laser ablation of a thin metal foil and uses the jet to accomplish particle delivery into soft living targets for transferring biological agents. Pure gold microparticles of 1 µm size were coated with a plasmid DNA, pIG121Hm, and were deposited as a thin layer on one surface of an aluminum foil. The laser (Nd:YAG, 1064 nm wavelength ablation of the foil generated a plasma jet that carried the DNA coated particles into the living onion cells. The particles could effectively penetrate the target cells and disseminate the DNA, effecting the transfection of the cells. Generation of the plasma jet on laser ablation of the foil and its role as a carrier of microparticles was visualized using a high-speed video camera, Shimadzu HPV-1, at a frame rate of 500 kfps (2 µs interframe interval in a shadowgraph optical set-up. The particle speed could be measured from the visualized images, which was about 770 m/s initially, increased to a magnitude of 1320 m/s, and after a quasi-steady state over a distance of 10 mm with an average magnitude of 1100 m/s, started declining, which typically is the trend of a high-speed, pulsed, compressible jet. Aluminum launch pad (for the particles was used in the present study to make the procedure cost-effective, whereas the guided, biocompatible launch pads made of gold, silver or titanium can be used in the device during the actual clinical operations. The particle delivery device has a potential to have a miniature form and can be an effective, hand-held drug/DNA delivery device for biological applications.

  3. Generation of powerful terahertz emission in a beam-driven strong plasma turbulence

    OpenAIRE

    Arzhannikov, A.V.; Timofeev, I. V.

    2012-01-01

    Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps....

  4. Boltzmann-equation simulations of radio-frequency-driven, low-temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Drallos, P.J.; Riley, M.E.

    1995-01-01

    We present a method for the numerical solution of the Boltzmann equation (BE) describing plasma electrons. We apply the method to a capacitively-coupled, radio-frequency-driven He discharge in parallel-plate (quasi-1D) geometry which contains time scales for physical processes spanning six orders of magnitude. Our BE solution procedure uses the method of characteristics for the Vlasov operator with interpolation in phase space at early time, allowing storage of the distribution function on a fixed phase-space grid. By alternating this BE method with a fluid description of the electrons, or with a novel time-cycle-average equation method, we compute the periodic steady state of a He plasma by time evolution from startup conditions. We find that the results compare favorably with measured current-voltage, plasma density, and ``cited state densities in the ``GEC`` Reference Cell. Our atomic He model includes five levels (some are summed composites), 15 electronic transitions, radiation trapping, and metastable-metastable collisions.

  5. Schlieren High Speed Imaging on Fluid Flow in Liquid Induced by Plasma-driven Interfacial Forces

    Science.gov (United States)

    Lai, Janis; Foster, John

    2016-10-01

    Effective plasma-based water purification depends heavily on the transport of plasma-derived reactive species from the plasma into the liquid. Plasma interactions at the liquid-gas boundary are known to drive circulation in the bulk liquid. This forced circulation is not well understood. A 2-D plasma- in-liquid water apparatus is currently being investigated as a means to study the plasma-liquid interface to understand not only reactive species flows but to also understand plasma- driven fluid dynamic effects in the bulk fluid. Using Schlieren high speed imaging, plasma-induced density gradients near the interfacial region and into the bulk solution are measured to investigate the nature of these interfacial forces. Plasma-induced flow was also measured using particle imaging velocimetry. NSF CBET 1336375 and DOE DE-SC0001939.

  6. Experimental Results on Current-Driven Turbulence in Plasmas - a Survey

    NARCIS (Netherlands)

    Dekluiver, H.; Perepelkin, N. F.; Hirose, A.

    1991-01-01

    The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has

  7. Oscillating two-stream instability of laser wakefield-driven plasma wave

    Indian Academy of Sciences (India)

    Nafis Ahmad; V K Tripathi; Moiz Ahmad; M Rafat

    2016-01-01

    The laser wakefield-driven plasma wave in a low-density plasma is seen to be susceptible to the oscillating two-stream instability (OTSI). The plasma wave couples to two short wavelength plasma wave sidebands. The pump plasma wave and sidebands exert a ponderomotive force on the electrons driving a low-frequency quasimode. The electron density perturbation associated with this mode couples with the pump-driven electron oscillatory velocity to produce nonlinear currents driving the sidebands. At large pump amplitude, the instability grows faster than the ion plasma frequency and ions do not play a significant role. The growth rate of the quasimode, at large pump amplitude scales faster than linear. The growth rate is maximum for an optimum wave number of the quasimode and also increases with pump amplitude. Nonlocal effects, however reduce the growth rate by about half.

  8. Beltrami States for Plasma Dynamics Models

    OpenAIRE

    Shivamoggi, B. K.

    2007-01-01

    The various plasma models - incompressible magnetohydrodynamic (MHD) model, compressible MHD model, incompressible Hall MHD model, compressible Hall MHD model, electron MHD model, compressible Hall MHD with electron inertia model - notwithstanding the diversity of the underlying physics, are shown to exhibit some common features in the Beltrami states like certain robustness with respect to the plasma compressibility effects (albeit in the barotropy assumption) and the {\\it Bernoulli} conditi...

  9. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    Science.gov (United States)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  10. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Gschwendtner, E. [CERN, Geneva (Switzerland); Adli, E. [University of Oslo, Oslo 0316 (Norway); Amorim, L. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Apsimon, R. [Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Lancaster University, Lancaster LA1 4YR (United Kingdom); Assmann, R. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Bachmann, A.-M.; Batsch, F. [Max Planck Institute for Physics, Föhringer Ring 6, München 80805 (Germany); Bauche, J. [CERN, Geneva (Switzerland); Berglyd Olsen, V.K. [University of Oslo, Oslo 0316 (Norway); Bernardini, M. [CERN, Geneva (Switzerland); Bingham, R. [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Biskup, B. [CERN, Geneva (Switzerland); Czech Technical University, Zikova 1903/4, 166 36 Praha 6 (Czech Republic); Bohl, T.; Bracco, C. [CERN, Geneva (Switzerland); Burrows, P.N. [John Adams Institute for Accelerator Science, Oxford (United Kingdom); University of Oxford, Oxford OX1 2JD (United Kingdom); Burt, G. [Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Buttenschön, B. [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, Greifswald 17491 (Germany); Butterworth, A. [CERN, Geneva (Switzerland); Caldwell, A. [Max Planck Institute for Physics, Föhringer Ring 6, München 80805 (Germany); Cascella, M. [UCL, Gower Street, London WC1E 6BT (United Kingdom); and others

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  11. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V.K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A.A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Huther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K.V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V.A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Oz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z.M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A.P.; Spitsyn, R.I.; Trines, R.; Tuev, P.V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C.P.; Wing, M.; Xia, G.; Zhang, H.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  12. Schlieren Cinematography of Current Driven Plasma Jet Dynamics

    Science.gov (United States)

    Loebner, Keith; Underwood, Thomas; Cappelli, Mark

    2016-10-01

    Schlieren cinematography of a pulsed plasma deflagration jet is presented and analyzed. An ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse (20 μs). The Schlieren signal is radiometrically calibrated to obtain a two dimensional mapping of the refraction angle of the axisymmetric pinch plasma, and this mapping is then Abel inverted to derive the plasma density distribution as a function radius, axial coordinate, and time. Analyses of previously unknown discharge characteristics and comparisons with prior work are discussed.

  13. Spatially resolved optical-emission spectroscopy of a radio-frequency driven iodine plasma source

    Science.gov (United States)

    Dedrick, James; Doyle, Scott; Grondein, Pascaline; Aanesland, Ane

    2016-09-01

    Iodine is of interest for potential use as a propellant for spacecraft propulsion, and has become attractive as a replacement to xenon due to its similar mass and ionisation potential. Optical emission spectroscopy has been undertaken to characterise the emission from a low-pressure, radio-frequency driven inductively coupled plasma source operating in iodine with respect to axial distance across its transverse magnetic filter. The results are compared with axial profiles of the electron temperature and density for identical source conditions, and the spatial distribution of the emission intensity is observed to be closely correlated with the electron temperature. This work has been done within the LABEX Plas@Par project, and received financial state aid managed by the ``Agence Nationale de la Recherche'', as part of the ``Programme d'Investissements d'Avenir'' under the reference ANR-11-IDEX-0004-02.

  14. Evanescent states and nonequilibrium in driven superconducting nanowires

    NARCIS (Netherlands)

    Vercruyssen, N.; Verhagen, T.G.A.; Flokstra, M.G.; Pekola, J.P.; Klapwijk, T.M.

    2012-01-01

    We study the nonlinear response of current transport in a superconducting diffusive nanowire between normal reservoirs. We demonstrate theoretically and experimentally the existence of two different superconducting states appearing when the wire is driven out of equilibrium by an applied bias, calle

  15. Pressure-anisotropy-driven microturbulence and magnetic-field evolution in shearing, collisionless plasma

    CERN Document Server

    Melville, S; Kunz, M W

    2015-01-01

    The nonlinear state of a high-beta collisionless plasma is investigated when an imposed linear shear amplifies or diminishes a uniform magnetic field, driving pressure anisotropies and hence firehose/mirror instabilities. The evolution of the resulting microscale turbulence is considered when the shear is switched off or reversed after one shear time (mimicking local behaviour of a macroscopic flow), so a new macroscale configuration is superimposed on the microscale state left behind by the previous one. There is a threshold value of plasma beta: when $\\beta\\ll\\Omega/S$ (ion cyclotron frequency/shear rate), the emergence of firehose/mirror fluctuations driven unstable by shear and their disappearance when the shear is removed/reversed are quasi-instantaneous compared to the shear time, viz., the decay time of these fluctuations is $\\sim\\beta/\\Omega \\ll 1/S$ (this result follows from the free decay of the fluctuations being constrained by the same marginal-stability thresholds as their growth). In contrast, w...

  16. Evanescent states and nonequilibrium in driven superconducting nanowires

    Science.gov (United States)

    Vercruyssen, N.; Verhagen, T. G. A.; Flokstra, M. G.; Pekola, J. P.; Klapwijk, T. M.

    2012-06-01

    We study the nonlinear response of current transport in a superconducting diffusive nanowire between normal reservoirs. We demonstrate theoretically and experimentally the existence of two different superconducting states appearing when the wire is driven out of equilibrium by an applied bias, called the global and bimodal superconducting states. The different states are identified by using two-probe measurements of the wire, and measurements of the local density of states with tunneling probes. The analysis is performed within the framework of the quasiclassical kinetic equations for diffusive superconductors.

  17. Plasma transport driven by the Rayleigh-Taylor instability

    Science.gov (United States)

    Ma, X.; Delamere, P. A.; Otto, A.

    2016-06-01

    Two important differences between the giant magnetospheres (i.e., Jupiter's and Saturn's magnetospheres) and the terrestrial magnetosphere are the internal plasma sources and the fast planetary rotation. Thus, there must be a radially outward flow to transport the plasma to avoid infinite accumulation of plasma. This radial outflow also carries the magnetic flux away from the inner magnetosphere due to the frozen-in condition. As such, there also must be a radial inward flow to refill the magnetic flux in the inner magnetosphere. Due to the similarity between Rayleigh-Taylor (RT) instability and the centrifugal instability, we use a three-dimensional RT instability to demonstrate that an interchange instability can form a convection flow pattern, locally twisting the magnetic flux, consequently forming a pair of high-latitude reconnection sites. This process exchanges a part of the flux tube, thereby transporting the plasma radially outward without requiring significant latitudinal convection of magnetic flux in the ionosphere.

  18. Particle balance in long duration RF driven plasmas on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Hanada, K., E-mail: hanada@triam.kyushu-u.ac.jp [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 812-8580 (Japan); Zushi, H.; Yoshida, N. [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 812-8580 (Japan); Yugami, N.; Honda, T. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 816-8580 (Japan); Hasegawa, M. [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 812-8580 (Japan); Mishra, K. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 816-8580 (Japan); Kuzmin, A.; Nakamura, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Watanabe, O.; Onchi, T.; Watanabe, H.; Tokunaga, K.; Higashijima, A.; Kawasaki, S.; Nakashima, H. [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 812-8580 (Japan); Takase, Y. [Graduate School of Frontier Science, University of Tokyo (Japan); and others

    2015-08-15

    Global particle balance in non-inductive long-duration plasma on QUEST has been investigated. Approximately 70% of the fuel hydrogen (H) was retained in the wall and then was almost exhausted just after the discharge. The global recycling ratio (R{sub g}), defined as the ratio of the evacuated H{sub 2} flux to that injected, was found to gradually increase during discharges and subsequently rose rapidly. To study the growth of R{sub g}, the thermal desorption spectra after deuterium implantation in a specimen exposed to QUEST plasma was analyzed with a model which includes reflection, diffusion, solution, recombination, trapping, and plasma-induced desorption in the re-deposition layer. The model reconstructs the growth of R{sub g} during a long-duration plasma and indicates solution plays a dominant role in the growth.

  19. Ground state of a confined Yukawa plasma

    CERN Document Server

    Henning, C; Block, D; Bonitz, M; Golubnichiy, V; Ludwig, P; Piel, A

    2006-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically. In particular, the radial density profile is computed. The results agree very well with computer simulations on three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density distribution for a confinement potential of arbitrary geometry.

  20. Exact axisymmetric Taylor states for shaped plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cerfon, Antoine J., E-mail: cerfon@cims.nyu.edu; O' Neil, Michael, E-mail: oneil@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

    2014-06-15

    We present a general construction for exact analytic Taylor states in axisymmetric toroidal geometries. In this construction, the Taylor equilibria are fully determined by specifying the aspect ratio, elongation, and triangularity of the desired plasma geometry. For equilibria with a magnetic X-point, the location of the X-point must also be specified. The flexibility and simplicity of these solutions make them useful for verifying the accuracy of numerical solvers and for theoretical studies of Taylor states in laboratory experiments.

  1. A Proton-Driven Plasma Wakefield Acceleration experiment at CERN

    CERN Multimedia

    The AWAKE Collaboration has been formed in order to demonstrate protondriven plasma wakefield acceleration for the first time. This technology could lead to future colliders of high energy but of a much reduced length compared to proposed linear accelerators. The SPS proton beam in the CNGS facility will be injected into a 10m plasma cell where the long proton bunches will be modulated into significantly shorter micro-bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial 3–4 yea...

  2. Incoherent synchrotron emission of laser-driven plasma edge

    CERN Document Server

    Serebryakov, D A; Kostyukov, I Yu

    2015-01-01

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  3. Incoherent synchrotron emission of laser-driven plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Serebryakov, D. A., E-mail: dmserebr@gmail.com; Nerush, E. N.; Kostyukov, I. Yu. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950 (Russian Federation)

    2015-12-15

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  4. Incoherent synchrotron emission of laser-driven plasma edge

    Science.gov (United States)

    Serebryakov, D. A.; Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-01

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  5. Laser-driven plasma waves in capillary tubes.

    Science.gov (United States)

    Wojda, F; Cassou, K; Genoud, G; Burza, M; Glinec, Y; Lundh, O; Persson, A; Vieux, G; Brunetti, E; Shanks, R P; Jaroszynski, D; Andreev, N E; Wahlström, C-G; Cros, B

    2009-12-01

    The excitation of plasma waves over a length of up to 8 cm is demonstrated using laser guiding of intense laser pulses through hydrogen-filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift-measured as a function of filling pressure, capillary tube length, and incident laser energy-is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range of 1-10 GV/m.

  6. A "slingshot" laser-driven acceleration mechanism of plasma electrons

    CERN Document Server

    Fiore, Gaetano; Fedele, Renato

    2016-01-01

    We briefly report on the recently proposed [G. Fiore, R. Fedele, U. de Angelis, Phys. Plasmas 21 (2014), 113105], [G. Fiore, S. De Nicola, arXiv:1509.04656] electron acceleration mechanism named "slingshot effect": under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  7. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  8. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  9. Plasma-driven dissociation of CO2 for fuel synthesis

    NARCIS (Netherlands)

    Bongers, Waldo; Bouwmeester, Henny J.M.; Wolf, Bram; Peeters, Floran; Welzel, Stefan; Bekerom, van den Dirk; Harder, den Niek; Goede, Adelbert; Graswinckel, Martijn; Groen, Pieter Willem; Kopecki, Jochen; Leins, Martina; Rooij, van Gerard; Schulz, Andreas; Walker, Matthias; Sanden, van de Richard

    2016-01-01

    Power-to-gas is a storage technology aiming to convert surplus electricity from renewable energy sources like wind and solar power into gaseous fuels compatible with the current network infrastructure. Results of CO2 dissociation in a vortexstabilized microwave plasma reactor are presented. The micr

  10. Plasma ignition schemes for the SNS radio-frequency driven H- source

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, T.; Staples, J.W.; Thomae, W.; Reijonen, J.; Gough, R.A.; Leung, K.N.; Keller, R.

    2001-09-06

    The H{sup -} ion source for the Spallation Neutron Source (SNS) is a cesiated, radio-frequency driven (2 MHz) multicusp volume source which operates at a duty cycle of 6% (1 ms pulses and 60 Hz). In pulsed RF driven plasma sources, ignition of the plasma affects the stability of source operation and the antenna lifetime. We are reporting on investigations of different ignition schemes, based on secondary electron generation in the plasma chamber by UV light, a hot filament, a low power RF plasma (cw, 13.56 MHz), as well as source operation solely with the high power (40 kW) 2 MHz RF. We find that the dual frequency, single antenna scheme is most attractive for the operating conditions of the SNS H{sup -} source.

  11. Phenotype-Driven Plasma Biobanking Strategies and Methods

    Directory of Open Access Journals (Sweden)

    Erica A. Bowton

    2015-05-01

    Full Text Available Biobank development and integration with clinical data from electronic medical record (EMR databases have enabled recent strides in genomic research and personalized medicine. BioVU, Vanderbilt’s DNA biorepository linked to de-identified clinical EMRs, has proven fruitful in its capacity to extensively appeal to numerous areas of biomedical and clinical research, supporting the discovery of genotype-phenotype interactions. Expanding on experiences in BioVU creation and development, we have recently embarked on a parallel effort to collect plasma in addition to DNA from blood specimens leftover after routine clinical testing at Vanderbilt. This initiative offers expanded utility of BioVU by combining proteomic and metabolomic approaches with genomics and/or clinical outcomes, widening the breadth for potential research and subsequent future impact on clinical care. Here, we describe the considerations and components involved in implementing a plasma biobank program from a feasibility assessment through pilot sample collection.

  12. Modeling of high-explosive driven plasma compression opening switches

    Science.gov (United States)

    Greene, A. E.; Lindemuth, I. R.; Goforth, J. H.

    The initial path of the current through a plasma compression switch is through a thin (500-nm thick) metal foil. The current explodes the foil to form the seed for the conducting plasma. The behavior of the foil at this point is the same as an exploding metal fuse for which we have a simple model. We have, therefore, chosen this model as our starting point. The fuse model assumes that the foil material is homogeneous and is characterized by a single temperature and density. The thickness of the foil is assumed to be much less than the magnetic diffusion skin depth so that the magnetic field varies linearly across the foil. For the present application we assume that the side of the foil away from the channel is fixed in space while the side by the channel is untamped. The foil/plasma will, therefore, cross the channel at the expansion velocity as the foil explodes. Equations for the electrical resistance of the foil, the magnetic fields, the motion of the foil, and the kinetic and internal energies are all solved selfconsistantly. The electrical resistivity, the pressure, and the specific energy of aluminum are taken from the Los Alamos SESAME EOS library. In the case of aluminum we have created a SESAME-style table based on the theory of More and Lee which we have modified to agree with experiment where possible.

  13. Letter of Intent for a Demonstration Experiment in Proton-Driven Plasma Wakefield Acceleration

    CERN Document Server

    Adli, E; Assmann, R; Bingham, R; Caldwell, A; Chattopadhyay, S; Delerue, N; Dias, F M; Efthymiopoulos, I; Elsen, E; Fartoukh, S; Ferreira, C M; Fonseca, R A; Geschonke, G; Goddard, B; Gruelke, O; Hessler, C; Hillenbrand, S; Holloway, J; Huang, C; Jarozinsky, D; Jolly, S; Joshi, C; Kumar, N; Lu, W; Lopes, N; Kaur, M; Lotov, K; Malka, V; Meddahi, M; Mete, O; Mori, W B; Mueller, A; Muggli, P; Najmudin, Z; Norreys, P; Osterhoff, J; Pozimski, J; Pukhov, A; Reimann, O; Roesler, S; Ruhl, H; Schlarb, H; Schmidt, B; Schmitt, H v d; Schoening, A; Seryi, A; Simon, F; Silva, L O; Tajima, T; Trines, R; Tueckmantel, T; Upadhyay, A; Vieira, J; Willi, O; Wing, M; Xia, G; Yakimenko, V; Yan, X; Zimmermann, F; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2011-01-01

    We propose an experiment on proton-driven plasma wakefield acceleration (PDPWA) which could lead to a future TeV-scale e+- collider of much reduced length compared to conventional designs. Proton bunches are ideal drivers for high energy lepton accelerators, with the potential of reducing drastically the number of required driver stages. By using a plasma to modulate a long proton bunch, a strong plasma wave can be generated by a series of ‘micro-bunches’, so that an experimental program can start today with the existing proton beams. In this letter of intent, we propose a demonstration experiment using the existing CERN SPS beam. This project would be the first beam-driven wakefield acceleration experiment in Europe, and the first proton-driven plasma-wakefield acceleration experiment worldwide. We have set as an initial goal the demonstration of 1 GeV energy gain for electrons in 10 m of plasma. A proposal for reaching 100 GeV within 100 m of plasma will be developed using results from the initial roun...

  14. Stability study for matching in laser driven plasma acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, A.R., E-mail: andrea.rossi@mi.infn.it [INFN - MI, via Celoria 16, 20133 Milan (Italy); Anania, M.P. [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Bacci, A. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Belleveglia, M.; Bisesto, F.G.; Chiadroni, E. [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Cianchi, A. [Tor Vergata University, Physics Department, via della Ricerca Scientifica 1, 00133 Rome (Italy); INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Curcio, A.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M. [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Marocchino, A.; Massimo, F. [La Sapienza University, SBAI Department, via A. Scarpa 14, 00161 Rome (Italy); Mostacci, A. [La Sapienza University, SBAI Department, via A. Scarpa 14, 00161 Rome (Italy); INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Petrarca, M. [La Sapienza University, SBAI Department, via A. Scarpa 14, 00161 Rome (Italy); Pompili, R. [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Serafini, L. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Tomassini, P. [University of Milan, Physics Department, via Celoria 16, 20133 Milan (Italy); Vaccarezza, C. [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); and others

    2016-09-01

    In a recent paper [14], a scheme for inserting and extracting high brightness electron beams to/from a plasma based acceleration stage was presented and proved to be effective with an ideal bi-Gaussian beam, as could be delivered by a conventional photo-injector. In this paper, we extend that study, assessing the method stability against some jitters in the properties of the injected beam. We find that the effects of jitters in Twiss parameters are not symmetric in results; we find a promising configuration that yields better performances than the setting proposed in [14]. Moreover we show and interpret what happens when the beam charge profiles are modified.

  15. Anomalous inverse bremsstrahlung heating of laser-driven plasmas

    Science.gov (United States)

    Kundu, Mrityunjay

    2016-05-01

    Absorption of laser light in plasma via electron-ion collision (inverse bremsstrahlung) is known to decrease with the laser intensity as I 0 -3/2 or with the electron temperature as T e -3/2 where Coulomb logarithm ln Λ = 0.5ln(1 + k 2 min/k 2 max) in the expression of electron-ion collision frequency v ei is assumed to be independent of ponderomotive velocity v 0 = E0/ω which is unjustified. Here k -1 min = v th/max(ω, ω p), and k -1 max = Z/v 2 th are maximum and minimum cut-off distances of the colliding electron from the ion, v th = √T e is its thermal velocity, ω, ω p are laser and plasma frequency. Earlier with a total velocity v = (v 2 0 + v 2 th)1/2 dependent ln Λ(v) it was reported that v ei and corresponding fractional laser absorption (α) initially increases with increasing intensity, reaches a maximum value, and then fall according to the conventional I 0 -3/2 scaling. This anomalous increase in v ei and α may be objected due to an artifact introduced in ln Λ(v) through k-1 min ∝ v. Here we show similar anomalous increase of v ei and α versus I 0 (in the low temperature and under-dense density regime) with quantum and classical kinetic models of v ei without using ln Λ, but a proper choice of the total velocity dependent inverse cut-off length kmax -1 ∝ v 2 (in classical case) or kmax ∝ v (in quantum case). For a given I 0 15 eV, anomalous growth of vei and a disappear. The total velocity dependent k max in kinetic models, as proposed here, may explain anomalous increase of a with I 0 measured in some earlier laser-plasma experiments. This work may be important to understand collisional absorption in the under-dense pre-plasma region due to low intensity pre-pulses and amplified spontaneous emission (ASE) pedestal in the context of laser induced inertial confinement fusion.

  16. Chimera states and synchronization in magnetically driven SQUID metamaterials

    Science.gov (United States)

    Hizanidis, J.; Lazarides, N.; Neofotistos, G.; Tsironis, G. P.

    2016-09-01

    One-dimensional arrays of Superconducting QUantum Interference Devices (SQUIDs) form magnetic metamaterials exhibiting extraordinary properties, including tunability, dynamic multistability, negative magnetic permeability, and broadband transparency. The SQUIDs in a metamaterial interact through non-local, magnetic dipole-dipole forces, that makes it possible for multiheaded chimera states and coexisting patterns, including solitary states, to appear. The spontaneous emergence of chimera states and the role of multistability is demonstrated numerically for a SQUID metamaterial driven by an alternating magnetic field. The spatial synchronization and temporal complexity are discussed and the parameter space for the global synchronization reveals the areas of coherence-incoherence transition. Given that both one- and two-dimensional SQUID metamaterials have been already fabricated and investigated in the lab, the presence of a chimera state could in principle be detected with presently available experimental set-ups.

  17. Inductive inhibition of cold-plasma stabilization of curvature-driven modes in finite-length plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guest, G.E.; Miller, R.L.; Caponi, M.Z.

    1986-08-01

    A modified quasistatic theory that incorporates inductive effects in earlier electrostatic models connects the conventional electrostatic and magnetohydrodynamic (MHD) pictures of line tying by cold plasma. The modified theory predicts that curvature-driven flute modes in mirror-confined plasmas can be stabilized by moderate concentrations of cold plasma if the beta of the hot, mirror-confined plasma is less than a critical value. The maximum stable beta for an idealized stratified model of a hot-ion plasma, separated from conducting end walls by cold plasma, is given approximately by ..beta../sub crit/approx. =(4R-italic/sub p-italic/R-italic/sub c-italic//L-italic/sub h-italic/L-italic/sub c-italic/) x (..omega../sup 2//sub p-italic//sub e-italic//sub (cold)// (k-italic/sup 2//sub perpendicular/c-italic/sup 2/+..omega../sup 2//sub p-italic//sub e-italic//sub (cold)/)). For ..omega../sup 2//sub p-italic//sub e-italic//sub (cold)/ <driven modes can occur even in the presence of dense cold plasmas if the hot-plasma beta exceeds a limiting value estimated to be ..pi../sup 2/R-italic/sub p-italic/R-italic/sub c-italic//L-italic/sup 2/.

  18. Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul

    2005-01-01

    The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...

  19. Efficient cesiation in RF driven surface plasma negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Ivanov, A.; Konstantinov, S.; Sanin, A., E-mail: sanin@inp.nsk.su; Sotnikov, O. [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (∼0.5 G) provides an enhanced H{sup −} production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H{sup −} production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H{sup −} yield to the high value. The effect of H{sup −} yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H{sup −} yield recovery due to sputtering of cesium from the deteriorated layers is discussed.

  20. PIC/MCC simulation for magnetized capacitively coupled plasmas driven by combined dc/rf sources

    Science.gov (United States)

    Yang, Shali; Zhang, Ya; Jiang, Wei; Wang, Hongyu; Wang, Shuai

    2016-09-01

    Hybrid dc/rf capacitively coupled plasma (CCP) sources have been popular in substrate etching due to their simplicity in the device structure and better plasma property. In this work, the characteristics of magnetized capacitively coupled plasmas driven by combined dc/rf sources are described by a one-dimensional Particle-in-cell/Monte Carlo collision (PIC/MCC) model. The simulation is using a rf source of 13.56MHz in argon and at a low pressure of 50mTorr. The effects of dc voltage and magnetic field on the plasmas are examined for 200-400V and 0-200Gs. It is found that, to some extent, dc voltage will increase the plasma density, but plasma density drops with increasing dc voltage. The magnetic field will enhance the plasma density significantly, due to the magnetic field will increase the electron life time and decrease the loss to the electrodes. In the bulk plasma, electron temperature is increased with the magnetic field but decreased with the dc voltage. The electron temperature in sheath is higher than in bulk plasma, due to stochastic heating in sheath is greater than Ohmic heating in bulk plasma under low gas pressure. National Natural Science Foundation of China (11405067, 11105057, 11305032, 11275039).

  1. High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    CERN Document Server

    Li, Yangmei; Lotov, Konstantin V; Sosedkin, Alexander P; Hanahoe, Kieran; Mete-Apsimon, Oznur

    2016-01-01

    Proton-driven plasma wakefield accelerators have numerically demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to energy frontier in a single plasma stage. However, due to the intrinsic strong and radially varying transverse fields, the beam quality is still far from suitable for practical application in future colliders. Here we propose a new accelerating region which is free from both plasma electrons and ions in the proton-driven hollow plasma channel. The high quality electron beam is therefore generated with this scheme without transverse plasma fields. The results show that a 1 TeV proton driver can propagate and accelerate an electron beam to 0.62 TeV with correlated energy spread of 4.6% and well-preserved normalized emittance below 2.4 mm mrad in a single hollow plasma channel of 700 m. More importantly, the beam loading tolerance is significantly improved compared to the uniform plasma case. This high quality an...

  2. Nuclear Fusion in Laser-Driven Counter-Streaming Collisionless Plasmas

    CERN Document Server

    Zhang, Xiaopeng; Yuan, Dawei; Fu, Changbo; Bao, Jie; Chen, Liming; He, Jianjun; Hou, Long; Li, Liang; Li, Yanfei; Li, Yutong; Liao, Guoqiang; Rhee, Yongjoo; Sun, Yang; Xu, Skiwei; Zhao, Gang; Zhu, Baojun; Zhu, Jianqiang; Zhang, Zhe; Zhang, Jie

    2016-01-01

    Nuclear fusion reactions are the most important processes in nature to power stars and produce new elements, and lie at the center of the understanding of nucleosynthesis in the universe. It is critically important to study the reactions in full plasma environments that are close to true astrophysical conditions. By using laser-driven counter-streaming collisionless plasmas, we studied the fusion D$+$D$\\rightarrow n +^3$He in a Gamow-like window around 27 keV. The results show that astrophysical nuclear reaction yield can be modulated significantly by the self-generated electromagnetic fields and the collective motion of the plasma. This plasma-version mini-collider may provide a novel tool for studies of astrophysics-interested nuclear reactions in plasma with tunable energies in earth-based laboratories.

  3. Generation of powerful terahertz emission in a beam-driven strong plasma turbulence

    CERN Document Server

    Arzhannikov, A V

    2012-01-01

    Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps. It is shown that the power density of electromagnetic emission at the second harmonic of plasma frequency in the terahertz range for these laboratory experiments can reach the level of 1 ${MW/cm}^3$ with 1% conversion efficiency of beam energy losses to electromagnetic emission.

  4. A New Scheme for High-Intensity Laser-Driven Electron Acceleration in a Plasma 2

    CERN Document Server

    Sadykova, S P; Samkharadze, T G

    2015-01-01

    We propose a new approach to high-intensity relativistic laser-driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward-scattering of an incident laser pulse can be in the longest acceleration phase with injected relativistic beam electrons. This is why the plasma wave has the maximum amplification coefficient which is determined by the acceleration time and the breakdown (overturn) electric field in which the acceleration of the injected beam electrons occurs. We must note that for the longest acceleration phase the relativity of the injected beam electrons plays a crucial role in our scheme. We estimate qualitatively the acceleration parameters of relativistic electrons in the field of a plasma wave generated at the stimulated forward-scattering of a high-intensity laser pulse in a plasma.

  5. Alfvén wave coupled with flow-driven fluid instability in interpenetrating plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife, Spain and Departamento de Astrofisica, Universidad de La Laguna, 38205 La Laguna, Tenerife (Spain)

    2015-05-15

    The Alfvén wave is analyzed in case of one quasineutral plasma propagating with some constant speed v{sub 0} through another static quasineutral plasma. A dispersion equation is derived describing the Alfvén wave coupled with the flow driven mode ω=kv{sub 0} and solutions are discussed analytically and numerically. The usual solutions for two oppositely propagating Alfvén waves are substantially modified due to the flowing plasma. More profound is modification of the solution propagating in the negative direction with respect to the magnetic field and the plasma flow. For a large enough flow speed (exceeding the Alfvén speed in the static plasma), this negative solution may become non-propagating, with frequency equal to zero. In this case, it represents a spatial variation of the electromagnetic field. For greater flow speed it becomes a forward mode, and it may merge with the positive one. This merging of the two modes represents the starting point for a flow-driven instability, with two complex-conjugate solutions. The Alfvén wave in interpenetrating plasmas is thus modified and coupled with the flow-driven mode and this coupled mode is shown to be growing when the flow speed is large enough. The energy for the instability is macroscopic kinetic energy of the flowing plasma. The dynamics of plasma particles caused by such a coupled wave still remains similar to the ordinary Alfvén wave. This means that well-known stochastic heating by the Alfvén wave may work, and this should additionally support the potential role of the Alfvén wave in the coronal heating.

  6. Spatially resolved simulation of a radio frequency driven micro atmospheric pressure plasma jet and its effluent

    CERN Document Server

    Hemke, Torben; Gebhardt, Markus; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2011-01-01

    Radio frequency driven plasma jets are frequently employed as efficient plasma sources for surface modification and other processes at atmospheric pressure. The \\textit{radio-frequency driven micro-scaled atmospheric pressure plasma jet} ($\\mu$APPJ) is a particular variant of that concept whose geometry allows direct optical access. In this work, the characteristics of a $\\mu$APPJ operated with a helium-oxygen mixture and its interaction with a helium environment are studied by numerical simulation. The density and temperature of the electrons, as well as the concentration of all reactive species are studied both in the jet itself and in its effluent. It is found that the effluent is essentially free of charge carriers but contains a substantial amount of activated oxygen (O, O$_3$ and O$_2(^1\\Delta)$).

  7. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Science.gov (United States)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  8. VUV Emission of Microwave Driven Argon Plasma Source

    Science.gov (United States)

    Henriques, Julio; Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Dias, Francisco; Ferreira, Carlos

    2013-09-01

    An experimental and kinetic modeling investigation of a low-pressure (0.1-1.2 mbar), surface wave (2.45 GHz) induced Ar plasma as a source vacuum ultraviolet (VUV) light is presented, using visible and VUV optical spectroscopy. The electron density and the relative VUV emission intensities of excited Ar atoms (at 104.8 nm and 106.6 nm) and ions (at 92.0 nm and 93.2 nm) were determined as a function of the microwave power and pressure. The experimental results were analyzed using a 2D self-consistent theoretical model based on a set of coupled equations including the electron Boltzmann equation, the rate balance equations for the most important electronic excited species and for charged particles, the gas thermal balance equation, and the wave electrodynamics. The principal collisional and radiative processes for neutral Ar(3p54s) and Ar(3p54p) and ionized Ar(3s3p6 2S1/2) levels are accounted for. Model predictions are in good agreement with the experimental measurements. This study was funded by the Foundation for Science and Technology, Portuguese Ministry of Education and Science, under the research contract PTDC/FIS/108411/2008.

  9. Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas

    Science.gov (United States)

    Kaur, Maninder; Nandan Gupta, Devki

    2016-11-01

    The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.

  10. Characteristics of Turbulence-driven Plasma Flow and Origin of Experimental Empirical Scalings of Intrinsic Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.; Lee, W. W.; Diamond, P. H.

    2011-03-20

    Toroidal plasma flow driven by turbulent torque associated with nonlinear residual stress generation is shown to recover the observed key features of intrinsic rotation in experiments. Specifically, the turbulence-driven intrinsic rotation scales close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing empirical scalings obtained from a large experimental data base. The effect of magnetic shear on the symmetry breaking in the parallel wavenumber spectrum is identified. The origin of the current scaling is found to be the enhanced kll symmetry breaking induced by increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic rotation on the pressure gradient comes from the fact that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving the residual stress, are increased with the strength of the turbulence drives, which are R/LTe and R/Lne for the collisionless trapped electron mode (CTEM). Highlighted results also include robust radial pinches in toroidal flow, heat and particle transport driven by CTEM turbulence, which emerge "in phase", and are shown to play important roles in determining plasma profiles. Also discussed are experimental tests proposed to validate findings from these gyrokinetic simulations.

  11. Neutron Signatures of Non-Thermal Ion Distributions in Z-Pinch Driven ICF Plasmas

    Science.gov (United States)

    Knapp, Patrick; Jennings, Christopher; Sinars, Daniel

    2012-10-01

    In preparation for upcoming ICF experiments on the 26 MA Z machine (e.g., D2 gas puff, MagLIF [1]), we are studying the neutron energy spectra produced by magnetically-driven loads beyond the archetypal single temperature, uniform plasma. Z-pinch sources frequently exhibit evidence of unusual neutron spectra [2], which can be attributed to three-dimensional turbulent motion, high-energy beams, and other phenomena leading to non-Maxwellian ion distributions. Understanding the nature of our plasma neutron sources is critical for understanding how they scale with increasing current. We will show Monte Carlo and analytic calculations for plausible scenarios and discuss the corresponding signatures for the existing set of time-of-flight diagnostics on Z.[4pt] [1] S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)[0pt] [2] V.V. Vikhrev and V.D. Korolev, Plasma Dynamics, Vol. 33, No. 5 (2007)

  12. Critical quasienergy states in driven many-body systems

    Science.gov (United States)

    Bastidas Valencia, Victor Manuel; Engelhardt, Georg; Perez-Fernandez, Pedro; Vogl, Malte; Brandes, Tobias

    2015-03-01

    A quantum phase transition (QPT) is characterized by non-analyticities of ground-state properties at the critical points. Recently it has been shown that quantum criticality emerges also in excited states of the system, which is referred to as an excited-state quantum phase transition (ESQPT). This kind of quantum criticality is intimately related to a level clustering at critical energies, which results in a logarithmic singularity in the density of states. Most of the previous studies on quantum criticality in excited states have been focused on time independent systems. Here we study spectral singularities that appear in periodically-driven many-body systems and show how the external control allows one to engineer geometrical features of the quasienergy landscape. In particular, we study singularities in the quasienergy spectrum of a fully-connected network consisting of two-level systems with time-dependent interactions. We discuss the characteristic signatures of these singularities in observables like the magnetization, which should be measurable with current technology. The authors gratefully acknowledge financial support by the DFG via grants BRA 1528/7, BRA 1528/8, SFB 910 (V.M.B., T.B.), the Spanish Ministerio de Ciencia e Innovacion (Grants No. FIS2011-28738-C02-01) and Junta de Andalucia (Grants No. FQM160).

  13. Alfven wave coupled with flow-driven fluid instability in interpenetrating plasmas

    CERN Document Server

    Vranjes, J

    2015-01-01

    The Alfven wave is analyzed in case of one quasineutral plasma propagating with some constant speed $v_0$ through another static quasineutral plasma. A dispersion equation is derived describing the Alfven wave coupled with the flow driven mode $\\omega= k v_0$ and solutions are discussed analytically and numerically. The usual solutions for two oppositely propagating Alfv\\'en waves are substantially modified due to the flowing plasma. More profound is modification of the solution propagating in the negative direction with respect to the magnetic field and the plasma flow. For a large enough flow speed (exceeding the Alfven speed in the static plasma), this negative solution may become non-propagating, with frequency equal to zero. In this case it represents a spatial variation of the electromagnetic field. For greater flow speed it becomes a forward mode, and it may merge with the positive one. This merging of the two modes represents the starting point for a flow-driven instability, with two complex-conjugate...

  14. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma source.

    Science.gov (United States)

    Sahu, D; Bhattacharjee, S; Singh, M J; Bandyopadhyay, M; Chakraborty, A

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE(11) mode. The source is operated at different discharge conditions to obtain the optimized negative H(-) ion current which is ∼33 μA (0.26 mA∕cm(2)). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  15. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma sourcea)

    Science.gov (United States)

    Sahu, D.; Bhattacharjee, S.; Singh, M. J.; Bandyopadhyay, M.; Chakraborty, A.

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE11 mode. The source is operated at different discharge conditions to obtain the optimized negative H- ion current which is ˜33 μA (0.26 mA/cm2). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  16. Bifurcation and hysteresis of plasma edge transport in a flux-driven system

    Science.gov (United States)

    Li, B.; Wang, X. Y.; Sun, C. K.; Zhou, A.; Liu, D.; Ma, C. H.; Wang, X. G.

    2016-10-01

    Transition dynamics and mean shear flow generation in plasma interchange turbulence are explored in a flux-driven system that resembles the plasma edge region. The nonlinear evolution of the interchange mode shows two confinement regimes with different transport levels. Large amplitude oscillations in the phase space of turbulence intensity and mean flow energy are observed and investigated. Both clockwise and counterclockwise oscillations occur during the transition between the two regimes. The Reynolds stress gradients are shown to play a critical role in the generation of mean sheared flows in the edge region. Both the forward and back transitions are simulated self-consistently and a significant hysteresis is found.

  17. Positron acceleration in plasma bubble wakefield driven by an ultraintense laser

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Ya-Juan; Wan, Feng; Sang, Hai-Bo, E-mail: sanghb@bnu.edu.cn; Xie, Bai-Song [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2016-01-15

    The dynamics of positrons accelerating in electron-positron-ion plasma bubble fields driven by an ultraintense laser is investigated. The bubble wakefield is obtained theoretically when laser pulses are propagating in the electron-positron-ion plasma. To restrict the positrons transversely, an electron beam is injected. Acceleration regions and non-acceleration ones of positrons are obtained by the numerical simulation. It is found that the ponderomotive force causes the fluctuation of the positrons momenta, which results in the trapping of them at a lower ion density. The energy gaining of the accelerated positrons is demonstrated, which is helpful for practical applications.

  18. Excitation and ionization of hydrogen Rydberg states in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Glab, W.; Nayfeh, M.H.

    1982-08-01

    Hydrogen Rydberg states in a hydrogen plasma are optically excited from the plasma-excited n = 2 state. Photoionization and optogalvanic, which are due to electron-impact ionization and other collisional processes, are used to monitor the Rydberg states. This process may be used to study collisional ionization of the Rydberg states.

  19. Excitation and ionization of hydrogen Rydberg states in a plasma.

    Science.gov (United States)

    Glab, W; Nayfeh, M H

    1982-08-01

    Hydrogen Rydberg states in a hydrogen plasma are optically excited from the plasma-excited n = 2 state. Photoionization and optogalvanic ionization, which is due to electron-impact ionization and other collisional processes, are used to monitor the Rydberg states. This process may be used to study collisional ionization of the Rydberg states.

  20. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  1. Structure of parallel-velocity-shear driven mode in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J.Q.; Xu, W.B.; Zhang, Y.Z. [Southwestern Inst. of Physics, Chengdu (China); Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies

    1998-09-15

    It is shown that the Fourier-ballooning representation is appropriate for the study of short wavelength drift-like perturbation in toroidal plasmas with a parallel velocity shear (PVS). The radial structure of the mode driven by a PVS is investigated in a torus. The Reynolds stress created by PVS turbulence and proposed as one of the sources for a sheared poloidal plasma rotation is analyzed. It is demonstrated that a finite ion temperature may strongly enhance the Reynolds stress creation ability from PVS driven turbulence. The correlation of this observation with the requirement that ion heating power be higher than a threshold value for the formation of an internal transport barrier is discussed.

  2. Linear Instabilities Driven by Differential Rotation in Very Weakly Magnetized Plasmas

    CERN Document Server

    Quataert, Eliot; Spitkovsky, Anatoly

    2014-01-01

    We study the linear stability of weakly magnetized differentially rotating plasmas in both collisionless kinetic theory and Braginskii's theory of collisional, magnetized plasmas. We focus on the very weakly magnetized limit that is important for understanding how astrophysical magnetic fields originate and are amplified at high redshift. We show that the single instability of fluid theory - the magnetorotational instability mediated by magnetic tension - is replaced by two distinct instabilities, one associated with ions and one with electrons. Each of these has a different way of tapping into the free energy of differential rotation. The ion instability is driven by viscous transport of momentum across magnetic field lines due to a finite ion cyclotron frequency (gyroviscosity); the fastest growing modes have wavelengths significantly longer than MHD and Hall MHD predictions. The electron instability is a whistler mode driven unstable by the temperature anisotropy generated by differential rotation; the gro...

  3. Two-dimensional state in driven magnetohydrodynamic turbulence.

    Science.gov (United States)

    Bigot, Barbara; Galtier, Sébastien

    2011-02-01

    The dynamics of the two-dimensional (2D) state in driven three-dimensional (3D) incompressible magnetohydrodynamic turbulence is investigated through high-resolution direct numerical simulations and in the presence of an external magnetic field at various intensities. For such a flow the 2D state (or slow mode) and the 3D modes correspond, respectively, to spectral fluctuations in the plane k(∥)=0 and in the area k(∥)>0. It is shown that if initially the 2D state is set to zero it becomes nonnegligible in few turnover times, particularly when the external magnetic field is strong. The maintenance of a large-scale driving leads to a break for the energy spectra of 3D modes; when the driving is stopped, the previous break is removed and a decay phase emerges with Alfvénic fluctuations. For a strong external magnetic field the energy at large perpendicular scales lies mainly in the 2D state, and in all situations a pinning effect is observed at small scales.

  4. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Energy Technology Data Exchange (ETDEWEB)

    Golian, Y.; Dorranian, D., E-mail: d.dorranian@gmail.com [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Aslaninejad, M., E-mail: m.aslaninejad@ipm.ir [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-01-15

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  5. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Science.gov (United States)

    Golian, Y.; Aslaninejad, M.; Dorranian, D.

    2016-01-01

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  6. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.

    Science.gov (United States)

    Schroeder, C B; Esarey, E

    2010-05-01

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  7. Capillarity-driven blood plasma separation on paper-based devices.

    Science.gov (United States)

    Kar, Shantimoy; Maiti, Tapas Kumar; Chakraborty, Suman

    2015-10-01

    We demonstrate capillarity-driven plasma separation from whole blood on simple paper-based H-channels. This methodology, unlike other reported techniques, does not necessitate elaborate and complex instrumentation, and the usage of expensive consumables. We believe that this technique will be ideally suited to be implemented in rapid and portable blood diagnostic devices designed to be operative at locations with limited resources.

  8. Experimental Investigation of Turbulent-driven Sheared Parallel Flows in the CSDX Plasma Device

    Science.gov (United States)

    Tynan, George; Hong, Rongjie; Li, Jiacong; Thakur, Saikat; Diamond, Patrick

    2016-10-01

    Parallel velocity and its radial shear is a key element for both accessing improved confinement regimes and controlling the impurity transport in tokamak devices. In this study, the development of radially sheared parallel plasma flows in plasmas without magnetic shear is investigated using laser induced fluorescence, multi-tip Langmuir and Mach probes in the CSDX helicon linear plasma device. Results show that a mean parallel velocity shear grows as the radial gradient of plasma density increased. The sheared flow onset corresponds to the onset of a finite parallel Reynolds stress that acts to reinforce the flow. As a result, the mean parallel flow gains energy from the turbulence that, in turn, is driven by the density gradient. This results in a flow away from the plasma source in the central region of the plasma and a reverse flow in far-peripheral region of the plasma column. The results motivate a model of negative viscosity induced by the turbulent stress which may help explain the origin of intrinsic parallel flow in systems without magnetic shear.

  9. Plasma-filled rippled wall rectangular backward wave oscillator driven by sheet electron beam

    Indian Academy of Sciences (India)

    A Hadap; J Mondal; K C Mittal; K P Maheshwari

    2011-03-01

    Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-filled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma on the TM01 cold wave structure mode and on the generated frequency, the parameters used are: relativistic factor = 1.5 (i.e. / = 0.741), average waveguide height 0 = 1.445 cm, axial corrugation period 0 = 1.67 cm, and corrugation amplitude = 0.225 cm. The plasma density is varied from zero to 2 × 1012 cm-3. The presence of plasma tends to raise the TM01 mode cut-off frequency (14 GH at 2 × 1012 cm-3 plasma density) relative to the vacuum cut-off frequency (5 GH) which also causes a decrease in the group velocity everywhere, resulting in a flattening of the dispersion relation. With the introduction of plasma, an enhancement in absolute instability was observed.

  10. Strongly Driven Magnetic Reconnection in a Magnetized High-Energy-Density Plasma

    Science.gov (United States)

    Fiksel, G.; Barnak, D. H.; Chang, P.-Y.; Haberberger, D.; Hu, S. X.; Ivancic, S.; Nilson, P. M.; Fox, W.; Deng, W.; Bhattacharjee, A.; Germaschewski, K.

    2014-10-01

    Magnetic reconnection in a magnetized high-energy-density plasma is characterized by measuring the dynamics of the plasma density and magnetic field between two counter-propagating and colliding plasma flows. The density and magnetic field were profiled using the 4 ω angular filter refractometry and fast proton deflectometry diagnostics, respectively. The plasma flows are created by irradiating oppositely placed plastic targets with 1.8-kJ, 2-ns laser beams on the OMEGA EP Laser System. The two plumes are magnetized by an externally controlled magnetic field with an x-type null point geometry with B = 0 at the midplane and B = 8 T at the targets. The interaction region is pre-filled with a low-density background plasma. The counterflowing super-Alfvénic plasma plumes sweep up and compress the magnetic field and the background plasma into a pair of magnetized ribbons, which collide, stagnate, and reconnect at the midplane, allowing for the first detailed observation of a stretched current sheet in laser-driven reconnection experiments. The measurements are in good agreement with first-principles particle-in-cell simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and NLUF Grant DE-SC0008655.

  11. Plasma Processes : Minimum dissipative relaxed states in toroidal plasmas

    Indian Academy of Sciences (India)

    R Bhattacharyya; M S Janaki; B Dasgupta

    2000-11-01

    Relaxation of toroidal discharges is described by the principle of minimum energy dissipation together with the constraint of conserved global helicity. The resulting Euler-Lagrange equation is solved in toroidal coordinates for an axisymmetric torus by expressing the solutions in terms of Chandrasekhar-Kendall (C-K) eigenfunctions analytically continued in the complex domain. The C-K eigenfunctions are obtained as hypergeometric functions that are solutions of scalar Helmholtz equation in toroidal coordinates in the large aspect-ratio approximation. Equilibria are constructed by assuming the current to vanish at the edge of plasma. For the = 0; = 0 ( and are the poloidal and toroidal mode numbers respectively) relaxed states, the magnetic field, current, (safety factor) and pressure profiles are calculated for a given value of aspect-ratio of the torus and for different values of the eigenvalue 0. The new feature of the present model is that solutions allow for both tokamak as well as RFP-like behaviour with increase in the values of 0, which is related directly to volt-sec in the experiment.

  12. Crunch-in regime - Non-linearly driven hollow-channel plasma

    CERN Document Server

    Sahai, Aakash A

    2016-01-01

    Plasma wakefields driven inside a hollow-channel plasma are significantly different from those driven in a homogeneous plasma. This work investigates the scaling laws of the accelerating and focusing fields in the "crunch-in" regime. This regime is excited due to the collapse of the electron-rings from the channel walls onto the propagation axis of the energy-source, in its wake. This regime is thus the non-linearly driven hollow channel, since the electron-ring displacement is of the order of the channel radius. We present the properties of the coherent structures in the "crunch-in" regime where the channel radius is matched to the beam properties such that channel-edge to on-axis collapse time has a direct correspondence to the energy source intensity. We also investigate the physical mechanisms that underlie the "crunch-in" wakefields by tuning the channel radius. Using a theoretical framework and results from PIC simulations the possible applications of the "crunch-in" regime for acceleration of positron ...

  13. Instabilities in Beam-Plasma Waves in a Model of the Beam-Driven FRC

    Science.gov (United States)

    Nicks, Bradley Scott; Necas, Ales; Tajima, Toshi; Tri Alpha Energy Team

    2016-10-01

    Using a semi-analytic solver, the kinetic properties of plasma waves are analyzed in various regimes in the presence of a beam. This analysis is done to model the strong beam-driven Field-Reversed Configuration (FRC) plasma kinetic instabilities in the neighborhood of the ion cyclotron frequency. As the frequency is relatively high, and wavelength small, the plasma is taken to be local and thus homogeneous, comprised of bulk ions, electrons, and beam ions, with a uniform background magnetic field. The beam ions are given an azimuthal drift velocity with respect to the magnetic field, but otherwise have various Maxwellian velocity distributions. First, the magnetic field is varied to create regimes of low and high β, and the mode structures are compared. The low- β case (corresponding to the scrape-off layer and near the separatrix) features primarily the beam-driven ion Bernstein instability. The high- β case (the core of FRC) is primarily electromagnetic and features the AIC instability when temperature anisotropy is included. The most unstable modes are incited by near-perpendicular beam injection with respect to the magnetic field. Finally, the results of the semi-analytic solver are compared with those from the EPOCH PIC code to evaluate the influence of nonlinear effects. This theoretical modeling was used in conjunction with EPOCH to investigate the beam driven instabilities in Tri Alpha Energy's C-2U experiment.

  14. Structure and dynamics of plasma interfaces in laser-driven hohlraums

    Science.gov (United States)

    Li, C. K.; Sio, H.; Frenje, J. A.; Séguin, F. H.; Birkel, A.; Petrasso, R. D.; Wilks, S. C.; Amendt, P. A.; Remington, B. A.; Masson-Laborde, P.-E.; Laffite, S.; Tassin, V.; Betti, R.; Sanster, T. C.; Fitzsimmons, P.; Farrell, M.

    2016-10-01

    Understanding the structure and dynamics of plasma interfaces in laser-driven hohlraums is important because of their potential effects on capsule implosion dynamics. To that end, a series of experiments was performed to explore critical aspects of the hohlraum environment, with particular emphasis on the role of self-generated spontaneous electric and magnetic fields at plasma interfaces, including the interface between fill-gas and Au-blowoff. The charged fusion products (3-MeV DD protons and 14.7-MeV D3He protons generated in shock-driven, D3He filled backlighter capsule) pass through the subject hohlraum and form images on CR-39 nuclear track detectors, providing critical information. Important physics topics, including ion diffusive mix and Rayleigh-Taylor instabilities, will be studied to illuminate ion kinetic dynamics and hydrodynamic instability at plasma interfaces in laser-driven hohlraums. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  15. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    Science.gov (United States)

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Fernandez, Juan; Ma, Wenjun; Schreiber, Jorg; LANL Collaboration; LMU Team

    2016-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. Several spacecraft observations have revealed acceleration of charged particles, mostly electrons, to very high energies with in the shock front. There is now also clear observational evidence that supernova remnant shocks accelerate both protons and electrons. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick aluminum foil is used to image the laser-driven plasma.

  16. Radial structure of curvature-driven instabilities in a hot-electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.

    1983-10-01

    A nonlocal analysis of curvature-driven instabilities for a hot electron ring interacting with a warm background plasma has been made. We have examined four different instability modes characteristic of hot electron plasmas: the high-frequency hot electron interchange (at frequencies larger than the ion cyclotron frequency), the compressional Alfven instability, the interacting background pressure-driven interchange, and the conventional hot electron interchange (at frequencies below the ion cyclotron frequency). We have also examined the decoupling condition between core and hot electron plasmas as it influences the background and hot electron interchange stability requirements. The assumed equilibrium plasma profiles and resulting radial mode structure differ somewhat from those used in previous local analytic estimates; however, when the analysis is calibrated to the appropriate effective radial wavelength of the nonlocal calculation, reasonable agreement is obtained. Comparison with recent experimental measurements indicates that certain of these modes may play a role in establishing operating boundaries for the ELMO Bumpy Torus-Scale (EBT-S) experiment.

  17. Density bunching effects in a laser-driven, near-critical density plasma for ion acceleration

    Science.gov (United States)

    Ettlinger, Oliver; Sahai, Aakash; Hicks, George; Ditter, Emma-Jane; Dover, Nicholas; Chen, Yu-Hsin; Helle, Michael; Gordon, Daniel; Ting, Antonio; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Marcus; Najmudin, Zulfikar

    2016-10-01

    We present work investigating the interaction of relativistic laser pulses with near-critical density gas targets exhibiting pre-plasma scale lengths of several laser wavelengths. Analytical and computational modelling suggest that the interaction dynamics in a low-Z plasma is a direct result of induced density bunching up to the critical surface. In fact, these bunches can themselves become overcritical and experience significant radiation pressure, accelerating ions to higher energies compared to an ``idealised'' plasma slab target. This work will be used to help explain the observation of ion energies exceeding those predicted by radiation pressure driven hole-boring in recent experiments using the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory.

  18. Impact of plasma parameter on self-organization of electron temperature gradient driven turbulence

    Science.gov (United States)

    Kawai, C.; Idomura, Y.; Maeyama, S.; Ogawa, Y.

    2017-04-01

    Self-organization in the slab electron temperature gradient driven (ETG) turbulence is investigated based on gyrokinetic simulations and the Hasegawa-Mima (HM) equation. The scale and the anisotropy of self-organized turbulent structures vary depending on the Rhines scale and the characteristic scale given by the adiabatic response term in the HM equation. The former is determined by competition between the linear wave dispersion and the nonlinear turbulent cascade, while the latter is given as the scale, at which the turbulent cascade is impeded. These scales are controlled by plasma parameters such as the density and temperature gradient, and the temperature ratio of ion to electron. It is found that depending on the plasma parameters, the ETG turbulence shows either isotropic turbulence or zonal flows, which give significantly different transport levels. Although the modulational instability excites zonal modes regardless of the plasma parameters, the final turbulent structure is determined by the self-organization process.

  19. Radiation-MHD Simulations of Plasma-Jet-Driven Magneto-Inertial Fusion Gain Using USim

    Science.gov (United States)

    Stoltz, Peter; Beckwith, Kristian; Kundrapu, Mahdusudhan; Hsu, Scott; Langendorf, Samuel

    2016-10-01

    One goal of the modeling effort for the PLX- α project is to identify plasma-jet-driven magneto-inertial fusion (PJMIF) configurations with potential net fusion-energy gain. We use USim, which is a tool for modeling high-energy-density plasmas using multi-fluid models coupled to electromagnetics using fully-implicit iterative solvers, combined with finite volume discretizations on unstructured meshes. We include physical viscosity and advanced-EOS modeling capability, and are investigating the effects of different radiation (including flux-limited diffusion) and alpha-transport models. We compare 2D and 1D gain calculations for various liner geometries, parameters, and plasma species, and consider the effects of liner non-uniformities on fusion-gain degradation. Supported by the ARPA-E ALPHA Program.

  20. Semi-analytic model of plasma-jet-driven magneto-inertial fusion

    Science.gov (United States)

    Langendorf, Samuel J.; Hsu, Scott C.

    2017-03-01

    A semi-analytic model for plasma-jet-driven magneto-inertial fusion is presented. Compressions of a magnetized plasma target by a spherically imploding plasma liner are calculated in one dimension (1D), accounting for compressible hydrodynamics and ionization of the liner material, energy losses due to conduction and radiation, fusion burn and alpha deposition, separate ion and electron temperatures in the target, magnetic pressure, and fuel burn-up. Results show 1D gains of 3-30 at spherical convergence ratio energy, for cases in which the liner thickness is 1 cm and the initial radius of a preheated magnetized target is 4 cm. Some exploration of parameter space and physics settings is presented. The yields observed suggest that there is a possibility of igniting additional dense fuel layers to reach high gain.

  1. An $ep$ collider based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Wing, M.; Mete, O.; Aimidula, A.; Welsch, C.; Chattopadhyay, S.; Mandry, S.

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. This scheme could lead to a future $ep$ collider using the LHC for the proton beam and a compact electron accelerator of length 170 m, producing electrons of energy up to 100 GeV. The parameters of such a collider are discussed as well as conceptual layouts within the CERN accelerator complex. The physics of plasma wakefield acceleration will also be introduced, with the AWAKE experiment, a proof of principle demonstration of proton-driven plasma wakefield acceleration, briefly reviewed, as well as the physics possibilities of such an $ep$ collider.

  2. Plasma Sheet Actuator Driven by Repetitive Nanosecond Pulses with a Negative DC Component

    Institute of Scientific and Technical Information of China (English)

    宋慧敏; 张乔根; 李应红; 贾敏; 吴云; 梁华

    2012-01-01

    A type of electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A three-electrode plasma sheet actuator driven by repetitive nanosecond pulses with a negative DC component was used to generate sliding discharge, which can be called nanosecond-pulse sliding discharge. The phenomenology and behaviour of the plasma sheet actuator were investigated experimentally. Discharge morphology shows that the formation of nanosecond-pulse sliding discharge is dependent on the peak value of the repetitive nanosecond pulses and negative DC component applied on the plasma sheet actuator. Compared to dielectric barrier discharge (DBD), the extension of plasma in nanosecond-pulse sliding discharge is quasi-diffusive, stable, longer and more intensive. Test results of particle image velocimetry demonstrate that the negative DC component applied to a third electrode could significantly modify the topology of the flow induced by nanosecond-pulse DBD. Body force induced by the nanosecond-pulse sliding discharge can be approximately in the order of mN. Both the maximum velocity and the body force induced by sliding discharge increase significantly as compared to single DBD. Therefore, nanosecond-pulse sliding discharge is a preferable plasma aerodynamic actuation generation mode, which is very promising in the field of aerodynamics.

  3. Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation

    Science.gov (United States)

    Maria, M. Sneha; Rakesh, P. E.; Chandra, T. S.; Sen, A. K.

    2017-01-01

    We report a capillary flow-driven microfluidic device for blood-plasma separation that comprises a cylindrical well between a pair of bottom and top channels. Exposure of the well to oxygen-plasma creates wettability gradient on its inner surface with its ends hydrophilic and middle portion hydrophobic. Due to capillary action, sample blood self-infuses into bottom channel and rises up the well. Separation of plasma occurs at the hydrophobic patch due to formation of a ‘self-built-in filter’ and sedimentation. Capillary velocity is predicted using a model and validated using experimental data. Sedimentation of RBCs is explained using modified Steinour’s model and correlation between settling velocity and liquid concentration is found. Variation of contact angle on inner surface of the well is characterized and effects of well diameter and height and dilution ratio on plasma separation rate are investigated. With a well of 1.0 mm diameter and 4.0 mm height, 2.0 μl of plasma was obtained (from <10 μl whole blood) in 15 min with a purification efficiency of 99.9%. Detection of glucose was demonstrated with the plasma obtained. Wetting property of channels was maintained by storing in DI water under vacuum and performance of the device was found to be unaffected over three weeks. PMID:28256564

  4. Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation

    Science.gov (United States)

    Maria, M. Sneha; Rakesh, P. E.; Chandra, T. S.; Sen, A. K.

    2017-03-01

    We report a capillary flow-driven microfluidic device for blood-plasma separation that comprises a cylindrical well between a pair of bottom and top channels. Exposure of the well to oxygen-plasma creates wettability gradient on its inner surface with its ends hydrophilic and middle portion hydrophobic. Due to capillary action, sample blood self-infuses into bottom channel and rises up the well. Separation of plasma occurs at the hydrophobic patch due to formation of a ‘self-built-in filter’ and sedimentation. Capillary velocity is predicted using a model and validated using experimental data. Sedimentation of RBCs is explained using modified Steinour’s model and correlation between settling velocity and liquid concentration is found. Variation of contact angle on inner surface of the well is characterized and effects of well diameter and height and dilution ratio on plasma separation rate are investigated. With a well of 1.0 mm diameter and 4.0 mm height, 2.0 μl of plasma was obtained (from purification efficiency of 99.9%. Detection of glucose was demonstrated with the plasma obtained. Wetting property of channels was maintained by storing in DI water under vacuum and performance of the device was found to be unaffected over three weeks.

  5. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2012-08-15

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration t{sub w} = 20-200 {mu}s. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for t{sub w} < 50 {mu}s are characterized by a quasi-steady-state in electron density that persists for {approx} 20-40 {mu}s even after the end of the pulse and has a relatively slower decay rate ({approx} 4.3 Multiplication-Sign 10{sup 4} s{sup -1}) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at t{sub w} {approx} 50 {mu}s as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  6. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    Science.gov (United States)

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep

    2012-08-01

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration tw = 20-200 μs. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for tw < 50 μs are characterized by a quasi-steady-state in electron density that persists for ˜ 20-40 μs even after the end of the pulse and has a relatively slower decay rate (˜ 4.3 × 104 s-1) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at tw ˜ 50 μs as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  7. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Antici, P. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Bacci, A.; Chiadroni, E.; Ferrario, M.; Rossi, A. R. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); Benedetti, C. [University of Bologna and INFN - Bologna (Italy); Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L. [SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Serafini, L. [INFN-Milan and Department of Physics, University of Milan, Via Celoria 16, 20133 Milan (Italy)

    2012-08-15

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  8. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    Science.gov (United States)

    Antici, P.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Rossi, A. R.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serafini, L.

    2012-08-01

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  9. Dynamic steady-state of periodically-driven quantum systems

    CERN Document Server

    Yudin, V I; Basalaev, M Yu; Kovalenko, D

    2015-01-01

    Using the density matrix formalism, we prove an existence theorem of the periodic steady-state for an arbitrary periodically-driven system. This state has the same period as the modulated external influence, and it is realized as an asymptotic solution ($t$$\\to$$+\\infty$) due to relaxation processes. The presented derivation simultaneously contains a simple computational algorithm non-using both Floquet and Fourier theories, i.e. our method automatically guarantees a full account of all frequency components. The description is accompanied by the examples demonstrating a simplicity and high efficiency of our method. In particular, for three-level $\\Lambda$-system we calculate the lineshape and field-induced shift of the dark resonance formed by the field with periodically modulated phase. For two-level atom we obtain the analytical expressions for signal of the direct frequency comb spectroscopy with rectangular light pulses. In this case it was shown the radical dependence of the spectroscopy lineshape on pul...

  10. Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, David [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-12-17

    The Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) project was able to establish the experimental conditions necessary for flowing liquid metal surfaces in order to be utilized as surfaces facing fusion relevant energetic plasma flux. The work has also addressed additional developments along with progressing along the timeline detailed in the proposal. A no-cost extension was requested to conduct other relevant experiment- specifically regarding the characterization droplet ejection during energetic plasma flux impact. A specially designed trench module, which could accommodate trenches with different aspect ratios was fabricated and installed in the TELS setup and plasma gun experiments were performed. Droplet ejection was characterized using high speed image acquisition and also surface mounted probes were used to characterize the plasma. The Gantt chart below had been provided with the original proposal, indicating the tasks to be performed in the third year of funding. These tasks are listed above in the progress report outline, and their progress status is detailed below.

  11. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV

    CERN Document Server

    Adli, Erik; Gessner, Spencer J; Hogan, Mark J; Raubenheimer, Tor; An, Weiming; Joshi, Chan; Mori, Warren

    2013-01-01

    Plasma wakefield acceleration (PWFA) holds much promise for advancing the energy frontier because it can potentially provide a 1000-fold or more increase in acceleration gradient with excellent power efficiency in respect with standard technologies. Most of the advances in beam-driven plasma wakefield acceleration were obtained by a UCLA/USC/SLAC collaboration working at the SLAC FFTB[ ]. These experiments have shown that plasmas can accelerate and focus both electron and positron high energy beams, and an accelerating gradient in excess of 50 GeV/m can be sustained in an 85 cm-long plasma. The FFTB experiments were essentially proof-of-principle experiments that showed the great potential of plasma accelerators. The FACET[ ] test facility at SLAC will in the period 2012-2016 further study several issues that are directly related to the applicability of PWFA to a high-energy collider, in particular two-beam acceleration where the witness beam experiences high beam loading (required for high efficiency), small...

  12. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschön, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Öz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tückmantel, T; Vieira, J; Vincke, H; Wing, M; Xia G , G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN { the AWAKE experiment { has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  13. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschon, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Oz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tuckmantel, T; Vieira, J; Vincke, H; Wing, M; Xia, G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  14. Anisotropy effects on curvature-driven flute instabilities in a hot-electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.; Rosenbluth, M.N.

    1982-08-01

    The effects of finite parallel temperature are investigated for a hot electron plasma with sufficiently large beta that the magnetic field scale length (..delta../sub B/) is small compared with the vacuum field radius of curvature (R). Numerical and analytical estimates of stability boundaries are obtained for the four possible modes that can be treated in this limit: the conventional hot electron interchange, the high frequency hot electron interchange (..omega.. > ..omega../sub ci/), the compressional Alfven mode, and the interacting pressure-driven interchange.

  15. Pressure Driven Magnetohydrodynamics Instabilities in Peaked Pressure Profile Reversed Magnetic Shear Plasmas

    Institute of Scientific and Technical Information of China (English)

    高庆弟; 张锦华; 曲洪鹏

    2001-01-01

    For a reversed magnetic shear plasma formed by early neutral beam injection into the HL-2A tokamak, magnetohydrodynamics instability analysis against ideal low-n modes and resistive interchange modes is carried out.Low-n modes located in the low shear region around the shear reversal point are driven unstable by a large pressure gradient, and they are of the characteristics of infernal modes. High pressure in the central negative shearregion drives resistive interchange modes with the unstable window extending to r /a ≈ 0.2, but not covering thelow shear region around the shear reversal point.

  16. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  17. Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Lindner, Netanel; Berg, Erez;

    2013-01-01

    the crucial distinctions between static and driven 2D systems, and construct a new topological invariant that yields the correct edge-state structure in the driven case. We provide formulations in both the time and frequency domains, which afford additional insight into the origins of the “anomalous” spectra...... that arise in driven systems. Possibilities for realizing these phenomena in solid-state and cold-atomic systems are discussed....

  18. Mechanism and operation parameters of a plasma-driven micro-particle accelerator

    Institute of Scientific and Technical Information of China (English)

    HUANG JianGuo; FENG ChunHua; HAN dianWei; LI HongWei; CAI MingHui; LI XiaoYin; ZHANG ZhenLong; CHEN ZhaoFeng; WANG Long; YANG XuanZong

    2009-01-01

    There is a large amount of micro debris ranging between millimeters and micrometers in space, which has significant influence on the reliability and life of spacecrafts through long-duration integrated im-pacts and has to be considered in designing a vehicle's suitability to the space environment. In order to simulate the micro-impacts on exposed materials, a plasma-driven micro-particle accelerator was de-veloped. The major processes, including the acceleration, compression and ejection of plasmas, were modeled. By comparing the theoretical simulations with the experimental results, the acceleration mechanism was clarified. Moreover, through a series of experiments, the optimum operation range was investigated, and the acceleration ability was primarily determined.

  19. Anomaly-driven inverse cascade and inhomogeneities in a magnetized chiral plasma in the early Universe

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Vilchinskii, S

    2016-01-01

    By making use of a simple model that captures the key features of the anomalous Maxwell equations, we study the role of inhomogeneities on the evolution of magnetic fields in a chiral plasma. We find that inhomogeneities of the chiral asymmetry by themselves do not prevent the anomaly-driven inverse cascade and, as in the homogeneous case, the magnetic helicity is transferred from shorter to longer wavelength helical modes of the magnetic field. However, we also find that the evolution appears to be sensitive to the effects of diffusion. In the case when diffusion is negligible, the inverse cascade slows down considerably compared to the homogeneous scenario. In the case of the primordial plasma, though, we find that the diffusion is substantial and efficiently suppresses chiral asymmetry inhomogeneities. As a result, the inverse cascade proceeds practically in the same way as in the chirally homogeneous model.

  20. A compact laser-driven plasma accelerator for megaelectronvolt-energy neutral atoms

    Science.gov (United States)

    Rajeev, R.; Madhu Trivikram, T.; Rishad, K. P. M.; Narayanan, V.; Krishnakumar, E.; Krishnamurthy, M.

    2013-03-01

    Tremendous strides have been made in charged-particle acceleration using intense, ultrashort laser pulses. Accelerating neutral atoms is an important complementary technology because such particles are unaffected by electric and magnetic fields and can thus penetrate deeper into a target than ions. However, compact laser-based accelerators for neutral atoms are limited at best to millielectronvolt energies. Here, we report the generation of megaelectronvolt-energy argon atoms from an optical-field-ionized dense nanocluster ensemble. Measurements reveal that nearly every laser-accelerated ion is converted to an energetic neutral atom as a result of highly efficient electron transfer from Rydberg excited clusters, within a sheath around the laser focus. This process, although optimal in nanoclusters, is generic and adaptable to most laser-produced plasmas. Such compact laser-driven energetic neutral atom sources could have applications in fast atom lithography for surface science and tokamak diagnostics in plasma technology.

  1. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    Directory of Open Access Journals (Sweden)

    R. T. Mist

    Full Text Available A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz instability suggests that this figure is consistent with the amount of momentum flux transfer produced by this mechanism. We also consider the possibility that these flows are solely driven by transferring magnetosheath plasma across the magnetopause. We find that there is sufficient mass observed on these field lines for this to be the sole driving mechanism for only 27% of the observed slow flows.

    Key words. Magnetospheric physics (magnetotail boundary layers; plasma convection; plasma sheet

  2. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    CERN Document Server

    Hsu, S C; Moser, A L; Awe, T J; Brockington, S J E; Davis, J S; Adams, C S; Case, A; Cassibry, J T; Dunn, J P; Gilmore, M A; Lynn, A G; Messer, S J; Witherspoon, F D

    2012-01-01

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density \\approx 2 x 10^(16) cm^(-3), electron temperature \\approx 1.4 eV, velocity \\approx 30 km/s, M \\approx 14, ionization fraction \\approx 0.96, diameter \\approx 5 cm, and length \\approx 20 cm. These values approach the range needed by the Plasma Liner Experiment (PLX), which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is up to an order of magnitude less than the drop predicted by the ideal hydrodynamic theory of a constant-M jet.

  3. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S. C.; Moser, A. L.; Awe, T. J.; Davis, J. S.; Dunn, J. P. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Merritt, E. C.; Adams, C. S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Brockington, S. J. E.; Case, A.; Messer, S. J.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States); Cassibry, J. T. [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Gilmore, M. A.; Lynn, A. G. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2012-12-15

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density Almost-Equal-To 2 Multiplication-Sign 10{sup 16} cm{sup -3}, electron temperature Almost-Equal-To 1.4 eV, velocity Almost-Equal-To 30 km/s, M Almost-Equal-To 14, ionization fraction Almost-Equal-To 0.96, diameter Almost-Equal-To 5 cm, and length Almost-Equal-To 20 cm. These values approach the range needed by the Plasma Liner Experiment, which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is at the very low end of the 8-160 times drop predicted by ideal hydrodynamic theory of a constant-M jet.

  4. Preparation of magnetized nanodusty plasmas in a radio frequency-driven parallel-plate reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tadsen, Benjamin, E-mail: tadsen@physik.uni-kiel.de; Greiner, Franko; Piel, Alexander [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany)

    2014-10-15

    Nanodust is produced in an rf-driven push-pull parallel-plate reactor using argon with an acetylene admixture at 5–30 Pa. A scheme for the preparation of nanodust clouds with particle radii up to 400 nm for investigations in magnetized plasmas is proposed. The confinement that keeps the nanodust of different radii inside a moderately magnetized discharge (B ≤ 500 mT) is investigated by a comparison of 2d-Langmuir probe measurements in the dust-free plasma without and with a magnetic field and by the analysis of scattered light of nanodust clouds. It is shown that the dust cloud changes its shape when the dust density changes. This results in a reversed α-γ{sup ′} transition from a dense dust cloud with a central disk-like void to a dilute dust cloud with a toroidal void. When the dust density is further reduced, filaments are observed in the central part of the cloud, which were absent in the high-density phase. It is concluded that the dense nanodust cloud is able to suppress plasma filamentation in magnetized plasmas.

  5. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    Science.gov (United States)

    Duff, James

    2016-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_sglobal tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.

  6. CO2 impact ionization-driven plasma instability observed by Pioneer Venus Orbiter at Periapsis

    Science.gov (United States)

    Curtis, S. A.; Brace, L. H.; Niemann, H. B.; Scarf, F. L.

    1985-01-01

    Observations of enhanced ac electric field noise about Pioneer Venus periapsis are shown to be related to spacecraft-generated impact ionization of the ambient CO2. The frequency of the electric field noise is found to peak in the vicinity of the CO2(+) ion plasma frequency and to closely follow the form of the neutral CO2 density profile. When the electric field noise in all channels is normalized by the square root of the CO2 number density, the ratio is constant. Since the impact electron density measured by the Pioneer Venus Langmuir probe, is observed to scale directly with the neutral CO2, the growth of the electric field amplitude is found to be linear in time with a growth rate proportional to the CO2(+) ion plasma frequency. On the basis of these results the impact ionization-driven instability is shown to be the ion acoustic instability. Implications for the lack of observations by Pioneer Venus of reflected-O(+)-driven instabilities, as have been proposed for the space shuttle, are discussed.

  7. Measurement of Laser Plasma Instability (LPI) Driven Light Scattering from Plasmas Produced by Nike KrF Laser

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Serlin, V.; Lehmberg, R. H.; McLean, E. A.; Manka, C. K.

    2010-11-01

    With short wavelength (248 nm), large bandwidth (1˜3 THz), and ISI beam smoothing, Nike KrF laser provides unique research opportunities and potential for direct-drive inertial confinement fusion. Previous Nike experiments observed two plasmon decay (TPD) driven signals from CH plasmas at the laser intensities above ˜2x10^15 W/cm^2 with total laser energies up to 1 kJ of ˜350 ps FWHM pulses. We have performed a further experiment with longer laser pulses (0.5˜4.0 ns FWHM) and will present combined results of the experiments focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. Time- or space-resolved spectral features of TPD were detected at different viewing angles and the absolute intensity calibrated spectra of thermal background were used to obtain blackbody temperatures in the plasma corona. The wave vector distribution in k-space of the participating TPD plasmons will be also discussed. These results show promise for the proposed direct-drive designs.

  8. Collisionless shocks and particle acceleration in laser-driven laboratory plasmas

    Science.gov (United States)

    Fiuza, Frederico

    2012-10-01

    Collisionless shocks are pervasive in space and astrophysical plasmas, from the Earth's bow shock to Gamma Ray Bursters; however, the microphysics underlying shock formation and particle acceleration in these distant sites is not yet fully understood. Mimicking these extreme conditions in laboratory is a grand challenge that would allow for a better understanding of the physical processes involved. Using ab initio multi-dimensional particle-in-cell simulations, shock formation and particle acceleration are investigated for realistic laboratory conditions associated with the interaction of intense lasers with high-energy-density plasmas. Weibel-instability-mediated shocks are shown to be driven by the interaction of an ultraintense laser with overcritical plasmas. In this piston regime, the laser generates a relativistic flow that is Weibel unstable. The strong Weibel magnetic fields deflect the incoming flow, compressing it, and forming a shock. The resulting shock structure is consistent with previous simulations of relativistic astrophysical shocks, demonstrating for the first time the possibility of recreating these structures in laboratory. As the laser intensity is decreased and near-critical density plasmas are used, electron heating dominates over radiation pressure and electrostatic shocks can be formed. The electric field associated with the shock front can reflect ions from the background accelerating them to high energies. It is shown that high quality 200 MeV proton beams, required for tumor therapy, can be generated by using an exponentially decaying plasma profile to control competing accelerating fields. These results pave the way for the experimental exploration of space and astrophysical relevant shocks and particle acceleration with current laser systems.

  9. Numerical simulation of an atmospheric pressure RF-driven plasma needle and heat transfer to adjacent human skin using COMSOL.

    Science.gov (United States)

    Schröder, Maximilian; Ochoa, Angel; Breitkopf, Cornelia

    2015-06-07

    Plasma medicine is an emerging field where plasma physics is used for therapeutical applications. Temperature is an important factor to take into account with respect to the applications of plasma to biological systems. During the treatment, the tissue temperature could increase to critical values. In this work, a model is presented, which is capable of predicting the skin temperature during a treatment with a radio frequency driven plasma needle. The main gas was helium. To achieve this, a discharge model was coupled to a heat transfer and fluid flow model. The results provide maximum application times for different power depositions in order to avoid reaching critical skin temperatures.

  10. Experimental, Numerical and Analytical Studies of the MHD-driven plasma jet, instabilities and waves

    Science.gov (United States)

    Zhai, Xiang

    This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces. We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface. In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and

  11. Nonthermal Electron Energization from Magnetic Reconnection in Laser-Driven Plasmas.

    Science.gov (United States)

    Totorica, Samuel R; Abel, Tom; Fiuza, Frederico

    2016-03-04

    The possibility of studying nonthermal electron energization in laser-driven plasma experiments of magnetic reconnection is studied using two- and three-dimensional particle-in-cell simulations. It is demonstrated that nonthermal electrons with energies more than an order of magnitude larger than the initial thermal energy can be produced in plasma conditions currently accessible in the laboratory. Electrons are accelerated by the reconnection electric field, being injected at varied distances from the X points, and in some cases trapped in plasmoids, before escaping the finite-sized system. Trapped electrons can be further energized by the electric field arising from the motion of the plasmoid. This acceleration gives rise to a nonthermal electron component that resembles a power-law spectrum, containing up to ∼8% of the initial energy of the interacting electrons and ∼24% of the initial magnetic energy. Estimates of the maximum electron energy and of the plasma conditions required to observe suprathermal electron acceleration are provided, paving the way for a new platform for the experimental study of particle acceleration induced by reconnection.

  12. Non-Thermal Electron Energization from Magnetic Reconnection in Laser-Driven Plasmas

    CERN Document Server

    Totorica, Samuel; Fiuza, Frederico

    2016-01-01

    The possibility of studying non-thermal electron energization in laser-driven plasma experiments of magnetic reconnection is studied using two- and three-dimensional particle-in-cell simulations. It is demonstrated that non-thermal electrons with energies more than an order of magnitude larger than the initial thermal energy can be produced in plasma conditions currently accessible in the laboratory. Electrons are accelerated by the reconnection electric field, being injected at varied distances from the X-points, and in some cases trapped in plasmoids, before escaping the finite-sized system. Trapped electrons can be further energized by the electric field arising from the motion of the plasmoid. This acceleration gives rise to a non-thermal electron component that resembles a power-law spectrum, containing up to ~ 8% of the initial energy of the interacting electrons and ~ 24 % of the initial magnetic energy. Estimates of the maximum electron energy and of the plasma conditions required to observe suprather...

  13. Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    CERN Document Server

    de la Ossa, A Martinez; Streeter, M J V; Osterhoff, J

    2015-01-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches. The electron-beam drivers must feature high-peak currents ($I_b^0\\gtrsim 8.5~\\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\\sigma_z \\sim k_p\\epsilon_n \\sim 0.1$). In additi...

  14. Proton acceleration by a relativistic laser frequency-chirp driven plasma snowplow

    CERN Document Server

    Sahai, Aakash A; Bingham, R A; Tsung, F S; Tableman, A R; Tzoufras, M; Mori, W B

    2014-01-01

    We analyze the use of a relativistic laser pulse with a controlled frequency chirp incident on a rising plasma density gradient to drive an acceleration structure for proton and light-ion acceleration. The Chirp Induced Transparency Acceleration (ChITA) scheme is described with an analytical model of the velocity of the snowplow at critical density on a pre-formed rising plasma density gradient that is driven by a positive-chirp in the frequency of a relativistic laser pulse. The velocity of the ChITA-snowplow is shown to depend upon rate of rise of the frequency of the relativistic laser pulse represented by $\\frac{\\epsilon_0}{\\theta}$ where, $\\epsilon_0 = \\frac{\\Delta\\omega_0}{\\omega_0}$ and chirping spatial scale-length, $\\theta$, the normalized magnetic vector potential of the laser pulse $a_0$ and the plasma density gradient scale-length, $\\alpha$. We observe using 1-D OSIRIS simulations the formation and forward propagation of ChITA-snowplow, being continuously pushed by the chirping laser at a velocity...

  15. High field terahertz emission from relativistic laser-driven plasma wakefields

    CERN Document Server

    Chen, Zi-Yu

    2015-01-01

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range 1-10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  16. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    OpenAIRE

    Mist, R. T.; Owen, C.J.

    2002-01-01

    A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz in...

  17. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    OpenAIRE

    Mist, R. T.; Owen, C.J.

    2002-01-01

    A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmh...

  18. First-principles Equations of State and Shock Hugoniots of First- and Second-Row Plasmas

    Science.gov (United States)

    Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard

    A first-principles methodology for studying high energy density physics and warm dense matter is important for the stewardship of plasma science and guiding inertial confinement fusion experiments. In order to address this challenge, we have been developing the capability of path integral Monte Carlo (PIMC) for studying dense plasmas comprised of increasingly heavy elements, including nitrogen, oxygen, and neon. In recent work, we have extended PIMC methodology beyond the free-particle node approximation by implementing localized nodal surfaces capable of describing bound plasma states in second-row elements, such as silicon. We combine results from PIMC with results from density functional theory molecular dynamics (DFT-MD) calculations to produce a coherent equation of state that bridges the entire WDM regime. Analysis of pair-correlation functions and the electronic density of states reveals an evolving plasma structure and ionization process that is driven by temperature and pressure. We also compute shock Hugoniot curves for a wide range of initial densities, which generally reveal an increase in compression as the second and first shells are ionized. This work is funded by the NSF/DOE Partnership in Basic Plasma Science and Engineering (DE-SC0010517).

  19. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Rastbood, E. [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of); Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  20. Relativistic electron beam driven longitudinal wake-wave breaking in a cold plasma

    CERN Document Server

    Bera, Ratan Kumar; Sengupta, Sudip; Das, Amita

    2016-01-01

    Space-time evolution of relativistic electron beam driven wake-field in a cold, homogeneous plasma, is studied using 1D-fluid simulation techniques. It is observed that the wake wave gradu- ally evolves and eventually breaks, exhibiting sharp spikes in the density profile and sawtooth like features in the electric field profile [1]. It is shown here that the excited wakefield is a longitudi- nal Akhiezer-Polovin mode [2] and its steepening (breaking) can be understood in terms of phase mixing of this mode, which arises because of relativistic mass variation effects. Further the phase mixing time (breaking time) is studied as a function of beam density and beam velocity and is found to follow the well known scaling presented in ref.[3].

  1. Sheared Flow Driven Drift Instability and Vortices in Dusty Plasmas with Opposite Polarity

    Science.gov (United States)

    Mushtaq, A.; Shah, AttaUllah; Ikram, M.; Clark, R. E. H.

    2016-02-01

    Low-frequency electrostatic drift waves are studied in an inhomogeneous dust magnetoplasma containing dust with components of opposite polarity. The drift waves are driven by the magnetic-field-aligned (parallel) sheared flows in the presence of electrons and ions. Due to sheared flow in the linear regime, the electrostatic dust drift waves become unstable. The conditions of mode instability, with the effects of dust streaming and opposite polarity, are studied. These are excited modes which gain large amplitudes and exhibit interactions among themselves. The interaction is governed by the Hasegawa-Mima (HM) nonlinear equation with vector nonlinearity. The stationary solutions of the HM equation in the form of a vortex chain and a dipolar vortex, including effects of dust polarity and electron (ion) temperatures, are studied. The relevance of the present work to space and laboratory four component dusty plasmas is noted.

  2. Bifurcation Theory of the Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, R.A.; Krommes, J.A.

    2005-09-22

    The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.

  3. Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: Hybrid simulations

    CERN Document Server

    Hellinger, Petr

    2014-01-01

    Kinetic instabilities in weakly collisional, high beta plasmas are investigated using two-dimensional hybrid expanding box simulations with Coulomb collisions modeled through the Langevin equation (corresponding to the Fokker-Planck one). The expansion drives a parallel or perpendicular temperature anisotropy (depending on the orientation of the ambient magnetic field). For the chosen parameters the Coulomb collisions are important with respect to the driver but are not strong enough to keep the system stable with respect to instabilities driven by the proton temperature anisotropy. In the case of the parallel temperature anisotropy the dominant oblique fire hose instability efficiently reduces the anisotropy in a quasilinear manner. In the case of the perpendicular temperature anisotropy the dominant mirror instability generates coherent compressive structures which scatter protons and reduce the temperature anisotropy. For both the cases the instabilities generate temporarily enough wave energy so that the ...

  4. Electrostatic plasma instabilities driven by neutral gas flows in the solar chromosphere

    CERN Document Server

    Gogoberidze, G; Poedts, S; De Keyser, J

    2013-01-01

    We investigate electrostatic plasma instabilities of Farley-Buneman (FB) type driven by quasi-stationary neutral gas flows in the solar chromosphere. The role of these instabilities in the chromosphere is clarified. We find that the destabilizing ion thermal effect is highly reduced by the Coulomb collisions and can be ignored for the chromospheric FB-type instabilities. On the contrary, the destabilizing electron thermal effect is important and causes a significant reduction of the neutral drag velocity triggering the instability. The resulting threshold velocity is found as function of chromospheric height. Our results indicate that the FB type instabilities are still less efficient in the global chromospheric heating than the Joule dissipation of the currents driving these instabilities. This conclusion does not exclude the possibility that the FB type instabilities develop in the places where the cross-field currents overcome the threshold value and contribute to the heating locally. Typical length-scales...

  5. Magnetic compressibility and ion-temperature-gradient-driven microinstabilities in magnetically confined plasmas

    CERN Document Server

    Zocco, A; Connor, J W

    2015-01-01

    The electromagnetic theory of the strongly driven ion-temperature-gradient (ITG) instability in magnetically confined toroidal plasmas is developed. Stabilizing and destabilizing effects are identified, and a critical $\\beta_{e}$ (the ratio of the electron to magnetic pressure) for stabilization of the toroidal branch of the mode is calculated for magnetic equilibria independent of the coordinate along the magnetic field. Its scaling is $\\beta_{e}\\sim L_{Te}/R,$ where $L_{Te}$ is the characteristic electron temperature gradient length, and $R$ the major radius of the torus. We conjecture that a fast particle population can cause a similar stabilization due to its contribution to the equilibrium pressure gradient. For sheared equilibria, the boundary of marginal stability of the electromagnetic correction to the electrostatic mode is also given. For a general magnetic equilibrium, we find a critical length (for electromagnetic stabilization) of the extent of the unfavourable curvature along the magnetic field....

  6. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    Science.gov (United States)

    Liu, Tao; Zhang, Tong; Wang, Dong; Huang, Zhirong

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU) is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. Theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.

  7. Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators

    Science.gov (United States)

    Martinez de la Ossa, A.; Hu, Z.; Streeter, M. J. V.; Mehrling, T. J.; Kononenko, O.; Sheeran, B.; Osterhoff, J.

    2017-09-01

    Density down-ramp (DDR) injection is a promising concept in beam-driven plasma wakefield accelerators for the generation of high-quality witness beams. We review and complement the theoretical principles of the method and employ particle-in-cell (PIC) simulations in order to determine constrains on the geometry of the density ramp and the current of the drive beam, regarding the applicability of DDR injection. Furthermore, PIC simulations are utilized to find optimized conditions for the production of high-quality beams. We find and explain the intriguing result that the injection of an increased charge by means of a steepened ramp favors the generation of beams with lower emittance. Exploiting this fact enables the production of beams with high charge (˜140 pC ), low normalized emittance (˜200 nm ) and low uncorrelated energy spread (0.3%) in sufficiently steep ramps even for drive beams with moderate peak current (˜2.5 kA ).

  8. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    Science.gov (United States)

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N.

    2004-10-01

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of J ×B propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (Te) of hundreds of eV in the arc as revealed by the simulation. Hence Te of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90eV, which is confirmed by Langmuir electric probe measurements. Density ne of this metal plasma is shown to be in the range 4×1021-6×1021m-3 and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2×106cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  9. Increase of the Density, Temperature and Velocity of Plasma Jets driven by a Ring of High Energy Laser Beams

    OpenAIRE

    Fu, Wen; Liang, Edison P.; Fatenejad, Milad; Lamb, Donald Q.; Grosskopf, Michael; Park, Hye-Sook; Remington, Bruce; Spitkovsky, Anatoly

    2012-01-01

    Supersonic plasma outflows driven by multi-beam, high-energy lasers, such as Omega and NIF, have been and will be used as platforms for a variety of laboratory astrophysics experiments. Here we propose a new way of launching high density and high velocity, plasma jets using multiple intense laser beams in a hollow ring formation. We show that such jets provide a more flexible and versatile platform for future laboratory astrophysics experiments. Using high resolution hydrodynamic simulations,...

  10. Coagulation profile of liquid-state plasma.

    Science.gov (United States)

    Gosselin, Robert C; Marshall, Carol; Dwyre, Denis M; Gresens, Chris; Davis, Diana; Scherer, Lynette; Taylor, Douglas

    2013-03-01

    Use of liquid plasma (LP) has been reported as early as the mid 1930s. Unlike fresh-frozen plasma (FFP), LP is maintained at 1 to 6°C for up to 40 days after collection and processing. Despite its approved use by the US Food and Drug Administration, the coagulation profile of LP is incompletely described. In this study we evaluate the coagulation profile of LP stored up to 30 days. LP was prepared by removing plasma from nonleukoreduced whole blood within 24 hours of collection. Three LP units from each ABO group were collected and stored at 1 to 6°C. Plasma aliquots were obtained at Postcollection Days 1 to 5, 10, 15, 20, 25, and 30 and then stored at -70°C. Each aliquot was tested for prothrombin time, activated partial thromboplastin time, and other coagulation and fibrinolytic factors. There was a significant decrease in Factor (F)V, FVII, FVIII, von Willebrand factor (VWF), protein S (PS) activity, and endogenous thrombin potential on Day 15 compared with Day 1. No significant difference was observed for PS antigen, D-dimer, or thrombin-antithrombin complex. At least 50% activity of all measured factors was noted on Day 15, compared to Day 1. Considerable heterogeneity was observed between the different blood groups for FVII, FVIII, and VWF. These data demonstrate that LP maintains at least 50% of factor activity and thrombin-generating capacity up to 15 days of refrigerated storage. It may be more appropriate to limit LP storage and supplement with FFP when used for management of massively bleeding patients. © 2012 American Association of Blood Banks.

  11. 9 GeV Energy Gain in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Litos, M; Allen, J M; An, W; Clarke, C I; Corde, S; Clayton, C E; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Yakimenko, V

    2015-01-01

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV/m at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  12. Studies of bandwidth dependence of laser plasma instabilities driven by the Nike laser

    Science.gov (United States)

    Weaver, J.; Kehne, D.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Brown, C. M.; Seely, J.; Feldman, U.

    2012-10-01

    Experiments at the Nike laser facility of the Naval Research Laboratory are exploring the influence of laser bandwidth on laser plasma instabilities (LPI) driven by a deep ultraviolet pump (248 nm) that incorporates beam smoothing by induced spatial incoherence (ISI). In early ISI studies with longer wavelength Nd:glass lasers (1054 nm and 527 nm),footnotetextObenschain, PRL 62(1989);Mostovych, PRL 62(1987);Peyser, Phys. Fluids B 3(1991). stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν/ν˜0.03-0.19%) pulses irradiated targets at moderate to high intensities (10^14-10^15 W/cm^2). The current studies will compare the emission signatures of LPI from planar CH targets during Nike operation at large bandwidth (δν˜1THz) to observations for narrower bandwidth operation (δν˜0.1-0.3THz). These studies will help clarify the relative importance of the short wavelength and wide bandwidth to the increased LPI intensity thresholds observed at Nike. New pulse shapes are being used to generate plasmas with larger electron density scale-lengths that are closer to conditions during pellet implosions for direct drive inertial confinement fusion.

  13. Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D. B., E-mail: dschaeffer@physics.ucla.edu; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Gekelman, W.; Niemann, C. [Department of Physics and Astronomy, University of California - Los Angeles, Los Angeles, California 90095 (United States); Winske, D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-05-15

    The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilities is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations.

  14. The effect of intermediate frequency on sheath dynamics in collisionless current driven triple frequency capacitive plasmas

    Science.gov (United States)

    Sharma, S.; Mishra, S. K.; Kaw, P. K.; Turner, M. M.

    2017-01-01

    The Capacitively Coupled Plasma discharge featuring operation in current driven triple frequency configuration has analytically been investigated, and the outcome is verified by utilising the 1D3V particle-in-cell (PIC) simulation code. In this analysis, the role of middle frequency component of the applied signal has precisely been explored. The discharge parameters are seen to be sensitive to the ratio of the chosen middle frequency to lower and higher frequencies for fixed amplitudes of the three frequency components. On the basis of analysis and PIC simulation results, the middle frequency component is demonstrated to act as additional control over sheath potential, electron sheath heating, and ion energy distribution function (iedf) of the plasma discharge. For the electron sheath heating, effect of the middle frequency is seen to be pronounced as it approaches to the lower frequency component. On the other hand, for the iedf, the control is more sensitive as the middle frequency approaches towards the higher frequency. The PIC estimate for the electron sheath heating is found to be in reasonably good agreement with the analytical prediction based on the Kaganovich formulation.

  15. ISEE-3 observations of a viscously-driven plasma sheet: magnetosheath mass and/or momentum transfer?

    Science.gov (United States)

    Mist, R. T.; Owen, C. J.

    2002-05-01

    A statistical analysis of data from the ISEE-3 distant tail campaign is presented. We investigate the mechanism driving slow, tailward flows observed in the plasma sheet. The possibility that these slow flows are driven by mass and/or momentum transfer across the distant tail magnetopause is explored. We establish that 40% of these flows could be driven by the transfer of approximately 4% of the magnetosheath momentum flux into the magnetotail. Current understanding of the Kelvin-Helmholtz instability suggests that this figure is consistent with the amount of momentum flux transfer produced by this mechanism. We also consider the possibility that these flows are solely driven by transferring magnetosheath plasma across the magnetopause. We find that there is sufficient mass observed on these field lines for this to be the sole driving mechanism for only 27% of the observed slow flows.

  16. Measurements and modeling of the impact of weak magnetic fields on the plasma properties of a planar slot antenna driven plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Jun, E-mail: jun.yoshikawa@tel.com; Susa, Yoshio; Ventzek, Peter L. G. [Tokyo Electron Ltd., Akasaka Biz Tower, 3-1 Akasaka 5-chome, Minato-ku, Tokyo 107-6325 (Japan)

    2015-05-15

    The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis to the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.

  17. Evidence for a glassy state in strongly driven carbon

    Science.gov (United States)

    Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; Cho, B. I.; Döppner, T.; Engelhorn, K.; Förster, E.; Fortmann, C.; Fritz, D.; Galtier, E.; Glenzer, S. H.; Harmand, M.; Heimann, P.; Kugland, N. L.; Lamb, D. Q.; Lee, H. J.; Lee, R. W.; Lemke, H.; Makita, M.; Moinard, A.; Murphy, C. D.; Nagler, B.; Neumayer, P.; Plagemann, K.-U.; Redmer, R.; Riley, D.; Rosmej, F. B.; Sperling, P.; Toleikis, S.; Vinko, S. M.; Vorberger, J.; White, S.; White, T. G.; Wünsch, K.; Zastrau, U.; Zhu, D.; Tschentscher, T.; Gregori, G.

    2014-06-01

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

  18. Steady-State Plasmas in KT5D Magnetized Torus

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhenhua; LIU Wandong; WAN Baonian; ZHAO Yanping; LI Jiangang; YAN Longwen; YANG Qingwei; DING Xuantong; XU Min; YU Yi; WANG Zhijiang; LU Ronghua; WEN Yizhi; YU Changxuan; MA Jinxiu; WAN Shude

    2007-01-01

    Steady-state plasma generated by electron cyclotron resonance (ECR) wave in the KT5D magnetized torus was studied using a fast high-resolution camera and Langmuir probes. It was found that both the discharge patterns taken by the camera and the plasma parameters measured by the probes were very sensitive to the working gas pressure and the magnetic configuration of the torus both without and with vertical fields. There existed fast vertical motion of the plasma. Tentative discussion is presented about the observed phenomena such as the bright resonance layer at a high gas pressure and the wave absorption mechanism at a low pressure. Further explanations should be found.

  19. Statistical mechanics of 'negative temperature' states. [for plasma

    Science.gov (United States)

    Montgomery, D.; Joyce, G.

    1974-01-01

    Consideration of the dynamics of a two-dimensional guiding center plasma, recently shown by Taylor and McNamara (1971) to be identical to the dynamics of the discrete vortex model of Onsager (1949). A semirigorous application of the methods of equilibrium statistical mechanics to the guiding center plasma (or equivalently, the line vortex system) is presented. An adaptation of the apparatus of the theory of probability is attempted, in the form given by Khinchin (1949) to obtain ensemble-average predictions for the states of the guiding center plasma. Interest focuses primarily on the regime in which the interaction energy is high enough to be above the Onsager 'negative temperature' threshold.

  20. Upper-hybrid wave driven Alfvenic turbulence in magnetized dusty plasmas

    CERN Document Server

    Misra, A P

    2010-01-01

    The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations [J.Plasma Phys. 73, 3 (2006)] that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs is solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths which, in turn, ...

  1. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    Science.gov (United States)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2017-02-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  2. High field terahertz emission from relativistic laser-driven plasma wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zi-Yu, E-mail: Ziyu.Chen@uni-duesseldorf.de [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany); LSD, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999 (China); Pukhov, Alexander [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany)

    2015-10-15

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range of 1–10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  3. State Estimation for the VASIMR Plasma Engine

    OpenAIRE

    2008-01-01

    This paper presents work on the application of virtual metrology techniques to the VAriable Specific Impulse Magnetoplasma Rocket (VASMIR) engine. The work concentrates on the estimation of internal temperatures of the rocket using state space models and Optical Emission Spectroscopy (OES). These estimations are useful as direct thermal measurements will not be available in the final system design.

  4. An Event Driven State Based Interface for Synthetic Environments

    Science.gov (United States)

    1991-12-01

    defines the finite state machine model used to convert the user gesture stream into requests for system action. RS232Class This class defines and...the finite state machine model that defines the relationship between system actions and the gestures formed by the user. 3. 7.1 Definition of the Finite...object. The sets E and ) are discussed in Sections 3.7.2 and 3.7.3 respectively. Using the finite state machine model for interpreting the gesture stream

  5. Laser Plasmas : Multiple charge states of titanium ions in laser produced plasma

    Indian Academy of Sciences (India)

    M Shukla; S Bandhyopadhyay; V N Rai; A V Kilpio; H C Pant

    2000-11-01

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy ( = 0.53 m) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼ 3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2.

  6. EPOCH code simulation of a non-thermal distribution driven by neutral beam injection in a high-beta plasma

    Science.gov (United States)

    Necas, A.; Tajima, T.; Nicks, S.; Magee, R.; Clary, R.; Roche, T.; Tri Alpha Energy Team

    2016-10-01

    In Tri Alpha Energy's C-2U experiment, advanced beam-driven field-reversed configuration (FRC) plasmas were sustained via tangential neutral beam injection. The dominant fast ion population made a dramatic impact on the overall plasma performance. To explain an experimentally observed anomalous neutron signal (100x thermonuclear), we use EPOCH PIC code to simulate possible beam driven non-destructive instabilities that transfer energy from fast ions to the plasma, causing phase space bunching. We propose that the hydrogen beam ion population drives collective modes in the deuterium target plasma, giving rise to the instability and increased fusion rate. The instability changes character from electrostatic in the low beta edge to fully electromagnetic in the core, with an associated reduction in growth rates. The DD reactivity enhancement is calculated using a two-body correlation function and compared to the experimentally observed neutron yield. The high-energy tails in the distributions of the plasma deuterons and beam protons are observed via a mass-resolving Neutral Particle Analyzer (NPA) diagnostic. This observation is qualitatively consistent with EPOCH simulation of the beam-plasma instability.

  7. Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma

    Science.gov (United States)

    Anderson, J. K.; Kim, J.; Bonofiglo, P. J.; Capecchi, W.; Eilerman, S.; Nornberg, M. D.; Sarff, J. S.; Sears, S. H.

    2016-05-01

    While reconnection-driven ion heating is common in laboratory and astrophysical plasmas, the underlying mechanisms for converting magnetic to kinetic energy remain not fully understood. Reversed field pinch discharges are often characterized by rapid ion heating during impulsive reconnection, generating an ion distribution with an enhanced bulk temperature, mainly perpendicular to magnetic field. In the Madison Symmetric Torus, a subset of discharges with the strongest reconnection events develop a very anisotropic, high energy tail parallel to magnetic field in addition to bulk perpendicular heating, which produces a fusion neutron flux orders of magnitude higher than that expected from a Maxwellian distribution. Here, we demonstrate that two factors in addition to a perpendicular bulk heating mechanism must be considered to explain this distribution. First, ion runaway can occur in the strong parallel-to-B electric field induced by a rapid equilibrium change triggered by reconnection-based relaxation; this effect is particularly strong on perpendicularly heated ions which experience a reduced frictional drag relative to bulk ions. Second, the confinement of ions varies dramatically as a function of velocity. Whereas thermal ions are governed by stochastic diffusion along tearing-altered field lines (and radial diffusion increases with parallel speed), sufficiently energetic ions are well confined, only weakly affected by a stochastic magnetic field. High energy ions traveling mainly in the direction of toroidal plasma current are nearly classically confined, while counter-propagating ions experience an intermediate confinement, greater than that of thermal ions but significantly less than classical expectations. The details of ion confinement tend to reinforce the asymmetric drive of the parallel electric field, resulting in a very asymmetric, anisotropic distribution.

  8. Analysis of stability of a homogeneous state of anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, V. Yu., E-mail: vladiyuz@mail.ru; Chernova, T. G., E-mail: chernova-tg@yandex.ru; Stepanov, S. E., E-mail: stepanov@bmstu-kaluga.ru [Bauman Moscow State Technical University, Kaluga Branch (Russian Federation)

    2015-04-15

    Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves.

  9. Laser-driven relativistic tunneling from p-states

    CERN Document Server

    Klaiber, Michael

    2014-01-01

    The tunneling ionization of an electron from a p-state in a highly charged ion in the relativistic regime is investigated in a linearly polarized strong laser field. In contrast to the case of an s-state, the tunneling ionization from the p-state is spin asymmetric. We have singled out two reasons for the spin asymmetry: first, the difference of the electron energy Zeeman splitting in the bound state and during tunneling, and second, the relativistic momentum shift along the laser propagation direction during the under-the barrier motion. Due to the latter, those states are predominantly ionized where the electron rotation is opposite to the electron relativistic shift during the under-the-barrier motion. We have investigated the dependence of the ionization rate on the laser intensity for different projections of the total angular momentum and identified the intensity parameter which governs this behaviour. The significant change of the ionization rate is originated from the different precession dynamics of ...

  10. Steady-state properties of a finite system driven by a chemical-potential gradient

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Mouritsen, Ole G.

    1990-01-01

    A two-dimensional lattice-gas model with repulsive interactions periodically infinite in one dimension and finite in the other is driven into a mass-transporting steady state by asymmetric chemical potentials applied at the open edges. By computer-simulation techniques the steady-state current...

  11. Phase-mixing self-injection into plasma-wakefield acceleration structures driven in a rising density gradient

    Science.gov (United States)

    Sahai, Aakash Ajit

    We model the phase-mixing self-injection of electrons into plasma-wakefield acceleration structures driven in a longitudinally rising density gradient. Self-injection is the process where some of the plasma electrons lose coherence with the wave due to non-linearities. The non-linearity is inherently and intentionally induced in the plasma oscillations due to the variation of the restoring force along the rising density gradient. These electrons then get trapped in and propagate with the accelerating phase of the plasma-wave. The electron oscillations driven by matched energy-sources are shown to get trapped in the wakefields similar in scaling to the phase-mixing of free oscillations. The onset of trapping is shown to scale with the gradient of rising density and the amplitude of oscillations. The planar longitudinal electron oscillations undergo trajectory crossing above a threshold amplitude or in a density inhomogeneity leading to phase-mixing and trapping of the oscillating electrons to a phase of the wave. In this thesis, we analyze the scaling of the phase-mixing based trapping of electron oscillations, independent of a threshold, in planar geometry driven by an electron beam in a rising density gradient. The cylindrical and spherical geometry electron oscillations undergo phase-mixing irrespective of the amplitude of oscillations. Here, driven radial electron oscillations in cylindrical geometry are shown to undergo phase-mixing leading to trapping of the plasma electrons in a longitudinally rising density gradient. We also present preliminary scaling results of phase-mixing based trapping of radially oscillating electrons in a rising density gradient.

  12. Imaging of Coulomb-Driven Quantum Hall Edge States

    KAUST Repository

    Lai, Keji

    2011-10-01

    The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features, however, is challenging due to the buried 2DEG structures. Using a newly developed microwave impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states. The sizes, positions, and field dependence of the edge strips around the sample perimeter agree quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a function of magnetic fields provides rich microscopic information around the ν=2 QHE state. © 2011 American Physical Society.

  13. Bunch decompression for laser-plasma driven free-electron laser demonstration schemes

    Directory of Open Access Journals (Sweden)

    T. Seggebrock

    2013-07-01

    Full Text Available X-ray free-electron lasers (FELs require a very high electron beam quality in terms of emittance and energy spread. Since 2004 high quality electrons produced by laser-wakefield accelerators have been demonstrated, but the electron quality up to now did not allow the operation of a compact x-ray FEL using these electrons. Maier et al. [Phys. Rev. X 2, 031019 (2012PRXHAE2160-330810.1103/PhysRevX.2.031019] suggested a concept for a proof-of-principle experiment allowing FEL operation in the vacuum ultraviolet range based on an optimized undulator and bunch decompression using electron bunches from a laser-plasma accelerator as currently available. In this paper we discuss in more detail how a chicane can be used as a bunch stretcher instead of a bunch compressor to allow the operation of a laser-wakefield accelerator driven FEL using currently available electrons. A scaling characterizing the impact of bunch decompression on the gain length is derived and the feasibility of the concept is tested numerically in a demanding scenario.

  14. Vacuum ultraviolet emission from hydrogen microwave plasmas driven by surface waves

    Science.gov (United States)

    Espinho, S.; Felizardo, E.; Tatarova, E.

    2016-10-01

    The vacuum ultraviolet (VUV) radiation emitted by hydrogen surface-wave-driven plasmas operating at microwave frequency (2.45 GHz) and low-pressure conditions (0.1-2 mbar) was investigated, in particular the influence of microwave power and gas pressure on the intensity of the emissions. The strong emission of Lyman H2 ≤ft(\\text{B}{}1 Σ u+-\\text{X}{}1 Σ g+\\right) and Werner H2 ≤ft(\\text{C}{}1{{ \\Pi }u}-\\text{X}{}1 Σ g+\\right) molecular bands in the 80-125 nm spectral range was detected, while the most intense atomic emissions observed correspond to Lyman-α and Lyman-β lines at 121.6 nm and 102.6 nm respectively. An increase of the atomic lines and molecular bands intensities with increasing microwave power at pressure 0.1 mbar was observed. At 2 mbar the VUV spectra are entirely dominated by molecular bands. Theoretical predictions, as obtained from a collisional-radiative model, were validated by the experimental results.

  15. Bandwidth Dependence of Laser Plasma Instabilities Driven by the Nike KrF Laser

    Science.gov (United States)

    Weaver, J. L.; Oh, J.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Phillips, L.; Lehmberg, R. H.; McLean, E.; Manka, C.; Feldman, U.

    2011-10-01

    The Nike krypton-fluoride (KrF) laser at the Naval Research Laboratory operates in the deep UV (248 nm) and employs beam smoothing by induced spatial incoherence (ISI). In the first ISI studies at longer wavelengths (1054 nm and 527 nm) [Obenschain, PRL 62, 768(1989);Mostovych, PRL, 59, 1193(1987); Peyser, Phys. Fluids B 3, 1479(1991)], stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν / ν ~ 0.03-0.19%) pulses irradiated targets at moderate to high intensities (1014-1015W/cm2) . Recent Nike work showed that the threshold for quarter critical instabilities increased with the expected wavelength scaling, without accounting for the large bandwidth (δν ~ 1-3 THz). New experiments will compare laser plasma instabilities (LPI) driven by narrower bandwidth pulses to those observed with the standard operation. The bandwidth of KrF lasers can be reduced by adding narrow filters (etalons or gratings) in the initial stages of the laser. This talk will discuss the method used to narrow the output spectrum of Nike, the laser performance for this new operating mode, and target observations of LPI in planar CH targets. Work supported by DoE/NNSA.

  16. A New Hybrid Scheme for Simulations of Highly Collisional RF-Driven Plasmas

    CERN Document Server

    Eremin, Denis; Mussenbrock, Thomas

    2015-01-01

    This work describes a new 1D hybrid approach for modeling atmospheric pressure discharges featuring complex chemistry. In this approach electrons are described fully kinetically using Particle-In-Cell/Monte-Carlo (PIC/MCC) scheme, whereas the heavy species are modeled within a fluid description. Validity of the popular drift-diffusion approximation is verified against a "full" fluid model accounting for the ion inertia and a fully kinetic PIC/MCC code for ions as well as electrons. The fluid models require knowledge of the momentum exchange frequency and dependence of the ion mobilities on the electric field when the ions are in equilibrium with the latter. To this end an auxiliary Monte-Carlo scheme is constructed. It is demonstrated that the drift-diffusion approximation can overestimate ion transport in simulations of RF-driven discharges with heavy ion species operated in the $\\gamma$ mode at the atmospheric pressure or in all discharge simulations for lower pressures. This can lead to exaggerated plasma ...

  17. Energetic particle driven geodesic acoustic mode in a toroidally rotating tokamak plasma

    Science.gov (United States)

    Ren, Haijun

    2017-01-01

    Energetic particle (EP) driven geodesic acoustic modes (EGAMs) in toroidally rotating tokamak plasmas are analytically investigated using the hybrid kinetic-fluid model and gyrokinetic equations. By ignoring high-order terms and ion Landau damping, the kinetic dispersion relation is reduced to the hybrid one in the large safety factor limit. There is one high-frequency branch with a frequency larger than {ωt0} , the transit frequency of EPs with initial energy, which is always stable. Two low-frequency solutions with a frequency smaller than {ωt0} are complex conjugates in the hybrid limit. In the presence of ion Landau damping, the growth rate of the unstable branch is decreased and the damping rate of the damped branch is increased. The toroidal Mach number is shown to increase {{ Ω }\\text{r}} , the normalized real frequency of both branches. Although not affecting the instability critical condition, the Mach number decreases the growth rate when {{ Ω }\\text{r}} is larger than a critical value Ω \\text{r}\\text{cri} and enlarges the growth rate when {{ Ω }\\text{r}}Landau damping effect is negligible for large M. But the discrepancy between the kinetic dispersion relation and the hybrid one becomes ignorable only for q≳ 7 .

  18. Improvement of stability of sinusoidally driven atmospheric pressure plasma jet using auxiliary bias voltage

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Kim

    2015-12-01

    Full Text Available In this study, we have proposed the auxiliary bias pulse scheme to improve the stability of atmospheric pressure plasma jets driven by an AC sinusoidal waveform excitation source. The stability of discharges can be significantly improved by the compensation of irregular variation in memory voltage due to the effect of auxiliary bias pulse. From the parametric study, such as the width, voltage, and onset time of auxiliary bias pulse, it has been demonstrated that the auxiliary bias pulse plays a significant role in suppressing the irregular discharges caused by the irregular variation in memory voltage and stable discharge can be initiated with the termination of the auxiliary bias pulse. As a result of further investigating the effects of the auxiliary pulse scheme on the jet stability under various process conditions such as the distance between the jet head and the counter electrode, and carrier gas flow, the jet stability can be improved by adjusting the amplitude and number of the bias pulse depending on the variations in the process conditions.

  19. Evidence for dust-driven, radial plasma transport in Saturn's inner radiation belts

    Science.gov (United States)

    Roussos, E.; Krupp, N.; Kollmann, P.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Andriopoulou, M.

    2016-08-01

    A survey of Cassini MIMI/LEMMS data acquired between 2004 and 2015 has led to the identification of 13 energetic electron microsignatures that can be attributed to particle losses on one of the several faint rings of the planet. Most of the signatures were detected near L-shells that map between the orbits of Mimas and Enceladus or near the G-ring. Our analysis indicates that it is very unlikely for these signatures to have originated from absorption on Mimas, Enceladus or unidentified Moons and rings, even though most were not found exactly at the L-shells of the known rings of the saturnian system (G-ring, Methone, Anthe, Pallene). The lack of additional absorbers is apparent in the L-shell distribution of MeV ions which are very sensitive for tracing the location of weakly absorbing material permanently present in Saturn's radiation belts. This sensitivity is demonstrated by the identification, for the first time, of the proton absorption signatures from the asteroid-sized Moons Pallene, Anthe and/or their rings. For this reason, we investigate the possibility that the 13 energetic electron events formed at known saturnian rings and the resulting depletions were later displaced radially by one or more magnetospheric processes. Our calculations indicate that the displacement magnitude for several of those signatures is much larger than the one that can be attributed to radial flows imposed by the recently discovered noon-to-midnight electric field in Saturn's inner magnetosphere. This observation is consistent with a mechanism where radial plasma velocities are enhanced near dusty obstacles. Several possibilities are discussed that may explain this observation, including a dust-driven magnetospheric interchange instability, mass loading by the pick-up of nanometer charged dust grains and global magnetospheric electric fields induced by perturbed orbits of charged dust due to the act of solar radiation pressure. Indirect evidence for a global scale interaction

  20. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  1. Numerical study of secondary electron emission in a coaxial radio-frequency driven plasma jet at atmospheric pressure

    CERN Document Server

    Hemke, Torben; Wollny, Alexander; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2011-01-01

    In this work we investigate a numerical model of a coaxial RF-driven plasma jet operated at atmospheric pressure. Due to the cylindrical symmetry an adequate 2-D representation of the otherwise 3-dimensional structure is used. A helium-oxygen chemistry reaction scheme is applied. We study the effect of secondary electrons emitted at the inner electrode as well as the inserted dielectric tube and discuss their impact on the discharge behavior. We conclude that a proper choice of materials can improve the desired mode of operation of such plasma jets in terms of materials and surface processing.

  2. The technology and science of steady-state operation in magnetically confined plasmas

    Science.gov (United States)

    Bécoulet, A.; Hoang, G. T.

    2008-12-01

    The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a

  3. Effects of Ions Charge-Mass Ratio on Energy and Energy Spread of Accelerated Ions in Laser Driven Plasma

    Institute of Scientific and Technical Information of China (English)

    SANG Hai-Bo; DENG Shi-Qiang; XIE Bai-Song

    2013-01-01

    Effects of ions charge-mass ratio on energy and energy spread of accelerated ions in laser driven plasma are investigated in detail by proposing a simple double-layer model for a foil target driven by an ultrastrong laser.The radiation pressure acceleration mechanism plays an important role on the studied problem.For the ions near the plasma mirror,i.e.electrons layer,the dependence of ions energy on their charge-mass ratio is derived theoretically.It is found that the larger the charge-mass ratio is,the higher the accelerated ions energy gets.For those ions far away from the layer,the dependence of energy and energy spread on ions charge-mass ratio are also obtained by numerical performance.It exhibits that,as ions charge-mass ratio increases,not only the accelerated ions energy but also the energy spread will become large.

  4. The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition

    Institute of Scientific and Technical Information of China (English)

    B.Malekynia; S.S.Razavipour

    2013-01-01

    An accelerated skin layer may be used to ignite solid state fuels.Detailed analyses were clarified by solving the hydrodynamic equations for nonlinear force driven plasma block ignition.In this paper,the complementary mechanisms are included for the advanced fuel ignition:external factors such as lasers,compression,shock waves,and sparks.The other category is created within the plasma fusion as reheating of an alpha particle,the Bremsstrahlung absorption,expansion,conduction,and shock waves generated by explosions.With the new condition for the control of shock waves,the spherical deuterium-tritium fuel density should be increased to 75 times that of the solid state.The threshold ignition energy flux density for advanced fuel ignition may be obtained using temperature equations,including the ones for the density profile obtained through the continuity equation and the expansion velocity for the r ≠ 0 layers.These thresholds are significantly reduced in comparison with the ignition thresholds at x =0 for solid advanced fuels.The quantum correction for the collision frequency is applied in the case of the delay in ion heating.Under the shock wave condition,the spherical protonboron and proton-lithium fuel densities should be increased to densities 120 and 180 times that of the solid state.These plasma compressions are achieved through a longer duration laser pulse or X-ray.

  5. Highly localized clustering states in a granular gas driven by a vibrating wall

    OpenAIRE

    Livne, Eli; Meerson, Baruch; Sasorov, Pavel V.

    2000-01-01

    An ensemble of inelastically colliding grains driven by a vibrating wall in 2D exhibits density clustering. Working in the limit of nearly elastic collisions and employing granular hydrodynamics, we predict, by a marginal stability analysis, a spontaneous symmetry breaking of the extended clustering state (ECS). 2D steady-state solutions found numerically describe localized clustering state (LCSs). Time-dependent granular hydrodynamic simulations show that LCSs can develop from natural initia...

  6. Vehicle Exhaust Gas Clearance by Low Temperature Plasma-Driven Nano-Titanium Dioxide Film Prepared by Radiofrequency Magnetron Sputtering

    OpenAIRE

    Shuang Yu; Yongdong Liang; Shujun Sun; Kai Zhang; Jue Zhang; Jing Fang

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on t...

  7. Laser-Driven Ultra-Relativistic Plasmas - Nuclear Fusion in Coulomb Shock Waves, Rouge Waves, and Background Matter

    Science.gov (United States)

    2015-05-05

    AND SUBTITLE LASER-DRIVEN ULTRA-RELATIVISTIC PLASMAS - NUCLEAR FUSION IN COULOMB SHOCK WAVES, ROUGE WAVES, AND BACKGROUND MATTER. 5a.  CONTRACT...blackbody radiation on free electrons .........................9 2.vi. Proposal of ultimate test of laser nuclear fusion efficiency in clusters...domain of energies and temperatures, with applications in particular to controlled nuclear fusion . 2. Final technical report on the grant #F49620-11-1

  8. Thermodynamic State Variables in Quasi-Equilibrium Ultracold Neutral Plasma

    CERN Document Server

    Tiwari, Sanat Kumar; Baalrud, Scott D

    2016-01-01

    The pressure and internal energy of an ultracold plasma in a state of quasi-equilibrium are evaluated using classical molecular dynamics simulations. Coulomb collapse is avoided by modeling electron-ion interactions using an attractive Coulomb potential with a repulsive core. We present a method to separate the contribution of classical bound states, which form due to recombination, from the contribution of free charges when evaluating these thermodynamic state variables. It is found that the contribution from free charges is independent of the choice of repulsive core length-scale when it is sufficiently short-ranged. The partial pressure associated with the free charges is found to closely follow that of the one-component plasma model, reaching negative values at strong coupling, while the total system pressure remains positive. This pseudo-potential model is also applied to Debye-H\\"{u}ckel theory to describe the weakly coupled regime.

  9. Thermodynamic state variables in quasiequilibrium ultracold neutral plasma

    Science.gov (United States)

    Tiwari, Sanat Kumar; Shaffer, Nathaniel R.; Baalrud, Scott D.

    2017-04-01

    The pressure and internal energy of an ultracold plasma in a state of quasiequilibrium are evaluated using classical molecular dynamics simulations. Coulomb collapse is avoided by modeling electron-ion interactions using an attractive Coulomb potential with a repulsive core. We present a method to separate the contribution of classical bound states, which form due to recombination, from the contribution of free charges when evaluating these thermodynamic state variables. It is found that the contribution from free charges is independent of the choice of repulsive core length scale when it is sufficiently short-ranged. The partial pressure associated with the free charges is found to closely follow that of the one-component plasma model, reaching negative values at strong coupling, while the total system pressure remains positive. This pseudopotential model is also applied to Debye-Hückel theory to describe the weakly coupled regime.

  10. Collective synchronization states in arrays of driven colloidal oscillators

    Science.gov (United States)

    Lhermerout, Romain; Bruot, Nicolas; Cicuta, Giovanni M.; Kotar, Jurij; Cicuta, Pietro

    2012-10-01

    The phenomenon of metachronal waves in cilia carpets has been well known for decades; these waves are widespread in biology, and have fundamental physiological importance. While it is accepted that in many cases cilia are mainly coupled together by the hydrodynamic velocity field, a clear understanding of which aspects determine the collective wave properties is lacking. It is a difficult problem, because both the behavior of the individual cilia and their coupling together are nonlinear. In this work, we coarse-grain the degrees of freedom of each cilium into a minimal description in terms of a configuration-based phase oscillator. Driving colloidal particles with optical tweezers, we then experimentally investigate the coupling through hydrodynamics in systems of many oscillators, showing that a collective dynamics emerges. This work generalizes to a wider class of systems our recent finding that the non-equilibrium steady state can be understood based on the equilibrium properties of the system, i.e. the positions and orientations of the active oscillators. In this model system, it is possible to design configurations of oscillators with the desired collective dynamics. The other face of this problem is to relate the collective patterns found in biology to the architecture and behavior of individual active elements.

  11. Dust remobilization in fusion plasmas under steady state conditions

    Science.gov (United States)

    Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-02-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  12. A plasma source driven predator-prey like mechanism as a potential cause of spiraling intermittencies in linear plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, D. [Research Center Jülich GmbH, Institute for Energy and Climate Research—Plasma Physics, D-52425 Jülich (Germany); Ohno, N. [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tanaka, H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Vela, L. [Physics Department, Universidad Carlos III de Madrid, Avda de la Universidad 30, 28911-Leganés, Madrid (Spain)

    2014-03-15

    Three-dimensional global drift fluid simulations are carried out to analyze coherent plasma structures appearing in the NAGDIS-II linear device (nagoya divertor plasma Simulator-II). The numerical simulations reproduce several features of the intermittent spiraling structures observed, for instance, statistical properties, rotation frequency, and the frequency of plasma expulsion. The detailed inspection of the three-dimensional plasma dynamics allows to identify the key mechanism behind the formation of these intermittent events. The resistive coupling between electron pressure and parallel electric field in the plasma source region gives rise to a quasilinear predator-prey like dynamics where the axisymmetric mode represents the prey and the spiraling structure with low azimuthal mode number represents the predator. This interpretation is confirmed by a reduced one-dimensional quasilinear model derived on the basis of the findings in the full three-dimensional simulations. The dominant dynamics reveals certain similarities to the classical Lotka-Volterra cycle.

  13. A plasma source driven predator-prey like mechanism as a potential cause of spiraling intermittencies in linear plasma devices

    Science.gov (United States)

    Reiser, D.; Ohno, N.; Tanaka, H.; Vela, L.

    2014-03-01

    Three-dimensional global drift fluid simulations are carried out to analyze coherent plasma structures appearing in the NAGDIS-II linear device (nagoya divertor plasma Simulator-II). The numerical simulations reproduce several features of the intermittent spiraling structures observed, for instance, statistical properties, rotation frequency, and the frequency of plasma expulsion. The detailed inspection of the three-dimensional plasma dynamics allows to identify the key mechanism behind the formation of these intermittent events. The resistive coupling between electron pressure and parallel electric field in the plasma source region gives rise to a quasilinear predator-prey like dynamics where the axisymmetric mode represents the prey and the spiraling structure with low azimuthal mode number represents the predator. This interpretation is confirmed by a reduced one-dimensional quasilinear model derived on the basis of the findings in the full three-dimensional simulations. The dominant dynamics reveals certain similarities to the classical Lotka-Volterra cycle.

  14. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John [MSNW LLC, Redmond, WA (United States)

    2015-02-01

    To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuum and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power

  15. Investigation of heavy ions diffusion under the influence of current-driven mechanism and compositional waves in plasma

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    We consider diffusion caused by a combined influence of the Hall effect and electric currents, and argue that such diffusion forms chemical inhomogeneities in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. Such current-driven diffusion can be accompanied by the propagation of a particular type of waves which have not been considered earlier. In these waves, the impurity number density oscillare alone and their frequency is determined by the electric currents and sort of impurity ions. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure. Such waves lead to local variations of chemical composition and, hence, can manifest themselves by variations of the emission in spectral lines.

  16. RF Pre-Ionization to Create Faster, Hotter MHD-Driven Jets and Studies of Plasma Expansion Into a Vacuum

    Science.gov (United States)

    Chaplin, Vernon; Bellan, Paul

    2013-10-01

    We are studying MHD-driven jets relevant to astrophysical jets and fusion plasmas. Previous experiments at Caltech have focused on plasmas created by breaking down neutral gas using high voltage. The Paschen breakdown criterion governing this process sets an undesirable lower limit for the jet density. To overcome this constraint, we have developed a pre-ionization system powered by a pulsed, battery-powered, 3 kW 13.56 MHz RF amplifier. Pre-ionization of plasma in a tube behind the jet experiment's center electrode is expected to enable the formation of lower density, hotter, faster jets. Thus far, argon jets have been created with v >30 km/s, twice as fast as was previously achievable. The expansion of the RF plasma into the chamber prior to the discharge of the main capacitor bank involves surprisingly complex dynamics. There are two phases: initially plasma expansion along the background magnetic field is inhibited and the primary source of emission away from the RF antenna appears to be neutral atoms excited by fast electrons or photons from the RF source. At a later time, either before or after RF turn-off depending on the magnetic field configuration, a relatively high density (ne >1018 m-3) , cold (Te < 0.5 eV) cloud of plasma emerges from the source tube.

  17. Diagnostics of an AC driven atmospheric pressure non-thermal plasma jet and its use for radially directed jet array

    Science.gov (United States)

    Zhu, W.; Wang, R.

    2017-08-01

    An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A "core plasma filament" is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104-105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.

  18. Laer Pulse Driven THz Generation via Resonant Transition Radiation in Inhomogeneous Plasmas

    CERN Document Server

    Miao, Chenlong; Antonsen, Thomas M

    2016-01-01

    An intense, short laser pulse propagating across a plasma boundary ponderomotively drives THz radiation. Full format PIC simulations and theoretical analysis are conducted to investigate the properties of this radiation. Simulation results show the THz emission originates in regions of varying density and covers a broad spectrum with maximum frequency close to the maximum plasma frequency. In the case of a sharp vacuum-plasma boundary, the radiation is generated symmetrically at the plasma entrance and exit, and its properties are independent of plasma density when the density exceeds a characteristic value determined by the product of the plasma frequency and the laser pulse duration. For a diffuse vacuum-plasma boundary, the emission from the plasma entrance and exit is asymmetric: increasing and decreasing density ramps enhance and diminish the radiated energy respectively. Enhancements by factors of 50 are found and simulations show that a 1.66 J, 50 fs driver pulse can generate ~400 \\mu J of THz radiatio...

  19. Physical processes of driven magnetic reconnection in collisionless plasmas: Zero guide field case

    Science.gov (United States)

    Cheng, C. Z.; Inoue, S.; Ono, Y.; Horiuchi, R.

    2015-10-01

    The key physical processes of the electron and ion dynamics, the structure of the electric and magnetic fields, and how particles gain energy in the driven magnetic reconnection in collisionless plasmas for the zero guide field case are presented. The key kinetic physics is the decoupling of electron and ion dynamics around the magnetic reconnection region, where the magnetic field is reversed and the electron and ion orbits are meandering, and around the separatrix region, where electrons move mainly along the field line and ions move mainly across the field line. The decoupling of the electron and ion dynamics causes charge separation to produce a pair of in-plane bipolar converging electrostatic electric field ( E→ e s ) pointing toward the neutral sheet in the magnetic field reversal region and the monopolar E→ e s around the separatrix region. A pair of electron jets emanating from the reconnection current layer generate the quadrupole out-of-plane magnetic field, which causes the parallel electric field ( E→ || ) from E→ i n d to accelerate particles along the magnetic field. We explain the electron and ion dynamics and their velocity distributions and flow structures during the time-dependent driven reconnection as they move from the upstream to the downstream. In particular, we address the following key physics issues: (1) the decoupling of electron and ion dynamics due to meandering orbits around the field reversal region and the generation of a pair of converging bipolar electrostatic electric field ( E→ e s ) around the reconnection region; (2) the slowdown of electron and ion inflow velocities due to acceleration/deceleration of electrons and ions by E→ e s as they move across the neutral sheet; (3) how the reconnection current layer is enhanced and how the orbit meandering particles are accelerated inside the reconnection region by E→ i n d ; (4) why the electron outflow velocity from the reconnection region reaches super-Alfvenic speed

  20. Quarkonium states in an anisotropic quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yun

    2009-09-10

    In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schroedinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavy-quark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. (orig.)

  1. Plasma Formation and Evolution on Cu, Al, Ti, and Ni Surfaces Driven by a Mega-Ampere Current Pulse

    Science.gov (United States)

    Yates, Kevin C.

    Metal alloy mm-diameter rods have been driven by a 1-MA, 100-ns current pulse from the Zebra z-pinch. The intense current produces megagauss surface magnetic fields that diffuse into the load, ohmically heating the metal until plasma forms. Because the radius is much thicker than the skin depth, the magnetic field reaches a much higher value than around a thin-wire load. With the "barbell" load design, plasma formation in the region of interest due to contact arcing or electron avalanche is avoided, allowing for the study of ohmically heated loads. Work presented here will show first evidence of a magnetic field threshold for plasma formation in copper 101, copper 145, titanium, and nickel, and compare with previous work done with aluminum. Copper alloys 101 and 145, titanium grade II, and nickel alloy 200 form plasma when the surface magnetic field reaches 3.5, 3.0, 2.2, and 2.6 megagauss, respectively. Varying the element metal, as well as the alloy, changes multiple physical properties of the load and affects the evolution of the surface material through the multiple phase changes. Similarities and differences between these metals will be presented, giving motivation for continued work with different material loads. During the current rise, the metal is heated to temperatures that cause multiple phase changes. When the surface magnetic field reaches a threshold, the metal ionizes and the plasma becomes pinched against the underlying cooler, dense material. Diagnostics fielded have included visible light radiometry, two-frame shadowgraphy (266 and 532 nm wavelengths), time-gated EUV spectroscopy, single-frame/2ns gated imaging, and multi-frame/4ns gated imaging with an intensified CCD camera (ICCD). Surface temperature, expansion speeds, instability growth, time of plasma formation, and plasma uniformity are determined from the data. The time-period of potential plasma formation is scrutinized to understand if and when plasma forms on the surface of a heated

  2. A One-Dimensional Hybrid Simulation of DC/RF Combined Driven Capacitive Plasma%A One-Dimensional Hybrid Simulation of DC/RF Combined Driven Capacitive Plasma

    Institute of Scientific and Technical Information of China (English)

    王帅; 徐翔; 王友年

    2012-01-01

    We developed a one-dimensional hybrid model to simulate the DC/RF combined driven capacitively coupled plasma for argon discharges. The numerical results are used to analyze the influence of the DC source on the plasma density distribution, ion energy distributions (IEDs) and ion angle distributions (IADs) on both the RF and DC electrodes. The increase in DC voltage drives more high-energy ions to the electrode applied to the DC source, which makes the IEDs at the DC electrode shift towards higher energy, and the peaks in the IADs shift towards small angle regions. At the same time, it also decreases the ion energy at the RF electrode and enlarges the incident angles of the ions, which strike the RF electrode.

  3. DC-driven plasma gun: self-oscillatory operation mode of atmospheric-pressure helium plasma jet comprised of repetitive streamer breakdowns

    Science.gov (United States)

    Wang, Xingxing; Shashurin, Alexey

    2017-02-01

    This paper presents and studies helium atmospheric pressure plasma jet comprised of a series of repetitive streamer breakdowns, which is driven by pure DC high voltage (self-oscillatory behavior). The repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV cm-1. One type of the helium plasma gun designed using this operational principle is demonstrated. The gun operates on about 3 kV DC high voltage and is comprised of the series of the repetitive streamer breakdowns at a frequency of about 13 kHz.

  4. Generation of high-power electromagnetic radiation by a beam-driven plasma antenna

    Science.gov (United States)

    Annenkov, V. V.; Volchok, E. P.; Timofeev, I. V.

    2016-04-01

    In this paper we study how efficiently electromagnetic radiation can be generated by a relativistic electron beam with a gigawatt power level during its injection into a thin magnetized plasma. It is shown that, if the transverse beam and plasma size is compared with the radiation wavelength and the plasma density is modulated along the magnetic field, such a beam-plasma system can radiate electromagnetic waves via the antenna mechanism. We propose a theoretical model describing generation of electromagnetic waves by this plasma antenna and calculate its main radiation characteristics. In the two-dimensional case theoretical predictions on the radiation efficiency are shown to be confirmed by the results of particle-in-cell simulations, and the three-dimensional variant of this theory is used to estimate the peak power of sub-terahertz radiation that can be achieved in beam-plasma experiments in mirror traps.

  5. A fibre based triature interferometer for measuring rapidly evolving, ablatively driven plasma densities

    Science.gov (United States)

    Macdonald, J.; Bland, S. N.; Threadgold, J.

    2015-08-01

    We report on the first use of a fibre interferometer incorporating triature analysis for measuring rapidly evolving plasma densities of ne ˜ 1013/cm3 and above, such as those produced by simple coaxial plasma guns. The resultant system is extremely portable, easy to field in experiments, relatively cheap to produce, and—with the exception of a small open area in which the plasma is sampled—safe in operation as all laser light is enclosed.

  6. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gessel, Bram van; Bruggeman, Peter [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Brandenburg, Ronny [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany)

    2013-08-05

    A time modulated radio frequency (RF) plasma jet operated with an Ar mixture is investigated by measuring the electron density and electron temperature using Thomson scattering. The measurements have been performed spatially resolved for two different electrode configurations and as a function of the plasma dissipated power and air concentration admixed to the Ar. Time resolved measurements of electron densities and temperatures during the RF cycle and after plasma power switch-off are presented. Furthermore, the influence of the plasma on the air entrainment into the effluent is studied using Raman scattering.

  7. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John [MSNW LLC, Redmond, WA (United States)

    2015-02-01

    To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuum and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power

  8. Photoelectron Emission from Metal Surfaces Induced by VUV-emission of Filament Driven Hydrogen Arc Discharge Plasma

    CERN Document Server

    Laulainen, J; Koivisto, H; Komppula, J; Tarvainen, O

    2015-01-01

    Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H^- ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

  9. Photoelectron emission from metal surfaces induced by VUV-emission of filament driven hydrogen arc discharge plasma

    Science.gov (United States)

    Laulainen, J.; Kalvas, T.; Koivisto, H.; Komppula, J.; Tarvainen, O.

    2015-04-01

    Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H- ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

  10. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    Science.gov (United States)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  11. Magnetic-field-induced superconducting state in Zn nanowires driven in the normal state by an electric current.

    Science.gov (United States)

    Chen, Yu; Snyder, S D; Goldman, A M

    2009-09-18

    Four-terminal resistance measurements have been carried out on Zn nanowires formed using electron-beam lithography. When driven resistive by current, these wires reenter the superconducting state upon application of small magnetic fields. The data are qualitatively different from those of previous experiments on superconducting nanowires, which revealed either negative magnetoresistance near T_{c} or high-magnetic-field-enhanced critical currents.

  12. Dielectric permittivity tensor and low frequency instabilities of a magnetoactive current-driven plasma with nonextensive distribution

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Rastbood, E.; Khorashadizadeh, S. M. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)

    2015-12-15

    The dielectric permittivity tensor of a magnetoactive current-driven plasma is obtained by employing the kinetic theory based on the Vlasov equation and Lorentz transformation formulas with an emphasize on the q-nonextensive statistics. By deriving the q-generalized dispersion relation of the low frequency modes in this plasma system, the possibility and properties of filamentation and ion acoustic instabilities are then studied. It is shown that the occurrence and the growth rate of these instabilities depend strongly on the nonextensive parameters, external magnetic field strength, and drift velocity. It is observed that the growth rate of ion acoustic instability is affected by the magnetic field strength much more than that of the filamentation instability in the low frequency range. The external magnetic field facilitates the development of the ion-acoustic instability. It is also shown that the filamentation is the dominant instability only for the high value of drift velocity.

  13. Increase of the Density, Temperature and Velocity of Plasma Jets driven by a Ring of High Energy Laser Beams

    CERN Document Server

    Fu, Wen; Fatenejad, Milad; Lamb, Donald Q; Grosskopf, Michael; Park, Hye-Sook; Remington, Bruce; Spitkovsky, Anatoly

    2012-01-01

    Supersonic plasma outflows driven by multi-beam, high-energy lasers, such as Omega and NIF, have been and will be used as platforms for a variety of laboratory astrophysics experiments. Here we propose a new way of launching high density and high velocity, plasma jets using multiple intense laser beams in a hollow ring formation. We show that such jets provide a more flexible and versatile platform for future laboratory astrophysics experiments. Using high resolution hydrodynamic simulations, we demonstrate that the collimated jets can achieve much higher density, temperature and velocity when multiple laser beams are focused to form a hollow ring pattern at the target, instead of focused onto a single spot. We carried out simulations with different ring radii and studied their effects on the jet properties. Implications for laboratory collisionless shock experiments are discussed.

  14. High sensitivity far infrared laser diagnostics for the C-2U advanced beam-driven field-reversed configuration plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, B. H., E-mail: bdeng@trialphaenergy.com; Beall, M.; Schroeder, J.; Settles, G.; Feng, P.; Kinley, J. S.; Gota, H.; Thompson, M. C. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 10{sup 16} m{sup −2} at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution data is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.

  15. High sensitivity far infrared laser diagnostics for the C-2U advanced beam-driven field-reversed configuration plasmas

    Science.gov (United States)

    Deng, B. H.; Beall, M.; Schroeder, J.; Settles, G.; Feng, P.; Kinley, J. S.; Gota, H.; Thompson, M. C.

    2016-11-01

    A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 1016 m-2 at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution data is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.

  16. Trapped electron acceleration by a laser-driven relativistic plasma wave

    Science.gov (United States)

    Everett, M.; Lal, A.; Gordon, D.; Clayton, C. E.; Marsh, K. A.; Joshi, C.

    1994-04-01

    THE aim of new approaches for high-energy particle acceleration1 is to push the acceleration rate beyond the limit (~100 MeV m-1) imposed by radio-frequency breakdown in conventional accelerators. Relativistic plasma waves, having phase velocities very close to the speed of light, have been proposed2-6 as a means of accelerating charged particles, and this has recently been demonstrated7,8. Here we show that the charged particles can be trapped by relativistic plasma waves-a necessary condition for obtaining the maximum amount of energy theoretically possible for such schemes. In our experiments, plasma waves are excited in a hydrogen plasma by beats induced by two collinear laser beams, the difference in whose frequencies matches the plasma frequency. Electrons with an energy of 2 MeV are injected into the excited plasma, and the energy spectrum of the exiting electrons is analysed. We detect electrons with velocities exceeding that of the plasma wave, demonstrating that some electrons are 'trapped' by the wave potential and therefore move synchronously with the plasma wave. We observe a maximum energy gain of 28 MeV, corresponding to an acceleration rate of about 2.8 GeV m-1.

  17. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    DEFF Research Database (Denmark)

    Olsen, Jeppe Miki Busk; Madsen, Jens; Nielsen, Anders Henry

    2016-01-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocit...

  18. RUI: Structure and Behavior of RF-Driven Plasma Filaments in High-Pressure Gases

    Energy Technology Data Exchange (ETDEWEB)

    Burin, Michael J. [California State Univ., San Marcos, CA (United States)

    2014-11-18

    The filamentary discharge seen within commercial plasma globes is commonly enjoyed, yet not well understood. We investigate filament properties in a plasma globe using a variable high voltage amplifier. Results from the 3-year grant period and their physics are discussed.

  19. Laser-driven Beat-Wave Current Drive in Dense Plasmas with Demo on CTIX

    Science.gov (United States)

    Liu, Fei; Horton, Robert; Hwang, David; Zhu, Ben; Evans, Russell; Hong, Sean; Hsu, Scott

    2010-11-01

    The ability to remotely generate plasma current in dense plasmas hanging freely in vacuum in voluminous amount without obstruction to diagnostics will greatly enhance our ability to study the physics of high energy density plasmas in strong magnetic fields. Plasma current can be generated through nonlinear beat-wave process by launching two intense electromagnetic waves into unmagnetized plasma. Beat-wave acceleration of electrons has been demonstrated in a low-density plasma using microwaves [1]. The proposed PLX experimental facility presently under construction at Los Alamos offers the opportunity to test the method at a density level scalable to the study of HED plasmas. For PLX beat-wave experiments, CO2 lasers will be used as pump waves due to their high power and tunability. For a typical PLX density ne=10^17cm-3, two CO2 lasers can be separately tuned to 9P(28) and 10P(20) to match the 2.84THz plasma frequency. The beat-wave demo experiment will be conducted on CTIX. The laser arrangement is being converted to two independent single lasers. Frequency-tuning methods, optics focusing system and diagnostics system will be discussed. The laser measurements and results of synchronization of two lasers will be presented, and scaling to PLX experiments will be given. [1] Rogers, J. H. and Hwang, D. Q., PRL. v68 p3877 (1992).

  20. Ionosphere Plasma State Determination in Low Earth Orbit from International Space Station Plasma Monitor

    Science.gov (United States)

    Kramer, Leonard

    2014-01-01

    A plasma diagnostic package is deployed on the International Space Station (ISS). The system - a Floating Potential Measurement Unit (FPMU) - is used by NASA to monitor the electrical floating potential of the vehicle to assure astronaut safety during extravehicular activity. However, data from the unit also reflects the ionosphere state and seems to represent an unutilized scientific resource in the form of an archive of scientific plasma state data. The unit comprises a Floating Potential probe and two Langmuir probes. There is also an unused but active plasma impedance probe. The data, at one second cadence, are collected, typically for a two week period surrounding extravehicular activity events. Data is also collected any time a visiting vehicle docks with ISS and also when any large solar events occur. The telemetry system is unusual because the package is mounted on a television camera stanchion and its data is impressed on a video signal that is transmitted to the ground and streamed by internet to two off center laboratory locations. The data quality has in the past been challenged by weaknesses in the integrated ground station and distribution systems. These issues, since mid-2010, have been largely resolved and the ground stations have been upgraded. Downstream data reduction has been developed using physics based modeling of the electron and ion collecting character in the plasma. Recursive algorithms determine plasma density and temperature from the raw Langmuir probe current voltage sweeps and this is made available in real time for situational awareness. The purpose of this paper is to describe and record the algorithm for data reduction and to show that the Floating probe and Langmuir probes are capable of providing long term plasma state measurement in the ionosphere. Geophysical features such as the Appleton anomaly and high latitude modulation at the edge of the Auroral zones are regularly observed in the nearly circular, 51 deg inclined, 400 km

  1. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    Science.gov (United States)

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  2. Application of a pulsed, RF-driven, multicusp source for low energy plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Wengrow, A.B.; Leung, K.N.; Perkins, L.T.; Pickard, D.S.; Rickard, M.; Williams, M.D. [Lawrence Berkeley Lab., CA (United States); Tucker, M. [Spectrum Sciences, Inc., Santa Clara, CA (United States)

    1996-06-01

    The multicusp ion source can produce large volumes of uniform, quiescent, high density plasmas. A plasma chamber suited for plasma immersion ion implantation (PIII) was readily made. Conventional PIII pulses the bias voltage applied to the substrate which is immersed in a CW mode plasma. Here, a method by which the plasma itself is pulsed was developed. Typically pulse lengths of 500 {mu}s are used and are much shorter than that of the substrate voltage pulse (5-15 ms). This approach, together with low gas pressures and low bias voltages, permits the constant energy implantation of an entire wafer simultaneously without glow discharge. Results show that this process can yield implant currents of up to 2.5 mA/cm{sup 2}; thus very short implant times can be achieved. Uniformity of the ion flux is also discussed. As this method can be scaled to any dimension, it can be made to handle any size wafer.

  3. Persistence of magnetic field driven by relativistic electrons in a plasma

    CERN Document Server

    Flacco, A; Lifschitz, A; Sylla, F; Kahaly, S; Veltcheva, M; Silva, L O; Malka, V

    2015-01-01

    The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms, including instabilities, dynamo effects and ultra-high energy particle flows through gas, plasma and interstellar-media. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each operates can be reconciled by scaling parameters that enable to recreate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles can strongly magnetize the boundary between the plasma and the non-ionized gas to magnetic fields up to 10-100 Tesla (micro Tesla in astrophysical conditions). The physics is observed from the first time-resolved large scale magnetic field measurements obtained in a laser wakefield accelerator. Particle-in-cell simulations capturing the global plasma and field dynamics over the full plasma le...

  4. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    Science.gov (United States)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  5. Photochemical/Microchannel Plasma Reactors Driven By High Power Vacuum Ultraviolet Lamps

    Science.gov (United States)

    Shin, Chul; Park, Sung-Jin; Eden, Gary

    2016-09-01

    Experiments are being conducted in which molecular dissociation or other chemical reactions in microchannel plasmas are accelerated by the introduction of vacuum ultraviolet photons. Initial emphasis is being placed on recently-developed Xe2 lamps that are efficient sources of 172 nm (h ν 7.2 eV) photons. Thin, flat lamps, fabricated from fused silica and having microcavity arrays internal to the lamp, have been developed by the University of Illinois and Eden Park Illumination and produce intensities above 200 mW/cm2. Integrating such lamps into a microcavity plasma reactor yields a hybrid photochemical/plasma system in which product yield and power consumption can be optimized. The selectivity of photodissociation in generating radicals and atomic fragments offers new synergies in plasma processing. Data concerning CO2 dissociation in arrays of microchannel plasmas, and the modification of this process by external 172 nm radiation, will be presented.

  6. Plasma block acceleration via double targets driven by an ultraintense circularly polarized laser pulse

    Science.gov (United States)

    Xu, Yanxia; Wang, Jiaxiang; Qi, Xin; Li, Meng; Xing, Yifan; Yang, Lei; Zhu, Wenjun

    2017-03-01

    By using two-dimensional particle-in-cell simulations, plasma block acceleration via radiation pressure from an ultraintense circularly polarized laser pulse with intensity I ≈ 10 22 W / cm 2 is investigated based on a double-target scheme, in which the targets are composed of a pre-target with a relatively low plasma density and a main target with a high plasma density. It has been demonstrated that an appropriately selected pre-target can help to greatly enhance the charge separation field in the main target, which then leads to generation of a strongly accelerated and well directed plasma block with proton energy in GeV magnitude. This result can have potential applications in the plasma block ignition of proton-born fusion.

  7. Line-imaging VISAR for laser-driven equations of state experiments

    Science.gov (United States)

    Mikhaylyuk, A. V.; Koshkin, D. S.; Gubskii, K. L.; Kuznetsov, A. P.

    2016-11-01

    The paper presents the diagnostic system for velocity measurements in laser- driven equations of state experiments. Two Mach-Zehnder line-imaging VISAR-type (velocity interferometer system for any reflector) interferometers form a vernier measuring system and can measure velocity in the interval of 5 to 50 km/s. Also, the system includes a passive channel that records target luminescence in the shock wave front. Spatial resolution of the optical layout is about 5 μm.

  8. Steady-state properties of driven magnetic reconnection in 2D electron magnetohydrodynamics.

    Science.gov (United States)

    Chacón, L; Simakov, Andrei N; Zocco, A

    2007-12-07

    We formulate a rigorous nonlinear analytical model that describes the dynamics of the diffusion (reconnection) region in driven systems in the context of electron magnetohydrodynamics (EMHD). A steady-state analysis yields allowed geometric configurations and associated reconnection rates. In addition to the well-known open X-point geometry, elongated configurations are found possible. The model predictions have been validated numerically with two-dimensional EMHD nonlinear simulations, and are in excellent agreement with previously published work.

  9. Modeling and simulation of plasma gas flow driven by a single nanosecond-pulsed dielectric barrier discharge

    Science.gov (United States)

    Xu, S. Y.; Cai, J. S.; Li, J.

    2016-10-01

    A simplified (7 species and 9 processes) plasma kinetic model is proposed to investigate the mechanism of the plasma aerodynamic actuation driven by nanosecond-pulsed dielectric barrier discharge (NS-DBD). The governing equations include conservation equations for each species, the Poisson equation for the electric potential, and Navier-Stokes equations for the gas dynamic flow. Numerical simulations of plasma discharge and flow actuation on NS-DBD plasma actuators have been carried out. Key discharge characteristics and the responses of the quiescent air were reproduced and compared to those obtained in experiments and numerical simulations. Results demonstrate that the reduced plasma kinetic model is able to capture the dominant species and reactions to predict the actuation in complicated hydrodynamics. For the one-dimensional planar and two-dimensional symmetric NS-DBD, the forming of the sheath collapse is mainly due to the charge accumulation and secondary emission from the grounded electrode. Rapid species number density rise and electric field drop occur at the edge of the plasma sheath, where the space charge density gradient peaks. For the aerodynamic actuation with typical asymmetry electrodes, discharge characteristics have a core area on the right edge of the upper electrode, where the value can be much higher. The formation and propagation of the compression waves generated through rapid heating have also been performed and compared to those measured in a recent experiment. Energy release leads to gas expansion and forms a cylindrical shock wave, centering at the upper electrode tip with low gas acceleration. For the present single pulsed 12 kV case, the mean temperature of gas heating reaches about 575 K at 1 μs and decreases to about 460 K at 10 μs.

  10. Plasma ignition and steady state simulations of the Linac4 H$^{-}$ ion source

    CERN Document Server

    Mattei, S; Yasumoto, M; Hatayama, A; Lettry, J; Grudiev, A

    2014-01-01

    The RF heating of the plasma in the Linac4 H- ion source has been simulated using an Particle-in-Cell Monte Carlo Collision method (PIC-MCC). This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

  11. Scheme for proton-driven plasma-wakefield acceleration of positively charged particles in a hollow plasma channel

    Directory of Open Access Journals (Sweden)

    Longqing Yi (易龙卿

    2013-07-01

    Full Text Available A new scheme for accelerating positively charged particles in a plasma-wakefield accelerator is proposed. If the proton drive beam propagates in a hollow plasma channel, and the beam radius is of order of the channel width, the space charge force of the driver causes charge separation at the channel wall, which helps to focus the positively charged witness bunch propagating along the beam axis. In the channel, the acceleration buckets for positively charged particles are much larger than in the blowout regime of the uniform plasma, and stable acceleration over long distances is possible. In addition, phasing of the witness with respect to the wave can be tuned by changing the radius of the channel to ensure the acceleration is optimal. Two-dimensional simulations suggest that, for proton drivers likely available in future, positively charged particles can be stably accelerated over 1 km with the average acceleration gradient of 1.3  GeV/m.

  12. Ground state of a confined Yukawa plasma including correlation effects

    CERN Document Server

    Henning, C; Filinov, A; Piel, A; Bonitz, M

    2007-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile \\cite{henning.pre06}. While the MF results are more accurate for weak screening, LDA with correlations included yields the proper description for large screening. By comparison with first-principle simulations for three-dimensional spherical Yukawa crystals we demonstrate that both approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  13. Classical Equation of State for Dilute Relativistic Plasma

    Science.gov (United States)

    Hussein, N. A.; Eisa, D. A.; Sayed, E. G.

    2016-06-01

    The aim of this paper is to calculate the analytical form of the equation of state for dilute relativistic plasma. We obtained the excess free energy and pressure in the form of a convergent series expansion in terms of the thermal parameter μ where μ = {{m{c^2}} over {KT}}, m is the mass of charge, c is the speed of light, K is the Boltzmann's constant, and T is the absolute temperature. The results are discussed and compared with previous work of other authors.

  14. Second harmonic electromagnetic emission of a turbulent magnetized plasma driven by a powerful electron beam

    CERN Document Server

    Timofeev, I V

    2012-01-01

    The power of second harmonic electromagnetic emission is calculated for the case when strong plasma turbulence is excited by a powerful electron beam in a magnetized plasma. It is shown that the simple analytical model of strong plasma turbulence with the assumption of a constant pump power is able to explain experimentally observed bursts of electromagnetic radiation as a consequence of separate collapse events. It is also found that the electromagnetic emission power calculated for three-wave interaction processes occurring in the long-wavelength part of turbulent spectrum is in order-of-magnitude agreement with experimental results.

  15. Non-equilibrium plasma experiments at The Pennsylvania State University

    Science.gov (United States)

    Knecht, Sean; Bilen, Sven; Micci, Michael

    2013-10-01

    The authors have recently established the capability at The Pennsylvania State University to generate non-equilibrium plasma in atmospheric-pressure air and liquids such as water and saline. The plasma is generated using a high-voltage pulser (Pacific-Electronics PT-55), which is capable of voltage pulses of 75-ns width, peak voltage >50 kV, with rise-times on the order of nanoseconds. The electrodes are tungsten wires of various diameters (50 μm, 175 μm, 254 μm) insulated with nylon tubing. The spacing of the electrodes is controlled with translating mounts with resolution of tens of microns. Spectroscopy (Ocean Optics Model HR2000) is presently used for line identification only. Current and voltage vs. time will be measured with a 500-MHz bandwidth oscilloscope, a high-voltage probe and a shunt resistor connected to the ground side of the circuit. Research directions presently being pursued include the effects of solution electrical conductivity on plasma production and propellant ignition studies. Data from several types of experiments will be presented.

  16. Steady-State Flows in Two-Fluid Models of NSTX and DIII-D Plasmas

    Science.gov (United States)

    Ferraro, N. M.; Jardin, S. C.; Chen, J.

    2009-05-01

    Accurate axisymmetric steady-states of a comprehensive two-fluid model are calculated for plasmas in diverted NSTX and DIII-D geometries using the M3D-C^1 code [1]. It is found that gyroviscosity may have a significant effect on the flows in steady-state when a localized density source is present. The model implemented in M3D-C^1 self-consistently includes the effects of flows, anisotropic viscosity, anisotropic thermal conductivity, and resistivity. Results for ohmically driven plasmas are presented. New capabilities of M3D-C^1 allow the three-dimensional linear stability of axisymmetric equilibria to be calculated; these capabilities and preliminary stability results are discussed. Also discussed are recent and future extensions to M3D-C^1, including heuristic bootstrap current models, coupling to a physics-based transport model, and nonlinear non-axisymmetric capability. 3pt[1] S. C. Jardin, J. Breslau, N. Ferraro, J. Comput. Phys, 226 (2007) 2146

  17. Energetic particle-driven compressional Alfvén eigenmodes and prospects for ion cyclotron emission studies in fusion plasmas

    Science.gov (United States)

    Gorelenkov, N. N.

    2016-10-01

    As a fundamental plasma oscillation the compressional Alfvén waves (CAWs) are interesting for plasma scientists both academically and in applications for fusion plasmas. They are believed to be responsible for the ion cyclotron emission (ICE) observed in many tokamaks. The theory of CAW and ICE was significantly advanced at the end of 20th century in particular motivated by first DT experiments on TFTR and subsequent JET DT experimental studies. More recently, ICE theory was advanced by ST (or spherical torus) experiments with the detailed theoretical and experimental studies of the properties of each instability signal. There the instability responsible for ICE signals previously indistinguishable in high aspect ratio tokamaks became the subjects of experimental studies. We discuss further the prospects of ICE theory and its applications for future burning plasma experiments such as the ITER tokamak-reactor prototype being build in France where neutrons and gamma rays escaping the plasma create extremely challenging conditions for fusion alpha particle diagnostics. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  18. Fast particle-driven ion cyclotron emission (ICE) in tokamak plasmas and the case for an ICE diagnostic in ITER

    CERN Document Server

    McClements, K G; Dendy, R O; Carbajal, L; Chapman, S C; Cook, J W S; Harvey, R W; Heidbrink, W W; Pinches, S D

    2014-01-01

    Fast particle-driven waves in the ion cyclotron frequency range (ion cyclotron emission or ICE) have provided a valuable diagnostic of confined and escaping fast ions in many tokamaks. This is a passive, non-invasive diagnostic that would be compatible with the high radiation environment of deuterium-tritium plasmas in ITER, and could provide important information on fusion {\\alpha}-particles and beam ions in that device. In JET, ICE from confined fusion products scaled linearly with fusion reaction rate over six orders of magnitude and provided evidence that {\\alpha}-particle confinement was close to classical. In TFTR, ICE was observed from super-Alfv\\'enic {\\alpha}-particles in the plasma edge. The intensity of beam-driven ICE in DIII-D is more strongly correlated with drops in neutron rate during fishbone excitation than signals from more direct beam ion loss diagnostics. In ASDEX Upgrade ICE is produced by both super-Alfv\\'enic DD fusion products and sub-Alfv\\'enic deuterium beam ions.

  19. Porcelain-coated antenna for radio-frequency driven plasma source

    Science.gov (United States)

    Leung, Ka-Ngo; Wells, Russell P.; Craven, Glen E.

    1996-01-01

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ion because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile.

  20. Intrinsic rotation driven by non-Maxwellian equilibria in Tokamak plasmas.

    Science.gov (United States)

    Barnes, M; Parra, F I; Lee, J P; Belli, E A; Nave, M F F; White, A E

    2013-08-02

    The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of cocurrent toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.

  1. Intrinsic rotation driven by non-Maxwellian equilibria in tokamak plasmas

    CERN Document Server

    Barnes, M; Lee, J P; Belli, E A; Nave, M F F; White, A E

    2013-01-01

    The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of co-current toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.

  2. Temporal and spatial profiles of emission intensities in atmospheric pressure helium plasma jet driven by microsecond pulse: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Zhang, Cheng; Yan, Ping; Shao, Tao, E-mail: st@mail.iee.ac.cn [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Yuan [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Zhu, Weidong [Department of Applied Science and Technology, Saint Peter' s University, Jersey City, New Jersey 07306 (United States); Babaeva, Natalia Yu.; Naidis, George V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation)

    2015-09-28

    A needle-circular electrode structure helium plasma jet driven by microsecond pulsed power is studied. Spatially resolved emission results show that the emission intensity of He(3{sup 3}S{sub 1}) line decreases monotonically along the axial direction, while those of N{sub 2}(C{sup 3}Π{sub u}), N{sub 2}{sup +}(B{sup 2}∑{sup +}{sub u}), and O(3p{sup 5}P) reach their maxima at 3 cm, 2.6 cm, and 1.4 cm, respectively. The plasma plume of the four species shows different characteristics: The N{sub 2} emission plume travels at a fast speed along the entire plasma jet; the N{sub 2}{sup +} emission plume is composed of a bright head and relatively weak tail and travels a shorter distance than the N{sub 2} emission plume; the He emission plume travels at a slower speed for only a very short distance; propagation of the O emission plume is not observed. Results of calculation of radiation fluxes emitted by positive streamers propagating along helium plasma jets are presented. It is shown, in agreement with the results of the present experiment and with other available experimental data, that the intensities of radiation of N{sub 2}(C{sup 3}Π{sub u}) molecules and He(3{sup 3}S{sub 1}) atoms vary with time (along the plasma jet) quite differently. The factors resulting in this difference are discussed.

  3. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Science.gov (United States)

    Liang, Xiaozhen; Collins, Christopher M; Mendel, Justin B; Iwakoshi, Neal N; Speck, Samuel H

    2009-11-01

    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by

  4. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Liang

    2009-11-01

    Full Text Available Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68 gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners that do not directly participate in virus replication, but rather facilitate virus

  5. Dense-plasma-driven ultrafast formation of FePt organization on silicon substrate

    Indian Academy of Sciences (India)

    ROHIT MEDWAL; NEERU SEHDEV; WANG YING; R S RAWAT; S ANNAPOORNI

    2017-02-01

    This article demonstrates the removal of organic capping and promotion of long-range 2D organization of chemically synthesized FePt nanoparticles dispersed on Si$\\langle 100\\rangle$ substrate by means of pulsed H+ energetic ion irradiation using a dense plasma focus (DPF) device. The irradiation of energetic H$^+$ ions on FePt nanoparticles clearly resulted in enhanced structural and magnetic behaviour of the FePt nanoparticles as a function ofplasma focused irradiation shots. Transmission electron microscopy (TEM)/scanning electron microscopy (SEM) images of the FePt nanoparticles clearly show a marked enhancement in average particle size from 2.5 nm for nonirradiated sample to about 28nm for four plasma focus shots irradiation. The gradual removal of organic capping over chemically synthesized FePt nanoparticles with increasing plasma focus shots exposure is confirmed usingRaman spectroscopy. A uniform 2D organization of bimetallic FePt nanoparticles over 1 cm $\\times$ 1 cm silicon substrate is obtained with three plasma focus shots with better magnetic properties as compared with plasma-untreated FePtnanoparticles.

  6. High-Power Tunable Laser Pulse Driven Terahertz Generation in Corrugated Plasma Waveguides

    Science.gov (United States)

    Miao, Chenlong; Palastro, John; Antonsen, Thomas

    2016-10-01

    Excitation of terahertz radiation by the interaction of an ultra-short laser pulse and the fields of a miniature, corrugated plasma waveguide is considered. Plasma structures of this type have been realized experimentally and they can support electromagnetic (EM) channel modes with properties that allow for radiation generation. In particular, the mode have subluminal field components, thus allowing phase matching between the generated THz modes and the ponderomotive potential of the laser pulse. Theoretical analysis and full format PIC simulations are conducted. We find THz generated by this slow wave phase matching mechanism is characterized by lateral emission and a coherent, narrow band, tunable spectrum with relatively high power and conversion efficiency. We investigated two different types of channels, and a range of realistic laser pulses and plasma profile parameters are considered with the goal of increasing the conversion of optical energy to THz radiation. We find high laser intensities strongly modify the THz spectrum by exciting higher order channel modes. Enhancement of a specific channel mode can be realized by using an optimum pulse duration and plasma density. As an example, a fixed drive pulse (0.55 J) with spot size of 15 µm and pulse duration of 15 fs excites 37.8 mJ of THz radiation in a 1.5 cm corrugated plasma waveguide with on axis average density of 1.4×1018cm-3, conversion efficiency exceeding 8% is achieved.

  7. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    Science.gov (United States)

    Chen, Zhao-Quan; Yin, Zhi-Xiang; Xia, Guang-Qing; Hong, Ling-Li; Hu, Ye-Lin; Liu, Ming-Hai; Hu, Xi-Wei; A. Kudryavtsev, A.

    2015-02-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105002 and 61170172), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085QA16 and 1408085ME101), the China Postdoctoral Science Foundation (Grant No. 2014M551788), and the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (HUST), China (Grant No. GZ1301).

  8. Ontology driven decision support systems for medical diagnosis - an interactive form for consultation in patients with plasma cell disease.

    Science.gov (United States)

    Donfack Guefack, Valéry; Bertaud Gounot, Valérie; Duvauferrier, Régis; Bourde, Annabel; Morelli, John; Lasbleiz, Jérémy

    2012-01-01

    Multiple myeloma (MM) is a malignant disorder characterized by the monoclonal proliferation of B cell derived plasma cells in the bone marrow. The diagnosis depends on the identification of abnormal monoclonal marrow plasma cells, monoclonal protein in the serum or urine, evidence of end-organ damage, and a clinical picture consistent with MM. The distinction between MM stages- monoclonal gammopathy of undetermined significance or indolent myeloma-is critical in guiding therapy. This paper describes how to produce ontology-driven semiological rules base (SRB) and a consultation form to aid in the diagnosis of plasma cells diseases. We have extracted the MM sub-ontology from the NCI Thesaurus. Using Protégé 3.4.2 and owl1, criteria in the literature for the diagnosis and staging of MM have been added to the ontology. All quantitative parameters have been transformed to a qualitative format. A formal description of MM variants and stages has been given. The obtained ontology has been checked by a reasoner and instantiated to obtain a SRB. The form created has been tested and evaluated utilizing 63 clinical medical reports. The likelihood for a disease being the correct diagnosis is determined by computing a ratio. The resulting tool is relevant for MM diagnosis and staging.

  9. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)

    2012-09-15

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  10. Laser-driven hole boring and gamma-ray emission in high-density plasmas

    CERN Document Server

    Nerush, Evgeny

    2014-01-01

    Ion acceleration in laser-produced dense plasmas is a key topic of many recent investigations thanks to its potential applications. Besides, at forthcoming laser intensities ($I \\gtrsim 10^{23} \\text{W}\\,\\text{cm}^{-2}$) interaction of laser pulses with plasmas can be accompanied by copious gamma-ray emission. Here we demonstrate the mutual influence of gamma-ray emission and ion acceleration during relativistic hole boring in high-density plasmas with ultra-intense laser pulses. If gamma-ray emission is abundant, laser pulse reflection and hole-boring velocity are lower and gamma-ray radiation pattern is narrower than in the case of low emission. Conservation of energy and momentum allows one to elucidate the effects of gamma-ray emission which are more pronounced at higher hole-boring velocities.

  11. Study of plasma pressure evolution driven by strong picosecond laser pulse

    Science.gov (United States)

    Li, M.; Wang, J. X.; Xu, Y. X.; Zhu, W. J.

    2017-01-01

    Through one dimensional relativistic particle-in-cell simulation of strong laser interaction with the solid-density plasma, the evolution of the plasma impact pressure behind a thin foil has been investigated in details. An energy-compression mechanism has been proposed to help optimizing the laser and plasma parameters. It has been found that by using a picosecond laser with intensity 1015 W cm-2, an impact pressure as high as several hundreds of GPa order of magnitude can be obtained. The numerical analysis demonstrates that the peak pressure is mainly resulted from the ion contribution. These results are of potential application to the laser loading upon solids in order to study the material properties under extra-high dynamic pressure.

  12. Fast magnetic field annihilation driven by two laser pulses in underdense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y. J.; Kumar, D.; Weber, S.; Korn, G. [Institute of Physics of the ASCR, ELI-Beamlines, 18221 Prague (Czech Republic); Klimo, O. [Institute of Physics of the ASCR, ELI-Beamlines, 18221 Prague (Czech Republic); FNSPE, Czech Technical University in Prague, 11519 Prague (Czech Republic); Bulanov, S. V.; Esirkepov, T. Zh. [Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215 (Japan)

    2015-10-15

    Fast magnetic annihilation is investigated by using 2.5-dimensional particle-in-cell simulations of two parallel ultra-short petawatt laser pulses co-propagating in underdense plasma. The magnetic field generated by the laser pulses annihilates in a current sheet formed between the pulses. Magnetic field energy is converted to an inductive longitudinal electric field, which efficiently accelerates the electrons of the current sheet. This new regime of collisionless relativistic magnetic field annihilation with a timescale of tens of femtoseconds can be extended to near-critical and overdense plasma with the ultra-high intensity femtosecond laser pulses.

  13. Microwave-driven plasmas in Hollow-Core Photonic Crystal Fibres

    Science.gov (United States)

    Alves, L. L.; Leroy, O.; Boisse-Laporte, C.; Leprince, P.; Debord, B.; Gerome, F.; Jamier, R.; Benabid, F.

    2013-09-01

    This paper reports on a novel solution to ignite and maintain micro-plasmas in gas-filled Hollow-Core Photonic Crystal Fibres (HC-PCFs), using CW microwave excitation (2.45 GHz). The original concept is based on a surfatron, generating argon micro-plasmas of few centimetres in length within a 100 μm core-diameter Kagome HC-PCF, at ~1 mbar on-gap gas-pressure using low powers (core diameter, pressure and electron density). Work supported by ANR and DGA (ASTRID-2011-UVfactor) and by FCT (Pest-OE/SADG/LA0010/2011).

  14. Accelerator Studies on a possible Experiment on Proton-Driven Plasma Wakefields at CERN

    CERN Document Server

    Assmann, R W; Fartoukh, S; Geschonke, G; Goddard, B; Hessler, C; Hillenbrand, S; Meddahi, M; Roesler, S; Zimmermann, F; Caldwell, A; Muggli, P; Xia, G

    2011-01-01

    There has been a proposal by Caldwell et al to use proton beams as drivers for high energy linear colliders. An experimental test with CERN’s proton beams is being studied. Such a test requires a transfer line for transporting the beam to the experiment, a focusing section for beam delivery into the plasma, the plasma cell and a downstream diagnostics and dump section. The work done at CERN towards the conceptual layout and design of such a test area is presented. A possible development of such a test area into a CERN test facility for high-gradient acceleration experiments is discussed.

  15. Stability of current-driven electrostatic waves in a magnetized and collisional negative ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, Chandu; Varghese, Anu; S, Jyothi [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 560, Kerala (India); Issac, Molly [Department of Physics, All Saints' College, Thiruvananthapuram 695 007, Kerala (India); Renuka, G [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala (India)], E-mail: cvgmgphys@yahoo.co.in

    2008-10-15

    The stability of electrostatic waves, propagating nearly parallel to a uniform external magnetic field, is studied in a fully ionized, collisional plasma of positive and negative ions and a field-aligned current of drifting electrons. Expressions have been derived for the dispersion relation and growth rate using fluid theory and retaining the collisional and conductivity terms for the electrons. The plasma can, in general, support two modes, which have frequencies that are a composite of the ion acoustic and ion gyro frequencies. The growth rate of the modes increases with increasing drift velocities of the electrons and decreases with increasing negative ion densities.

  16. Design of Plasma Generator Driven by High-frequency High-voltage Power Supply

    Directory of Open Access Journals (Sweden)

    C. Yong-Nong

    2013-03-01

    Full Text Available In this research, a high-frequency high-voltage power supply designed for plasma generator is presented. The powersupply mainly consists of a series resonant converter with a high-frequency high-voltage boost transformer. Due to theindispensable high-voltage inheritance in the operation of plasma generator, the analysis of transformer needconsidering not only winding resistance, leakage inductance, magnetizing inductance, and core-loss resistance, butalso parasitic capacitance resulted from the insulation wrappings on the high-voltage side. This research exhibits asimple approach to measuring equivalent circuit parameters of the high-frequency, high-voltage transformer with straycapacitance being introduced into the conventional modeling. The proposed modeling scheme provides not only aprecise measurement procedure but also effective design information for series-load resonant converter. The plasmadischarging plate is designed as part of the electric circuit in the series load-resonant converter and the circuit modelof the plasma discharging plate is also conducted as well. Thus, the overall model of the high-voltage plasmagenerator is built and the designing procedures for appropriate selections of the corresponding resonant-circuitparameters can be established. Finally, a high-voltage plasma generator with 220V, 60Hz, and 1kW input, along witha 22 kHz and over 8kV output, is realized and implemented.

  17. Resonant-Cavity Driven Alfvén Waves in a Helium-Hydrogen Plasma

    Science.gov (United States)

    Clark, Mary; Dorfman, Seth; Vincena, Steve; Zhu, Ziyan; Carter, Troy

    2016-10-01

    Alfvén waves exist in many regimes. In fusion experiments, they can disrupt fusion processes by scattering particles, and in space, they are proposed to heat the solar corona. In these environments, multiple ion species usually occur. It is therefore relevant to study Alfvén waves carried by multiple ion species in a laboratory device. Here a resonant cavity launches them in UCLA's Large Plasma Device (LaPD) in a helium/hydrogen plasma. In a two-ion species plasma, Alfvén waves propagate in two bands: below the heavy ion cyclotron frequency and between a hybrid frequency and the light ion cyclotron frequency. We observe two Alfvén waves at different frequencies (in different bands) emerge when the resonant cavity is excited at one frequency: one at the driving frequency and one at a lower frequency. The two frequencies and wavelengths agree with the dispersion relation. The resonant cavity theory predicts that the wavelengths should be 4 times the cavity's length; only the high frequency lies close to this prediction. This work was funded by UCLA's Norton Rodman Award, and was performed at the Basic Plasma Science Facility, funded by DoE and NSF.

  18. PIC Simulations of Continuously Driven Mirror and Ion Cyclotron Instabilities in High Beta Astrophysical and Heliospheric Plasmas

    CERN Document Server

    Riquelme, Mario; Verscharen, Daniel

    2014-01-01

    We use particle-in-cell (PIC) simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with the perpendicular pressure larger than the parallel pressure, and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular p...

  19. Formation and stability of a hollow electron beam in the presence of a plasma wake field driven by an ultra-short electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Tanjia, F., E-mail: tanjia.fatema@gmail.com [Dipartimento di Fisica, Universià di Napoli “Federico II” (Italy); INFN Sezione di Napoli (Italy); Fedele, R. [Dipartimento di Fisica, Universià di Napoli “Federico II” (Italy); INFN Sezione di Napoli (Italy); De Nicola, S. [Dipartimento di Fisica, Universià di Napoli “Federico II” (Italy); INFN Sezione di Napoli (Italy); CNR-SPIN, Complesso Universitario di Monte S' Angelo, Napoli (Italy); Akhter, T. [Dipartimento di Fisica, Universià di Napoli “Federico II” (Italy); INFN Sezione di Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia)

    2016-09-01

    A numerical investigation on the spatiotemporal evolution of an electron beam, externally injected in a plasma in the presence of a plasma wake field, is carried out. The latter is driven by an ultra-short relativistic axially-symmetric femtosecond electron bunch. We first derive a novel Poisson-like equation for the wake potential where the driving term is the ultra-short bunch density, taking suitably into account the interplay between the sharpness and high energy of the bunch. Then, we show that a channel is formed longitudinally, through the externally injected beam while experiencing the effects of the bunch-driven plasma wake field, within the context of thermal wave model. The formation of the channel seems to be a final stage of the 3D evolution of the beam. This involves the appearance of small filaments and bubbles around the longitudinal axis. The bubbles coalesce forming a relatively stable axially-symmetric hollow beam structure. - Highlights: • A novel Poisson-like equation for the wake potential driven by the ultra-short bunch density is derived in the context of PWF theory. • The spatiotemporal evolution of another externally injected electron beam in the presence plasma wake field is numerically investigated. • A channel is formed longitudinally, through the externally injected beam while experiencing the effects of the bunch-driven plasma wake field. • A relatively stable axially symmetric hollow beam structure is formed through the evolution.

  20. Nonequilibrium steady states in contact: approximate thermodynamic structure and zeroth law for driven lattice gases.

    Science.gov (United States)

    Pradhan, Punyabrata; Amann, Christian P; Seifert, Udo

    2010-10-08

    We explore driven lattice gases for the existence of an intensive thermodynamic variable which could determine "equilibration" between two nonequilibrium steady-state systems kept in weak contact. In simulations, we find that these systems satisfy surprisingly simple thermodynamic laws, such as the zeroth law and the fluctuation-response relation between the particle-number fluctuation and the corresponding susceptibility remarkably well. However, at higher densities, small but observable deviations from these laws occur due to nontrivial contact dynamics and the presence of long-range spatial correlations.

  1. Numerical Investigation of the Steady State of a Driven Thin Film Equation

    Directory of Open Access Journals (Sweden)

    A. J. Hutchinson

    2013-01-01

    Full Text Available A third-order ordinary differential equation with application in the flow of a thin liquid film is considered. The boundary conditions come from Tanner's problem for the surface tension driven flow of a thin film. Symmetric and nonsymmetric finite difference schemes are implemented in order to obtain steady state solutions. We show that a central difference approximation to the third derivative in the model equation produces a solution curve with oscillations. A difference scheme based on a combination of forward and backward differences produces a smooth accurate solution curve. The stability of these schemes is analysed through the use of a von Neumann stability analysis.

  2. Photoelectron emission from metal surfaces induced by VUV-emission of filament driven hydrogen arc discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Laulainen, J.; Kalvas, T.; Koivisto, H.; Komppula, J.; Tarvainen, O. [University of Jyväskylä, Department of Physics (Finland)

    2015-04-08

    Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H{sup −} ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

  3. Ablation Pressure Driven by an Energetic Electron Beam in a Dense Plasma

    Science.gov (United States)

    Gus'kov, S.; Ribeyre, X.; Touati, M.; Feugeas, J.-L.; Nicolaï, Ph.; Tikhonchuk, V.

    2012-12-01

    An intense beam of high energy electrons may create extremely high pressures in solid density materials. An analytical model of ablation pressure formation and shock wave propagation driven by an energetic electron beam is developed and confirmed with numerical simulations. In application to the shock-ignition approach in inertial confinement fusion, the energy transfer by fast electrons may be a dominant mechanism of creation of the igniting shock wave. An electron beam with an energy of 30 keV and energy flux 2-5PW/cm2 can create a pressure amplitude more than 300 Mbar for a duration of 200-300 ps in a precompressed solid material.

  4. Kinetic theory of the filamentation instability in a collisional current-driven plasma with nonextensive distribution

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Rastbood, E. [Physics Department, University of Birjand, Birjand 97179-63384 (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of)

    2015-07-15

    The evolution of filamentation instability in a weakly ionized current-carrying plasma with nonextensive distribution was studied in the diffusion frequency region, taking into account the effects of electron-neutral collisions. Using the kinetic theory, Lorentz transformation formulas, and Bhatnagar-Gross-Krook collision model, the generalized dielectric permittivity functions of this plasma system were achieved. By obtaining the dispersion relation of low-frequency waves, the possibility of filamentation instability and its growth rate were investigated. It was shown that collisions can increase the maximum growth rate of instability. The analysis of temporal evolution of filamentation instability revealed that the growth rate of instability increased by increasing the q-parameter and electron drift velocity. Finally, the results of Maxwellian and q-nonextensive velocity distributions were compared and discussed.

  5. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    Science.gov (United States)

    Olsen, Jeppe; Madsen, Jens; Nielsen, Anders Henry; Rasmussen, Jens Juul; Naulin, Volker

    2016-04-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocity scaling, which is proportional to the ion acoustic speed times the square root of the filament particle density times the sum of the electron and ion temperature perturbations. Only for small blobs the cross field convection does not follow this scaling. The influence of finite Larmor radius effects on the cross-field blob convection is shown not to depend strongly on the dynamical ion temperature field. The blob dynamics of constant finite and dynamical ion temperature blobs is similar. When the blob size is on the order of 10 times the ion Larmor radius the blobs stay coherent and decelerate slowly compared to larger blobs which dissipate faster due to fragmentation and turbulent mixing.

  6. Ion waves driven by shear flow in a relativistic degenerate astrophysical plasma

    Indian Academy of Sciences (India)

    KHAN SHABBIR A; BAKHTIAR-UD-DIN; ILYAS MUHAMMAD; WAZIR ZAFAR

    2016-05-01

    We investigate the existence and propagation of low-frequency (in comparison to ion cyclotron frequency) electrostatic ion waves in highly dense inhomogeneous astrophysical magnetoplasma comprising relativistic degenerate electrons and non-degenerate ions. The dispersion equation is obtained by Fourier analysis under mean-field quantum hydrodynamics approximationfor various limits of the ratio of rest mass energy to Fermi energy of electrons, relevant to ultrarelativistic, weakly-relativistic and non-relativistic regimes. It is found that the system admits an oscillatory instability under certain condition in the presence of velocity shear parallel to ambient magnetic field. The dispersive role of plasma density and magnetic field is also discussed parametrically in the scenario of dense and degenerate astrophysical plasmas.

  7. Inductively driven surface-plasma negative ion source for N-NBI use (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Abdrashitov, G.; Deichuli, P.; Ivanov, A.; Gorbovsky, A.; Kondakov, A.; Sanin, A.; Sotnikov, O.; Shikhovtsev, I. [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    The long-pulse surface-plasma source prototype is developed at Budker Institute of Nuclear Physics for negative-ion based neutral beam injector use. The essential source features are (1) an active temperature control of the ion-optical system electrodes by circulation of hot thermal fluid through the channels, drilled in the electrode bodies, (2) the concaved transverse magnetic field in the extraction and acceleration gaps, preventing the electrons trapping and avalanching, and (3) the directed cesium deposition via distribution tubes adjacent to the plasma grid periphery. The long term effect of cesium was obtained just with the single cesium deposition. The high voltage strength of ion-optical system electrodes was improved with actively heated electrodes. A stable H{sup −} beam with a current ∼1 A and energy 90 keV was routinely extracted and accelerated.

  8. Positron acceleration by plasma wake fields driven by a hollow electron beam

    CERN Document Server

    Jain, Neeraj; Palastro, J P

    2014-01-01

    A scheme of wake field generation for positron acceleration using hollow or donut shaped electron driver beams is studied. An annular shaped, electron free region forms around a hollow driver beam creating a favorable region (longitudinal field is accelerating and transverse field is focusing and radially linear) for positron acceleration. Accelerating gradients of the order of 10 GV/m are produced by a hollow electron beam driver with FACET like parameters. The peak accelerating field increases linearly with the total charge in the beam driver while the axial size of the favorable region ($\\sim$ one plasma wavelength) remains approximately fixed. The radial size drops with the total charge but remains large enough for the placement of a witness positron beam. We simulate an efficient acceleration of a 23 GeV positron beam to 35.4 GeV with a maximum energy spread of 0.4\\% and very small emittance over a plasma length of 140 cm.

  9. Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J., E-mail: jun.zhu@desy.de [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Universität Hamburg, Hamburg (Germany); Assmann, R.W.; Dorda, U.; Marchetti, B. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany)

    2016-09-01

    We present theoretical and numerical studies of matching sub-femtosecond space-charge-dominated electron bunch into the Laser-plasma Wake Field Accelerator (LWFA) foreseen at the SINBAD facility. The longitudinal space-charge (SC) effect induced growths of the energy spread and longitudinal phase-space chirp are major issues in the matching section, which will result in bunch elongation, emittance growth and spot size dilution. In addition, the transverse SC effect would lead to a mismatch of the beam optics if it were not compensated for. Start-to-end simulations and preliminary optimizations were carried out in order to understand the achievable beam parameters at the entrance of the plasma accelerator.

  10. An outlook of heavy ion driven plasma research at IMP-Lanzhou

    Science.gov (United States)

    Zhao, Yongtao; Xiao, Guoqing; Xu, Hushan; Zhao, Hongwei; Xia, Jiawen; Jin, Genming; Ma, Xinwen; Liu, Yong; Yang, Zhihu; Zhang, Pengming; Wang, Yuyu; Li, Deihui; Zhao, Huanyu; Zhan, Wenlong; Xu, Zhongfeng; Zhao, Di; Li, Fuli; Chen, Ximeng

    2009-01-01

    Since the successful completion of the cooling storage ring (CSR) project in China at the end of 2007, high qualitative heavy ion beams with energy ranging from keV to GeV/u have been available at the Heavy Ion Research Facility at Lanzhou (HIRFL). More than 10 9 1 GeV/u C 6+ particles or 10 8 235 MeV/u Xe particles can be stored in the CSR main-ring and extracted within hundred nano-seconds during the test running, the beam parameters will be improved in the coming years so that high energy density (HED) conditions could be achieved and investigated there. Recent scientific results from the experiments relevant to plasma research on HIRFL are summarized. Dense plasma research with intense heavy ion beams of CSR is proposed here.

  11. Plasma antennas driven by 5–20 kHz AC power supply

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiansen, E-mail: 67093058@qq.com; Chen, Yuli; Sun, Yang; Wu, Huafeng; Liu, Yue; Yuan, Qiumeng [Merchant Marine College, Shanghai Maritime University, Shanghai, 201306 (China)

    2015-12-15

    The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5–20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broad frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.

  12. Application of piezodetectors for diagnostics of pulsed and quasi-steady-state plasma streams

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Tereshin, V.I.; Ladygina, M.S. [NSC KIPT, Kharkov (Ukraine). Inst. of Plasma Physics

    2006-04-15

    The paper reports on studies of the plasma streams generated by two experimental devices: the quasi-steady-state plasma accelerator (QSPA) Kh-50 and the pulsed plasma gun PROSVET. The radial distributions of the plasma pressure for different times and varied distances from the accelerator output have been used for investigation of the plasma stream dynamics and study the plasma compression in the focus region for different operational regimes of plasma accelerators. In experiments for the application of pulsed plasma streams for surface modification of different industrial steels, optimal regimes of surface processing have been chosen on the basis of the plasma pressure measurements. Examples of application of the piezodetectors in simulation experiments on plasma surface interaction under high heat loads are presented.

  13. Measurement of stability of electron beam generated by laser-driven plasma-based accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, S; Miura, E; Koyama, K; Kato, S [National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)], E-mail: shi-masuda@aist.go.jp

    2008-05-01

    Quasi-monoenergetic electron beams with the energy of 30-80 MeV and large number of electrons more than 10{sup 8} were produced by focusing a 8TW, 50 fs Ti:sapphire laser pulse onto 1.6-1.9 x 10{sup 19} cm{sup -3} plasmas. Stability of the quasi-monoenergetic electron beam generation was evaluated using an in-situ observation system for the electron beam diagnostics.

  14. A study of the effect on human mesenchymal stem cells of an atmospheric pressure plasma source driven by different voltage waveforms

    Science.gov (United States)

    Laurita, R.; Alviano, F.; Marchionni, C.; Abruzzo, P. M.; Bolotta, A.; Bonsi, L.; Colombo, V.; Gherardi, M.; Liguori, A.; Ricci, F.; Rossi, M.; Stancampiano, A.; Tazzari, P. L.; Marini, M.

    2016-09-01

    The effect of an atmospheric pressure non-equilibrium plasma on human mesenchymal stem cells was investigated. A dielectric barrier discharge non-equilibrium plasma source driven by two different high-voltage pulsed generators was used and cell survival, senescence, proliferation, and differentiation were evaluated. Cells deprived of the culture medium and treated with nanosecond pulsed plasma showed a higher mortality rate, while higher survival and retention of proliferation were observed in cells treated with microsecond pulsed plasma in the presence of the culture medium. While a few treated cells showed the hallmarks of senescence, unexpected delayed apoptosis ensued in cells exposed to plasma-treated medium. The plasma treatment did not change the expression of OCT4, a marker of mesenchymal stem cell differentiation.

  15. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  16. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  17. State-to-state modeling of non equilibrium low-temperature atomic plasmas

    Science.gov (United States)

    Bultel, Arnaud; Morel, Vincent; Annaloro, Julien; Druguet, Marie-Claude

    2017-03-01

    The most relevant approach leading to a thorough understanding of the behavior of non equilibrium atomic plasmas is to elaborate state-to-state models in which the mass conservation equation is applied directly to atoms or ions on their excited states. The present communication reports the elaboration of such models and the results obtained. Two situations close to each other are considered. First, the plasmas produced behind shock fronts obtained in ground test facilities (shock tubes) or during planetary atmospheric entries of spacecrafts are discussed. We focused our attention on the nitrogen case for which a complete implementation of the CoRaM-N2 collisional-radiative model has been performed in a steady one-dimensional computation code based on the Rankine-Hugoniot assumptions. Second, the plasmas produced by the interaction between an ultra short laser pulse and a tungsten sample are discussed in the framework of the elaboration of the Laser-Induced Breakdown Spectroscopy (LIBS) technique. In the present case, tungsten has been chosen in the purpose of validating an in situ experimental method able to provide the elemental composition of the divertor wall of a tokamak like WEST or ITER undergoing high energetic deuterium and tritium nuclei fluxes.

  18. Experimental investigation of SDBD plasma actuator driven by AC high voltage with a superimposed positive pulse bias voltage

    Science.gov (United States)

    Qi, Xiao-Hua; Yan, Hui-Jie; Yang, Liang; Hua, Yue; Ren, Chun-Sheng

    2017-08-01

    In this work, a driven voltage consisting of AC high voltage with a superimposed positive pulse bias voltage ("AC+ Positive pulse bias" voltage) is adopted to study the performance of a surface dielectric barrier discharge plasma actuator under atmospheric conditions. To compare the performance of the actuator driven by single-AC voltage and "AC+ Positive pulse bias" voltage, the actuator-induced thrust force and power consumption are measured as a function of the applied AC voltage, and the measured results indicate that the thrust force can be promoted significantly after superimposing the positive pulse bias voltage. The physical mechanism behind the thrust force changes is analyzed by measuring the optical properties, electrical characteristics, and surface potential distribution. Experimental results indicate that the glow-like discharge in the AC voltage half-cycle, next to the cycle where a bias voltage pulse has been applied, is enhanced after applying the positive pulse bias voltage, and this perhaps is the main reason for the thrust force increase. Moreover, surface potential measurement results reveal that the spatial electric field formed by the surface charge accumulation after positive pulse discharge can significantly affect the applied external electric field, and this perhaps can be responsible for the experimental phenomenon that the decrease of thrust force is delayed by pulse bias voltage action after the filament discharge occurs in the glow-like discharge region. The schlieren images further verify that the actuator-induced airflow velocity increases with the positive pulse voltage.

  19. Photo-transmutation of long-lived radionuclide 135Cs by laser-plasma driven electron source

    Science.gov (United States)

    Wang, X.-L.; Tan, Z.-Y.; Luo, W.; Zhu, Z.-C.; Wang, X.-D.; Song, Y.-M.

    2016-09-01

    Relativistic electrons, accelerated by the laser ponderomotive force, can be focused onto a high-Z convertor to generate high-brightness beams of gamma-rays, which in turn can be used to induce photonuclear reactions. In this work, the possibility of photo-transmutation of long-lived radionuclide Cs-135 by laser-plasma driven electron source has been demonstrated through Geant4 simulations. High energy electron generation, bremsstrahlung and photonuclear reaction have been observed at four different laser intensities of 10^{20} W/cm^2, 5 times 10^{20} W/cm^2, 10^{21} W/cm^2 and 5 times 10^{21} W/cm^2, respectively. It was shown that the laser intensity and the target geometry have strong effect on the transmutation reaction yield. At different laser intensities the recommended target sizes were found to obtain the maximum reaction yield. The remarkable feature of this work is to evaluate the optimal laser intensity to produce maximum reaction yield of 10^8 per Joule in laser pulse energy, which is 10^{21} W/cm^2. Our study suggests photo-transmutation driven by laser-based electron source as a promising approach for experimental research into transmutation reactions, with potential applications to nuclear waste management.

  20. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  1. Data-driven detrending of nonstationary fractal time series with echo state networks

    CERN Document Server

    Maiorino, Enrico; Livi, Lorenzo; Rizzi, Antonello; Sadeghian, Alireza

    2015-01-01

    In this paper, we propose a data-driven approach to the problem of detrending fractal and multifractal time series. We consider a time series as the measurements elaborated from a dynamical process over time. We assume that such a dynamical process is predictable to a certain degree, by means of a class of recurrent networks called echo state networks. Such networks have been shown to be able to predict the outcome of a number of dynamical processes. Here we propose to perform a data-driven detrending of nonstationary, fractal and multifractal time series by using an echo state network operating as a filter. Notably, we predict the trend component of a given input time series, which is superimposed to the (multi)fractal component of interest. Such a (estimated) trend is then removed from the original time series and the residual signal is analyzed with the Multifractal Detrended Fluctuation Analysis for a quantitative verification of the correctness of the proposed detrending procedure. In order to demonstrat...

  2. Automatic sleep classification using a data-driven topic model reveals latent sleep states

    DEFF Research Database (Denmark)

    Koch, Henriette; Christensen, Julie Anja Engelhard; Frandsen, Rune

    2014-01-01

    Background: The golden standard for sleep classification uses manual scoring of polysomnography despite points of criticism such as oversimplification, low inter-rater reliability and the standard being designed on young and healthy subjects. New method: To meet the criticism and reveal the latent...... sleep states, this study developed a general and automatic sleep classifier using a data-driven approach. Spectral EEG and EOG measures and eye correlation in 1 s windows were calculated and each sleep epoch was expressed as a mixture of probabilities of latent sleep states by using the topic model...... Latent Dirichlet Allocation. Model application was tested on control subjects and patients with periodic leg movements (PLM) representing a non-neurodegenerative group, and patients with idiopathic REM sleep behavior disorder (iRBD) and Parkinson's Disease (PD) representing a neurodegenerative group...

  3. Photoswitchable Magnetic Resonance Imaging Contrast by Improved Light-Driven Coordination-Induced Spin State Switch.

    Science.gov (United States)

    Dommaschk, Marcel; Peters, Morten; Gutzeit, Florian; Schütt, Christian; Näther, Christian; Sönnichsen, Frank D; Tiwari, Sanjay; Riedel, Christian; Boretius, Susann; Herges, Rainer

    2015-06-24

    We present a fully reversible and highly efficient on-off photoswitching of magnetic resonance imaging (MRI) contrast with green (500 nm) and violet-blue (435 nm) light. The contrast change is based on intramolecular light-driven coordination-induced spin state switch (LD-CISSS), performed with azopyridine-substituted Ni-porphyrins. The relaxation time of the solvent protons in 3 mM solutions of the azoporphyrins in DMSO was switched between 3.5 and 1.7 s. The relaxivity of the contrast agent changes by a factor of 6.7. No fatigue or side reaction was observed, even after >100,000 switching cycles in air at room temperature. Electron-donating substituents at the pyridine improve the LD-CISSS in two ways: better photostationary states are achieved, and intramolecular binding is enhanced.

  4. Proposed Rabi-Kondo correlated state in a laser-driven semiconductor quantum dot.

    Science.gov (United States)

    Sbierski, B; Hanl, M; Weichselbaum, A; Türeci, H E; Goldstein, M; Glazman, L I; von Delft, J; Imamoğlu, A

    2013-10-11

    Spin exchange between a single-electron charged quantum dot and itinerant electrons leads to an emergence of Kondo correlations. When the quantum dot is driven resonantly by weak laser light, the resulting emission spectrum allows for a direct probe of these correlations. In the opposite limit of vanishing exchange interaction and strong laser drive, the quantum dot exhibits coherent oscillations between the single-spin and optically excited states. Here, we show that the interplay between strong exchange and nonperturbative laser coupling leads to the formation of a new nonequilibrium quantum-correlated state, characterized by the emergence of a laser-induced secondary spin screening cloud, and examine the implications for the emission spectrum.

  5. Monte Carlo Sampling of Negative-temperature Plasma States

    Energy Technology Data Exchange (ETDEWEB)

    John A. Krommes; Sharadini Rath

    2002-07-19

    A Monte Carlo procedure is used to generate N-particle configurations compatible with two-temperature canonical equilibria in two dimensions, with particular attention to nonlinear plasma gyrokinetics. An unusual feature of the problem is the importance of a nontrivial probability density function R0(PHI), the probability of realizing a set {Phi} of Fourier amplitudes associated with an ensemble of uniformly distributed, independent particles. This quantity arises because the equilibrium distribution is specified in terms of {Phi}, whereas the sampling procedure naturally produces particles states gamma; {Phi} and gamma are related via a gyrokinetic Poisson equation, highly nonlinear in its dependence on gamma. Expansion and asymptotic methods are used to calculate R0(PHI) analytically; excellent agreement is found between the large-N asymptotic result and a direct numerical calculation. The algorithm is tested by successfully generating a variety of states of both positive and negative temperature, including ones in which either the longest- or shortest-wavelength modes are excited to relatively very large amplitudes.

  6. Non-modal theory of the kinetic ion temperature gradient driven instability of plasma shear flows across the magnetic field

    Science.gov (United States)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2016-06-01

    The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. The solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.

  7. First results with a surface conversion H ion source based on helicon wave mode-driven plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, Ollie A [Los Alamos National Laboratory; Geros, Ernest [Los Alamos National Laboratory; Rouleau, Gary [Los Alamos National Laboratory; Zaugg, Thomas J [Los Alamos National Laboratory

    2008-01-01

    The currently employed converter-type negative ion source at Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H{sup -} ion beams in a filament-driven discharge. The extracted H{sup -} beam current is limited by the achievable plasma density, which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which degrades the performance of the H{sup -} conversion surface. In order to overcome these limitations we have designed and tested a prototype of a surface conversion H{sup -} ion source, based on excitation of helicon plasma wave mode with an external antenna. The source has been operated with and without cesium injection. An H{sup -} beam current of over 12 mA has been transported through the low energy beam transport of the LANSCE ion source test stand. The results of these experiments and the effects of different source parameters on the extracted beam current are presented. The limitations of the source prototype are discussed and future improvements are proposed based on the experimental observations.

  8. Parabolic lithium mirror for a laser-driven hot plasma producing device

    Science.gov (United States)

    Baird, James K.

    1979-06-19

    A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.

  9. Modeling asymmetric cavity collapse with plasma equations of state.

    Science.gov (United States)

    Tully, Brett; Hawker, Nicholas; Ventikos, Yiannis

    2016-05-01

    We explore the effect that equation of state (EOS) thermodynamics has on shock-driven cavity-collapse processes. We account for full, multidimensional, unsteady hydrodynamics and incorporate a range of relevant EOSs (polytropic, QEOS-type, and SESAME). In doing so, we show that simplified analytic EOSs, like ideal gas, capture certain critical parameters of the collapse such as velocity of the main transverse jet and pressure at jet strike, while also providing a good representation of overall trends. However, more sophisticated EOSs yield different and more relevant estimates of temperature and density, especially for higher incident shock strengths. We model incident shocks ranging from 0.1 to 1000 GPa, the latter being of interest in investigating the warm dense matter regime for which experimental and theoretical EOS data are difficult to obtain. At certain shock strengths, there is a factor of two difference in predicted density between QEOS-type and SESAME EOS, indicating cavity collapse as an experimental method for exploring EOS in this range.

  10. A “slingshot” laser-driven acceleration mechanism of plasma electrons

    Energy Technology Data Exchange (ETDEWEB)

    Fiore, Gaetano, E-mail: gaetano.fiore@na.infn.it [Dip. di Matematica e Applicazioni, Università “Federico II”, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); De Nicola, Sergio [SPIN-CNR, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy)

    2016-09-01

    We briefly report on the recently proposed Fiore et al. [1] and Fiore and De Nicola [2] electron acceleration mechanism named “slingshot effect”: under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  11. Electronic excitation as a mode of heat dissipation in laser-driven cluster plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rajeev, R.; Rishad, K. P. M.; Madhu Trivikram, T.; Krishnamurthy, M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-5 (India)

    2013-12-15

    Electrons streaming out of laser plasma are known for non-local heat transport and energy deposition by the ionization wave. At 100 eV electron temperature, since the electronic excitation cross section is comparable to that of ionization for Ar and CO{sub 2}, a non-local excitation wave akin to the ionization wave is envisaged where energy deposition in excitations forms a excited cluster sheath beyond the laser focus. Here, we show that nano-cluster systems have the right parameters to form such an exciton sheath and experimentally demonstrate this via charge transfer reactions.

  12. Collider design issues based on proton-driven plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G., E-mail: guoxing.xia@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Mete, O. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Aimidula, A.; Welsch, C.P. [The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); The University of Liverpool, Liverpool (United Kingdom); Chattopadhyay, S. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); The University of Liverpool, Liverpool (United Kingdom); Mandry, S. [Department of Physics and Astronomy, University College London, London (United Kingdom); Wing, M. [Department of Physics and Astronomy, University College London, London (United Kingdom); Deutsche Elektronen-Synchrotron DESY, Hamburg (Germany)

    2014-03-11

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. It therefore paves the way towards a compact future collider design using the proton beams from existing high-energy proton machines, e.g. Tevatron or the LHC. This paper addresses some key issues in designing a compact electron–positron linear collider and an electron–proton collider based on the existing CERN accelerator infrastructure.

  13. Collider design issues based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Xia, G; Aimidula, A; Welsch, C; Chattopadhyay, S; Mandry, S; Wing, M

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. It therefore paves the way towards a compact future collider design using the proton beams from existing high-energy proton machines, e.g. Tevatron or the LHC. This paper addresses some key issues in designing a compact electron-positron linear collider and an electron-proton collider based on existing CERN accelerator infrastructure.

  14. Spectro-Polarimetric Properties of Small-Scale Plasma Eruptions Driven by Magnetic Vortex Tubes

    CERN Document Server

    Kitiashvili, Irina N

    2014-01-01

    Highly turbulent nature of convection on the Sun causes strong multi-scale interaction of subsurface layers with the photosphere and chromosphere. According to realistic 3D radiative MHD numerical simulations ubiquitous small-scale vortex tubes are generated by turbulent flows below the visible surface and concentrated in the intergranular lanes. The vortex tubes can capture and amplify magnetic field, penetrate into chromospheric layers and initiate quasi-periodic flow eruptions that generates Alfv\\'enic waves, transport mass and energy into the solar atmosphere. The simulations revealed high-speed flow patterns, and complicated thermodynamic and magnetic structures in the erupting vortex tubes. The spontaneous eruptions are initiated and driven by strong pressure gradients in the near-surface layers, and accelerated by the Lorentz force in the low chromosphere. In this paper, the simulation data are used to further investigate the dynamics of the eruptions, their spectro-polarimetric characteristics for the...

  15. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  16. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    Science.gov (United States)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  17. Possible ground states and parallel magnetic-field-driven phase transitions of collinear antiferromagnets

    Science.gov (United States)

    Li, Hai-Feng

    2016-10-01

    Understanding the nature of all possible ground states and especially magnetic-field-driven phase transitions of antiferromagnets represents a major step towards unravelling the real nature of interesting phenomena such as superconductivity, multiferroicity or magnetoresistance in condensed-matter science. Here a consistent mean-field calculation endowed with antiferromagnetic (AFM) exchange interaction (J), easy axis anisotropy (γ), uniaxial single-ion anisotropy (D) and Zeeman coupling to a magnetic field parallel to the AFM easy axis consistently unifies the AFM state, spin-flop (SFO) and spin-flip transitions. We reveal some mathematically allowed exotic spin states and fluctuations depending on the relative coupling strength of (J, γ and D). We build the three-dimensional (J, γ and D) and two-dimensional (γ and D) phase diagrams clearly displaying the equilibrium phase conditions and discuss the origins of various magnetic states as well as their transitions in different couplings. Besides the traditional first-order type one, we unambiguously confirm an existence of a second-order type SFO transition. This study provides an integrated theoretical model for the magnetic states of collinear antiferromagnets with two interpenetrating sublattices and offers a practical approach as an alternative to the estimation of magnetic exchange parameters (J, γ and D), and the results may shed light on nontrivial magnetism-related properties of bulks, thin films and nanostructures of correlated electron systems.

  18. On the theory of MHD modes driven by strong ExB velocity shear in tokamaks. Addendum. 2000 Plasma Phys. Control. Fusion 42 57

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailovskii, A.B.; Sharapov, S.E.; Timofeev, A.V. [JET Joint Undertaking, Abingdon, Oxfordshire OX14 3EA (United Kingdom)

    2000-07-01

    The theory of MHD modes driven by strong ExB velocity shear in tokamaks given by Mikhailovskii and Sharapov (2000 Plasma Phys. Control. Fusion 42 57) is revised. It is suggested that, in the approximations taken by these authors, there are no MHD eigenmodes if the cross-field velocity shear is larger then the Alfven frequency shear. (author)

  19. Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators

    Directory of Open Access Journals (Sweden)

    Zhao Guangyin

    2015-04-01

    Full Text Available A 15° swept wing with dielectric barrier discharge plasma actuator is designed. Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actuation frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.

  20. Ion beam driven resonant ion-cyclotron instability in a magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Ved; Vijayshri [School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110 068 (India); Sharma, Suresh C. [Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110 042 (India); Gupta, Ruby [Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi 110 036 (India)

    2014-03-15

    Electrostatic ion cyclotron waves are excited by axial ion beam in a dusty plasma via Cerenkov and slow cyclotron interaction. The dispersion relation of the instability is derived in the presence of positively/negatively charged dust grains. The minimum beam velocity needed for the excitation is estimated for different values of relative density of negatively charged dust grains. It is shown that the minimum beam velocity needed for excitation increases as the charge density carried by dust increases. Temperature of electrons and ions, charge and mass of dust grains, external static magnetic field and finite boundary of dusty plasma significantly modify the dispersion properties of these waves and play a crucial role in the growth of resonant ion cyclotron instability. The ion cyclotron modes with phase velocity comparable to the beam velocity possess a large growth rate. The maximum value of growth rate increases with the beam density and scales as the one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in slow cyclotron interaction.

  1. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    Science.gov (United States)

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-02-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  2. LPI Thresholds in Longer Scale Length Plasmas Driven by the Nike Laser*

    Science.gov (United States)

    Weaver, J.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Holland, G.; Lehmberg, R. H.; McLean, E.; Manka, C.

    2010-11-01

    The Krypton-Fluoride (KrF) laser is an attractive driver for inertial confinement fusion due to its short wavelength (248nm), large bandwidth (1-3 THz), and beam smoothing by induced spatial incoherence. Experiments with the Nike KrF laser have demonstrated intensity thresholds for laser plasma instabilities (LPI) higher than reported for other high power lasers operating at longer wavelengths (>=351 nm). The previous Nike experiments used short pulses (350 ps FWHM) and small spots (<260 μm FWHM) that created short density scale length plasmas (Ln˜50-70 μm) from planar CH targets and demonstrated the onset of two-plasmon decay (2φp) at laser intensities ˜2x10^15 W/cm^2. This talk will present an overview of the current campaign that uses longer pulses (0.5-4.0 ns) to achieve greater density scale lengths (Ln˜100-200 μm). X-rays, emission near ^1/2φo and ^3/2φo harmonics, and reflected laser light have been monitored for onset of 2φp. The longer density scale lengths will allow better comparison to results from other laser facilities. *Work supported by DoE/NNSA and ONR.

  3. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  4. Coronal Heating Driven by Magnetic-gradient Pumping Mechanism in Solar Plasmas

    CERN Document Server

    Tan, Baolin

    2014-01-01

    The solar coronal heating is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with considerable magnetic gradient from solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism and try to explain the formation of hot plasma upflows, such as the hot type II spicules and hot plasma ejections, etc. In MGP mechanism, the magnetic gradients drive the energetic particles to move upwards from the underlying solar atmosphere and form hot upflows. These upflow energetic particles deposit in corona and make it becoming very hot. Roughly estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km/s in chromosphere and about 130 km/s in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them and deposit in the corona. The deposition of energetic particles will make the corona become...

  5. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    Science.gov (United States)

    Sheftman, D.; Gupta, D.; Roche, T.; Thompson, M. C.; Giammanco, F.; Conti, F.; Marsili, P.; Moreno, C. D.

    2016-11-01

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  6. Plasma medicine—current state of research and medical application

    Science.gov (United States)

    Weltmann, K.-D.; von Woedtke, Th

    2017-01-01

    Plasma medicine means the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. Further, the field interacts strongly with results gained for biological decontamination. Experimental research as well as first practical application is realized using two basic principles of CAP sources: dielectric barrier discharges (DBD) and atmospheric pressure plasma jets (APPJ). Originating from the fundamental insights that the biological effects of CAP are most probably caused by changes of the liquid environment of cells, and are dominated by reactive oxygen and nitrogen species (ROS, RNS), basic mechanisms of biological plasma activity are identified. It was demonstrated that there is no increased risk of cold plasma application and, above all, there are no indications for genotoxic effects. The most important biological effects of cold atmospheric pressure plasma were identified: (1) inactivation of a broad spectrum of microorganisms including multidrug resistant ones; (2) stimulation of cell proliferation and tissue regeneration with lower plasma treatment intensity (treatment time); (3) inactivation of cells by initialization of programmed cell death (apoptosis) with higher plasma treatment intensity (treatment time). In recent years, the main focus of clinical applications was in the field of wound healing and treatment of infective skin diseases. First CAP sources are CE-certified as medical devices now which is the main precondition to start the introduction of plasma medicine into clinical reality. Plasma application in dentistry and, above all, CAP use for cancer treatment are becoming more and more important research fields in plasma medicine. A further in-depth knowledge of control and adaptation of plasma parameters and plasma geometries is needed to obtain suitable and reliable plasma sources for the different therapeutic indications and to open up new fields of medical application.

  7. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, Benno Michael Georg [Hamburg Univ. (Germany). Fakultaet fuer Mathematik, Informatik und Naturwissenschaften

    2017-01-15

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  8. Particle-in-cell Simulations of Continuously Driven Mirror and Ion Cyclotron Instabilities in High Beta Astrophysical and Heliospheric Plasmas

    Science.gov (United States)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2015-02-01

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ~ 0.3 langBrang in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ~ 0.1 langBrang, the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  9. Instantaneous charge state of Uranium projectiles in fully ionized plasmas from energy loss experiments

    CERN Document Server

    Morales, Roberto; Casas, David

    2016-01-01

    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann \\textit{et al.} in the 90's. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections, and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections, and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experime...

  10. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  11. Laser-driven electron acceleration in a plasma channel with an additional electric field

    Science.gov (United States)

    Cheng, Li-Hong; Xue, Ju-Kui; Liu, Jie

    2016-05-01

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the laser pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.

  12. Thermal and chaotic distributions of plasma in laser driven Coulomb explosions of deuterium clusters

    CERN Document Server

    Barbarino, M; Bonasera, A; Lattuada, D; Bang, W; Quevedo, H J; Consoli, F; De Angelis, R; Andreoli, P; Kimura, S; Dyer, G; Bernstein, A C; Hagel, K; Barbui, M; Schmidt, K; Gaul, E; Donovan, M E; Natowitz, J B; Ditmire, T

    2015-01-01

    In this work we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is chaotic enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is nearly isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell- Boltzmann (MB) distribution, a shifted MB distribution (sMB) and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise be...

  13. Thermal and log-normal distributions of plasma in laser driven Coulomb explosions of deuterium clusters

    Science.gov (United States)

    Barbarino, M.; Warrens, M.; Bonasera, A.; Lattuada, D.; Bang, W.; Quevedo, H. J.; Consoli, F.; de Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.

    2016-08-01

    In this work, we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is highly disordered enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is “nearly” isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell-Boltzmann (MB) distribution, a shifted MB distribution (sMB), and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise becomes dominant, but overestimates both the neutron and the proton yields. If the parameters of the LN distributions are chosen to reproduce the fusion yields correctly, the experimentally measured high energy ion spectrum is not well represented. We conclude that the ion kinetic energy distribution is highly disordered and practically not distinguishable from a thermalized one.

  14. Formation and stability of a hollow electron beam in the presence of a plasma wake field driven by an ultra-short electron bunch

    CERN Document Server

    Tanjia, F; De Nicola, S; Akhter, T; Jovanovic, D

    2015-01-01

    A numerical investigation on the spatiotemporal evolution of an electron beam, externally injected in a plasma in the presence of a plasma wake field, is carried out. The latter is driven by an ultra-short relativistic axially-symmetric femtosecond electron bunch. We first derive a novel Poisson-like equation for the wake potential where the driving term is the ultra-short bunch density, taking suitably into account the interplay between the sharpness and high energy of the bunch. Then, we show that a channel is formed longitudinally, through the externally injected beam while experiencing the effects of the bunch-driven plasma wake field, within the context of thermal wave model. The formation of the channel seems to be a final stage of the 3D evolution of the beam. This involves the appearance of small filaments and bubbles around the longitudinal axis. The bubbles coalesce forming a relatively stable axially-symmetric hollow beam structure.

  15. Dynamic Structure Factor and Transport Coefficients of a Homogeneously Driven Granular Fluid in Steady State

    Science.gov (United States)

    Vollmayr-Lee, Katharina; Zippelius, Annette; Aspelmeier, Timo

    2011-03-01

    We study the dynamic structure factor of a granular fluid of hard spheres, driven into a stationary nonequilibrium state by balancing the energy loss due to inelastic collisions with the energy input due to driving. The driving is chosen to conserve momentum, so that fluctuating hydrodynamics predicts the existence of sound modes. We present results of computer simulations which are based on an event driven algorithm. The dynamic structure factor F (q , ω) is determined for volume fractions 0.05, 0.1 and 0.2 and coefficients of normal restitution 0.8 and 0.9. We observe sound waves, and compare our results for F (q , ω) with the predictions of generalized fluctuating hydrodynamics which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory. K.V.L. thanks the Institute of Theoretical Physics, University of Goettingen, for financial support and hospitality.

  16. High Power, Solid-State RF Generation for Plasma Heating

    Science.gov (United States)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Pierren, Chris

    2016-10-01

    Radio Frequency heating systems are rarely used by the small-scale validation platform experiments due to the high cost and complexity of these systems. Eagle Harbor Technologies (EHT), Inc. is developing an all-solid-state RF plasma heating system that uses EHT's nanosecond pulser technology in an inductive adder configuration to drive nonlinear transmission lines (NLTL). The system under development does not require the use of vacuum tube technology, is inherently lower cost, and is more robust than traditional high power RF heating schemes. The inductive adder can produce 0 to20 kV pulses into 50 Ohms with sub-10 ns rise times. The inductive adder has been used to drive NLTLs near 2 GHz with other frequencies to be tested in the future. EHT will present experimental results, including RF measurements with D-dot probes and capacitve voltage probes. During this program, EHT will test the system on Helicity Injected Torus at the University of Washington and the High Beta Tokamak at Columbia University.

  17. The effects of nonthermal electron distributions on ion-temperature-gradient driven drift-wave instabilities in electron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Batool, Nazia [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); National Center of Physics (NCP), Quaid-i-Azam University campus, Islamabad (Pakistan); Masood, W. [National Center of Physics (NCP), Quaid-i-Azam University campus, Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH P. O. Nilore, Islamabad (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2012-08-15

    The effects of nonthermal electron distributions on electrostatic ion-temperature-gradient (ITG) driven drift-wave instabilities in the presence of equilibrium density, temperature, and magnetic field gradients are investigated here. By using Braginskii's transport equations for ions and Cairns as well as Kappa distribution for electrons, the coupled mode equations are derived. The modified ITG driven modes are derived, and it is found both analytically as well as numerically that the nonthermal distribution of electrons significantly modify the real frequencies as well as the growth rate of the ITG driven drift wave instability. The growth rate of ion-temperature-gradient driven instability is found to be maximum for Cairns, intermediate for Kappa, and minimum for the Maxwellian distributed electron case. The results of present investigation might be helpful to understand several wave phenomena in space and laboratory plasmas in the presence of nonthermal electrons.

  18. Properties of sodium-driven bacterial flagellar motor: A two-state model approach

    CERN Document Server

    Zhang, Yunxin

    2013-01-01

    Bacterial flagellar motor (BFM) is one of the ion-driven molecular machines, which drives the rotation of flagellar filaments and enable bacteria to swim in viscous solutions. Understanding its mechanism is one challenge in biophysics. Based on previous models and inspired by the idea used in description of motor proteins, in this study one two-state model is provided. Meanwhile, according to corresponding experimental data, mathematical relationship between BFM membrane voltage and pH value of the environment, and relationship between internal and external sodium concentrations are given. Therefore, with model parameter values obtained by fitting theoretical results of torque-speed relation to recent experimental data, many biophysical properties of bacterial flagellar motor can be obtained for any pH values and any external sodium concentrations. Including the rotation speed, stall torque (i.e. the torque generated by BFM), rotation dispersion, and rotation randomness. In this study, the single-stator BFM w...

  19. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  20. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  1. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  2. Laser Plasma Instability (LPI) Driven Light Scattering Measurements with Nike KrF Laser

    Science.gov (United States)

    Oh, J.; Weaver, J. L.; Kehne, D. M.; Obenschain, S. P.; McLean, E. A.; Lehmberg, R. H.

    2008-11-01

    With the short wavelength (248 nm), large bandwidth (1˜2 THz), and ISI beam smoothing, Nike KrF laser is expected to have higher LPI thresholds than observed at other laser facilities. Previous measurements using the Nike laser [J. L. Weaver et al, Phys. Plasmas 14, 056316 (2007)] showed no LPI evidence from CH targets up to I˜2x10^15 W/cm^2. For further experiments to detect LPI excitation, Nike capabilities have been extended to achieve higher laser intensities by tighter beam focusing and higher power pulses. This talk will present results of a recent LPI experiment with the extended Nike capabilities focusing on light emission data in spectral ranges relevant to the Raman (SRS) and Two-Plasmon Decay (TPD) instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. The measurements were conducted at laser intensities of 10^15˜10^16 W/cm^2 on planar targets of CH solids and RF foams.

  3. Controlling two plasmon decay instability in intense femtosecond laser driven plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prashant Kumar; Adak, Amitava; Lad, Amit D.; Chatterjee, Gourab; Ravindra Kumar, G., E-mail: grk@tifr.res.in [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005 (India); Brijesh, P. [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005 (India); UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098 (India)

    2015-11-15

    We investigate the onset of the two-plasmon-decay (TPD) instability in intense femtosecond laser-solid interaction. In particular, this instability, originating at the quarter critical electron density surface in the inhomogeneous plasma, is explored for a wide range of laser parameters-energy, pulse duration, and intensity contrast. By varying these laser parameters, we demonstrate ways to excite and control the growth of the TPD process. The pulse duration scan carried out under a constant laser fluence reveals the pulse width dependent nature of TPD growth. The spectral splitting of the TPD induced three-halves harmonic emission is used to infer the electron temperature near the quarter critical density surface. Moreover, by varying the laser contrast over four orders of magnitude, we find that the intensity threshold of three-halves harmonic emission increases by nearly two orders of magnitude. This contrast dependent intensity threshold for the emission of three-halves harmonic can be a useful diagnostic of the laser contrast.

  4. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water

    Science.gov (United States)

    Wu, Songjie; Zhang, Qian; Ma, Ruonan; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing

    2017-08-01

    The combined effects of plasma activated water (PAW) and hydrogen peroxide (H2O2), PAW/HP, in sterilization were investigated in this study. To assess the synergistic effects of PAW/HP, S. aureus was selected as the test microorganism to determine the inactivation efficacy. Also, the DNA/RNA and proteins released by the bacterial suspensions under different conditions were examined to confirm membrane integrity. Additionally, the intracellular pH (pHi) of S. aureus was measured in our study. Electron spin resonance spectroscopy (ESR) was employed to identify the presence of radicals. Finally, the oxidation reduction potential (ORP), conductivity and pH were measured. Our results revealed that the inactivation efficacy of PAW/HP is much greater than that of PAW, while increased H2O2 concentration result in higher inactivation potential. More importantly, as compared with PAW, the much stronger intensity ESR signals and higher ORP in PAW/HP suggests that the inactivation mechanism of the synergistic effects of PAW/HP: more reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially OH and NO radicals, are generated in PAW combined with H2O2 resulting in more deaths of the bacteria.

  5. Entanglement generation in periodically driven integrable systems: Dynamical phase transitions and steady state

    Science.gov (United States)

    Sen, Arnab; Nandy, Sourav; Sengupta, K.

    2016-12-01

    We study a class of periodically driven d -dimensional integrable models and show that after n drive cycles with frequency ω , pure states with non-area-law entanglement entropy Sn(l ) ˜lα (n ,ω ) are generated, where l is the linear dimension of the subsystem, and d -1 ≤α (n ,ω )≤d . The exponent α (n ,ω ) eventually approaches d (volume law) for large enough l when n →∞ . We identify and analyze the crossover phenomenon from an area (S ˜ld -1 for d ≥1 ) to a volume (S ˜ld ) law and provide a criterion for their occurrence which constitutes a generalization of Hastings's theorem to driven integrable systems in one dimension. We also find that Sn generically decays to S∞ as (ω/n ) (d +2 )/2 for fast and (ω/n ) d /2 for slow periodic drives; these two dynamical phases are separated by a topological transition in the eigenspectrum of the Floquet Hamiltonian. This dynamical transition manifests itself in the temporal behavior of all local correlation functions and does not require a critical point crossing during the drive. We find that these dynamical phases show a rich re-entrant behavior as a function of ω for d =1 models and also discuss the dynamical transition for d >1 models. Finally, we study entanglement properties of the steady state and show that singular features (cusps and kinks in d =1 ) appear in S∞ as a function of ω whenever there is a crossing of the Floquet bands. We discuss experiments which can test our theory.

  6. Global plasma simulation of charge state distribution inside a 2.45 GHz ECR plasma with experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Bodendorfer, M; Wurz, P; Hohl, M, E-mail: bodendorfer@ep.isas.jaxa.j [Space Research and Planetary Sciences, University of Bern, 3012 Bern (Switzerland)

    2010-08-15

    For the first time, the charge state distribution inside the MEsskammer fuer FlugzeitInStrumente und Time-Of-Flight (MEFISTO) electron cyclotron resonance (ECR) plasma and in the extracted ion beam was successfully simulated. A self-consistent ECR plasma ionization model (Hohl M 2002 MEFISTO II: Design, setup, characterization and operation of an improved calibration facility for solar plasma instrumentation PhD Thesis University of Bern) was further developed, recomputing the ion confinement time for every ion species and in every time step based on the actual plasma potential rather than using a prescribed constant ion confinement time. The simulation starts with a user defined set of initial conditions and develops the problem in time space by an adaptive step length fourth order Runge-Kutta (RK4) solver, considering particle densities based on ionization rates, recombination rates, ion confinement times and plasma potential. At the simulation end, a steady-state ion charge state distribution is reached, which is in excellent agreement with the measured ion beam charge state distribution of the MEFISTO ion source for Ar{sup 1+} to Ar{sup 5+} and in good agreement for Ar{sup 6+}.

  7. Global plasma simulation of charge state distribution inside a 2.45 GHz ECR plasma with experimental verification

    Science.gov (United States)

    Bodendorfer, M.; Wurz, P.; Hohl, M.

    2010-08-01

    For the first time, the charge state distribution inside the MEsskammer für FlugzeitInStrumente und Time-Of-Flight (MEFISTO) electron cyclotron resonance (ECR) plasma and in the extracted ion beam was successfully simulated. A self-consistent ECR plasma ionization model (Hohl M 2002 MEFISTO II: Design, setup, characterization and operation of an improved calibration facility for solar plasma instrumentation PhD Thesis University of Bern) was further developed, recomputing the ion confinement time for every ion species and in every time step based on the actual plasma potential rather than using a prescribed constant ion confinement time. The simulation starts with a user defined set of initial conditions and develops the problem in time space by an adaptive step length fourth order Runge-Kutta (RK4) solver, considering particle densities based on ionization rates, recombination rates, ion confinement times and plasma potential. At the simulation end, a steady-state ion charge state distribution is reached, which is in excellent agreement with the measured ion beam charge state distribution of the MEFISTO ion source for Ar1+ to Ar5+ and in good agreement for Ar6+.

  8. Hubbard models with nearly flat bands: Ground-state ferromagnetism driven by kinetic energy

    Science.gov (United States)

    Müller, Patrick; Richter, Johannes; Derzhko, Oleg

    2016-04-01

    We consider the standard repulsive Hubbard model with a flat lowest-energy band for two one-dimensional lattices (diamond chain and ladder) as well as for a two-dimensional lattice (bilayer) at half filling of the flat band. The considered models do not fall in the class of Mielke-Tasaki flat-band ferromagnets, since they do not obey the connectivity conditions. However, the ground-state ferromagnetism can emerge, if the flat band becomes dispersive. To study this kinetic-energy-driven ferromagnetism we use perturbation theory and exact diagonalization of finite lattices. We find as a typical scenario that small and moderate dispersion may lead to a ferromagnetic ground state for sufficiently large on-site Hubbard repulsion U >Uc , where Uc increases monotonically with the acquired bandwidth. However, we also observe for some specific parameter cases, that (i) ferromagnetism appears at already very small Uc, (ii) ferromagnetism does not show up at all, (iii) the critical on-site repulsion Uc is a nonmonotonic function of the bandwidth, or that (iv) a critical bandwidth is needed to open the window for ground-state ferromagnetism.

  9. Big Data-Driven Based Real-Time Traffic Flow State Identification and Prediction

    Directory of Open Access Journals (Sweden)

    Hua-pu Lu

    2015-01-01

    Full Text Available With the rapid development of urban informatization, the era of big data is coming. To satisfy the demand of traffic congestion early warning, this paper studies the method of real-time traffic flow state identification and prediction based on big data-driven theory. Traffic big data holds several characteristics, such as temporal correlation, spatial correlation, historical correlation, and multistate. Traffic flow state quantification, the basis of traffic flow state identification, is achieved by a SAGA-FCM (simulated annealing genetic algorithm based fuzzy c-means based traffic clustering model. Considering simple calculation and predictive accuracy, a bilevel optimization model for regional traffic flow correlation analysis is established to predict traffic flow parameters based on temporal-spatial-historical correlation. A two-stage model for correction coefficients optimization is put forward to simplify the bilevel optimization model. The first stage model is built to calculate the number of temporal-spatial-historical correlation variables. The second stage model is present to calculate basic model formulation of regional traffic flow correlation. A case study based on a real-world road network in Beijing, China, is implemented to test the efficiency and applicability of the proposed modeling and computing methods.

  10. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available A novel plasma-driven catalysis (PDC reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2 film prepared by radiofrequency (RF magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas.

  11. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering.

    Science.gov (United States)

    Yu, Shuang; Liang, Yongdong; Sun, Shujun; Zhang, Kai; Zhang, Jue; Fang, Jing

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP) reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas.

  12. Plasma rotation and NTM onset driven by central EC deposition in TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.; Lazzaro, E. [Istituto di Fisica del Plasma CNR, Euratom Association, 20125 Milano (Italy); Sauter, O.; Canal, G.; Duval, B.; Federspiel, L.; Karpushov, A. N.; Kim, D.; Reimerders, H.; Rossel, J.; Testa, D.; Wagner, D. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confederation Suisse, 1015 Lausanne (Switzerland); Raju, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India); Collaboration: TCV Team

    2014-02-12

    The effects of the central electron cyclotron heating (ECH) and current drive (ECCD) on the spontaneous plasma rotation and on the presence of Tearing Modes (TM), observed in the TCV tokamak[1], were recently investigated as an interplay between the toroidal velocity and NTM onset in absence of sawteeth, ELMs and error fields [2–3]. In a set of reproducible TCV discharges (I{sub p}∼ −150 kA, B{sub t}∼ −1.4 T, ne,{sub av∼} 1.5 10{sup 19} m{sup −3}, T{sub e}∼ 3 keV and T{sub i}∼0.25 keV, q{sub 95}∼5.8) with both pure EC heating and current drive the cnt-Ip toroidal velocity was observed to be reduced with subsequent co-Ip appearance of 3/2 and 2/1 modes during the ramp up EC phases. The understanding of the capability of the on-axis EC power to modify the rotation profiles before and after the TM onset and of the sudden disappearance of 3/2 mode when 2/1 starts is the main purpose of this work. The velocity profile modifications are due to a direct effect of the EC absorbed power and also related to some variation of the perpendicular diffusion of the toroidal momentum and to magnetic braking effects of the kind of neoclassical toroidal viscosity (NTV) due to the NTM resonant field perturbations associated to the presence of TM. Numerical investigations are performed using a 1D toroidal momentum balance equation including contributions by external sources, as EC power, and NTV torques. Furthermore, the combined evolution of the 3/2 and 2/1 modes requires considering also coupling effects included in a generalized Rutherford equation for the modelling of the TM time growth.

  13. AC current driven dynamic vortex state in YBa{sub 2}Cu{sub 3}O{sub 7-x}

    Energy Technology Data Exchange (ETDEWEB)

    Lucarelli, A.; Frey, A.; Yang, R.; Luepke, G. [The College of William and Mary, Department of Applied Science, Williamsburg, VA (United States); Grilli, F. [Los Alamos National Laboratory, Superconductivity Technology Center, Los Alamos, NM (United States); Haugan, T.; Levin, G.; Barnes, P. [Air Force Research Laboratory, Wright-Patterson AFB, OH (United States)

    2007-09-15

    Time-resolved magneto-optical imaging measurements show that an ac current enables the vortex matter in YBa{sub 2}Cu{sub 3}O{sub 7-x} thin films to reorganize into two coexisting steady states of driven vortex motion with different characteristics: a quasi-static disordered glassy state in the sample interior and a dynamic state of plastic motion near the edges. Finite-element calculations consistent with the critical state model show good agreement with the measured field profiles in the quasi-static state but predict a larger hysteretic behavior in the dynamic state. (orig.)

  14. Photo-transmutation of long-lived radionuclide Cs-135 by laser-plasma driven electron source

    CERN Document Server

    Wang, X L; Zhu, Z C; Wang, X D; Song, Y M

    2016-01-01

    Relativistic electrons, accelerated by the laser ponderomotive force, can be focused onto a high-Z convertor to generate high-brightness beams of gamma-rays, which in turn can be used to induce photonuclear reactions. In this work, the possibility of photo-transmutation of long-lived radionuclide Cs-135 by laser-plasma driven electron source has been demonstrated through Geant4 simulations. High energy electron generation, bremsstrahlung and photonuclear reaction have been observed at four different laser intensities of 10^{20} W/cm^2, 5 times 10^{20} W/cm^2, 10^{21} W/cm^2 and 5 times 10^{21} W/cm^2, respectively. It was shown that the laser intensity and the target geometry have strong effect on the transmutation reaction yield. At different laser intensities the recommended target sizes were found to obtain the maximum reaction yield. The remarkable feature of this work is to evaluate the optimal laser intensity to produce maximum reaction yield of 10^8 per Joule in laser pulse energy, which is 10^{21} W/c...

  15. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Science.gov (United States)

    Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.

    2014-04-01

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  16. Microwave tunneling in heterostructures with electromagnetically induced transparency-like metamaterials based on solid state plasma

    Science.gov (United States)

    Kong, Xiang-kun; Li, Hai-ming; Bian, Bo-rui; Xue, Feng; Ding, Guo-wen; Yu, Shao-jie; Liu, Si-yuan

    2016-06-01

    Interference induced electromagnetic induced transparency (EIT)-like effect has demonstrated the ability to realize narrow transmission resonances within the single-resonator stop band. Due to the limited plasma density in actual devices, only few reports discuss the plasma metamaterials and truncated photonic crystals which support electromagnetically induced transparency. However, solid state plasma realized by some semiconductors have the advantages of higher order plasma density and the characteristics of the reconfiguration and tunability. Here, we conduct a numerical study of the perfect microwave tunneling in heterostructures composed of solid state plasma metamaterials and truncated photonic crystal. There is particular emphasis on the tunability of tunneling frequency by changing plasma frequency in solid state plasma, as well as the electric energy density distributions in heterostructures. It was found that, compared to conventional metal photonic crystal, the reflectance of tunneling mode can be reduced from -25.8 dB to -41.7 dB with an optimized Q-factor. Further study on electric energy density distribution confirms that EM wave in-plane localization originated from the EIT-like solid state plasma, which gives rise to the three-dimensional enhancement of sub-wavelength EM wave localization, is stronger than EM wave confinement along the propagation direction. Owing to the tunability of plasma, the tunneling frequency channel can be adjusted or reconfigured in a certain range without adjusting the geometry of the heterostructure. It suggests the fabrication for highly sensitive dielectric sensing, optical switches, and so on.

  17. Bona fide interaction-driven topological phase transition in correlated symmetry-protected topological states

    Science.gov (United States)

    He, Yuan-Yao; Wu, Han-Qing; You, Yi-Zhuang; Xu, Cenke; Meng, Zi Yang; Lu, Zhong-Yi

    2016-03-01

    It is expected that the interplay between nontrivial band topology and strong electron correlation will lead to very rich physics. Thus a controlled study of the competition between topology and correlation is of great interest. Here, employing large-scale quantum Monte Carlo simulations, we provide a concrete example of the Kane-Mele-Hubbard model on an AA-stacking bilayer honeycomb lattice with interlayer antiferromagnetic interaction. Our simulation identified several different phases: a quantum spin Hall insulator (QSH), an x y -plane antiferromagnetic Mott insulator, and an interlayer dimer-singlet insulator. Most importantly, a bona fide topological phase transition between the QSH and the dimer-singlet insulators, purely driven by the interlayer antiferromagnetic interaction, is found. At the transition, the spin and charge gap of the system close while the single-particle excitations remain gapped, which means that this transition has no mean-field analog and it can be viewed as a transition between bosonic symmetry-protected topological (SPT) states. At one special point, this transition is described by a (2 +1 )d O (4 ) nonlinear sigma model with exact S O (4 ) symmetry and a topological term at exactly Θ =π . The relevance of this work towards more general interacting SPT states is discussed.

  18. Bona fide interaction-driven topological phase transition in correlated SPT states

    Science.gov (United States)

    Meng, Zi Yang; He, Yuan-Yao; Wu, Han-Qing; You, Yi-Zhuang; Xu, Cenke; Lu, Zhong-Yi

    It is expected the interplay between non-trivial band topology and strong electron correlation will lead to very rich physics. Thus a controlled study of the competition between topology and correlation is of great interest. Here, employing large-scale quantum Monte Carlo simulations, we provide a concrete example of the Kane-Mele-Hubbard model on an AA stacking bilayer honeycomb lattice with inter-layer antiferromagnetic interaction. Our simulation identified several different phases: a quantum spin-Hall insulator (QSH), a xy-plane antiferromagnetic Mott insulator (xy-AFM) and an inter-layer dimer-singlet insulator (dimer-singlet). Most importantly, a bona fide topological phase transition between the QSH and the dimer-singlet insulators, purely driven by the inter-layer antiferromagnetic interaction is found. At the transition, the spin and charge gap of the system close while the single-particle excitations remain gapped, which means that this transition has no mean field analogue and it can be viewed as a transition between bosonic SPT states. At one special point, this transition is described by a (2+1)d O(4) nonlinear sigma model with exact SO(4) symmetry, and a topological term at theta=p. Relevance of this work towards more general interacting SPT states is discussed.

  19. Dynamic behavior of driven interfaces in models with two absorbing states.

    Science.gov (United States)

    Kwon, S; Hwang, W; Park, H

    1999-05-01

    We study the dynamics of an interface (active domain) between different absorbing regions in models with two absorbing states in one dimension: probabilistic cellular automata models and interacting monomer-dimer models. These models exhibit a continuous transition from an active phase into an absorbing phase, which belongs to the directed Ising (DI) universality class. In the active phase, the interface spreads ballistically into the absorbing regions and the interface width diverges linearly in time. Approaching the critical point, the spreading velocity of the interface vanishes algebraically with a DI critical exponent. Introducing a symmetry-breaking field h that prefers one absorbing state over the other drives the interface to move asymmetrically toward the unpreferred absorbing region. In Monte Carlo simulations, we find that the spreading velocity of this driven interface shows a discontinuous jump at criticality. We explain that this unusual behavior is due to a finite relaxation time in the absorbing phase. The crossover behavior from the symmetric case (DI class) to the asymmetric case (directed percolation class) is also studied. We find the scaling dimension of the symmetry-breaking field y(h)=1.21(5).

  20. The formation and evolution of reconnection-driven slow-mode shocks in a partially ionised plasma

    CERN Document Server

    Hillier, Andrew; Nakamura, Naoki

    2016-01-01

    The role of slow-mode MHD shocks in magnetic reconnection is one of great importance for energy conversion and transport, but in many astrophysical plasmas the plasma is not fully ionised. In this paper, we investigate, using numerical simulations, the role of collisional coupling between a proton-electron charge-neutral fluid and a neutral hydrogen fluid for the 1D Riemann problem initiated in a constant pressure and density background state by a discontinuity in the magnetic field. This system, in the MHD limit, is characterised by two waves: a fast-mode rarefaction wave that drives a flow towards a slow-mode MHD shock. The system evolves through four stage: initiation, weak coupling, intermediate coupling and a quasi steady state. The initial stages are characterised by an over-pressured neutral region that expands with characteristics of a blast wave. In the later stages, the system tends towards a self-similar solution where the main drift velocity is concentrated in the thin region of the shock front. D...

  1. Plasma state. The universe's fire; L'etat de plasma. Le feu de l'univers

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Th. [Observatoire de Paris, 92 - Meudon (France)

    2004-07-01

    The plasma is the fourth state of matter, obtained at a very high temperature by the separation of the electrons from their nuclei. Plasma represents 99% of the visible mass of our present day universe and was the unique state of matter at its very beginning. Plasmas are present in the core of stars and in the interstellar environment. More closer to us, they are responsible of spectacular phenomena, like aurora borealis, lightning, comet queues etc.. This book makes a review of the different types of plasmas (electromagnetic, Earth's plasmas, spatial plasmas, solar plasmas, astrophysical plasmas). One chapter presents the thermonuclear fusion as future energy source. Another one treats of the chaos and turbulence inside plasmas. Some applications of plasmas are reviewed: MHD and ionic propulsion systems, MHD energy conversion and MHD generators, thermo-ionic converters, solid-state plasmas, particle accelerators, coherent radiation sources, 'Zeta' machines, X-ray lasers, isotopic separation, non-neutral plasmas and charged beams, free-electrons lasers, electrons and positrons plasmas, industrial applications (etching and cleaning, manufacturing of solar cells, flat screens, industrial reactors, waste treatment, cold plasma-assisted sterilization, effluents decontamination etc.). A last chapter makes an overview of the modern research in plasma physics. (J.S.)

  2. Plasma Confinement Characteristics in Heliotron J--Spontaneous Change of Plasma Confinement State

    Institute of Scientific and Technical Information of China (English)

    T. Mizuuchi; Y. Nakamura; Y. Suzuki; Y. Manabe; H. Shidara; H. Kawazome; M. Kaneko; Y. Nishioka; Y. Ohno; T. Takamiya; H. Yukimoto; H. Okada; Y. Fukagawa; Y. Morita; S. Nakazawa; S. Nishio; K. Takahashi; S. Tuboi; M. Yamada; K. Ohashi; Y. Ijiri; T. Senju; K. Nagasaki; K. Yaguchi; K. Sakamoto; K. Tohshi; M. Shibano; T. Obiki; S. Kobayashi; S. Yamamoto; F. Sano; K. Kondo; K. Hanatani; M. Nakasuga

    2004-01-01

    Spontaneous transition of the plasma confinement mode was observed in the helical axis heliotron device "Heliotron J" for three different plasma heating schemes, I.e. ECH-only, NBIonly and the combination of ECH and NBI. The transition seems to occur above a certain critical density. In addition to the confinement transition, a spontaneous shift of the hitting position of the divertor plasma flux on the wall was observed. This shift could be related with the change of the edge field topology caused by non-inductive toroidal currents.

  3. Identification of preseizure states in epilepsy: A data-driven approach for multichannel EEG recordings

    Directory of Open Access Journals (Sweden)

    Hinnerk eFeldwisch-Drentrup

    2011-07-01

    Full Text Available The retrospective identification of preseizure states usually bases on a time-resolved characterization of dynamical aspects of multichannel neurophysiologic recordings that can be assessed with measures from linear or nonlinear time series analysis. This approach renders time profiles of a characterizing measure – so-called measure profiles – for different recording sites or combinations thereof. Various downstream evaluation techniques have been proposed to single out measure profiles that carry potential information about preseizure states. These techniques, however, rely on assumptions about seizure precursor dynamics that might not be generally valid or face the statistical problem of multiple testing. Addressing these issues, we have developed a method to preselect measure profiles that carry potential information about preseizure states, and to identify brain regions associated with seizure precursor dynamics. Our data-driven method is based on the ratio S of the global to local temporal variance of measure profiles. We evaluated its suitability by retrospectively analyzing long-lasting multichannel intracranial EEG recordings from 18 patients that included 133 focal onset seizures, using a bivariate measure for the strength of interactions. In 17/18 patients, we observed S to be significantly correlated with the predictive performance of measure profiles assessed retrospectively by means of receiver-operating-characteristic statistics. Predictive performance was higher for measure profiles preselected with S than for a manual selection using information about onset and spread of seizures. Across patients, highest predictive performance was not restricted to recordings from focal areas, thus supporting the notion of an extended epileptic network in which even distant brain regions contribute to seizure generation. We expect our method to provide further insight into the complex spatial and temporal aspects of the seizure generating

  4. An IT R&D-programme without new code?! –State driven IT-development in Denmark

    DEFF Research Database (Denmark)

    Koch, Christian; Haugen, Tore

    2004-01-01

    £) in combination with an estimated auto-financing of 30%. The main idea is moreover to adopt existing and developed generic software in the programme and configure this to support the developed basis. The program is developing a particular version of state driven development, namely one drawing on the power...... of the purchaser....

  5. Seminal plasma initiates a Neisseria gonorrhoeae transmission state.

    Science.gov (United States)

    Anderson, Mark T; Dewenter, Lena; Maier, Berenike; Seifert, H Steven

    2014-03-04

    Niche-restricted pathogens are evolutionarily linked with the specific biological fluids that are encountered during infection. Neisseria gonorrhoeae causes the genital infection gonorrhea and is exposed to seminal fluid during sexual transmission. Treatment of N. gonorrhoeae with seminal plasma or purified semen proteins lactoferrin, serum albumin, and prostate-specific antigen each facilitated type IV pilus-mediated twitching motility of the bacterium. Motility in the presence of seminal plasma was characterized by high velocity and low directional persistence. In addition, infection of epithelial cells with N. gonorrhoeae in the presence of seminal plasma resulted in enhanced microcolony formation. Close association of multiple pili in the form of bundles was also disrupted after seminal plasma treatment leading to an increase in the number of single pilus filaments on the bacterial surface. Thus, exposure of N. gonorrhoeae to seminal plasma is proposed to alter bacterial motility and aggregation characteristics to influence the processes of transmission and colonization. IMPORTANCE There are greater than 100 million estimated new cases of gonorrhea annually worldwide. Research characterizing the mechanisms of pathogenesis and transmission of Neisseria gonorrhoeae is important for developing new prevention strategies, since antibiotic resistance of the organism is becoming increasingly prevalent. Our work identifies seminal plasma as a mediator of N. gonorrhoeae twitching motility and microcolony formation through functional modification of the type IV pilus. These findings provide insight into motility dynamics and epithelial cell colonization under conditions that are relevant to sexual transmission. Type IV pili are common virulence factors with diverse functions among bacterial pathogens, and this work identifies interactions between type IV pili and the host environment. Finally, this work illustrates the importance of the host environment and niche

  6. A priori data-driven multi-clustered reservoir generation algorithm for echo state network.

    Directory of Open Access Journals (Sweden)

    Xiumin Li

    Full Text Available Echo state networks (ESNs with multi-clustered reservoir topology perform better in reservoir computing and robustness than those with random reservoir topology. However, these ESNs have a complex reservoir topology, which leads to difficulties in reservoir generation. This study focuses on the reservoir generation problem when ESN is used in environments with sufficient priori data available. Accordingly, a priori data-driven multi-cluster reservoir generation algorithm is proposed. The priori data in the proposed algorithm are used to evaluate reservoirs by calculating the precision and standard deviation of ESNs. The reservoirs are produced using the clustering method; only the reservoir with a better evaluation performance takes the place of a previous one. The final reservoir is obtained when its evaluation score reaches the preset requirement. The prediction experiment results obtained using the Mackey-Glass chaotic time series show that the proposed reservoir generation algorithm provides ESNs with extra prediction precision and increases the structure complexity of the network. Further experiments also reveal the appropriate values of the number of clusters and time window size to obtain optimal performance. The information entropy of the reservoir reaches the maximum when ESN gains the greatest precision.

  7. Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems

    Science.gov (United States)

    Buchhold, Michael; Everest, Benjamin; Marcuzzi, Matteo; Lesanovsky, Igor; Diehl, Sebastian

    2017-01-01

    Phase transitions to absorbing states are among the simplest examples of critical phenomena out of equilibrium. The characteristic feature of these models is the presence of a fluctuationless configuration which the dynamics cannot leave, which has proved a rather stringent requirement in experiments. Recently, a proposal to seek such transitions in highly tunable systems of cold-atomic gases offers to probe this physics and, at the same time, to investigate the robustness of these transitions to quantum coherent effects. Here, we specifically focus on the interplay between classical and quantum fluctuations in a simple driven open quantum model which, in the classical limit, reproduces a contact process, which is known to undergo a continuous transition in the "directed percolation" universality class. We derive an effective long-wavelength field theory for the present class of open spin systems and show that, due to quantum fluctuations, the nature of the transition changes from second to first order, passing through a bicritical point which appears to belong instead to the "tricritical directed percolation" class.

  8. Backaction-driven, robust, steady-state long-distance qubit entanglement over lossy channels

    Science.gov (United States)

    Motzoi, Felix; Halperin, Eli; Wang, Xiaoting; Whaley, K. Birgitta; Schirmer, Sophie

    2016-09-01

    We present a scheme for generating robust and persistent entanglement between qubits that do not interact and that are separated by a long and lossy transmission channel, using Markovian reservoir engineering. The proposal uses only the correlated decay into the common channel of remotely separated, driven single-photon qubit transitions. This simple scheme is generic and applicable to various experimental implementations, including circuit and cavity QED, with little experimental overhead compared with methods requiring dynamic control, initialization, measurement, or feedback. In addition to avoiding these inefficiencies, the simple protocol is highly robust against noise, miscalibration, and loss in the channel. We find high-quality solutions over a wide range of parameters and show that the optimal strategy reflects a transition from ballistic to diffusive photon transmission, going from symmetrically and coherently driving a common steady state to asymmetrically absorbing photons that are emitted from one qubit by the second. Detailed analysis of the role of the transmission channel shows that allowing bidirectional decay drastically increases indistinguishability and thereby quadratically suppresses infidelity.

  9. Development of a Thomson scattering system and its use in a rotating magnetic field driven field-reversed configurations plasma

    Science.gov (United States)

    Lee, Kiyong

    The Thomson scattering system has been utilized on the Translation Confinement & Sustainment Upgrade (TCSU) experiment to measure the electron temperature and density. The system uses five polychromators from General Atomics attached with three pre-amplifier modules from Princeton Plasma Physics Laboratory to measure five spatial points during a single plasma discharge. The diagnostic consisting of various mechanical and optical components is introduced, followed by the calibration procedure of the system. For validating measurements, the electron temperature and the relative density obtained from Thomson scattering are compared with measurements from the Langmuir probe. Both measurements are in good agreement. A power scan was conducted by applying different voltages to the rotating magnetic field (RMF) current drive to observe the scaling properties of temperature and density for even-parity and odd-parity RMF operations. Also, a discrepancy is observed when comparing the density based on pressure-balance with localized measurements. Further analysis indicates a possibility of an ion-temperature-gradient, presumably due to ion cyclotron heating, present during steady-state operation.

  10. Reply to Comment on `Formation of bound states of electrons in spherically symmetric oscillations of plasma'

    CERN Document Server

    Dvornikov, Maxim

    2011-01-01

    I reply here to the comment of Dr Shmatov on my recent work and demonstrate the invalidity of his criticism of the classical physics description of the formation of bound states of electrons participating in spherically symmetric oscillations of plasma.

  11. Achieving a long-lived high-beta plasma state by energetic beam injection.

    Science.gov (United States)

    Guo, H Y; Binderbauer, M W; Tajima, T; Milroy, R D; Steinhauer, L C; Yang, X; Garate, E G; Gota, H; Korepanov, S; Necas, A; Roche, T; Smirnov, A; Trask, E

    2015-04-23

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  12. The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionised plasma

    Science.gov (United States)

    Hillier, A.; Takasao, S.; Nakamura, N.

    2016-06-01

    The role of slow-mode magnetohydrodynamic (MHD) shocks in magnetic reconnection is of great importance for energy conversion and transport, but in many astrophysical plasmas the plasma is not fully ionised. In this paper, we use numerical simulations to investigate the role of collisional coupling between a proton-electron, charge-neutral fluid and a neutral hydrogen fluid for the one-dimensional (1D) Riemann problem initiated in a constant pressure and density background state by a discontinuity in the magnetic field. This system, in the MHD limit, is characterised by two waves. The first is a fast-mode rarefaction wave that drives a flow towards a slow-mode MHD shock wave. The system evolves through four stages: initiation, weak coupling, intermediate coupling, and a quasi-steady state. The initial stages are characterised by an over-pressured neutral region that expands with characteristics of a blast wave. In the later stages, the system tends towards a self-similar solution where the main drift velocity is concentrated in the thin region of the shock front. Because of the nature of the system, the neutral fluid is overpressured by the shock when compared to a purely hydrodynamic shock, which results in the neutral fluid expanding to form the shock precursor. Once it has formed, the thickness of the shock front is proportional to ξ i-1.2 , which is a smaller exponent than would be naively expected from simple scaling arguments. One interesting result is that the shock front is a continuous transition of the physical variables of subsonic velocity upstream of the shock front (a c-shock) to a sharp jump in the physical variables followed by a relaxation to the downstream values for supersonic upstream velocity (a j-shock). The frictional heating that results from the velocity drift across the shock front can amount to ~2 per cent of the reference magnetic energy.

  13. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  14. Contribution of material’s surface layer on charge state distribution in laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumaki, Masafumi, E-mail: rogus@asagi.waseda.jp [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Steski, Dannie; Kanesue, Takeshi [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, Shunsuke [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan); Okamura, Masahiro [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan)

    2016-02-15

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C{sup 6+} ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation.

  15. Languages for model-driven development of user interfaces: Review of the state of the art

    Directory of Open Access Journals (Sweden)

    Jovanović Mlađan

    2013-01-01

    Full Text Available In model-driven user interface development, several models are used to describe different aspects of user interface when level of detail varies. The relations between the models are established through model transformations. The Model Driven Engineering (MDE approach has been proposed in software engineering domain in order to provide techniques and tools to deal with models in the automated way. In this paper, we will review existing user interface languages that gain wider acceptance, and discuss their applicability for model-driven user interface development.

  16. Numerical Studies of Two-Fluid Axisymmetric Steady-States with Flow in Ohmic NSTX-like Plasmas

    Science.gov (United States)

    Ferraro, Nathaniel; Jardin, Stephen

    2008-11-01

    Axisymmetric steady-states of the resistive two-fluid equations, including flow and gyroviscosity, are obtained by evolving these nonlinear equations from an initial ideal MHD equilibrium using the code M3D-C^1 [1], which has now been extended to toroidal geometry. Steady-states for high-β, inductively driven discharges in diverted NSTX geometries are studied. Excellent agreement with theoretical predictions of cross-surface Pfirsch-Schlüter flows in the axisymmetric steady-states is found. The dependence of flow velocities with resistivity is explored. It is found that in the two-fluid model, the statistical steady-state may be a fixed point, a limit cycle, or chaotic, depending on the parameters. Two-fluid terms lead to a preferred direction of toroidal rotation. The inclusion of gyroviscosity is observed to alter the character of the steady-state. The three-dimensional linear stability of simple equilibria in this two-fluid model are also explored using M3D-C^1 [2]. [1] N. Ferraro, S. Jardin. Phys. Plasmas 13:092101 (2006). [2] S. Jardin, N. Ferraro, J. Breslau, J. Chen, and M. Chance. Initial results for linear 3D Toroidal Two-Fluid stability using M3D-C1. APS DPP Conference, Dallas, TX (2008).

  17. Observation of a relaxed plasma state in a quasi-infinite cylinder.

    Science.gov (United States)

    Gray, T; Brown, M R; Dandurand, D

    2013-02-22

    A helical relaxed plasma state is observed in a long cylindrical volume. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v ≥ 50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data are favorably compared with an analytical model. Magnetic data exhibit broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement with the minimum energy eigenstate of [Symbol: see text] × B = λB.

  18. Current Control in ITER Steady State Plasmas With Neutral Beam Steering

    Energy Technology Data Exchange (ETDEWEB)

    R.V. Budny

    2009-09-10

    Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.

  19. Observation of a Relaxed Plasma State in a Quasi-Infinite Cylinder

    Science.gov (United States)

    Gray, T.; Brown, M. R.; Dandurand, D.

    2013-02-01

    A helical relaxed plasma state is observed in a long cylindrical volume. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v≥50km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data are favorably compared with an analytical model. Magnetic data exhibit broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement with the minimum energy eigenstate of ∇×B=λB.

  20. Homogeneous states in driven granular mixtures: Enskog kinetic theory versus molecular dynamics simulations.

    Science.gov (United States)

    Khalil, Nagi; Garzó, Vicente

    2014-04-28

    The homogeneous state of a binary mixture of smooth inelastic hard disks or spheres is analyzed. The mixture is driven by a thermostat composed by two terms: a stochastic force and a drag force proportional to the particle velocity. The combined action of both forces attempts to model the interaction of the mixture with a bath or surrounding fluid. The problem is studied by means of two independent and complementary routes. First, the Enskog kinetic equation with a Fokker-Planck term describing interactions of particles with thermostat is derived. Then, a scaling solution to the Enskog kinetic equation is proposed where the dependence of the scaled distributions φi of each species on the granular temperature occurs not only through the dimensionless velocity c = v/v0 (v0 being the thermal velocity) but also through the dimensionless driving force parameters. Approximate forms for φi are constructed by considering the leading order in a Sonine polynomial expansion. The ratio of kinetic temperatures T1/T2 and the fourth-degree velocity moments λ1 and λ2 (which measure non-Gaussian properties of φ1 and φ2, respectively) are explicitly determined as a function of the mass ratio, size ratio, composition, density, and coefficients of restitution. Second, to assess the reliability of the theoretical results, molecular dynamics simulations of a binary granular mixture of spheres are performed for two values of the coefficient of restitution (α = 0.9 and 0.8) and three different solid volume fractions (ϕ = 0.00785, 0.1, and 0.2). Comparison between kinetic theory and computer simulations for the temperature ratio shows excellent agreement, even for moderate densities and strong dissipation. In the case of the cumulants λ1 and λ2, good agreement is found for the lower densities although significant discrepancies between theory and simulation are observed with increasing density.

  1. Description of plasma focus current sheath as the Turner relaxed state of a Hall magnetofluid

    Science.gov (United States)

    Auluck, S. K. H.

    2009-12-01

    The central mystery of plasma focus research is the two orders-of-magnitude-higher-than-thermal fusion reaction rate and the fact that both the space-resolved neutron spectra and space-resolved reaction proton spectra show features which can be ascribed only to a rotational motion of the center-of-mass of the reacting deuteron population. It has been suggested earlier [S. K. H. Auluck, IEEE Trans. Plasma Sci. 25, 37 (1997)] that this and other experimental observations can be consistently explained in terms of a hypothesis involving rotation of the current carrying plasma annulus behind the imploding gas-dynamic shock. Such rotation (more generally, mass flow) is an in-built feature of relaxed state of a two-fluid plasma [R. N. Sudan, Phys. Rev. Lett. 42, 1277 (1979)]. Relaxation in the "Hall magnetofluid" approximation, in which the generalized Ohm's law includes the Hall effect term and the magnetic convection term but omits the contributions to the electric field from resistive dissipation, electron pressure gradient, thermoelectric effect, electron inertia, etc., has been extensively studied by many authors. In the present paper, Turner's [IEEE Trans. Plasma Sci. PS-14, 849 (1986)] degenerate solution for the relaxed state of the Hall magnetohydrodynamic plasma has been adapted to the case of an infinitely long annular current carrying plasma, a tractable idealization of the current sheath of a plasma focus. The resulting model is consistent with experimental values of ion kinetic energy and observation of predominantly radially directed neutron emission in good shots.

  2. Experimental investigation of dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with dc or low frequency sinusoidal bias

    Science.gov (United States)

    Opaits, Dmitry F.; Likhanskii, Alexandre V.; Neretti, Gabriele; Zaidi, Sohail; Shneider, Mikhail N.; Miles, Richard B.; Macheret, Sergey O.

    2008-08-01

    Experimental studies were conducted of a flow induced in an initially quiescent room air by a single asymmetric dielectric barrier discharge driven by voltage waveforms consisting of repetitive nanosecond high-voltage pulses superimposed on dc or alternating sinusoidal or square-wave bias voltage. To characterize the pulses and to optimize their matching to the plasma, a numerical code for short pulse calculations with an arbitrary impedance load was developed. A new approach for nonintrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the schlieren technique, burst mode of plasma actuator operation, and two-dimensional numerical fluid modeling. The force and heating rate calculated by a plasma model was used as an input to two-dimensional viscous flow solver to predict the time-dependent dielectric barrier discharge induced flow field. This approach allowed us to restore the entire two-dimensional unsteady plasma induced flow pattern as well as characteristics of the plasma induced force. Both the experiments and computations showed the same vortex flow structures induced by the actuator. Parametric studies of the vortices at different bias voltages, pulse polarities, peak pulse voltages, and pulse repetition rates were conducted experimentally. The significance of charge buildup on the dielectric surface was demonstrated. The charge buildup decreases the effective electric field in the plasma and reduces the plasma actuator performance. The accumulated surface charge can be removed by switching the bias polarity, which leads to a newly proposed voltage waveform consisting of high-voltage nanosecond repetitive pulses superimposed on a high-voltage low frequency sinusoidal voltage. Advantages of the new voltage waveform were demonstrated experimentally.

  3. Economic evaluation of pooled solvent/detergent treated plasma versus single donor fresh-frozen plasma in patients receiving plasma transfusions in the United States.

    Science.gov (United States)

    Huisman, Eline L; de Silva, Shamika U; de Peuter, Maria A

    2014-08-01

    This study assessed the cost-effectiveness of Octaplas™ versus fresh frozen plasma (FFP) in patients receiving plasma transfusions in the United States (US). Acute and long-term complications of plasma transfusions were modelled in a decision tree followed by a Markov model, using a healthcare payer perspective. Over a lifetime time horizon, patients receiving Octaplas™ accumulate slightly more life years (0.00613 [95% uncertainty interval (95%UI): 0.00166-0.01561]) and quality-adjusted life years (QALY) (0.023 [95%UI: 0.012-0.044]) at lower cost compared with those treated with FFP. Octaplas™ demonstrated to be the dominant treatment option over FFP (95%UI: Dominant-US$ 15,764/QALY).

  4. Nonperturbative equation of state of quark gluon plasma: Applications

    Science.gov (United States)

    Komarov, E. V.; Simonov, Yu. A.

    2008-05-01

    The vacuum-driven nonperturbative factors Li for quark and gluon Green's functions are shown to define the nonperturbative dynamics of QGP in the leading approximation. EoS obtained recently in the framework of this approach is compared in detail with known lattice data for μ = 0 including P/ T4, ɛ/ T4, {ɛ-3P}/{T4}. The basic role in the dynamics at T ≲ 3 Tc is played by the factors Li which are approximately equal to the modulus of Polyakov line for quark Lfund and gluon Ladj. The properties of Li are derived from field correlators and compared to lattice data, in particular the Casimir scaling property Ladj=(Lfund) follows in the Gaussian approximation valid for small vacuum correlation lengths. Resulting curves for P/ T4, ɛ/ T4, {ɛ-3P}/{T4} are in a reasonable agreement with lattice data, the remaining difference points out to an effective attraction among QGP constituents.

  5. Floquet resonant states and validity of the Floquet-Magnus expansion in the periodically driven Friedrichs models

    Science.gov (United States)

    Mori, Takashi

    2015-02-01

    The Floquet eigenvalue problem is analyzed for periodically driven Friedrichs models on discrete and continuous space. In the high-frequency regime, there exists a Floquet bound state consistent with the Floquet-Magnus expansion in the discrete Friedrichs model, while it is not the case in the continuous model. In the latter case, however, the bound state predicted by the Floquet-Magnus expansion appears as a metastable state whose lifetime diverges in the limit of large frequencies. We obtain the lifetime by evaluating the imaginary part of the quasienergy of the Floquet resonant state. In the low-frequency regime, there is no Floquet bound state and instead the Floquet resonant state with exponentially small imaginary part of the quasienergy appears, which is understood as the quantum tunneling in the energy space.

  6. Thermal shock behaviour of blisters on W surface during combined steady-state/pulsed plasma loading

    Science.gov (United States)

    Jia, Y. Z.; Liu, W.; Xu, B.; Luo, G.-N.; Li, C.; Qu, S. L.; Morgan, T. W.; De Temmerman, G.

    2015-09-01

    The thermal shock behaviour of blister-covered W surfaces during combined steady-state/pulsed plasma loading was studied by scanning electron microscopy and electron backscatter diffraction. The W samples were first exposed to steady-state D plasma to induce blisters on the surface, and then the blistered surfaces were exposed to steady-state/pulsed plasma. Growth and cracking of blisters were observed after the exposure to the steady-state/pulsed plasma, while no obvious damage occurred on the surface area not covered with blisters. The results confirm that blisters induced by D plasma might represent weak spots on the W surface when exposed to transient heat load of ELMs. The cracks on blisters were different from the cracks due to the transient heat loads reported before, and they were assumed to be caused by stress and strain due to the gas expansion inside the blisters during the plasma pulses. Moreover, most of cracks were found to appear on the blisters formed on grains with surface orientation near [1 1 1].

  7. Long-range magnetic fields in the ground state of the Standard Model plasma

    CERN Document Server

    Boyarsky, Alexey; Shaposhnikov, Mikhail

    2012-01-01

    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at non-zero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation can occur in the early Universe and may play an important role in its subsequent evolution.

  8. Long-Range Magnetic Fields in the Ground State of the Standard Model Plasma

    Science.gov (United States)

    Boyarsky, Alexey; Ruchayskiy, Oleg; Shaposhnikov, Mikhail

    2012-09-01

    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at nonzero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new equilibrium state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation could occur in the early Universe and may play an important role in its subsequent evolution.

  9. Woltjer-Taylor State Without Taylor's Conjecture - Plasma Relaxation at all Wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Hong; Liu, Wandong; Li, Hong; Squire, Jonathan

    2012-10-10

    In astrophysical and laboratory plasmas, it has been discovered that plasmas relax towards the well-known Woltjer-Taylor state specified by ∇ x B = αB for a constant α . To explain how such a relaxed state is reached, Taylor developed his famous relaxation theory based on the conjecture that the relaxation is dominated by short wavelength fluctuations. However, there is no conclusive experimental and numerical evidence to support Taylor's conjecture. A new theory is developed, which predicts that the system will evolve towards the Woltjer-Taylor state for an arbitrary fluctuation spectrum.

  10. Charge-state distribution and Doppler effect in an expanding photoionized plasma.

    Science.gov (United States)

    Foord, M E; Heeter, R F; van Hoof, P A M; Thoe, R S; Bailey, J E; Cuneo, M E; Chung, H-K; Liedahl, D A; Fournier, K B; Chandler, G A; Jonauskas, V; Kisielius, R; Mix, L P; Ramsbottom, C; Springer, P T; Keenan, F P; Rose, S J; Goldstein, W H

    2004-07-30

    The charge state distributions of Fe, Na, and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter xi=20-25 erg cm s(-1) under near steady-state conditions. Line opacities are well fitted by a curve-of-growth analysis which includes the effects of velocity gradients in a one-dimensional expanding plasma. First comparisons of the measured charge state distributions with x-ray photoionization models show reasonable agreement.

  11. QCD equations of state and the quark-gluon plasma liquid model

    Science.gov (United States)

    Letessier, Jean; Rafelski, Johann

    2003-03-01

    Recent advances in the study of equations of state of thermal lattice quantum chromodynamics obtained at nonzero baryon density allow validation of the quark-gluon plasma (QGP) liquid model equations of state (EOS). We study here the properties of the QGP-EOS near to the phase transformation boundary at finite baryon density and show a close agreement with the lattice results.

  12. A twin study of the trough plasma steady-state concentration of metformin

    DEFF Research Database (Denmark)

    Stage, Tore B; Damkier, Per; Pedersen, Rasmus S;

    2015-01-01

    OBJECTIVE: The aim of this study was to determine the intrapair similarity in trough steady-state plasma concentrations of metformin in monozygotic and dizygotic twin pairs. METHODS: We included 16 twin pairs (eight monozygotic and eight dizygotic twin pairs) for this study after contacting 524...... twin pairs. They were dosed with metformin to steady state (1 g twice daily) for 6 days and on day 7, the trough concentration of metformin was determined 12 h after the last dose. RESULTS: There was no strong intrapair similarity in trough steady-state plasma concentrations of metformin in either...... dizygotic or monozygotic twin pairs. CONCLUSION: The trough steady-state plasma concentration of metformin does not appear to be tightly genetically regulated. The interpretation of this finding is limited by the small sample size....

  13. Toroidal current profile control during low confinement mode plasma discharges in DIII-D via first-principles-driven model-based robust control synthesis

    Science.gov (United States)

    Barton, Justin E.; Boyer, Mark D.; Shi, Wenyu; Schuster, Eugenio; Luce, Tim C.; Ferron, John R.; Walker, Michael L.; Humphreys, David A.; Penaflor, Ben G.; Johnson, Robert D.

    2012-12-01

    In order for ITER to be capable of operating in advanced tokamak operating regimes, characterized by a high fusion gain, good plasma confinement, magnetohydrodynamic stability and a non-inductively driven plasma current, for extended periods of time, several challenging plasma control problems still need to be solved. Setting up a suitable toroidal current density profile in the tokamak is key for one possible advanced operating scenario characterized by non-inductive sustainment of the plasma current. At the DIII-D tokamak, the goal is to create the desired current profile during the ramp-up and early flat-top phases of the plasma discharge and then actively maintain this target profile for the remainder of the discharge. The evolution in time of the toroidal current profile in tokamaks is related to the evolution of the poloidal magnetic flux profile, which is modelled in normalized cylindrical coordinates using a first-principles, nonlinear, dynamic partial differential equation (PDE) referred to as the magnetic diffusion equation. The magnetic diffusion equation is combined with empirical correlations developed from physical observations and experimental data from DIII-D for the electron temperature, the plasma resistivity and the non-inductive current drive to develop a simplified, control-oriented, nonlinear, dynamic PDE model of the poloidal flux profile evolution valid for low confinement mode discharges. In this work, we synthesize a robust feedback controller to reject disturbances and track a desired reference trajectory of the poloidal magnetic flux gradient profile by employing the control-oriented model of the system. A singular value decomposition of the static gain matrix of the plant model is utilized to identify the most relevant control channels and is combined with the dynamic response of system around a given operating trajectory to design the feedback controller. A general framework for real-time feedforward + feedback control of magnetic and

  14. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    Institute of Scientific and Technical Information of China (English)

    陈兆权; 殷志祥; 夏广庆; 洪伶俐; 胡业林; 刘明海; 胡希伟

    2015-01-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielec-tric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications.

  15. A self-focusing, high transformer ratio, collinear plasma dielectric wakefield accelerator driven by a ramped bunch train

    Science.gov (United States)

    Sotnikov, Gennadij V.; Marshall, Thomas C.; Shchelkunov, Sergey V.; Hirshfield, Jay L.

    2017-03-01

    New results of studies of wakefield excitation by a ramped bunch train in a collinear, single-channel dielectriclined THz-wakefield accelerator structure that is filled with a low-temperature plasma are presented. A novel ramped train of drive bunches, together with plasma filling part of the transport channel, makes possible substantial improvement of the transformer ratio of the multimode collinear device to 6:1 while the plasma could stabilize the transverse motion of the drive and witness bunches.

  16. DEVELOPMENT OF SOLID-STATE DRIVERS FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, F; Arnold, P A; McHale, G B; James, G; Brown, G; Cook, E G; Hickman, B C

    2008-05-14

    Large aperture Plasma Electrode Pockels Cells (PEPC) are an enabling technology in the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory. The Pockels cell allows the NIF laser to take advantage of multipass amplifier architecture, thus reducing costs and physical size of the facility. Each Pockels cell comprises four 40-cm x 40-cm apertures arranged in a 4 x 1 array. The combination of the Pockels cell and a thin-film polarizer, configured in a 4 x 1 array, form an optical switch that is key to achieving multi-pass operation. Solid-state Plasma Pulse Generators (PPGs) and high current high voltage solid-state Switch Pulse Generators (SPGs) have been developed for use in the PEPC. The solid-state plasma pulse generators initiate and maintain plasma within the cells; each pulser is capable of delivering 60J of energy to each plasma channel. Deployment of the solid-state PPGs has been completed in NIF. The MOSFET-switched SPG is capable of delivering a requisite fast rise time, 17kV flattop pulse to the cells nonlinear crystals. A complete software and hardware control system has been developed and is currently being tested for use on the solid-state SPGs. Also a transmission line modeling, development, and testing effort is in process, in support of NIFs Advanced Radiographic Capabilities (ARC). Work is scheduled for completion by the end of the calendar year.

  17. Thermally driven up-slope flows: state of the art and open questions

    Science.gov (United States)

    Zardi, D.

    2015-12-01

    Thermally driven flows over simple slopes are a relevant research topic, not only per se, but also as a source of key concepts for understanding and modelling many other flows over more complex topographies. However, compared to down-slope, up-slope flows have received much less attention in the literature. Indeed, to investigate katabatic winds many extensive and well equipped field measurements were performed in recent years under various research projects, and a series of high-resolution numerical simulations were run. On the contrary, few field experiments have provided detailed datasets documenting the development of anabatic flows, and the analysis of numerical investigations still relies on Schumann's (1990) pioneering LES simulations. Also, analytic solutions - such as Prandtl's (1942) constant-K profiles - reproduce fairly well katabatic flows, but are definitely inadequate to accurately reproduce field data for up-slope flows (Defant 1949). In particular, some open questions still claim for further investigations, such as the conditions of instability of slope-parallel flow vs. vertical motions, and the related possible occurrence of flow separation, and the similarity analysis of slope-normal velocity profiles of temperature anomaly, wind intensity and turbulence related quantities. Here a review of the state of the art on the subject is proposed, along with some insights into possible future developments. ReferencesDefant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. [A theory of slope winds, along with remarks on the theory of mountain winds and valley winds]. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 1, 421-450 (Theoretical and Applied Climatology). [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine meteorology: Translations of classic contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141 / ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp]. Prandtl, L

  18. Non-perturbative effects for the Quark-Gluon Plasma equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Begun, V. V., E-mail: viktor.begun@gmail.com; Gorenstein, M. I., E-mail: goren@bitp.kiev.ua; Mogilevsky, O. A. [Bogolyubov Institute for Theoretical Physics (Ukraine)

    2012-07-15

    The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.

  19. Non-perturbative effects for the Quark-Gluon Plasma equation of state

    Science.gov (United States)

    Begun, V. V.; Gorenstein, M. I.; Mogilevsky, O. A.

    2012-07-01

    The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.

  20. Nonperturbative equation of state of quark-gluon plasma. Applications

    CERN Document Server

    Komarov, E V

    2007-01-01

    The vacuum-driven nonperturbative factors $L_i$ for quark and gluon Green's functions are shown to define the nonperturbative dynamics of QGP in the leading approximation. EoS obtained recently in the framework of this approach is compared in detail with known lattice data for $\\mu=0$ including $P/T^4$, $\\epsilon/T^4$, $\\frac{\\epsilon-3P}{T^4}$. The basic role in the dynamics at $T\\la 3T_c$ is played by the factors $L_i$ which are approximately equal to the modulus of Polyakov line for quark $L_{fund}$ and gluon $L_{adj}$. The properties of $L_i$ are derived from field correlators and compared to lattice data, in particular the Casimir scaling property $L_{adj} =(L_{fund})^{\\frac{C_2(adj)}{C_2(fund)}}$ follows in the Gaussian approximation valid for small vacuum correlation lengths. Resulting curves for $P/T^4$, $\\epsilon/T^4$, $\\frac{\\epsilon-3P}{T^4}$ are in a reasonable agreement with lattice data, the remaining difference points out to an effective attraction among QGP constituents.

  1. Rotation Driven Shape-Phase Transition of the Yrast Nuclear States with O(6) Symmetry in the Interacting Boson Model

    Institute of Scientific and Technical Information of China (English)

    MU Liang-Zhu; LIU Yu-Xin

    2005-01-01

    @@ In a framework of the interacting boson model (usually referred to as IBM-1) with angular momentum projection on the coherent state, we obtain the energy surface functional of nuclei in terms of angular momentum and shape parameters. Analysing the rotation driven effect on the equilibrium shape shows that the yrast states of the nuclei with O(6) symmetry will experience a shape-phase transition from γ-soft deformed to triaxially deformed and then to spherical shape along the yrast line as the angular momentum increases.

  2. Analysis of defects in externally driven dust-density wavefronts in cogenerated dusty plasma using the time-resolved Hilbert-Huang transform

    Science.gov (United States)

    Sarkar, Sanjib; Barman, Chiranjib; Mondal, Malay; Bose, M.; Mukherjee, S.

    2016-05-01

    Analysis of defects in externally driven dust-density wavefronts (DDWs) in cogenerated dusty plasma has been carried out. The DDWs are excited for threshold positive bias through another T-shaped electrode which is placed inbetween two main discharge electrodes. Spatiotemporal evolution of the DDWs reveals a wave defect and non-propagating wave mode in the DDW field. A space-time plot and the time-resolved Hilbert-Huang transform (HHT) were employed to analyze the spatiotemporal wave data at a specific location in the wave field.

  3. Study of higher excited states of some polyatomic molecules relevant for plasma physics and environment

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, B P, E-mail: bratislav.marinkovic@phy.bg.ac.y [Institute of Physics, Belgrade 11080, Pregrevica 118 (Serbia) and College for Electrical Engineering and Computing, Belgrade 11010, Vojvode Stepe 283 (Serbia)

    2009-04-01

    Studies of higher excited states of some polyatomic molecules relevant for plasma physics and environment have been presented. Spectra of chlorofluorocarbons are discussed together with their influence on ozone layer depletion and global warming. Tetrahydrofuran molecule was studied by photoabsorption and electron energy loss spectroscopy while the states are assigned following extensive ab initio calculations. Nitrous oxide and hydrogen sulphide spectra are discussed in terms of identifying valence and Rydberg character of excited states.

  4. Dynamics of energetic particle driven modes and MHD modes in wall-stabilized high-β plasmas on JT-60U and DIII-D

    Science.gov (United States)

    Matsunaga, G.; Okabayashi, M.; Aiba, N.; Boedo, J. A.; Ferron, J. R.; Hanson, J. M.; Hao, G. Z.; Heidbrink, W. W.; Holcomb, C. T.; In, Y.; Jackson, G. L.; Liu, Y. Q.; Luce, T. C.; McKee, G. R.; Osborne, T. H.; Pace, D. C.; Shinohara, K.; Snyder, P. B.; Solomon, W. M.; Strait, E. J.; Turnbull, A. D.; Van Zeeland, M. A.; Watkins, J. G.; Zeng, L.; the DIII-D Team; the JT-60 Team

    2013-12-01

    In the wall-stabilized high-β plasmas in JT-60U and DIII-D, interactions between energetic particle (EP) driven modes (EPdMs) and edge localized modes (ELMs) have been observed. The interaction between the EPdM and ELM are reproducibly observed. Many EP diagnostics indicate a strong correlation between the distorted waveform of the EPdM and the EP transport to the edge. The waveform distortion is composed of higher harmonics (n ⩾ 2) and looks like a density snake near the plasma edge. According to statistical analyses, ELM triggering by the EPdMs requires a finite level of waveform distortion and pedestal recovery. ELM pacing by the EPdMs occurs when the repetition frequency of the EPdMs is higher than the natural ELM frequency. EPs transported by EPdMs are thought to contribute to change the edge stability.

  5. Absence of a relation between efavirenz plasma concentrations and toxicity-driven efavirenz discontinuations in the EuroSIDA study

    DEFF Research Database (Denmark)

    van Luin, Matthijs; Bannister, Wendy P; Mocroft, Amanda

    2009-01-01

    plasma concentrations were measured from patients in the EuroSIDA study starting EFV after 1 January 1999. Patients with a plasma concentration available were divided into those that discontinued EFV because of any toxicity or by the choice of the patient or physician within 2 years (TOXPC group...

  6. Absence of a relation between efavirenz plasma concentrations and toxicity-driven efavirenz discontinuations in the EuroSIDA study

    DEFF Research Database (Denmark)

    van Luin, Matthijs; Bannister, Wendy P; Mocroft, Amanda;

    2009-01-01

    plasma concentrations were measured from patients in the EuroSIDA study starting EFV after 1 January 1999. Patients with a plasma concentration available were divided into those that discontinued EFV because of any toxicity or by the choice of the patient or physician within 2 years (TOXPC group...

  7. Propagation of an ultrashort electromagnetic pulse in solid-state plasma

    CERN Document Server

    Astapenko, V A

    2013-01-01

    The change of the shape of an ultrashort electromagnetic pulse in its propagation in solid-state plasma was calculated in the linear approximation. A case of solid-state silver plasma and of a "Mexican hat" wavelet pulse was considered. The dielectric permittivity of the medium was calculated in the Drude model. Strong dispersion spreading of a pulse at distances of the order of several microns was shown, and the comparison of evolution of the pulse shape for different center frequencies was carried out.

  8. Performance-driven facial animation: basic research on human judgments of emotional state in facial avatars.

    Science.gov (United States)

    Rizzo, A A; Neumann, U; Enciso, R; Fidaleo, D; Noh, J Y

    2001-08-01

    three-dimensional avatar using a performance-driven facial animation (PDFA) system developed at the University of Southern California Integrated Media Systems Center. PDFA offers a means for creating high-fidelity visual representations of human faces and bodies. This effort explores the feasibility of sensing and reproducing a range of facial expressions with a PDFA system. In order to test concordance of human ratings of emotional expression between video and avatar facial delivery, we first had facial model subjects observe stimuli that were designed to elicit naturalistic facial expressions. The emotional stimulus induction involved presenting text-based, still image, and video clips to subjects that were previously rated to induce facial expressions for the six universals2 of facial expression (happy, sad, fear, anger, disgust, and surprise), in addition to attentiveness, puzzlement and frustration. Videotapes of these induced facial expressions that best represented prototypic examples of the above emotional states and three-dimensional avatar animations of the same facial expressions were randomly presented to 38 human raters. The raters used open-end, forced choice and seven-point Likert-type scales to rate expression in terms of identification. The forced choice and seven-point ratings provided the most usable data to determine video/animation concordance and these data are presented. To support a clear understanding of this data, a website has been set up that will allow readers to view the video and facial animation clips to illustrate the assets and limitations of these types of facial expression-rendering methods (www. USCAvatars.com/MMVR). This methodological first step in our research program has served to provide valuable human user-centered feedback to support the iterative design and development of facial avatar characteristics for expression of emotional communication.

  9. RECONNECTION-DRIVEN DOUBLE LAYERS IN THE STRATIFIED PLASMA OF THE SOLAR TRANSITION REGION: SUPPLY OF HOT PLASMA INTO THE CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nagendra [Department of Electrical and Computer Engineering University of Alabama, Huntsville, AL 35899 (United States)

    2015-09-01

    A novel mechanism for the supply of hot plasma into the corona from the chromosphere is suggested here; the mechanism involves collisionless magnetic reconnection (CMR) in the transition region (TR) followed by double layer (DL) formation in the enhanced expansion of the chromospheric cold plasma mixed with CMR-heated hot electrons. It is well known that (i) the CMR produces energetic electrons and (ii) DLs naturally form in expanding dense plasmas containing a minor population of hot electrons. We apply these plasma physics facts to the dynamics of stratified plasma in the TR. In the TR where densities fall below ∼10{sup 16} m{sup −3}, all collisional mean-free paths, electron–ion, ion–neutral, and electron–neutral, become long enough to render plasma collisionless at kinetic scale lengths, making CMR and DL formation possible. The DLs accelerate the chromospheric cold ions to energies comparable to the energy of the hot electrons. When the upflowing energized ions neutralized by the escaping hot electrons thermalize, the resulting hot tenuous plasma supplies an energy flux ∼3 × 10{sup 5} erg cm{sup −2} s{sup −1} = 3 × 10{sup 2} J m{sup −2} s{sup −1} into the corona. The CMR–DL mechanism introduces sudden transitions in the TR as microstructures in both density and energy. The global transition in the TR could be a fractal structure containing such microscopic features. If not impossible, it is difficult to measure such microstructures, but it seems that the coronal heating begins in the nearly collisionless TR by CMR and DL formation.

  10. Co-current toroidal rotation-driven and turbulent stresses with resonant magnetic perturbations in the edge plasmas of the J-TEXT tokamak

    Science.gov (United States)

    Zhao, K. J.; Shi, Yuejiang; Liu, H.; Diamond, P. H.; Li, F. M.; Cheng, J.; Chen, Z. P.; Nie, L.; Ding, Y. H.; Wu, Y. F.; Chen, Z. Y.; Rao, B.; Cheng, Z. F.; Gao, L.; Zhang, X. Q.; Yang, Z. J.; Wang, N. C.; Wang, L.; Jin, W.; Xu, J. Q.; Yan, L. W.; Dong, J. Q.; Zhuang, G.; J-TEXT Team

    2016-07-01

    The acceleration of the co-current toroidal rotations around resonant surfaces by resonant magnetic perturbations (RMPs) through turbulence is presented. These experiments were performed using a Langmuir probe array in the edge plasmas of the J-TEXT tokamak. This study aims at understanding the RMP effects on edge toroidal rotations and exploring its control method. With RMPs, the flat electron temperature T e profile, due to magnetic islands, appears around resonant surfaces (Zhao et al 2015 Nucl. Fusion 55 073022). When the resonant surface is closer to the last closed flux surface, the flat T e profile vanishes with RMPs. In both cases, the toroidal rotations significantly increase in the direction of the plasma current around the resonant surfaces with RMPs. The characteristics of turbulence are significantly affected by RMPs around the resonant surfaces. The turbulence intensity profile changes and the poloidal wave vector k θ increases with RMPs. The power fraction of the turbulence components in the ion diamagnetic drift direction increases with RMPs. The measurements of turbulent Reynolds stresses are consistent with the toroidal flows that can be driven by turbulence. The estimations of the energy transfer between the turbulence and toroidal flows suggest that turbulence energy transfers into toroidal flows. The result has the implication of the intrinsic rotation being driven by RMPs via turbulence.

  11. Generation of quasi-monoenergetic heavy ion beams via staged shock wave acceleration driven by intense laser pulses in near-critical plasmas

    Science.gov (United States)

    Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-09-01

    Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.

  12. Spectroscopy Methods and Applications of the Tor Vergata Laser-Plasma Facility Driven by GW-Level Laser System

    Directory of Open Access Journals (Sweden)

    M. Francucci

    2011-01-01

    GW, tabletop, multistage Nd:YAG/Glass laser system, delivering infrared (IR pulses with nanosecond width and 1064 nm wavelength (TEM00 mode. Its applications are discussed providing: wide analysis of IR → soft X-ray conversion efficiency (1.3–1.55 keV; measures and modeling of line emission in soft X-ray spectra, such as those from zinc plasma near Ne-like Zn XXI and from barium plasma near Ni-like Ba XXIX. Particular attention is devoted to high-n dielectronic Rydberg satellites for finding a useful diagnostic tool for plasma conditions. Dependence of plasma spectra on laser parameters is shown. Finally, microradiography applications are presented for thin biological samples. Images permit to visualize specific structures and detect bioaccumulation sites due to contamination from pollutants.

  13. Complex formation between primycin and ergosterol: entropy-driven initiation of modification of the fungal plasma membrane structure

    National Research Council Canada - National Science Library

    Virág, Eszter; Pesti, Miklós; Kunsági-Máté, Sándor

    2012-01-01

    The interaction of the antibiotic primycin with the main fungal sterol, ergosterol, was investigated in vitro in order to monitor the effect of primycin on the fungal plasma membrane at the molecular level...

  14. Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment

    Science.gov (United States)

    Thompson, M. C.; Gota, H.; Putvinski, S.; Tuszewski, M.; Binderbauer, M.

    2016-11-01

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.

  15. Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M. C., E-mail: mthompson@trialphaenergy.com; Gota, H.; Putvinski, S.; Tuszewski, M.; Binderbauer, M. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.

  16. Relaxed states in electron-depleted electronegative dusty plasmas with two-negative ion species

    Science.gov (United States)

    Iqbal, M.; Iqbal

    2014-02-01

    The relaxation of an electron-depleted electronegative dusty plasma with two-negative ions is investigated. When the ratio of canonical vorticities to corresponding flows of all the plasma species is the same and all inertial and non-inertial forces are present, the relaxed state appears as a double Beltrami magnetic field which is the superposition of two force-free relaxed states. The numerical results show that highly diamagnetic relaxed magnetic fields can be obtained by controlling the flow and vorticities through a single Beltrami parameter. The study is useful to investigate the creation of diamagnetic plasma configurations which are considered to be very important in the context of nuclear fusion.

  17. A Numerical Model for Ion Charge Distribution of Plasmas in Collisional Radiative Steady State

    Institute of Scientific and Technical Information of China (English)

    DUAN Yaoyong; GUO Yonghui; QIU Aici; KUAI Bin

    2009-01-01

    A numerical model for the charge state distribution of plasmas in a collisional ra-diative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations.It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas,ranging from low Z to high Z elements.The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision.Furthermore,the NLTE effects are investigated by virtue of the model,and the differences between CRSS and LTE models for low density plasmas are quite evident.

  18. Study on Application of T-S Fuzzy Observer in Speed Switching Control of AUVs Driven by States

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2014-01-01

    Full Text Available Considering the inherent strongly nonlinear and coupling performance of autonomous underwater vehicles (AUVs, the speed switching control method for AUV driven by states is presented. By using T-S fuzzy observer to estimate the states of AUV, the speed control strategies in lever plane, vertical plane, and speed kept are established, respectively. Then the adaptive switching law is introduced to switch the speed control strategies designed in real time. In the simulation, acoustic Doppler current profile/side scan sonar (ADCP/SSS observation case is employed to demonstrate the effectiveness of the proposed method. The results show that the efficiency of AUV was improved, the trajectory tracking error was reduced, and the steady-state ability was enhanced.

  19. Electronic ground state OH(X) radical in a low-temperature atmospheric pressure plasma jet

    Science.gov (United States)

    Fuh, Che A.; Clark, Shane M.; Wu, Wei; Wang, Chuji

    2016-10-01

    The wide applicability of atmospheric pressure plasma jets in biomedicine stems from the presence of reactive nitrogen and oxygen species generated in these plasma jets. Knowing the absolute concentration of these reactive species is of utmost importance as it is critical, along with the particle flux obtained from the plasma feed gas flow rate to ensure that the correct dosage is applied during applications. In this study, we investigate and report the ground state OH(X) number density acquired using cavity ringdown spectroscopy, along the propagation axis (z-axis) of a cold atmospheric pressure helium plasma plume. The jet was generated by a repetitively pulsed mono-polar square wave of duration 1 μs running at a frequency of 9.9 kHz. The voltage supplied was 6.5 kV with the helium flow rate fixed at 3.6 standard liters per minute. The rotational and vibrational temperatures are simulated from the second positive system of nitrogen, N 2(C3πu-B3πg) , with the rotational temperature being spatially constant at 300 K along the propagation axis of the atmospheric pressure plasma jet while the vibrational temperature is 3620 K at the beginning of the plume and is observed to decrease downstream. The OH(A) emission intensity obtained via optical emission spectroscopy was observed to decrease downstream of the plasma jet. The OH(X) number density along the propagation axis was initially 2.2 × 1013 molecules cm-3 before increasing to a peak value of 2.4 × 1013 molecules cm-3, from which the number density was observed to decrease to 2.2 × 1013 molecules cm-3 downstream of the plasma jet. The total OH(A, X) in the plasma jet remained relatively constant along the propagation axis of the plasma jet before falling off at the tip of the jet. The increase in vibrational temperature downstream and the simultaneous measurements of both the excited state OH(A) and the ground state OH(X) reported in this study provide insights into the formation and consumption of this

  20. Equation of state of a quark-gluon plasma using the Cornell potential

    Science.gov (United States)

    Udayanandan, K. M.; Sethumadhavan, P.; Bannur, V. M.

    2007-10-01

    The equation of state (EOS) of quark-gluon plasma (QGP) using the Cornell potential based on Mayer's cluster expansion is presented. The string constant and the strong coupling constant for QGP are calculated. The EOS developed could describe the lattice EOS for pure gauge, two-flavor and three-flavor QGP qualitatively.

  1. Multi-Center Electronic Structure Calculations for Plasma Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B G; Johnson, D D; Alam, A

    2010-12-14

    We report on an approach for computing electronic structure utilizing solid-state multi-center scattering techniques, but generalized to finite temperatures to model plasmas. This approach has the advantage of handling mixtures at a fundamental level without the imposition of ad hoc continuum lowering models, and incorporates bonding and charge exchange, as well as multi-center effects in the calculation of the continuum density of states.

  2. On the Stability of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs

    Science.gov (United States)

    Patilkulkarni, Sudarshan; Herencia-Zapana, Heber; Gray, W. Steven; Gonzalez, Oscar R.

    2004-01-01

    This paper presents two mean-square stability tests for a jump-linear system driven by a finite-state machine with a first-order Markovian input process. The first test is based on conventional Markov jump-linear theory and avoids the use of any higher-order statistics. The second test is developed directly using the higher-order statistics of the machine s output process. The two approaches are illustrated with a simple model for a recoverable computer control system.

  3. Determination of state-to-state electron-impact rate coefficients between Ar excited states: a review of combined diagnostic experiments in afterglow plasmas

    Science.gov (United States)

    Zhu, Xi-Ming; Cheng, Zhi-Wen; Carbone, Emile; Pu, Yi-Kang; Czarnetzki, Uwe

    2016-08-01

    Electron-impact excitation processes play an important role in low-temperature plasma physics. Cross section and rate coefficient data for electron-impact processes from the ground state to excited states or between two excited states are required for both diagnostics and modeling works. However, the collisional processes between excited states are much less investigated than the ones involving the ground state due to various experimental challenges. Recently, a method for determining electron excitation rate coefficients between Ar excited states in afterglow plasmas was successfully implemented and further developed to obtain large sets of collisional data. This method combines diagnostics for electron temperature, electron density, and excited species densities and kinetic modeling of excited species, from which the electron excitation rate coefficients from one of the 1s states to the other 1s states or to one of 2p or 3p states are determined (states are in Paschen’s notation). This paper reviews the above method—namely the combined diagnostics and modeling in afterglow plasmas. The results from other important approaches, including electron-beam measurement of cross sections, laser pump-probe technique for measuring rate coefficients, and theoretical calculations by R-matrix and distorted-wave models are also discussed. From a comparative study of these results, a fitted mathematical expression of excitation rate coefficients is obtained for the electron temperature range of 1-5 eV, which can be used for the collisional-radiative modeling of low-temperature Ar plasmas. At last, we report the limitations in the present dataset and give some suggestions for future work in this area.

  4. Research on pinches driven by SPPED 2 generator hard X-ray and neutron emission in plasma focus configuration

    CERN Document Server

    Sánchez-Soto, L L; Silva, P; Sylvester, G S; Zambra, M; Pavez, C; Raspa, V; Castillo, F; Kies, W; Soto, Leopoldo; Moreno, Jose; Silva, Patricio; Sylvester, Gustavo; Zambra, Marcelo; Pavez, Cristian; Raspa, Veronica; Castillo, Fermin; Kies, Walter

    2004-01-01

    SPEED2 is a generator based on Marx technology and was designed in the University of Dusseldorf. SPEED2 consists on 40 +/- Marx modules connected in parallel (4.1 mF equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt~1013 A/s). Currently the SPEED2 is operating at the Comision Chilena de Energia Nuclear, CCHEN, Chile, being the most powerful and energetic device for dense transient plasma in the Southern Hemisphere. Most of the previous works developed in SPEED2 at Dusseldorf were done in a plasma focus configuration for soft X-ray emission and the neutron emission from SPEED2 was not completely studied. The research program at CCHEN considers experiments in different pinch configurations (plasma focus, gas puffed plasma focus, gas embedded Z-pinch, wire arrays) at current of hundred of kiloamperes to mega-amperes, using the SPEED2 generator. The Chilean operation has begun implementing and developing diagnostics in a conventional plasma focus configuration oper...

  5. Plasma Pressure Driven Magnetic Self-Focusing of Aspherical Supernovae and Highly Collimated Gamma-Ray Bursts

    CERN Document Server

    Tsui, K H

    2012-01-01

    During the process of core-collapse of a massive star, the iron core evolves into an inner central core and an outer envelope, generating a cavity in between. The dynamics of this cavity, filled with plasma and magnetic field by the rapidly rotating pulsar (spun-down magnetar) at the center, is believed to be very relevant to account for supernovae and gamma-ray bursts \\citep{uzdensky2007}. The interactions of the pressurized conducting plasma and the magnetic field could generate some spatial distributions of plasma and magnetic field within the cavity. In an effort to better understand the spatial distributions, a set of time-dependent magnetohydrodynamic (MHD) equations is used to model this cavity system. Homologous solutions in Lagrangian representation are obtained to account for the spatial structures. Under this self-similar description, the magnetic flux function is governed by an eigenvalue equation with the eigenvalue being the poloidal plasma $\\beta$, which is the ratio of plasma pressure to poloi...

  6. Research on pinches driven by Speed-2 generator: Hard X-ray and neutron emission in plasma focus configuration

    Energy Technology Data Exchange (ETDEWEB)

    Soto, L.; Moreno, J.; Silva, P.; Sylvester, G.; Zambra, M.; Pavez, C. [Comision Chilena de Energia Nuclear, Santiago (Chile); Pavez, C. [Universidad de Concepcion (Chile); Raspa, V. [Buenos Aires Univ., PLADEMA, CONICET and INFIP (Argentina); Castillo, F. [Insitituto de Ciencias Nucleares, UNAM (Mexico); Kies, W. [Heinrich-Heine-Univ., Dusseldorf (Germany)

    2004-07-01

    Speed-2 is a generator based on Marx technology and was designed in the University of Dusseldorf. Speed-2 consists on 40 +/- Marx modules connected in parallel (4.1 {mu}F equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt {approx} 10{sup 13} A/s). Currently Speed-2 is operating at CCHEN (Chilean nuclear energy commission), being the most powerful and energetic device for dense transient plasma in the Southern Hemisphere. Most of the previous works developed in Speed-2 at Dusseldorf were done in a plasma focus configuration for soft X-ray emission and the neutron emission from Speed-2 was not completely studied. The research program at CCHEN considers experiments in different pinch configurations (plasma focus, gas puffed plasma focus, gas embedded Z-pinch, wire arrays) at current of hundred of kilo- to mega-amperes, using the Speed-2 generator. The Chilean operation has begun implementing and developing diagnostics in a conventional plasma focus configuration operating in deuterium in order to characterize the neutron emission and the hard X-ray production. Silver activation counters, plastics CR39 and scintillator-photomultiplier detectors are used to characterize the neutron emission. Images of metallic plates with different thickness are obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize an effective energy of the hard X-ray outside of the discharge. (authors)

  7. Quasi-monoenergetic electron beams from a few-terawatt laser driven plasma acceleration using a nitrogen gas jet

    Science.gov (United States)

    Rao, B. S.; Moorti, A.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2017-06-01

    An experimental investigation on the laser plasma acceleration of electrons has been carried out using 3 TW, 45 fs duration titanium sapphire laser pulse interaction with a nitrogen gas jet at an intensity of 2 × 1018 W cm-2. We have observed the stable generation of a well collimated electron beam with divergence and pointing variation ˜10 mrad from nitrogen gas jet plasma at an optimum plasma density around 3 × 1019 cm-3. The energy spectrum of the electron beam was quasi-monoenergetic with an average peak energy and a charge around 25 MeV and 30 pC respectively. The results will be useful for better understanding and control of ionization injection and the laser wakefield acceleration (LWFA) of electrons in high-Z gases and also towards the development of practical LWFA for various applications including injectors for high energy accelerators.

  8. Multi-dimensional Vlasov simulations and modeling of trapped-electron-driven filamentation of electron plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Berger, R. L., E-mail: berger5@llnl.gov; Cohen, B. I. [Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94551 (United States); Brunner, S., E-mail: stephan.brunner@epfl.ch [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, CRPP-PPB, CH-1015 Lausanne (Switzerland); Banks, J. W. [Department of Mathematical Sciences, Rensselaer Polytechnic Institute, AE 301, 110 8th Street, Troy, New York 12180 (United States); Winjum, B. J. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States)

    2015-05-15

    Kinetic simulations of two-dimensional finite-amplitude electron plasma waves are performed in a one-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and wavenumber k{sub y}, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are compared with numerical and analytical solutions to a two-dimensional nonlinear Schrödinger model [H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008)] and to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] generalized to two dimensions.

  9. Quantum Cohesion Oscillation of Electron Ground State in Low Temperature Laser Plasma

    Science.gov (United States)

    Zhao, Qingxun; Zhang, Ping; Dong, Lifang; Zhang, Kaixi

    1996-01-01

    The development of radically new technological and economically efficient methods for obtaining chemical products and for producing new materials with specific properties requires the study of physical and chemical processes proceeding at temperature of 10(exp 3) to 10(exp 4) K, temperature range of low temperature plasma. In our paper, by means of Wigner matrix of quantum statistical theory, a formula is derived for the energy of quantum coherent oscillation of electron ground state in laser plasma at low temperature. The collective behavior would be important in ion and ion-molecule reactions.

  10. Formation of bound states of electrons in spherically symmetric oscillations of plasma

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We study spherically symmetric oscillations of electrons in plasma in frames of the classical electrodynamics. First we analyze the electromagnetic potentials for the system of radially oscillating charged particles. Then we consider both free and forced spherically symmetric oscillations of electrons. Finally we discuss the interaction between radially oscillating electrons through the exchange of ion acoustic waves. It is obtained that the effective potential of this interaction can be attractive and can transcend the Debye-Hueckel potential. We suggest that oscillating electrons can form bound states at the initial staged of the spherical plasma structure evolution. The application of the obtained results to the theory of natural plasmoids are considered.

  11. The effect of bound states on X-ray Thomson scattering for partially ionized plasmas

    OpenAIRE

    Nilsen, J.; Johnson, W.R.; Cheng, K. T.

    2012-01-01

    X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. X-ray laser sources have always been of interest because of the need to have a bright monochromatic x-ray source to overcome plasma emission and eliminate other lines in the background that complicate the analysis. With the advent of the xray free electron laser (X-FEL) at the SLAC Linac Coh...

  12. Slow plasma dynamo driven by electric current helicity in non-compact Riemann surfaces of negative curvature

    CERN Document Server

    de Andrade, Garcia

    2009-01-01

    Boozer addressed the role of magnetic helicity in dynamos [Phys Fluids \\textbf{B},(1993)]. He pointed out that the magnetic helicity conservation implies that the dynamo action is more easily attainable if the electric potential varies over the surface of the dynamo. This provided us with motivation to investigate dynamos in Riemannian curved surfaces [Phys Plasmas \\textbf{14}, (2007);\\textbf{15} (2008)]. Thiffeault and Boozer [Phys Plasmas (2003)] discussed the onset of dissipation in kinematic dynamos. When curvature is constant and negative, a simple simple laminar dynamo solution is obtained on the flow topology of a Poincare disk, whose Gauss curvature is $K=-1$. By considering a laminar plasma dynamo [Wang et al, Phys Plasmas (2002)] the electric current helicity ${\\lambda}\\approx{2.34m^{-1}}$ for a Reynolds magnetic number of $Rm\\approx{210}$ and a growth rate of magnetic field $|{\\gamma}|\\approx{0.022}$. Negative constant curvature non-compact $\\textbf{H}^{2}$, has also been used in one-component elec...

  13. Magnetic Helix Formation Driven by Keplerian Disk Rotation in an External Plasma Pressure --- The Initial Expansion Stage

    CERN Document Server

    Li, H; Finn, J M; Colgate, S A

    2001-01-01

    We study the evolution of a magnetic arcade that is anchored to an accretion disk and is sheared by the differential rotation of a Keplerian disk. By including an extremely low external plasma pressure at large distances, we obtain a sequence of axisymmetric magnetostatic equilibria and show that there is a fundamental difference between field lines that are affected by the plasma pressure and those are not (i.e., force-free). Force-free fields, while being twisted by the differential rotation of the disk, expand outward at an angle of $\\sim 60^\\circ$ away from the rotation axis, consistent with the previous studies. These force-free field lines, however, are enclosed by the outer field lines which originate from small disk radii and come back to the disk at large radii. These outer fields experience most of the twist, and they are also affected most by the external plasma pressure. At large cylindrical radial distances, magnetic pressure and plasma pressure are comparable so that any further radial expansion...

  14. Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamaks with two-component plasma

    Science.gov (United States)

    Chirkov, A. Yu.

    2015-09-01

    Low gain (Q ~ 1) fusion plasma systems are of interest for concepts of fusion-fission hybrid reactors. Operational regimes of large modern tokamaks are close to Q  ≈  1. Therefore, they can be considered as prototypes of neutron sources for fusion-fission hybrids. Powerful neutral beam injection (NBI) can support the essential population of fast particles compared with the Maxwellial population. In such two-component plasma, fusion reaction rate is higher than for Maxwellian plasma. Increased reaction rate allows the development of relatively small-size and relatively inexpensive neutron sources. Possible operating regimes of the NBI-heated tokamak neutron source are discussed. In a relatively compact device, the predictions of physics of two-component fusion plasma have some volatility that causes taking into account variations of the operational parameters. Consequent parameter ranges are studied. The feasibility of regimes with Q  ≈  1 is shown for the relatively small and low-power system. The effect of NBI fraction in total heating power is analyzed.

  15. Quantitative measurement of VUV radiation related to polymer pre-treatment in a microwave driven low pressure plasma

    Science.gov (United States)

    Mitschker, Felix; Iglesias, Enrique; Fiebrandt, Marcel; Bibinov, Nikita; Awakowicz, Peter; InstituteElectrical Engineering; Plasma Technology Team

    2016-09-01

    Plasma pre-treatment of polymers is used for a wide range of applications, e.g. prior to deposition of thin SiOx barrier films. At this, plasma generated particles and vacuum ultraviolet (VUV) radiation can reach the polymer surface. Both have a severe impact on the polymer interface, resulting in the production of e.g. dangling bonds. These modifications govern subsequent thin film growth. For understanding of pre-treatment processes, VUV radiation has to be quantified. Absolute VUV photon fluences are determined in situ, at the substrate holder, applying sodium salicylate (NaSal) as a scintillator. Therefore, VUV photons are quantified from 50 nm to 325 nm, due to constant quantum efficiency of NaSal, as integrals over defined wavelength ranges (50-110, 110-170, 170-200 and 200-325 nm). The set up allows for measurement with three scintillators. Each is equipped with optical filters. Observation of the fluorescence band is performed by means of optical fibers and a photomultiplier. Quantification is achieved by simultaneous measurement with an absolutely calibrated echelle spectrometer in the spectral range from 200 nm to 325 nm, taking into account observed plasma volumes. VUV photons are quantified for argon and oxygen plasmas as well as mixtures of both. Support by the German Research Foundation (DFG) within the framework of the SFB TRR 87/1 is acknowledged.

  16. Lie transformation method on quantum state evolution of a general time-dependent driven and damped parametric oscillator

    Science.gov (United States)

    Zhang, Lin; Zhang, Weiping

    2016-10-01

    A variety of dynamics in nature and society can be approximately treated as a driven and damped parametric oscillator. An intensive investigation of this time-dependent model from an algebraic point of view provides a consistent method to resolve the classical dynamics and the quantum evolution in order to understand the time-dependent phenomena that occur not only in the macroscopic classical scale for the synchronized behaviors but also in the microscopic quantum scale for a coherent state evolution. By using a Floquet U-transformation on a general time-dependent quadratic Hamiltonian, we exactly solve the dynamic behaviors of a driven and damped parametric oscillator to obtain the optimal solutions by means of invariant parameters of Ks to combine with Lewis-Riesenfeld invariant method. This approach can discriminate the external dynamics from the internal evolution of a wave packet by producing independent parametric equations that dramatically facilitate the parametric control on the quantum state evolution in a dissipative system. In order to show the advantages of this method, several time-dependent models proposed in the quantum control field are analyzed in detail.

  17. Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator driven in a pre-formed plasma waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J.; Nakamura, K.; Daniels, J.; Mao, H.-S.; Benedetti, C.; Schroeder, C. B.; Tóth, Cs.; Tilborg, J. van; Vay, J.-L.; Geddes, C. G. R.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mittelberger, D. E.; Bulanov, S. S.; Leemans, W. P., E-mail: WPLeemans@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2015-05-15

    Laser pulses with peak power 0.3 PW were used to generate electron beams with energy >4 GeV within a 9 cm-long capillary discharge waveguide operated with a plasma density of ≈7×10{sup 17} cm{sup −3}. Simulations showed that the super-Gaussian near-field laser profile that is typical of high-power femtosecond laser systems reduces the efficacy of guiding in parabolic plasma channels compared with the Gaussian laser pulses that are typically simulated. In the experiments, this was mitigated by increasing the plasma density and hence the contribution of self-guiding. This allowed for the generation of multi-GeV electron beams, but these had angular fluctuation ≳2 mrad rms. Mitigation of capillary damage and more accurate alignment allowed for stable beams to be produced with energy 2.7±0.1 GeV. The pointing fluctuation was 0.6 mrad rms, which was less than the beam divergence of ≲1 mrad full-width-half-maximum.

  18. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  19. State of arbitrary complexity and Model Driven Architecture in the software development in Cuba

    Directory of Open Access Journals (Sweden)

    Nemury Silega

    2014-01-01

    Full Text Available Informatic systems play an important role in the society because are used in the majority of fields. The community of software researchers and developers devotes substantial efforts to determine how software systems can increasingly improve the environment in which they are deployed, for example, in medicine, business management, education, among other domains. But paradoxically these efforts do not correspond to those devoted to improving the environment of software development itself. There are insufficient proposals to streamline the software development process. The authors conducted an analysis of several proposals to improve the software development process in Cuba, propose how to address the problem based on the paradigm of Model Driven Architecture and make an assessment of the impact this may have on Cuban software industry.

  20. Approximate semi-analytical solutions for the steady-state expansion of a contactor plasma

    CERN Document Server

    Camporeale, E; MacDonald, E A

    2015-01-01

    We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions, that can be used in lieu of much more expensive numerical solutions. In particular, we focus on the earlier studies presented in Parks and Katz (1979), Korsun and Tverdokhlebova (1997), and Ashkenazy and Fruchtman (2001). By calculating the error with respect to the numerical solution, we can judge the range of validity for each solution. Moreover, we introduce a generalization of earlier models that has a wider range of applicability, in terms of plasma injection profiles. We conclude by showing a straightforward way to extend the discussed solutions to the case of a plasma plume injected with non-null azimuthal velocity.

  1. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  2. Interaction-driven fractional quantum Hall state of hard-core bosons on kagome lattice at one-third filling

    Science.gov (United States)

    Zhu, W.; Gong, S. S.; Sheng, D. N.

    2016-07-01

    There has been a growing interest in realizing topologically nontrivial states of matter in band insulators, where a quantum Hall effect can appear as an intrinsic property of the band structure. While ongoing progress is under way with a number of directions, the possibility of realizing novel interaction-generated topological phases, without the requirement of a nontrivial invariant encoded in single-particle wave function or band structure, can significantly extend the class of topological materials and is thus of great importance. Here, we show an interaction-driven topological phase emerging in an extended Bose-Hubbard model on a kagome lattice, where the noninteracting band structure is topological trivial with zero Berry curvature in the Brillouin zone. By means of an unbiased state-of-the-art density-matrix renormalization group technique, we identify that the ground state in a broad parameter region is equivalent to a bosonic fractional quantum Hall Laughlin state, based on the characterization of universal properties including ground-state degeneracy, edge excitations, and anyonic quasiparticle statistics. Our work paves a way to finding an interaction-induced topological phase at the phase boundary of conventionally ordered solid phases.

  3. Multiplying probe for accurate power measurements on an RF driven atmospheric pressure plasma jet applied to the COST reference microplasma jet

    Science.gov (United States)

    Beijer, P. A. C.; Sobota, A.; van Veldhuizen, E. M.; Kroesen, G. M. W.

    2016-03-01

    In this paper a new multiplying probe for measuring the power dissipated in a miniature capacitively coupled, RF driven, atmospheric pressure plasma jet (μAPPJ—COST Reference Microplasma Jet—COST RMJ) is presented. The approach aims for substantially higher accuracy than provided by traditionally applied methods using bi-directional power meters or commercially available voltage and current probes in conjunction with digitizing oscilloscopes. The probe is placed on a miniature PCB and designed to minimize losses, influence of unknown elements, crosstalk and variations in temperature. The probe is designed to measure powers of the order of magnitude of 0.1-10 W. It is estimated that it measures power with less than 2% deviation from the real value in the tested power range. The design was applied to measure power dissipated in COST-RMJ running in helium with a small addition of oxygen.

  4. Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization

    Institute of Scientific and Technical Information of China (English)

    Luo Mu-Hua; Zhang Qiu-Ju

    2011-01-01

    The influence of time-dependent polarization on attosecond pulse generation from an overdense plasma surface driven by laser pulse is discussed analytically and numerically.The results show that the frequency of controlling pulse controls the number and interval of the generated attosecond pulse,that the generation moment of the attosecond pulse is dominated by the phase difference between the controlling and driving pulses,and that the amplitude of the controlling pulse affects the intensity of the attosecond pulse.Using the method of time-dependent polarization,a "single" ultra-strong attosecond pulse with duration τ≈8.6 as and intensity I≈3.08×1020 W·cm-2 can be generated.

  5. Improving the energy-extraction efficiency of laser-plasma accelerator driven free-electron laser using transverse-gradient undulator with focusing optics and longitudinal tapering

    CERN Document Server

    Zhou, G; Wu, J; Zhang, T

    2016-01-01

    It is reported that [Z. Huang et al., Phys. Rev. Lett. 109, 204801 (2012)], high-gain free-electron laser (FEL) can be generated by transverse-dispersed electron beams from laser-plasma accelerators (LPAs) using transverse-gradient undulator (TGU) assuming an ideal constant dispersion function without focusing optics. The constant dispersion function keeps electrons beyond the resonant energy bandwidth still being on resonant with the FEL radiation. Instead, in this paper, the case with focusing optics in an LPA-driven FEL using TGU is numerically studied, in which the dispersion function should be monotonously decreasing along the undulator. Even though the FEL resonance is not always satisfied for off-energy electrons in this case, through subtly optimizing the initial dispersion and focusing parameters, it is feasible to achieve a similar radiation power to the case assuming an ideal constant dispersion function without focusing optics, and meanwhile, to attain a good transverse coherence. Moreover, higher...

  6. DREISS: Using State-Space Models to Infer the Dynamics of Gene Expression Driven by External and Internal Regulatory Networks.

    Science.gov (United States)

    Wang, Daifeng; He, Fei; Maslov, Sergei; Gerstein, Mark

    2016-10-01

    Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A subsystem's gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally-e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the "state" and "control" in the model refer to its own (internal) and another subsystem's (external) gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model's parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with evolutionarily

  7. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    Energy Technology Data Exchange (ETDEWEB)

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z. [University of California, Irvine, California 92697 (United States)

    2014-12-15

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  8. Characteristics of sheath-driven tangential flow produced by a low-current DC surface glow discharge plasma actuator

    Science.gov (United States)

    Shin, Jichul; Shajid Rahman, Mohammad

    2014-08-01

    An experimental investigation of low-speed flow actuation at near-atmospheric pressure is presented. The flow actuation is achieved via low-current ( \\lesssim 1.0 mA) continuous or pulsed DC surface glow discharge plasma. The plasma actuator, consisting of two sharp-edged nickel electrodes, produces a tangential flow in a direction from anode to cathode, and is visualized using high-speed schlieren photography. The induced flow velocity estimated via the schlieren images reaches up to 5 m/s in test cases. The actuation capability increases with pressure and electrode gap distances, and the induced flow velocity increases logarithmically with the discharge power. Pulsed DC exhibits slightly improved actuation capability with better directionality. An analytic estimation of induced flow velocity obtained based on ion momentum in the cathode sheath and gas dynamics in one-dimensional flow yields values similar to those measured.

  9. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    Science.gov (United States)

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  10. Study on atomic layer etching of Si in inductively coupled Ar/Cl2 plasmas driven by tailored bias waveforms

    Science.gov (United States)

    Ma, Xiaoqin; Zhang, Saiqian; Dai, Zhongling; Wang, Younian

    2017-08-01

    Plasma atomic layer etching is proposed to attain layer-by-layer etching, as it has atomic-scale resolution, and can etch monolayer materials. In the etching process, ion energy and angular distributions (IEADs) bombarding the wafer placed on the substrate play a critical role in trench profile evolution, thus importantly flexibly controlling IEADs in the process. Tailored bias voltage waveform is an advisable method to modulate the IEADs effectively, and then improve the trench profile. In this paper, a multi-scale model, coupling the reaction chamber model, sheath model, and trench model, is used to research the effects of bias waveforms on the atomic layer etching of Si in Ar/Cl2 inductively coupled plasmas. Results show that different discharge parameters, such as pressure and radio-frequency power influence the trench evolution progress with bias waveforms synergistically. Tailored bias waveforms can provide nearly monoenergetic ions, thereby obtaining more anisotropic trench profile.

  11. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law

    CERN Document Server

    Joglekar, A S; Fox, W; Bhattacharjee, A

    2015-01-01

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields.We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfv\\`enic flows. We find that this mechanism is only relevant in a high $\\beta$ plasma. However, the Hall parameter $\\omega_c \\tau_{ei}$ can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  12. State-of-Art Empirical Modeling of Ring Current Plasma Pressure

    Science.gov (United States)

    Yue, C.; Ma, Q.; Wang, C. P.; Bortnik, J.; Thorne, R. M.

    2015-12-01

    The plasma pressure in the inner magnetosphere plays a key role in plasma dynamics by changing magnetic field configurations and generating the ring current. In this study, we present our preliminary results of empirically constructing 2D equatorial ring current pressure and pressure anisotropy spatial distributions controlled by Dst based on measurements from two particle instruments (HOPE and RBSPICE) onboard Van Allen Probes. We first obtain the equatorial plasma perpendicular and parallel pressures for different species including H+, He+, O+ and e- from 20 eV to ~1 MeV, and investigate their relative contributions to the total plasma pressure and pressure anisotropy. We then establish empirical equatorial pressure models within ~ 6 RE using a state-of-art machine learning technique, Support Vector Regression Machine (SVRM). The pressure models predict equatorial perpendicular and parallel plasma thermal pressures (for each species and for total pressures) and pressure anisotropy at any given r, MLT, Bz/Br (equivalent Z distance), and Dst within applicable ranges. We are currently validating our model predictions and investigating how the ring current pressure distributions and the associated pressure gradients vary with Dst index.

  13. Inductive Pulsed Plasma Thruster Model with Time-Evolution of Energy and State Properties

    Science.gov (United States)

    Polzin, Kurt A.; Sankaran, Kamesh

    2012-01-01

    A model for pulsed inductive plasma acceleration is presented that consists of a set of circuit equations coupled to both a one-dimensional equation of motion and an equation governing the partitioning of energy. The latter two equations are obtained for the plasma current sheet by treating it as a single element of finite volume and integrating the governing equations over that volume. The integrated terms are replaced where necessary by physically-equivalent quantities that are calculated through the solution of other parts of the governing equation set. The model improves upon previous one-dimensional performance models by permitting the time-evolution of the energy and state properties of the plasma, the latter allowing for the tailoring of the model to different gases that may be chosen as propellants. The time evolution of the various energy modes in the system and the associated plasma properties, calculated for argon propellant, are presented to demonstrate the efficacy of the model. The model produces a result where efficiency is maximized at a given value of the electrodynamic scaling term known as the dynamic impedance parameter. Qualitatively and quantitatively, the model compares favorably with performance measured for two separate inductive pulsed plasma thrusters, with disagreements attributable to simplifying assumptions employed in the generation of the model solution.

  14. An atmospheric pressure plasma source driven by a train of monopolar high voltage pulses superimposed to a dc voltage

    OpenAIRE

    Stoican, O.S.

    2011-01-01

    Abstract An atmospheric pressure plasma source supplied by an electrical circuit consisting of two voltage sources in parallel connection is reported. One of them is a low-power self-oscillating flyback converter which produces negative voltage pulses with an amplitude of several kilovolts. The high voltage pulses are necessary to ignite an electrical discharge between the electrodes at atmospheric pressure. An additional dc source delivering several hundreds of volts at a few hund...

  15. Particle-in-cell simulations of Magnetic Field Generation, Evolution, and Reconnection in Laser-driven Plasmas

    Science.gov (United States)

    Matteucci, Jack; Moissard, Clément; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    The advent of high-energy-density physics facilities has introduced the opportunity to experimentally investigate magnetic field dynamics relevant to both ICF and astrophysical plasmas. Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the plasma by the Biermann battery effect. In this study, we simulate these experiments from first principles using 2-D and 3-D particle-in-cell simulations. Simulations self-consistently demonstrate magnetic field generation by the Biermann battery effect, followed by advection by the Hall effect and ion flow. In 2-D simulations, we find in both the collisionless case and the semi-collisional case, defined by eVi × B >> Rei /ne (where Rei is the electron ion momentum transfer) that quantitative agreement with the generalized Ohm's law is only obtained with the inclusion of the pressure tensor. Finally, we document that significant field is destroyed at the reconnection site by the Biermann term, an inverse, `anti-Biermann' effect, which has not been considered previously in analysis of the experiment. The role of the anti-Biermann effect will be compared to standard reconnection mechanisms in 3-D reconnection simulations. This research used resources of the ORLC Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. DoE under Contract No. DE-AC05-00OR22725.

  16. Laser Plasma Instability (LPI) Driven Light Scattering Measurements with 44 beam-lines of Nike KrF Laser^*

    Science.gov (United States)

    Oh, J.; Weaver, J. L.; Kehne, D. M.; Phillips, L. S.; Obenschain, S. P.; Serlin, V.; McLean, E. A.; Lehmberg, R. H.; Manka, C. K.

    2009-11-01

    With short wavelength (248 nm), large bandwidth (˜1 THz), and ISI beam smoothing, Nike KrF laser provides unique opportunities of LPI research for direct-drive inertial confinement fusion. Previous experiments at intensities (10^15˜10^16 W/cm^2) exceeded two-plasmon decay (TPD) instability threshold using 12 beam-lines of Nike laser.^a,b For further experiments to study LPI excitation in bigger plasma volumes, 44 Nike main beams have been used to produce plasmas with total laser energies up to 1 kJ of ˜350 psec FWHM pulses. This talk will present results of the recent LPI experiment focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. Blackbody temperature and expansion speed measurements of the plasmas were also made. The experiment was conducted at laser intensities of (1˜4)x10^15 W/cm^2 on solid planar CH targets. ^a J. L. Weaver, et al, NO4.14, APS DPP (2008) ^b J. Oh, et al, NO4.15, APS DPP (2008) * Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  17. Current driven tri-stable resistance states in magnetic point contacts.

    Science.gov (United States)

    Yanson, I K; Fisun, V V; Naidyuk, Yu G; Balkashin, O P; Triputen, L Yu; Konovalenko, A; Korenivski, V

    2009-09-02

    Point contacts between normal and ferromagnetic metals are investigated using magnetoresistance and transport spectroscopy measurements combined with micromagnetic simulations. Pronounced hysteresis in the point contact resistance versus both bias current and external magnetic field are observed. It is found that such hysteretic resistance can exhibit, in addition to bi-stable resistance states found in ordinary spin valves, tri-stable resistance states with a middle resistance level. We interpret these observations in terms of surface spin valve and spin vortex states, originating from a substantially modified spin structure at the ferromagnetic interface in the contact core. We argue that these surface spin states, subject to a weakened exchange interaction, dominate the effects of spin transfer torques on the nanometer scale.

  18. Current driven tri-stable resistance states in magnetic point contacts

    Energy Technology Data Exchange (ETDEWEB)

    Yanson, I K; Fisun, V V; Naidyuk, Yu G; Balkashin, O P; Triputen, L Yu [B Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Avenue, 61103, Kharkiv (Ukraine); Konovalenko, A; Korenivski, V [Nanostructure Physics, Royal Institute of Technology, 10691, Stockholm (Sweden)

    2009-09-02

    Point contacts between normal and ferromagnetic metals are investigated using magnetoresistance and transport spectroscopy measurements combined with micromagnetic simulations. Pronounced hysteresis in the point contact resistance versus both bias current and external magnetic field are observed. It is found that such hysteretic resistance can exhibit, in addition to bi-stable resistance states found in ordinary spin valves, tri-stable resistance states with a middle resistance level. We interpret these observations in terms of surface spin valve and spin vortex states, originating from a substantially modified spin structure at the ferromagnetic interface in the contact core. We argue that these surface spin states, subject to a weakened exchange interaction, dominate the effects of spin transfer torques on the nanometer scale.

  19. Existence and Modulation of Uniform Sliding States in Driven and Overdamped Particle Chains

    Science.gov (United States)

    Qin, Wen-Xin

    2012-04-01

    In this paper we are mainly concerned with existence and modulation of uniform sliding states for particle chains with damping γ and external driving force F. If the on-site potential vanishes, then for each F > 0 there exist trivial uniform sliding states x n ( t) = n ω + ν t + α for which the particles are uniformly spaced with spacing ω > 0, the sliding velocity of each particle is ν = F/ γ, and the phase α is arbitrary. If the particle chain with convex interaction potential is placed in a periodic on-site potential, we show under some conditions the existence of modulated uniform sliding states of the form x_n(t)=nω+ν t+α+u(nω+ν t+α), where the modulation function u is periodic and unique up to phase. The conditions are that the system is overdamped and the driving force F exceeds some critical value F d ( ω) ≥ 0 depending on mean spacing ω. If {Fin [0,F_d(ω)]} , the system possesses a set of rotationally ordered equilibrium states for irrational ω, which can be described by a non-decreasing hull function, just as the case γ = F = 0, where Aubry-Mather theory applies to ground states. Meanwhile, we prove that F d ( ω) = 0, which was argued physically much earlier, if the hull function of ground states with irrational rotation number ω for F = 0 is continuous.

  20. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    Science.gov (United States)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  1. DREISS: Using State-Space Models to Infer the Dynamics of Gene Expression Driven by External and Internal Regulatory Networks

    Science.gov (United States)

    Gerstein, Mark

    2016-01-01

    Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A subsystem’s gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally–e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the “state” and “control” in the model refer to its own (internal) and another subsystem’s (external) gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model’s parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with

  2. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet.

    Science.gov (United States)

    Dolezalova, Eva; Lukes, Petr

    2015-06-01

    Electrical discharge plasmas can efficiently inactivate various microorganisms. Inactivation mechanisms caused by plasma, however, are not fully understood because of the complexity of both the plasma and biological systems. We investigated plasma-induced inactivation of Escherichia coli in water and mechanisms by which plasma affects bacterial cell membrane integrity. Atmospheric pressure argon plasma jet generated at ambient air in direct contact with bacterial suspension was used as a plasma source. We determined significantly lower counts of E. coli after treatment by plasma when they were assayed using a conventional cultivation technique than using a fluorescence-based LIVE/DEAD staining method, which indicated that bacteria may have entered the viable-but-nonculturable state (VBNC). We did not achieve resuscitation of these non-culturable cells, however, we detected their metabolic activity through the analysis of cellular mRNA, which suggests that cells may have been rather in the active-but-nonculturable state (ABNC). We hypothesize that peroxidation of cell membrane lipids by the reactive species produced by plasma was an important pathway of bacterial inactivation. Amount of malondialdehyde and membrane permeability of E. coli to propidium iodide increased with increasing bacterial inactivation by plasma. Membrane damage was also demonstrated by detection of free DNA in plasma-treated water.

  3. Equation of State of the Quark Gluon Plasma within the Quasi-particle Approach

    CERN Document Server

    Begun, Viktor V; Mogilevsky, Oleg A

    2010-01-01

    We propose simple analytical form of the quark-gluon plasma (QGP) equation of state (EoS) based on a quasi-particle approach. This new EoS satisfies all qualitative features observed in the lattice QCD calculations and gives a good quantitative description of the lattice results in SU(3) gluodynamics. The suggested EoS opens up new possibilities for hydrodynamic and kinetic phenomenological applications in the studies of the QGP.

  4. Phase diagram of a driven interacting three-state lattice gas

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, E.; Schmittmann, B. [Center for Stochastic Processes in Science and Engineering, and Physics Department, Virginia Tech, Blacksburg, VA (United States)

    2002-04-26

    We present Monte Carlo simulations of a three-state lattice gas, half-filled with two types of particles which attract one another, irrespective of their identities. A bias drives the two particle species in opposite directions, establishing and maintaining a non-equilibrium steady state. We map out the phase diagram at fixed bias, as a function of temperature and fraction of the second species. As the temperature is lowered, a continuous transition occurs, from a disordered homogeneous phase into two distinct strip-like ordered phases. Which of the latter is selected depends on the admixture of the second species. A first-order line separates the two ordered states at lower temperatures, emerging from the continuous line at a non-equilibrium bicritical point. For intermediate fraction of the second species, all three phases can be observed. (author). Letter-to-the-editor.

  5. Stable algorithm for event detection in event-driven particle dynamics: logical states

    Science.gov (United States)

    Strobl, Severin; Bannerman, Marcus N.; Pöschel, Thorsten

    2016-07-01

    Following the recent development of a stable event-detection algorithm for hard-sphere systems, the implications of more complex interaction models are examined. The relative location of particles leads to ambiguity when it is used to determine the interaction state of a particle in stepped potentials, such as the square-well model. To correctly predict the next event in these systems, the concept of an additional state that is tracked separately from the particle position is introduced and integrated into the stable algorithm for event detection.

  6. Stable algorithm for event detection in event-driven particle dynamics: Logical states

    CERN Document Server

    Strobl, Severin; Poeschel, Thorsten

    2015-01-01

    Following the recent development of a stable event-detection algorithm for hard-sphere systems, the implications of more complex interaction models are examined. The relative location of particles leads to ambiguity when it is used to determine the interaction state of a particle in stepped potentials, such as the square-well model. To correctly predict the next event in these systems, the concept of an additional state that is tracked separately from the particle position is introduced and integrated into the stable algorithm for event detection.

  7. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongjian [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Southwestern Institution of Physics, Chengdu 610041 (China); Bao, Jian [Fusion Simulation Center, Peking University, Beijing 100871 (China); Han, Tao; Wang, Jiaqi [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Lin, Zhihong, E-mail: zhihongl@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-02-15

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to D{sub e}{sup 2}, where D{sub e} is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to D{sub e} in the parameter regime of fusion plasmas.

  8. Stabilizing effect of ion pressure gradient on magnetic curvature-driven drift modes located at rational surface of tokamak plasma

    Institute of Scientific and Technical Information of China (English)

    Wang Ai-Ke

    2005-01-01

    In the fluid model, we derive a dispersion relation for the toroidal drift modes of tokamak plasmas, including the ion pressure gradient and the magnetic field gradient and curvature. It is shown that the magnetic field gradient and curvature (MFGC) can cause instabilities at the rational surface, which are of toroidicity-induced (TI) modes. On the other hand, it is discovered that the ion pressure gradient can stabilize the present MFGC instabilities. The critical threshold of ion pressure gradient, which makes the growth rate reduced to zero, is obtained both analytically and numerically.

  9. Operational characteristics of tractors driven by children on farms in the United States and Canada.

    Science.gov (United States)

    Marlenga, B; Pickett, W; Berg, R L; Murphy, D

    2004-01-01

    Farm tractors are an important source of traumatic injury for children on farms. There is, however, no documentation about the age and size of tractors that children are operating and little information about the frequency with which rollover protective structures (ROPS) are used. This study described tractors that children on farms in the U.S. and Canada were operating by age, horsepower, and the presence of ROPS, according to the age and gender of the farm children involved. As a sub-analysis of data compiled during a randomized controlled trial, a descriptive analysis was completed on work exposure data collected by telephone interview. Of the 1,113 children involved in the trial, 522 (47%) were reported to perform at least one job that involved the operation of a farm tractor, and 408 (36.7%) were operating tractors of at least 20 horsepower. The majority of these children were male. There was a wide range of ages and sizes of tractors operated. However, the majority of tractors were between 20 and 70 horsepower and manufactured after 1970. Nearly one-half of the tractors were equipped with ROPS, and these tended to be newer and larger tractors. This analysis provides new data about the broad range of tractors driven by farm children in the U.S. and Canada. The findings point to a need to re-examine the reliance on a single voluntary standard to mitigate the hazard of tractor rollovers and the need for an enhanced safety policy requiring all tractors operated by children be equipped with ROPS.

  10. Magnetostriction-driven ground-state stabilization in 2H perovskites

    Science.gov (United States)

    Porter, D. G.; Senn, M. S.; Khalyavin, D. D.; Cortese, A.; Waterfield-Price, N.; Radaelli, P. G.; Manuel, P.; zur-Loye, H.-C.; Mazzoli, C.; Bombardi, A.

    2016-10-01

    The magnetic ground state of Sr3A RuO6 , with A =(Li ,Na ) , is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. The symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca3A RuO6 , with A =(Li ,Na ) , and Ca3LiOsO6 whose magnetic ground states are still not completely understood.

  11. Lateral electric-field-driven non-volatile four-state memory in multiferroic heterostructures

    Science.gov (United States)

    Zhou, Cai; Zhang, Chao; Yao, Jinli; Jiang, Changjun

    2016-09-01

    A non-volatile four-state memory is formed using an in-plane side-polarization configuration in a Co/(011) Pb(Mg1/3Nb2/3)O3-PbTiO3 (Co/PMN-PT) heterostructure. The resistivity vs. electric field behavior shows a change from volatile butterfly to looplike to non-volatile butterfly characteristics when the temperature decreases from 290 K to 83 K under an electric field of 10 kV/cm and then increases back to 290 K; this behavior is attributed to the strain-mediated magnetoelectric effect. In addition, the in-plane resistivity of Co film, which was measured using the four-probe technique, can be controlled both electrically and magnetically. Specifically, a non-volatile resistivity is gained by the application of electric field pulses. Additionally, a four-state memory is obtained by co-mediation of the magnetic field and electric field pulses, compared with the two different states achieved under the application of the electric field only, which indicates that our results are highly important for multi-state memory and spintronic devices applications.

  12. Enhanced magnetic field probe array for improved excluded flux calculations on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Roche, T., E-mail: troche@trialphaenergy.com; Thompson, M. C.; Mendoza, R.; Allfrey, I.; Garate, E.; Romero, J.; Douglass, J. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ∼5 ms. The addition of the external copper coils effectively increases this time to ∼7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.

  13. Enhanced magnetic field probe array for improved excluded flux calculations on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    Science.gov (United States)

    Roche, T.; Thompson, M. C.; Mendoza, R.; Allfrey, I.; Garate, E.; Romero, J.; Douglass, J.

    2016-11-01

    External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ˜5 ms. The addition of the external copper coils effectively increases this time to ˜7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.

  14. Impact-driven shock waves and thermonuclear neutron generation

    Energy Technology Data Exchange (ETDEWEB)

    Gus' kov, S Yu; Demchenko, N N; Doskoch, I Ya; Rozanov, V B [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow (Russian Federation); Azechi, H; Murakami, M; Sakaiya, T; Watari, T [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Zmitrenko, N V, E-mail: guskov@sci.lebedev.r [Institute for Mathematical Modeling of Russian Academy of Sciences, Moscow (Russian Federation)

    2009-09-15

    Impact-driven shock waves, thermonuclear plasma and neutron yield were investigated. The results of 2D numerical simulations and Gekko/HIPER laser experiments on the collision of a laser-accelerated disk-projectile with a massive target, both containing (CD){sub n}-material, are discussed. A two-temperature model of the non-equilibrium plasma created by impact-driven shock waves due to the collision of a laser-accelerated planar projectile with a massive target was developed and used for analysis of the numerical and experimental results. The model defines the characteristics of shock waves and plasmas (including their lifetime) as well as neutron yields in both the colliding objects as functions of velocity, density and mass of the projectile-impactor just before collision. The neutron yield generated during the period of laser-driven acceleration of the impactor was also determined. Two effects were discovered that exert a substantial influence on the plasma parameters and neutron yield. The first of them relates to the formation of the pre-impact state of the impactor. It decreases the projectile density due to thermal expansion of its matter through a free boundary during the period of laser-driven acceleration. The other relates to the formation of impact-produced plasma. Predominant heating of the ion component of plasma leads to the existence of a non-equilibrium two-temperature plasma during the period of electron-ion relaxation.

  15. The undecided have the key: Interaction-driven opinion dynamics in a three state model

    CERN Document Server

    Balenzuela, Pablo; Semeshenko, Viktoriya

    2015-01-01

    The effects of interpersonal interactions on individual's agreements result in a social aggregation process which is reflected in the formation of collective states, as for instance, groups of individuals with a similar opinion about a given issue. This field, which has been a longstanding concern of sociologists and psychologists, has been extended into an area of experimental social psychology, and even has attracted the attention of physicists and mathematicians. In this article, we present a novel model of opinion formation in which agents may either have a strict preference for a choice, or be undecided. The opinion shift emerges during interpersonal communications, as a consequence of a cumulative process of conviction for one of the two extremes opinions through repeated interactions. There are two main ingredients which play key roles in determining the steady state: the initial fraction of undecided agents and the conviction's sensitivity in each interaction. As a function of these two parameters, th...

  16. Polyanion Driven Antiferromagnetic and Insulating Ground State of Olivine Phosphates: LiMPO4

    Science.gov (United States)

    Jena, Ajit Kumar; Nanda, B. R. K.; Condensed Matter Theory; Computation Team

    Through density functional calculations we have investigated the electronic and magnetic properties of LiMPO4, where M is a 3d transition metal element. We find that contrary to many transition metal oxides, in these Olivine phosphates the band gap is originated due to crystal field anisotropy as well as weak O-p - M-d covalent interaction. Both of them are attributed to the presence of PO43- polyanion. The anisotropic crystal field, in the absence of covalent interactions, creates atomically localized non-degenerate M-d states and therefore the gap is a natural outcome. Onsite repulsion, due to strong correlation effect, further enhances the gap. These localized d states favor high-spin configuration which leads to antiferromagnetic ordering due to Hund's coupling. Experimentally observed low Neel temperature of this family of compounds is explained from the DFT obtained spin exchange interaction parameters. Work supported by Nissan Research Program.

  17. Laser driven impurity states in two-dimensional quantum dots and quantum rings

    Science.gov (United States)

    Laroze, D.; Barseghyan, M.; Radu, A.; Kirakosyan, A. A.

    2016-11-01

    The hydrogenic donor impurity states in two-dimensional GaAs/Ga0.7Al0.3As quantum dot and quantum ring have been investigated under the action of intense laser field. A laser dressed effect on both electron confining and electron-impurity Coulomb interaction potentials has been considered. The single electron energy spectrum and wave functions have been found using the effective mass approximation and exact diagonalization technique. The accidental degeneracy of the impurity states have been observed for different positions of the impurity and versus values of the laser field parameter. The obtained theoretical results indicate a novel opportunity to tune the performance of quantum dots and quantum rings and to control their specific properties by means of laser field.

  18. Operator functional state estimation based on EEG-data-driven fuzzy model.

    Science.gov (United States)

    Zhang, Jianhua; Yin, Zhong; Yang, Shaozeng; Wang, Rubin

    2016-10-01

    This paper proposed a max-min-entropy-based fuzzy partition method for fuzzy model based estimation of human operator functional state (OFS). The optimal number of fuzzy partitions for each I/O variable of fuzzy model is determined by using the entropy criterion. The fuzzy models were constructed by using Wang-Mendel method. The OFS estimation results showed the practical usefulness of the proposed fuzzy modeling approach.

  19. Data-Driven Techniques for Detecting Dynamical State Changes in Noisily Measured 3D Single-Molecule Trajectories

    Directory of Open Access Journals (Sweden)

    Christopher P. Calderon

    2014-11-01

    Full Text Available Optical microscopes and nanoscale probes (AFM, optical tweezers, etc. afford researchers tools capable of quantitatively exploring how molecules interact with one another in live cells. The analysis of in vivo single-molecule experimental data faces numerous challenges due to the complex, crowded, and time changing environments associated with live cells. Fluctuations and spatially varying systematic forces experienced by molecules change over time; these changes are obscured by “measurement noise” introduced by the experimental probe monitoring the system. In this article, we demonstrate how the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS of Fox et al. [IEEE Transactions on Signal Processing 59] can be used to detect both subtle and abrupt state changes in time series containing “thermal” and “measurement” noise. The approach accounts for temporal dependencies induced by random and “systematic overdamped” forces. The technique does not require one to subjectively select the number of “hidden states” underlying a trajectory in an a priori fashion. The number of hidden states is simultaneously inferred along with change points and parameters characterizing molecular motion in a data-driven fashion. We use large scale simulations to study and compare the new approach to state-of-the-art Hidden Markov Modeling techniques. Simulations mimicking single particle tracking (SPT experiments are the focus of this study.

  20. A chemically modified [alpha]-amylase with a molten-globule state has entropically driven enhanced thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Khawar Sohail; Poljak, Anne; De Francisci, Davide; Guerriero, Gea; Pilak, Oliver; Burg, Dominic; Raftery, Mark J.; Parkin, Don M.; Trewhella, Jill; Cavicchioli, Ricardo (Sydney); (New South)

    2010-11-15

    The thermostability properties of TAA were investigated by chemically modifying carboxyl groups on the surface of the enzyme with AMEs. The TAA{sub MOD} exhibited a 200% improvement in starch-hydrolyzing productivity at 60 C. By studying the kinetic, thermodynamic and biophysical properties, we found that TAA{sub MOD} had formed a thermostable, MG state, in which the unfolding of the tertiary structure preceded that of the secondary structure by at least 20 C. The X-ray crystal structure of TAA{sub MOD} revealed no new permanent interactions (electrostatic or other) resulting from the modification. By deriving thermodynamic activation parameters of TAA{sub MOD}, we rationalised that thermostabilisation have been caused by a decrease in the entropy of the transition state, rather than being enthalpically driven. Far-UV CD shows that the origin of decreased entropy may have arisen from a higher helical content of TAA{sub MOD}. This study provides new insight into the intriguing properties of an MG state resulting from the chemical modification of TAA.