WorldWideScience

Sample records for plasma sprayed ni-al

  1. Characterization of plasma sprayed NiCrAlY-Yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Bhave, V.S.; Rakhasia, R.H.; Tripathy, P.K.; Hubli, R.C.; Sengupta, P.; Bhanumurthy; Satpute, R.U.; Sreekumar, K.P.; Thiyagarajan, T.K.; Padmanabhan, P.V.A.

    2004-01-01

    Plasma sprayed coatings of yttria stabilized zirconia are used in many advanced technologies for thermal and chemical barrier applications. Development and characterization of NiCrAlY-yttria stabilized zirconia duplex coatings on Inconel substrates is reported in this paper. Plasma spraying was carried out using the 40 kW atmospheric plasma spray facility at the Laser and Plasma Technology Division, BARC. A bond coat of NiCrAlY was deposited on Inconel substrates and yttria stabilized zirconia (YSZ) was deposited over the bond coat. The coatings have been characterized by x-ray diffraction and EPMA. It is observed that the coating characteristics are affected by the input power to the torch. (author)

  2. Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy

    Science.gov (United States)

    Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.

    2017-06-01

    Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).

  3. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  4. Some observations on the high temperature oxidation behaviour of plasma sprayed Ni3Al coatings

    International Nuclear Information System (INIS)

    Singh, H.; Prakash, S.; Puri, D.

    2007-01-01

    High temperature oxidation resistance of the superalloys can be greatly enhanced by plasma sprayed coatings and this is a growing industry of considerable economic importance. The purpose of these coatings is to form long-lasting oxidation protective scales. In the current investigation, Ni 3 Al powder was prepared by mechanical mixing of pure nickel and aluminium powders in a ball mill. Subsequently Ni 3 Al powder was deposited on three Ni-base superalloys: Superni 600, Superni 601 and Superni 718 and, one Fe-base superalloy, Superfer 800H by shrouded plasma spray process. Oxidation studies were conducted on the coated superalloys in air at 900 deg. C under cyclic conditions for 50 cycles. Each cycle consisted of 1 h heating followed by 20 min of cooling in air. The thermogravimetric technique was used to approximate the kinetics of oxidation. All the coated superalloys nearly followed parabolic rate law of oxidation. X-ray diffraction, SEM/EDAX and EPMA techniques were used to analyse the oxidation products. The Ni 3 Al coating was found to be successful in maintaining its adherence to the superalloy substrates in all the cases. The oxide scales formed on the oxidised coated superalloys were found to be intact and spallation-free. XRD analysis revealed the presence of phases like NiO, Al 2 O 3 and NiAl 2 O 4 in the oxide scales, which are reported as protective oxides against high temperature oxidation. The XRD results were further supported by SEM/EDAX and EPMA

  5. High-temperature brazing of X5CrNi18 10 and NiCr20TiAl using the atmospherically plasma-sprayed L-Ni2 filler metal

    International Nuclear Information System (INIS)

    Wielage, B.; Drozak, J.

    1992-01-01

    The hybrid-technological combination of the atmospheric plasma spraying for the application of a high-temperature filler metal followed by a brazing process was analyzed in terms of structure and mechanical properties of X5CrNi18 10 and NiCr20TiAl brazing joints. The thickness of the filler metal layer was minimized at [de

  6. Cyclic oxidation behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating

    Science.gov (United States)

    Mathapati, Mahantayya; Ramesh M., R.; Doddamani, Mrityunjay

    2018-04-01

    Components working at elevated temperature like boiler tubes of coal and gas fired power generation plants, blades of gas and steam turbines etc. experience degradation owing to oxidation. Oxidation resistance of such components can be increased by developing protective coatings. In the present investigation NiCrAlY-WC-Co/Cenosphere coating is deposited on MDN 321 steel substrate using plasma spray coating. Thermo cyclic oxidation behavior of coating and substrate is studied in static air at 600 °C for 20 cycles. The thermo gravimetric technique is used to approximate the kinetics of oxidation. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray mapping techniques are used to characterize the oxidized samples. NiCrAlY-WC-Co/Cenosphere coating exhibited lower oxidation rate in comparison to MDN 321 steel substrate. The lower oxidation rate of coating is attributed to formation of Al2O3, Cr2O3, NiO and CoWO4 oxides on the outermost surface.

  7. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  8. Microstructure and Wear Behavior of Atmospheric Plasma-Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating

    Science.gov (United States)

    Tian, Li-Hui; Xiong, Wei; Liu, Chuan; Lu, Sheng; Fu, Ming

    2016-12-01

    Due to the advantages such as high strength, high hardness and good wear resistance, high-entropy alloys (HEAs) attracted more and more attentions in recent decades. However, most reports on HEAs were limited to bulk materials. Although a few of studies on atmospheric plasma-sprayed (APS) HEA coatings were carried out, the wear behavior, especially the high-temperature wear behavior of those coatings has not been investigated till now. Therefore, in this study, APS was employed to deposit AlCoCrFeNiTi high-entropy alloy coating using mechanically alloyed AlCoCrFeNiTi powder as the feedstock. The phase structure of the initial powder, the feedstock powder and the as-sprayed coating was examined by an x-ray diffractometer. The surface morphology of the feedstock powder and the microstructure of the as-sprayed coating were analyzed by field emission scanning electron microscopy and energy-dispersive spectroscopy. The bonding strength and the microhardness of the as-sprayed coating were tested. The wear behavior of the coating at 25, 500, 700 and 900 °C was investigated by analysis of the wear surface morphology and measurements of the volume wear rate and the coefficient of friction.

  9. Residual stress in sprayed Ni+5%Al coatings determined by neutron diffraction

    CERN Document Server

    Matejicek, J; Gnaeupel-Herold, T; Prask, H J

    2002-01-01

    Coatings of nickel-based alloys are used in numerous high-performance applications. Their properties and lifetimes are influenced by factors such as residual stress. Neutron diffraction is a powerful tool for nondestructive residual stress determination. In this study, through-thickness residual stress profiles in Ni+5%Al coatings on steel substrates were determined. Two examples of significantly different spraying techniques - plasma spraying and cold spraying - are highlighted. Different stress-generation mechanisms are discussed with respect to process parameters and material properties. (orig.)

  10. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  11. The effect of ion implantation on the oxidation resistance of vacuum plasma sprayed CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jie [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhao Huayu; Zhou Xiaming [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Tao Shunyan, E-mail: shunyantao@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Ding Chuanxian [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We used ion implantation to improve the oxidation resistance of CoNiCrAlY coating. Black-Right-Pointing-Pointer The oxidation process of CoNiCrAlY coating at 1100 Degree-Sign C for 1000 h was studied. Black-Right-Pointing-Pointer The Nb ion implanted coating exhibited better oxidation resistance. Black-Right-Pointing-Pointer The influences of Nb and Al ion implantation into CoNiCrAlY coatings were evaluated. - Abstract: CoNiCrAlY coatings prepared by vacuum plasma spraying (VPS) were implanted with Nb and Al ions at a fluence of 10{sup 17} atoms/cm{sup 2}. The effects of ion implantation on the oxidation resistance of CoNiCrAlY coatings were investigated. The thermally grown oxide (TGO) formed on each specimen was characterized by XRD, SEM and EDS, respectively. The results showed that the oxidation process of CoNiCrAlY coatings could be divided into four stages and the key to obtaining good oxidation resistance was to remain high enough amount of Al and promote the lateral growth of TGO. The implantation of Nb resulted in the formation of continuous and dense Al{sub 2}O{sub 3} scale to improve the oxidation resistance. The Al implanted coating could form Al{sub 2}O{sub 3} scale at the initial stage, however, the scale was soon broken and TGO transformed to non-protective spinel.

  12. Low pressure plasma spray deposition of W-Ni-Fe alloy

    International Nuclear Information System (INIS)

    Mutasim, Z.Z.; Smith, R.W.

    1991-01-01

    The production of net shape refractory metal structural preforms are increasing in importance in chemical processing, defense and aerospace applications. Conventional methods become limited for refractory metal processing due to the high melting temperatures and fabrication difficulties. Plasma spray forming, a high temperature process, has been shown to be capable of refractory metal powder consolidation in net shape products. The research reported here has evaluated this method for the deposition of heavy tungsten alloys. Plasma Melted Rapidly Solidified (PMRS) W 8%Ni-2%Fe refractory metal powders were spray formed using vacuum plasma spray (VPS) process and produced 99% dense, fine grain and homogeneous microstructures. In this paper plasma operating parameters (plasma arc gas type and flowrate plasma gun nozzle size and spray distance) were studied and their effects on deposit's density and microstructure are reported

  13. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

    International Nuclear Information System (INIS)

    Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Hussain, M.S.

    2013-01-01

    Oxidation has been considered as one of the principal disruptive factors in thermal barrier coating systems during service. So, oxidation behavior of thermal barrier coating (TBC) systems with nano structured and micro structured YSZ coatings was investigated at 1000 degree c for 24 h, 48 h, and 120 h. Air plasma sprayed nano-YSZ coating exhibited a tri modal structure. Microstructural characterization also demonstrated an improved thermally grown oxide scale containing lower spinels in nano-TBC system after 120 h of oxidation. This phenomenon is mainly related to the unique structure of the nano-YSZ coating, which acted as a strong barrier for oxygen diffusion into the TBC system at elevated temperatures. Nearly continues but thinner Al 2 O 3 layer formation at the NiCrAlY/nano-YSZ interface was seen, due to lower oxygen infiltration into the system. Under this condition, spinels formation and growth on the Al 2 O 3 oxide scale were diminished in nano-TBC system compared to normal TBC system.

  14. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  15. Research Into Ni-Cr-Si-B Coating Sprayed Onto Aluminium Substrate Using the Method of Plasma Spray

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2013-02-01

    Full Text Available The article deals with Ni base coatings deposited on aluminium substrate applying the method of plasma spray. The purpose of the conducted research is to improve the physical and mechanical properties of coatings on the surface of aluminium alloy work pieces. Spraying on aluminium alloys encounters serious problems, and therefore this work analyses the ways to make the situation more favourable. Before spraying, the surfaces of substrates were modified employing chemical and mechanical pre-treatment methods. The aim of pre-treating aluminium alloys was to remove oxide layers from the aluminium surface. Coating microstructures and porosity were characterised applying optical microscopy. Differences in the roughness of pre-treated surfaces have been determined referring to profilometry. The paper investigates the influence of the adhesion of plasma spray coatings on aluminium surface pretreatment. Microhardness technique was applied for measuring the hardness of coatings. The study also describes and compares the mechanical properties of Ni base coatings deposited on different pre-treated aluminium substrates using plasma spray.Article in Lithuanian

  16. Research Into Ni-Cr-Si-B Coating Sprayed Onto Aluminium Substrate Using the Method of Plasma Spray

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2012-12-01

    Full Text Available The article deals with Ni base coatings deposited on aluminium substrate applying the method of plasma spray. The purpose of the conducted research is to improve the physical and mechanical properties of coatings on the surface of aluminium alloy work pieces. Spraying on aluminium alloys encounters serious problems, and therefore this work analyses the ways to make the situation more favourable. Before spraying, the surfaces of substrates were modified employing chemical and mechanical pre-treatment methods. The aim of pre-treating aluminium alloys was to remove oxide layers from the aluminium surface. Coating microstructures and porosity were characterised applying optical microscopy. Differences in the roughness of pre-treated surfaces have been determined referring to profilometry. The paper investigates the influence of the adhesion of plasma spray coatings on aluminium surface pretreatment. Microhardness technique was applied for measuring the hardness of coatings. The study also describes and compares the mechanical properties of Ni base coatings deposited on different pre-treated aluminium substrates using plasma spray.Article in Lithuanian

  17. Thermal failure of nanostructured thermal barrier coatings with cold sprayed nanostructured NiCrAlY bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Li, Y.; Zhang, S.L.; Wang, X.R.; Yang, G.J.; Li, C.X.; Li, C.J. [Xi' an Jiaotong Univ., Xi' an (China)

    2008-07-01

    Nanostructured YSZ is expected to exhibit a high strain tolerability due to its low Young's modulus and consequently high durability. In this study, a porous YSZ as the thermal barrier coating was deposited by plasma spraying using an agglomerated nanostructured YSZ powder on a Ni-based superalloy Inconel 738 substrate with a cold-sprayed nanostructured NiCrAlY as the bond coat. The heat treatment in Ar atmosphere was applied to the cold-sprayed bond coat before deposition of YSZ. The isothermal oxidation and thermal cycling tests were applied to examine failure modes of plasma-sprayed nanostructured YSZ. The results showed that YSZ coating was deposited by partially melted YSZ particles. The nonmelted fraction of spray particles retains the porous nanostructure of the starting powder into the deposit. YSZ coating exhibits a bimodal microstructure consisting of nanosized particles retained from the powder and micro-columnar grains formed through the solidification of the melted fraction in spray particles. The oxidation of the bond coat occurs during the heat treatment in Ar atmosphere. The uniform oxide at the interface between the bond coat and YSZ can be formed during isothermal test. The cracks were observed at the interface between TGO/BC or TGO/YSZ after thermal cyclic test. However, the failure of TBCs mainly occurred through spalling of YSZ within YSZ coating. The failure characteristics of plasma-sprayed nanostructured YSZ are discussed based on the coating microstructure and formation of TGO on the bond coat surface. (orig.)

  18. The change of NiCrBSi alloys’ phase composition after plasma spraying

    Directory of Open Access Journals (Sweden)

    A. Dudek

    2008-08-01

    Full Text Available Material for investigations was NiCrBSi powder for components’ coatings which improve their corrosion resistance as well as resistance to friction wear and erosion. Plasma spraying method was used to produce a coating with thickness of 300 μm on low-alloy steel which was then remelted with the base material. Using X-ray quality analysis, phase composition was determined for: NiCrBSi powder, obtained coating and the alloyed surface layer. Crystallinity degree was also calculated for NiCrBSi layer sprayed on the base material.

  19. In Situ Fabrication of AlN Coating by Reactive Plasma Spraying of Al/AlN Powder

    Directory of Open Access Journals (Sweden)

    Mohammed Shahien

    2011-10-01

    Full Text Available Reactive plasma spraying is a promising technology for the in situ formation of aluminum nitride (AlN coatings. Recently, it became possible to fabricate cubic-AlN-(c-AlN based coatings through reactive plasma spraying of Al powder in an ambient atmosphere. However, it was difficult to fabricate a coating with high AlN content and suitable thickness due to the coalescence of the Al particles. In this study, the influence of using AlN additive (h-AlN to increase the AlN content of the coating and improve the reaction process was investigated. The simple mixing of Al and AlN powders was not suitable for fabricating AlN coatings through reactive plasma spraying. However, it was possible to prepare a homogenously mixed, agglomerated and dispersed Al/AlN mixture (which enabled in-flight interaction between the powder and the surrounding plasma by wet-mixing in a planetary mill. Increasing the AlN content in the mixture prevented coalescence and increased the nitride content gradually. Using 30 to 40 wt% AlN was sufficient to fabricate a thick (more than 200 µm AlN coating with high hardness (approximately 1000 Hv. The AlN additive prevented the coalescence of Al metal and enhanced post-deposition nitriding through N2 plasma irradiation by allowing the nitriding species in the plasma to impinge on a larger Al surface area. Using AlN as a feedstock additive was found to be a suitable method for fabricating AlN coatings by reactive plasma spraying. Moreover, the fabricated coatings consist of hexagonal (h-AlN, c-AlN (rock-salt and zinc-blend phases and certain oxides: aluminum oxynitride (Al5O6N, cubic sphalerite Al23O27N5 (ALON and Al2O3. The zinc-blend c-AlN and ALON phases were attributed to the transformation of the h-AlN feedstock during the reactive plasma spraying. Thus, the zinc-blend c-Al

  20. The influence of pore formers on the microstructure of plasma-sprayed NiO-YSZ anodes

    Science.gov (United States)

    Poon, Michael; Kesler, Olivera

    2012-07-01

    Four types of pore formers: high-density polyethylene (HDPE), polyether-ether-ketone (PEEK), mesocarbon-microbead (MCMB) carbon powder, and baking flour, are processed and characterized, then incorporated with NiO-YSZ nano-agglomerate powder to produce plasma sprayed SOFC anode coatings. Scanning electron microscopy (SEM) of the coating microstructure, gas permeability measurements, and porosity determinations by image analysis are used to evaluate the effectiveness of each potential pore former powder. Under the spray conditions studied, the flour and MCMB pore former powders are effective as plasma sprayed pore formers, increasing the permeability of the coatings by factors of four and two, respectively, compared to a similarly sprayed NiO-YSZ coating without pore formers. The HDPE powder is unable to survive the plasma spray process and does not contribute to the final coating porosity. The PEEK pore former, though ineffective with the current powder characteristics and spray parameters, exhibits the highest relative deposition efficiency and the most favorable thermal characteristics.

  1. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  2. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    Science.gov (United States)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  3. Mechanical matching and microstructural evolution at the coating/substrate interfaces of cold-sprayed Ni, Al coatings

    International Nuclear Information System (INIS)

    Lee, H.; Lee, S.; Shin, H.; Ko, K.

    2009-01-01

    The effect of mechanical hard/soft matching of raw powder and substrate in the cold gas dynamic spraying process (CDSP) on the formation of intermetallic compounds was examined. Instead of pre-alloyed materials, pure Al and Ni were selected as a soft and a hard material, respectively, and post-annealing was used for compound formation. Most of the aluminide layers were observed in the coated layer, but not in the substrate, along with the entire original interface for both Al coating on a Ni substrate and vice versa. Thickening of the compound layer depended mainly on the creation of defects during spraying and intrinsic diffusivity of atoms moving toward the coating side. When Ni was coated, the compound layer was made thicker by fast diffusion of Al, while the thickness was limited in soft Al coating on hard Ni substrate. However, the composition of the compound can be affected by relative transfer of diffusing atoms toward both the coating and the substrate. So, for Ni coating on an Al substrate, most of the intermetallic compound formed was Ni-rich and conversion of the Al-rich compound was observed after post-annealing above 500 deg. C.

  4. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2018-01-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  5. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    Science.gov (United States)

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  6. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  7. Creep behavior of the titanium alloy with zirconia plasma sprayed coating

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Couto, A.A.

    2009-01-01

    The proposal of this research has been the study of the plasma spayed coating on creep of the Ti-6Al-4V, focusing on the determination of the experimental parameters related to the first and second creep stages. Yttria (8 wt %) stabilized zirconia (YSZ) (Metco 204B-NS) with CoNiCrAlY ( AMDRY 995C) has been plasma sprayed coated on Ti-6Al-4V substrate. Creep tests with constant load had been done on Ti-6Al-4V coated samples, the stress level was from 250 to 319 MPa at 600 deg C. Highest values of t p and the decrease of the second stage rate had shown a better creep resistance on coated sample. Results indicate that the coated sample was greater than uncoated sample, thus the plasma sprayed coating prevent the sample oxidation efficiently. (author)

  8. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    Science.gov (United States)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.

  9. Parameter Studies on High-Velocity Oxy-Fuel Spraying of CoNiCrAlY Coatings Used in the Aeronautical Industry

    Directory of Open Access Journals (Sweden)

    J. A. Cabral-Miramontes

    2014-01-01

    Full Text Available The thermal spraying process is a surface treatment which does not adversely affect the base metal on which it is performed. The coatings obtained by HVOF thermal spray are employed in aeronautics, aerospace, and power generation industries. Alloys and coatings designed to resist oxidizing environments at high temperatures should be able to develop a surface oxide layer, which is thermodynamically stable, slowly growing, and adherent. MCrAlY type (M = Co, Ni or combination of both coatings are used in wear and corrosion applications but also provide protection against high temperature oxidation and corrosion attack in molten salts. In this investigation, CoNiCrAlY coatings were produced employing a HVOF DJH 2700 gun. The work presented here focuses on the influences of process parameters of a gas-drive HVOF system on the microstructure, adherence, wear, and oxygen content of CoNiCrAlY. The results showed that spray distance significantly affects the properties of CoNiCrAlY coatings.

  10. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Science.gov (United States)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  11. Plasma spraying of Fe-Cr-Al alloy powder

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Leitner, J.; Kolman, Blahoslav Jan; Písačka, Jan; Schneeweiss, Oldřich

    2008-01-01

    Roč. 46, č. 1 (2008), s. 17-25 ISSN 0023-432X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20410507 Keywords : Fe-Cr-Al alloy powder * plasma spraying * oxidation * vaporization * composition changes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.345, year: 2007

  12. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong [Physics Division, Institute of Nuclear Energy Research, Lungtan, Taoyuan 32546 (China)

    2008-05-15

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with {proportional_to}60 {mu}m in thickness and {proportional_to}0.054 S cm{sup -1} conductivity at 800 C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with {proportional_to}30 {mu}m in thickness and {proportional_to}30% porosity has a minimum resistance after being heated at 1000 C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 C for 2 h has a minimum inherent resistance and achieves output power densities of {proportional_to}440 mW cm{sup -2} at 800 C, {proportional_to}275 mW cm{sup -2} at 750 C and {proportional_to}170 mW cm{sup -2} at 700 C. Results from SEM, XRD, ac impedance analysis and I-V-P measurements are presented here. (author)

  13. Mikrostruktur dan Karakterisasi Sifat Mekanik Lapisan Cr3C2-NiAl-Al2O3 Hasil Deposisi Dengan Menggunakan High Velocity Oxygen Fuel Thermal Spray Coating

    Directory of Open Access Journals (Sweden)

    Edy Riyanto

    2012-03-01

    Full Text Available Surface coating processing of industrial component with thermal spray coatings have been applied in many industrial fields. Ceramic matrix composite coating which consists of Cr3C2-Al2O3-NiAl had been carried out to obtain layers of material that has superior mechanical properties to enhance component performance. Deposition of CMC with High Velocity Oxygen Fuel (HVOF thermal spray coating has been employed. This study aims to determine the effect of powder particle size on the microstructure, surface roughness and hardness of the layer, by varying the NiAl powder particle size. Test results show NiAl powder particle size has an influence on the mechanical properties of CMC coating. Hardness of coating increases and surface roughness values of coating decrease with smaller NiAl particle size.  

  14. Controlling of Nitriding Process on Reactive Plasma Spraying of Al Particles

    International Nuclear Information System (INIS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2011-01-01

    Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of aluminum nitride (AlN) thermally sprayed coatings. To fabricate thick A lN coatings in RPS process, controlling and improving the in-flight nitriding reaction of Al particles is required. In this study, it was possible to control the nitriding reaction by using ammonium chloride (NH 4 Cl) powders. Thick and dense AlN coating (more than 300 μm thickness) was successfully fabricated with small addition of NH 4 Cl powders. Thus, addition of NH 4 Cl prevented the Al aggregation by changing the reaction pathway to a mild way with no explosive mode (relatively low heating rates) and it acts as a catalyst, nitrogen source and diluent agent.

  15. Oxidation behavior of HVOF sprayed Ni-5Al coatings deposited on Ni- and Fe-based superalloys under cyclic condition

    International Nuclear Information System (INIS)

    Mahesh, R.A.; Jayaganthan, R.; Prakash, S.

    2008-01-01

    Ni-5Al coating was obtained on three superalloy substrates viz. Superni 76, Superni 750 and Superfer 800 using high velocity oxy-fuel (HVOF) spray process. Oxidation studies were carried out on both bare and coated superalloy substrates in air at 900 deg. C for 100 cycles. The weight change was measured at the end of each cycle and observed that the weight gain was high in Superni 750 alloy when compared to Superni 76 and Superfer 800. A nearly parabolic oxidation behavior was observed for Ni-5Al coated Superni 750 and Superfer 800 alloys but a Ni-5Al coated Superni 76 substrate showed a slight deviation. The scale was analysed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and electron probe microanalysis (EPMA). The coating increased the oxidation resistance for all the alloy substrates at 900 deg. C. Among the three-coated superalloys, Superfer 800 substrate has shown the best resistance to oxidation. The protective nature of the Ni-5Al coated superalloys was due to the formation of protective oxide scales such as NiO, Al 2 O 3 and Cr 2 O 3

  16. Preparation and properties of plasma sprayed NiAl10 and NiAl40 coatings on AZ91 substrate.

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Lukáč, František; Stoulil, J.; Ctibor, Pavel; Průša, F.; Stehlíková, K.

    2017-01-01

    Roč. 319, June (2017), s. 145-154 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GP14-31538P Institutional support: RVO:61389021 Keywords : Nickel aluminide * AZ91 magnesium alloy * Plasma spraying * Potentiodynamic measurement * Adhesion strength Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0257897217303250

  17. Heat-Treated TiO2 Plasma Spray Deposition for Bioactivity Improvement in Ti-6Al-4V Alloy

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-12-01

    In the present study, titanium di-oxide (TiO2) coating has been developed on Ti-6Al-4V substrate by plasma spray deposition. Followed by plasma spraying, heat treatment of the sprayed sample has been carried out by isothermally holding it at 823 K (550 °C) for 2 h. Microstructural analysis shows the presence of porosity and unmelted particles on the as-sprayed surface, the area fraction of which reduces after heat treatment. X-ray diffraction analysis shows the phase transformation from anatase (in precursor powder) to rutile (in as-sprayed coating and the same after heat treatment). There is an improvement in nano-hardness, "Young's modulus" and wear resistance in plasma-sprayed TiO2 coating (as-sprayed as well as post-heat-treated condition) as compared to as-received Ti-6Al-4V, though post-heat treatment offers a superior hardness, "young's modulus" and wear resistance as compared to as-sprayed coating. The corrosion behavior in "hank's solution" shows decrease in corrosion resistance after plasma spraying and post-heat treatment as compared to as-received substrate. A significant decrease in contact angle and improvement in bioactivity (in terms of apatite deposition) were observed in TiO2-coated surface as compared to as-received Ti-6Al-4V.

  18. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  19. Hot corrosion of the ceramic composite coating Ni{sub 3}Al-Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3}/MgO plasma sprayed on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Amir Khodaparast; Kiahosseini, Seyed Rahim [Islamic Azad Univ., Damghan (Iran, Islamic Republic of). Dept. of Engineering

    2017-08-15

    Ni{sub 3}Al-Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3}/MgO three-layered coatings with thicknesses of 50, 100, and 150 μm for Al{sub 2}O{sub 3}/MgO and 100 μm for the other layers were deposited on 316L stainless steel using plasma spraying. X-ray diffraction, atomic force microscopy, furnace hot corrosion testing in the presence of a mixture of Na{sub 2}SO{sub 4} and V{sub 2}O{sub 5} corrosive salts and scanning electron microscopy were used to determine the structural, morphological and hot corrosion resistance of samples. Results revealed that the crystalline grains of MgO and Al{sub 2}O{sub 3} coating were very small. Weight loss due to hot corrosion decreased from approximately 4.267 g for 316L stainless steel without coating to 2.058 g. The samples with 150 μm outer coating showed improved resistance with the increase in outer layer thickness. Scanning electron microscopy of the coated surface revealed that the coating's resistance to hot corrosion is related to the thickness and the grain size of Al{sub 2}O{sub 3}/MgO coatings.

  20. Characterization of Ni-YSZ anodes for solid oxide fuel cells fabricated by suspension plasma spraying with axial feedstock injection

    Science.gov (United States)

    Metcalfe, Craig; Kuhn, Joel; Kesler, Olivera

    2013-12-01

    Composite Ni-Y0.15Zr0.85O1.925 anodes were fabricated by axial-injection suspension plasma spraying in open atmosphere conditions. The composition of the anode is controllable by adjustment of the plasma gas composition, stand-off distance, and suspension feed rate. The total porosity is controllable through the addition of carbon black to the suspension as a sacrificial pore-forming material as well as by adjustment of the suspension feed rate. The size of the NiO particles in suspension affects both the composition and total porosity, with larger NiO particles leading to increased Ni content and porosity in the deposited coatings. The surface roughness increases with a decrease of the in-flight droplet momentum, which results from both smaller NiO particles in suspension and the addition of low density pore-forming materials. A solid oxide fuel cell was fabricated with both electrodes and electrolyte fabricated by axial-injection plasma spraying. Peak power densities of 0.718 W cm-2 and 1.13 W cm-2 at 750 °C and 850 °C, respectively, were achieved.

  1. Effects of spray parameters on the microstructure and property of Al2O3 coatings sprayed by a low power plasma torch with a novel hollow cathode

    International Nuclear Information System (INIS)

    Li Changjiu; Sun Bo

    2004-01-01

    Al 2 O 3 coating is deposited using a low power plasma torch with a novel hollow cathode through axial powder injection under a plasma power up to several kilowatts. The effects of the main processing parameters including plasma arc power, operating gas flow and spray distance on particle velocity during spraying, and the microstructure and property of the coating are investigated. The microstructure of the Al 2 O 3 coating is examined using optical microscopy and X-ray diffraction analysis. The property of the coating is characterized by dry rubber wheel abrasive wear test. The velocity of in-flight particle is measured using a velocity/temperature measurement system for spray particle based on thermal radiation from the particle. The dependency of the microstructure and property of the coating on spray particle conditions are examined by comparing the particle velocity, and microstructure and abrasive wear weight loss of subsequent coating deposited by low power plasma spray with those of the coating by conventional plasma spray at a power one order higher. X-ray diffraction analysis of the coating revealed that Al 2 O 3 particles during low power plasma spraying reach to sufficiently melting state prior to impact on the substrate with a velocity comparable to that in conventional plasma spraying. The experiment results have shown that processing parameters have significant influence on the particle conditions and performance of deposited Al 2 O 3 coating. The coating of comparable microstructure and properties to that deposited by conventional plasma spray can be produced under a power one order lower. From the present study, it can be suggested that a comparable coating can be produced despite plasma power level if the comparable particle velocity and molten state are achieved

  2. Controlling of Nitriding Process on Reactive Plasma Spraying of Al Particles

    Energy Technology Data Exchange (ETDEWEB)

    Shahien, Mohammed [Graduate Student, Toyohashi University of Technology (Japan); Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro, E-mail: mo.shahien@yahoo.com [Toyohashi University of Technology (Japan)

    2011-10-29

    Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of aluminum nitride (AlN) thermally sprayed coatings. To fabricate thick A lN coatings in RPS process, controlling and improving the in-flight nitriding reaction of Al particles is required. In this study, it was possible to control the nitriding reaction by using ammonium chloride (NH{sub 4}Cl) powders. Thick and dense AlN coating (more than 300 {mu}m thickness) was successfully fabricated with small addition of NH{sub 4}Cl powders. Thus, addition of NH{sub 4}Cl prevented the Al aggregation by changing the reaction pathway to a mild way with no explosive mode (relatively low heating rates) and it acts as a catalyst, nitrogen source and diluent agent.

  3. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  4. Investigation on the suitability of plasma sprayed Fe-Cr-Al coatings as tritium permeation barrier

    International Nuclear Information System (INIS)

    Fazio, C.; Serra, E.; Benamati, G.

    1999-01-01

    Results on the fabrication of a tritium permeation barrier by spraying Fe-Cr-Al powders are described. The sprayed coatings were deposited at temperatures below the A c1 temperature of the ferritic-martensitic steel substrate and no post-deposition heat treatment was applied. The aim of the investigation was the determination of the efficiency of the coatings to act as tritium permeation barrier. Metallurgical investigations as well as hydrogen isotope permeation measurements were carried out onto the produced coatings. The depositions were performed on ferritic-martensitic steels by means of three types of spray techniques: high velocity oxy fuel, air plasma spray and vacuum plasma spray. (orig.)

  5. Al-Si/B{sub 4}C composite coatings on Al-Si substrate by plasma spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, Ozkan [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Anik, Selahaddin [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Aslanlar, Salim [Sakarya University, Faculty of Technical Education, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Cem Okumus, S. [Sakarya University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Celik, Erdal [Dokuz Eylul University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Buca, Izmir 35160 (Turkey)]. E-mail: erdal.celik@deu.edu.tr

    2007-07-01

    Plasma-sprayed coatings of Al-Si/B{sub 4}C have been prepared on Al-Si piston alloys for diesel engine motors. The Al-Si/B{sub 4}C composite powders including 5-25 wt% B{sub 4}C were prepared by mixing and ball-milling processes. These powders were deposited on Al-Si substrate using an atmospheric plasma spray technique. The coatings have been characterised with respect to phase composition, microstructure, microhardness, bond strength and thermal expansion. It was found that Al, Si, B{sub 4}C and Al{sub 2}O{sub 3} phases were determined in the coatings with approximately 600 {mu}m thick by using X-ray diffraction analysis. Scanning electron microscope observation revealed that boron carbide particles were uniformly distributed in composite coatings and B{sub 4}C particles were fully wetted by Al-Si alloy. Also, no reaction products were observed in Al-Si/B{sub 4}C composite coatings. It was found that surface roughness, porosity, bond strength and thermal expansion coefficient of composite coatings decreased with increasing fraction of the boron carbide particle. It was demonstrated that the higher the B{sub 4}C content, the higher the hardness of coatings because the hardness of B{sub 4}C is higher than that of Al-Si.

  6. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    International Nuclear Information System (INIS)

    Dallaire, S.; Legoux, J.G.

    1995-01-01

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low

  7. Radio-frequency plasma spraying of ceramics

    International Nuclear Information System (INIS)

    Okada, T.; Hamatani, H.; Yoshida, T.

    1989-01-01

    This study was aimed at developing a novel spraying process using a radio-frequency (rf) plasma. Experiments of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 spraying showed that the initial powder size was the most important parameter for depositing dense coatings. The optimum powder sizes of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 were considered to be around 100 and 80 μm, respectively. The use of such large-size powders compared with those used by conventional dc plasma spraying made it possible to deposit adherent ceramics coatings of 150 to 300 μm on as-rolled SS304 substrates. It was also shown that low particle velocity of about 10 m/s, which is peculiar to rf plasma spraying, was sufficient for particle deformation, though it imposed a severe limitation on the substrate position. These experimental results prove that rf plasma spraying is an effective process and a strong candidate to open new fields of spraying applications

  8. Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity

    Science.gov (United States)

    Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala

    2008-01-01

    Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 μm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants. PMID:18664431

  9. Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting

    Science.gov (United States)

    Tianshun, Dong; Xiukai, Zhou; Guolu, Li; Li, Liu; Ran, Wang

    2018-02-01

    Ni based coatings were prepared on steel substrate by means of plasma spraying, and were remelted by TIG (tungsten inert gas arc) method subsequently. The microstructure, microhardness, electrochemical corrosion and corrosive wear resistance under PH = 4, PH = 7 and PH = 10 conditions of the coatings before and after remelting were investigated. The results showed that the TIG remelting obviously reduced the defects and dramatically decreased the coating’s porosity from 7.2% to 0.4%. Metallurgical bonding between the remelted coating and substrate was achieved. Meanwhile, the phase compositions of as-sprayed coating were γ-Ni, Mn5Si2 and Cr2B, while the phase compositions of the remelting coating were Fe3Ni, Cr23C6, Cr2B and Mn5Si2. The microhardness of the coating decreased from 724 HV to 608 HV, but the fracture toughness enhanced from 2.80 MPa m1/2 to 197.3 MPa m1/2 after remelting. After corrosive wear test, the average wear weight loss and 3D morphology of wear scar of two coatings indicated that the wear resistance of the remelted coating was remarkably higher than that of as-sprayed coating. Therefore, TIG remelting treatment was a feasible method to improve the coating’s microstructure and enhance its corrosive wear resistance.

  10. Spallation of oxide scales from NiCrAlY overlay coatings

    International Nuclear Information System (INIS)

    Strawbridge, A.; Evans, H.E.; Ponton, C.B.

    1997-01-01

    A common method of protecting superalloys from aggressive environments at high temperatures is by plasma spraying MCrAlY (M = Fe, Ni and/or Co) to form an overlay coating. Oxidation resistance is then conferred through the development of an alumina layer. However, the use of such coatings is limited at temperatures above about 1100 C due to rapid failure of the protective oxide scales. In this study, the oxidation behaviour of air-plasma-sprayed NiCrAlY coatings has been investigated at 1200 C in 1 atm air. A protective alumina layer develops during the early stages, but breakaway oxidation occurs after prolonged exposure. The results suggest that the critical temperature drop to initiate failure is inversely proportional to the scale thickness, and an analytical model is put forward to explain this behaviour. Local surface curvature of the coating can lead to delamination within the oxide during cooling and it is shown that the largest individual pore in a spall region is the critical flaw for oxide fracture. (orig.)

  11. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1994-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum-4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  12. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  13. Pengaruh NiCrAlY, Ni/Cr2O3/CrxCy Sebagai Variasi Bond Coat Dengan Penambahan Lapisan Al2O3 dan YSZ Pada Inconel 625 Terhadap Struktur Mikro Lapisan Menggunakan Metode Flame Spraying

    Directory of Open Access Journals (Sweden)

    Aprian Immanuel

    2017-01-01

    Full Text Available Thermal Barrier Coating (TBC berfungsi untuk mengurangi temperatur substrat serta meningkatkan daya tahannya terhadap korosi dan oksidasi. Pada penelitian ini, digunakan flame spraying dari variasi bond coat (Ni-Cr-Al-Y, (Ni/CrO3/CrXCY dan tanpa bond coat serta melapisi kembali lapisan bond coat dengan Al2O3 dan ZrO2 – 8%Y2O3 sebagai Thermal Barrier Coating untuk diteliti pengaruhnya terhadap struktur mikro lapisan yang terbentuk. Hasil flame spray diamati dengan SEM pada variasi bond coat NiCrAlY ditemukan beberapa serbuk dari material top coat dengan beberapa kondisi yaitu meleleh (melted, meleleh sebagian (semi melted, dan tidak meleleh (unmelted. Ditemukan poros yang merata hampir di seluruh permukaan sampel dan munculnya pengintian retak. Perbedaan sebelum dan sesudah perlakuan ada pada persebaran setiap unsur di setiap spesimen, dan lapisan oksida yang terbentuk pada seluruh variasi bond coat

  14. Spark-plasma sintering and mechanical property of mechanically alloyed NiAl powder compact and ball-milled (Ni+Al) mixed powder compact

    International Nuclear Information System (INIS)

    Kim, J.S.; Jang, Y.I.; Kwon, Y.S.; Kim, Y.D.; Ahn, I.S.

    2001-01-01

    Mechanically-alloyed NiAl powder and (Ni+Al) powder mixture prepared by ball-milling were sintered by spark-plasma sintering (SPS) process. Densification behavior and mechanical property were determined from the experimental results and analysis such as changes in linear shrinkage, shrinkage rate, microstructure, and phase during sintering process, Vicker's hardness and transverse rupture strength tests. Densification mechanisms for MA-NiAl powder compact and (Ni+Al) powder mixture were different from each other. While the former showed a rapid increase in densification rate only at higher temperature region of 800-900 o C, the latter revealed firstly a rapid increase in densification rate even at low temperature of 300 o C and a subsequent increase up to 500 o C. Densities of both powder compact (MA and mixture) sintered at 1150 o C for 5 min were 98 and above 99 %, respectively. Sintered bodies were composed mainly of NiAl phase with Ni 3 Al as secondary phase for both powders. Sintered body of MA-NiAl powder showed a very fine grain structure. Crystallite size determined by XRD result and the Sherrer's equation was approximately 80 nm. Vicker's hardness for the sintered bodies of (Ni+Al) powder mixture and MA-NiAl powder were 410±12 H v and 555±10 H v , respectively, whereas TRS values 1097±48 MPa and 1393±75 MPa. (author)

  15. Atmospheric plasma sprayed (APS) coatings of Al2O3-TiO2 system for photocatalytic application.

    Science.gov (United States)

    Stengl, V; Ageorges, H; Ctibor, P; Murafa, N

    2009-05-01

    The goal of this study is to examine the photocatalytic ability of coatings produced by atmospheric plasma spraying (APS). The plasma gun used is a common gas-stabilized plasma gun (GSP) working with a d.c. current and a mixture of argon and hydrogen as plasma-forming gas. The TiO(2) powders are particles of about 100 nm which were agglomerated to a mean size of about 55 mum, suitable for spraying. Composition of the commercial powder is 13 wt% of TiO(2) in Al(2)O(3), whereas also in-house prepared powder with the same nominal composition but with agglomerated TiO(2) and conventional fused and crushed Al(2)O(3) was sprayed. The feedstock materials used for this purpose are alpha-alumina and anatase titanium dioxide. The coatings are analyzed by scanning electron microscopy (SEM), energy dispersion probe (EDS) and X-ray diffraction. Photocatalytic degradation of acetone is quantified for various coatings. All plasma sprayed coatings show a lamellar structure on cross section, as typical for this process. Anatase titania from feedstock powder is converted into rutile titania and alpha-alumina partly to gamma-alumina. Coatings are proven to catalyse the acetone decomposition when irradiated by UV rays.

  16. Study of Multi-Function Micro-Plasma Spraying Technology

    International Nuclear Information System (INIS)

    Wang Liuying; Wang Hangong; Hua Shaochun; Cao Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al 2 O 3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended

  17. Microstructure and mechanical properties of plasma sprayed Al2O3 – 13%TiO2 Ceramic Coating

    Directory of Open Access Journals (Sweden)

    Wahab Juyana A

    2017-01-01

    Full Text Available This paper focused on the effect of deposition conditions on the microstructural and mechanical properties of the ceramic coating. In this study, Al2O3 – 13%TiO2 coated mild steel were prepared by using atmospheric plasma spray technology with different plasma power ranging from 25 kW to 40 kW. The as-sprayed coatings consist of γ-Al2O3 phase as the major phase and small amount of the titania phase existed in the coating structure. High degree of fully melted region was observed in the surface morphology for the coating sprayed with high plasma power, which lead to the high hardness and low percentage of porosity. In this study, nanoindentation test was carried out to investigate mechanical properties of the coating and the results showed that the coatings possess high elastic behaviour, which beneficial in engineering practice.

  18. Characterization of alumina scales formed during isothermal and cyclic oxidation of plasma-sprayed TBC systems at 1150 C

    International Nuclear Information System (INIS)

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.; Rigney, E.D.

    1999-01-01

    The isothermal- and cyclic-oxidation behavior of thermal barrier coating (TBC) systems consisting of vacuum plasma-sprayed (VPS) Ni-22Cr-10Al/Y (wt%) bond coatings and air plasma-sprayed (APS) Y 2 O 3 -stabilized ZrO 2 (YSZ) top coatings (on single-crystal superalloys) was investigated. The microstructures, flaw contents, and fracture behavior of the Al 2 O 3 scales formed during oxidation testing at 1150 C were characterized (by analysis of coating and scale fracture surfaces and metallographic cross sections). Significant localized fracture and buckling of the Al 2 O 3 scales that formed along the bond-coat--top-coat interfaces were observed after cyclic oxidation of TBCs. However, substantial amounts of localized scale damage did not induce rapid TBC failure. Decohesion of the columnar alumina scales on the rough bond-coat surfaces occurred by both internal Al 2 O 3 fracture (parallel to the metal surface) and oxide-metal delamination. There were microstructural indications of Al 2 O 3 scale crack healing by sintering into planar arrays of voids. Alumina scales that formed on convex NiCrAlY surfaces (with radii of 50 microm or less) after cyclic oxidation, whereas scales formed by isothermal oxidation contained few visible voids. Accelerated void growth in Al 2 O 3 scales on the irregular NiCrAlY surfaces appeared to be creep-related and was attributed to the synergistic effects of geometric and thermal stresses

  19. The oxidation behaviour of sprayed MCrAlY coatings

    International Nuclear Information System (INIS)

    Brandl, W.; Toma, D.; Krueger, J.

    1996-01-01

    Turbine blades are protected against high temperature oxidation by thermal barrier coating (TBC) systems, which consist of a ceramic top coating (ZrO 2 /Y 2 O 3 ) and a metal bond coating (MCrAlY, M = Ni, Co). At high temperatures and under oxidative conditions, between the MCrAlY and the ceramic top coating an oxide scale is formed, which protects the metal against further oxidation. The oxidation behaviour of the thermally sprayed MCrAlY is influenced by the coating process and the composition of the metal alloys. This work is concerned with the isothermal oxidation behaviour of vacuum plasma sprayed (VPS) MCrAlY coatings. The MCrAlY powders used have different aluminium contents: 8 and 12 wt.%. The MCrAlY specimens are oxidized at 1050 C in air as well as in helium with 1% O 2 and the oxidation kinetics are determined thermogravimetrically. The microstructure, morphology and thickness of the oxide scales formed are characterized by metallography, SEM, TEM and XRD. After short time oxidation (6 h) θ-Al 2 O 3 is the main constituent of the oxide scale. Exposure times of 500 h and more lead to oxide scales consisting of α-Al 2 O 3 . Moreover, after a long time oxidation, Cr 2 O 3 and CoO (CoO on the coatings with 8 wt.% Al) are formed. The oxidation rates of both MCrAlY coatings are the same. Beneath the oxide scale an Al-depleted zone is formed and this zone is considerably thicker within the coating with 8 wt.% Al, because the amount of β-NiAl phase in this coating is lower than that in the coating with 12 wt.% Al. The oxide scale formed in He-1% O 2 consists of α-Al 2 O 3 and Cr 2 O 3 on both MCrAlY coatings. (orig.)

  20. Fabrication of MgAl2O4 spinel/niobium laminar composites by plasma spraying

    International Nuclear Information System (INIS)

    Boncoeur, M.; Lochet, N.; Miomandre, F.; Schnedecker, G.

    1994-01-01

    The feasibility of plasma spray manufacturing of laminar ceramic matrix composites made of alternate thin layers of a ceramic oxide and a metal is demonstrated with a composite made of 7 layers, each 0.2 mm thick, of MgAl 2 O 4 spinel and niobium. Microstructure and mechanical characteristics have been studied with both as-sprayed and heat-treated under vacuum at 1400 C conditions. It is shown that the as-sprayed composite is brittle but becomes pseudo-plastic after heat treatment. These laminar composites are very attractive for the manufacturing of large surface, few millimeter thick components. (from authors). 4 figs., 4 refs

  1. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  2. Evaluating microhardness of plasma sprayed Al2O3 coatings using Vickers indentation technique

    International Nuclear Information System (INIS)

    Yin Zhijian; Tao Shunyan; Zhou Xiaming; Ding Chuanxian

    2007-01-01

    In this work, the microhardness of plasma sprayed Al 2 O 3 coatings was evaluated using the Vickers indentation technique, and the effects of measurement direction, location and applied loads were investigated. The measured data sets were then statistically analysed employing the Weibull distribution to evaluate their variability within the coatings. It was found that the Vickers hardness (VHN) increases with decreasing applied indenter load, which can be explained in terms of Kick's law and the Meyer index k of 1.93, as well as relating to the microstructural characteristics of plasma sprayed coatings and the elastic recovery taking place during indentation. In addition, VHN, measured on the cross section of coatings, was obviously higher than that on its top surface. The obtained Weibull modulus and variation coefficient indicate that the VHN was less variable when measured at a higher applied load and on the cross section of coating. The obvious dependence of the VHN on the specific indentation location within through-thickness direction was also realized. These phenomena described above in this work were related to the special microstructure and high anisotropic behaviour of plasma sprayed coatings

  3. Testing of Flame Sprayed Al2O3 Matrix Coatings Containing TiO2

    Directory of Open Access Journals (Sweden)

    Czupryński A.

    2016-09-01

    Full Text Available The paper presents the results of the properties of flame sprayed ceramic coatings using oxide ceramic materials coating of a powdered aluminium oxide (Al2O3 matrix with 3% titanium oxide (TiO2 applied to unalloyed S235JR grade structural steel. A primer consisting of a metallic Ni-Al-Mo based powder has been applied to plates with dimensions of 5×200×300 mm and front surfaces of Ø40×50 mm cylinders. Flame spraying of primer coating was made using a RotoTec 80 torch, and an external coating was made with a CastoDyn DS 8000 torch. Evaluation of the coating properties was conducted using metallographic testing, phase composition research, measurement of microhardness, substrate coating adhesion (acc. to EN 582:1996 standard, erosion wear resistance (acc. to ASTM G76-95 standard, and abrasive wear resistance (acc. to ASTM G65 standard and thermal impact. The testing performed has demonstrated that flame spraying with 97% Al2O3 powder containing 3% TiO2 performed in a range of parameters allows for obtaining high-quality ceramic coatings with thickness up to ca. 500 µm on a steel base. Spray coating possesses a structure consisting mainly of aluminium oxide and a small amount of NiAl10O16 and NiAl32O49 phases. The bonding primer coat sprayed with the Ni-Al-Mo powder to the steel substrate and external coating sprayed with the 97% Al2O3 powder with 3% TiO2 addition demonstrates mechanical bonding characteristics. The coating is characterized by a high adhesion to the base amounting to 6.5 MPa. Average hardness of the external coating is ca. 780 HV. The obtained coatings are characterized by high erosion and abrasive wear resistance and the resistance to effects of cyclic thermal shock.

  4. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  5. A Novel Hybrid Axial-Radial Atmospheric Plasma Spraying Technique for the Fabrication of Solid Oxide Fuel Cell Anodes Containing Cu, Co, Ni, and Samaria-Doped Ceria

    Science.gov (United States)

    Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera

    2013-06-01

    Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.

  6. Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Naumenko, D.; Pillai, R.; Chyrkin, A.; Quadakkers, W. J.

    2017-12-01

    The performance of MCrAlY (M = Ni, Co) bondcoats for atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) is substantially affected by the contents of Co, Ni, Cr, and Al as well as minor additions of Y, Hf, Zr, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. The latter properties depend in turn on the exact technology and set of parameters used for bondcoat deposition. The well-established LPPS process competes nowadays with alternative technologies such as HVOF and APS. In addition, new technologies have been developed for bondcoats manufacturing such as high-velocity APS or a combination of HVOF and APS for application of a flashcoat. Future developments of the bondcoat systems will likely include optimization of thermal spraying methods for obtaining complex bondcoat roughness profiles required for extended APS-TBC lifetimes. Introduction of the newest generation single-crystal superalloys possessing low Cr and high Al and refractory metals (Re, Ru) contents will require definition of new bondcoat compositions and/or multilayered bondcoats to minimize interdiffusion issues. The developments of new bondcoat compositions may be substantially facilitated using thermodynamic-kinetic modeling, the vast potential of which has been demonstrated in recent years.

  7. Effect of TiO2 addition on reaction between SiC and Ni in SiC-Ni cermet spray coatings. Part 2. ; Development of SiC-based cermet spray coatings. SiC-Ni yosha himakuchu no SiC-Ni kaimen hanno ni oyobosu TiO2 tenka no koka. 2. ; SiC-ki sametto yosha himaku no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T [Kumano Technical College, Mie (Japan); Oki, S; Goda, S [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1992-09-30

    The depression of the reaction between SiC and Ni, by adding TiO2 powder in spraying powder which has caused uniform dispersion in spray coating and reduction of TiO2 by the reaction during spraying, was studied. The mass ratio of the mixed components has been, SiC:Ni:TiO2=3:2:1. The spray coating was examined by electron prove microanalysis as well as X-ray diffractometry, centering mainly to the SiC-metal interface reaction. The formation of Ni-Si compounds have been depressed by the addition of TiO2 to spraying powder and by using plasma gas containing H2. Reason for this has been that the TiC formed in the SiC-Ni interface has depressed the reaction at the SiC-Ni interface. Further, TiO2 is reduced during spraying, and TiC is thought to be formed by the reaction between Ti and SiC or reaction between TiO2 and SiC. 8 refs., 6 figs., 1 tab.

  8. The influence of incorporating MgO into Ni-based cermets by plasma spraying on anode microstructural and chemical stability in dry methane

    Science.gov (United States)

    Lay, E.; Metcalfe, C.; Kesler, O.

    2012-11-01

    The Solution Precursor Plasma Spray (SPPS) process was successfully used to deposit cermet coatings that exhibit fine microstructures with high surface area. MgO addition in Ni-YSZ and Ni-SDC cermets results in (Ni,Mg)O solid solution formation, and nickel particles after reduction are finer than in coatings without magnesia. The influence of MgO on the chemical stability of cermets in anodic operating conditions is discussed. It was found that a sufficient amount of magnesia addition (Ni0.9(MgO)0.1) helps to reduce carbon deposition in dry methane.

  9. The structure and physical-mechanical properties of the heat-resistant Ni-Co-Cr-Al-Y intermetallic coating obtained using rebuilt plasma equipment

    Science.gov (United States)

    Tarasenko, Yu. P.; Tsareva, I. N.; Berdnik, O. B.; Fel, Ya. A.; Kuzmin, V. I.; Mikhalchenko, A. A.; Kartaev, E. V.

    2014-12-01

    Results of a study of the structure, physico-mechanical properties, and the resistance to heat of Ni-Co-Cr-Al-Y intermetallic coatings obtained by powder spraying on the standard UPU-3D plasma spray facility (plasmatron with self-establishing arc length) and on the rebuilt facility equipped with the enhanced-power PNK-50 plasmatron with sectionalized inter-electrode insert, are reported. Coatings of higher density ( ρ = 7.9 g/cm3) and higher microhardness (H μ = 770 kg-force/mm2) with lower porosity values ( P = 5.7 %, P c = 5.1 %, and P 0 = 0.6 %) and high resistance to heat ((M - M0)/M0 = 1.2) were obtained. The developed coating is intended for protection of the working surfaces of turbine engine blades in gas-turbine power plants.

  10. Near-net-shape 95W-3.5Ni-1.5Fe thin-walled products produced by plasma spray forming

    International Nuclear Information System (INIS)

    Wang, Y.M.; Xiong, X.; Min, X.B.; Xie, L.; Zheng, F.

    2010-01-01

    Tungsten heavy alloy 95W-3.5Ni-1.5Fe (in wt.%) refractory metallic thin-walled products (diameter ≤100 mm, length ≤150 mm and wall thickness ≤5 mm) were produced using plasma spray forming (PSF) covered in argon atmosphere at a pressure of 1.01 x 10 5 Pa followed by vacuum liquid phase sintering at 1465, 1485 and 1500 deg. C for 90 min, respectively. A lamellar structure consisting of vertical columnar grains and some fine particles was found in PSF deposits. Relative density of the deposits was about 87.70% with poor mechanical property. Upon vacuum liquid phase sintering, their density and property have been improved significantly. The microstructures of PSF deposits before and after vacuum sintering were found to consist with tungsten and (Ni, Fe)-rich phase. Volume fraction of (Ni, Fe)-rich phase was decreased due to vaporization that occurred in plasma spraying and vacuum liquid phase sintering. Their fracture surfaces were dominated by intergranular rupture. The lamellar structure remained in the deposits during early stages of sintering (solid state sintering and initial of liquid phase sintering). Particle rearrangement and rapid densification of the deposits did not occur until the surface of tungsten particles being modified and changed into spheroids by solution and precipitation. In the end, the PSF deposits have been transformed from lamellar structure into two phase composites with dispersed spheroidal tungsten grains embedded in a continuous network of (Ni, Fe)-rich phase.

  11. A comparative study of tribological behavior of plasma and D-gun sprayed coatings under different wear modes

    International Nuclear Information System (INIS)

    Sundararajan, G.; Rao, D.S.; Prasad, K.U.M.; Joshi, S.V.

    1998-01-01

    In recent years, thermal sprayed protective coatings have gained widespread acceptance for a variety of industrial applications. A vast majority of these applications involve the use of thermal sprayed coatings to combat wear. While plasma spraying is the most versatile variant of all the thermal spray processes, the detonation gun (D-gun) coatings have been a novelty until recently because of their proprietary nature. The present study is aimed at comparing the tribological behavior of coatings deposited using the two above techniques by focusing on some popular coating materials that are widely adopted for wear resistant applications, namely, WC-12% Co, Al 2 O 3 , and Cr 3 C 2 -NiCr. To enable a comprehensive comparison of the above indicated thermal spray techniques as well as coating materials, the deposited coatings were extensively characterized employing microstructural evaluation, microhardness measurements, and XRD analysis for phase constitution. The behavior of these coatings under different wear modes was also evaluated by determining their tribological performance when subjected to solid particle erosion tests, rubber wheel sand abrasion tests, and pin-on-disk sliding wear tests. Among all the coating materials studied, D-gun sprayed WC-12% Co, in general, yields the best performance under different modes of wear, whereas plasma sprayed Al 2 O 3 shows least wear resistance to every wear mode

  12. Tribological Properties of HVOF-Sprayed TiB2-NiCr Coatings with Agglomerated Feedstocks

    Science.gov (United States)

    Zhao, Zichun; Li, Hui; Yang, Tianlong; Zhu, Hongbin

    2018-04-01

    Boride materials have drawn great attention in surface engineering field, owing to their high hardness and good wear resistance. In our previous work, a plasma-sprayed TiB2-based cermet coating was deposited, but the coating toughness was significantly influenced by the formation of a brittle ternary phase (Ni20Ti3B6) derived from the reaction between TiB2 and metal binder. In order to suppress such a reaction occurred in the high-temperature spraying process, the high-velocity oxygen-fuel spraying technique was applied to prepare the TiB2-NiCr coating. Emphasis was paid on the microstructure, the mechanical properties, and the sliding wearing performance of the coating. The result showed that the HVOF-sprayed coating mainly consisted of hard ceramic particles including TiB2, CrB, and the binder phase. No evidence of Ni20Ti3B6 phase was found in the coating. The mechanical properties of HVOF-sprayed TiB2-NiCr coating were comparable to the conventional Cr3C2-NiCr coating. The frictional coefficient of the TiB2-NiCr coating was lower than the Cr3C2-NiCr coating when sliding against a bearing steel ball.

  13. Tribological Properties of HVOF-Sprayed TiB2-NiCr Coatings with Agglomerated Feedstocks

    Science.gov (United States)

    Zhao, Zichun; Li, Hui; Yang, Tianlong; Zhu, Hongbin

    2018-03-01

    Boride materials have drawn great attention in surface engineering field, owing to their high hardness and good wear resistance. In our previous work, a plasma-sprayed TiB2-based cermet coating was deposited, but the coating toughness was significantly influenced by the formation of a brittle ternary phase (Ni20Ti3B6) derived from the reaction between TiB2 and metal binder. In order to suppress such a reaction occurred in the high-temperature spraying process, the high-velocity oxygen-fuel spraying technique was applied to prepare the TiB2-NiCr coating. Emphasis was paid on the microstructure, the mechanical properties, and the sliding wearing performance of the coating. The result showed that the HVOF-sprayed coating mainly consisted of hard ceramic particles including TiB2, CrB, and the binder phase. No evidence of Ni20Ti3B6 phase was found in the coating. The mechanical properties of HVOF-sprayed TiB2-NiCr coating were comparable to the conventional Cr3C2-NiCr coating. The frictional coefficient of the TiB2-NiCr coating was lower than the Cr3C2-NiCr coating when sliding against a bearing steel ball.

  14. Plasma sprayed thermoregulating coatings

    International Nuclear Information System (INIS)

    Kudinov, V.V.; Puzanov, A.A.; Zambrzhitskij, A.P.; Soboleva, V.V.

    1979-01-01

    Shown is the possibility of plasma spraying application for thermoregulating coating formation. Given are test results of service properties of BeO, Al 2 O 2 plasma coatings on the substrates of the MA2-1 magnesium alloy. Described is a device for studying durability of coating optical parameters under ultraviolet irradiation in deep vacuum. Dynamics of absorption coefficient, growth caused by an increase in absorption centers amount under such irradiation is investigated

  15. Aging of vacuum plasma sprayed MCrAlY protective layers and their interaction with nickel- and cobalt-based γ/γ'-superalloys

    International Nuclear Information System (INIS)

    Terberger, Philipp J.

    2015-01-01

    γ/γ' single crystal superalloys with plasma-sprayed thermal barrier coating systems are used as turbine rotor blades in gas turbines if the blades are exposed to high temperatures and high mechanical loads. A bond coat (BC) is part of the thermal barrier coating system. It protects the substrate from oxidation and ensures good bonding of the ceramic coating that serves as a thermal insulator. MCrAlY (M=Ni,Co) alloys are commonly used as BCs. They form a protective Al 2 O 3 layer. This study investigates four different vacuum plasma-sprayed MCrAlY BCs with and without Re after thermal treatment of up to 1000 h at 1044 C in air. The employed substrates are the Ni-based superalloy ERBO1 and the novel Co-based γ/γ' superalloy ERBOCo-1. Additionally, the ternary γ/γ' alloy Co-9Al-9W (in at.%) was aged with a BC for up to 500 h at 900 C. Up to now little is known about the interaction of the Co-based substrates and the BCs. Oxidation and Al depletion of the BC as well as the interdiffusion of BCs and substrates are analysed primarily on the basis of SEM/EDX and XRD. The effect of Y and Hf on the microstructure of the oxide scale is discussed. Rate constants show that Hf results in higher oxidation rates while Re slows down the oxidation. The influence of the alloying elements on the BC microstructure is described. For example, Co prevents the formation of γ' phase, Re slows down diffusion and results in the formation of brittle phases. The choice of substrate material has no measurable influence on the oxidation. Qualitative and quantitative analysis of the interdiffusion zone (IDZ) shows that the choice of substrate surface pre-treatment (grit blasting or grinding) has a major influence on the interdiffusion behaviour with the BC. Grinding results in a thinner IDZ and fewer topologically closed packed (TCP) phases. The reason for this is the recrystallisation of the single crystal substrate. A study of the influence of the substrate crystal

  16. Suspension plasma sprayed composite coating using amorphous powder feedstock

    International Nuclear Information System (INIS)

    Chen Dianying; Jordan, Eric H.; Gell, Maurice

    2009-01-01

    Al 2 O 3 -ZrO 2 composite coatings were deposited by the suspension plasma spray process using molecularly mixed amorphous powders. X-ray diffraction (XRD) analysis shows that the as-sprayed coating is composed of α-Al 2 O 3 and tetragonal ZrO 2 phases with grain sizes of 26 nm and 18 nm, respectively. The as-sprayed coating has 93% density with a hardness of 9.9 GPa. Heat treatment of the as-sprayed coating reveals that the Al 2 O 3 and ZrO 2 phases are homogeneously distributed in the composite coating

  17. Properties of nano-structured Ni/YSZ anodes fabricated from plasma sprayable NiO/YSZ powder prepared by single step solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, B. Shri; Balaji, N.; Kumar, S. Senthil; Aruna, S.T., E-mail: staruna194@gmail.com

    2016-12-15

    Highlights: • Preparation of plasma grade NiO/YSZ powder in single step. • Fabrication of nano-structured Ni/YSZ coating. • Conductivity of 600 S/cm at 800 °C. - Abstract: NiO/YSZ anode coatings are fabricated by atmospheric plasma spraying at different plasma powers from plasma grade NiO/YSZ powders that are prepared in a single step by solution combustion method. The process adopted is devoid of multi-steps that are generally involved in conventional spray drying or fusing and crushing methods. Density of the coating increased and porosity decreased with increase in the plasma power of deposition. An ideal nano-structured Ni/YSZ anode encompassing nano YSZ particles, nano Ni particles and nano pores is achieved on reducing the coating deposited at lower plasma powers. The coating exhibit porosities in the range of 27%, sufficient for anode functional layers. Electronic conductivity of the coatings is in the range of 600 S/cm at 800 °C.

  18. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  19. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying.

    Science.gov (United States)

    Wang, Y; Tian, W; Yang, Y

    2009-02-01

    The preparation and characterization of RE modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying are described in this paper. Taking individual nano particles as starting materials, by wet ball milling, spray drying, sintering and plasma treating, nanocrystalline plasma sprayable feedstock is prepared. The as-prepared feedstocks were analyzed by XRD, SEM, EDS, TEM and HRTEM methods. As shown from analyses results, the reconstituted agglomerate feedstock possesses spherical geometry, proper particle size, homogeneous composition distribution and nano scaled grains. There are three dimensional net structures in the prepared feedstock, which could be retained in coatings if the feedstock does not melt or partially melts during the plasma spray process. The three dimensional net structures could play an important role in improving crack propagation resistance and wear resistance of coatings. The reconstitution process and characterization methods discussed in this paper can also be applied to prepare intraclass nanocrystalline feedstock such as ZrO2/Y2O3 and Cr2O3 et al.

  20. Improvement of Ti-plasma coating on Ni-Ti shape memory alloy applying to implant materials and its evaluation

    International Nuclear Information System (INIS)

    Okuyama, Masaru; Endo, Jun; Take, Seisho; Itoi, Yasuhiko; Kambe, Satoshi

    2002-01-01

    Utilizing of Ni-Ti shape memory alloy for implant materials has been world-widely studied. it is, however, known that Ni-Ti alloy is easily attacked by chloride ion contained in body liquid. To prevent Ni dissolution, the authors tried to coat the alloy surface with titanium metal by means of plasma-spray coating method. The plasma coating films resulted in rather accelerating pitting corrosion because of their high porosity. Therefore, sealing of the porous films was required. In order to solve this problem and satisfy prolonged lifetime in the body, the authors tried to use the vacuum evaporation technique of titanium metal. Two types of Ti vacuum evaporation procedures were employed. The one was to cover a thin film on Ni-Ti alloy surface prior to massive Ti plasma spray coating. The other was to first coat plasma spray films on Ni-Ti alloy and then to cover them with vacuum evaporation films of Ti. Protective ability against pitting corrosion was examined by electrochemical polarization measurement in physiological solution and the coating films were characterized by microscopic and SEM observation and EPMA analysis. Vacuum evaporation thin films could not protect Ni-Ti alloy from pitting corrosion. In the case of plasma spray coating over the Ti vacuum evaporation thin film, the substrate Ni-Ti alloy could not be better protected. On the contrary, vacuum evaporation of Ti over the porous plasma spray coating layer remarkably improved corrosion protective performance

  1. Production of press moulds by plasma spray forming process

    International Nuclear Information System (INIS)

    Borisov, Y.; Myakota, I.; Polyakov, S.

    2001-01-01

    Plasma spray forming process for production of press moulds which are used for manufacture of articles from plastics was developed. The press moulds were produced by plasma spraying of Cu-Al-Fe-alloy powder on surface of a master model. The master models were made from non-metallic materials with heat resistance below 70 C (wood, gypsum etc). Double cooling system which provides for a control of surface model temperature and quenching conditions of sprayed material was designed. It made possible on the one hand to support model surface temperature below 70 C and on the other hand to provide for temperature conditions of martensite transformation in Cu-Al-system with a fixation of metastable ductile α + β 1 -phase. This allowed to decrease residual stresses in sprayed layer (up to 0,5-2,5 MPa), to increase microhardness of the coating material (up to 1200-1800 MPa) and its ductility (σ B = 70-105 MPa, δ = 6-12 %). This plasma spray forming process makes possible to spray thick layers (5-20 mm and more) without their cracking and deformation. The process is used for a production of press moulds which are applied in shoes industry, for fabrication of toys, souvenirs etc. (author)

  2. Characterization of Ni-YSZ anodes for solid oxide fuel cells fabricated by solution precursor plasma spraying with axial feedstock injection

    Science.gov (United States)

    Metcalfe, Craig; Lay-Grindler, Elisa; Kesler, Olivera

    2014-02-01

    Nickel and yttria-stabilized zirconia (YSZ) anodes were fabricated by solution precursor plasma spraying (SPPS) and incorporated into metal-supported solid oxide fuel cells (SOFC). A power density of 0.45 W cm-2 at 0.7 V and a peak power density of 0.52 W cm-2 at 750 °C in humidified H2 was obtained, which are the first performance results reported for an SOFC having an anode fabricated by SPPS. The effects of solution composition, plasma gas composition, and stand-off distance on the composition of the deposited Ni-YSZ coatings by SPPS were evaluated. It was found that the addition of citric acid to the aqueous solution delayed re-solidification of NiO particles, improving the deposition efficiency and coating adhesion. The composition of the deposited coatings was found to vary with torch power. Increasing torch power led to coatings with decreasing Ni content, as a result of Ni vaporizing in-flight at stand-off distances less than 60 mm from the torch nozzle exit.

  3. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  4. Wear behaviour of plasma-sprayed AlSi/B4C composite coatings

    International Nuclear Information System (INIS)

    Sarikaya, Ozkan; Anik, Selahaddin; Celik, Erdal; Okumus, S. Cem; Aslanlar, Salim

    2007-01-01

    This paper describes the wear behaviour of AlSi/B 4 C composite coatings with 0-25 wt% B 4 C particles for diesel engine motors. These coatings were successfully fabricated on AlSi substrates using an atmospheric plasma spray technique. The produced samples were characterized by means of an optical microscope, scanning electron microscope and microhardness tester. The obtained results pointed out that an increase of B 4 C particles in AlSi coatings was caused on the rising of the microhardness values and the decrease of the thermal expansion coefficient of the coatings. The friction and wear experiments were performed under dry conditions using a ball-on-dics configuration against WC/Co counter material for different loads. It was concluded that wear resistance of the coatings produced using B 4 C powders is greatly improved compared with the substrate material. The highest wear resistance of the coatings were also determined in the 20% B 4 C coating

  5. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.

  6. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Xiaoju Liu

    2016-02-01

    Full Text Available The formation of thermally grown oxide (TGO during high temperature is a key factor to the degradation of thermal barrier coatings (TBCs applied on hot section components. In the present study both the CoNiCrAlY bond coat and ZrO2-8 wt.% Y2O3 (8YSZ ceramic coat of TBCs were prepared by air plasma spraying (APS. The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ′phases, β phase reducesd as the oxidation time increased. The TGO comprised α-Al2O3 formed in the first 2 h. CoO, NiO, Cr2O3 and spinel oxides appeared after 20 h of oxidation. Contents of CoO and NiO reduced while that of Cr2O3 and spinel oxides increased in the later oxidation stage. The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h0.5 for TBCs and 0.354 μm/h0.5 for pure BCs.

  7. Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.X.; Wu, H.R.; Shan, X.L.; Lin, N.M.; He, Z.Y., E-mail: tyuthzy@126.com; Liu, X.P.

    2016-12-01

    Graphical abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition were investigated by thermal field emission scanning electron microscopy (SEM), and glow discharge optical emission spectroscopy (GDOES), X-ray diffraction (XRD), respectively. The cross-section nano-scale hardness of Ni modified layer was measured by nano indenter. The results showed that Ni modified layers exhibited triple layers structure and continuous gradient distribution of the concentration. From the surface to the matrix, they were 2 μm Ni deposition layer, 8 μm Ni-rich alloying layer including the phases of Ni{sub 3}Ti, NiTi, Ti{sub 2}Ni, AlNi{sub 3} and 24 μm Ni-poor alloying layer forming the solid solution of nickel. With increasing of the thickness of Ni modified layer, the microhardness increased first, reached the climax, then gradient decreased. The erosion tests were performed on the surface of the untreated and treated Ti6Al4V sample using MSE (Micro-slurry-jet Erosion) method. The experiment results showed that the wear rate of every layer showed different value, and the Ni-rich alloying layer was the lowest. The strengthening mechanism of Ni modified layer was also discussed. - Highlights: • The Ni modified layers were prepared by the plasma surface alloying technique. • Triple layers structure was prepared. • Using Micro-slurry-jet Erosion method. • The erosion rate of Ni modified layer experienced the process of descending first and then ascending. • Improvement of erosion resistance performance of Ni-rich alloying layer was prominent. The wear mechanism of Ni modified layer showed micro-cutting wearing. - Abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition

  8. Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement

    Science.gov (United States)

    Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.

    2014-02-01

    In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.

  9. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    CERN Document Server

    Jiang Xian Liang

    2002-01-01

    nano-crystalline powders of omega(Al sub 2 O sub 3) = 95%, omega(TiO sub 2) = 3%, and omega(SiO sub 2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) mu m. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lo...

  10. Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes

    Directory of Open Access Journals (Sweden)

    Tianchen Li

    2017-09-01

    Full Text Available In the present research, the spherical FeCoCrNiMo0.2 high entropy alloy (HEA powders with a single FCC solid solution structure were prepared by gas atomization. Subsequently, the FeCoCrNiMo0.2 coatings with a different content of oxide inclusions were prepared by air plasma spraying (APS and high-velocity oxy-fuel spraying (HVOF, respectively. The microstructure, phase composition, mechanical properties, and tribological behaviors of these HEA coatings were investigated. The results showed that both HEA coatings showed a typical lamellar structure with low porosity. Besides the primary FCC phase, a mixture of Fe2O3, Fe3O4, and AB2O4 (A = Fe, Co, Ni, and B = Fe, Cr was identified as the oxide inclusions. The oxide content of the APS coating and HVOF coating was calculated to be 47.0% and 12.7%, respectively. The wear resistance of the APS coating was approximately one order of magnitude higher than that of the HVOF coating. It was mainly attributed to the self-lubricated effect caused by the oxide films. The mass loss of the APS coating was mainly ascribed to the breakaway of the oxide film, while the main wear mechanism of the HVOF coating was the abrasive wear.

  11. Performance of vacuum plasma spray and HVOF bond coatings at 900° and 1100 °C

    Energy Technology Data Exchange (ETDEWEB)

    Lance, Michael J. [ORNL; Haynes, James A. [ORNL; Pint, Bruce A. [ORNL

    2017-12-01

    The effects of Ti and B additions to a vacuum plasma sprayed (VPS) NiCoCrAlYHfSi bond coating on thermal barrier coating (TBC) performance were studied at 1100 °C and 900 °C and compared to high-velocity oxy-fuel (HVOF) bond coatings. Using alloy 247 substrates and air plasma sprayed Y2O3-stabilized ZrO2 top coatings, additions of B or Ti + B did not improve the average TBC lifetime in 1-h cycles at 1100 °C in air with 10% H2O. The addition of Ti resulted in a decrease in lifetime. Photo-stimulated luminescence spectroscopy was used to map residual stresses in the thermally-grown Al2O3 scale. At 900 °C, closer to a typical land based turbine operating bond coating temperature, specimens were examined after ten 500-h cycles in laboratory air and air with 10%H2O to study the effect of H2O. The addition of water vapor had little effect on the measured parabolic rate constants at 900 °C and a comparison of the oxide microstructures in both environments is reported.

  12. Uticaj brzine depozicije praha na mehaničke karakteristike i strukturu APS-NiCr/Al prevlake / Effect of the powder deposition rate on the mechanical properties and the structure of the APS-NiCr/Al coating

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2010-10-01

    Full Text Available U radu su prikazani rezultati ispitivanja atmosferskih plazma-sprej prevlaka APS-NiCr/Al. Kompozitni prah NiCr/Al koji se sastoji od NiCr čestica obloženih finim česticama Al u procesu depozicije omogućuje egzotermnu reakciju. Reakcija ovih metala dovodi do formiranja samovezujućih NiCrAl prevlaka koje poseduju jedinstvene kombinacije osobina. Radi dobijanja najboljih strukturnih i mehaničkih karakteristika izvršena je optimizacija parametara depozicije. U ovom istraživanju urađene su tri grupe uzoraka prevlake NiCrAl sa različitim brzinama depozicije praha da bi se dobili depoziti velike čvrstoće i žilavosti. Kod prve grupe uzoraka brzina depozicije praha bila je 50 g/min, kod druge 40 g/min, a kod treće 30 g/min. Procena osobina depozita rađena je ispitivanjem mikrotvrdoće metodom HV0.3 i čvrstoće spoja ispitivanjem na zatezanje. Metalografska procena strukture rađena je tehnikom svetlosne mikroskopije. Verifikovane prevlake primenjene su za zaštitu i revitalizaciju delova turbomlaznih motora izloženih oksidaciji na povišenim temperaturama. / The paper presents the results of the examination of atmospheric plasma spraying of APS-NiCr/Al coatings. Composite NiCr/Al powders, composed of NiCr particles coated with fine Al particles, enable an exothermic reaction during the deposition process. The exothermic reaction of these metals results in the formation of selfbonding NiCrAl coatings with a unique combination of properties. For the purpose of obtaining excellent structural and mechanical properties, the deposition parameters were optimized. In this study, three groups of NiCrAl coating samples with different powder deposition rate were made to get deposits of greater strength and toughness. In the first group of samples, the deposition rate was 50g/min, in the second group the powder deposition rate was 40 g/ min. while in the third group it was 30 g/min. The assessment of the properties of deposits was made by the HV0

  13. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Kuo, Lewis J. H.; Vora, Shailesh D.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.

  14. Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tang Feng [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)]. E-mail: ftang@ucdavis.edu; Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Kim, George E. [Perpetual Technologies, Montreal, Que., H3E 1T8 (Canada); Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Thermal cycle tests were conducted on a variety of thermal barrier coating (TBC) specimens with bond coats that had been prepared in different ways. Variables include: (1) different thermal spray processes (high velocity oxy-fuel (HVOF) spray and low pressure plasma spray (LPPS)) (2) different feedstock powder (gas-atomized and cryomilled) (3) the introduction of nano-sized alumina additives (particles and whiskers) and (4) with and without a post-spray vacuum heat treatment. The results show that the cryomilling of the NiCrAlY powder and the post-spray heat treatment in vacuum can both lead to significant improvement in the thermal cycle lifetime of the TBCs. The TBC specimens with LPPS bond coats also generally showed longer lifetimes than those with HVOF bond coats. In contrast, the intentional dispersion of alumina particles or whiskers in the NiCrAlY powders during cryomilling did not result in the further improvement of the lifetime of the TBCs. Microstructural evolution, including the thermally grown oxide (TGO) formation, the distribution of the dispersoids in the bond coat, the internal oxidation of the bond coat, the bond coat shrinkage during the thermal cycle tests and the reduction of the ZrO{sub 2} in the top coat during the heat treatment in vacuum, was investigated.

  15. Development & characterization of alumina coating by atmospheric plasma spraying

    Science.gov (United States)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  16. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2002-01-01

    nano-crystalline powders of ω(Al 2 O 3 ) = 95%, ω(TiO 2 ) = 3%, and ω(SiO 2 ) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) μm. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nano-structured ceramic coatings is significantly improved

  17. Behaviour of plasma spray coatings under disruption simulation

    International Nuclear Information System (INIS)

    Brossa, F.; Rigon, G.; Looman, B.

    1988-01-01

    The behaviour of metallic and ceramic protective coatings under disruption simulations was studied correlating the damage with their physical and structural parameters. Plasma Spray (PS) and Vacuum Plasma Spray (VPS) were the techniques used for the production of the coatings. W-5% Re was selected for divertor plates, and TiC, TiO 2 , Al 2 O 3 , low-Z ceramic materials for the first wall protection on 316 SS, Cu and Al as substrates. An electron beam gun was used to simulate the plasma disruptions. The tests were carried out from 0.6 to 6 MJ/m 2 . The thermal effects were studied by metallographic and EDXA analysis. The damage was observed comparing the degree of protection provided by each coating to discover the minimum thickness necessary to prevent the underlying material from melting. Good protective coatings must have a high melting point, great porosity and low thermal conductivity. Such coatings act as thermal barriers, increasing the surface temperature and radiating back large parts of the energy. (orig.)

  18. Improvement of the Oxidation Resistance of CoNiCrAlY Bond Coats Sprayed by High Velocity Oxygen-Fuel onto Nickel Superalloy Substrate

    Directory of Open Access Journals (Sweden)

    Alessio Fossati

    2010-11-01

    Full Text Available CoNiCrAlY powders with similar granulometry and chemical composition, but different starting reactivity toward oxygen, were sprayed onto superalloy substrates by High Velocity Oxygen-Fuel producing coatings of similar thicknesses. After spraying, samples were maintained at 1,273 K in air for different test periods of up to 5,000 hours. Morphological, microstructural, compositional and electrochemical analyses were performed on the coated samples in order to assess the high temperature oxidation resistance provided by the two different powders. The powder with higher starting reactivity towards oxygen improves the oxidation resistance of the coated samples by producing thinner and more adherent thermally grown oxide layers.

  19. Damping capacity and dynamic mechanical characteristics of the plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Yu Liming; Ma Yue; Zhou Chungen; Xu Huibin

    2005-01-01

    The damping properties and dynamic mechanical performance of NiCrAlY coating, FeCrMo ferromagnetic coating, AlCuFeCr quasicrystalline coating and nanostructured ZrO 2 ceramic coating, which were prepared by plasma-spray method, were investigated. The measuring results of the dynamic mechanical thermal analyzer (DMTA) and the flexural resonance testing method show that the damping capacity (Q -1 ) of the coated sample has a notable improvement compared to the substrate, while the dynamic modulus has a dramatic decrease. The resonance frequency of the coated cantilever beam structure shifted to high-frequency, and the resonance amplitude, especially high mode resonance, was dramatically attenuated. The internal friction peaks were observed in the Q -1 -temperature spectrogram and a normal amplitude effects were shown in the coated samples damping characteristics. The damping mechanism based on the interaction between substrate and coating layer, and the microstructure of the coated sample were also discussed in this paper

  20. Erosion protection of carbon-epoxy composites by plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Alonso, F.; Fagoaga, I.; Oregui, P.

    1991-01-01

    This paper deals with the production of plasma-sprayed erosion-resistant coatings on carbon-fibre - epoxy composites, and the study of their erosion behaviour. The heat sensitivity of the composite substrate requires a specific spraying procedure in order to avoid its degradation. In addition, several bonding layers were studied to allow spraying of the protective coatings. Two different functional coatings were sprayed onto an aluminium-glass bonding layer, a WC-12Co cermet and an Al 2 O 3 ceramic oxide. The microstructure and properties of these coatings were studied and their erosion behaviour determined experimentally in an erosion-testing device. (orig.)

  1. Determination of processing-induced stresses and properties of layered and graded coatings: Experimental method and results for plasma-sprayed Ni-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Finot, M.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering; Sampath, S. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Materials Science and Engineering

    1997-08-01

    An experimental method is proposed which enables the determination of processing-induced intrinsic stresses, elastic modulus, and coefficients of thermal expansion of surface coatings of homogeneous and graded compositions. In this method, a number of identical substrate specimens are coated simultaneously with surface layers of fixed or graded compositions, and specimens with different layer thicknesses are periodically removed from the deposition chamber. It is shown that the following results can be obtained from a knowledge of the strain or curvature and thermal history of the coated specimens, in conjunction with simple four-point bend tests and thermal loading/cycling at different temperatures: (i) the magnitude of the processing-induced intrinsic stresses through the thickness of the coating, (ii) the in-plane Young`s modulus, E, as a function of the coating thickness, (iii) the coefficient of thermal expansion, {alpha}, as a function of the coating thickness, (iv) the variation of E and {alpha} as a function of temperature at any thickness location within the coating, and (v) the separation of internal stresses arising from thermal expansion mismatch between different constituent phases or layers from those arising from the deposition process (so-called intrinsic or quench stresses). The thermomechanical analyses underlying this method are discussed in detail, and its significance and limitations are addressed. The proposed method is used to determine the evolution of processing-induced stresses during the successive build-up of plasma-sprayed Ni-Al{sub 2}O{sub 3} coatings of homogeneous and graded compositions.

  2. Frictional properties of CeO$_{2}$-Al$_{2}$O$_{3}$-ZrO$_{2}$ plasma-sprayed film under mixed and boundary lubricating conditions

    CERN Document Server

    Kita, H; Osumi, K; 10.2109/jcersj.112.615

    2004-01-01

    In order to find a counterpart for reducing the frictional coefficient of Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma-sprayed film, the sliding properties in mixed and boundary lubricating conditions was investigated. It was found that combination of a CrN- coated cast iron pin and an Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma sprayed plate provided the lowest frictional coefficient among several combinations chosen from practical materials. The coefficient of friction was much lower than that of the materials combination widely used for piston ring and cylinder liner. It was inferred that the combination of a pin made of hard materials with high density, a smooth surface such as CrN-coated cast iron and a porous plate can reduce the frictional coefficient because less sliding resistance is implemented and porosity retains oil.

  3. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al nanoparticles as a high microwave absorption material

    International Nuclear Information System (INIS)

    Pang, Yu; Xie, Xiubo; Li, Da; Chou, Wusheng; Liu, Tong

    2017-01-01

    The Al_3Ni_2@Al nanoparticles (NPs) were prepared from Ni_4_5Al_5_5 master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m"2/g and big pore volume of 0.507 cc/g. The saturation magnetization (M_S) and coercivity (H_C) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m"2/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  4. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP

    Directory of Open Access Journals (Sweden)

    Jarkko Metsäjoki

    2015-10-01

    Full Text Available Oxy-fuel combustion combined with CCS (carbon capture and storage aims to decrease CO2 emissions in energy production using fossil fuels. Oxygen firing changes power plant boiler conditions compared to conventional firing. Higher material temperatures and harsher and more variable environmental conditions cause new degradation processes that are inadequately understood at the moment. In this study, an Fe-Ni-Cr-Al alloy was developed based on thermodynamic simulations. The chosen composition was manufactured as powder by gas atomization. The powder was sieved into two fractions: The finer was used to produce thermal spray coatings by high velocity oxy-fuel (HVOF and the coarser to manufacture bulk specimens by hot isostatic pressing (HIP. The high temperature corrosion properties of the manufactured FeNiCrAl coating and bulk material were tested in laboratory conditions simulating oxy-combustion. The manufacturing methods and the results of high temperature corrosion performance are presented. The corrosion performance of the coating was on average between the bulk steel references Sanicro 25 and TP347HFG.

  5. Interfacial characteristics and fracture behavior of spark-plasma-sintered TiNi fiber-reinforced 2024Al matrix composites

    International Nuclear Information System (INIS)

    Dong, Peng; Wang, Zhe; Wang, Wenxian; Chen, Shaoping; Zhou, Jun

    2017-01-01

    Embedding of shape memory alloy (SMA) fibers into materials to fabricate SMA composites has attracted considerable attention because of the potential applicability of these composites in smart systems and structures. In this study, 2024Al matrix composites reinforced by continuous TiNi SMA fibers were fabricated using spark plasma sintering (SPS). The interface between the fibers and matrix consisted of a bilayer. The layer close to the fiber consisted of a multiple phase mixture, and the other layer exhibited a periodic morphology resulting from the alternating phases of Al 3 Ti and Al 3 Ni. In addition, a small quantity of TiO 2 phases was also observed in the interface layer. Based on detailed interface studies of the orientation relationships between the Al 3 Ti, Al 3 Ni, and TiO 2 phases and the atomic correspondence at phase boundaries, the effects of the interface phases on the fracture behavior of the composites were demonstrated.

  6. Interfacial characteristics and fracture behavior of spark-plasma-sintered TiNi fiber-reinforced 2024Al matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peng, E-mail: dongpeng@tyut.edu.cn [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan 030024 (China); Wang, Zhe [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Wenxian [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan 030024 (China); Chen, Shaoping [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [Department of Mechanical Engineering, Pennsylvania State University Erie, Erie, PA 16563 (United States)

    2017-04-13

    Embedding of shape memory alloy (SMA) fibers into materials to fabricate SMA composites has attracted considerable attention because of the potential applicability of these composites in smart systems and structures. In this study, 2024Al matrix composites reinforced by continuous TiNi SMA fibers were fabricated using spark plasma sintering (SPS). The interface between the fibers and matrix consisted of a bilayer. The layer close to the fiber consisted of a multiple phase mixture, and the other layer exhibited a periodic morphology resulting from the alternating phases of Al{sub 3}Ti and Al{sub 3}Ni. In addition, a small quantity of TiO{sub 2} phases was also observed in the interface layer. Based on detailed interface studies of the orientation relationships between the Al{sub 3}Ti, Al{sub 3}Ni, and TiO{sub 2} phases and the atomic correspondence at phase boundaries, the effects of the interface phases on the fracture behavior of the composites were demonstrated.

  7. Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications

    Science.gov (United States)

    Marrocco, T.; Driver, L. C.; Harris, S. J.; McCartney, D. G.

    2006-12-01

    Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn-Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely, Al-20wt.%Sn-1wt.%Cu-2wt.%Ni and Al-20wt.%Sn-1wt.%Cu-7wt.%Si. This article will describe the microstructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. The microstructures of powders and coatings were investigated by scanning electron microscopy, and the phases were identified by x-ray diffraction. Coating microhardnesses were determined under both as-sprayed and heat-treated conditions, and by the differences related to the microstructures that developed. Finally, the wear behavior of the sprayed and heat-treated coatings in hot engine oil was measured using an industry standard test and was compared with that of previous work on a ternary alloy.

  8. Effect of thermal spray processing techniques on the microstructure and properties of Ni-based amorphous coatings

    International Nuclear Information System (INIS)

    Lee, S.M.; Moon, B.M.; Fleury, E.; Ahn, H.S.; Kim, D.H.; Kim, W.T.; Sordelet, D.J.

    2005-01-01

    Metallic amorphous materials have been widely developed thanks to the outstanding properties including high chemical stability, mechanical strength, and magnetic properties. However, with the exception of a few compositions, the limiting factor is the critical cooling rate for the formation of the amorphous phase. For many applications, it is only the contact surface properties that are important, thus the use, of coating techniques such as thermal sprayings has several attractive features. In this paper, we present the microstructure of Ni-based amorphous coatings prepared by laser cladding and vacuum plasma spraying. The utilization of plasma spraying to deposit atomized powder enabled the formation of fully amorphous coating, laser cladding resulted in mostly crystallized structures. Glass forming ability and wear properties of the coatings were discussed as a function of the coating microstructure. (orig.)

  9. Transformation kinetics in plasma-sprayed barium- and strontium-doped aluminosilicate (BSAS)

    International Nuclear Information System (INIS)

    Harder, B.J.; Faber, K.T.

    2010-01-01

    The hexacelsian-to-celsian phase transformation in Ba 1-x Sr x Al 2 Si 2 O 8 is of interest for environmental barrier coating applications. Plasma-sprayed microstructures were heat treated above 1100 o C and the kinetics of the hexacelsian-to-celsian transformation were quantified. Activation energies for bulk and crushed materials were determined to be ∼340 and ∼500 kJ mol -1 , respectively. X-ray diffraction and electron backscattered diffraction were used to establish how plasma spraying barium- and strontium-doped aluminosilicate effectively reduces the energy required for its transformation.

  10. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  11. Effect of plasma spraying parameter on wear resistance of NiCrBSiCFe plasma coatings on austenitic stainless steel at elevated temperatures at various loads

    International Nuclear Information System (INIS)

    Parthasarathi, N.L.; Duraiselvam, Muthukannan; Borah, Utpal

    2012-01-01

    Highlights: ► Effect of plasma spraying parameters, especially the stand-off distance. ► Effect of microstructure and applied load on coating in sliding wear. ► The reason for maximum wear rate at 250 °C and the minimum wear at 350 °C were explained. ► The worn debris were characterised by SEM analysis and correlated with wear rate. -- Abstract: The dry sliding wear tests were carried out on AISI 316 austenitic stainless steel (ASS) plasma coated with NiCrBSiCFe alloy powder under two set of plasma spraying parameters (PSP-1 and PSP-2). EN 8 medium carbon steel was used as a counterface material. The tests were carried out at loads of 20 N and 40 N with a constant sliding velocity of 1 m/s at room temperature (35°), 150 °C, 250 °C and 350 °C. Metallographic characterisation was carried out by optical microscope (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). Between the two plasma parameters tested, stand-off distance of 125 mm was found to be more suitable for producing uniform lamellar microstructure with fewer amounts of pores which shows better wear resistance. The wear rate at 250 °C was comparatively more due to the material softening and adhesion by intermolecular bonding. The worn debris collected during sliding at 350 °C turn into oxides which further behaves like a protective and lubricative film eliminating the chances of severe material loss. SEM was used to characterise the worn track and debris to identity the wear mechanism.

  12. Oxidation behaviour at 1123 K of AISI 304-Ni/Al-Al2O3/TiO2 multilayer system deposited by flame spray

    Directory of Open Access Journals (Sweden)

    Cervera, I.

    2011-04-01

    Full Text Available The oxidation behaviour of alumina/titania (97/3, 87/13 and 60/40 ceramic coatings using a Ni-Al coupling layer was studied in a thermobalance. Both layers were deposited on an AISI 304 stainless steel base metal by the flame spray technique. The coated steel was heated from room temperature to 1,123 K at 40 K min –1, oxidized in air for 50 h, and then cooled to room temperature at 40 K min–1. The mass gain was mainly attributed to the oxidation of Ni-Al coupling layer. Kinetic laws, DW·S –1 (mg.mm–2 vs. time (hours were close to a parabolic plot for each sample. Surface composition of ceramic top layer and the cross section of multilayer system were analysed using a wide range of experimental techniques including Scanning Electron Microscopy (SEM, equipped with a link energy dispersive X-Ray spectroscopy (EDX and X-Ray diffraction (XRD before and after the oxidation process. Coatings 97/3 and 87/13 presented a stable structure after flame spray deposition and they did not evolve with the oxidation process, while most of the 60/40 coating changed to a metastable structure after deposition and to a more stable structure after oxidation with high micro-cracks content. SEM and EDX microanalysis of the cross-sections showed that significant oxidation and a weak intergranular precipitation had been produced in the coupling layer and on the stainless steel base metal, respectively.El comportamiento a oxidación de recubrimientos cerámicos alúmina/titania (97/3, 87/13, 60/40 usando una capa de anclaje Ni-Al se ha estudiado mediante una termobalanza. Ambas capas se han depositado sobre un acero inoxidable AISI 304 utilizando la técnica de proyección llama (FS. El acero recubierto se ha calentado desde la temperatura ambiente hasta 1.123 K a 40 K min–1, se ha oxidado al aire durante 50 h, y luego se ha enfriado hasta la temperatura ambiente a 40 K min–1. La ganancia en masa se atribuye a la oxidación de la capa de enganche Ni-Al. La cin

  13. Aging of vacuum plasma sprayed MCrAlY protective layers and their interaction with nickel- and cobalt-based γ/γ'-superalloys; Alterung von Vakuum-plasmagespritzten MCrAlY-Schutzschichten und ihre Wechselwirkung mit Nickel- und Cobalt-basierten γ/γ'-Superlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Terberger, Philipp J.

    2015-07-01

    γ/γ' single crystal superalloys with plasma-sprayed thermal barrier coating systems are used as turbine rotor blades in gas turbines if the blades are exposed to high temperatures and high mechanical loads. A bond coat (BC) is part of the thermal barrier coating system. It protects the substrate from oxidation and ensures good bonding of the ceramic coating that serves as a thermal insulator. MCrAlY (M=Ni,Co) alloys are commonly used as BCs. They form a protective Al{sub 2}O{sub 3} layer. This study investigates four different vacuum plasma-sprayed MCrAlY BCs with and without Re after thermal treatment of up to 1000 h at 1044 C in air. The employed substrates are the Ni-based superalloy ERBO1 and the novel Co-based γ/γ' superalloy ERBOCo-1. Additionally, the ternary γ/γ' alloy Co-9Al-9W (in at.%) was aged with a BC for up to 500 h at 900 C. Up to now little is known about the interaction of the Co-based substrates and the BCs. Oxidation and Al depletion of the BC as well as the interdiffusion of BCs and substrates are analysed primarily on the basis of SEM/EDX and XRD. The effect of Y and Hf on the microstructure of the oxide scale is discussed. Rate constants show that Hf results in higher oxidation rates while Re slows down the oxidation. The influence of the alloying elements on the BC microstructure is described. For example, Co prevents the formation of γ' phase, Re slows down diffusion and results in the formation of brittle phases. The choice of substrate material has no measurable influence on the oxidation. Qualitative and quantitative analysis of the interdiffusion zone (IDZ) shows that the choice of substrate surface pre-treatment (grit blasting or grinding) has a major influence on the interdiffusion behaviour with the BC. Grinding results in a thinner IDZ and fewer topologically closed packed (TCP) phases. The reason for this is the recrystallisation of the single crystal substrate. A study of the influence of the substrate

  14. Deposition and characterization of plasma sprayed Ni-5A1/ magnesia stabilized zirconia based functionally graded thermal barrier coating

    International Nuclear Information System (INIS)

    Baig, M N; Khalid, F A

    2014-01-01

    Thermal barrier coatings (TBCs) are employed to protect hot section components in industrial and aerospace gas turbine engines. Conventional TBCs frequently fail due to high residual stresses and difference between coefficient of thermal expansion (CTE) of the substrate and coatings. Functionally graded thermal barrier coatings (FG-TBCs) with gradual variation in composition have been proposed to minimize the problem. In this work, a five layered functionally graded thermal barrier coating system was deposited by atmospheric plasma spray (APS) technique on Nimonic 90 substrates using Ni-5Al as bond coat (BC) and magnesia stabilized zirconia as top coat (TC). The coatings were characterized by SEM, EDS, XRD and optical profilometer. Microhardness and coefficient of thermal expansion of the five layers deposited as individual coatings were also measured. The deposited coating system was oxidized at 800°C. SEM analysis showed that five layers were successfully deposited by APS to produce a FG-TBC. The results also showed that roughness (Ra) of the individual layers decreased with an increase in TC content in the coatings. It was found that microhardness and CTE values gradually changed from bond coat to cermet layers to top coat. The oxidized coated sample revealed parabolic behavior and changes in the surface morphology and composition of coating

  15. In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating

    International Nuclear Information System (INIS)

    Balani, K.; Zhang, T.; Karakoti, A.; Li, W.Z.; Seal, S.; Agarwal, A.

    2008-01-01

    Carbon nanotubes (CNT) are potential reinforcements for toughening the ceramic matrix. The critical issue of avoiding CNT agglomeration and introducing CNT-matrix anchoring has challenged many researchers to improve the mechanical properties of the CNT reinforced nanocomposite. In the current work, dispersed CNTs are grown on Al 2 O 3 powder particles in situ by the catalytic chemical vapor deposition (CCVD) technique. Consequently, 0.5 wt.% CNT-reinforced Al 2 O 3 particles were successfully plasma sprayed to obtain a 400 μm thick coating on the steel substrate. In situ CNTs grown on Al 2 O 3 shows a promising enhancement in hardness and fracture toughness of the plasma-sprayed coating attributed to the existence of strong metallurgical bonding between Al 2 O 3 particles and CNTs. In addition, CNT tentacles have imparted multi-directional reinforcement in securing the Al 2 O 3 splats. High-resolution transmission electron microscopy shows interfacial fusion between Al 2 O 3 and CNT and the formation of Y-junction nanotubes

  16. Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2018-05-01

    Full Text Available Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear.

  17. Plasma spraying process of disperse carbides for spraying and facing

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Vishnevetskaya, I.A.; Kostyukovich, T.G.; Ostapovich, A.O.

    1989-01-01

    A possibility to metallize carbides in plasma of impulsing capacitor discharge is considered. Powders granulation occurs during plasma spraying process, ceramic core being completely capped. X-ray phase and chemical analyses of coatings did not show considerable changes of carbon content in carbides before and after plasma processing. This distinguishes the process of carbides metallization in impulsing plasma from the similar processing in arc and high-frequency plasma generator. Use of powder composites produced in the impulsing capacitor discharge, for plasma spraying and laser facing permits 2-3 times increasing wear resistance of the surface layer as against the coatings produced from mechanical powders mixtures

  18. Influence of a powder feed rate on the properties of the plasma sprayed chromium carbide- 25% nickel chromium coating

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-04-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 The plasma spray process is a leading technology of powder depositing in the production of coatings widely used in the aerospace industry for the protection of new parts and for the repair of worn ones. Cermet 75Cr3C2 - 25Ni(Cr coatings based on Cr3C2 carbides are widely used to protect parts as they retain high values of hardness, strength and resistance to wear up to a temperature of 850°C. This paper discusses the influence of the parameters of the plasma spray deposition of 75Cr3C2 - 25Ni(Cr powder on the structure and mechanical properties of the coating. The powder is deposited using plasma spraying at atmospheric pressure (APS. The plasma gas is He, which is an inert gas and does not react with the powder; it produces dense plasma with lower heat content and less incorporated ambient air in the plasma jet thus reducing temperature decomposition and decarburization of Cr3C2 carbide.. In this study, three groups of coatings were deposited with three different powder feed rates of: 30, 45 and 60 g/min. The  coating with the best properties was deposited on the inlet flange parts of the turbo - jet engine TV2-117A to reduce the influence of vibrations and wear. The structures and the mechanical properties of 75Cr3C2 - 25Ni(Cr coatings are analyzed in accordance with the Pratt & Whitney standard. Studies have shown that powder feed rates have an important influence on the mechanical properties and structures of 75Cr3C2 - 25Ni(Cr coatings. 

  19. Plasma sprayed Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.; Bauser, S.; Liu, S.; Huang, M.

    2003-01-01

    This study demonstrated that the plasma spray deposition method is an alternative process for producing Nd-Fe-B magnets in addition to the two existing principal processes: the powder metallurgy process for producing sintered Nd-Fe-B magnets and the melt spinning process for bonded Nd-Fe-B magnets. Plasma spray is a potentially better process for producing magnetic parts with complicated shape, large area, thin thickness, small dimension, or unusual geometry. High intrinsic coercivity greater than 15 kOe was readily obtained for Nd 16 Dy 1 Fe 76 B 7 even in the as-deposited condition when the substrate was preheated. The plasma spray process contains only three steps: melting, crushing, and plasma spray, which is much simpler than the powder metallurgy and melt spinning processes. Without preheating the substrate, the coercivity was usually very low (∼0.1 kOe) in the as-deposited condition and it increased to 10 to >15 kOe after anneal. Evidence of magnetocrystalline anisotropy was observed in plasma sprayed Nd 15 Dy 1 Fe 77 B 7 magnets when the substrate was not preheated. It is believed that a crystal texture was developed during the plasma spray as a result of the existence of a temperature gradient in the solidifying melt

  20. Corrosion prevention of the rail by thermal spray coating of Zn-Al alloy; Zn-Al gokin yosha hifuku ni yoru reru no boshoku

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, S. [Nippon Steel Corp., Kitakyushu (Japan)] Urashima, C. [Kyushu Techno Research Corp., Fukuoka (Japan); Itai, K. [Nippon Steel Corp., Kitakyushu, Fukuoka (Japan). Technical Research Inst. of Yawata Works; Ichiriki, T.; Nishiki, M. [Kyushu Rail way comdany, Fukuoka (Japan)

    1997-03-30

    Replacement of the rail in under-sea tunnel such as the Kammon Tunnel is carried out very five years because of the severe corrosion caused by the humid state due to the leakage of sea water or the mist of sea water swept up by the passing trains. In this study, salt water spraying or sea water spraying test is carried out using Zn-Al alloy with the corrosion resistance and thermal spray efficiency even higher than those of Zn or Al. A rail coated by thermal spray of Zn-15mass%Al alloy has been laid by trial in the practical rail road of Kammon Tunnel for 5 years and 3 months, the deterioration degree of the coating, pitting depth, actual fatigue strength, etc. are evaluated. Further, these factors of a rail re-coated by Zincrich Primer+Tar Epoxy and a bare rail laid at the same time are evaluated for comparison. It is presumed by the results of the examination about the service life of a rail coated by the thermal spray of Zn-Al alloy based on the pitting depth in the rail base that the service life of such coated rail is more than twice as that of the bare rails used currently. 5 refs., 14 figs., 3 tabs.

  1. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al nanoparticles as a high microwave absorption material

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yu; Xie, Xiubo; Li, Da [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China); Chou, Wusheng [School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Liu, Tong, E-mail: tongliu@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China)

    2017-03-15

    The Al{sub 3}Ni{sub 2}@Al nanoparticles (NPs) were prepared from Ni{sub 45}Al{sub 55} master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m{sup 2}/g and big pore volume of 0.507 cc/g. The saturation magnetization (M{sub S}) and coercivity (H{sub C}) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m{sup 2}/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  2. Improved methods for testing bond and intrinsic strength and fatigue of thermally sprayed metallic and ceramic coatings

    International Nuclear Information System (INIS)

    Schweitzer, K.K.; Ziehl, M.H.; Schwaminger, C.

    1991-01-01

    Conventional bond strength tests for thermally sprayed coatings represent only a rough means of obtaining overall strength values, with no differentiation between adhesion at the interface and intrinsic coating properties. In order to obtain information about the influence of substrate surface preparation on the adhesion of a Tribaloy T700 coating, tensile bond strength and modified crack-opening displacement (COD) specimens were tested by deliberate crack initiation at the interface. Crack initiation was achieved by weakening of the interface at the outer diameter in the case of bond strength specimens or at the notch root in the case of COD specimens. This made it possible to look at the influence of surface roughness and grit contamination on the coating adhesion separately. Modified COD specimens with the notch in the centre of the coating were used to determine crack-opening energies and critical stress intensity factors of atmospheric plasma-sprayed NiAl and low pressure plasma-sprayed CoNiCrAlY bond coatings and a ZrO 2 7Y 2 O 3 thermal barrier coating (TBC). Additionally, bond strength specimens were stressed dynamically, and it could be demonstrated that Woehler (S/N) diagrams can be established for a metallic NiAl bond coating and even for a ceramic ZrO 2 7Y 2 O 3 TBC. (orig.)

  3. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model

    International Nuclear Information System (INIS)

    Li, H.Q.; Yang, Y.S.; Tong, W.H.; Wang, Z.Y.

    2007-01-01

    With the effects of electronic structure and atomic size being introduced, the mixing enthalpy as well as the Gibbs energy of the ternary Zr-Al-Cu, Ni-Al-Cu, Zr-Ni-Al and quaternary Zr-Al-Ni-Cu systems are calculated based on quasiregular solution model. The computed results agree well with the experimental data. The sequence of Gibbs energies of different systems is: G Zr-Al-Ni-Cu Zr-Al-Ni Zr-Al-Cu Cu-Al-Ni . To Zr-Al-Cu, Ni-Al-Cu and Zr-Ni-Al, the lowest Gibbs energy locates in the composition range of X Zr 0.39-0.61, X Al = 0.38-0.61; X Ni = 0.39-0.61, X Al = 0.38-0.60 and X Zr = 0.32-0.67, X Al = 0.32-0.66, respectively. And to the Zr-Ni-Al-Cu system with 66.67% Zr, the lowest Gibbs energy is obtained in the region of X Al = 0.63-0.80, X Ni = 0.14-0.24

  4. Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    Morks, M.F.; Kobayashi, Akira

    2007-01-01

    For biomedical applications, hydroxyapatite (HA) coatings were deposited on 304 stainless steel substrate by using a gas tunnel type plasma spraying process. The influences of spraying distances and plasma arc currents on the microstructure, hardness and adhesion properties of HA coatings were investigated. Microstructure observation by SEM showed that HA coatings sprayed at low plasma power have a porous structure and poor hardness. HA coatings sprayed at high plasma power and short spraying distance are characterized by good adhesion and low porosity with dense structure. Hardness increased for HA coatings sprayed at shorter spraying distance and higher plasma power, mainly due to the formation of dense coatings

  5. Estudio de polvos y recubrimientos metaestables de NiTi obtenidos por proyección térmica de plasma

    Directory of Open Access Journals (Sweden)

    Cano, I. G.

    2008-06-01

    Full Text Available NiTi intermetallic is widely known for its shape memory effect and pseudoelasticity. Due to its high corrosion resístanse (biocompatibility, most of the studies carried out deal with its use for medical applications. With regard to surface technologies, many reported investigations focus on Vacuum Thermal Spray to provide NiTi coatings with minimal oxide content.The Thermal Spray Center has attempted to obtain metastable NiTi powders and coatings by means of Atmospheric Plasma Spraying with a liquid nitrogen cooling system. Starting from two different Ni-45wt%Ti feedstock powders. One powder is a blend of Ti and Ni particles, whereas the other has been alloyed by gas atomization. Both powders were sprayed obtaining better results starting from the gas atomized powder resulting in a final deposit where NiTi was the main phase with minimal oxidation. Different spraying parameters were tested and microstructural characterization was performed by SEM-EDS. XRD patterns showed some peak broadening; that seems to be produced by structural metastability of the coatings.

    El compuesto intermetálico de NiTi es conocido por su capacidad de memoria de forma así como por su pseudoelasticidad. Debido, además, a su alta resistencia a corrosión (biocompatiblidad, la gran mayoría de estudios se centran en su uso para aplicaciones médicas. Dentro del conjunto de las tecnologías de superficie, las investigaciones actuales utilizan la técnica de Proyección Térmica de Plasma al Vacío para producir recubrimientos de NiTi con contenidos mínimos de porosidad y de óxidos.El Centro de Proyección Térmica se planteó como objetivo la obtención de polvos y recubrimientos metaestables de NiTi a través de la técnica de Proyección de Plasma acoplado a un sistema de refrigeración con nitrógeno líquido. Se estudiaron dos polvos con diferentes características, pero de la misma composición nominal (Ni-45 % peso Ti. Uno de ellos, es el resultado de

  6. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  7. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--Co permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating Co--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--Co magnets, sprayed from Sm-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million G-Oe and coercive forces of approximately 6000 Oe. Bar magnet arrays were constructed by depositing magnets on ceramic substrates

  8. Hot Corrosion of Yttrium Stabilized Zirconia Coatings Deposited by Air Plasma Spray on a Nickel-Based Superalloy

    Science.gov (United States)

    Vallejo, N. Diaz; Sanchez, O.; Caicedo, J. C.; Aperador, W.; Zambrano, G.

    In this research, the electrochemical impedance spectroscopy (EIS) and Tafel analysis were utilized to study the hot corrosion performance at 700∘C of air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) coatings with a NiCrAlY bond coat grown by high velocity oxygen fuel spraying (HVOF), deposited on an INCONEL 625 substrate, in contact with corrosive solids salts as vanadium pentoxide V2O5 and sodium sulfate Na2SO4. The EIS data were interpreted based on proposed equivalent electrical circuits using a suitable fitting procedure performed with Echem AnalystTM Software. Phase transformations and microstructural development were examined using X-ray diffraction (XRD), with Rietveld refinement for quantitative phase analysis, scanning electron microscopy (SEM) was used to determinate the coating morphology and corrosion products. The XRD analysis indicated that the reaction between sodium vanadate (NaVO3) and yttrium oxide (Y2O3) produces yttrium vanadate (YVO4) and leads to the transformation from tetragonal to monoclinic zirconia phase.

  9. Microstructural Evolution of NiCoCrAlHfYSi and NiCoCrAlTaY Coatings Deposited by AC-HVAF and APS

    Science.gov (United States)

    Han, Yujun; Chen, Hongfei; Gao, Dong; Yang, Guang; Liu, Bin; Chu, Yajie; Fan, Jinkai; Gao, Yanfeng

    2017-12-01

    The chemical composition of NiCoCrAlHfYSi with a suitable particle size, deposited using an activated combustion-high velocity air fuel (AC-HVAF) spray, is a potentially promising process because dense, continuous and pure alumina can be formed on the surface of the MCrAlY metallic coatings after isothermal oxidation exposure. The NiCoCrAlHfYSi (Amdry386) and NiCoCrAlTaY (Amdry997) coatings were produced using AC-HVAF and APS, respectively. Isothermal oxidation was subsequently conducted at 1050 °C in air for 200 h. This paper compares the characteristics of four coated samples, including the surface roughness, elastic modulus, hardness, oxide content, microstructural characteristics and phase evolution of thermally grown oxides (TGO). The growth of both the TGO and alumina scales in the TGO of the HVAF386 coating was relatively rapid. The θ- to α-alumina phase transformation was strongly determined by the Hf and Si dopants in the HVAF386 coating. Finally, the extent of grain refinement and deformation storage energy in the HVAF997 coatings were determined to be significantly crucial for the θ- to α-alumina phase transformation.

  10. Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Li, Baiqiang

    2018-01-01

    The NiCoCrAlY coatings were deposited on the Inconel 718 alloy substrates by a novel method called double-glow plasma alloying (DG). The phases and microstructure of the coatings were investigated by X-ray diffraction analysis while their chemical composition was analyzed using scanning electron microscopy. The morphology of the NiCoCrAlY coatings was typical of coatings formed by DG, with their structure consisting of uniform submicron-sized grains. Further, the coatings showed high adhesion strength (critical load >46 N). In addition, the oxidation characteristics of the coatings and the substrate were examined at three different temperatures (850, 950, and 1050 °C) using a muffle furnace. The coatings showed a lower oxidation rate, which was approximately one-tenth of that of the substrate. Even after oxidation for 100 h, the Al2O3 phase was the primary phase in the surface coating (850 °C), with the thickness of the oxide film increasing to 0.65 μm at 950 °C. When the temperature was increased beyond 1050 °C, the elemental Al and Ni were consumed in the formation of the oxide scale, which underwent spallation at several locations. The oxidation products of Cr, which were produced in large amounts and had a prism-like structure, controlled the subsequent oxidation behavior at the surface.

  11. ZnO and Al doped ZnO thin films deposited by Spray Plasma: Effect of the growth time and Al doping on microstructural, optical and electrical properties

    International Nuclear Information System (INIS)

    Baba, Kamal; Lazzaroni, Claudia; Nikravech, Mehrdad

    2015-01-01

    Nanostructured zinc oxide (ZnO) and Al doped ZnO (ZnO:Al) thin films are deposited on glass substrate by the Spray Plasma technique. Zinc nitrate and aluminium nitrate are used as Zn and Al precursors, respectively. The effect of the growth time on structural and optical properties of undoped films is studied by X-ray diffraction, atomic force microscopy, and UV–Vis spectroscopy. The effect of Al doping on microstructural, optical and electrical characteristics of ZnO:Al films is also investigated. The results show that the grain size and the film thickness both increase with the growth time. The band gap of the layers varies from 3.17 to 3.24 eV depending on the thickness. The increase of the Al doping results in the enlargement of the peak (002) and the shift of its position to higher 2θ values. Average optical transmittance decreases from 90 to 65% with the growth time because of the thickness increase while there is no significant influence of the aluminium doping on the transmittance which is above 80% in most of the visible and near-IR range for all ZnO:Al films. The electrical properties characterized by Hall measurements show that all the deposited films exhibit high resistivity, between 4 and 10 4 Ω cm. The carrier concentration decreases from 2.10 19 to 2.10 13 cm −3 when the concentration of Al increases from 1.5 to 5 atm%. - Highlights: • The original Spray Plasma technique is used for ZnO and ZnO:Al thin film deposition. • Investigation of the effect of growth time and Al doping on the structural and optical properties • Increase of grain size and film thickness with the growth time • Optical transmittance decreases from 90 to 65% with the growth time and is above 80% for ZnO:Al films in UV–Vis-NIR range. • The peak position of the (002) plane is shifted to high 2θ values with Al doping.

  12. Thin films by metal-organic precursor plasma spray

    International Nuclear Information System (INIS)

    Schulz, Douglas L.; Sailer, Robert A.; Payne, Scott; Leach, James; Molz, Ronald J.

    2009-01-01

    While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd) 3 ), triethylsilane (HSi(C 2 H 5 ) 3 or HSiEt 3 ), and titanium tetrakisdiethylamide (Ti(N(C 2 H 5 ) 2 ) 4 or Ti(NEt 2 ) 4 ) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt 3 showed the formation of SiC phase but Al(hd) 3 -derived films were amorphous. The Ti(NEt 2 ) 4 precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO 2 anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

  13. Studies on Nanocrystalline TiN Coatings Prepared by Reactive Plasma Spraying

    Directory of Open Access Journals (Sweden)

    Dong Yanchun

    2008-01-01

    Full Text Available Titanium nitride (TiN coatings with nanostructure were prepared on the surface of 45 steel (Fe-0.45%C via reactive plasma spraying (denoted as RPS Ti powders using spraying gun with self-made reactive chamber. The microstructural characterization, phases constitute, grain size, microhardness, and wear resistance of TiN coatings were systematically investigated. The grain size was obtained through calculation using the Scherrer formula and observed by TEM. The results of X-ray diffraction and electron diffraction indicated that the TiN is main phase of the TiN coating. The forming mechanism of the nano-TiN was characterized by analyzing the SEM morphologies of surface of TiN coating and TiN drops sprayed on the surface of glass, and observing the temperature and velocity of plasma jet using Spray Watch. The tribological properties of the coating under nonlubricated condition were tested and compared with those of the AISI M2 high-speed steel and Al2O3 coating. The results have shown that the RPS TiN coating presents better wear resistance than the M2 high-speed steel and Al2O3 coating under nonlubricated condition. The microhardness of the cross-section and longitudinal section of the TiN coating was tested. The highest hardness of the cross-section of TiN coating is 1735.43HV100 g.

  14. Molybdenum disilicide composites produced by plasma spraying

    International Nuclear Information System (INIS)

    Castro, R.G.; Hollis, K.J.; Kung, H.H.; Bartlett, A.H.

    1998-01-01

    The intermetallic compound, molybdenum disilicide (MoSi 2 ) is being considered for high temperature structural applications because of its high melting point and superior oxidation resistance at elevated temperatures. The lack of high temperature strength, creep resistance and low temperature ductility has hindered its progress for structural applications. Plasma spraying of coatings and structural components of MoSi 2 -based composites offers an exciting processing alternative to conventional powder processing methods due to superior flexibility and the ability to tailor properties. Laminate, discontinuous and in situ reinforced composites have been produced with secondary reinforcements of Ta, Al 2 O 3 , SiC, Si 3 N 4 and Mo 5 Si 3 . Laminate composites, in particular, have been shown to improve the damage tolerance of MoSi 2 during high temperature melting operations. A review of research which as been performed at Los Alamos National Laboratory on plasma spraying of MoSi 2 -based composites to improve low temperature fracture toughness, thermal shock resistance, high temperature strength and creep resistance will be discussed

  15. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance.

    Science.gov (United States)

    Tian, Lihui; Fu, Ming; Xiong, Wei

    2018-02-23

    High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility-brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10 -4 mm³·N -1 ·m -1 , which makes it a promising coating for use in abrasive environments.

  16. Preparation and in vitro evaluation of plasma-sprayed bioactive akermanite coatings

    International Nuclear Information System (INIS)

    Yi, Deliang; Wu, Chengtie; Chang, Jiang; Ma, Xubing; Ji, Heng; Zheng, Xuebin

    2012-01-01

    Bioactive ceramic coatings on titanium (Ti) alloys play an important role in orthopedic applications. In this study, akermanite (Ca 2 MgSi 2 O 7 ) bioactive coatings are prepared through a plasma spraying technique. The bonding strength between the coatings and Ti-6Al-4V substrates is around 38.7–42.2 MPa, which is higher than that of plasma sprayed hydroxyapatite (HA) coatings reported previously. The prepared akermanite coatings reveal a distinct apatite-mineralization ability in simulated body fluid. Furthermore, akermanite coatings support the attachment and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs). The proliferation rate of BMSCs on akermanite coatings is obviously higher than that on HA coatings. (paper)

  17. Plasma spray technology process parameters and applications

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Karthikeyan, J.; Ananthapadmanabhan, P.V.; Venkatramani, N.; Chatterjee, U.K.

    1991-01-01

    The current trend in the structural design philosophy is based on the use of substrate with the necessary mechanical properties and a thin coating to exhibit surface properties. Plasma spray process is a versatile surface coating technique which finds extensive application in meeting advance technologies. This report describes the plasma spray technique and its use in developing coatings for various applications. The spray system is desribed in detail including the different variables such as power input to the torch, gas flow rate, powder properties, powder injection, etc. and their interrelation in deciding the quality of the coating. A brief write-up on the various plasma spray coatings developed for different applications is also included. (author). 15 refs., 15 figs., 2 tabs

  18. Wear resistance and microstructural properties of Ni–Al/h-BN/WC–Co coatings deposited using plasma spraying

    International Nuclear Information System (INIS)

    Hsiao, W.T.; Su, C.Y.; Huang, T.S.; Liao, W.H.

    2013-01-01

    Hexagonal boron nitride (h-BN) and tungsten carbide cobalt (WC–Co) were added to nickel aluminum alloy (Ni–Al) and deposited as plasma sprayed coatings to improve their tribological properties. The microstructure of the coatings was analyzed using a scanning electron microscope (SEM). Following wear test, the worn surface morphologies of the coatings were analyzed using a SEM to identify their fracture modes. The results of this study demonstrate that the addition of h-BN and WC–Co improved the properties of the coatings. Ni–Al/h-BN/WC–Co coatings with high hardness and favorable lubrication properties were deposited. - Highlights: • We mixed Ni–Al, h-BN and WC–Co powders and deposited them as composite coatings. • Adding WC–Co was found to increase the hardness and reduce the wear volume loss. • Adding h-BN was found to decrease the hardness and reduce the friction coefficient. • This composite coating was shown to have improved wear properties at 850 °C

  19. Hydrogen permeation properties of plasma-sprayed tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Hankins, M.R.; Longhurst, G.R.; Neiser, R.A.

    1994-01-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D + 3 ion beam with fluxes of similar 6.5x10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  20. Hydrogen permeation properties of plasma-sprayed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Hankins, M.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Longhurst, G.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Neiser, R.A. (Sandia National Laboratories, Albuquerque, NM 87185 (United States))

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D[sup +][sub 3] ion beam with fluxes of similar 6.5x10[sup 19] D/m[sup 2] s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  1. The influence of plasma sprayed multilayers of Cr2O3 and Ni10wt%Al on fatigue resistance

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Siegl, J.; Pala, Zdeněk; Matějíček, Jiří; Davydov, V.

    2014-01-01

    Roč. 251, July (2014), s. 143-150 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : Fatigue * Layered coating * Residual stress * Strain hardening * NiAl * Cr2O3 Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.998, year: 2014 http://www.sciencedirect.com/science/article/pii/S0257897214003326#

  2. Interface characterization of plasma sprayed hydroxy apatite coat on Ti-6 Al-4 V

    International Nuclear Information System (INIS)

    Ghorbani, M.; Afshar, A.; Ehsani, N.; Saeri, R.; Sorrell, C.C.

    2002-01-01

    Hydroxyapatite, a material proven to be biocompatible within the human body, has been produced to a high level of purity. This material has been applied as a coating on Ti-6 Al-4 V alloy by using the air plasma spraying technique.The coat was characterized with SEM, XRD, FTIR and Raman spectroscopy methods to consist of a mixture of calcium phosphates including H A mainly and traces of tricalcium phosphate, tetra calcium phosphate and calcium oxide phases. This H A phase was dehydrated and partially decomposed to oxy apatite and amorphous H A. EPMA method was used cross-sectionally on the interface in order to determine the depth profiles and elemental maps of Calcium, Phosphorous, Oxygen, Titanium, Vanadium and Aluminum elements.The results clearly showed to evidence of interdiffusion at the interface. Ultimately, the diffusion depth of each element was studied and compared with each other

  3. An electron microscopy study of the effect of Ce on plasma sprayed bronze coatings

    Science.gov (United States)

    Wensheng, Li; Wang, S. C.; Ma, Chao; Zhiping, Wang

    2012-07-01

    The Cu-Al eutectoid alloy is an excellent material for mould due to its superior low friction. The conventional sand casting technique, however, is not feasible to fabricate high Al bronze because of high hardness and brittleness. Plasma arc spray has been used to produce high Al/Fe bronze coatings for mould. The inherent impurities such as H, O, N, S during the spray, however, may affect the coating's mechanical strength. One approach is to utilise the active rare earth Ce to clean up these impurities. The study is to investigate the effect of Ce on the microstructure, which has few reported in the literature.

  4. Characteristics of combustion flame sprayed nickel aluminum using a Coanda Assisted Spray Manipulation collar for off-normal deposits

    Science.gov (United States)

    Archibald, Reid S.

    A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.

  5. Characterization and electrochemical properties of Ni(Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying

    Science.gov (United States)

    Verdian, M. M.; Raeissi, K.; Salehi, M.

    2012-11-01

    Ni(Si)/Ni5Si2 powders were produced by mechanical alloying (MA) of Ni-25 at.% Si powder mixture. Then, the as-milled powders were sprayed onto copper substrate using high velocity oxy-fuel (HVOF) process. The phase composition and microstructure of the coatings were examined by X-ray diffractometry and scanning electron microscopy. Polarization tests and electrochemical impedance spectroscopy (EIS) measurements were also employed to study corrosion performance of the coatings in 3.5% NaCl solution. The results showed that although single phase Ni3Si was formed during annealing of Ni(Si)/Ni5Si2 powders, but, only Ni(Si) and Ni5Si2 are present in HVOF coatings and no new phase has been formed during spraying. The coatings had microhardness up to 746 HV0.05. Further investigations showed the corrosion performance of multiphase coatings in 3.5% NaCl solution was better than that of copper substrate. The phase transitions during MA, HVOF and annealing processes were discussed in association with Ni-Si phase diagram and nature of each process.

  6. Spray pyrolysis synthesis of γ-Al_2O_3 supported metal and metal phosphide catalysts and their activity in the hydrodeoxygenation of a bio-oil model compound

    International Nuclear Information System (INIS)

    Ly, Hoang Vu; Im, Kyungmin; Go, Youngchae; Galiwango, Emmanuel; Kim, Seung-Soo; Kim, Jinsoo; Choi, Jae Hyung; Woo, Hee Chul

    2016-01-01

    Highlights: • Spherical γ-Al_2O_3 supported metal and metal phosphide catalysts were synthesized by spray pyrolysis method. • Hydrodeoxygenation (HDO) of 2-furyl methyl ketone (FMK) was conducted using metal/metal phosphide catalysts. • FMK was converted into 2-allyl furan and methyl cyclohexane. • The highest FMK conversion of 83% was achieved over 10 wt% Ni/γ-Al_2O_3 catalysts at reaction temperature of 400 °C. - Abstract: In this study, spherical γ-Al_2O_3 supported metal and metal phosphide (Ni, Co, Ni_2P and CoP) catalysts were successfully prepared by combining sol-gel and spray pyrolysis methods. First boehmite sol was prepared based on the Yoldas process and then the corresponding metal salts were added to the sol at the desired concentration, followed by spray pyrolysis of the mixed solution. As the well-mixed solution was transformed to spherical γ-Al_2O_3 supported metal and metal phosphide catalysts during spray pyrolysis process, the metal species were uniformly distributed in the mesoporous γ-Al_2O_3 supports. The product catalysts were investigated under different conditions for hydrodeoxygenation of bio-oil model compound, 2-furyl methyl ketone (FMK), which is the main component of the bio-oil product from pyrolysis of Saccharina japonica. Among the investigated catalysts, the 10 wt% Ni/γ-Al_2O_3 catalyst after calcination at 800 °C showed the highest FMK conversion of 83.02% at the reaction temperature of 400 °C. The gas and liquid products were analyzed by gas chromatography (GC) with TCD/FID detectors and GC–MS, respectively, to determine the product compositions.

  7. Corrosion Behavior of Detonation Gun Sprayed Fe-Al Type Intermetallic Coating

    Science.gov (United States)

    Senderowski, Cezary; Chodala, Michal; Bojar, Zbigniew

    2015-01-01

    The detonation gun sprayed Fe-Al type coatings as an alternative for austenitic valve steel, were investigated using two different methods of testing corrosion resistance. High temperature, 10-hour isothermal oxidation experiments at 550, 750, 950 and 1100 °C show differences in the oxidation behavior of Fe-Al type coatings under air atmosphere. The oxide layer ensures satisfying oxidation resistance, even at 950 and 1100 °C. Hematite, α-Al2O3 and metastable alumina phases were noticed on the coatings top surface, which preserves its initial thickness providing protection to the underlying substrate. In general, only negligible changes of the phase composition of the coatings were noticed with simultaneous strengthening controlled in the micro-hardness measurements, even after 10-hours of heating at 1100 °C. On the other hand, the electrochemical corrosion tests, which were carried out in 200 ppm Cl− (NaCl) and pH ~4 (H2SO4) solution to simulate the acid-rain environment, reveal higher values of the breakdown potential for D-gun sprayed Fe-Al type coatings than the ones for the bulk Fe-Al type alloy and Cr21Mn9Ni4 austenitic valve steel. This enables these materials to be used in structural and multifunctional applications in aggressive environments, including acidic ones. PMID:28787991

  8. Mechanical and microstructural properties of Cu-Al-Ni-Mn-Zr shape memory alloy processed by spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Cava, R.D.; Bolfarini, C.; Kiminami, C.S.; Mazzer, E.M.; Pedrosa, V.M.; Botta, W.J.; Gargarella, P. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Full text: Cu-based shape memory alloys (SMA) presents higher thermal and electrical conductivities, low material cost and combine good mechanical properties with a pronounced shape memory effect [1]. By using rapid solidification methods, their microstructure is refined and detrimental segregations can be avoided, which results in better mechanical properties. Additionally, the microalloying additions as Ti, B, Si and Zr can refine the grains and improve of mechanical and thermal properties of Cu-based SMA alloys [2-4]. In this investigation the Cu81.95Al11.35Ni3.2Mn3Zr0.5 (wt%) SMA alloy has been processed by spray forming in order to investigate the potential of achieving a deposit with adequate microstructure with goal to a SMA part production. The alloy was atomized with nitrogen gas at pressure of 0.5MPa. The microstructure of the deposit was characterized by optical and scanning electron microscopy and X-ray diffraction. The deposit presented homogeneous microstructure consisting of equiaxial grains with martensite microstructure and mean grain size of 30 ?m. The shape memory effect and the temperatures transformation have been evaluated by differential scanning calorimetric. The mechanical properties were evaluated by tensile and compression tests at room and at 220 deg C(T>Af) temperatures. [1] T. Waitz, et al., T, J. of the Mechanics and Physics of Solids, 55, 2007. [2] D. W. Roh, et al., Metall Trans. A, 21, 1990. [3] D. W. Roh, et al., Mat. Sci. and Eng. A136, 1991. (author)

  9. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  10. Radio frequency induction plasma spraying of molybdenum

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2003-01-01

    Radio frequency (RF) induction plasma was used to make free-standing deposition of molybdenum (Mo). The phenomena of particle melting, flattening, and stacking were investigated. The effect of process parameters such as plasma power, chamber pressure, and spray distance on the phenomena mentioned above was studied. Scanning electron microscopy (SEM) was used to analyze the plasma-processed powder, splats formed, and deposits obtained. Experimental results show that less Mo particles are spheroidized when compared to the number of spheroidized tungsten (W) particles at the same powder feed rate under the same plasma spray condition. Molten Mo particles can be sufficiently flattened on substrate. The influence of the process parameters on the flattening behavior is not significant. Mo deposit is not as dense as W deposit, due to the splash and low impact of molten Mo particles. Oxidation of the Mo powder with a large particle size is not evident under the low pressure plasma spray

  11. Atomistic calculations of hydrogen interactions with Ni3Al grain boundaries and Ni/Ni3Al interfaces

    International Nuclear Information System (INIS)

    Baskes, M.I.; Angelo, J.E.; Moody, N.R.

    1995-01-01

    Embedded Atom Method (EAM) potentials have been developed for the Ni/Al/H system. The potentials have been fit to numerous properties of this system. For example, these potentials represent the structural and elastic properties of bulk Ni, Al, Ni 3 Al, and NiAl quite well. In addition the potentials describe the solution and migration behavior of hydrogen in both nickel and aluminum. A number of calculations using these potentials have been performed. It is found that hydrogen strongly prefers sites in Ni 3 Al that are surrounded by 6 Ni atoms. Calculations of the trapping of hydrogen to a number of grain boundaries in Ni 3 Al have been performed as a function of hydrogen chemical potential at room temperature. The failure of these bicrystals under tensile stress has been examined and will be compared to the failure of pure Ni 3 Al boundaries. Boundaries containing a preponderance of nickel are severely weakened by hydrogen. In order to investigate the potential embrittlement of γ/γ' alloys, trapping of hydrogen to a spherical Ni 3 Al precipate in nickel as a function of chemical potential at room temperature has been calculated. It appears that the boundary is not a strong trap for hydrogen, hence embrittlement in these alloys is not primarily due to interactions of hydrogen with the γ/γ interface

  12. Comparative Study of the Corrosion Resistance of Air-Plasma-Sprayed Ca2SiO4 and Al2O3 Coatings in Salt Water

    Directory of Open Access Journals (Sweden)

    Yuan Xiao

    2018-03-01

    Full Text Available In this study, Ca2SiO4 coating was sprayed on stainless steel substrate and the corrosion resistance of the as-sprayed coating was studied in salt water. At the same time, Al2O3 coatings were produced by air-plasma-sprayed technology as comparison. Immersion test was carried out to evaluate the protection performance of coatings. Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS plots were also analyzed. The results indicated that Ca2SiO4 coatings showed a better protection performance than Al2O3 coatings. During the immersion, various calcium carbonate crystals appeared on the surface of Ca2SiO4 coatings. Ca(OH2 was released from Ca2SiO4 coatings into NaCl aqueous solution, increasing the alkalinity, which is in favor of the formation of passivation film, and thus improves the corrosion resistance. Ca2SiO4 coatings became denser after immersion due to the fact that the pores and micro cracks were filled with hydration products i.e., hydrated calcium silicate (C–S–H gel. On the contrary, the microstructure of Al2O3 coatings became loose and obvious rusty spots were observed on the surface after the immersion test.

  13. Hydrogen permeation properties of plasma-sprayed tungsten*1

    Science.gov (United States)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  14. PRECIPITATION HARDENING IN B2-ORDERED NiAl BY Ni2AlTiCOMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; K. Ohishi; M. Nemoto

    2001-01-01

    Microstructural variations and correlated hardness changes in B2-ordered NiAl containing fine precipitation of Ni2AlTi have been investigated by means of transmission electron microscopy (TEM) and hardness tests. The amount of age hardening is not large as compared to the large microstructural variations during aging. TEM observations have revealed that the L21-type Ni2AlTi precipitates keep a lattice coherency with the NiAl matrix at the beginning of aging. By longer periods of aging Ni2AlTi precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. The temperature dependence of the yield strength of precipitate-containing B2-ordered NiAl was investigated by compression tests over the temperature range of 873-1273K. The fine precipitation of Ni2AlTi was found to enhance greatly the yield strength and the high-temperature strength is comparison with that of superalloy Mar-M200.``

  15. Computer simulation of ZrO2 + 8 % Y2O3 and Al2O3 powder particles heating under plasma spraying

    International Nuclear Information System (INIS)

    Smurov, I.; Gusarov, A.; Hurevich, V.; Kundas, S.; Kashko, T.

    2001-01-01

    The optimization of plasma spraying processes and investigation of the influence of different parameters and variables on particle trajectories, final temperature distributions and velocities were the aim of this study. A mathematical model for simulation of powder particle heating and acceleration in a plasma jet with particle evaporation and diameter reduction is developed. The choice of the evaporation model strongly depends on the pressure of surrounded gas, for low and atmospheric pressures models were developed. A software with a database for material properties was developed, the first allows to conduct simulation of plasma spraying and contains several models for simulating the different stages of plasma spraying, providing a common interface and access to the database for all the models. The input or output data can be represented as ordinary graphic, distributed diagram or by special way, i.e. animation of particle moving and heating in plasma jet, diagram of phase changing etc. By using this program the process of stabilized zirconium oxide and aluminium oxide coating plasma spraying was simulated. (nevyjel)

  16. Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Medřický, Jan; Tesař, T.; Kotlan, Jiří; Pala, Zdeněk; Lukáč, František; Chráska, Tomáš; Curry, N.

    2017-01-01

    Roč. 26, 1-2 (2017), s. 37-46 ISSN 1059-9630. [ISTC 2016: International Thermal Spray Conference. Shanghai, 10.05.2016-12.05.2016] R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : alumina * ceramics * dense * hybrid plasma torch * suspension plasma spraying * water-stabilized plasma * yttria-stabilized zirconia (YSZ) Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007/s11666-016-0493-6

  17. Coating Properties of WC-Ni Cold Spray Coating for the Application in Secondary Piping System of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JeongWon; Kim, Seunghyun; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    As a result of FAC(flow accelerated corrosion), severe accidents, failure of carbon steel like a Mihama Unit-3 occurred. Chemical composition change of carbon steel or coating to inner surface is one of methods to improve corrosion properties. Among them, thermal spray coating is convenient solution to apply at industry. Powder is melted at blast furnace and ejected to substrate. After adhesion, substrate and coating layer is cooled down and coated layer protects steel from corrosion finally. However high thermal energy is transferred to substrate and coating layer so it leads high thermal residual stress in coating procedure. Besides, high temperature for melting powder makes unexpected chemical reaction of powder like an oxidation or carburization. Whereas, cold spray uses low temperature comparing with other thermal spray. Thermal energy is used for not melting powder but high kinetic energy of powder and plastic deformation during collision. Therefore, fuel such as oxygen-acetylene gas is not needed. It needs carrier gas, compressed air, nitrogen or helium, to increase kinetic energy of powder and move powder to substrate. Comparing cold spray with high velocity oxy fuel (HVOF), one of thermal spray, cold spray coating layer contains only WC and Co. One of other problem about WC is brittleness during coating. To improve deformability of WC, binder metal is added. For example, Co, Cr, Ni, Cu, Al, Fe or etc. Additionally, binder metal lowering melting temperature of composite powder increases coating properties. Among them, Co which is widely used as binder metal maintains mechanical properties like a hardness and improves corrosion properties. Therefore Co is not suitable for binder metal of WC coating. In contrast, Ni has better corrosion resistance to alkaline environment and makes lower melting temperature. Moreover, in a view of cold spray, FCC structure has better deformability than BCC or HCP, and BCC has lowest deformability. WC is BCC structure so it

  18. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    Science.gov (United States)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  19. Diffusion barriers of Al2O3 to reduce the bondcoat-oxidation of MCrAlY alloys

    International Nuclear Information System (INIS)

    Schmitt-Thomas, K.G.; Dietl, U.

    1992-01-01

    Under operating conditions in gas turbines plasma sprayed MCrAlY bondcoats (M = Co and/or Ni) for thermal barrier coatings are exposed to a strong oxidation attack. One possibility to reduce bondcoat oxidation is the application of diffusion barriers. Onto the bondcoat, diffusion barriers of Al 2 O 3 are deposited by CVD, PVD and plasma pulse process. The oxidation behaviour of these coating systems were examined at a temperature of 1273 K for times up to 250 hours. The CVD and PVD Al 2 O 3 - coated specimens show compared to the uncoated specimens smaller oxidation rates. The porous Al 2 O 3 coatings, produced by plasma pulse process are not fit for oxidation protection of the bondcoat. There is hope for further improvement of the oxidation resistance by optimizing the CVD- and PVD-process parameters. (orig.) [de

  20. Structure and mechanical properties of plasma sprayed coatings of titania and alumina

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Boháč, Petr; Stranyánek, Martin; Čtvrtlík, Radim

    2006-01-01

    Roč. 26, č. 16 (2006), s. 3509-3514 ISSN 0955-2219 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : Plasma spraying * Optical microscopy * Mechanical properties * TiO2 * Al2O3 Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.576, year: 2006

  1. Microstructural development in NiAl/Ni-Si-B/Ni transient liquid phase bonds

    International Nuclear Information System (INIS)

    Gale, W.F.; Orel, S.V.

    1996-01-01

    A transmission electron microscopy (TEM) based investigation of microstructural development during transient liquid phase bonding of near-stoichiometric NiAl to commercial purity nickel is presented in this article. The work described employed Ni-4.5 wt pct Si-3.2 wt pct B (BNi-3) melt-spun interlayers. The precipitation of both Ni-Al based phases and borides within the joint and adjacent substrate regions is discussed. The article considers martensite formation (within the NiAl substrate) and the precipitation of L1 2 type phases (both within the joint and at the interface with the NiAl substrate). The relative roles of the two substrate materials (NiAl and Ni) in the isothermal resolidification process are identified. The preferential formation of Ni 3 B boride phases in the Ni substrate near the original location of the Ni substrate-joint interface is discussed and contrasted with the absence of similar events in the NiAl substrate

  2. Model of the macrostructure formation of plasma sprayed coatings

    International Nuclear Information System (INIS)

    Gnedovets, A.G.; Kalita, V.I.

    2007-01-01

    A 3D discrete ballistic model of plasma sprayed coatings structure formation is presented. The effect of a spraying angle on porous macrostructure of coatings is investigated by numerical computations.Computer simulation results as well as experimental data show that at a sputtering angle less than 45 deg the mechanism of surface relief formation is changed and the relief consists of valleys and ridges under such conditions of plasma spraying [ru

  3. Understanding plasma spraying process and characteristics of DC-arc plasma gun (PJ-100

    Directory of Open Access Journals (Sweden)

    Jovana Ružić

    2012-12-01

    Full Text Available The thermal spray processes are a group of coating processes used to apply metallic or non-metallic coatings. In these processes energy sources are used to heat the coating material (in the form of powder, wire, or rod form to a molten or semi-molten state and accelerated towards a prepared surface by either carrier gases or atomization jets. In plasma spraying process, the spraying material is generally in the form of powder and requires a carrier gas to feed the powder into the plasma jet, which is passing between the hot cathode and the cylindrical nozzle-shaped anode. The design of DC plasma gun (PJ - 100 is designed and manufactured in Serbia. Plasma spaying process, the powder injection with the heat, momentum and mass transfers between particles and plasma jet, and the latest developments related to the production of DC plasma gun are described in this article.

  4. FORMATION AND RESEARCH OF MULTI-LAYER COMPOSITE PLASMA OXIDE COATINGS BASED ON ELEMENTS OF SCREEN METEROID PTOTECTION

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2016-01-01

    Full Text Available The paper presents results of research for influence of plasma jet parameters (current, spraying distance, plasmasupporting nitrogen gas consumption, fractional composition of an initial powder and cooling degree by compressed air on characteristics of anti-meteorite coatings, subsequent processing modes by pulsed plasma. Properties of the obtained coatings and results of ballistic tests have been given in the paper. The proposed methodology has been based on complex metallographic, X-ray diffraction and electron microscopic investigations of anti-meteorite aluminum oxide coating. Optimization of air plasma spraying parameters for NiAl and Al2O3 materials has been carried out in the paper. The spraying parameters optimization has been executed on the basis of obtaining maximum materials utilization factor. Surface treatment of model screen elements with a double-layer composite coating (adhesive metal NiAl layer and hard ceramic oxide Al2O3 layer has been fulfilled while using compression plasma stream. Nitrogen has been used as working gas. Composite hard ceramic oxide Al2O3 coating is represented by porous structure consisting of 10–15 µm-size fused Al2O3 particles. Metallic inclusions formed due to erosion of plasmatron electrodes have been observed in the space between the particles. Surface of bilayer composite coatings has been processed by a compression plasma stream and due to nonsteady processes of melting and recrystallization high strength polycrystalline layer has been formed on their surface. In this context, those areas of the polycrystalline layer which had metal inclusions have appeared to be painted in various colors depending on chemical composition of the inclusions.

  5. Application of plasma sprayed ceramic coatings to the base materials of the rotating disk in the centrifugal atomization process. Enshinryoku funmuho ni okeru kaiten enban eno ceramic yosha himaku no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T; Okimoto, K [Government Industrial Research Inst., Kyushu, Tosu, Saga (Japan); Yasutake, R [Koeiseiko Co. Ltd., Fukuoka (Japan)

    1992-07-08

    Applicability of the ceramic coating on the rotating disk was studied. In regard to the synthesis of Cu-based rapidly solidified powders, centrifugal atomization with molten Cu-24.6Sn was carried out using rotating disks sprayed with four kinds of sprayed ceramic coatings. It was found that atomization of Al203-40%TiO2 sprayed coating has been the best, and the yield ratio has been about 60 %. The melt temperature in case of Fe-based rapidly solidified metal powders, has risen above 1600[degree]C, and the required conditions for rotating disk have been very difficult to meet. The reason for it is thought that there has also been limitations regarding the functions of the characteristics like heat transfer, heat capacity, etc. Fe-24Cr-5Ni-1Mo 2 phase stainless steel powder has shown the most suitable trend among the seven kinds of disk materials examined for ZrO2 ceramic sprayed coatings. 6 refs., 5 figs., 2 tabs.

  6. Microstructure and Wear Resistance of TIG Remelted NiCrBSi Thick Coatings

    Directory of Open Access Journals (Sweden)

    Guo-lu Li

    2018-01-01

    Full Text Available The self-fluxing NiCrBSi coatings with 800 μm thickness were prepared on the surface of AISI1045 steel substrate by plasma spraying. And the remelted coating was obtained using by the tungsten inert gas (TIG arc process. The microstructure, surface roughness, hardness, phase composition, and wear resistance of the sprayed coating and remelted coating were systematically investigated. The results demonstrate that TIG remelted treatment can significantly eliminate the microscopic defects in thick coating and improve its density. The surface roughness (Ra of the remelted coating is only 18.9% of the sprayed coating. The hardness of the remelted coating is 26.8% higher than that of the sprayed coating. The main phases in the sprayed coating are changed from γ-Ni, Cr7C3, and Cr2B to γ-Ni, Cr23C6, CrB, Ni3B, and Fe3C. The wear mass loss of the remelted coating is only 17.1% of the sprayed coating. Therefore, a Ni-based thick coating with good wear resistance can be obtained by plasma spraying and remelted technique.

  7. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Science.gov (United States)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  8. Corrosion of lanthanum magnesium hexaaluminate as plasma-sprayed coating and as bulk material when exposed to molten V2O5-containing salt

    International Nuclear Information System (INIS)

    Chen, Xiaolong; Cao, Xueqiang; Zou, Binglin; Gong, Jun; Sun, Chao

    2015-01-01

    Highlights: • Corrosion behavior of LaMgAl 11 O 19 bulk and plasma sprayed coating has been compared. • Degradation mechanism is investigated based on LaMgAl 11 O 19 ’s crystal chemistry. • LaMgAl 11 O 19 coating displays inferior corrosion resistance to well crystallized bulk. - Abstract: Corrosion of LaMgAl 11 O 19 (LaMA) bulk and plasma sprayed coating was studied in molten V 2 O 5 -containing salt at 710–1050 °C in air. Results indicate that the well crystallized LaMA bulk exhibited prior corrosion resistance to the plasma sprayed LaMA coating with amorphous phase and reduced chemical bond strength in its crystal structure. La–O chemical bonds with the lowest bond energies were the easiest bonds in the LaMA crystal to be broken by molten V 2 O 5 -containing salt attack to form LaVO 4 at each temperature level for both LaMA bulk and coating. Corrosion products of the LaMA coating were much different at temperature below 900 °C

  9. Analysis of processes in DC arc plasma torches for spraying that use air as plasma forming gas

    International Nuclear Information System (INIS)

    Frolov, V; Ivanov, D; Toropchin, A

    2014-01-01

    Developed in Saint Petersburg State Polytechnical University technological processes of air-plasma spraying of wear-resistant, regenerating, hardening and decorative coatings used in number of industrial areas are described. The article contains examples of applications of air plasma spraying of coatings as well as results of mathematical modelling of processes in air plasma torches for spraying

  10. Role of oxides and porosity on high temperature oxidation of liquid fuelled HVOF thermal sprayed Ni50Cr coatings

    OpenAIRE

    Song, B.; Bai, M.; Voisey, K.T.; Hussain, Tanvir

    2017-01-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid fuelled high velocity oxy-fuel (HVOF) thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using...

  11. High Temperature Oxidation of Spark Plasma Sintered and Thermally Sprayed FeAl-Based Iron Aluminides

    Czech Academy of Sciences Publication Activity Database

    Haušild, P.; Karlík, M.; Skiba, T.; Sajdl, P.; Dubský, Jiří; Palm, M.

    2012-01-01

    Roč. 122, č. 3 (2012), s. 465-468 ISSN 0587-4246. [International Symposium on Physics of Materials (ISPMA)/12./. Prague, 04.09.2011-08.09.2011] Institutional support: RVO:61389021 Keywords : thermal spraying * plasma sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.531, year: 2012

  12. Synthesis and characterization of in situ TiC–TiB2 composite coatings by reactive plasma spraying on a magnesium alloy

    International Nuclear Information System (INIS)

    Zou Binglin; Tao Shunyan; Huang Wenzhi; Khan, Zuhair S.; Fan Xizhi; Gu Lijian; Wang Ying; Xu Jiaying; Cai Xiaolong; Ma Hongmei; Cao Xueqiang

    2013-01-01

    Highlights: ► TiC–TiB 2 composites coatings were produced on Mg alloy by reactive plasma spraying. ► Phase composition, microstructure and wear resistance of the coatings were studied. ► The resultant product in the coatings was composed of TiC and TiB 2 . ► The produced coatings displayed porous and dense microstructures. ► The synthesized coatings exhibited good wear resistance for Mg alloy substrate. - Abstract: TiC–TiB 2 composite coatings were successfully synthesized using the technique of reactive plasma spraying (RPS) on a magnesium alloy. Phase composition, microstructure and wear resistance of the coatings were characterized by using X-ray diffraction, scanning electron microscopy and pin-on-disk wear test, respectively. The results showed that the resultant product in the RPS coatings was composed of TiC and TiB 2 . Depending on the ignition of self-propagating high-temperature synthesis reaction in the agglomerate particles, the RPS coatings displayed porous and dense microstructures. The porosity of the RPS coatings, to some extent, decreased when the feed powders were plasma sprayed with Ni powders. The RPS coatings provided good wear resistance for the substrate under various loads. For high loads (e.g., ≥15 N), the wear resistance could be significantly improved by the proper addition of Ni into the RPS coatings.

  13. Comparison study on resistance to wear and abrasion of high-temperature sliding strike of laser and plasma spray layer on the stainless steel surface

    International Nuclear Information System (INIS)

    Shi Shihong; Zheng Qiguang; Fu Geyan; Wang Xinlin

    2004-01-01

    In this paper, the effect of coatings, which are formed with laser cladding and plasma spray welding on 1Cr18Ni9Ti base metal of nuclear valve seats, on wear resistance is studied. A 5-kW transverse-flowing CO 2 laser is used for cladding Co base alloy powder pre-placed on the substrate. Comparing with the plasma spray coatings, the laser-cladding layer have lower rate of spoiled products and higher rate of finished products. Their microstructure is extremely fine. They have close texture and small-size grain. Their dilution diluted by the compositions of their base metal and hot-effect on base metal are less. The hardness, toughness, and strength of the laser-cladding layers are higher. The grain size is 11-12th grade in the laser-cladding layer and 9-10th in the plasma spray layer. The width of combination zone between laser-cladding layer and substrate is 10-45 μm but that between plasma spray layer and substrate is 120-160 μm. The wear test shows that the laser layers have higher property of anti-friction, anti-scour, and high-temperature sliding strike. The wear resistance of laser-cladding layer is about one time higher than that of plasma spray welding layer

  14. Microstructural characterisation of Ni75Al25 and Ni31.5Al68.5 powder particles produced by gas atomisation

    International Nuclear Information System (INIS)

    García-Escorial, A.; Lieblich, M.

    2014-01-01

    Highlight: ► Successful production of gas atomised Ni75Al25 and Ni31.5Al68.5 powder particles. ► Characterization of the as-solidified microstructure of 75 Al 25 and Ni 31.5 Al 68.5 at.% powder particles below 100 μm in size have been studied. The gas atomised Ni 75 Al 25 powder particles are mainly spherical. The solidification of this alloy is very fast, and its microstructure consists of a dendrite and lamellar structure of partially ordered γ-(Ni), γ′-Ni 3 Al L1 2 phase, and β-NiAl phase. The order increases with the powder particle size. The gas atomised Ni 31.5 Al 68.5 powder particles are also spherical in shape. The microstructure consists of Ni 2 Al 3 dendrites with interdendritic peritectic NiAl 3 and eutectic NiAl 3 + α-Al. The amount of the Ni 2 Al 3 increases as the cooling rate increases. NiAl phase is absent in the gas atomised Ni 31.5 Al 68.5 powder

  15. Plasma-spraying synthesis of high-performance photocatalytic TiO2 coatings

    International Nuclear Information System (INIS)

    Takahashi, Yasuo; Maeda, Masakatsu; Ohmori, Akira; Shibata, Yoshitaka; Miyano, Yasuyuki; Murai, Kensuke

    2014-01-01

    Anatase (A-) TiO 2 is a photocatalytic material that can decompose air-pollutants, acetaldehyde, bacteria, and so on. In this study, three kinds of powder (A-TiO 2 without HAp, TiO 2 + 10mass%HAp, and TiO 2 +30mass%HAp, where HAp is hydroxyapatite and PBS is polybutylene succinate) were plasma sprayed on biodegradable PBS substrates. HAp powder was mixed with A-TiO 2 powder by spray granulation in order to facilitate adsorption of acetaldehyde and bacteria. The crystal structure was almost completely maintained during the plasma spray process. HAp enhanced the decomposition of acetaldehyde and bacteria by promoting adsorption. A 10mass% HAp content was the most effective for decomposing acetaldehyde when plasma preheating of the PBS was not carried out before the plasma spraying. The plasma preheating of PBS increased the yield rate of the spray process and facilitated the decomposition of acetaldehyde by A-TiO 2 coatings without HAp. HAp addition improved photocatalytic sterilization when plasma preheating of the PBS was performed

  16. Automatic targeting of plasma spray gun

    Science.gov (United States)

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  17. Automatic targeting of plasma spray gun

    International Nuclear Information System (INIS)

    Abbatiello, L.A.; Neal, R.E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is described. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun

  18. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  19. Electroform/Plasma-Spray Laminates for X-Ray Optics

    Science.gov (United States)

    Ulmer, Melville P.; Graham, Michael; Vaynman, Semyon

    2007-01-01

    Electroform/plasma-spray laminates have shown promise as lightweight, strong, low-thermal-expansion components for xray optics. The basic idea is to exploit both (1) the well-established art of fabrication of optical components by replication and (2) plasma spraying as a means of reinforcing a thin replica optic with one or more backing layer(s) having tailorable thermomechanical properties. In x-ray optics as in other applications, replication reduces the time and cost of fabrication because grinding and polishing can be limited to a few thick masters, from which many lightweight replicas can thereafter be made. The first step in the fabrication of a component of the type in question is to make a replica optic by electroforming a thin layer of nickel on a master. Through proper control of the electroforming process conditions, it is possible to minimize residual stress and, hence, to minimize distortion in the replica. Next, a powder comprising ceramic particles coated with a metal compatible with the electroformed nickel is plasma-sprayed onto the backside of the nickel replica. Then through several repetitions and variations of the preceding steps or perhaps a small compressive stress, alternating layers of electroformed nickel and plasma-sprayed metal-coated ceramic powder are deposited. The thicknesses of the layers and the composition of the metal-coated ceramic powder are chosen to optimize the strength, areal mass density, and toughness of the finished component. An important benefit of using both electroforming and plasma spraying is the possibility of balancing stresses to a minimum level, which could be zero or perhaps a small net compressive stress designed to enhance the function of the component in its intended application.

  20. Effects of isothermal treatment on microstructure and scratch test behavior of plasma sprayed zirconia coatings

    Directory of Open Access Journals (Sweden)

    Veloso Guilherme

    2004-01-01

    Full Text Available The increase of the petroleum cost in the last decades revitalized the interest for lighter and more economic vehicles. Simultaneously, the demand for safe and unpolluted transports grows. The application of thermal barriers coatings (TBC on combustion chamber and on flat surface of pistons reduces the thermal losses of the engines, resulting in higher temperatures in the combustion chamber. This fact contributes to the improvement of the thermal efficiency (performance and for the reduction of incomplete combustion. Supported on these initial ideas, thermal barriers coatings constituted by CaO partially stabilized zirconia were produced and their microstructure examined. This coating still presents some drawbacks associated with thermal stresses and permeability to oxidizing gases, which will, eventually, lead to failure of the TBC by spallation. The failure may, in general, be associated to one of three factors: oxide growth at the ceramic-metal interface, formed during thermal cycling; stress build-up due to thermal cycling; and metal-oxide interface segregation, mainly of S. However, it is also relevant to understand the behavior of TBC's under isothermal oxidation. Therefore, this paper investigates the effect of oxidation on the adherence of thermal sprayed coatings. The adherence was measured by linear scratching tests, widely used for thin coatings. Plasma sprayed calcia partially stabilized zirconia was used as TBC and Ni-5%Al as bond coat, with Al substrates. Coated samples were submitted to heat treatments at 500 °C, for 50 h. The microstructures were examined by optical light microscopy, X-ray diffraction, profilometry and SEM.

  1. Fatigue properties of Fe-Al intermetallic coatings prepared by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Kovářík, O.; Skiba, Tomáš; Haušild, P.; Karlík, M.; Colmenares-Angulo, J.

    2010-01-01

    Roč. 18, č. 7 (2010), s. 1415-1418 ISSN 0966-9795. [FEAL 2009 - 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys. Prague, 21.09.2009-24.09.2009] R&D Projects: GA MŠk ME 901 Institutional research plan: CEZ:AV0Z20430508 Keywords : Iron aluminides * Fatigue resistance and crack growth * plasma spraying * scanning electron microscopy Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.327, year: 2010 http://www.sciencedirect.com/science?_ob=GatewayURL&_method=citationSearch&_uoikey=B6TX8-4YGHK94-2&_origin=SDEMFRHTML&_version=1&md5=557fd571c715e5f2cff573d5255bb184

  2. Electronic structure of Ni/sub 3/Al and Ni/sub 3/Ga alloys

    CERN Document Server

    Pong, W F; Chang, Y K; Tsai, M H; Hsieh, H H; Pieh, J Y; Tseng, P K; Lee, J F; Hsu, L S

    1999-01-01

    This work investigates the charge transfer and Al(Ga) p-Ni d hybridization effects in the intermetallic Ni/sub 3/Al(Ni/sub 3/Ga) alloy using the NiL/sub 3.2/- and K-edge and Al(Ga)K X-ray absorption near edge structure (XANES) measurements. We find that the intensity of white-line features at the NiL/sub 3.2/-edge in the Ni/sub 3/Al(Ni /sub 3/Ga) alloy decreased in comparison with that of pure Ni, which can be attributed to the enhancement of Ni3d states filling and the depletion of the density of Ni 3d unoccupied states in the Ni/sub 3 /Al(Ni/sub 3/Ga) alloy. Two clear features are also observed in the Ni/sub 3/Al(Ni/sub 3/Ga) XANES spectrum at the Al(Ga) K-edge, which can be assigned to the Al(Ga) unoccupied 3p (4p) states and their hybridized states with the Ni 3d/4sp states above the Fermi level in Ni/sub 3/Al(Ni/sub 3/Ga). The threshold at Al K-edge XANES for Ni/sub 3/Al clearly shifts towards higher photon energies relative to that of pure Al, indicating that Al loses charges upon forming Ni/sub 3 /Al. ...

  3. Plasma sprayed alumina-titania coatings

    International Nuclear Information System (INIS)

    Steeper, T.J.; Rotolico, A.J.; Nerz, J.E.; Riggs, W.L. II; Varacalle, D.J. Jr.; Wilson, G.C.

    1992-01-01

    This paper presents an experimental study of the air plasma spraying (APS) of alumina-titania powder using argon-hydrogen working gases. This powder system is being used in the fabrication of heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coatings. The coatings were characterized by hardness and electrical tests, surface profilometry, image analysis, optical metallography, and x-ray diffraction. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. attempts are made to correlate the features of the coatings with the changes in operating parameters

  4. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD

    International Nuclear Information System (INIS)

    He, Jian; Guo, Hongbo; Peng, Hui; Gong, Shengkai

    2013-01-01

    NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ′ grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.

  5. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    International Nuclear Information System (INIS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  6. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    Science.gov (United States)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  7. Microstructure and functional properties of the TiNi- and CuAl-based SMA thin films and coats produced by PVD technique

    International Nuclear Information System (INIS)

    Kolomytsev, V.; Musienko, R.; Nevdacha, V.; Panarin, V.; Pasko, A.; Cesari, E.; Segui, C.; Humbeeck, J. van

    2000-01-01

    The TiNi- and CuAl-based shape memory alloy thin films and wear/corrosion resistant surface coats have been produced by the ion-plasma deposition method with an arc dispersion of the cathode/target. This technique was widely used for production of the coats from a sprayed pure metal or a single-phase alloy. We have offered to use this process for dispersion of the heterophase alloys like shape memory alloys. The arguments for choosing of this technique are discussed with respect to creation of the conditions for preservation not only chemical composition, but also phase structure of an alloy in a covering, thus the shape memory/superelastic effects to be kept in a coat. (orig.)

  8. Bulk-compositional changes of Ni2Al3 and NiAl3 during ion etching

    International Nuclear Information System (INIS)

    Chen Houwen; Wang Rong

    2008-01-01

    Bulk-compositional changes of Ni 2 Al 3 and NiAl 3 in a Ni-50 wt% Al alloy during ion etching have been investigated by transmission electron microscopy and energy dispersive X-ray spectroscopic analyses. After etching with 7, 5 and 3 keV Ar + ions for 15, 24 and 100 h nickel contents in both Ni 2 Al 3 and NiAl 3 exceeded greatly those in the initial compounds and increased with the decrement of the sputtering energy. After 100 h etching with 3 keV Ar + ions the compositions of these two compounds reached a similar value, about Ni 80-83 Al 12-15 Fe 3-4 Cr 1-2 (at%). A synergistic action of preferential sputtering, radiation-induced segregation and radiation-enhanced diffusion enables the altered-layers at the top and bottom of the film extend through the whole film. The bulk-compositional changes are proposed to occur in the unsteady-state sputtering regime of ion etching and caused by an insufficient supply of matter in a thin film

  9. Design and optimization of coating structure for the thermal barrier coatings fabricated by atmospheric plasma spraying via finite element method

    Directory of Open Access Journals (Sweden)

    L. Wang

    2014-06-01

    Full Text Available The first prerequisite for fabricating the thermal barrier coatings (TBCs with excellent performance is to find an optimized coating structure with high thermal insulation effect and low residual stress. This paper discusses the design and optimization of a suitable coating structure for the TBCs prepared by atmospheric plasma spraying (APS using the finite element method. The design and optimization processes comply with the rules step by step, as the structure develops from a simple to a complex one. The research results indicate that the suitable thicknesses of the bond-coating and top-coating are 60–120 μm and 300–420 μm, respectively, for the single ceramic layer YSZ/NiCoCrAlY APS-TBC. The embedded interlayer (50 wt.%YSZ + 50 wt.%NiCoCrAlY will further reduce the residual stress without sacrificing the thermal insulation effect. The double ceramic layer was further considered which was based on the single ceramic layer TBC. The embedded interlayer and the upper additional ceramic layer will have a best match between the low residual stress and high thermal insulation effect. Finally, the optimized coating structure was obtained, i.e., the La2Ce2O7(LC/YSZ/Interlayer/NiCoCrAlY coating structure with appropriate layer thickness is the best choice. The effective thermal conductivity of this optimized LC/YSZ/IL/BL TBC is 13.2% lower than that of the typical single ceramic layer YSZ/BL TBC.

  10. Characteristics and heat treatment of cold-sprayed Al-Sn binary alloy coatings

    International Nuclear Information System (INIS)

    Ning, Xian-Jin; Kim, Jin-Hong; Kim, Hyung-Jun; Lee, Changhee

    2009-01-01

    In this study, Al-Sn binary alloy coatings were prepared with Al-5 wt.% Sn (Al-5Sn) and Al-10 wt.% Sn (Al-10Sn) gas atomized powders by low pressure and high pressure cold spray process. The microstructure and microhardness of the coatings were characterized. To understand the coarsening of tin in the coating, the as-sprayed coatings were annealed at 150, 200, 250 and 300 o C for 1 h, respectively. The effect of annealing on microstructure and the bond strength of the coatings were investigated. The results show that Al-5Sn coating can be deposited by high pressure cold spray with nitrogen while Al-10Sn can only be deposited by low pressure cold spray with helium gas. Both Al-5Sn and Al-10Sn coatings present dense structures. The fraction of Sn in as-sprayed coatings is consistent with that in feed stock powders. The coarsening and/or migration of Sn phase in the coatings were observed when the annealing temperature exceeds 200 deg. C. Furthermore, the microhardness of the coatings decreased significantly at the annealing temperature of 250 deg. C. EDXA analysis shows that the heat treatment has no significant effect on fraction of Sn phase in Al-5Sn coatings. Bonding strength of as-sprayed Al-10Sn coating is slightly higher than that of Al-5Sn coating. Annealing at 200 o C can increase the bonding strength of Al-5Sn coatings.

  11. The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-Flight Particles, Splats and Coatings by Micro-plasma Spraying

    Science.gov (United States)

    Liu, Xiao-mei; He, Ding-yong; Wang, Yi-ming; Zhou, Zheng; Wang, Guo-hong; Tan, Zhen; Wang, Zeng-jie

    2018-04-01

    Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.

  12. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses

    International Nuclear Information System (INIS)

    Huang Yi; Song Lei; Liu Xiaoguang; Xiao Yanfeng; Wu Yao; Chen Jiyong; Wu Fang; Gu Zhongwei

    2010-01-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 μm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  13. Cyclic oxidation behaviour of different treated CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Marginean, G. [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 43, 45877 Gelsenkirchen (Germany); Utu, D., E-mail: dutu@eng.upt.ro [University ' Politehnica' Timisoara, Faculty of Mechanical Engineering, Blv. Mihai Viteazu 1, 300222 Timisoara (Romania)

    2012-08-01

    High velocity oxygen fuel (HVOF) spraying method was used in order to obtain very dense and good adhesive CoNiCrAlY-coatings deposited onto nickel-based alloy. The coatings were differently treated (preoxidized, vacuum treated or electron beam irradiated) before their exposure to cyclic oxidation tests in air at 1000 Degree-Sign C for periods up to 5 h. Changes of the coatings morphology and structure were analysed by scanning electron microscopy (SEM) and X-ray diffraction technique (XRD). The surface temperature of the samples was measured during cooling, between the oxidation cycles, and finally was associated with the thickness of the grown protective oxide scale on the CoNiCrAlY-surface. The experimental results demonstrated that depending on the thickness respectively on the different structures of the grown oxide scale, the cooling rate of the sample surface will be different as well.

  14. Experimental and Numerical Study of the Effect of Gas-Shrouded Plasma Spraying on Cathode Coating of Alkaline Electrolysis Cells

    Science.gov (United States)

    Liu, T.; Reißner, R.; Schiller, G.; Ansar, A.

    2018-01-01

    The aim of this work is to improve the performance of electrodes prepared via atmospheric plasma spray by means of gas shrouding which is expected to apparently reduce the oxygen content of the plasma plume and subsequently improve the coating quality. Electrodes with dual-layer coating for alkaline water electrolysis were deposited on Ni-coated perforated substrates. Microstructure and morphology were studied by SEM. Element content was measured by EDS. Enthalpy probe was employed for measuring plasma temperature and velocity as well as the gas composition. For verifying and better understanding the shrouding effect numerical calculation was carried out according to the experimental settings. Electrochemical test was carried out to validate the shrouding effect. The results showed slight protecting effect of gas shrouding on plasma plume and the final coating. Over the dual-layer section, the measured oxygen fraction was 3.46 and 3.15% for the case without gas shrouding and with gas shrouding, respectively. With gas shrouding the coating exhibited similar element contents as the coating sprayed by VPS, while no obvious improvement was observed in the microstructure or the morphology. Evident electrochemical improvement was nevertheless achieved that with gas shrouding the electrode exhibited similar performance as that of the VPS-sprayed electrode.

  15. Plasma spraying of cerium-doped YAG

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kubát, J.; Pala, Zdeněk; Nevrlá, Barbara

    2014-01-01

    Roč. 29, č. 19 (2014), s. 2344-2351 ISSN 0884-2914 R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : plasma spraying * water-stabilized plasma Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.647, year: 2014 http://dx.doi.org/10.1557/jmr.2014.251

  16. Molybdenum plasma spray powder, process for producing said powder, and coating made therefrom

    International Nuclear Information System (INIS)

    Lafferty, W.D.; Cheney, R.F.; Pierce, R.H.

    1979-01-01

    Plasma spray powders of molybdenum particles containing 0.5 to 15 weight percent oxygen and obtained by reacting molybdenum particles with oxygen or oxides in a plasma, form plasma spray coatings exhibiting hardness comparable to flame sprayed coatings formed from molybdenum wire and plasma coatings of molybdenum powders. Such oxygen rich molybdenum powders may be used to form wear resistant coatings, such as for piston rings. (author)

  17. Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds

    Science.gov (United States)

    Yalameha, Shahram; Vaez, Aminollah

    2018-04-01

    In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.

  18. Plasma-sprayed tantalum/alumina cermets

    International Nuclear Information System (INIS)

    Kramer, C.M.

    1977-12-01

    Cermets of tantalum and alumina were fabricated by plasma spraying, with the amount of alumina varied from 0 to 65 percent (by volume). Each of four compositions was then measured for tensile strength, elastic modulus, and coefficient of thermal expansion. In general, strength and strain to failure decreased with increasing alumina content: 62 MPa for 100 percent Ta to 19 MPa for 35 v percent Ta. A maximum of 0.1 percent strain was observed for the sprayed 100 percent Ta specimens. The coefficient of thermal expansion measured for the pure Ta was 6.2 (10 -6 )/K

  19. Plasma spraying of bioactive glass-ceramics containing bovine bone

    Directory of Open Access Journals (Sweden)

    Annamária Dobrádi

    2017-06-01

    Full Text Available Natural bone derived glass-ceramics are promising biomaterials for implants. However, due to their price and weak mechanical properties they are preferably applied as coatings on load bearing implants. This paper describes result obtained by plasma spraying of bioactive glass-ceramics containing natural bone onto selected implant materials, such as stainless steel, alumina, and titanium alloy. Adhesion of plasma sprayed coating was tested by computed X-ray tomography and SEM of cross sections. The results showed defect free interface between the coating and substrate, without cracks or gaps. Dissolution rate of the coating in simulated body fluid (SBF was readily controlled by the bone additives (phase composition, as well as microstructure. The SBF treatment of the plasma sprayed coating did not influence the boundary between the coating and substrate.

  20. Process maps for plasma spray: Part 1: Plasma-particle interactions

    International Nuclear Information System (INIS)

    Gilmore, Delwyn L.; Neiser, Richard A. Jr.; Wan, Yuepeng; Sampath, Sanjay

    2000-01-01

    This is the first paper of a two part series based on an integrated study carried out at Sandia National Laboratories and the State University of New York at Stony Brook. The aim of the study is to develop a more fundamental understanding of plasma-particle interactions, droplet-substrate interactions, deposit formation dynamics and microstructural development as well as final deposit properties. The purpose is to create models that can be used to link processing to performance. Process maps have been developed for air plasma spray of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, auxiliary gas flow, and powder carrier gas flow. In-flight particle diameters, temperatures, and velocities were measured in various areas of the spray plume. Samples were produced for analysis of microstructures and properties. An empirical model was developed, relating the input parameters to the in-flight particle characteristics. Multi-dimensional numerical simulations of the plasma gas flow field and in-flight particles under different operating conditions were also performed. In addition to the parameters which were experimentally investigated, the effect of particle injection velocity was also considered. The simulation results were found to be in good general agreement with the experimental data

  1. Mass accretion and nested array dynamics from Ni-Clad Ti-Al wire array Z pinches

    International Nuclear Information System (INIS)

    Jones, Brent Manley; Jennings, Christopher A.; Coverdale, Christine Anne; Cuneo, Michael Edward; Maron, Yitzhak; LePell, Paul David; Deeney, Christopher

    2010-01-01

    Analysis of 50 mm diameter wire arrays at the Z Accelerator has shown experimentally the accretion of mass in a stagnating z pinch and provided insight into details of the radiating plasma species and plasma conditions. This analysis focused on nested wire arrays with a 2:1 (outeninner) mass, radius, and wire number ratio where Al wires were fielded on the outer array and Ni-clad Ti wires were fielded on the inner array.In this presentation, we will present analysis of data from other mixed Al/Ni-clad Ti configurations to further evaluate nested wire array dynamics and mass accretion. These additional configurations include the opposite configuration to that described above (Ni-clad Ti wires on the outer array, with Al wires on the inner array) as well as higher wire number Al configurations fielded to vary the interaction of the two arrays. These same variations were also assessed for a smaller diameter nested array configuration (40 mm). Variations in the emitted radiation and plasma conditions will be presented, along with a discussion of what the results indicate about the nested array dynamics. Additional evidence for mass accretion will also be presented.

  2. Atomistic simulations of diffusion mechanisms in off-stoichiometric Al-rich Ni3Al

    International Nuclear Information System (INIS)

    Duan, Jinsong

    2007-01-01

    This paper presents dynamics simulation results of diffusion in off-stoichiometric Al-rich Ni 3 Al (Ni 73 Al 27 ) at temperature ranging from 1300 to 1550 K. The interatomic forces are described by the Finnis-Sinclair type N-body potentials. Particular attention is devoted to the effect of the extra 2% of Al atoms sitting on the Ni sublattice as antisite point defects (Al Ni ) on diffusion. Simulation results show that Ni atoms mainly diffuse through the Ni sublattice at the temperatures investigated. Al atoms diffuse via both the intrasublattice and antistructure bridge (ASB) mechanisms. The contribution to Al diffusion from the ASB mechanism decreases at the lower temperature (T Ni ) enhances both Al and Ni diffusion in Ni 73 Al 27 . The Ni-Al coupled diffusion effect is observed and understood at the atomic level for the first time

  3. X-ray structural analysis of plasma sprayed europium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Gorshkov, B.N.; Loskutov, V.S.; Gavrish, A.A.; Shakh, G.E.

    1981-12-01

    An X-ray structure microanalysis is made for europium oxide powder produced by sintering and plasmic spheroidization for plasma spraying. The technique of concern is shown not to alter chemical composition of the powder. It is stated that a rise in the plasma jet enthalpy while spraying does not result in dissociation of europium oxide and its interaction with the plasma flux. The coating (to 15.2 kWxs/g) is found to have only a high-temperature (monoclinic) europium oxide phase and there appears a low-temperature (cubic) phase with a subsequent increase in the enthalpy. The plasma jet enthalpy increasing the grain size and the crystal lattice c parameter of the sprayed europium oxide are shown to decrease; the a parameter reduces with an enthalpy growth to 16.2 kW s/g and then smoothly increases with the enthalpy further growth. It is noticed that the europium oxide coating does not interact with an aluminium D16 alloy substrate.

  4. α-NiPt(Al) and phase equilibria in the Ni-Al-Pt system at 1150 deg C

    International Nuclear Information System (INIS)

    Hayashi, S.; Ford, S.I.; Young, D.J.; Sordelet, D.J.; Besser, M.F.; Gleeson, B.

    2005-01-01

    The α-NiPt(Al) phase and its associated equilibria in the Ni-Al-Pt system at 1150 deg C were investigated by analyzing equilibrated bulk alloys and the interdiffusion zones of diffusion couples. Phase constitutions, tie-lines and microstructures were determined using a combination of techniques, including high-energy synchrotron X-ray diffraction, scanning electron microscopy and electron probe microanalysis. A large Pt solubility limit was found to exist in the β-NiAl, ∼42 at.%, and in γ'-Ni 3 Al, ∼32 at.%. The α-NiPt(Al) phase was found to have wide Pt solubility range of about 33-60 at.% and to skew along an almost constant Pt/Al ratio of 1.5. The α-NiPt(Al) has an ordered face-centered tetragonal L1 0 crystal structure, with the Al and Pt atoms found to be preferentially located in the corners and prismatic faces, respectively. The temperature dependence of the lattice parameters and unit cell volume of the α phase were also determined

  5. Consolidation of tungsten disilicide by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Matějíček, Jiří; Rohan, Pavel; Janča, J.

    2007-01-01

    Roč. 52, č. 3 (2007), s. 311-320 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : Water stabilized plasma * tungsten disilicide * plasma deposition * thermal spray coatings Subject RIV: JJ - Other Materials

  6. Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite

    Science.gov (United States)

    Ariharan, S.; Sengupta, Pradyut; Nisar, Ambreen; Agnihotri, Ankur; Balaji, N.; Aruna, S. T.; Balani, Kantesh

    2017-02-01

    Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.

  7. Preparation and Characterization of Plasma-Sprayed Ultrafine Chromium Oxide Coatings

    International Nuclear Information System (INIS)

    Lin Feng; Jiang Xianliang; Yu Yueguang; Zeng Keli; Ren Xianjing; Li Zhenduo

    2007-01-01

    Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings

  8. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    Energy Technology Data Exchange (ETDEWEB)

    Pakseresht, A.H., E-mail: amirh_pak@yahoo.com [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Rahimipour, M.R. [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Vaezi, M.R. [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Salehi, M. [Department of Materials Engineering, Isfahan University of Technology, P.O. Box 84156-83111, Isfahan (Iran, Islamic Republic of)

    2016-04-15

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO{sub 3} powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  9. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    International Nuclear Information System (INIS)

    Pakseresht, A.H.; Rahimipour, M.R.; Vaezi, M.R.; Salehi, M.

    2016-01-01

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO_3 powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  10. Characterisations Of Al2O3-13% Wt TiO2 Deposition On Mild Steel Via Plasma Spray Method

    International Nuclear Information System (INIS)

    Yusoff, N. H.; Isa, M. C.; Ghazali, M. J.; Muchtar, A.; Forghani, S.; Daud, A. R.

    2011-01-01

    To date, plasma sprayed alumina titania have been widely used as wear resistance coatings in textile, machinery and printing industries. Previous studies showed that the coating microstructures and properties were strongly depended on various parameters such as ceramic composition, grain size powders and spray parameters, thus, influencing the melting degree of the alumina titania during the deposition process. The aim of this study focuses on the evolution of the micron sizes of alumina-13%wt titania at different plasma spray power, ranging from 20kW to 40kW. It was noted that the coating porosity of alumina-13%wt titania were decreased from 6.2% to 4% by increasing the plasma power from 20 to 40 kW. At lower power value, partially melted powders were deposited, generating over 6% porosity within the microstructures. Percentage of porosity about 5.6% gave the best ratio of bi-modal structures, providing the highest microhardness value. Furthermore, the effect of microstructure and porosity formation on wear resistance was also discussed. Coatings with less porosity exhibited better resistance to wear, in which the wear resistance of coated mild steel possessed only ∼5 x 10 -4 cm 3 /Nm with 4% of porosity.

  11. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  12. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  13. Study on the cutting behavior of plasma sprayed ceramic coatings. Plasma yosha ceramics himaku no sessaku kyodo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Y; Kubohori, T; Ikuta, T [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1992-09-30

    Fracture behavior of Al2O3-TiO2 sprayed ceramic coating was investigated at low cutting speeds when using two dimensional cutting. Scanning electron microscope was used to observe the generation, development and propagation of cracks during cutting. Small cracks and fracture have been developed in the cutting groove along the cutting direction, and there has been many fractures in spray particles unit. In the initial stage of cutting, radiant cracks have developed on the sprayed coating, however, linear big cracks starting from the cutting edge towards the cutting direction, have developed. The cracks have developed along the grain boundary of coating component, and cracks progressed along the portion with weak bonding force. When the depth of the cut was under 5[mu]m, the cutting face has formed many microfractures, and the cutting has been very stable. It has been necessary to select the cutting conditions that do not cause big fracture, microcutting and so on, in order to achieve favorable surface condition with minor fractures. 8 refs., 13 figs., 2 tabs.

  14. Correlation of microstructure and wear resistance of molybdenum blend coatings fabricated by atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Hwang, Byoungchul; Lee, Sunghak; Ahn, Jeehoon

    2004-01-01

    The correlation of microstructure and wear resistance of various molybdenum blend coatings applicable to automotive parts was investigated in this study. Five types of spray powders, one of which was pure molybdenum powder and the others were blends of brass, bronze, and aluminum alloy powders with molybdenum powder, were deposited on a low-carbon steel substrate by atmospheric plasma spraying (APS). Microstructural analysis of the coatings showed that they consisted of a curved lamellar structure formed by elongated splats, with hard phases that formed during spraying being homogeneously distributed in the molybdenum matrix. The wear test results revealed that the blend coatings showed better wear resistance than the pure molybdenum coating because they contained a number of hard phases. In particular, the molybdenum coating blended with bronze and aluminum alloy powders and the counterpart material showed an excellent wear resistance due to the presence of hard phases, such as CuAl 2 and Cu 9 Al 4 . In order to improve overall wear properties for the coating and the counterpart material, appropriate spray powders should be blended with molybdenum powders to form hard phases in the coatings

  15. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    International Nuclear Information System (INIS)

    Kim, Ki Hwan; Lee, Chong Tak; Lee, Chan Bock; Fielding, R.S.; Kennedy, J.R.

    2013-01-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 °C showed that HfN, TiC, ZrC, and Y 2 O 3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 °C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y 2 O 3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y 2 O 3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y 2 O 3 coating

  16. Structural and technological formation of surface nanostructured Ti-Ni-Mo layers by high-speed gas-flame spraying

    Directory of Open Access Journals (Sweden)

    Blednova Zhesfina

    2015-01-01

    Full Text Available The article covers a complex method of forming surface-modified layers using materials with shape memory effect (SME based on TiNiMo including pre-grinding and mechanical activation of the coating material, high-speed gas-flame spraying of Ni adhesive layer and subsequent TiNiMo spraying with molybdenum content up to 2%, thermal and thermomechanical processing in a single technological cycle. This allowed forming nanostructured surface layers with a high level of functional mechanical and performance properties. We defined control parameters of surface steel modification using material with shape memory effect based on TiNiMo, which monitor the structural material state, both at the stage of spraying, and during subsequent combined treatment, which allows affecting purposefully on the functional properties of the SME surface layer. Test results of samples before coating and after surface modification with TiNiMo in the seawater indicate that surface modification brings to a slower damage accumulation and to increase of steel J91171 endurance limit in seawater by 45%. Based on complex metallophysical research of surface layers we obtained new data about nano-sized composition “steel - Ni - TiNiMo”.

  17. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2012-12-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  18. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2013-02-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  19. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  20. 3D-simulation of residual stresses in TBC plasma sprayed coating

    International Nuclear Information System (INIS)

    Kundas, S.; Kashko, T.; Hurevich, V.E.; Lugscheider, E.; Hayn, G. von; Ilyuschenko, A.

    2001-01-01

    Thermal barrier coatings (TBC) are used in gas turbine technology in order to protect against overheating of the nickel alloy turbine blades. This coatings allows to increase turbine inlet temperatures and improve their efficiency. Plasma spraying processes are widely used since several years in thermal barrier coating technology. Although the plasma spraying process of TBC's is largely successful, a fundamental understanding of the process parameters influencing the TBC microstructure and mechanical properties is necessary. But this investigation has received much less attention so they could lead to considerable advances in performance of plasma sprayed thermal barrier coatings. The main reason of this mate is difficulties in experimental investigation of high temperature and high velocity process. One of the most effective ways to accelerate the process optimization is the application of computer simulation for the modeling of plasma spraying. This enables the achievement of a maximum of information about the investigated process by carrying out a minimum number of experiments. The main problem of plasma spray TBC coatings is crack information during the deposition process and coating cooling. The reasons for this are quenched and residual stresses in the coating-substrate system, and peculiarities of TBC coating properties. The problem of deposition and solidification of plasma sprayed coatings have received little attention to date and remains one of the unintelligible parts of process. A fundamental understanding of heat transfer in the coating-substrate system and particles deformation processes are, however, critical for the prediction of the microstructural characteristics of the deposited coatings, the understanding of the mechanisms involved in formation of thermal stresses and defects (cracks, debonding etc.). (author)

  1. Metallurgy and properties of plasma spray formed materials

    Science.gov (United States)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  2. New generation of plasma-sprayed mullite coatings on silicon carbide

    Science.gov (United States)

    Lee, Kang N.; Miller, Robert A.; Jacobson, Nathan S.

    1995-01-01

    Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion.

  3. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    Science.gov (United States)

    Lu, Chun [Monroeville, PA

    2012-04-24

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  4. Mechanical Properties of Plasma Sprayed Alumina Coatings

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Nohava, Jiří; Siegel, J.

    2003-01-01

    Roč. 48, č. 2 (2003), s. 129-145 ISSN 0001-7043 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma sprayed alumina coatings, fatigue test, metalography, fractography, residual stress, microhardness, Young's modulus , four-point bending Subject RIV: BL - Plasma and Gas Discharge Physics

  5. Vacuum-plasma-sprayed silicon coatings

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Herman, H.; Bancke, G.A.; Burchell, T.D.; Romanoski, G.R.

    1991-01-01

    Vacuum plasma spraying produces well-bonded dense stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries for the excellent wear, corrosion resistance and high temperature behavior of the fabricated coatings. In this study, silicon metal was deposited on graphite to study the feasibility of preventing corrosion and oxidation of graphite components for nuclear reactors. Operating parameters were varied in a Taguchi design of experiments to display the range of the plasma processing conditions and their effect on the measured coating characteristics. The coating attributes evaluated were thickness, porosity, microhardness and phase content. This paper discusses the influence of the processing parameters on as-sprayed coating qualities. The paper also discusses the effect of thermal cycling on silicon samples in an inert helium atmosphere. The diffraction spectrum for a sample that experienced a 1600degC temperature cycle indicated that more than 99% of the coating transformed to β-SiC. The silicon coatings protected the graphite substrates from oxidation in one experiment. (orig.)

  6. Electrochemical corrosion behaviour of Mg-Al alloys with thermal spray Al/SiCp composite coatings

    International Nuclear Information System (INIS)

    Pardo, A.; Feliu Jr, S.; Merino, M. C.; Mohedano, M.; Casajus, P.; Arrabal, R.

    2010-01-01

    The corrosion protection of Mg-Al alloys by flame thermal spraying of Al/SiCp composite coatings was evaluated by electrochemical impedance spectroscopy in 3.5 wt.% NaCl solution. The volume fraction of SiC particles (SiCp) varied between 5 and 30%. The as-sprayed Al/SiCp composite coatings revealed a high number of micro-channels, largely in the vicinity of the SiC particles, that facilitated the penetration of the electrolyte and the subsequent galvanic corrosion of the magnesium substrates. The application of a cold-pressing post-treatment reduced the degree of porosity of the coatings and improved the bonding at the coating/substrate and Al/SiC interfaces. This resulted in improved corrosion resistance of the coated specimens. The effectiveness of the coatings slightly decreased with the addition of 5-30 vol.% SiCp compared with the un reinforced thermal spray aluminium coatings. (Author) 31 refs.

  7. Microstructure and mechanical properties of spray deposited hypoeutectic Al-Si alloy

    International Nuclear Information System (INIS)

    Ferrarini, C.F.; Bolfarini, C.; Kiminami, C.S.; Botta F, W.J.

    2004-01-01

    The microstructure and the tensile properties of an Al-8.9 wt.% Si-3.2 wt.% Cu-0.9 wt.% Fe-0.8% Zn alloy processed by spray forming was investigated. The alloy was gas atomized with argon and deposited onto a copper substrate. The microstructure was evaluated by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Small faceted dispersoids observed surrounding equiaxial α-Al matrix were identified by SEM-EDS as silicon particles. Sand cast samples with the same composition showed a columnar dendritic α-Al matrix, Al-Si eutectic, polyhedric α-AlFeSi and needle-like β-AlFeSi intermetallics. In the spray formed material the formation of the Al-Si eutetic was suppressed, and the formation of the α-AlFeSi and β-AlFeSi intermetallics was strongly reduced. The fine and homogeneous microstructure showed an aluminium matrix with grain size ranging from 30 to 40 μm, and particle size of the silicon dispersoids having a mean size of 12 μm. Room temperature tensile tests of the spray formed alloy showed relative increasing of strength and elongation when compared with the values observed for the conventionally cast counterparts. These results can be ascribed to the refined microstructure and the scarce presence of intermetallics of the spray formed material

  8. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    Science.gov (United States)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  9. Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings

    Science.gov (United States)

    Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine

    2010-03-01

    Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.

  10. Applications of thermal spraying for automotive parts. Jidosha ni okeru yosha no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Mori, K [Toyota Motor Co. Ltd., Aichi (Japan)

    1992-10-31

    Application of thermal spraying for automotive parts is described. Outlines of the spraying types that are materialized recently, like 'gel-double spraying of turbo-compressor housing part' and 'iron alloy spraying to outer portion of valve lifter made with Al alloy', are introduced. Gel-double spraying technology is widely used in the jet engine of aeroplane, however its use in automotive turbo was difficult from the reason like quality assurance relating to continuous production of automotives. As a result of the research and development based on the above reasons, a low speed torque is confirmed by the formation of gel-double spray layer. Spraying to the outer part of the valve lifter made from Al alloy is cited as the best example of thermal spraying. Relation between flying speed of spraying particles and degree of flattening, etc., relating to the conformity of adhesion power of coated layer, is explained. Further research topics are given as; improvement of spraying efficiency, improvement of resistance of spraying equipments, unification of equipments standards, quantification of spray coatings, design of spray materials, etc. 9 refs., 8 figs., 1 tab.

  11. Glass forming ability of the Al-Ce-Ni system; Avaliacao da capacidade de formacao vitrea do sistema Al-Ce-Ni

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, C. [Engenharia Mecanica, Universidade Federal de Mato Grosso, Rondonopolis, MT (Brazil)], e-mail: triveno@ufmt.br; Surinach, S.; Baro, M.D. [Departamento de Engenharia de Materiais - Universidade Federal de Sao Carlos, SP (Brazil); Bolfarini, C.; Botta, W.J.; Kiminami, C.S. [Departamento de Fisica da Universidade Autonoma de Barcelona, Bellaterra (Spain)

    2010-07-01

    In the present work, the glass forming ability (GFA) and its compositional dependence on Al-Ni-Ce system alloys were investigated in function of several thermal parameters. Rapidly quenched Al{sub 85}Ni{sub 15}-{sub X}Ce{sub X} (X=4,5,6,7,10), Al{sub 90}Ni{sub 5}Ce{sub 5}, Al{sub 89}Ni{sub 2}.{sub 4}Ce{sub 8}.{sub 6}, Al{sub 80}Ni{sub 15.6}Ce{sub 4}.{sub 4} and Al{sub 78}Ni{sub 18.5}Ce{sub 3.5} amorphous ribbons were produced by melt-spinning and the structural transformation during heating was studied using a combination of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The results showed that the GFA and the thermal stability in the Al-rich corner of Al- Ni-Ce system alloys were enhanced by increasing the solute content and specifically the Ce content (author)

  12. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    Science.gov (United States)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  13. Ductility of Ni3Al doped with substitutional elements

    International Nuclear Information System (INIS)

    Hanada, S.; Chiba, A.; Guo, H.Z.; Watanabe, S.

    1993-01-01

    This paper reports on ductility of B-free Ni 3 Al alloys. Recrystallized Ni 3 Al binary alloys with Ni-rich compositions show appreciable ductility when an environmental effect is eliminated, while the alloys with stoichiometric and Al-rich compositions remain brittle. The ductility in the Ni-rich Ni 3 Al alloys is associated with low ordering energy. The additions of ternary elements, which are classified as γ formers, ductilize ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Pd, Pt, Cu and Co), whereas the additions of γ' formers embrittle ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Ta, Mo, Nb, Zr, Hf, V, Ti and Si). The additions of small amounts (less than 1 at%) of γ' formers such as Zr and Hf also ductilize as-cast ternary Ni 3 Al alloys. Ductility of Ni 3 Al alloys doped with substitutional elements is discussed in terms of ordering energy and microstructure

  14. Elastic response of thermal spray deposits under indentation tests

    International Nuclear Information System (INIS)

    Leigh, S.H.; Lin, C.K.; Berndt, C.C.

    1997-01-01

    The elastic response behavior of thermal spray deposits at Knoop indentations has been investigated using indentation techniques. The ration of hardness to elastic modulus, which is an important prerequisite for the evaluation of indentation fracture toughness, is determined by measuring the elastic recovery of the in-surface dimensions of Knoop indentations. The elastic moduli of thermal spray deposits are in the range of 12%--78% of the comparable bulk materials and reveal the anisotropic behavior of thermal spray deposits. A variety of thermal spray deposits has been examined, including Al 2 O 3 , yttria-stabilized ZrO 2 (YSZ), and NiAl. Statistical tools have been used to evaluate the error estimates of the data

  15. Measurement of residual stress in plasma-sprayed composite coatings with graded and uniform compositions

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S.

    1999-10-01

    Residual stresses in plasma sprayed composite coatings were studied experimentally by both curvature and neutron diffraction measurements. Graded and uniform composite coatings, consisting of nickel + alumina and NiCrAlY + yttria-stabilized zirconia, were investigated. This paper briefly summarizes our recent work dealing with the effects of coating thickness, composition, and material properties on the evolution of residual stresses in coatings. Analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the thermal mismatch stress plays a dominant role in the ceramic phase, whereas the stress in the metallic phase is mostly dominated by quenching stress. The residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. Through-thickness stress profiles in graded coatings were determined with high spatial resolution by the curvature method, and determination of the stress in each separate phase of a composite was made by neutron diffraction. (orig.) 14 refs.

  16. PLASMA SPRAYING OF REFRACTORY CERMETS BY THE WATER-STABILIZED SPRAY (WSP®) SYSTEM

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Brožek, V.; Cheong, D.-I.; Chráska, Pavel

    2009-01-01

    Roč. 54, č. 3 (2009), s. 241-253 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * tungsten Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  17. Structural features in Ni-Al alloys

    International Nuclear Information System (INIS)

    Abylkalykova, R.B.; Kveglis, L.I.; Rakhimova, U.A.; Nasokhova, Sh.B.; Tazhibaeva, G.B.

    2007-01-01

    Purpose of the work is study of structural transformations under diverse memory effect in Ni-Al alloys. Examination were conducted in following composition samples: Ni -75 at.% and Al - 25 at.%. The work is devoted to clarification reasons both formation atom-ordered structures in inter-grain boundaries of bulk samples under temperature action and static load. Revealed inter-grain inter-boundary layers in Ni-Al alloy both bulk and surface state have complicated structure

  18. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Thermomechanical processing of plasma sprayed intermetallic sheets

    Science.gov (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  20. Plasma transferred arc surface modification of atmospheric plasma sprayed ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ulutan, Mustafa; Kilicay, Koray; Kaya, Esad; Bayar, Ismail [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2016-08-15

    In this study, a 90MnCrV8 steel surface was coated with aluminum oxide and chromium oxide powders through the Atmospheric plasma spray (APS) and Plasma transferred arc (PTA) methods. The effects of PTA surface melting on the microstructure, hardness, and wear behavior were investigated. The microstructures of plasma-sprayed and modified layers were characterized by Optical microscopy (OM), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). The dry-sliding wear properties of the samples were determined through the ball-on-disk wear test method. Voids, cracks, and nonhomogeneous regions were observed in the microstructure of the APS ceramic-coated surface. These microstructure defects were eliminated by the PTA welding process. The microhardness of the samples was increased. Significant reductions in wear rate were observed after the PTA surface modification. The wear resistance of ceramic coatings increased 7 to 12 times compared to that of the substrate material.

  1. Surface Microstructure of Nanoaluminized CoCrAlY Coating Irradiated by HCPEB

    Directory of Open Access Journals (Sweden)

    Zhiyong Han

    2016-01-01

    Full Text Available A thermal sprayed CoCrAlY coating was prepared by air plasma spray on the surface of Ni-based superalloy GH4169; then, a nanoscale aluminum film was deposited with electron beam vacuum deposition on it. The coatings irradiated by high-current pulsed electron beam were investigated. After HCPEB treatment, the Al film was remelted into the bond coat. XRD result shows that Al and Al2O3 phase were recorded in the irradiated and aluminized coatings, while Co-based oxides which originally existed in the initial samples disappeared. Microstructure observations reveal that the original coating with porosity, cavities, and inclusions was significantly changed after HCPEB treatment as compact appearance of interconnected bulged nodules. Moreover, the grains on the irradiated coating were very refined and homogeneously dispersed on the surface, which could effectively inhibit the corrosive gases and improve the coating oxidation resistance.

  2. DEVELOPMENT OF WEAR RESISTANT COATINGS FORMED BY PLASMA SPRAYING OF ALLOY Ni–Fe–Cr–Si–B–C SYSTEM REINFORCED WITH CERAMICS Al2O3

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available . Creating a functionally oriented, including nanostructured, anti-friction materials and coatings with qualitatively new complex of service properties is an important scientific and practical problem. In particular, for the cable industry it is urgent task of ensuring the high performance properties of fast deteriorating stretching and supporting rollers. Working surfaces of these parts operate under practically dry friction conditions with constantly updated material of stretching wire. Plasma spraying is one of the widely used methods of surface engineering to create wear resistant coatings and which is characterized with process flexibility and the ability to create coatings using various materials and alloys including composite ones. The installation UPU-3D with the PP-25 plasma torch was used for plasma spraying. The thickness of the sprayed layer was 0.8–1.1 mm. As a material for the deposition of composite coatings a powder mixture of self-fluxing nickel alloy PG-HN80SR4 (system Ni–Fe–Cr–Si–B–C and a neutral oxide ceramics Al2O3 was used. The amount of ceramics varied from 15 to 33 %. This ceramic oxide was selected due to the desire to reduce coatings’ costs while providing high durability. Carried out phase and microstructural studies have shown when ceramics was added in an amount more than 20 % a formation of conglomerates formed by not melted alumina particles often was observed. These conglomerates serve as crack formation centers in the coating. The phase composition of the coatings practically does not depend on the content of ceramics compounds. Tribological tests have shown that the best results were obtained when the content of the oxide ceramic in the coating was in the range from 15 to 20 %.

  3. Physical and mechanical metallurgy of NiAl

    Science.gov (United States)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1994-01-01

    Considerable research has been performed on NiAl over the last decade, with an exponential increase in effort occurring over the last few years. This is due to interest in this material for electronic, catalytic, coating and especially high-temperature structural applications. This report uses this wealth of new information to develop a complete description of the properties and processing of NiAl and NiAl-based materials. Emphasis is placed on the controlling fracture and deformation mechanisms of single and polycrystalline NiAl and its alloys over the entire range of temperatures for which data are available. Creep, fatigue, and environmental resistance of this material are discussed. In addition, issues surrounding alloy design, development of NiAl-based composites, and materials processing are addressed.

  4. Numerical Coupling of the Particulate Phase to the Plasma Phase in Modeling of Multi-Arc Plasma Spraying

    International Nuclear Information System (INIS)

    Bobzin, K.; Öte, M.

    2017-01-01

    Inherent to Euler-Lagrange formulation, which can be used in order to describe the particle behavior in plasma spraying, particle in-flight characteristics are determined by calculating the impulse, heat and mass transfer between the plasma jet and individual powder particles. Based on the assumption that the influence of the particulate phase on the fluid phase is insignificant, impulse, heat and mass transfer from particles to the plasma jet can be neglected using the so-called numerical approach of “one-way coupling”. On the other hand, so-called “two-way coupling” considers the two-sided transfer between both phases. The former is a common simplification used in the literature to describe the plasma-particle interaction in thermal spraying. This study focuses on the significance of this simplification on the calculated results and shows that the use of this simplification leads to significant errors in calculated plasma and particle in-flight characteristics in three-cathode plasma spraying process. (paper)

  5. Resistencia a la corrosión a alta temperatura de recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por APS

    Directory of Open Access Journals (Sweden)

    José Luis Tristancho-Reyes

    2014-12-01

    Full Text Available La corrosión a alta temperatura de las tuberías utilizadas en equipos generadores de vapor (calderas ha sido reconocida como un grave problema que trae consigo el adelgazamiento de éstas y, por consiguiente, la falla de los equipos. En la última década se han incrementado las investigaciones que involucran recubrimientos protectores que ayudan de alguna manera a prolongar la vida útil de estos equipos. Esta investigación determinó el comportamiento de los recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por proyección térmica asistida por plasma (APS sobre la aleación SA213 – T22 (2¼Cr – 1Mo, en un ambiente corrosivo de 80%V2O5–20%K2SO4 a 800°C. Los valores de la cinética de corrosión fueron determinados mediante resistencia a la polarización lineal (RPL y espectroscopia de impedancia electroquímica (EIE. Los resultados obtenidos muestran una menor cinética de corrosión en el recubrimiento NiCrFeNbMoTiAl que la presentada por el recubrimiento NiCrAlY, corroborado por Microscopia Electrónica de Barrido (MEB.

  6. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    Science.gov (United States)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  7. Current Progress in Solution Precursor Plasma Spraying of Cermets: A Review

    Directory of Open Access Journals (Sweden)

    Romnick Unabia

    2018-06-01

    Full Text Available Ceramic and metal composites, known also as cermets, may considerably improve many material properties with regards to that of initial components. Hence, cermets are frequently applied in many technological fields. Among many processes which can be employed for cermet manufacturing, thermal spraying is one of the most frequently used. Conventional plasma spraying of powders is a popular and cost-effective manufacturing process. One of its most recent innovations, called solution precursor plasma spraying (SPPS, is an emerging coating deposition method which uses homogeneously mixed solution precursors as a feedstock. The technique enables a single-step deposition avoiding the powder preparation procedures. The nanostructured coatings developed by SPPS increasingly find a place in the field of surface engineering. The present review shows the recent progress in the fabrication of cermets using SPPS. The influence of starting solution precursors, such as their chemistry, concentration, and solvents used, to the micro-structural characteristics of cermet coatings is discussed. The effect of the operational plasma spray process parameters such as solution injection mode to the deposition process and coatings’ microstructure is also presented. Moreover, the advantages of the SPPS process and its drawbacks compared to the conventional powder plasma spraying process are discussed. Finally, some applications of SPPS cermet coatings are presented to understand the potential of the process.

  8. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 °C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization.

  9. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    Energy Technology Data Exchange (ETDEWEB)

    Waldbillig, D. [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, BC (Canada); Kesler, O. [University of Toronto, Department of Mechanical and Industrial Engineering, 5 King' s College Road, Toronto, Ontario (Canada)

    2009-06-15

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization. (author)

  10. Development of Process for Plasma Spray:Case Study for Molybdenum

    Czech Academy of Sciences Publication Activity Database

    Sampath, S.; Jiang, X.; Kulkarni, A.; Matějíček, Jiří; Gilmore, D. L.; Neiser, R. A.

    2003-01-01

    Roč. 348, 1-2 (2003), s. 54-66 ISSN 0921-5093 Grant - others:NSF(US) DMR9632570 Institutional research plan: CEZ:AV0Z2043910 Keywords : process maps, plasma spray, thermal spray Subject RIV: JG - Metallurgy Impact factor: 1.365, year: 2003

  11. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  12. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    International Nuclear Information System (INIS)

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-01-01

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen

  13. Influence of material and testing parameters on the lifetime of TBC systems with MCrAlY and NiPtAl bondcoats

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peng

    2012-08-31

    The oxidation behavior of the bond coat is an important factor determining the lifetime of thermal barrier coatings (TBC) in the advanced gas turbine components. In the present work, the effect of various testing parameters, such as hot/cold dwell time, heating/cooling rate, atmosphere composition on the bondcoat oxidation and associated TBC lifetime has been investigated. The range of coating systems included Electron Beam - Physical Vapor Deposited (EB-PVD) and Air Plasma Sprayed (APS) TBC's with MCrAlY (M = Ni, Co) and NiPtAl-bondcoats of various compositions. The effect of the testing parameters strongly depended on the type and properties of the studied system. The lifetime of EB-PVD TBC systems with conventional MCrAlY and NiPtAl bondcoats forming uniform, flat alumina scales was found to be limited by critical scale thickness, upon which a rapid crack propagation at the scale/bondcoat interface results in macroscopic failure. The lifetime of such systems was found to be affected by factors, which influence the scale growth rate and adherence (in particular by oxygen partial pressure (pO{sub 2}) and water vapor content in the test gas in the case of MCrAlY), whereas the temperature cyclic frequency showed no significant effect. NiPtAl bondcoats showed a superior behavior than the conventional MCrAlY-bondcoats due to slower scale growth rate and better scale adherence. For EB-PVD TBC systems with Zr-doped MCrAlYbondcoats the lifetime is mainly determined by the crack growth rate in the inhomogeneous inwardly growing oxide scales, whereas the lifetime is not dependent on the pO{sub 2} but rather on the cyclic frequency. For APS TBC systems the bondcoat oxidation is only one of several factors determining the ceramic topcoat lifetime. Therefore the oxide scale adherence is of less importance for lifetime of APS TBCs as compared to EBPVD TBCs. For the former systems, the cracks initiated at the convex asperities of the rough oxide scale / bondcoat interface

  14. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    Science.gov (United States)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  15. Very low pressure plasma sprayed yttria-stabilized zirconia coating using a low-energy plasma gun

    International Nuclear Information System (INIS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-01-01

    In the present study, a more economical low-energy plasma source was used to perform a very low pressure plasma-spray (VLPPS) process. The plasma-jet properties were analyzed by means of optical emission spectroscopy (OES). Moreover, yttria-stabilized zirconia coating (YSZ) was elaborated by a F100 low-power plasma gun under working pressure of 1 mbar, and the substrate specimens were partially shadowed by a baffle-plate during plasma spraying for obtaining different coating microstructures. Based on the SEM observation, a column-like grain coating was deposited by pure vapor deposition at the shadowed region, whereas, in the unshadowed region, the coating exhibited a binary microstructure which was formed by a mixed deposition of melted particles and evaporated particles. The mechanical properties of the coating were also well under investigation. (orig.)

  16. Synthesis and Characterization of Calcium Phosphate Powders for Biomedical Applications by Plasma Spray Coating

    OpenAIRE

    Sasidharan Pillai, Rahul

    2015-01-01

    This PhD work mainly focus on the synthesis and characterization of calcium phosphate powders for plasma spray coating. The preparation of high temperature phase stabilized βTCP and HA/βTCP powders for plasma spray coating applications has been the topic of investigation. Nowadays plasma sprayed coatings are widely used for biomedical applications especially in the dental and orthopaedic implantation field. Previously Ti based alloys were widely used for the orthopaedic and dental implant ap...

  17. Improvement of wear resistance of machine elements by plasma spraying followed by hardening in the chlorine-barium melt

    International Nuclear Information System (INIS)

    Fominykh, V.V.; Stepanov, V.V.

    1979-01-01

    Proposed is the mathematical model, allowing to choose the optimal regime of sprayed coating hardening in the BaCl 2 salt melt. The method of hardening of machine elements by spraying wear resistance coatings of the Ni-Cr-B-Si alloys is described. It is established that diffusion heating followed by coating melting in the BaCl 2 solution increases the adhesion of sprayed layer to substrate metal. The formation of intermediate intermetallic compounds of the Ni 3 Si and Ni 3 Fe types takes place as a result of diffusion of interacting material atoms and valence electron joining

  18. Fabrication of samarium strontium aluminate ceramic and deposition of thermal barrier coatings by air plasma spray process

    Directory of Open Access Journals (Sweden)

    Baskaran T

    2018-01-01

    Full Text Available Thermal barrier coatings (TBC with the metallic NiCrAlY bond coat are often used in many aircraft engines to protect superalloy components from high-temperature corrosion thereby to improve the life of gas turbine components. The search for new TBC material has been intensified in recent years due to lack of thermo-physical properties of conventionally used Yttria stabilized Zirconia (YSZ TBCs. Recently, the rare earth containing Samarium Strontium Aluminate (SSA based ceramic was proposed as a new TBC material due to its matching thermo-physical properties with the substrate. The present work focused on the synthesis of SSA ceramics for TBCs application and its coatings development on Ni-based superalloy Inconel 718 substrate by air plasma spray process. The X-ray photoelectron spectroscopy (XPS result confirmed the formation of single phase SSA ceramic after synthesis. The surface morphology of SSA TBCs is mainly composed of melted splats, semi and un-melted particles. The cross-sectional SEM micrographs did not show any spallation at the interface which indicated good mechanical interlocking between the bond coat and ceramic top coat. The Young’s modulus and hardness of SSA TBCs were found to be 80 and 6.1 GPa, respectively. The load-depth curve of SSA TBC showed good elastic recovery about 47 %.

  19. Effects of fluorine-based plasma treatment and thermal annealing on high-Al content AlGaN Schottky contact

    International Nuclear Information System (INIS)

    Liu Fang; Qin Zhixin

    2016-01-01

    Fluorine plasma treatment was used prior to the Schottky metal deposition on the undoped Al 0.45 Ga 0.55 N, which aimed at the solar-blind wavelength. After fluorine plasma treatment and before depositing the Ni/Au Schottky, the samples were thermal annealed in the N 2 gas at 400 °C. The reverse leakage current density of Al 0.45 Ga 0.55 N Schottky diode was reduced by 2 orders of magnitude at −10 V. The reverse leakage current density was reduced by 3 orders of magnitude after thermal annealing. Further capacitance–frequency analysis revealed that the fluorine-based plasma treatment reduces the surface states of AlGaN by one order of magnitude at different surface state energies. The capacitance–frequency analysis also proved that the concentration of carriers in AlGaN top is reduced through fluorine plasma treatment. (paper)

  20. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet

    International Nuclear Information System (INIS)

    Cao, J.; Song, X.G.; Wu, L.Z.; Qi, J.L.; Feng, J.C.

    2012-01-01

    The Al/Ni multilayers were characterized and diffusion bonding of TiAl intermetallics to TiC cermets was carried out using the multilayers. The microstructure of Al/Ni multilayers and TiAl/TiC cermet joint was investigated. The layered structures consisting of a Ni 3 (AlTi) layer, a Ni 2 AlTi layer, a (Ni,Al,Ti) layer and a Ni diffusion layer were observed from the interlayer to the TiAl substrate. Only one AlNi 3 layer formed at the multilayer/TiC cermet interface. The reaction behaviour of Al/Ni multilayers was characterized by means of differential scanning calorimeter (DSC) and X-ray diffraction. The initial exothermic peak of the DSC curve was formed due to the formation of Al 3 Ni and Al 3 Ni 2 phases. The reaction sequence of the Al/Ni multilayers was Al 3 NiAl 3 Ni 2 → AlNiAlNi 3 and the final products were AlNi and AlNi 3 phases. The shear strength of the joint was tested and the experimental results suggested that the application of Al/Ni multilayers improved the joining quality. - Highlights: ► Diffusion bonding of TiAl to TiC cermet was realized using Al/Ni multilayer. ► The reaction sequence of the Al/Ni multilayers was Al 3 NiAl 3 Ni 2 → AlNiAlNi 3 . ► The interfacial microstructure of the joint was clarified. ► The application of Al/Ni multilayers improved the joining quality.

  1. Study on the characteristics of the impingement erosion-corrosion for Cu-Ni Alloy sprayed coating(I)

    International Nuclear Information System (INIS)

    Lee, Sang Yeol; Lim, Uh Joh; Yun, Byoung Du

    1998-01-01

    Impingement erosion-corrosion test and electrochemical corrosion test in tap water(5000Ω-cm) and seawater(25Ω-cm). Thermal spraying coated Cu-Ni alloy on the carbon steel was carried out. The impingement erosion-corrosion behavior and electrochemical corrosion characteristics of the substrate(SS41) and Cu-Ni thermal spray coating were investigated. The erosion-corrosion control efficiency of Cu-Ni coating to substrate was also estimated quantitatively. Main results obtained are as follows : 1) Under the flow velocity of 13m/s, impingement erosion-corrosion of Cu-Ni coating is under the control of electrochemical corrosion factor rather than that of mechanical erosion. 2) The corrosion potential of Cu-Ni coating becomes more noble than that of substrate, and the current density of Cu-Ni coating under the corrosion potential is drained lowly than that of substrate. 3) The erosion-corrosion control efficiency of Cu-Ni coating to substrate is excellent in the tap water of high specific resistance solution, but it becomes dull in the seawater of low specific resistance. 4) The corrosion control efficiency of Cu-Ni coating to substrate in the seawater appears to be higher than that in the tap water

  2. Aligned, plasma sprayed SmCo5 deposits

    International Nuclear Information System (INIS)

    Kumar, K.; Das, D.

    1986-01-01

    Highly aligned SmCo 5 deposits were produced using plasma spraying. c-axis alignment, normal to the plane of the deposit, was achieved by depositing the Sm-Co alloys on steel substrates maintained at high temperatures. The substrates were heated by the plasma flame to obtain the high temperatures. The attainment of a range of substrate temperatures was made possible through control over the geometry of the substrate

  3. Dielectric properties of plasma sprayed silicates

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Neufuss, Karel; Dubský, Jiří; Chráska, Pavel

    -, č. 31 (2005), s. 315-321 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GA202/03/0708 Institutional research plan: CEZ:AV0Z20430508 Keywords : Optical microscopy * electrical properties * silicates * insulators * plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.702, year: 2005

  4. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianhua, E-mail: laser@zjut.edu.cn; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Graphical abstract: - Highlights: • The hard Ni-based alloy powder as matrix in diamond composite coating was studied. • The influence of laser on diamond distribution of composite coating was analyzed. • The graphitization of diamond was prohibited in supersonic laser deposition process. • The abrasion mechanisms of diamond/Ni60 composite coating were discussed. - Abstract: Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  5. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    OpenAIRE

    D. Thirumalaikumarasamy; K. Shanmugam; V. Balasubramanian

    2014-01-01

    Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 w...

  6. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J., E-mail: cao_jian@hit.edu.cn [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China); Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001 (China); Song, X.G. [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China); Wu, L.Z. [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001 (China); Qi, J.L.; Feng, J.C. [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China)

    2012-02-29

    The Al/Ni multilayers were characterized and diffusion bonding of TiAl intermetallics to TiC cermets was carried out using the multilayers. The microstructure of Al/Ni multilayers and TiAl/TiC cermet joint was investigated. The layered structures consisting of a Ni{sub 3}(AlTi) layer, a Ni{sub 2}AlTi layer, a (Ni,Al,Ti) layer and a Ni diffusion layer were observed from the interlayer to the TiAl substrate. Only one AlNi{sub 3} layer formed at the multilayer/TiC cermet interface. The reaction behaviour of Al/Ni multilayers was characterized by means of differential scanning calorimeter (DSC) and X-ray diffraction. The initial exothermic peak of the DSC curve was formed due to the formation of Al{sub 3}Ni and Al{sub 3}Ni{sub 2} phases. The reaction sequence of the Al/Ni multilayers was Al{sub 3}Ni {yields} Al{sub 3}Ni{sub 2} {yields} AlNi {yields} AlNi{sub 3} and the final products were AlNi and AlNi{sub 3} phases. The shear strength of the joint was tested and the experimental results suggested that the application of Al/Ni multilayers improved the joining quality. - Highlights: Black-Right-Pointing-Pointer Diffusion bonding of TiAl to TiC cermet was realized using Al/Ni multilayer. Black-Right-Pointing-Pointer The reaction sequence of the Al/Ni multilayers was Al{sub 3}Ni {yields} Al{sub 3}Ni{sub 2} {yields} AlNi {yields} AlNi{sub 3}. Black-Right-Pointing-Pointer The interfacial microstructure of the joint was clarified. Black-Right-Pointing-Pointer The application of Al/Ni multilayers improved the joining quality.

  7. Effect of laser induced plasma ignition timing and location on Diesel spray combustion

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2017-01-01

    Highlights: • Laser plasma ignition is applied to a direct injection Diesel spray, compared with auto-ignition. • Critical local fuel/air ratio for LIP provoked ignition is obtained. • The LIP system is able to stabilize Diesel combustion compared to auto-ignition cases. • Varying LIP position along spray axis directly affects Ignition-delay. • Premixed combustion is reduced both by varying position and delay of the LIP ignition system. - Abstract: An experimental study about the influence of the local conditions at the ignition location on combustion development of a direct injection spray is carried out in an optical engine. A laser induced plasma ignition system has been used to force the spray ignition, allowing comparison of combustion’s evolution and stability with the case of conventional autoignition on the Diesel fuel in terms of ignition delay, rate of heat release, spray penetration and soot location evolution. The local equivalence ratio variation along the spray axis during the injection process was determined with a 1D spray model, previously calibrated and validated. Upper equivalence ratios limits for the ignition event of a direct injected Diesel spray, both in terms of ignition success possibilities and stability of the phenomena, could been determined thanks to application of the laser plasma ignition system. In all laser plasma induced ignition cases, heat release was found to be higher than for the autoignition reference cases, and it was found to be linked to a decrease of ignition delay, with the premixed peak in the rate of heat release curve progressively disappearing as the ignition delay time gets shorter. Ignition delay has been analyzed as a function of the laser position, too. It was found that ignition delay increases for plasma positions closer to the nozzle, indicating that the amount of energy introduced by the laser induced plasma is not the only parameter affecting combustion initiation, but local equivalence ratio

  8. Dielectric and mechanical properties of plasma-sprayed olivine

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Neufuss, Karel; Pala, Zdeněk; Kotlan, Jiří; Soumar, J.

    2015-01-01

    Roč. 67, č. 2 (2015), s. 600-616 ISSN 1221-1451. [International Conference on Plasma Physics and Applications/16./. Magurele, Bucharest, 20.06.2013-25.06.2013] Institutional support: RVO:61389021 Keywords : olivine * plasma spraying * dielectric properties Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.367, year: 2015 www.infim.ro/rrp

  9. Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings

    Science.gov (United States)

    Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay

    2018-02-01

    Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.

  10. The spray-drying process is sufficient to inactivate infectious porcine epidemic diarrhea virus in plasma.

    Science.gov (United States)

    Gerber, Priscilla F; Xiao, Chao-Ting; Chen, Qi; Zhang, Jianqiang; Halbur, Patrick G; Opriessnig, Tanja

    2014-11-07

    Porcine epidemic diarrhea virus (PEDV) is considered an emergent pathogen associated with high economic losses in many pig rearing areas. Recently it has been suggested that PEDV could be transmitted to naïve pig populations through inclusion of spray-dried porcine plasma (SDPP) into the nursery diet which led to a ban of SDPP in several areas in North America and Europe. To determine the effect of spray-drying on PEDV infectivity, 3-week-old pigs were intragastrically inoculated with (1) raw porcine plasma spiked with PEDV (RAW-PEDV-CONTROL), (2) porcine plasma spiked with PEDV and then spray dried (SD-PEDV-CONTROL), (3) raw plasma from PEDV infected pigs (RAW-SICK), (4) spray-dried plasma from PEDV infected pigs (SD-SICK), or (5) spray-dried plasma from PEDV negative pigs (SD-NEG-CONTROL). For the spray-drying process, a tabletop spray-dryer with industry-like settings for inlet and outlet temperatures was used. In the RAW-PEDV-CONTROL group, PEDV RNA was present in feces at day post infection (dpi) 3 and the pigs seroconverted by dpi 14. In contrast, PEDV RNA in feces was not detected in any of the pigs in the other groups including the SD-PEDV-CONTROL group and none of the pigs had seroconverted by termination of the project at dpi 28. This work provides direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious PEDV in the plasma. Additionally, plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV. These findings suggest that the risk for PEDV transmission through commercially produced SDPP is minimal. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Characterization of plasma sprayed beryllium ITER first wall mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.

    1998-01-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  12. Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups

    International Nuclear Information System (INIS)

    Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

    1997-10-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface

  13. A dynamical atomic simulation for the Ni-Al Wulff nanoparticle

    International Nuclear Information System (INIS)

    Tang, Jianfeng; Yang, Jianyu

    2013-01-01

    Ni-Al bimetallic nanoparticle structures are studied from a kinetic point of view. The diffusion and growth of Ni (or Al) atoms on Al (or Ni) cores with the Wulff structure are simulated by molecular dynamics and nudged elastic band methods. An analytic embedded atom model is applied to the two metals. The energy barriers of several typical diffusion processes of the adatoms on the nanoparticle surface are calculated. Results show that the incorporation of the Ni atoms into the Al core easily occurs, and the reverse process does not readily proceed. The growth simulations reveal that a better core-shell nanoparticle is obtained when the Al atoms are deposited on the Ni core at lower temperatures, and the deposition of the Ni atoms on the Al core leads to an amorphous surface. - Highlights: • The diffusion barrier of Ni (or Al) on Al (or Ni) Wulff nanoparticle is studied. • Ni atom can diffuse easily into Al core, and Al atom generally segregate on surface. • A core-shell nanoparticle is obtained for the deposition of Al atoms on Ni core. • Amorphous nanoparticle surface is obtained by depositing Ni atoms on Al core

  14. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2014-11-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were prepared via chemical vapor deposition (CVD using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs. Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  15. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    Science.gov (United States)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  16. Comparison of W–TiC composite coatings fabricated by atmospheric plasma spraying and supersonic atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Hou, Qing Yu; Luo, Lai Ma; Huang, Zhen Yi; Wang, Ping; Ding, Ting Ting; Wu, Yu Cheng

    2016-01-01

    Highlights: • W–TiC composite coatings were fabricated by APS and SAPS technologies. • TiC had filling effect on pores and coating/fixing effect on un-melted particles. • Porosity and oxygen content in SAPS coating were lower than that in APS coating. • Thermal conductivity of SAPS coating was higher than that of APS coating. • SAPS coating has better ability to resist to elastic fracture than APS coating does. - Abstract: Tungsten coatings with 1.5 wt.% TiC (W/TiC) were fabricated by atmospheric plasma spraying (APS) and supersonic atmospheric plasma spraying (SAPS) techniques, respectively. The results showed that the typical lamellar structure of plasma spraying and columnar crystalline grains formed in the coatings. Pores located mainly at lamellar gaps in association with oxidation were also observed. TiC phase, distributed at lamellar gaps filled the gaps; and that distributed around un-melted tungsten particles and splashed debris coated the particles or debris that were linked with the TiC at lamellar gaps. The coating and linking of the retained TiC phase prevented the tungsten particles to come off from the coatings. The porosity and the oxygen content of the SAPS-W/TiC were lower than those of the APS-W/TiC coating. The mechanical response of the coatings was strongly dependent on the H/E* ratio (H and E* are the hardness and effective Young’s modulus, respectively). The SAPS-W/TiC coating with a higher H/E* ratio had a better ability to resist to elastic fracture and better fracture toughness as compared with the APS-W/TiC coating with a smaller H/E* ratio. The thermal conductivity of the SAPS-W/TiC coating was greater than that of the APS-W/TiC coating.

  17. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    International Nuclear Information System (INIS)

    Hollis, Kendall J.; Pena, Maria I.

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  18. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  19. Predicting glass-forming compositions in the Al-La and Al-La-Ni systems

    International Nuclear Information System (INIS)

    Gargarella, P.; de Oliveira, M.F.; Kiminami, C.S.; Pauly, S.; Kuehn, U.; Bolfarini, C.; Botta, W.J.; Eckert, J.

    2011-01-01

    Research highlights: → The glass-forming ability of the Al-La and Al-La-Ni systems was studied using the λ* and the λ.Δe criteria. → Both criteria predicted with just 1% at. of error the best glass-former verified so far in the Al-La system. → Four new glass-former compositions could be predicted in the Al-La-Ni system using the λ.Δe criterion. → The best glass-former reported so far in the Al-La-Ni system was found. - Abstract: In this work, a criterion considering the topological instability (λ) and the differences in the electronegativity of the constituent elements (Δe) was applied to the Al-La and Al-Ni-La systems in order to predict the best glass-forming compositions. The results were compared with literature data and with our own experimental data for the Al-La-Ni system. The alloy described in the literature as the best glass former in the Al-La system is located near the point with local maximum for the λ.Δe criterion. A good agreement was found between the predictions of the λ.Δe criterion and literature data in the Al-La-Ni system, with the region of the best glass-forming ability (GFA) and largest supercooled liquid region (ΔT x ) coinciding with the best compositional region for amorphization indicated by the λ.Δe criterion. Four new glassy compositions were found in the Al-La-Ni system, with the best predicted composition presenting the best glass-forming ability observed so far for this system. Although the λ.Δe criterion needs further refinements for completely describe the glass-forming ability in the Al-La and Al-La-Ni systems, the results demonstrated that this criterion is a good tool to predict new glass-forming compositions.

  20. Plasma Sprayed Tungsten-based Coatings and their Usage in Edge Plasma Region of Tokamaks

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Weinzettl, Vladimír; Dufková, Edita; Piffl, Vojtěch; Peřina, Vratislav

    2006-01-01

    Roč. 51, č. 2 (2006), s. 179-191 ISSN 0001-7043 Grant - others:Evropská unie EFDA Task TW-5-TVM-PSW (EU – Euratom) Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10480505 Keywords : plasma sprayed coatings * fusion * plasma facing components * tungsten * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics

  1. Neutron diffraction determination of atomic mean-square displacements in cubic compounds of Ni-Al and Ni-Al-Cu systems

    International Nuclear Information System (INIS)

    Khidirov, I.; Mukhtarova, N.N.

    2002-01-01

    The atomic mean-square displacements (AMSD) are some of important characteristics of the solid and can be the main information for determination of a number of other characteristics of substances. In the work AMSD is determined for a number of cubic compounds of Ni-Al, Ni-Al-Cu systems immediately from intensities of neutron diffraction maxima. It is shown by the offered method that in all NiAl x and NiAlCu x compounds with the CsCl - type structure AMSD are near each other and they are practically constant. Therefore it is possible to assume that within the homogeneity region of these compounds the interatomic bond forces are changed insignificantly

  2. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua; Wu, Xiaozhi; Wang, Rui; Liu, Qing; Gan, Liyong

    2014-01-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  3. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua

    2014-12-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  4. Fabrication and performance characterization of Al/Ni multilayer energetic films

    Science.gov (United States)

    Yang, Cheng; Hu, Yan; Shen, Ruiqi; Ye, Yinghua; Wang, Shouxu; Hua, Tianli

    2014-02-01

    Al/Ni multilayer bridge films, which were composed of alternate Al and Ni layers with bilayer thicknesses of 50, 100 and 200 nm, were prepared by RF magnetron sputtering. In each bilayer, the thickness ratio of Al to Ni was maintained at 3:2 to obtain an overall 1:1 atomic composition. The total thickness of Al/Ni multilayer films was 2 μm. XRD measurements show that the compound of AlNi is the final product of the exothermic reactions. DSC curves show that the values of heat release in Al/Ni multilayer films with bilayer thicknesses of 50, 100 and 200 nm are 389.43, 396.69 and 409.92 J g-1, respectively. The temperatures of Al/Ni multilayer films were obviously higher than those of Al bridge film and Ni bridge film. Al/Ni multilayer films with modulation of 50 nm had the highest electrical explosion temperature of 7000 K. The exothermic reaction in Al/Ni multilayer films leads to a more intense electric explosion. Al/Ni multilayer bridge films with modulation period of 50 nm explode more rapidly and intensely than other bridge films because decreasing the bilayer thickness results in an increased reaction velocity.

  5. Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cattin, L. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Reguig, B.A.; Khelil, A. [Universite d' Oran Es-Senia, LPCM2E (Algeria); Morsli, M. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Benchouk, K. [Universite d' Oran Es-Senia, LPCM2E (Algeria); Bernede, J.C. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France)], E-mail: Jean-Christian.Bernede@univ-nantes.fr

    2008-07-15

    NiO thin films have been deposited by chemical spray pyrolysis using a perfume atomizer to grow the aerosol. The influence of the precursor, nickel chloride hexahydrate (NiCl{sub 2}.6H{sub 2}O), nickel nitrate hexahydrate (Ni(NO{sub 3}){sub 2}.6H{sub 2}O), nickel hydroxide hexahydrate (Ni(OH){sub 2}.6H{sub 2}O), nickel sulfate tetrahydrate (NiSO{sub 4}.4H{sub 2}O), on the thin films properties has been studied. In the experimental conditions used (substrate temperature 350 deg. C, precursor concentration 0.2-0.3 M, etc.), pure NiO thin films crystallized in the cubic phase can be achieved only with NiCl{sub 2} and Ni(NO{sub 3}){sub 2} precursors. These films have been post-annealed at 425 deg. C for 3 h either in room atmosphere or under vacuum. If all the films are p-type, it is shown that the NiO films conductivity and optical transmittance depend on annealing process. The properties of the NiO thin films annealed under room atmosphere are not significantly modified, which is attributed to the fact that the temperature and the environment of this annealing is not very different from the experimental conditions during spray deposition. The annealing under vacuum is more efficient. This annealing being proceeded in a vacuum no better than 10{sup -2} Pa, it is supposed that the modifications of the NiO thin film properties, mainly the conductivity and optical transmission, are related to some interaction between residual oxygen and the films.

  6. First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions

    DEFF Research Database (Denmark)

    Saadi, Souheil; Hinnemann, Berit; Appel, Charlotte C.

    2011-01-01

    We investigate the structure and surface composition of the γ′-Ni3Al(111) and β-NiAl(110) alloy surfaces at conditions relevant for metal dusting corrosion related to catalytic steam reforming of natural gas. In regular service as protective coatings, nickel–aluminum alloys are protected...... by an oxide scale, but in case of oxide scale spallation, the alloy surface may be directly exposed to the reactive gas environment and vulnerable to metal dusting. By means of density functional theory and thermochemical calculations for both the Ni3Al and NiAl surfaces, the conditions under which CO and OH...... adsorption is to be expected and under which it is inhibited, are mapped out. Because CO and OH are regarded as precursors for nucleating graphite or oxide on the surfaces, phase diagrams for the surfaces provide a simple description of their stability. Specifically, this study shows how the CO and OH...

  7. Optimization of Arc-Sprayed Ni-Cr-Ti Coatings for High Temperature Corrosion Applications

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-04-01

    High Cr content Ni-Cr-Ti arc-spray coatings have proven successful in resisting the high temperature sulfidizing conditions found in black liquor recovery boilers in the pulp and paper industry. The corrosion resistance of the coatings is dependent upon the coating composition, to form chromium sulfides and oxides to seal the coating, and on the coating microstructure. Selection of the arc-spray parameters influences the size, temperature and velocity of the molten droplets generated during spraying, which in turn dictates the coating composition and formation of the critical coating microstructural features—splat size, porosity and oxide content. Hence it is critical to optimize the arc-spray parameters in order to maximize the corrosion resistance of the coating. In this work the effect of key spray parameters (current, voltage, spray distance and gas atomizing pressure) on the coating splat thickness, porosity content, oxide content, microhardness, thickness, and surface profile were investigated using a full factorial design of experiment. Based on these results a set of oxidized, porous and optimized coatings were prepared and characterized in detail for follow-up corrosion testing.

  8. Plasma Spray and Pack Cementation Process Optimization and Oxidation Behaviour of Novel Multilayered Coatings

    Science.gov (United States)

    Gao, Feng

    The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the

  9. Microstructure and mechanical properties of sputter deposited Ni/Ni{sub 3}Al multilayer films at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Lu, Fenggui; Huang, Jian; Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China)

    2016-08-15

    Highlights: • Ni/Ni{sub 3}Al multilayers are prepared by magnetron sputtering. • Both grain size and phase constitution of annealed Ni/Ni{sub 3}Al multilayers are dependent on individual layer thickness. • The hardness of annealed Ni/Ni{sub 3}Al multilayers varies with individual layer thickness and annealing temperature. • 40 nm Ni/Ni{sub 3}Al multilayer exhibits excellent hardness at elevated temperature. - Abstract: Nano-structured Ni/Ni{sub 3}Al multilayer was prepared by magnetron sputtering, with individual layer thicknesses h varying from 10 to 160 nm. The microstructure and hardness of Ni/Ni{sub 3}Al multilayer were investigated by X-ray diffraction, transmission electron microscopy and nanoindentation. The results show that the hardness increases with decreasing h for as-deposited and 500 °C annealed multilayers. When annealed at 700 °C, the hardness approach a peak value at h = 40 nm with followed by softening at smaller h. The influence of individual layer thickness, grain size as well as formation of ordered Ni{sub 3}Al on strengthening mechanisms of Ni/Ni{sub 3}Al multilayers at elevated temperature are discussed.

  10. The development of beryllium plasma spray technology for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Elliott, K.E.; Hollis, K.J.; Watson, R.D.

    1999-01-01

    Over the past five years, four international parties, which include the European Communities, Japan, the Russian Federation and the United States, have been collaborating on the design and development of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. During the ITER Engineering Design Activity (EDA), beryllium plasma spray technology was investigated by Los Alamos National Laboratory as a method for fabricating and repairing and the beryllium first wall surface of the ITER tokamak. Significant progress has been made in developing beryllium plasma spraying technology for this application. Information will be presented on the research performed to improve the thermal properties of plasma sprayed beryllium coatings and a method that was developed for cleaning and preparing the surface of beryllium prior to depositing plasma sprayed beryllium coatings. Results of high heat flux testing of the beryllium coatings using electron beam simulated ITER conditions will also be presented

  11. The Influence of Anode Inner Contour on Atmospheric DC Plasma Spraying Process

    Directory of Open Access Journals (Sweden)

    Kui Wen

    2017-01-01

    Full Text Available In thermal plasma spraying process, anode nozzle is one of the most important components of plasma torch. Its inner contour controls the characteristics of plasma arc/jet, determining the motion and heating behaviors of the in-flight particles and hence influencing the coating quality. In this study, the effects of anode inner contour, standard cylindrical nozzle, and cone-shaped Laval nozzle with conical shape diverging exit (CSL nozzle on the arc voltage, net power, thermal efficiency, plasma jet characteristics, in-flight particle behaviors, and coating properties have been systematically investigated under atmospheric plasma spraying conditions. The results show that the cylindrical nozzle has a higher arc voltage, net power, and thermal efficiency, as well as the higher plasma temperature and velocity at the torch exit, while the CSL nozzle has a higher measured temperature of plasma jet. The variation trends of the plasma jet characteristics for the two nozzles are comparable under various spraying parameters. The in-flight particle with smaller velocity of CSL nozzle has a higher measured temperature and melting fraction. As a result, the coating density and adhesive strength of CSL nozzle are lower than those of cylindrical nozzle, but the deposition efficiency is greatly improved.

  12. Plasma spraying of refractory metals and refractory hard materials. State of the art

    International Nuclear Information System (INIS)

    Eschnauer, H.; Lugscheider, E.; Jaeger, D.

    1989-01-01

    Suitable spraying processes for manufacturing refractory metals, refractory hard materials as well as spray materials with refractory components are the VPS- and IPS-spraying techniques. The advantages of these special spraying process variations are described. The reactive spraying materials are systematically organized. The characteristical properties used in purpose of improving the substrate surfaces are explained. Finally some examples of the latest results of research concerning plasma spraying of reactive materials are shown. 16 refs., 10 figs. (Author)

  13. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    A mechanical as well as metallurgical bonding is necessary. 3. Applications ... Here the feasibility of using metallic components that were plasma spray- ... To study the electrical insulation, integrity of ceramic coating etc, tests were carried out.

  14. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    Science.gov (United States)

    Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.

    2009-08-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  15. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    International Nuclear Information System (INIS)

    Salman, A; Gabbitas, B; Zhang, D; Li, J

    2009-01-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al 2 O 3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al 2 O 3 composite powder was produced from a mixture of Al and TiO 2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700 deg. C). The results showed that the composite coating has lower wear rate at high temperature (700deg. C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  16. Calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray and post-deposition thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ctibor, Pavel [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Pala, Zdenek [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Sedlacek, Josef [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Hajkova, Zuzana; Grygar, Tomas Matys [Institute of Inorganic Chemistry ASCR, v.v.i., Husinec-Rez 1001, Rez (Czech Republic)

    2015-12-15

    Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-ray diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.

  17. Sintering of Fine Particles in Suspension Plasma Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Leszek Latka

    2010-07-01

    Full Text Available Suspension plasma spraying is a process that enables the production of finely grained nanometric or submicrometric coatings. The suspensions are formulated with the use of fine powder particles in water or alcohol with some additives. Subsequently, the suspension is injected into plasma jet and the liquid additives evaporate. The remaining fine solids are molten and subsequently agglomerate or remain solid, depending on their trajectory in the plasma jet. The coating’s microstructure results from these two groups of particles arriving on a substrate or previously deposited coating. Previous experimental studies carried out for plasma sprayed titanium oxide and hydroxyapatite coatings enabled us to observe either a finely grained microstructure or, when a different suspension injection mode was used, to distinguish two zones in the microstructure. These two zones correspond to the dense zone formed from well molten particles, and the agglomerated zone formed from fine solid particles that arrive on the substrate in a solid state. The present paper focuses on the experimental and theoretical analysis of the formation process of the agglomerated zone. The experimental section establishes the heat flux supplied to the coating during deposition. In order to achieve this, calorimetric measurements were made by applying experimental conditions simulating the real coatings’ growth. The heat flux was measured to be in the range from 0.08 to 0.5 MW/m2,depending on the experimental conditions. The theoretical section analyzes the sintering during the coating’s growth, which concerns the fine particles arriving on the substrate in the solid state. The models of volume, grain boundary and surface diffusion were analyzed and adapted to the size and chemistry of the grains, temperature and time scales corresponding to the suspension plasma spraying conditions. The model of surface diffusion was found to best describe the sintering during suspension

  18. Wear of Flame-Sprayed Ni-Cr-B-Si Powder Coating on Journal for Seal Contact

    Directory of Open Access Journals (Sweden)

    Hu Sheng-Yen

    2016-01-01

    Full Text Available Flame-sprayed techniques is used in this paper to coat Ni-Cr-B-Si powder on low-carbon steel or bearing steel materials of the journal surface. The wear tester is used to explore material properties of the binding capability, surface hardness, wear and friction within each layer depth. The normal force is applied in addition to the cladding layer by not only using bearing ball but also oil seal pieces, to explore rubber material of oil seal contact journal. In experiments to explore the material and processing conditions affect the microstructure and hardness of the cladding layer, and at the same hardness, surface roughness to affect the performance of the mill run.The results showed that spraying Ni-Cr-B-Si alloy powder in mild steel sheet to melt and run, cladding layer and the substrate has a uniform distribution of fine abrasive particles and binding effect, causing the substrate surface hardness (HRC about promotion 10 times. While, if sprayed Ni-Cr-B-Si alloy powder to steel panels bearing surface because the surface coated compact structure, can reduce the surface roughness and the coefficient of friction, and more improve the wear resistance of the cladding layer.

  19. The Influence of Nanodispersed Modifiers on the Structure and Properties of Plasma-Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Igor V. Smirnov

    2017-10-01

    Full Text Available Background. Currently, plasma-sprayed coatings are widely used to protect machine parts operating under conditions of high loads and temperatures, abrasive wear and exposure to corrosive media. Objective. The aim of the paper is to improve the physico-mechanical characteristics of plasma-sprayed coatings by modification of nano-sized particles of TiO2 oxides compounds. Methods. Experimental studies of corrosion resistance, microhardness, adhesion strength and residual stresses of plasma-sprayed coatings based on the oxide aluminum ceramic powder with the addition of nanodisperse TiO2 powder were conducted. Results. It is found that addition of TiO2 nanodisperse modifier to the oxide aluminum ceramic powder composition leads to corrosion resistance increase 2.8 times in a 10 % hydrochloric acid solution. The adhesive strength of ceramic nanomodified coatings is increased by 15–20 %. Conclusions. The positive influence of nanodispersed powders on the physico-mechanical and tribological characteristics of plasma-sprayed coatings is established.

  20. Laser treatment of plasma sprayed HA coatings

    NARCIS (Netherlands)

    Khor, KA; Vreeling, A; Dong, ZL; Cheang, P

    1999-01-01

    Laser treatment was conducted on plasma sprayed hydroxyapatite (HA) coatings using a Nd-YAG pulse laser. Various laser parameters were investigated. The results showed that the HA surface melted when an energy level of greater than or equal to 2 J and a spot size of 2 mm was employed during

  1. A study on the effect of heat treatment on electrical properties of plasma sprayed YSZ

    International Nuclear Information System (INIS)

    Elshikh, S.S.M.

    2012-01-01

    Free standing samples of plasma sprayed (PS) zirconia partially stabilized with yettria (YSZ) were prepared with two machines of plasma spray deposition (Triplex gun- 100 kw, F-4 gun 64 kw) have different electrical power and spraying parameters, which produced different microstructures; contain different amounts and varieties of pores and micro-cracks.The study included heat treatment of samples at 1200 degree C for 1 h, 5 h, 10 h, 100 h and 500 h, to study the changes in macrostructure (pores and micro-cracks) which affect the electrical conductivity.The electrical properties (resistively, electrical conductivity) of plasma sprayed ZrO 2 stabilized by 8 wt. % Y 2 O 3 samples were determined by using electrical impedance spectroscopy (IS). Specimen's microstructure was examined by optical microscopy. By measuring electrical properties and connected porosity percent of the coatings obtained under various spraying conditions, it would be possible to select the optimum spraying condition to spray coatings which have high efficiency at high temperature.The results showed that the electrical conductivity of (YSZ) samples after heat treatment increased by a rate of (20%-30%) as compared to that of as sprayed.

  2. Measurement of the non-thermal properties of a low pressure spraying plasma by electric and spectroscopic methods

    International Nuclear Information System (INIS)

    Jung, Yong Ho

    2003-02-01

    For the case of an atmospheric plasma, the local thermodynamic equilibrium (LTE) model can be applied to plasmas at a nozzle entrance and to those on the axis of the plasma flame, but it is not easy to justify applying the LTE model to off-center plasma and to a low-pressure spraying plasma. Although the energy distribution of the electrons is assumed to be Maxwellian for the most of spraying plasmas, the non-Maxwellian distribution is possible for the case of low-pressure spaying plasma and edge plasma of atmospheric spraying plasma. In this work, the non-Maxwellian distribution of electrons was measured by using an electric probe installed on the fast scanning probe system, and non-LTE effects were measured by using the optical emission spectroscopy system. Distribution of the electrons of a low-pressure spraying plasma is observed not as Maxwellian but as bi-Maxwellian by the measurement of the single probe. Bi-Maxwellian distribution appears in the edge of a low pressure spraying plasma and seems to be due to the reduction of the collisonality by the drastic variation of the plasma density. Non-LTE characteristics of a low-pressure spraying plasma can be deuced from the measured results of the optical emission spectroscopy and is analyzed by the collisional radiative equilibrium (CRE) model, where the Maxwellian and the non-Maxwellian distributions are assumed for comparison. For the electron temperature, the results from optical emission spectroscopy were similar to the results from the single probe (3∼5 % in error)

  3. A study on the particle melting by plasma spraying

    International Nuclear Information System (INIS)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I.

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size

  4. A study on the particle melting by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size.

  5. Evaluation of Plasma Spray hydroxy Apatite Coatings on Metallic Materials

    International Nuclear Information System (INIS)

    Take, S.; Mitsul, K.; Kasahara, M.; Sawal, R.; Izawa, S.; Nakayama, M.; Itoi, Y.

    2007-01-01

    Biocompatible Hydroxy apatite (HAp) coatings on metallic substrate by plasma spray techniques have been developed. Long-term credibility of plasma spray HAp coatings has been evaluated in physiological saline by electrochemical measurements. It was found that the corrosion resistance of SUS316L based HAp/Ti combined coatings was excellent even after more than 10 weeks long-term immersion. It was shown that postal heat treatment improved both the crystallinity and corrosion resistance of HAp. By lowering cooling rate during heat treatment process, less cracks produced in HAp coating layer, which lead to higher credibility of HAp during immersion in physiological saline. The ICP results showed that the dissolution level of substrate metallic ions was low and HAp coatings produced in this research can be acceptable as biocompatible materials. Also, the concentration of dissolved ions from HAp coatings with postal heat treatment was lower compared to those from samples without postal heat treatment. The adherence of HAp coatings with Ti substrate and other mechanical properties were also assessed by three-point bending test. The poor adhesion of HAp coating to titanium substrate can be improved by introducing a plasma spray titanium intermediate layer

  6. Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S. [State Univ. of New York, Stony Brook, NY (United States). Inst. for Mathematical Sciences; Gnaeupel-Herold, T.; Brand, P.C.; Prask, H.J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1998-12-15

    Residual stresses in plasma-sprayed coatings were studied by three experimental techniques: curvature measurements, neutron diffraction and X-ray diffraction. Two distinct material classes were investigated: (1) single-material coatings (molybdenum) and (2) bi-material composites (nickel+alumina and NiCrAlY+yttria-stabilized zirconia), with and without graded layers. This paper deals with the effects of coating thickness and material properties on the evolution of residual stresses as a function of composition and thickness in both homogeneous and graded coatings. Mathematical analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the quenching stress plays a dominant role in the metallic phase, whereas the stress in the ceramic phase is mostly dominated by thermal mismatch. The respective thermal expansion coefficients and mechanical properties are the most important factors determining the stress sign and magnitude. The three residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. The most noteworthy outcomes are the determination of the through-thickness stress profile in graded coatings with high spatial resolution (curvature method) and determination of stress in each phase of a composite separately (neutron diffraction). (orig.) 25 refs.

  7. Plasma sprayed coatings on mild steel split moulds for uranium casting

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Padmanaban, P.V.A.; Venkatramani, N.; Singh, S.P.; Saha, D.P.; Date, V.G.

    2002-01-01

    High velocity high temperature plasma jets are used to deposit metals and ceramics on metallic substrates for oxidation and corrosion protection applications. Plasma sprayed ceramic coatings on metallic substrates are also used to prevent its reaction with molten metals. Metal-alumina duplex coatings on mild steel split moulds have been developed and successfully used for casting of uranium. Techno-economics of the coated moulds against the conventional graphite moulds are a major advantage. Mild steel moulds of 600 mm long and 75 mm in diameter have been plasma spray coated with alumina over a bond coat of molybdenum. In-plant tests showed an increase in number of castings per mould compared to the commonly used graphite moulds. (author)

  8. Tribological Properties of Ti(Al,O)/Al2O3 Composite Coating by Thermal Spraying

    Science.gov (United States)

    Salman, Asma; Gabbitas, Brian; Cao, Peng; Zhang, Deliang

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity air fuel (HVAF) thermally sprayed wear resistant Ti(Al,O)/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting and dummy blocks aluminium extrusion. A feedstock of Ti(Al,O)/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity air-fuel (HVAF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The wear resistance of the coating was investigated by a tribometer using a spherical ended alumina pin as a counter body under dry and lubricating conditions. The results showed that composite coating has lower wear rate at high temperature than at room temperature without using lubricant. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  9. Antibacterial characteristics of thermal plasma spray system.

    Science.gov (United States)

    Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A

    2018-03-15

    The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an

  10. Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni-Al system

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Aamir; Zadorozhnyy, Vladislav Yu.; Pavlov, Mikhail D.; Semenov, Dmitri V.; Kaloshkin, Sergey D. [National Univ. of Science and Technology (MISIS), Moscow (Russian Federation)

    2018-01-15

    NiAl intermetallic coating thickness of about 50 μm was fabricated on hypo-eutectoid steel by mechanical alloying using pre-activated Ni-Al composite granules as coating material. First, Ni and Al powders were mixed with the composition of Ni-50 at.% Al and mechanically activated in a planetary ball mill, until the composite granules of this powder mixture, having maximum activity (9 cm sec{sup -1}), were formed after 120 min of milling at 200 rpm. The composite granules were then taken out from the planetary ball mill just before the critical time, i. e. the time at which these granules synthesize and convert to an intermetallic NiAl compound. The highly activated composite granules of Ni-Al were then put into the vial of a vibratory ball mill with the substrate on top of the chamber. After mechanical alloying for 60 min in the vibratory ball mill, the composite granules were synthesized fully and heat was produced during the synthesis which helped producing a thick and strong adhesive coating of NiAl intermetallic on the steel substrate. The main advantage of this technique is that not only is time saved but also there is no need for any post mechanical alloying process such as annealing or laser treatment etc. to get homogeneous, strongly bonded intermetallic coatings. X-ray diffraction analysis clearly indicates the formation of NiAl phase. Micro-hardness of the coating and substrate was also measured. The cross-sectional microstructure of the composite granules and the final coating were studied by scanning electron microscopy.

  11. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-12-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 wt% NaCl solution. Empirical relationship was established to predict the corrosion rate of plasma sprayed alumina coatings by incorporating process parameters. The experiments were conducted based on a three factor, five-level, central composite rotatable design matrix. The developed relationship can be effectively used to predict the corrosion rate of alumina coatings at 95% confidence level. The results indicate that the input power has the greatest influence on corrosion rate, followed by stand-off distance and powder feed rate.

  12. Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding

    Science.gov (United States)

    Mindivan, H.

    2018-01-01

    In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.

  13. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  14. Microstructural investigations of Ni and Ni2Al3 coatings exposed in biomass power plants

    DEFF Research Database (Denmark)

    Wu, D. L.; Dahl, K. V.; Christiansen, T. L.

    2018-01-01

    The present work investigates the corrosion resistance of Ni and Ni2Al3 coated austenitic stainless steel (TP347H) tubes, which were exposed in a biomass-fired boiler with an outlet steam temperature of 540 °C for 6757 h. The Ni2Al3 coating was produced by electroplating Ni followed by low...... temperature pack cementation. After exposure, microstructural investigations were performed by light optical and electron microscopy (SEM-EDS). Electroplated Ni coatings were not protective in straw firing power plants and exhibited similar corrosion morphology as uncoated tubes. For Ni2Al3 coatings...

  15. Grain boundaries in Ni3Al. 2

    International Nuclear Information System (INIS)

    Kung, H.; Sass, S.L.

    1992-01-01

    This paper discusses the dislocation structure of small angle tilt and twist boundaries in ordered Ni 3 Al, with and without boron, investigated using transmission electron microscopy. Dislocation with Burgers vectors that correspond to anti-phase boundary (APB)-coupled superpartials were found in small angle twist boundaries in both boron-free and boron-doped Ni 3 Al, and a small angle tilt boundary in boron-doped Ni 3 Al. The boundary structures are in agreement with theoretical models proposed by Marcinkowski and co-workers. The APB energy determined from the dissociation of the grain boundary dislocations was lower than values reported for isolated APBs in Ni 3 Al. For small angle twist boundaries the presence of boron reduced the APB energy at the interface until it approached zero. This is consistent with the structure of these boundaries containing small regions of increased compositional disorder in the first atomic plane next to the interface

  16. Alumina-fluorapatite composite coating deposited by atmospheric plasma spraying: An agent of cohesion between bone and prostheses

    International Nuclear Information System (INIS)

    Ghorbel, Halima Feki; Guidara, Awatef; Danlos, Yoan; Bouaziz, Jamel; Coddet, Christian

    2017-01-01

    In order to remedy the poor biological and tribological properties of 316 L stainless steel (SS), plasma sprayed bio-ceramic coatings have been widely investigated. In the present study, a small amount of fluorapatite (Fap) was introduced into alumina in order to enhance its bioactivity. The powder feedstock was sprayed on 316 L substrate by Atmospheric Plasma Spraying (APS) technology. The roughness profiles and average roughness values were determined using 3D profilometry. The cross sectional morphologies of the coatings were examined by scanning electron microscopy (SEM). Adhesive strength, micro-hardness and tribological properties were also examined. Experimental results revealed that Al 2 O 3 /Fap coating showed a good microhardness property revealing that the calcium aluminates were quite effective in improving the Fap mechanical behavior. The tribological characteristics of both alumina and alumina-Fap coating were also compared to those of classical hydroxyapatite (Hap) coatings as reported in the literature. The main finding of this work was that Fap coating can contribute to the cohesion between bone and prostheses and thus ensure a more durable and reliable prostheses. - Highlights: • This research addresses tissue engineering and novel biomaterials consisting of combination of Al 2 O 3 and Fap. • The addition of Fap to alumina results in higher coating porosity, which may be beneficial for the mechanical fixture by bone ingrowth. • Adhesion strength of the alumina ceramic coating is improved by the Fap addition • The presence of CaO in the synthesized Fap may help in improving the mechanical resistance through to formation of the calcium aluminates

  17. Ceramic Materials Selection of Fuel Crucibles based on Plasma Spray Coating for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jonghwan; Kim, Hyungtae; Ko, Youngmo; Woo, Yoonmyung; Oh, Seokjin; Kim, Kihwan; Lee, Chanbock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-07-01

    The plasma-sprayed coating can provide the crucible with a denser, more friable coating layer, compared with the more friable coating layer formed by slurry-coating, which was used to prevent the interaction between melt and crucibles. Plasma-sprayed coatings are consolidated by mechanical interlocking of the molten particles impacting on the substrate and are dense by the heat applied by the plasma. The increased coating density is advantageous because it should not require frequent re coating and U-Zr melt penetration through the protective layer is more difficult in a dense coating than in a porous coating. In this study, we used Vacuum Plasma Spray method to investigate permanent coatings for re-usable crucibles for melting and casting of metallic fuel onto niobium substrates. Niobium was selected as a substrate because of its refractory nature and the coefficient of thermal expansion is similar to that of many of the candidate materials. After the HfC, ZrC, TiC, TaC, Y{sub 2}O{sub 3}, and 8% YSZ coatings were applied the resulting microstructure and chemical compositions was characterized to find the optimum process conditions for coating. Thermal plasma-sprayed coatings of refractory materials can be applied to develop a re-usable crucible coating for metallic fuel, such as the U-Zr alloy proposed for sodium cooled fast reactors.

  18. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Kavka, Tetyana; Bertolissi, Gabriele; Ctibor, Pavel; Vilémová, Monika; Mušálek, Radek; Nevrlá, Barbara

    2013-01-01

    Roč. 22, č. 5 (2013), s. 744-755 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA TA ČR TA01010300 Institutional support: RVO:61389021 Keywords : plasma spraying * tungsten * copper * inert gas shrouding * water-argon plasma torch * gas shroud * hybrid plasma torch * influence of spray parameters * nuclear fusion * oxidation Subject RIV: JG - Metallurgy Impact factor: 1.491, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11666-013-9895-x.pdf

  19. Dielectric Strontium Zirconate Sprayed by a Plasma Torch.

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Janata, Marek

    2017-01-01

    Roč. 10, č. 4 (2017), s. 225-230 ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Plasma spraying * Electrical properties * Strontium Zirconate * Insulators Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics www.pccc.icrc.ac.ir/Articles/18/1/18/1010/

  20. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    Science.gov (United States)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  1. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mani Menaka, S., E-mail: manimenaka.phy@gmail.com [PG and Research Department of Physics, Government Arts College, Coimbatore, 641018, Tamilnadu (India); Umadevi, G. [PG and Research Department of Physics, Government Arts College, Coimbatore, 641018, Tamilnadu (India); Manickam, M. [SRMV College of Arts and Science, Coimbatore, 641020, Tamilnadu (India)

    2017-04-15

    The spray pyrolysis (SP) technique is an important and powerful method for the preparation of nickel oxide (NiO) and copper-doped nickel oxide thin films. The best films were obtained when the substrate temperature, T{sub s} = 450 °C on glass substrates. Copper (Cu) concentrations in the films were varied from 0 to 8%. The effect of Cu concentration on the structural, morphological, spectral, optical, and electrical properties of the thin films were studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), UV–vis–NIR spectrophotometer, Hot probe and Hall system. The X-ray diffraction result shows the polycrystalline cubic structure of sprayed films with (200) preferred orientation. The variations of the structural parameters such as lattice parameters and grain sizes were investigated. The SEM image displays the surface morphology of the NiO and Cu:NiO thin films. The FTIR of the as-deposited films were associated with chemical identification. The optical transmittance and absorbance spectra of the films were measured by UV–vis–NIR spectrophotometer. The absorption coefficient and band gaps of the films were calculated using the optical method. All the NiO and Cu:NiO films were p-type. The resistivity of the above films decreases with the increase in copper concentration and so the conductivity of the films depend on the precursor concentration. - Highlights: • Pure and Cu:NiO films were deposited by Spray pyrolysis technique. • The XRD result shows the polycrystalline nature of pure and Cu:NiO films. • The formation of pure and Cu:NiO were confirmed by FTIR analysis. • Band gap values of pure and Cu:NiO decreases. • All the pure and Cu:NiO films were p-type.

  2. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Mani Menaka, S.; Umadevi, G.; Manickam, M.

    2017-01-01

    The spray pyrolysis (SP) technique is an important and powerful method for the preparation of nickel oxide (NiO) and copper-doped nickel oxide thin films. The best films were obtained when the substrate temperature, T_s = 450 °C on glass substrates. Copper (Cu) concentrations in the films were varied from 0 to 8%. The effect of Cu concentration on the structural, morphological, spectral, optical, and electrical properties of the thin films were studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), UV–vis–NIR spectrophotometer, Hot probe and Hall system. The X-ray diffraction result shows the polycrystalline cubic structure of sprayed films with (200) preferred orientation. The variations of the structural parameters such as lattice parameters and grain sizes were investigated. The SEM image displays the surface morphology of the NiO and Cu:NiO thin films. The FTIR of the as-deposited films were associated with chemical identification. The optical transmittance and absorbance spectra of the films were measured by UV–vis–NIR spectrophotometer. The absorption coefficient and band gaps of the films were calculated using the optical method. All the NiO and Cu:NiO films were p-type. The resistivity of the above films decreases with the increase in copper concentration and so the conductivity of the films depend on the precursor concentration. - Highlights: • Pure and Cu:NiO films were deposited by Spray pyrolysis technique. • The XRD result shows the polycrystalline nature of pure and Cu:NiO films. • The formation of pure and Cu:NiO were confirmed by FTIR analysis. • Band gap values of pure and Cu:NiO decreases. • All the pure and Cu:NiO films were p-type.

  3. Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

    Science.gov (United States)

    Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay

    2016-12-01

    Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

  4. Intrinsic ductility and environmental embrittlement of binary Ni3Al

    International Nuclear Information System (INIS)

    George, E.P.; Liu, C.T.; Pope, D.P.

    1993-01-01

    Polycrystalline, B-free Ni 3 Al (23.4 at.% Al), produced by cold working and recrystallizing a single crystal, exhibits room temperature tensile ductilities of 3-5% in air and 13-16% in oxygen. These ductilities are considerably higher than anything previously reported, and demonstrate that the 'intrinsic' ductility of Ni 3 Al is much higher than previously thought. They also show that the moisture present in ordinary ambient air can severely embrittle Ni 3 Al (ductility decreasing from a high of 16% in oxygen to a low of 3% in air). Fracture is predominantly intergranular in both air and oxygen. This indicates that, while moisture can further embrittle the GBs in Ni 3 Al, they persist as weak links even in the absence of environmental embrittlement. However, they are not 'intrinsically brittle' as once thought, since they can withstand relatively large plastic deformations prior to fracture. Because B essentially eliminates environmental embrittlement in Ni 3 Al - and environmental embrittlement is a major cause of poor ductility in B-free Ni 3 Al - it is concluded that a significant portion of the so-called B effect must be related to suppression of moisture-induced environmental embrittlement. However, since B-doped Ni 3 Al fractures transgranularly, whereas B-free Ni 3 Al fractures predominantly intergranularly, B must have the added effect that it strengthens the GBs. A comparison with the earlier work on Zr-doped Ni 3 Al shows that Zr improves the ductility of Ni 3 Al, both in air and (and even more dramatically) in oxygen. While the exact mechanism of this ductility improvement is not clear at present, Zr appears to have more of an effect on (enhancing) GB strength than on (suppressing) environmental embrittlement

  5. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  6. Influence of Plasma Transferred Arc Process Parameters on Structure and Mechanical Properties of Wear Resistive NiCrBSi-WC/Co Coatings

    Directory of Open Access Journals (Sweden)

    Eitvydas GRUZDYS

    2011-07-01

    Full Text Available Self-fluxing NiCrBSi and related coatings received considerable interest due to their good wear as well as corrosion resistance at moderate and elevated temperatures. Hard tungsten carbide (WC particles can be included in NiCrBSi for further increase of the coating hardness and abrasive wear resistance. Flame spray technique is widely used for fabrication of NiCrBSi films. However, in such a case, subsequent remelting of the deposited coatings by flame, arc discharge or high power laser beam is necessary. In present study NiCrBSi-WC/Co coatings were formed using plasma transferred arc process. By adjusting plasma parameters, such as current, plasma gas flow, shielding gas flow, a number of coatings were formed on steel substrates. Structure of the coatings was investigated using X-ray diffractometry. Microstructure of cross-sectioned coatings was examined using scanning electron microscopy. Hardness of the coating was evaluated by means of the Vickers hardness tests. Wear tests were also performed on specimens to determine resistance to abrasive wear. Acquired results allowed estimating the influence of the deposition process parameters on structure and mechanical properties of the coatings.http://dx.doi.org/10.5755/j01.ms.17.2.482

  7. Induction plasma-sprayed photocatalytically active titania coatings and their characterisation by micro-Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Burlacov, I.; Jirkovský, Jaromír; Muller, M.; Heimann, R. B.

    2006-01-01

    Roč. 201, 1-2 (2006), s. 255-264 ISSN 0257-8972 Grant - others:European Communities(XE) EVKI-2002-30025 Institutional research plan: CEZ:AV0Z40400503 Source of funding: R - rámcový projekt EK Keywords : titania (anatase) coatings * induction plasma spraying * suspension plasma spraying * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 1.559, year: 2006

  8. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Science.gov (United States)

    Hou, Guoliang; An, Yulong; Zhao, Xiaoqin; Zhou, Huidi; Chen, Jianmin; Li, Shuangjian; Liu, Xia; Deng, Wen

    2017-07-01

    Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al2O3 coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al2O3 generated on substrate surface after PA-HT at 200-250 °C can induce the epitaxial growth of γ-Al2O3 grains in Al2O3 coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  9. Stainless steel coatings produced through atmospheric plasma spraying study of in flight powder behavior and coating structure

    International Nuclear Information System (INIS)

    Denoirjean, A.; Denoirjean, P.; Fauchais, P.; Labbe, J.C.; Khan, A.A.

    2005-01-01

    The Stainless Steel coatings deposited through Atmospheric Plasma Spraying over mild steel surface present an interest from commercial point of view, especially for the applications where corrosion resistance or inertness towards severe environment is required. Atmospheric Plasma Spraying is fast and relatively less expensive choice as compared to Vacuum Plasma Spraying, the only limitation being the extremely reactive nature of metallic powders used. A study of the behaviour of metallic powders within an Atmospheric Plasma Jet is presented in view of better understanding and eventual improvement in coating properties. Metallic powder particles show very interesting features when individual particles are collected after passing them through a DC Blown Arc Thermal Plasma Jet under Atmospheric Pressure. The spraying was carried out under air which makes the significance of these results even more interesting from the industrial point of view. Proper control of Spraying Parameters can help produce Stainless Steel coatings of reasonably low porosity and a typical lamellar microstructure. The results of SEM, AFM and XRD are discussed. A strange oxidation phenomenon under highly non equilibrium conditions is observed. (author)

  10. Fabrication and thermal characterization of amorphous and nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti compound

    Energy Technology Data Exchange (ETDEWEB)

    Tavoosi, Majid, E-mail: ma.tavoosi@gmail.com

    2017-01-15

    In this study, the fabrication and structural characterization of amorphous/nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti phase has been performed. In this regards, milling and annealing processes were applied on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} (at. %) powder mixture for different periods of time. The prepared samples were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) and differential scanning calorimetery (DSC). According to the results, supersaturated solid solution, nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti (with average crystallite size of about 7 nm) and amorphous phases indicated three different microstructures which can be formed in Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} system during milling process. The formed supersaturated solid solution and amorphous phases were unstable and transformed to Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound during annealing process. It is shown that, Al{sub 9}FeNi phase in Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound can decompose into Al{sub 3}Ni, Al{sub 13}Fe{sub 4} and liquid phases during a reversible peritectic reaction at 809 °C. - Highlights: • We study the effect of milling process on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} alloy. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} supersaturated solid solution phase. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} amorphous phase. • We study the thermal behaviour of Al{sub 9}FeNi/Al{sub 3}Ti compound.

  11. On reactive suspension plasma spraying of calcium titanate

    OpenAIRE

    Kotlan, J. (Jiří); Pala, Z. (Zdeněk); Mušálek, R. (Radek); Ctibor, P. (Pavel)

    2016-01-01

    This study shows possibility of preparation of calcium titanate powder and coatings by reactive suspension plasma spraying. Suspension of mixture of calcium carbonate (CaCO3) and titanium dioxide (TiO2) powders in ethanol was fed into hybrid plasma torch with a DC-arc stabilized by a water–argon mixture (WSP-H 500). Various feeding distances and angles were used in order to optimize suspension feeding conditions. In the next step, the coatings were deposited on stainless steel substrates and ...

  12. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    Science.gov (United States)

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  13. Atmospheric plasma sprayed (APS) coatings of Al2O3–TiO2 system for photocatalytic application

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Ageorges, H.; Ctibor, Pavel; Murafa, Nataliya

    2009-01-01

    Roč. 8, č. 5 (2009), s. 733-738 ISSN 1474-905X. [European Meeting on Solar Chemistry and Photocatalysis:Environmental Applications /5th./. Palermo, 04.10.2008-08.10.2008] R&D Projects: GA AV ČR IAAX00430803 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z20430508 Keywords : Alumina * titania * plasma spraying * reflectivity * bangap * phase composition Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.708, year: 2009

  14. dc-plasma-sprayed electronic-tube device

    Science.gov (United States)

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  15. Density and atomic volume in liquid Al-Fe and Al-Ni binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Plevachuk, Yu. [Ivan Franko National Univ., Lviv (Ukraine). Dept. of Metal Physics; Egry, I.; Brillo, J.; Holland-Moritz, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany). Inst. fuer Raumsimulation; Kaban, I. [Chemnitz Univ. of Technolgy (Germany). Inst. of Physics

    2007-02-15

    The density of liquid Al-Fe and Al-Ni binary alloys have been determined over a wide temperature range by a noncontact technique combining electromagnetic levitation and optical dilatometry. The temperature and composition dependences of the density are analysed. A negative excess volume correlates with the negative enthalpy of mixing, compound forming ability and chemical short-range ordering in liquid Al-Fe and Al-Ni alloys. (orig.)

  16. Process development for synthesis and plasma spray deposition of LaPO4 and YPO4 for nuclear applications

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Sreekumar, K.P.; Jayakumar, S.; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Gantayet, L.M.; Krishnan, K.

    2009-01-01

    Rare earth phosphates are geologically very stable and considered as potential matrix material for nuclear waste disposal and also for many high temperature thermal barrier and corrosion barrier applications involving molten metals. This paper focuses on developmental studies related to synthesis, thermal stability and plasma spray deposition of LaPO 4 and YPO 4 . The rare earth phosphates were synthesized by chemical method from their respective oxide materials using ortho phosphoric acid. The as-precipitated powders were converted to thermal spray grade powder by compaction, sintering and crushing. Thermal stability of these phosphates up to their melting point was determined by arc plasma melting, followed by X-ray diffraction. Results indicate that LaPO 4 and YPO 4 melt congruently without decomposition. Plasma spray deposition was carried out using the in-house 40 kW atmospheric plasma spray system. Adherent coatings could be deposited on various substrates by optimizing the plasma spray parameters. (author)

  17. Studies on SiC(p) reinforced Al-Al sub 3 Ni eutectic matrix composites

    International Nuclear Information System (INIS)

    Masrom, A.K.; Foo, L.C.; Ismail, A.B.

    1996-01-01

    An investigation on processing of Al-5.69wt% Ni eutectic with SiC particulate composites is reported. The intermetallic composites are prepared by elemental powder metallurgy route and sintered at two different temperatures, i.e., 600 degree C and 620 degree C. Results show that the metal matrix was Al-Al sub 3 Ni eutectic. The phase analysis by XRD identified the presence of Al sub 3 Ni and Al as dominant phases together with silicon and Al sub 4 C sub 3 phase as minor phases. The Al sub 4 C sub 3 and Si phases are formed during sintering due to SiC-Al interface reaction. SEM micrographs also reveal the formation of microvoid surrounding the SiC particle

  18. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Anatoly I., E-mail: a_kovalev@sprg.ru; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    Highlights: • We investigated Al grain boundaries segregations in ordered pure and La-doped NiAl. • Structural segregation of Al decreases critical strain for brittle cracks nucleation. • La alloying sharply improves plasticity of NiAl intermetallic. • Metallicity of interatomic bonds on grain boundaries increases at La alloying. • We have experimentally measured by EELFS that La atoms are located in Al sublattice. - Abstract: The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (E{sub F}) position and electrons density (n{sub eff}) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  19. Evaluation of Ni-free Zr–Cu–Fe–Al bulk metallic glass for biomedical implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Zhang, Wei [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); Kai, Wu [Institute of Materials Engineering, National Taiwan Ocean University, Keelung, Taiwan (China); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN (United States); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2014-02-15

    Highlights: ► A Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} bulk metallic glass (BMG) with 50 GPa elastic modulus was used. ► This Ni-free Zr-based BMG had lower metal ion release rate than the commercial Ti. ► This Ni-free Zr-based BMG had better proteins adsorption than the commercial Ti. ► This Ni-free Zr-based BMG has a high potential for biomedical implant applications. -- Abstract: This study was conducted to investigate the surface characteristics, including the chemical composition, metal ion release, protein adsorption, and cell adhesion, of a Ni-free Zr-based (Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10}) bulk metallic glass (BMG) with low elastic modulus for biomedical implant applications. X-ray photoelectron spectroscopy was used to identify the surface chemical composition and the protein (albumin and fibronectin) adsorption of the specimen. The metal ions released from the specimen in simulated blood plasma and artificial saliva solutions were measured using an inductively coupled plasma-mass spectrometer. The cell adhesion, in terms of the morphology, focal adhesion complex, and skeletal arrangement, of human bone marrow mesenchymal stem cells was evaluated using scanning electron microscope observations and immunofluorescent staining. For comparison purposes, the above-mentioned tests were also carried out on the widely used biomedical metal, Ti. The results showed that the main component on the outermost surface of the amorphous Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG was ZrO{sub 2} with small amounts of Cu, Al, and Fe oxides. The released metal ions from Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG were well below the critical concentrations that cause negative biological effects. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG had a greater adsorption capacity for albumin and fibronectin than that of commercial biomedical Ti. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG surface showed an attached cell number similar

  20. Synthesis and characterization of n-type NiO:Al thin films for fabrication of p-n NiO homojunctions

    Science.gov (United States)

    Sun, Hui; Liao, Ming-Han; Chen, Sheng-Chi; Li, Zhi-Yue; Lin, Po-Chun; Song, Shu-Mei

    2018-03-01

    n-type NiO:Al thin films were deposited by RF magnetron sputtering. Their optoelectronic properties versus Al target power was investigated. The results show that with increasing Al target power, the conduction type of NiO films changes from p-type to n-type. The variation of the film’s electrical and optical properties depends on Al amount in the film. When Al target power is relatively low, Al3+ cations tend to enter nickel vacancy sites, which makes the lattice structure of NiO more complete. This improves the carrier mobility and film’s transmittance. However, when Al target power exceeds 40 W, Al atoms begin to enter into interstitial sites and form an Al cluster in the NiO film. This behavior is beneficial for improving the film’s n-type conductivity but degrades the film’s transmittance. Finally, Al/(p-type NiO)/(n-type NiO:Al)/ITO homojunctions were fabricated. Their performance was compared with Al/(p-type NiO)/ITO heterojunctions without an n-type NiO layer. Thanks to the better interface quality between the two NiO layers, the homojunctions present better performance.

  1. Laboratory Investigations of Ni-Al Coatings Exposed to Conditions Simulating Biomass Firing

    DEFF Research Database (Denmark)

    Wu, Duoli; Okoro, Sunday Chukwudi; Dahl, Kristian Vinter

    2016-01-01

    Fireside corrosion is a key problem when using biomass fuels in power plants. A possible solution is to apply corrosion resistant coatings. The present paper studies the corrosion and interdiffusion behaviour of a Ni-Al diffusion coating on austenitic stainless steel (TP347H). Ni-Al coatings were...... prepared by electrolytic deposition of nickel followed by pack aluminizing performed at 650˚C. A uniform and dense Ni-Al coating with an outer layer of Ni2Al3 and an inner Ni layer was formed. Samples were exposed to 560°C for 168h in an atmosphere simulating biomass combustion. This resulted in localized...... corrosion attack. Interdiffusion was studied by isothermal heat treatment in static air at 650˚C or 700˚C for up to 3000h. The Ni2Al3 gradually transformed into NiAl and Ni3Al during the interdiffusion process. Porosity developed at the interface between the Ni-Al coating and the Ni layer and expanded...

  2. Deposition of porous cathodes using plasma spray technique for reduced-temperature SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Jankovic, J.; Hui, S.; Roller, J.; Kesler, O.; Xie, Y.; Maric, R.; Ghosh, D. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    Current techniques for Solid Oxide Fuel Cell (SOFC) materials deposition are often expensive and time-consuming. Plasma-spraying techniques provide higher deposition rates, short processing times and control over porosity and composition during deposition. Optimum plasma spraying for lanthanum based cathode materials were discussed. Plasma-spraying was used to deposit cathode materials onto ceramic and stainless steel substrates to obtain highly porous structures. Lanthanum cathode materials with composition of La{sub 0.6}Sr{sub 0.4}C{sub 0.2}Fe{sub 0.8}O{sub 3} were employed in the powder form. The powder was prepared from powder precursors with different power formers and binder levels, or from produced single-phase lanthanum powders. The (La{sub 0.8}Sr{sub 0.2}){sub 0.98}MnO{sub 3} cathode material was also processed for comparison purposes. The deposition process was developed to obtain coatings with good bond strength, porosity, film thickness and residual stresses. The phase and microstructure of deposited materials were characterized using X-Ray Diffraction and Scanning Electron Microscopy (SEM). It was concluded that good flow of the powder precursors is achieved by spraying 50-100 um particle size powders and using vibrating feeders. Further processing of the spraying powders was recommended. It was noted that oxide precursors showed greater reactivity among the precursors. The best precursor reactivity and coating morphology was obtained using 40 volume per cent of graphite pore former, incorporated into the precursor mixture during wet ball milling. It was concluded that higher power levels and larger distances between the plasma gun and the substrate result in coatings with the highest porosities and best phase compositions. 5 refs., 1 tab., 6 figs.

  3. Optimization of laser cladding of cold spray coatings with B4C and Ni powders

    Science.gov (United States)

    Fomin, V. M.; Golyshev, A. A.; Malikov, A. G.; Orishich, A. M.; Filippov, A. A.; Ryashin, N. S.

    2017-12-01

    In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. The conditions of obtaining cermet layers are investigated depending on the parameters of laser cladding and cold spray. It is shown that the laser track structure significantly changes in accordance to the size of ceramic particles ranging 3-75 µm and its concentration. It is shown that the most perspective layers for additive manufacturing could be obtain from cold spray coatings with ceramic concentrations more than 50% by weight treated in the heat-conductivity laser mode.

  4. Alumina-fluorapatite composite coating deposited by atmospheric plasma spraying: An agent of cohesion between bone and prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbel, Halima Feki, E-mail: ghorbel.halima@yahoo.fr [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France); Guidara, Awatef [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); Danlos, Yoan [LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France); Bouaziz, Jamel [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); Coddet, Christian [LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France)

    2017-02-01

    In order to remedy the poor biological and tribological properties of 316 L stainless steel (SS), plasma sprayed bio-ceramic coatings have been widely investigated. In the present study, a small amount of fluorapatite (Fap) was introduced into alumina in order to enhance its bioactivity. The powder feedstock was sprayed on 316 L substrate by Atmospheric Plasma Spraying (APS) technology. The roughness profiles and average roughness values were determined using 3D profilometry. The cross sectional morphologies of the coatings were examined by scanning electron microscopy (SEM). Adhesive strength, micro-hardness and tribological properties were also examined. Experimental results revealed that Al{sub 2}O{sub 3}/Fap coating showed a good microhardness property revealing that the calcium aluminates were quite effective in improving the Fap mechanical behavior. The tribological characteristics of both alumina and alumina-Fap coating were also compared to those of classical hydroxyapatite (Hap) coatings as reported in the literature. The main finding of this work was that Fap coating can contribute to the cohesion between bone and prostheses and thus ensure a more durable and reliable prostheses. - Highlights: • This research addresses tissue engineering and novel biomaterials consisting of combination of Al{sub 2}O{sub 3} and Fap. • The addition of Fap to alumina results in higher coating porosity, which may be beneficial for the mechanical fixture by bone ingrowth. • Adhesion strength of the alumina ceramic coating is improved by the Fap addition • The presence of CaO in the synthesized Fap may help in improving the mechanical resistance through to formation of the calcium aluminates.

  5. Synthesis and densification of Cu-coated Ni-based amorphous composite powders

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Byoung-Kee; Kim, Jin-Chun

    2007-01-01

    Spherical Ni 57 Zr 20 Ti 16 Si 2 Sn 3 (numbers indicate at.%) amorphous powders were produced by the gas atomization process, and ductile Cu phase was coated on the Ni-based amorphous powders by the spray drying process in order to increase the ductility of the consolidated amorphous alloy. The characteristics of the as-prepared powders and the consolidation behaviors of Cu-coated Ni-based amorphous composite powders were investigated. The atomization was conducted at 1450 deg. C under the vacuum of 10 -2 mbar. The Ni-based amorphous powders and Cu nitrate solution were mixed and sprayed at temperature of 130 deg. C. After spray drying and reduction treatment, the sub-micron size Cu powders were coated successfully on the surface of the atomized Ni amorphous powders. The spark plasma sintering process was applied to study the densification behavior of the Cu-coated composite powders. Thickness of the Cu layer was less than 1 μm. The compacts obtained by SPS showed high relative density of over 98% and its hardness was over 800 Hv

  6. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  7. Local heteroepitaxy as an adhesion mechanism in aluminium coatings cold gas sprayed on AlN substrates

    International Nuclear Information System (INIS)

    Wüstefeld, Christina; Rafaja, David; Motylenko, Mykhaylo; Ullrich, Christiane; Drehmann, Rico; Grund, Thomas; Lampke, Thomas; Wielage, Bernhard

    2017-01-01

    Cold gas sprayed Al coatings deposited onto wurtzitic AlN substrates show excellent adhesion. As a possible adhesion mechanism, the local heteroepitaxy between Al and AlN was considered and verified experimentally in Al coatings, which were deposited using magnetron sputtering or cold gas spraying on single-crystalline and polycrystalline AlN substrates. Analysis of the local orientation relationships at the Al/AlN interfaces revealed that preferentially such lattice planes of Al align parallel with the upright lattice planes of AlN, which possess similar interplanar distances. The matching lattice planes in the Al coatings grew as continuations of the lattice planes in the AlN substrates. In all samples under study, the parallel alignment of the lattice planes {220}_A_l and {110}_A_l_N was found. Additional orientation relationships between Al and AlN arose if parallel lattice planes with similar interplanar spacing could be found in both counterparts via rotation of the lattice planes {220}_A_l around their normal direction. Still, the oriented growth of Al on AlN is only possible if Al atoms in the deposited coatings are mobile enough to rearrange along the AlN surface. Whereas the mobility of Al atoms in a magnetron sputtering process is expected to be sufficiently high, the intrinsic mobility of Al atoms in the cold gas sprayed particles is anticipated to be low. However, the auxiliary microstructure analyses have shown that local recrystallization and partial melting are two phenomena, which can facilitate the rearrangement of Al atoms within the cold gas sprayed coating.

  8. Measurements of short-range ordering in Ni3Al

    International Nuclear Information System (INIS)

    Okamoto, J.K.; Ahn, C.C.

    1992-01-01

    This paper reports on extended electron energy-loss fine structure (EXELFS) that has been used to measure short-range ordering in Ni 3 Al. Films of fcc Ni 3 Al with suppressed short-range order synthesized by vacuum evaporation of Ni 3 Al onto room temperature substrates. EXELFS data were taken from both Al K and Ni L 23 edges. The development of short-range order was observed after the samples were annealed for various times at temperatures below 350 degrees C. Upon comparison with ab initio planewave EXELFS calculations, it was found that the Warren-Cowley short-range order parameter a(1nn) changed by about -0.1 after 210 minutes of annealing at 150 degrees C

  9. Effect of H2O and Y(O on Oxidation Behavior of NiCoCrAl Coating Within Thermal Barrier Coating

    Directory of Open Access Journals (Sweden)

    WANG Yi-qun

    2017-04-01

    Full Text Available NiCoCrAl coatings containing Y and Y oxide were made using vacuum plasma deposition and high-velocity oxygen fuel respectively, high temperature oxidation dynamics and cross-section microstructures of NiCoCrAl+Y and NiCoCrAl+Y(O coatings in Ar-16.7%O2, Ar-3.3%H2O and Ar-0.2%H2-0.9%H2O at 1100℃ were investigated by differential thermal analysis (DTA and optical and electron microscope. The influencing mechanism of Y oxide on the oxidation of coatings at different atmosphere was compared by computation using First-Principles. The results show that Al2O3 layer on NiCoCrAl+Y coatings has more holes for internal oxidation on account of the element Y diffusion and enrichment on the interface. In addition, steam can promote the internal oxidation. While a thinner and uniform alumina form on NiCoCrAl+Y(O coatings because element Y is pinned by oxygen atoms during the preparation of coatings. Water vapor has less influence on protective alumina formation on the NiCoCrAl+Y(O coating. Therefore, oxidation behavior of NiCoCrAl coatings vary in composition and structure in different oxidizing atmosphere. Besides, Y and Y-enrichment oxides have key influences on the microstructure and the growth rate.

  10. Spray-dried plasma and fresh frozen plasma modulate permeability and inflammation in vitro in vascular endothelial cells

    NARCIS (Netherlands)

    Wataha, K.; Menge, T.; Deng, X.; Shah, A.; Bode, A.; Holcomb, J.B.; Potter, D.; Kozar, R.; Spinella, P.C.; Pati, S.

    2013-01-01

    BACKGROUND: After major traumatic injury, patients often require multiple transfusions of fresh frozen plasma (FFP) to correct coagulopathy and to reduce bleeding. A spray-dried plasma (SDP) product has several logistical benefits over FFP use in trauma patients with coagulopathy. These benefits

  11. Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis

    Science.gov (United States)

    Zhu, Lin; He, Jining; Yan, Dianran; Liao, Hanlin; Zhang, Nannan

    2017-10-01

    As a high-hardness and anti-frictional material, titanium carbonitride (TiCN) thick coatings or thin films are increasingly being used in many industrial fields. In the present study, TiCN coatings were obtained by atmospheric plasma spray synthesis or reactive plasma spray. In order to promote the reaction between the Ti particles and reactive gases, a home-made gas tunnel was mounted on a conventional plasma gun to perform the spray process. The oxidation behavior of the TiCN coatings under different temperatures in static air was carefully investigated. As a result, when the temperature was over 700 °C, the coatings suffered from serious oxidation, and finally they were entirely oxidized to the TiO2 phase at 1100 °C. The principal oxidation mechanism was clarified, indicating that the oxygen can permeate into the defects and react with TiCN at high temperatures. In addition, concerning the use of a TiCN coating in high-temperature conditions, the microhardness of the oxidized coatings at different treatment temperatures was also evaluated.

  12. Deposition of Composite LSCF-SDC and SSC-SDC Cathodes by Axial-Injection Plasma Spraying

    Science.gov (United States)

    Harris, Jeffrey; Qureshi, Musab; Kesler, Olivera

    2012-06-01

    The performance of solid oxide fuel cell cathodes can be improved by increasing the number of electrochemical reaction sites, by controlling microstructures, or by using composite materials that consist of an ionic conductor and a mixed ionic and electronic conductor. LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) and SSC (Sm0.5Sr0.5CoO3) cathodes were manufactured by axial-injection atmospheric plasma spraying, and composite cathodes were fabricated by mixing SDC (Ce0.8Sm0.2O1.9) into the feedstock powders. The plasma power was varied by changing the proportion of nitrogen in the plasma gas. The microstructures of cathodes produced with different plasma powers were characterized by scanning electron microscopy and gas permeation measurements. The deposition efficiencies of these cathodes were calculated based on the mass of the sprayed cathode. Particle surface temperatures were measured in-flight to enhance understanding of the relationship between spray parameters, microstructure, and deposition efficiency.

  13. Plasma spraying of hard magnetic coatings based on Sm-Co alloys

    International Nuclear Information System (INIS)

    KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Saunin, V N; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Telegin, S V

    2015-01-01

    Our research is focused on the formation of hard magnetic coatings by plasma spraying an arc-melted Sm-Co powder. We have studied basic magnetic characteristics depending on the components ratio in the alloy. A sample with a 40 wt.% Sm coating exhibits the highest coercive force (63 kOe) as compared to near-to-zero coercive force in the starting powder. X-ray structure analysis of the starting alloy and the coating reveals that the amount of SmCo 5 phase in the sprayed coating increases occupying up to 2/3 of the sample. We have also studied temperature dependence of the coating and have been able to obtain plasma sprayed permanent magnets operating within the temperature range from -100 to +500 °C. The technique used does not involve any additional thermal treatment and allows a coating to be formed right on the magnetic conductor surface irrespective of the conductor geometry

  14. Analysis of diamond-like carbon and Ti/MoS2 coatings on Ti-6Al-4V substrates for applicability to turbine engine applications

    International Nuclear Information System (INIS)

    Wu, L.; Holloway, B.C.; Kalil, C.; Manos, D.M.

    2000-01-01

    Ti-6Al-4V substrates have been coated by diamond-like carbon (DLC) films, with no surface pretreatment, and have been coated by Ti/MoS 2 films, with a simple surface pre-cleaning. The DLC films were deposited by planar coil r.f. inductively-coupled plasma-enhanced chemical vapor deposition (r.f. ICPECVD); the Ti/MoS 2 films were deposited by magnetron sputtering. Both the DLC and Ti/MoS 2 films were characterized by pull tests, hardness tests, scanning electron microscopy (SEM), and wear tests (pin-on-disk and block-on-ring) to compare their adhesion, hardness, surface topology, and wear properties to plasma-sprayed Cu-Ni-In coating currently used for turbine engine applications. The DLC films were easily characterized by their optical properties because they were highly transparent. We used variable-angle spectroscopic ellipsometry (VASE) to characterize thickness and to unequivocally extract real and complex index of refraction, providing a rapid assessment of film quality. Thicker coatings yielded the largest hardness values. The DLC coatings did not require abrasive pretreatment or the formation of bond-layers to ensure good adhesion to the substrate. Simple surface pre-cleaning was also adequate to form well-adhered Ti/MoS 2 on Ti-6Al-4V. The results show that the DLC and Ti/MoS 2 coatings are both much better fretting- and wear-resistant coatings than plasma-sprayed Cu-Ni-In. Both show excellent adhesion to the substrates, less surface roughness, harder surfaces, and more wear resistance than the Cu-Ni-In films. (orig.)

  15. Effects of RF plasma treatment on spray-pyrolyzed copper oxide films on silicon substrates

    Science.gov (United States)

    Madera, Rozen Grace B.; Martinez, Melanie M.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    The effects of radio-frequency (RF) argon (Ar) plasma treatment on the structural, morphological, electrical and compositional properties of the spray-pyrolyzed p-type copper oxide films on n-type (100) silicon (Si) substrates were investigated. The films were successfully synthesized using 0.3 M copper acetate monohydrate sprayed on precut Si substrates maintained at 350 °C. X-ray diffraction revealed cupric oxide (CuO) with a monoclinic structure. An apparent improvement in crystallinity was realized after Ar plasma treatment, attributed to the removal of residues contaminating the surface. Scanning electron microscope images showed agglomerated monoclinic grains and revealed a reduction in size upon plasma exposure induced by the sputtering effect. The current-voltage characteristics of CuO/Si showed a rectifying behavior after Ar plasma exposure with an increase in turn-on voltage. Four-point probe measurements revealed a decrease in sheet resistance after plasma irradiation. Fourier transform infrared spectral analyses also showed O-H and C-O bands on the films. This work was able to produce CuO thin films via spray pyrolysis on Si substrates and enhancement in their properties by applying postdeposition Ar plasma treatment.

  16. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    International Nuclear Information System (INIS)

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  17. Feasibility of suspension spraying of yttria-stabilized zirconia with water-stabilized plasma torch

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Bertolissi, Gabriele; Medřický, J.; Kotlan, Jiří; Pala, Zdeněk; Curry, N.

    2015-01-01

    Roč. 268, April (2015), s. 58-62 ISSN 0257-8972. [Rencontres Internationales de la Projection Thermique/6./. Limoges, 11.12.2013-13.12.2013] R&D Projects: GA ČR(CZ) GPP108/12/P552 Institutional support: RVO:61389021 Keywords : Thermal spray coating * Suspension spray ing * Thermal barrier coating * Water-stabilized plasma * High enthalpy plasma Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.139, year: 2015 http://www.sciencedirect.com/science/article/pii/S025789721400680X

  18. Laser induced plasma methodology for ignition control in direct injection sprays

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2016-01-01

    Highlights: • Laser Induced Plasma Ignition system is designed and applied to a Diesel Spray. • A method for quantification of the system effectiveness and reliability is proposed. • The ignition system is optimized in atmospheric and engine-like conditions. • Higher system effectiveness is reached with higher ambient density. • The system is able to stabilize Diesel combustion compared to auto-ignition cases. - Abstract: New combustion modes for internal combustion engines represent one of the main fields of investigation for emissions control in transportation Industry. However, the implementation of lean fuel mixture condition and low temperature combustion in real engines is limited by different unsolved practical issues. To achieve an appropriate combustion phasing and cycle-to-cycle control of the process, the laser plasma ignition system arises as a valid alternative to the traditional electrical spark ignition system. This paper proposes a methodology to set-up and optimize a laser induced plasma ignition system that allows ensuring reliability through the quantification of the system effectiveness in the plasma generation and positional stability, in order to reach optimal ignition performance. For this purpose, experimental tests have been carried out in an optical test rig. At first the system has been optimized in an atmospheric environment, based on the statistical analysis of the plasma records taken with a high speed camera to evaluate the induction effectiveness and consequently regulate and control the system settings. The same optimization method has then been applied under engine-like conditions, analyzing the effect of thermodynamic ambient conditions on the plasma induction success and repeatability, which have shown to depend mainly on ambient density. Once optimized for selected engine conditions, the laser plasma induction system has been used to ignite a direct injection Diesel spray, and to compare the evolution of combustion

  19. Constitutional and thermal point defects in B2 NiAl

    DEFF Research Database (Denmark)

    Korzhavyi, P. A.; Ruban, Andrei; Lozovoi, A. Y.

    2000-01-01

    The formation energies of point defects and the interaction energies of various defect pairs in NiAl are calculated from first principles within an order N, locally self-consistent Green's-function method in conjunction with multipole electrostatic corrections to the atomic sphere approximation...... distance on their sublattice. The dominant thermal defects in Ni-rich and stoichiometric NiAl are calculated to be triple defects. In Al-rich alloys another type of thermal defect dominates, where two Ni vacancies are replaced by one antisite Al atom. As a result, the vacancy concentration decreases...

  20. Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer

    Science.gov (United States)

    Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.

    2012-05-01

    In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.

  1. Tribological behavior of the kinetic sprayed Ni59Ti16Zr20Si2Sn3 bulk metallic glass

    International Nuclear Information System (INIS)

    Choi, Hanshin; Jo, Hyungho; An, Kyoungjun; Yoon, Sanghoon; Lee, Changhee

    2007-01-01

    Gas atomized amorphous Ni 59 Ti 16 Zr 20 Si 2 Sn 3 feedstock particles were fed into warm gas dynamics and they were successfully overlaid onto the mild steel substrate. Through the X-ray diffractometry and differential scanning calorimetry, it could be confirmed that thermally activated processes such as crystallization and in-flight particle oxidation were effectively suppressed during the modified kinetic spraying process. In order to evaluate the tribological behavior of the kinetic sprayed Ni 59 Ti 16 Zr 20 Si 2 Sn 3 BMG coating, a partially crystallized coating and a fully crystallized coating were prepared by isothermal heat treatments

  2. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    Science.gov (United States)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  3. Production of ceramic formed parts by means of plasma spraying

    International Nuclear Information System (INIS)

    Kirner, K.

    1989-01-01

    Open and closed pipes and tubes, nozzles and crucibles, conical parts and other molded articles of ceramic materials such as aluminium oxide, magnesium-aluminium spinel, zirconium oxide, zirconium silicate and special ceramics can be fabricated by spray application to a core which is afterwards removed. Because at the same time these are mainly high temperature materials and high temperature application areas, plasma spraying is preferred. The process and examples of application are described, the advantages and disadvantages are pointed out. (orig.) [de

  4. Assessment of properties thermal sprayed coatings realised using cermet blend powder

    Directory of Open Access Journals (Sweden)

    J. Brezinová

    2014-10-01

    Full Text Available The article deals with the assessment of selected properties of plasma sprayed coatings based on ZrSiO4 doped with different volume fractions of metal dopant (Ni. Mixed powders are cermet blends. Aim of the work consists of verificating the possibility to replace the application of Ni interlayer by adding Ni directly to the ceramic powder and apply them together in a single technological operation. The coatings were studied from point of view of their structure, porosity, adhesion of the coatings in relation to the volume of dopant added and wear resistance. The best properties reached composite coating doped with 12 % Ni.

  5. Electrochemical corrosion behavior of Ni-containing hypoeutectic Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Abul Hossain

    2015-12-01

    Full Text Available Electrochemical corrosion characteristics of the thermally treated 2 wt % Ni-containing Al-6Si-0.5Mg alloy were studied in NaCl solutions. The corrosion behavior of thermally treated (T6 Al-6Si-0.5Mg (-2Ni alloys in 0.1 M NaCl solution was investigated by electrochemical potentiodynamic polarization technique consisting of linear polarization method using the fit of Tafel plot and electrochemical impedance spectroscopy (EIS techniques. Generally, linear polarization experiments revealed a decrease of the corrosion rate at thermal treated Al-6Si-0.5Mg-2Ni alloy. The EIS test results showed that there is no significant change in charge transfer resistance (Rct after addition of Ni to Al-6Si-0.5Mg alloy. The magnitude of the positive shift in the open circuit potential (OCP, corrosion potential (Ecorr and pitting corrosion potential (Epit increased with the addition of Ni to Al-6Si-0.5Mg alloy. The forms of corrosion in the studied Al-6Si-0.5Mg alloy (except Al-6Si-0.5Mg-2Ni alloy are pitting corrosion as obtained from the scanning electron microscopy (SEM study.

  6. Large magnetocaloric effect of GdNiAl2 compound

    International Nuclear Information System (INIS)

    Dembele, S.N.; Ma, Z.; Shang, Y.F.; Fu, H.; Balfour, E.A.; Hadimani, R.L.; Jiles, D.C.; Teng, B.H.; Luo, Y.

    2015-01-01

    This paper presents the structure, magnetic properties, and magnetocaloric effect of the polycrystalline compound GdNiAl 2 . Powder X-ray diffraction (XRD) measurement and Rietveld refinement revealed that GdNiAl 2 alloy is CuMgAl 2 -type phase structure with about 1 wt% GdNi 2 Al 3 secondary phase. Magnetic measurements suggest that the compound is ferromagnetic and undergoes a second-order phase transition near 28 K. The maximum value of magnetic entropy change reaches 16.0 J/kg K for an applied magnetic field change of 0–50 kOe and the relative cooling power was 6.4×10 2 J/kg. It is a promising candidate as a magnetocaloric material working near liquid hydrogen temperature (~20 K) exhibiting large relative cooling power. - Highlights: • Preferred orientation with axis of [010] was found in the GdNiAl 2 compound. • The ΔS Mmax and the RCP are 16.0 J/kg K and 640 J/kg, respectively, for ΔH=50 kOe. • Relative low rare earth content in GdNiAl 2 comparing with other candidates

  7. Nanostructure of plasma-sprayed hydroxyapatite coating

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Klechkovskaya, V.V.; Bobrovsky, V.V.; Khamchukov, Yu.D.; Klubovich, V.V.

    2003-01-01

    Calcium phosphate coatings were studied by high-resolution transmission microscopy, microdiffraction, and X-ray energy-dispersive spectroscopy. Coatings were prepared by spraying hydroxyapatite targets onto copper, nickel, and chromium substrates and onto NaCl and BaF 2 single crystals in an argon plasma at a gas pressure of ∼1 Pa; the sputter power was about 200 W; and the RF-generator frequency was 13.56 MHz. Under the conditions used, thin layers of nanocrystalline hydroxyapatite were formed regardless of the nature of the substrate

  8. On reactive suspension plasma spraying of calcium titanate

    Czech Academy of Sciences Publication Activity Database

    Kotlan, Jiří; Pala, Zdeněk; Mušálek, Radek; Ctibor, Pavel

    2016-01-01

    Roč. 42, č. 3 (2016), s. 4607-4615 ISSN 0272-8842 R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : Suspensions * X-raymethods * Perovskites * Substrates * Suspension plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.986, year: 2016 http://www.sciencedirect.com/science/article/pii/S0272884215022646

  9. Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes

    Science.gov (United States)

    Yadav, Abhijit A.; Chavan, U. J.

    2018-04-01

    Transition-metal oxides with porous structure are considered for use as promising electrodes for high-performance supercapacitors. Nanocrystalline nickel oxide (NiO) thin films have been prepared as active material for supercapacitors by spray pyrolysis. In this study, the effects of the film thickness on its structural, morphological, optical, electrical, and electrochemical properties were studied. X-ray diffraction analysis revealed cubic structure with average crystalline size of around 21 nm. Scanning electron microscopy showed porous morphology. The optical bandgap decreased from 3.04 eV to 2.97 eV with increase in the film thickness. Electrical resistivity measurements indicated semiconducting behavior. Cyclic voltammetry and galvanostatic charge/discharge study revealed good pseudocapacitive behavior. Specific capacitance of 564 F g-1 at scan rate of 5 mV s-1 and 553 F g-1 at current density of 1 A g-1 was observed. An NiO-based supercapacitor delivered specific energy of 22.8 W h kg-1 at specific power of 2.16 kW kg-1, and retained 93.01% specific capacitance at current density of 1 A g-1 after 1000 cycles. Therefore, taking advantage of the porous morphology that exists in the nanostructure, such NiO materials can be considered for use as promising electrodes for high-performance supercapacitors.

  10. Fabrication and Characterization of Al/NiO Energetic Nanomultilayers

    Directory of Open Access Journals (Sweden)

    YiChao Yan

    2015-01-01

    Full Text Available The redox reaction between Al and metallic oxide has its advantage compared with intermetallic reaction and Al/NiO nanomutlilayers are a promising candidate for enhancing the performance of energetic igniter. Al/NiO nanomutlilayers with different modulation periods are prepared on alumina substrate by direct current (DC magnetron sputtering. The thicknesses of each period are 250 nm, 500 nm, 750 nm, 1000 nm, and 1500 nm, respectively, and the total thickness is 3 μm. The X-ray diffraction (XRD and scanning electron microscope (SEM results of the as-deposited Al/NiO nanomutlilayers show that the NiO films are amorphous and the layered structures are clearly distinguished. The X-ray photoelectron spectroscopy (XPS demonstrates that the thickness of Al2O3 increases on the side of Al monolayer after annealing at 450°C. The thermal diffusion time becomes greater significantly as the amount of thermal boundary conductance across the interfaces increases with relatively smaller modulation period. Differential scanning calorimeter (DSC curve suggests that the energy release per unit mass is below the theoretical heat of the reaction due to the nonstoichiometric ratio between Al and NiO and the presence of impurities.

  11. Heavy duty plasma spray gun

    International Nuclear Information System (INIS)

    Irons, G.C.; Klein, J.F.; Lander, R.D.; Thompson, H.C.; Trapani, R.D.

    1984-01-01

    A heavy duty plasma spray gun for extended industrial service is disclosed. The gun includes a gas distribution member made of a material having a coefficient of expansion different from that of the parts surrounding it. The gas distribution member is forcibly urged by a resilient member such as a coiled spring against a seal so as to assure the plasma gas is introduced into the gun arc in a manner only defined by the gas distribution member. The gun has liquid cooling for the nozzle (anode) and the cathode. Double seals are provided between the coolant and the arc region and a vent is provided between the seals which provides an indication when a seal has failed. Some parts of the gun are electrically isolated from others by an intermediate member which is formed as a sandwich of two rigid metal face pieces and an insulator disposed between them. The metal face pieces provide a rigid body to attach the remaining parts in proper alignment therewith

  12. Phase stabilization in plasma sprayed BaTiO3

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Seiner, Hanuš; Sedláček, J.; Pala, Zdeněk; Vaněk, Přemysl

    2013-01-01

    Roč. 39, č. 5 (2013), s. 5039-5048 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GA101/09/0702 Institutional support: RVO:61389021 ; RVO:61388998 ; RVO:68378271 Keywords : Spectroscopy * BaTiO3 * Plasma spraying * Spark plasma sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass; BJ - Thermodynamics (UT-L); JH - Ceramics, Fire-Resistant Materials and Glass (FZU-D) Impact factor: 2.086, year: 2013 http://www.sciencedirect.com/science/article/pii/S0272884212013582

  13. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  14. Study of Ni/Si(1 0 0) solid-state reaction with Al addition

    International Nuclear Information System (INIS)

    Huang Yifei; Jiang Yulong; Ru Guoping; Li Bingzong

    2008-01-01

    The characteristics of Ni/Si(1 0 0) solid-state reaction with Al addition (Ni/Al/Si(1 0 0), Ni/Al/Ni/Si(1 0 0) and Al/Ni/Si(1 0 0)) is studied. Ni and Al films were deposited on Si(1 0 0) substrate by ion beam sputtering. The solid-state reaction between metal films and Si was performed by rapid thermal annealing. The sheet resistance of the formed silicide film was measured by four-point probe method. The X-ray diffraction (XRD) was employed to detect the phases in the silicide film. The Auger electron spectroscopy was applied to reveal the element profiles in depth. The influence of Al addition on the Schottky barrier heights of the formed silicide/Si diodes was investigated by current-voltage measurements. The experimental results show that NiSi forms even with the addition of Al, although the formation temperature correspondingly changes. It is revealed that Ni silicidation is accompanied with Al diffusion in Ni film toward the film top surface and Al is the dominant diffusion species in Ni/Al system. However, no Ni x Al y phase is detected in the films and no significant Schottky barrier height modulation by the addition of Al is observed

  15. Systematic Investigation on the Influence of Spray Parameters on the Mechanical Properties of Atmospheric Plasma-Sprayed YSZ Coatings

    Science.gov (United States)

    Mutter, Markus; Mauer, Georg; Mücke, Robert; Guillon, Olivier; Vaßen, Robert

    2018-04-01

    In the atmospheric plasma spray (APS) process, micro-sized ceramic powder is injected into a thermal plasma where it is rapidly heated and propelled toward the substrate. The coating formation is characterized by the subsequent impingement of a large number of more or less molten particles forming the so-called splats and eventually the coating. In this study, a systematic investigation on the influence of selected spray parameters on the coating microstructure and the coating properties was conducted. The investigation thereby comprised the coating porosity, the elastic modulus, and the residual stress evolution within the coating. The melting status of the particles at the impingement on the substrate in combination with the substrate surface condition is crucial for the coating formation. Single splats were collected on mirror-polished substrates for selected spray conditions and evaluated by identifying different types of splats (ideal, distorted, weakly bonded, and partially molten) and their relative fractions. In a previous study, these splat types were evaluated in terms of their effect on the above-mentioned coating properties. The particle melting status, which serves as a measure for the particle spreading behavior, was determined by in-flight particle temperature measurements and correlated to the coating properties. It was found that the gun power and the spray distance have a strong effect on the investigated coating properties, whereas the feed rate and the cooling show minor influence.

  16. The Ni3Al and NiAl alloys: a class of intermetallics which can replace the Ni-base superalloys for the aerospace high temperature structural applications

    International Nuclear Information System (INIS)

    Lucaci, M.; Vidu, C.D.; Vasile, E.

    2001-01-01

    The paper presents the results obtained in synthesizing Ni-base refractory intermetallics from elemental powder mixes. In view of this, four mixes were made for the Ni 3 Al intermetallics and five mixes for the NiAl ones. The compound synthesis was made at T = 660 o C under vacuum by the SHS method, in the thermo-explosion mode. The variable parameters were the compacting pressure and the aluminum amount in the mixes. The obtained materials were then characterized by the microstructure and by the physical properties. The product synthesis degree was followed as well as their influence on the types of microstructures obtained. The reaction products were evidenced by x-ray diffraction and by quantitative chemical microanalysis. The obtained results revealed the formation of the Ni 3 Al compound having a primitive cubic crystal lattice with a 0 = 3,564 Aa and the formation of the NiAl compound, of a bcc lattice having a 0 = 2,86 Aa. Those obtained prove the ample influences of the powder homogeneity degree and of the powder purity on the possibility to produce an adequate synthesis, as well as the influence of the amount liquid appeared in the system on the synthesis degree, on the reaction rate and on the porosity of materials obtained. (author)

  17. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in

    2014-03-25

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E{sub d} = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices.

  18. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    International Nuclear Information System (INIS)

    Kaur, Navjot; Kaur, Davinder

    2014-01-01

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E d = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices

  19. Plasma-Sprayed LSM Protective Coating on Metallic Interconnect of SOFC

    Directory of Open Access Journals (Sweden)

    Jia-Wei Chen

    2017-12-01

    Full Text Available In this study, a (La0.8Sr0.20.98MnO3 protective layer was prepared on the C276, Crofer22 APU, SUS304, and SUS430 alloys by the atmospheric plasma spraying technique (APS. The oxidation behavior and electrical property of these metal alloys have been investigated isothermally at 800 °C in air for up to 300 h. Results showed that the ferritic steels transform into MnCr2O4 spinels and a Cr2O3 layer during isothermal oxidation. The C276 alloy formed NiCr2O4 and FeCr2O4 layers; these are protective and act as an effective barrier against chromium migration into the outer oxide layer, and the alloy demonstrated good oxidation resistance and a reasonable match to the coefficient of thermal expansion of the substrate and a low-oxide scale area-specific resistance. The ASR effects on the formation of oxide scale have been investigated, and the ASR of coated samples was below 0.024 Ω·cm2. It has good electrical conductivity for SOFC in long-term use.

  20. Nonlinear Stress-Strain Behavior of Plasma Sprayed Ceramic Coatings

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří; Kroupa, František

    2005-01-01

    Roč. 50, č. 3 (2005), s. 251-262 ISSN 0001-7043 R&D Projects: GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * ceramic coatings * Young’s modulus * nonlinear behavior * microcracks Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  1. High-temperature deformation of B2 NiAl-base alloys

    International Nuclear Information System (INIS)

    Lee, I.G.; Ghosh, A.K.

    1994-01-01

    The high-temperature deformation behavior of three rapidly solidified and processed NiAl-base alloys--NiAl, NiAl containing 2 pct TiB 2 , and NiAl containing 4 pct HfC--have been studied and their microstructural and textural changes during deformation characterized. Compressions tests were conducted at 1,300 and 1,447 K at strain rates ranging from 10 -6 to 10 -2 s -1 . HfC-containing material showed dispersion strengthening as well as some degree of grain refinement over NiAl, while TiB 2 dispersoid-containing material showed grain refinement as well as secondary recrystallization and did not improve high-temperature strength. Hot-pack rolling was also performed to develop thin sheet materials (1.27-mm thick) and from these alloys. Without dispersoids, NiAl rolled easily at 1,223 K and showed low flow stress and good ductility during the hot-rolling operation. Rolling of dispersoid-containing alloys was difficult due to strain localization and edge-cracking effects, resulting partly from the high flow stress at the higher strain rate during the rolling operation. Sheet rolling initially produced a {111} texture, which eventually broke into multiple-texture components with severe deformation

  2. Preventing Clogging In A Vacuum Plasma Spray Gun

    Science.gov (United States)

    Krotz, Phillip D.; Daniel, Ronald L., Jr.; Davis, William M.

    1994-01-01

    Modification of powder-injection ports enables lengthy, high-temperature deposition operations. Graphite inserts prevent clogging of ports through which copper powder injected into vacuum plasma spray (VPS) gun. Graphite liners eliminate need to spend production time refurbishing VPS gun, reducing cost of production and increasing productivity. Concept also applied to other material systems used for net-shape fabrication via VPS.

  3. Effect of substrate and cathode parameters on the properties of suspension plasma sprayed solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Waldbillig, D.; Tang, Z.; Burgess, A. [British Columbia Univ., Vancouver, BC (Canada); Kesler, O. [Toronto Univ., ON (Canada)

    2008-07-01

    An axial injection suspension plasma spray system has been used to produce layers of fully stabilized yttriastabilized zirconia (YSZ) that could be used as solid oxide fuel cell (SOFC) electrolytes. Suspension plasma spraying is a promising technique for the rapid production of coatings with fine microstructures and controlled porosity without requiring a post-deposition heat treatment. This new manufacturing technique to produce SOFC active layers requires the build up of a number of different plasma sprayed SOFC functional layers (cathode, electrolyte and anode) sequentially on top of each other. To understand the influence of the substrate and previouslydeposited coating layers on subsequent coating layer properties, YSZ layers were deposited on top of plasma sprayed composite lanthanum strontium manganite (LSM)/YSZ cathode layers that were first deposited on porous ferritic stainless steel substrates. Three layer half cells consisting of the porous steel substrate, composite cathode, and suspension plasma sprayed electrolyte layer were then characterized. A systematic study was performed in order to investigate the effect of parameters such as substrate and cathode layer roughness, substrate surface pore size, and cathode microstructure and thickness on electrolyte deposition efficiency, cathode and electrolyte permeability, and layer microstructure. (orig.)

  4. Moessbauer effect measurements on the intermetallic compounds Ni3Al and Ni3Ge

    International Nuclear Information System (INIS)

    Drijver, J.W.; Woude, F. van der

    1975-01-01

    Moessbauer parameters obtained from room temperature emission and absorption spectra of Ni 3 Al and Ni 3 Ga processed by a computer assuming a singlet and a doublet are given. The doublet is due to iron or cobalt atoms at the nickel site. Quadrupole splitting at 57 Fe nuclei in Ni 3 Ga is larger than in Ni 3 Al, viz. 0.52 and 0.37 mm/sec, respectively. Isomer shift at the Al/Ga position is very close to -0.02 mm/sec found in metallic nickel. Also given are the hyperfine magnetic fields at 4.2 K. Considering the preference of 57 Co and 57 Fe atoms in the lattice, the field intensities at the nickel and aluminium sites are found to be 227 +- 1 and 238 +- 1 kOe, respectively. (Z.S.)

  5. Investigation of interface boundary occurring during cold gas-dynamic spraying of metallic particles

    CERN Document Server

    Bolesta, A V; Sharafutdinov, M R; Tolochko, B P

    2001-01-01

    An interface boundary occurring during cold gas dynamic spraying of aluminum particles on a nickel substrate has been studied by the method of X-ray grazing diffraction. Presence of boundary phase of the intermetallic compound Ni sub 3 Al was found.

  6. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  7. The structure and thermal properties of plasma-sprayed beryllium for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Bartlett, A.; Elliott, K.E.; Hollis, K.J.

    1996-01-01

    Plasma spraying is being studied for in situ repair of damaged Be and W plasma facing surfaces for ITER, the next generation magnetic fusion energy device, and is also being considered for fabricating Be and W plasma-facing components for the first wall of ITER. Investigators at LANL's Beryllium Atomization and Thermal Spray Facility have concentrated on investigating the structure-property relation between as-deposited microstructures of plasma sprayed Be coatings and resulting thermal properties. In this study, the effect of initial substrate temperature on resulting thermal diffusivity of Be coatings and the thermal diffusivity at the coating/Be substrate interface (interface thermal resistance) was investigated. Results show that initial Be substrate temperatures above 600 C can improve the thermal diffusivity of the Be coatings and minimize any thermal resistance at the interface between the Be coating and Be substrate

  8. Stability of the composites: NiAl - cellular high-melting point metal

    International Nuclear Information System (INIS)

    Belomyttsev, M.Yu.; Kozlov, D.A.

    2006-01-01

    For sintered composite materials (CM) NiAl-W and NiAl-W-Mo the structure and mechanical properties are studied. A comparative analysis of the effect of hot deformation by compression at 1000-1300 Deg C on the integrity of microsamples themselves and tungsten shells of NiAl granules in CM with a cellular structure is accomplished. Local chemical composition of a NiAl/refractory metal interface in CM with cellular structure and free of it is determined. A CM structural state effect on compression yield strength at 1000 Deg C is estimated. The treatment is proposed which permits approaching cellular structured CM oxidation resistance at 1000-1100 Deg C to the level of heat stability of unalloyed NiAl or its alloy with Hf [ru

  9. High-temperature resistant MeCrAlY+Al coatings obtained by ARC-PVD method on Ni Base superalloys

    International Nuclear Information System (INIS)

    Swadzba, L.; Maciejny, A.; Mendala, B.; Supernak, W.

    1999-01-01

    Investigations of obtaining high temperature coatings on the Ni base superalloys by the ARC-PVD method, using exothermic reaction processes between Ni and Al with NiAl intermetallic formation are presented in the article. By the diffusion heating at 1050 o C NiAl high temperature diffusion coating containing 21% at. Al and 50 μm thick was obtained. In the next stage coatings with more complex chemical composition NiCoCrAlY were formed. The two targets were applied for formation of complex NiCoCrAlY coatings. The good consistence between the chemical composition of the targets and the coatings and an uniform distribution of elements in the coatings were shown. Then the surface was covered with aluminium also by the ARC-PVD method. In the vacuum chamber of the equipment a synthesis reaction between NiCoCrAlY and Al with the formation NiAl intermetallics of high Co, Cr, Y content was initiated by the changes in process parameters. The final heat treatment of coatings was conducted in the air and vacuum at 1050 o C. The strong segregation of yttrium in to the oxide scale in the specimens heated in the air was shown. It was possible to obtain NiAl intermetallic phase coatings modified by Co, Cr and Y by the ARC-PVD method. An example of the application of this method for the aircraft engine turbine blades was presented. Method of ARC-PVD gives the possibility chemical composition and high resistance to oxidizing and hot corrosion. (author)

  10. Microstructure evolution during spray rolling and heat treatment of 2124 Al

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Johnson, S.B.; Delplanque, J.-P.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray rolling is a strip-casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly remove the metal's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified strip. Spray rolling operates at a higher solidification rate than conventional twin-roll casting and is able to process a broader range of alloys at high production rates. A laboratory-scale strip caster was constructed and used to evaluate the interplay of processing parameters and strip quality for strips up to 200 mm wide and 1.6-6.4 mm thick. This paper examines microstructure evolution during spray rolling and explores how gas-to-metal mass flow ratio influences the microstructure and mechanical properties of spray-rolled 2124 Al. The influences of solution heat treatment and cold rolling on grain structure and constituent particle spheroidization are also examined.

  11. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Science.gov (United States)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  12. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.A.; Cowgill, D.F.; Snead, L.L.

    1993-01-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1--5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits

  13. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.W.; Cowgill, D.F.

    1993-01-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1-5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits. (orig.)

  14. Development of suspension plasma sprayed alumina coatings with high enthalpy plasma torch

    Czech Academy of Sciences Publication Activity Database

    Tesař, Tomáš; Mušálek, Radek; Medřický, Jan; Kotlan, Jiří; Lukáč, František; Pala, Zdeněk; Ctibor, Pavel; Chráska, Tomáš; Houdková, Š.; Rimal, V.; Curry, N.

    2017-01-01

    Roč. 325, September (2017), s. 277-288 ISSN 0257-8972 R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : Suspension plasma spraying * Aluminium oxide * Mechanical properties * Hardness * Adhesion * Wear resistance Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0257897217306424

  15. Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during Dry Reforming of Methane

    KAUST Repository

    Zhou, Lu; Li, Lidong; Wei, Nini; Li, Jun; Basset, Jean-Marie

    2015-01-01

    A series of alumina-supported Ni catalysts were prepared to examine their activity and carbon deposition during dry reforming of methane (DRM). With an increase in the final calcination temperature to T=900 °C to form exclusively NiAl2O4, a catalyst with strong metal–support interactions was obtained. During a long-term DRM reaction (of about t=100 h) at T=700 °C and with CH4/CO2=1:1, reduced Ni (from NiAl2O4) showed a high resistance to sintering and coking. The DRM kinetics behaviors of the catalysts calcined at different temperatures were also investigated. Carbon growth models were proposed to rationalize the different carbon morphologies observed on the catalysts.

  16. Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during Dry Reforming of Methane

    KAUST Repository

    Zhou, Lu

    2015-07-16

    A series of alumina-supported Ni catalysts were prepared to examine their activity and carbon deposition during dry reforming of methane (DRM). With an increase in the final calcination temperature to T=900 °C to form exclusively NiAl2O4, a catalyst with strong metal–support interactions was obtained. During a long-term DRM reaction (of about t=100 h) at T=700 °C and with CH4/CO2=1:1, reduced Ni (from NiAl2O4) showed a high resistance to sintering and coking. The DRM kinetics behaviors of the catalysts calcined at different temperatures were also investigated. Carbon growth models were proposed to rationalize the different carbon morphologies observed on the catalysts.

  17. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Chen, Zhen; Wen, Haiming; Lavernia, Enrique J.

    2014-01-01

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al 0.6 CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al 0.6 CoNiFe and Ti 0.4 Al 0.6 CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al 0.6 CoNiFe alloy. With Ti addition, the Ti 0.4 Al 0.6 CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al 0.6 CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti 0.4 Al 0.6 CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti 0.4 Al 0.6 CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti 0.4 Al 0.6 CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al 0.6 CoNiFe alloy. In contrast with HP’ed Al 0.6 CoNiFe alloy, spark plasma sintered (SPS’ed) Al 0.6 CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al 0.6 CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  18. Two-Nozzle Flame Spray Pyrolysis (FSP) Synthesis of CoMo/Al2O3 Hydrotreating Catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Pham, David K.; Brorson, Michael

    2013-01-01

    and the hydrodenitrogenation activity improved from 70 to 90 % relative activity. This suggests that better promotion of the active molybdenum sulfide phase was achieved when using two-nozzle FSP synthesis, probably due to less formation of the undesired phase CoAl2O4, which makes Co unavailable for promotion.......Two-nozzle frame spray analysis (FSP) synthesis of CoMo/Al2O3 where Co and Al are sprayed in separate flames was applied to minimize the formation of CoAl2O4 observed in one-nozzle flame spray pyrolysis (FSP) synthesis and the materials were characterized by N2-adsorption (BET), X-ray diffraction...... (XRD), UV–vis diffuse reflectance spectroscopy, Raman spectroscopy, transmission electron microscopy, and catalytic performances in hydrotreating. By varying the flame mixing distances (81–175 mm) the amount of CoAl2O4 could be minimized. As evidenced by UV–vis spectroscopy, CoAl2O4 was detected only...

  19. Development of process maps for plasma spray: case study for molybdenum

    International Nuclear Information System (INIS)

    Sampath, S.; Jiang, X.; Kulkarni, A.; Matejicek, J.; Gilmore, D.L.; Neiser, R.A.

    2003-01-01

    A schematic representation referred to as 'process maps' examines the role of process variables on the properties of plasma-sprayed coatings. Process maps have been developed for air plasma spraying of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, primary gas flow, auxiliary gas flow, and powder carrier gas flow. In-flight particle temperatures and velocities were measured and diameters estimated in various areas of the spray plume. Empirical models were developed relating the input parameters to the in-flight particle characteristics. Molybdenum splats and coatings were produced at three distinct process conditions identified from the first-order process map experiments. In addition, substrate surface temperature during deposition was treated as a variable. Within the tested range, modulus, hardness and thermal conductivity increases with particle velocity, while oxygen content and porosity decreases. Increasing substrate deposition temperature resulted in dramatic improvement in coating thermal conductivity and modulus, while simultaneously increasing coating oxide content. Indentation reveals improved fracture resistance for the coatings prepared at higher substrate temperature. Residual stress was significantly affected by substrate temperature, although not to a great extent by particle conditions within the investigated parameter range. Coatings prepared at high substrate temperature with high-energy particles suffered considerably less damage in a wear test. The mechanisms behind these changes are discussed within the context relational maps, which have been proposed

  20. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, David J., E-mail: davidjjorgensen@engr.ucsb.edu; Titus, Michael S.; Pollock, Tresa M.

    2015-10-30

    Highlights: • The single-pulse fs laser ablation threshold of NiAl is 83 mJ/cm{sup 2}. • The transition between low- and high-fluence ablation regimes is 2.8 J/cm{sup 2}. • A bimodal size distribution of nanoparticles is formed with fs laser ablation. • Smaller nanoparticles are enriched in Al during pulsed fs laser ablation. • The target surface is depleted in Al during pulsed fs laser ablation. - Abstract: The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm{sup 2} and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm{sup 2}. Two sizes of nanoparticles consisting of Al, NiAl, Ni{sub 3}Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1–30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm{sup 2} pulse, one hundred 1.7 J/cm{sup 2} pulses, or one thousand 250 mJ/cm{sup 2} pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  1. Effects of laser remelting on microstructures and immersion corrosion performance of arc sprayed Al coating in 3.5% NaCl solution

    Science.gov (United States)

    Sun, Ze; Zhang, Donghui; Yan, Baoxu; Kong, Dejun

    2018-02-01

    An arc sprayed aluminum (Al) coating on S355 steel was processed using a laser remelting (LR). The microstructures, chemical element composition, and phases of the obtained Al coating were analyzed using a field mission scanning electronic microscope (FESEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively, and the residual stresses were measured using an X-ray diffraction stress tester. The immersion corrosion tests and potentiodynamic polarization of Al coating in 3.5% NaCl solution were performed to investigate the effects of LR on its immersion corrosion behaviors, and the corrosion mechanism of Al coating was also discussed. The results show that the arc sprayed Al coating is composed of Al phase, while that by LR is composed of Al-Fe and AlO4FeO6 phases, and the porosities and cracks in the arc sprayed Al coating are eliminated by LR, The residual stress of arc sprayed Al coating is -5.6 ± 18 MPa, while that after LR is 137.9 ± 12 MPa, which deduces the immersion corrosion resistance of Al coating. The corrosion mechanism of arc sprayed Al coating is pitting corrosion and crevice corrosion, while that by LR is uniform corrosion and pitting corrosion. The corrosion potential of arc sprayed Al coating by LR shifts positively, which improves its immersion corrosion resistance.

  2. Tungsten oxide coatings deposited by plasma spray using powder and solution precursor for detection of nitrogen dioxide gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangc@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Wang, Jie [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Geng, Xin [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China)

    2016-05-25

    Increasing attention has been paid on preparation methods for resistive-type gas sensors based on semiconductor metal oxides. In this work, tungsten oxide (WO{sub 3}) coatings were prepared on alumina substrates and used as gas sensitive layers. The coatings were deposited by atmospheric plasma spray using powder, solution precursor, or a combination of both. Tungsten oxide powder through a powder port and ammonium tungstate aqueous solution through a liquid port were injected into plasma stream respectively or together to deposit WO{sub 3} coatings. Phase structures in the coatings were characterized by X-ray diffraction analyzer. The field-emission scanning electron microscopy images confirmed that the coatings were in microstructure, nanostructure or micro-nanostructure. The sensing properties of the sensors based on the coatings exposed to 1 ppm nitrogen dioxide gas were characterized in a home-made instrument. Sensing properties of the coatings were compared and discussed. The influences of gas humidity and working temperature on the sensor responses were further studied. - Highlights: • Porous gas sensitive coatings were deposited by plasma spray using powder and solution precursor. • Crystallized WO{sub 3} were obtained through hybrid plasma spray plus a pre-conditioned step. • Plasma power had an important influence on coating microstructure. • The particle size of atmospheric plasma-sprayed microstructured coating was stable. • Solution precursor plasma-sprayed WO{sub 3} coatings had nanostructure and showed good responses to 1 ppm NO{sub 2}.

  3. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhenghua; Li Jinfu; Rao Qunli; Zhou Youhe

    2008-01-01

    Thermal stability and primary phase of Al 85+x Ni 9-x La 6 (x = 0-6) and Al 85 Ni 9-x Cu x La 6 (x = 0-9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. It is revealed that replacing Ni in the Al 85 Ni 9 La 6 alloy by Cu decreases the thermal stability and makes the primary phase change from intermetallic compounds to single fcc-Al as the Cu content reaches and exceeds 4 at.%. When the Ni and La contents are fixed, replacing Al by Cu increases the thermal stability but also promotes the precipitation of single fcc-Al as the primary phase

  4. Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties

    International Nuclear Information System (INIS)

    Gourlaouen, V.; Schnedecker, G.; Boncoeur, M.; Lejus, A.M.; Collongues, R.

    1993-01-01

    Yttrium oxide coatings were obtained by plasma spray. Structural investigations on these deposits show that, due to the drastic conditions of this technique, a minor monoclinic B phase is formed in the neighborhood of the major cubic C form. The authors discuss here the influence of different plasma spray parameters on the amount of the B phase formed. They describe also the main properties of Y 2 O 3 B and C phases in these deposits such as structural characteristics, thermal stability and mechanical behavior

  5. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  6. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings

    Science.gov (United States)

    Lozano-Mandujano, D.; Poblano-Salas, C. A.; Ruiz-Luna, H.; Esparza-Esparza, B.; Giraldo-Betancur, A. L.; Alvarado-Orozco, J. M.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.

    2017-08-01

    This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness ( K IC) of the annealed coating was only 1.04 MPa m0.5.

  7. PRECIPITATION BEHAVIOR OF Co PHASES IN B2-ORDERED(Ni,Co)Al COMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; A.L. Fan; M. Nemoto

    2002-01-01

    The precipitation behavior of Co phases in B2-ordered (Ni, Co)Al has been investigatedin terms of transmission electron microscopy. Fine precipitation off cc-Co occurs in(Ni, Co)Al by aging at temperature over 973K. The orientation relationship betweenthe fcc-Co precipitates and the B2-(Ni, Co)Al matrix follows the Kurdjumow-Sachs(K-S) orientation relation. But when the aging temperature is under 873K the Coprecipitates have a hcp crystal structure. The orientation relationship between thehcp-Co precipitates and the B2-(Ni, Co)Al matrix follows the Burgers orientation re-lation. (Ni, Co)Al is hardened appreciably by the fine precipitation of both the fcc-Coand hcp-Co phases. The temperature dependence of the yield strength of precipitate-containing B2-ordered (Ni, Co)Al was investigated by compression tests over the rangeof 298-1273K. The fine precipitation of Co phases enhances greatly the low and in-termediate temperature yield strength. When the deformation temperature was over873K, the strength of precipitate-containing (Ni, Co)Al is comparable to ternary dual-phase (Ni, Co)Al+Ni3Al alloy.

  8. Preparation of TiC/Ni3Al Composites by Upward Melt Infiltration

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    TiC/Ni3Al composites have been prepared using upward infiltration method. The densificstion was performed by both Ni3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni3Al has been evidenced by finding Ni3(Al,Ti)C after fast cooling in the TiC/Ni3Al composites. The dissolution may be responsible for the infiltration and sintering. Compared with downward infiltration, the upward infiltration brought about higher strength and fracture toughness and shorter infiltration time. TiC/20 vol. pct Ni3Al composite processed by upward infiltration had a flexural strength of 1476 Mpa with a statistic Weibull modulus of 20.2 and a fracture toughness of 20.4 Mpa(m). Better mechanical properties may be attributed to melt unidirectional movement in upward infiltration.

  9. Cavitation Erosion of Plasma -sprayed Coatings

    International Nuclear Information System (INIS)

    Kim, J. J.; Park, J. S.; Jeon, S. B.

    1991-01-01

    Tungsten Carbide, chromium carbide and chromium oxide coatings were obtained on a 304 stainless steel substrate by plasma spraying technique. The coated samples were exposed to cavitation generated in distilled water by a 20KHz ultrasonic horn. The results of investigation reveal that all the samples tested are significantly eroded even within ten minutes of exposure, indicative of a short incubation period. The eroded surfaces can be characterized as having large pits and flat smooth areas. The latter may be associated with the poor cohesive strength of the coatings, which leads to the failures between individual lamellae

  10. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    Science.gov (United States)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  11. Effect of Fluctuations of DC Current on Properties of Plasma Jet Generated in Plasma Spraying Torch with Gerdien Arc

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan; Kopecký, Vladimír; Chumak, Oleksiy; Kavka, Tetyana; Mašláni, Alan; Sember, Viktor; Ctibor, Pavel

    2009-01-01

    Roč. 13, č. 2 (2009), s. 229-240 ISSN 1093-3611 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma torch * dc arc * plasma jet * fluctuations * plasma spraying Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.333, year: 2009 http://www.begellhouse.com/journals/57d172397126f956,4e2a92412d8c6bb5.html

  12. Large magnetocaloric effect of GdNiAl{sub 2} compound

    Energy Technology Data Exchange (ETDEWEB)

    Dembele, S.N.; Ma, Z.; Shang, Y.F. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Fu, H., E-mail: fuhao@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Balfour, E.A. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Hadimani, R.L.; Jiles, D.C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Teng, B.H.; Luo, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-10-01

    This paper presents the structure, magnetic properties, and magnetocaloric effect of the polycrystalline compound GdNiAl{sub 2}. Powder X-ray diffraction (XRD) measurement and Rietveld refinement revealed that GdNiAl{sub 2} alloy is CuMgAl{sub 2}-type phase structure with about 1 wt% GdNi{sub 2}Al{sub 3} secondary phase. Magnetic measurements suggest that the compound is ferromagnetic and undergoes a second-order phase transition near 28 K. The maximum value of magnetic entropy change reaches 16.0 J/kg K for an applied magnetic field change of 0–50 kOe and the relative cooling power was 6.4×10{sup 2} J/kg. It is a promising candidate as a magnetocaloric material working near liquid hydrogen temperature (~20 K) exhibiting large relative cooling power. - Highlights: • Preferred orientation with axis of [010] was found in the GdNiAl{sub 2} compound. • The ΔS{sub Mmax} and the RCP are 16.0 J/kg K and 640 J/kg, respectively, for ΔH=50 kOe. • Relative low rare earth content in GdNiAl{sub 2} comparing with other candidates.

  13. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  14. Degradación de recubrimientos ZrO2-CaO/NiAlMo por oxidación isoterma

    Directory of Open Access Journals (Sweden)

    Utrilla, V.

    2006-12-01

    Full Text Available This paper analyses the degradation of a ceramic top coating 70%ZrO2 – 30%CaO deposited onto a stainless steel AISI 304 by thermal spray, using Ni-6%Al-5%Mo as overlay coating. These thermal barrier coatings were heat treated for 48, 120 and 288 h at 800 ºC to evaluate the degradation of these materials by isothermal oxidation. The microstructure evolution during oxidation was analysed by environmental scanning electron microscopy, transmission electron microscopy, X ray microanalysis and X ray diffraction. A thermally grown oxide layer was observed between the overlay coating and the ceramic top coating after oxidation. This layer was formed by a mixed Al and Ni oxides.En este trabajo se estudia la degradación de un recubrimiento 70%ZrO2 – 30%CaO crecido por proyección térmica de oxiacetileno sobre un acero inoxidable austenítico AISI 304 y empleando una leación de Ni-6%Al-5%Mo como capa de anclaje. Los recubrimientos se trataron térmicamente en aire a 800 ºC durante 48, 120 y 288 horas para evaluar la degradación de estos materiales por oxidación isotérmica. La evolución de la microestructura de las barreras como consecuencia del proceso de oxidación se analizó mediante microscopía electrónica de barrido ambiental, microscopía electrónica de transmisión, microanálisis de rayos X (EDX y difracción de rayos X. Durante la oxidación de los recubrimientos creció una capa intermedia de óxidos (“thermally grown oxides”, TGO entre el anclaje metálico y el recubrimiento cerámico formada por una mezcla de óxidos de Al y Ni.

  15. In situ synthesis of NiAl–NbB2 composite powder through combustion synthesis

    International Nuclear Information System (INIS)

    Shokati, Ali Akbar; Parvin, Nader; Sabzianpour, Naser; Shokati, Mohammad; Hemmati, Ali

    2013-01-01

    Highlights: ► A Novel NiAl matrix composite powder with 0–40 wt.% NbB 2 was synthesized. ► Composite powders were synthesized by thermal explosion reaction of Ni–Al–Nb–B system. ► Microhardness of NiAl considerably increased with raising NbB 2 content. ► Synthesized composite powders is a good candidate as precursor for thermal barrier application. - Abstract: Synthesis of a novel NiAl matrix composite powder reinforced with 0–40 wt.% NbB 2 by combustion synthesis in thermal explosion mode was investigated. The elemental powders of Ni, Al, Nb, and amorphous boron were used as starting material. For all compositions final products consisted of only the NiAl and NbB 2 phases. Coarser NbB 2 with a relatively uniform distribution in NiAl matrix was formed with rising NbB 2 content. Microhardness of NiAl considerably increased from 377 ± 13 HV 0.05 to 866 ± 81 HV 0.05 for NiAl with 40 wt.% NbB 2 . High microhardness, proper size and distribution of NbB 2 in NiAl matrix make it a good candidate as precursor for thermal spray application.

  16. Effect of Si and Co on the crystallization of Al-Ni-RE amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.H. [Key Lab of Liquid structure and Heredity of Materials, Ministry of Education, South Campus of Shandong University, Jinan 250061 (China); Bian, X.F. [Key Lab of Liquid structure and Heredity of Materials, Ministry of Education, South Campus of Shandong University, Jinan 250061 (China)], E-mail: xfbian@sdu.edu.cn

    2008-04-03

    Crystallization of Al{sub 83}Ni{sub 10}Si{sub 2}Ce{sub 5}, Al{sub 85}Ni{sub 10}Ce{sub 5}, Al{sub 87}Ni{sub 7}Nd{sub 6} and Al{sub 87}Ni{sub 5}Co{sub 2}Nd{sub 6} amorphous alloys has been studied by using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The multiple transition metal (TM) (containing metalloid element) have significant effect on the crystallization behavior. A small addition of Si transforms a eutectic crystallization (Al{sub 85}Ni{sub 10}Ce{sub 5}) to a primary crystallization (Al{sub 83}Ni{sub 10}Si{sub 2}Ce{sub 5}); while a small addition of Co transforms a primary crystallization (Al{sub 87}Ni{sub 7}Nd{sub 6}) to a eutectic crystallization (Al{sub 87}Ni{sub 5}Co{sub 2}Nd{sub 6}). In addition, the activation energies for crystallization (E{sub a}) are obtained to be 191, 290, 221 and 166 kJ/mol for the Al{sub 83}Ni{sub 10}Si{sub 2}Ce{sub 5}, Al{sub 85}Ni{sub 10}Ce{sub 5}, Al{sub 87}Ni{sub 5}Co{sub 2}Nd{sub 6} and Al{sub 87}Ni{sub 7}Nd{sub 6} amorphous alloys based on the Kissinger method, respectively. It is found that the primary crystallization of fcc-Al is characteristic of a lower E{sub a}, as compared with eutectic crystallization.

  17. Influence of Ni content on physico-chemical characteristics of Ni, Mg, Al-Hydrotalcite like compounds

    Directory of Open Access Journals (Sweden)

    Alexandre Carlos Camacho Rodrigues

    2003-12-01

    Full Text Available The physico-chemical properties of a series of Ni,Mg,Al-HTLC with Al/(Al+Mg+Ni = 0.25 and low Ni/Mg ratios were studied by means of X-ray diffraction (XRD, thermogravimetric (TGA and thermodifferential (DTA analysis, N2 physissorption and temperature programmed reduction (TPR. The as-synthesized materials were well-crystallized, with XRD patterns typical of the HTLCs in carbonate form. Upon calcination and dehydration the dehydroxilation of the layers with concurrent decomposition of carbonate anions produced mixed oxides with high surface area. XRD analysis indicated that the different nickel and aluminum oxides species are well-dispersed in a poor-crystallized MgO periclase-type phase. As observed by TPR, the different Ni species showed distinct interactions with Mg(AlO phase, which were influenced by both nickel content and calcination temperature. Regardless of the the nickel content, the reduction of nickel species was not complete as indicated by the presence of metallic dispersions.

  18. Preparation of Al2O3/Mo nanocomposite powder via chemical route and spray drying

    International Nuclear Information System (INIS)

    Lo, M.; Cheng, F.; Wei, W.J.

    1996-01-01

    A route to prepare nanometer-sized Mo particulates in Al 2 O 3 was attempted by a combination of solution reactions in molecular scale and forcing precipitation by a spray-drying technique. MoO 3 was first dissolved in ammonia water and then added in the slurry with high purity, submicrometer Al 2 O 3 powder. Mixed suspension was spray-dried, and then the dried granules were reduced by hydrogen gas and further hot-pressing to a bulky composite at various temperatures. Dissolution of Mo oxide, adsorption reactions on alumina surface, and surface potential of alumina particles in homogeneous ammonia suspension were studied. Characterization of the granules, including compactability, flowing properties, surface morphology, grain growth of Mo and Al 2 O 3 , and mixing homogeneity, were examined. Homogeneity of the spray-dried granules was determined by the calculation of mixing index and the observation of the microstructure of sintered body. The existence of intergranular, intragranular, and nanosized Mo particulates within Al 2 O 3 grains was observed by transmission electron microscopy (TEM). All the evidences revealed that homogeneous composites with nanometer-sized Mo had been successfully prepared by this attempt with the proposed chemical route and following spray-drying process. copyright 1996 Materials Research Society

  19. Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report

    Science.gov (United States)

    Johnson, David Ray

    1994-01-01

    In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  20. FABRICATION OF Cu-Al-Ni SHAPE MEMORY THIN FILM BY THERMAL EVOPRATION

    OpenAIRE

    Özkul, İskender; Canbay, Canan Aksu; Tekataş, Ayşe

    2017-01-01

    Among the functional, materials shape memory alloysare important because of their unique properties. So, these materials haveattracted more attention to be used in micro/nano electronic andelectromechanic systems. In this work, thermal evaporation method has been usedto produce CuAlNi shape memory alloy thin film. The produced CuAlNi thin filmhas been characterized and the presence of the martensite phase wasinvestigated and compared with the CuAlNi alloy sample. CuAlNi shape memoryalloy thin...

  1. Effet des additions sur la microstructure et le comportement ...

    African Journals Online (AJOL)

    The friction coefficient was determined under a normal load of 5 N with sliding speed of 11.31 cm/s and at room temperature. The NiAl coating present the lowest coefficient of friction. The incorporation of the particles improves the coefficient of friction. Keywords: Thermal fatigue-erosion-plasma Spray-NiAl coating-friction ...

  2. Characterization of Fe-based alloy coating deposited by supersonic plasma spraying

    International Nuclear Information System (INIS)

    Piao, Zhong-yu; Xu, Bin-shi; Wang, Hai-dou; Wen, Dong-hui

    2013-01-01

    Highlights: • Fe-based coating exhibited few oxides, high density and bond strength. • Amorphous/nanocrystalline phases were found in the coating. • Formation mechanism of excellent coating was investigated. -- Abstract: The objective of the present study is to characterize the Fe-based alloy coating deposited by the supersonic plasma spraying process. The condition of the melting particles was in situ monitored. The microstructure of the coating was examined by scanning electron microscope and high resolution transmission electron microscope. The phase composition was examined by X-ray diffraction. The microhardness and porosity were also measured, respectively. Results show the prepared coatings have excellent properties, such as few oxides, high microhardness and a low porosity amount. At the same time, a mass of amorphous/nanocrystalline phases was found in the coating. The mechanism of the formation of amorphous/nanocrystalline phases was investigated. The appropriate material composition of spraying material and flash set process of plasma spraying are the key factors. Moreover, the mechanism for oxidation resistance is also investigated, where the separation between melting metal and oxygen by the formation of SiO 2 films is the key factor

  3. Wet Slurry Abrasion Tests of Ceramic Coatings Deposited by Water-Stabilized Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří

    2003-01-01

    Roč. 48, č. 2 (2003), s. 203-214 ISSN 0001-7043 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma spraying, wear resistence, ceramic coating Subject RIV: BL - Plasma and Gas Discharge Physics

  4. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    Science.gov (United States)

    Palanivelu, R.; Ruban Kumar, A.

    2014-10-01

    Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14-20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  5. Bond strength of plasma sprayed ceramic coatings on phosphate steels

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Mastný, L.; Sýkora, V.; Pala, Zdeněk; Brožek, Vlastimil

    2015-01-01

    Roč. 54, č. 2 (2015), s. 411-414 ISSN 0543-5846 R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : phosphating * plasma spraying * ceramic coatings * corrosion * bond strength Subject RIV: CA - Inorganic Chemistry Impact factor: 0.959, year: 2014

  6. Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Łukasz, E-mail: l.maj@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Morgiel, Jerzy; Szlezynger, Maciej [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Bała, Piotr; Cios, Grzegorz [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Kawiory St., 30-055 Kraków (Poland)

    2017-06-01

    The effect of heating rates of Ni(V)/Al NanoFoils{sup ®} was investigated with transmission electron microscopy (TEM). The Ni(V)/Al were subjected to heating by using differential scanning calorimetry (DSC), in-situ TEM or electric pulse. Local chemical analysis was carried out using energy dispersive X-ray spectroscopy (EDS). Phase analysis was done with X-ray diffractions (XRD) and selected area electron diffractions (SAED). The experiments showed that slow heating in DSC results in development of separate exothermic effects at ∼230 °C, ∼280 °C and ∼390 °C, corresponding to precipitation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl phases, respectively, i.e. like in vanadium free Ni/Al multilayers. Further heating to 700 °C allowed to obtain a single phase NiAl foil. The average grain size (g.s.) of NiAl phase produced in the DSC heat treated foil was comparable with the Ni(V)/Al multilayer period (∼50 nm), whereas in the case of reaction initiated with electric pulse the g.s. was in the micrometer range. Upon slow heating vanadium tends to segregate to zones parallel to the original multilayer internal interfaces, while in SHS process vanadium-rich phases precipitates at grain boundaries of the NiAl phase. - Highlights: • Peaks in DSC heating of Ni(V)/Al were explained by in-situ TEM observations. • Nucleation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl at slow heating of Ni(V)/Al was documented. • Near surface NiAl obtained from NanoFoil show Ag precipitates at grain boundaries.

  7. The corrosion and mechanical behaviour of Al, FeCrAlY, and CoCrAlY coatings in aggressive environments

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; Geerdink, Bert; Fransen, T.; Gellings, P.J.

    1991-01-01

    The mechanical and chemical behaviours of aluminide coatings applied by pack cementation, FeCrAlY coatings applied by plasma spraying and CoCrAlY coatings applied by electrodeposition were studied. The coatings were pretreated for 0.5 h in argon at 1373 K to improve the adhesion and structural

  8. Thermodynamic analysis of (Ni, Fe)3Al formation by mechanical alloying

    International Nuclear Information System (INIS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M.H.

    2012-01-01

    Highlights: ► (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying. ► We use a thermodynamic analysis to predict the more stable phase. ► We calculate the Gibbs free-energy changes by using extended Miedema model. ► The results of MA compared with thermodynamic analysis and showed a good agreement with it. - Abstract: (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni 50 Fe 25 Al 25 . Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe) 3 Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.

  9. Structural and fluorescence properties of Ni:MgO-SiO2 particles synthesized by flame spray pyrolysis

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Ohishi, Yasutake; Tani, Takao

    2006-01-01

    Structural and fluorescence properties of flame spray-synthesized Ni 1 mol%-doped MgO-SiO 2 nano-particles (MgO:SiO 2 = 100:0, 50:50, 25:75 and 0:100 in mol%) were investigated as a first step to prepare transparent materials containing Ni:MgO for optical gain media. Polyhedral aggregates of primary particles with diameters of 8-19 nm were obtained for all compositions. The 100MgO particles were single crystalline and showed the fluorescences (centered at 1260 and 1320 nm) and lifetime (3.8 ms) similar to those of solid state-synthesized Ni:MgO polycrystalline powder under laser excitation at 976 nm, suggesting Ni ions incorporated in MgO

  10. Preparation and properties of Ni80Fe20/Al2O3/Co magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Chen Jing; Du Jun; Wu Xiaoshan; Pan Minghu; Long Jianguo; Zhang Wei; Lu Mu; Hu An; Zhai Hongru

    2000-01-01

    With plasma oxidisation to create an insulating layer of Al 2 O 3 , the authors have repeatedly fabricated Ni 80 Fe 20 /Al 2 O 3 /Co magnetic tunnel junctions which show obvious tunneling magnetoresistance (TMR) effect. At room temperature, the maximum TMR ratio reaches 6.0%. The switch field can be less than 800 A/m with a relative step width of about 2400 A/m. The junction resistance changes from hundreds of ohms to hundreds of kilo-ohms

  11. Site determination of Ni atoms in Cu-Al-Ni shape memory alloys by electron channelling enhanced microanalysis

    International Nuclear Information System (INIS)

    Nakata, Yoshiyuki; Tadaki, Tsugio; Shimizu, Ken-ichi

    1990-01-01

    The crystallographic site of Ni atoms in the parent phase of differently heat-treated Cu-28.6Al-3.7Ni (at.%) shape memory alloys has been examined by electron channelling enhanced microanalysis (ALCHEMI) in order to clarify effects of heat-treatments on the Ni atom site and M s temperature. The heat-treatments were as follows: (a) Quenching into a 10% NaOH solution at 263 K, (b) Quenching into hot water at 363 K and (c) Aging at 523 K for 3.6 ks after treatment (b). The M s temperatures of specimens (a), (b) and (c) were 158, 185 and 259 K, respectively, increasing with lowering quenching rate or aging. ALCHEMI revealed that Ni atoms occupied an identical site in all the three kinds of specimens: The Ni atoms were located at the nearest neighbor sites around Al atoms. This preferential occupation of Ni atoms was attributed to the strong binding force between Ni and Al atoms. Thus, the change in M s temperature due to different heat-treatments was not directly related to the crystallographic site of Ni atoms, but might be caused by the ordering between the next nearest neighbor Cu and Al atoms. (author)

  12. Dielectric properties of plasma sprayed silicates subjected to additional annealing

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Nevrlá, Barbara; Neufuss, Karel

    2017-01-01

    Roč. 10, č. 2 (2017), s. 105-114 ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Annealing * Dielectric properties * Plasma spraying * Silicates * Electrical properties * Insulators Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films http://pccc.icrc.ac.ir/Articles/1/18/990/

  13. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    International Nuclear Information System (INIS)

    Bakan, Emine

    2015-01-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y 2 O 3 -ZrO 2 , YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La) 2 Zr 2 O 7 ) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al 2 O 3 ) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La 2 Zr 2 O 7 . Hence, the goal of this research was to investigate plasma-sprayed Gd 2 Zr 2 O 7 (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as thermal conductivity, coefficient of thermal expansion as well

  14. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guoliang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); An, Yulong, E-mail: csuayl@sohu.com [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Xiaoqin; Zhou, Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Shuangjian; Liu, Xia; Deng, Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-07-31

    Highlights: • Columnar δ-Al{sub 2}O{sub 3} induces epitaxial growth of γ-Al{sub 2}O{sub 3} grains in coating after PA-HT. • Epitaxial growth greatly enhances interfacial bonding of Al{sub 2}O{sub 3} coating on Al alloy. • Penetration of Al{sub 2}O{sub 3} droplets into Al alloy increases interfacial anchorage force. • Crystal structure of the alumina coatings can be refined after PA-HT of substrate. • Mechanical and tribological properties of the coatings are improved after PA-HT. - Abstract: Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al{sub 2}O{sub 3} coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al{sub 2}O{sub 3} generated on substrate surface after PA-HT at 200–250 °C can induce the epitaxial growth of γ-Al{sub 2}O{sub 3} grains in Al{sub 2}O{sub 3} coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  15. The corrosion resistance of HVOF sprayed coatings with intermetallic phases in aggressive environments

    OpenAIRE

    B. Formanek; J. Cizner; B. Szczucka-Lasota; R. Przeliorz

    2006-01-01

    Purpose: The cyclic corrosion behavior of coatings with intermetallic matrix ( FeAl, NiAl and FeAl-TiAl) was investigated in aggressive gases.Design/methodology/approach: The composite coatings strengthened by a fine dispersive Al2O3 and other ceramic phases were thermally sprayed by HVOF method in Jet Kote 2 system. A kinetics test was carried out by periodic method for exposure times of up to 500 hours. Mass changes of the studied coatings during the corrosion test are presented. The surfac...

  16. Efficient acetone sensor based on Ni-doped ZnO nanostructures prepared by spray pyrolysis technique

    Science.gov (United States)

    Darunkar, Swapnil S.; Acharya, Smita A.

    2018-05-01

    Ni-doped ZnO thin film was prepared by home-built spray pyrolysis unit for the detection of acetone at 300°C. Scanning electron microscopic (SEM) images of as-developed thin film of undoped ZnO exhibits large quantity of spherical, non-agglomerated particles with uniform size while in Ni-doped ZnO, particles are quite non-uniform in nature. The particle size estimated by using image J are obtained to be around 20-200 nm. Ni-doping effect on band gaps are determined by UV-vis optical spectroscopy and band gap of Ni-doped ZnO is found to be 3.046 eV. Nickel doping exceptionally enhances the sensing response of ZnO as compared to undoped ZnO system. The major role of the Ni-doping is to create more active sites for chemisorbed oxygen on the surface of sensor and correspondingly, to improve the sensing response. The 6 at.% of Ni-doped ZnO exhibits the highest response (92%) for 100 ppm acetone at 300 °C.

  17. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    Science.gov (United States)

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  18. High-rate sputter deposition of NiAl on sapphire fibers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, K.; Martinez, C.; Cremer, R.; Neuschuetz, D. [Lehrstuhl fuer Theoretische Huettenkunde, RWTH Aachen, Aachen (Germany)

    2002-07-01

    Once the fiber-matrix bonding has been optimized to meet the different requirements during fabrication and operation of the later composite component, sapphire fiber reinforced NiAl will be a potential candidate to substitute conventional superalloys as structural material for gas turbine blades. To improve the composite fabrication process, a direct deposition of the intermetallic matrix material onto hBN coated sapphire fibers prior to the consolidation of the fiber-matrix composite is proposed. It is believed that this will simplify the fabrication process and prevent pore formation during the diffusion bonding. In addition, the fiber volume fraction can be quite easily adjusted by varying the NiAl coating thickness. For this, a high-rate deposition of NiAl is in any case necessary. It has been achieved by a pulsed DC magnetron sputtering of combined Al-Ni targets with the fibers rotating between the two facing cathodes. The obtained nickel aluminide coatings were analyzed as to structure and composition by means of X-ray (GIXRD) as well as electron diffraction (RHEED) and X-ray photoelectron spectroscopy (XPS), respectively. The morphology of the NiAl coatings was examined by SEM. (orig.)

  19. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    Science.gov (United States)

    You, J. H.; Höschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  20. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    International Nuclear Information System (INIS)

    You, J.H.; Hoeschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated

  1. Influence of dilution level on oxidation resistance of plasma transferred arc NiCrAlC coatings

    International Nuclear Information System (INIS)

    Benegra, M.; Farina, A.B.; Goldenstein, H.; Oliveira, A.S.C.M. d'

    2010-01-01

    NICRALC coatings processed by Plasma Transferred Arc (PTA) are a new proposal to protect the components exposed to high-temperature oxidation environments. This study evaluated the relationship between the compositional changes in the coatings due to the different levels of dilution, and the morphology and phase constitution of the developing protective oxide scale. Elementary powders were mixed and deposited by PTA welding onto AISI 316L stainless steel, varying current intensity (100 and 130 A). The microstructure of specimens was characterized by means of scanning electron microscopy with local chemical analysis and by X-Ray diffraction. The coatings were subjected to thermo-gravimetric balance (TGA), using temperatures range of 700-1,000 °C during 5 hours. Results revealed the alumina formation, independent on the compositional variation. For low dilution level transient q-alumina was observed, while for high dilution level resulted in a stable a-alumina. This difference was attributed to the complexity of aluminum diffusion in intermetallic structures. The accumulated mass were smaller than other materials employed to high-temperature, such as as-cast NiCrAlC, indicating better oxidation resistance of the tested coatings. (author)

  2. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  3. Creep Properties of NiAl-1Hf Single Crystals Re-Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Locci, Ivan E.; Darolia, Ram; Bowman, Randy R.

    2000-01-01

    NiAl-1Hf single crystals have been shown to be quite strong at 1027 C, with strength levels approaching those of advanced Ni-based superalloys. Initial testing, however, indicated that the properties might not be reproducible. Study of the 1027 C creep behavior of four different NiAl-1Hf single-crystal ingots subjected to several different heat treatments indicated that strength lies in a narrow band. Thus, we concluded that the mechanical properties are reproducible. Recent investigations of the intermetallic NiAl have confirmed that minor alloying additions combined with single-crystal growth technology can produce elevated temperature strength levels approaching those of Ni-based superalloys. For example, General Electric alloy AFN 12 {Ni-48.5(at.%) Al-0.5Hf-1Ti-0.05Ga} has a creep rupture strength equivalent to Rene 80 combined with a approximately 30-percent lower density, a fourfold improvement in thermal conductivity, and the ability to form a self-protective alumina scale in aggressive environments. Although the compositions of strong NiAl single crystals are relatively simple, the microstructures are complex and vary with the heat treatment and with small ingot-toingot variations in the alloy chemistry. In addition, initial testing suggested a strong dependence between microstructure and creep strength. If these observations were true, the ability to utilize NiAl single-crystal rotating components in turbine machinery could be severely limited. To investigate the possible limitations in the creep response of high-strength NiAl single crystals, the NASA Glenn Research Center at Lewis Field initiated an in depth investigation of the effect of heat treatment on the microstructure and subsequent 1027 C creep behavior of [001]-oriented NiAl-1Hf with a nominal chemistry of Ni-47.5Al-1Hf-0.5Si. This alloy was selected since four ingots, grown over a number of years and possessing slightly different compositions, were available for study. Specimens taken from the

  4. Fabrication and structure of bulk nanocrystalline Al-Si-Ni-mishmetal alloys

    International Nuclear Information System (INIS)

    Latuch, Jerzy; Cieslak, Grzegorz; Kulik, Tadeusz

    2007-01-01

    Al-based alloys of structure consisting of nanosized Al crystals, embedded in an amorphous matrix, are interesting for their excellent mechanical properties, exceeding those of the commercial crystalline Al-based alloys. Recently discovered nanocrystalline Al alloys containing silicon (Si), rare earth metal (RE) and late transition metal (Ni), combine high tensile strength and good wear resistance. The aim of this work was to manufacture bulk nanocrystalline alloys from Al-Si-Ni-mishmetal (Mm) system. Bulk nanostructured Al 91-x Si x Ni 7 Mm 2 (x = 10, 11.6, 13 at.%) alloys were produced by ball milling of nanocrystalline ribbons followed by high pressure hot isostating compaction

  5. Phase Formation Control in Plasma Sprayed Alumina–Chromia Coatings

    Czech Academy of Sciences Publication Activity Database

    Dubský, Jiří; Chráska, Pavel; Kolman, Blahoslav Jan; Stahr, C.Ch.; Berger, L.-M.

    2011-01-01

    Roč. 55, č. 3 (2011), s. 294-300 ISSN 0862-5468 R&D Projects: GA ČR GA106/08/1240 Institutional research plan: CEZ:AV0Z20430508 Keywords : Alumina * Chromia * Plasma spraying * Phase stabilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.382, year: 2011 http://www.ceramics-silikaty.cz/2011/2011_03_294.htm

  6. Computational image analysis of Suspension Plasma Sprayed YSZ coatings

    Directory of Open Access Journals (Sweden)

    Michalak Monika

    2017-01-01

    Full Text Available The paper presents the computational studies of microstructure- and topography- related features of suspension plasma sprayed (SPS coatings of yttria-stabilized zirconia (YSZ. The study mainly covers the porosity assessment, provided by ImageJ software analysis. The influence of boundary conditions, defined by: (i circularity and (ii size limits, on the computed values of porosity is also investigated. Additionally, the digital topography evaluation is performed: confocal laser scanning microscope (CLSM and scanning electron microscope (SEM operating in Shape from Shading (SFS mode measure surface roughness of deposited coatings. Computed values of porosity and roughness are referred to the variables of the spraying process, which influence the morphology of coatings and determines the possible fields of their applications.

  7. The effect of YBa2Cu3O7-x powder characteristics on thick coatings prepared by atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Georgiopoulos, E.; Tsetsekou, A.

    2000-01-01

    The development of superconducting YBa 2 Cu 3 O 7-x plasma sprayed coatings on metal substrates can be very useful for applications such as targets for thin-film deposition techniques (sputtering, laser ablation, ion assisted deposition) or magnetic shielding, due to the brittle nature of bulk superconductors. The plasma spraying technique is very flexible and can be used for manufacturing components with a large variety of geometries. This technique requires the use of powders with good rheological characteristics. In this study, YBa 2 Cu 3 O 7-x powders were produced by using the conventional solid-state reaction route and also by spray drying a solution of nitrate precursors. Both powders, as well as mixtures of them, were plasma sprayed to develop coatings on stainless-steel substrates, with the aim of studying the effect of the feedstock powder characteristics on the coating properties. It was found that by optimizing the plasma spraying conditions, good quality coatings could be obtained. However, the powder morphology and homogeneity significantly affect the coating quality. More homogeneous powders lead to better results, the spray-dried powder being the best because of its enhanced rheological properties and good morphology. (author)

  8. Structure and property evaluation of a vacuum plasma sprayed nanostructured tungsten-hafnium carbide bulk composite

    NARCIS (Netherlands)

    Rea, K. E.; Viswanathan, V.; Kruize, A.; De Hosson, J. Th. M.; O'Dell, S.; McKechnie, T.; Rajagopalan, S.; Vaidyanathan, R.; Seal, S.; O’Dell, S.

    2008-01-01

    Vacuum plasma spray (VPS) forming of tungsten-based metal matrix nanocomposites (MMCs) has shown to be a cost effective and time saving method for the formation of bulk monolithic nanostructured then no-mechanical components. Spray drying of powder feedstock appears to have a significant effect on

  9. Nano crystalline high energy milled 5083 Al powder deposited using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Nardi, A.T. [United Technologies Research Center, East Hartford, CT (United States); Champagne, V.K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-06-01

    Electron microscopy and nanoindentation are used to investigate the relationship between microstructure and nanohardness of a non-cryomilled, nanocrystalline 5083 Al alloy powder before and after being deposited by cold spray. Microstructural investigations observed the presence of nano grains in the powder microstructure, ranging from 20 to 80 nm and with a typical grain size of 40–50 nm. It was also revealed that the nanocrystalline structure of the powder is retained after cold spraying. As a result, almost no change in nanohardness was indicated between the powder and the particles interior in the cold sprayed layer. However, hardness was substantially higher in some regions in the cold sprayed layer, which was attributed to the particle–particle interfaces or other areas with very small nano grain size. The presence of some un-joined particle remnant lines was also found in the deposition and explained through Critical Velocity Ratio (CVR) of powder particles. Although cold spray is a high deformation process, there is little evidence of dislocations within the nanograins of the cold sprayed layer. The latter observation is rationalized through intragranular dislocation slip and recovery mechanisms.

  10. Effect of Ni content on microwave absorbing properties of MnAl powder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-zhong; Lin, Pei-hao, E-mail: gllph2002@163.com; Huang, Wei-chao; Pan, Shun-kang; Liu, Ye; Wang, Lei

    2016-09-01

    MnAlNi powder was prepared by the process of vacuum levitation melting and high-energy ball milling, The morphology and phase structure of the powder were analyzed by Scanning Electron Microscope(SEM), X-ray diffraction(XRD) and the effect of the Ni content on microwave absorbing properties of MnAl powder was investigated by an vector network analyzer. The addition of Ni, which improved the microwave absorbing properties of MnAl powder but not changed the composition of Al{sub 8}Mn{sub 5} alloy. The minimum reflectivity of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} powder with a coating thickness (d) of 1.8 mm was about −40.8 dB and has better bandwidth effect, the absorbing mechanism of AlMnNi powders on the electromagnetic was related to the electromagnetic loss within the absorbing coatings and the effect of coating thickness on the interference loss of electromagnetic wave. - Highlights: • The grain size and cell volume of Al{sub 8}Mn{sub 5} alloy phase were decreased with the increasing of Ni. • ε″ and μ″ of powder moves toward low frequency region at the beginning then moves high. • The minimum reflectivity of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} powder was −40.8 dB with 1.8 mm thickness. • The lowest reflection loss peak of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} was −46.3 dB with 2.2 mm thickness.

  11. CLASSICAL AREAS OF PHENOMENOLOGY: First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    Science.gov (United States)

    Wang, Yun-Jiang; Wang, Chong-Yu

    2009-10-01

    A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni3Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.

  12. Electrochemical corrosion behaviour of Mg-Al alloys with thermal spray Al/SiCp composite coatings; Comportamiento a la corrosion electroquimica de aleaciones MgAl con recubrimientos de materiales compuestos Al/SiCp mediante proyeccion termica

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Feliu Jr, S.; Merino, M. C.; Mohedano, M.; Casajus, P.; Arrabal, R.

    2010-07-01

    The corrosion protection of Mg-Al alloys by flame thermal spraying of Al/SiCp composite coatings was evaluated by electrochemical impedance spectroscopy in 3.5 wt.% NaCl solution. The volume fraction of SiC particles (SiCp) varied between 5 and 30%. The as-sprayed Al/SiCp composite coatings revealed a high number of micro-channels, largely in the vicinity of the SiC particles, that facilitated the penetration of the electrolyte and the subsequent galvanic corrosion of the magnesium substrates. The application of a cold-pressing post-treatment reduced the degree of porosity of the coatings and improved the bonding at the coating/substrate and Al/SiC interfaces. This resulted in improved corrosion resistance of the coated specimens. The effectiveness of the coatings slightly decreased with the addition of 5-30 vol.% SiCp compared with the un reinforced thermal spray aluminium coatings. (Author) 31 refs.

  13. Effect of plasma spraying modes on material properties of internal combustion engine cylinder liners

    Science.gov (United States)

    Timokhova, O. M.; Burmistrova, O. N.; Sirina, E. A.; Timokhov, R. S.

    2018-03-01

    The paper analyses different methods of remanufacturing worn-out machine parts in order to get the best performance characteristics. One of the most promising of them is a plasma spraying method. The mathematical models presented in the paper are intended to anticipate the results of plasma spraying, its effect on the properties of the material of internal combustion engine cylinder liners under repair. The experimental data and research results have been computer processed with Statistica 10.0 software package. The pare correlation coefficient values (R) and F-statistic criterion are given to confirm the statistical properties and adequacy of obtained regression equations.

  14. Prediction and optimization of process variables to maximize the Young's modulus of plasma sprayed alumina coatings on AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2017-03-01

    Full Text Available Like other manufacturing techniques, plasma spraying has also a non-linear behavior because of the contribution of many coating variables. This characteristic results in finding optimal factor combination difficult. Subsequently, the issue can be solved through effective and strategic statistical procedures integrated with systematic experimental data. Plasma spray parameters such as power, stand-off distance and powder feed rate have significant influence on coating characteristics like Young's modulus. This paper presents the use of statistical techniques in specifically response surface methodology (RSM, analysis of variance, and regression analysis to develop empirical relationship to predict Young's modulus of plasma-sprayed alumina coatings. The developed empirical relationships can be effectively used to predict Young's modulus of plasma-sprayed alumina coatings at 95% confidence level. Response graphs and contour plots were constructed to identify the optimum plasma spray parameters to attain maximum Young's modulus in alumina coatings. A linear regression relationship was established between porosity and Young's modulus of the alumina coatings.

  15. Evaluación de la resistencia al choque térmico de recubrimientos de estructura gradual obtenidos mediante proyección plasma

    Directory of Open Access Journals (Sweden)

    Guilemany, J. M.

    2001-12-01

    Full Text Available Power increasing demand in aeronautical engines promoted the development of thermal barrier coatings (TBCs obtained by Atmospheric Plasma Spray (APS. The spectacular growth in their applications leads to the demand of a very specific TBC. One of the specific roles that must achieve some TBCs is to withstand severe thermal shocks. Functionally Graded Coatings (FGC can improve their lives due to the lack of interfaces between two layers with very different thermal expansion coefficient (TEC (for example a metallic layer and a ceramic layer. Differences in TEC increase the internal stresses during the cooling of the parts. In this work thermal spray conditions have been improved in order to obtain Functionally Graded Coatings. Thermal Shock Resistance of these coatings has been compared with conventional' s one. Thermal Spray conditions have been used in order to spray two different powders with very different melting point. In that way it is possible to build up Functionally Graded Coatings with a unique spray gun. Thermal Shock Resistance of Coatings is improved due to the lack of interfaces between layers with different Thermal Expansion Coefficients unlike the conventional coatings where two layers of different materials are put together.

    La creciente demanda de mayores temperaturas de trabajo y potencia en el sector de la aviación promovió el desarrollo de las barreras térmicas (TBCs obtenidas por la técnica de proyección térmica plasma (APS. Éstas se componen de una capa de anclaje y una capa cerámica aislante. El espectacular aumento en el uso de las TBCs hace que se requieran recubrimientos cada vez más específicos en función de cada aplicación. Para mejorar la vida de los recubrimientos frente a los choques térmicos se han desarrollado los recubrimientos graduales. Éstos constan de una capa con variación gradual de los componentes, eliminando las intercaras entre partes con diferentes coeficientes de expansión t

  16. Study of the ternary alloy systems Al-Ni-Fe and Al-Cu-Ru with special regard to quasicrystalline phases

    International Nuclear Information System (INIS)

    Lemmerz, U.

    1996-07-01

    Two ternary alloy-systems, the Al-Ni-Fe system and the Al-Cu-Ru system were studied with special regard to quasicrystalline phases. Isothermal sections were established in both systems in the stoichiometric area of the quasicrystalline phase. In the Al-Ni-Fe system a new stable decagonal phase was found. Its stoichiometric range is very small around Al 71.6 Ni 23.0 Fe 5.4 . The temperature range in which it is stable lies between 847 and 930 C. The decagonal phase undergoes a eutectoid reaction to the three crystalline phases Al 3 Ni 2 , Al 3 Ni and Al 13 Fe 4 at 847 C. It melts peritectically at 930 C forming Al 13 Fe 4 , Al 3 Ni 2 and a liquid. The investigations in the Al-Cu-Ru system concentrated on the phase equilibria between the icosahedral phase and its neighbouring phases in a temperature range between 600 and 1000 C. The icosahedral phase was observed in the whole temperature range. The investigated stoichiometric area extends down to Al contents of 45%, which allows the fields of existence to be determined for the ternary phases α-AlCuRu, the icosahedral phase and Al 7 Cu 2 Ru. Binary phases were determined down to the upper (high Al content) border of AlRu. No hitherto unknown phase was observed in the investigated area. Rietveld analyses were carried out on α-AlCuRu and Al 7 Cu 2 Ru showing some discrepancies from the α-AlMnSi structure taken as a base for α-AlCuRu and confirming the Al 7 Cu 2 Fe structure for Al 7 Cu 2 Ru. (orig.)

  17. Improvement in ductility of high strength polycrystalline Ni-rich Ni{sub 3}Al alloy produced by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.Y.; Pei, Y.L.; Li, S.S.; Zhang, H.; Gong, S.K., E-mail: gongsk@buaa.edu.cn

    2014-11-25

    Highlights: • High strength and high ductility of polycrystalline Ni-rich Ni{sub 3}Al alloy sheets were produced. • The elongation could be enhanced from ∼0.5% to ∼14.6% by microstructural control. • The fracture strength (∼820 MPa) was enhanced by the precipitation strengthening. • This work provides a general processing for repairing the worn single crystal blades. - Abstract: A 300 μm Ni-rich Ni{sub 3}Al sheet was produced by electron beam physical vapor deposition (EB-PVD) and followed by different heat treatments to obtain fine γ′/γ two-phase structures with large elongation. Tensile testing was performed at room-temperature, and the corresponding mechanisms were investigated in detail. Results indicated that the as-deposited Ni{sub 3}Al alloy exhibited non-equilibrium directional columnar crystal, and transited to equiaxed crystal with uniformly distributed tough γ phase after heat treatment. Meanwhile, the fracture mechanism transited from brittleness to a mixture of ductility and brittleness modes. With an appropriate heat treatment, high strength (ultimate tensile strength obtained 828 MPa) and high ductility (elongation obtained 14.6%) Ni{sub 3}Al alloy has been achieved, which was due to the mesh network microstructure. A series of transmission electron microscope (TEM) characterizations confirmed that the increasing flow stress of Ni{sub 3}Al alloy was attributed to the cubical secondary γ′ phase precipitates (25–50 nm) within the γ phase. This work provides a potential strategy for repairing the worn tip of single crystal engine blades using Ni-rich Ni{sub 3}Al alloy by EB-PVD.

  18. NiCoCrAl/YSZ laminate composites fabricated by EB-PVD

    International Nuclear Information System (INIS)

    Shi Guodong; Wang Zhi; Liang Jun; Wu Zhanjun

    2011-01-01

    Highlights: → The metal-ceramic laminate composites were fabricated by EB-PVD. → Both metal and ceramic layers consisted of straight columns with banded structures. → Columnar grain size was limited by the periodic layer interfaces in the laminates. → Effect of columns on fracture property was decreased by limiting layer thickness. → Laminates showed greater specific strength than monolithic metal foil. - Abstract: Two NiCoCrAl/YSZ laminate composites (A and B) with different metal-layer thickness (∼35 μm and 14 μm, respectively) were fabricated by electron beam physical vapor deposition (EB-PVD). Their microstructure was examined and their mechanical properties were compared with the 289 μm thick NiCoCrAl monolithic foil produced by EB-PVD. Both the YSZ and NiCoCrAl layers of the laminate composites had columnar grain structure. But the periodic layer interfaces limited the columnar grain size. Some pores between the columns were also observed. It was found that the strength of the laminate A was equal approximately to that of the NiCoCrAl monolithic foil, and that laminate B had the greater strength. Moreover, the density of the foils decreased with the increasing thickness ratio of YSZ/NiCoCrAl layers and the increasing the layer number. Thus, comparing with the NiCoCrAl monolithic foil, the NiCoCrAl/YSZ laminate composites not only had the equal or greater strength, but also had the much greater specific strength.

  19. Dielectric properties and vacancy-like defects in plasma-sprayed barium titanate.

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Čížek, J.; Sedláček, J.; Lukáč, František

    2017-01-01

    Roč. 100, č. 7 (2017), s. 2972-2983 ISSN 0002-7820 Institutional support: RVO:61389021 Keywords : barium titanate * plasma spraying * vacancies Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass OBOR OECD: Ceramic s Impact factor: 2.841, year: 2016

  20. Synthesis and Performance Evaluation of Pulse Electrodeposited Ni-AlN Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Kamran Ali

    2018-01-01

    Full Text Available This research work presents the microscopic analysis of pulse electrodeposited Ni-AlN nanocomposite coatings using SEM and AFM techniques and their performance evaluation (mechanical and electrochemical by employing nanoindentation and electrochemical methods. The Ni-AlN nanocomposite coatings were developed by pulse electrodeposition. The nickel matrix was reinforced with various amounts of AlN nanoparticles (3, 6, and 9 g/L to develop Ni-AlN nanocomposite coatings. The effect of reinforcement concentration on structure, surface morphology, and mechanical and anticorrosion properties was studied. SEM and AFM analyses indicate that Ni-AlN nanocomposite coatings have dense, homogenous, and well-defined pyramid structure containing uniformly distributed AlN particles. A decent improvement in the corrosion protection performance is also observed by the addition of AlN particles to the nickel matrix. Corrosion current was reduced from 2.15 to 1.29 μA cm−2 by increasing the AlN particles concentration from 3 to 9 g/L. It has been observed that the properties of Ni-AlN nanocomposite coating are sensitive to the concentration of AlN nanoparticles used as reinforcement.

  1. Strength and ductility of Ni3Al alloyed with boron and substitutional elements

    International Nuclear Information System (INIS)

    Ishikawa, K.; Aoki, K.; Masumoto, T.

    1995-01-01

    The effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni 3 Al was investigated by the tensile test at room temperature. The yield strength of Ni 3 Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni 3 Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni 3 Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni 3 Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni 3 Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni 3 Al+B. The reason why ductility of Ni 3 Al+B is reduced by alloying with some elements M is discussed

  2. Generator of the low-temperature heterogeneous plasma flow

    Science.gov (United States)

    Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.

    2018-01-01

    A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.

  3. Study of the properties of plasma deposited layers of nickel-chrome-aluminium-yttrium coatings resistant to oxidation and hot corrosion

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2012-04-01

    Full Text Available The aim of this study was to examine the properties of Ni22Cr10Al1Y layers in order to obtain optimal structural - mechanical properties with the optimization of depositing parameters. Powder was deposited by the atmospheric plasma spray (APS process with the current intensity of 600, 700 and 800A, with a corresponding plasma gun power supply of 22KW, 34KW and 28KW. The evaluation of the Ni22Cr10Al1Y coating layers was made on the basis of their microhardness, tensile strength and microstructure performance. The best performance was obtained in the layers deposited with 800A and the 34KW plasma gun power supply. The coating with the best characteristics was tested to oxidation in the furnace for heat treatment without a protective atmosphere at 1100°C for one hour. The examination of the morphology of Ni22Cr10Al1Y powder particles was carried out on the SEM (Scanning Electron Microscope as well as the EDS analysis of the best layers. The microstructure of the deposited coating layers was examined with a light microscope. The microstructure analysis was performed according to the TURBOMECA standard. The mechanical properties of layers were evaluated by the method HV0.3 for microhardness and by tensile testing for bond strength. The research has shown that plasma gun power supply significantly affects the mechanical properties and microstructure of coatings that are of crucial importance for the protection of components exposed to high temperature oxidation and hot corrosion.

  4. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan

    Superhydrophobic surfaces exhibit superior water repellent properties, and they have remarkable potential to improve current energy infrastructure. Substantial research has been performed on the production of superhydrophobic coatings. However, superhydrophobic coatings have not yet been adopted in many industries where potential applications exist due to the limited durability of the coating materials and the complex and costly fabrication processes. Here presented a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature and strong mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The as-sprayed coating demonstrated a hierarchically structured coating topography, which closely resembles superhydrophobic surfaces in nature. Compared to smooth REO surfaces, the SPPS superhydrophobic coating improved the water contact angle by as much as 65° after vacuum treatment at 1 Pa for 48 hours.

  5. The influence of substrate temperature and spraying distance on the properties of plasma sprayed tungsten and steel coatings deposited in a shrouding chamber

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Vilémová, Monika; Nevrlá, Barbara; Kocmanová, Lenka; Veverka, Jakub; Halasová, Martina; Hadraba, Hynek

    2017-01-01

    Roč. 318, May (2017), s. 217-223 ISSN 0257-8972. [International Meeting on Thermal Spraying (RIPT)/7./. Limoges, 09.12.2015-11.12.2015] R&D Projects: GA ČR GB14-36566G EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 ; RVO:68081723 Keywords : Tungsten * Steel * Atmospheric plasma spraying * Shrouding * Substrate temperature * Fusion reactor materials * Plasma facing components Subject RIV: JK - Corrosion ; Surface Treatment of Materials; JK - Corrosion ; Surface Treatment of Materials (UFM-A) OBOR OECD: Coating and films; Coating and films (UFM-A) Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/ article /pii/S0257897216310520

  6. Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature

    International Nuclear Information System (INIS)

    Choi, Dong Hyuck; Park, Jung Eun; Park, Eun Duck

    2015-01-01

    The effect of preparation method on the catalytic activities of the Ni/Al 2 O 3 catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, K 2 CO 3 , and NH 4 OH were compared. The prepared catalysts were characterized by using N 2 physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, pulsed H 2 chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH or K 2 CO 3 as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature

  7. Ductility and fracture behavior of polycrystalline Ni/sub 3/Al alloys

    International Nuclear Information System (INIS)

    Liu, C.T.

    1987-01-01

    This paper provides a comprehensive review of the recent work on tensile ductility and fracture behavior of Ni/sub 3/Al alloys tested at ambient and elevated temperatures. Polycrystalline Ni/sub 3/Al is intrinsically brittle along grain boundaries, and the brittleness has been attributed to the large difference in valency, electronegativity, and atom size between nickel and aluminum atoms. Alloying with B, Mn, Fe, and Be significantly increases the ductility and reduces the propensity for intergranular fracture in Ni/sub 3/Al alloys. Boron is found to be most effective in improving room-temperature ductility of Ni/sub 3/Al with <24.5 at.% Al. The tensile ductility of Ni/sub 3/Al alloys depends strongly on test environments at elevated temperatures, with much lower ductilities observed in air than in vacuum. The loss in ductility is accompanied by a change in fracture mode from transgranular to intergranular. This embrittlement is due to a dynamic effect involving simultaneously high localized stress, elevated temperature, and gaseous oxygen. The embrittlement can be alleviated by control of grain shape or alloying with chromium additions. All the results are discussed in terms of localized stress concentration and grain-boundary cohesive strength

  8. Deposition of titanium nitride layers by electric arc – Reactive plasma spraying method

    International Nuclear Information System (INIS)

    Şerban, Viorel-Aurel; Roşu, Radu Alexandru; Bucur, Alexandra Ioana; Pascu, Doru Romulus

    2013-01-01

    Highlights: ► Titanium nitride layers deposited by electric arc – reactive plasma spraying method. ► Deposition of titanium nitride layers on C45 steel at different spraying distances. ► Characterization of the coatings hardness as function of the spraying distances. ► Determination of the corrosion behavior of titanium nitride layers obtained. - Abstract: Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti 2 N) and small amounts of Ti 3 O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  9. Investigation on the Cathodic Protection Effect of Low Pressure Cold Sprayed AlZn Coating in Seawater via Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Guosheng Huang

    2017-07-01

    Full Text Available Cold spray can deposit a composite coating simply by spraying mechanically-mixed Al and Zn powders, while no quantitative data has been reported on the anti-corrosion performance of different composite cold-sprayed coatings. In the present work, the finite element method was used to estimate the cathodic protection effect by simulating the potential distribution on a damaged cold-sprayed AlZn coating on Q235 steel. The results indicate that AlZn coating can only provide a limiting cathodic protection for substrate, because it can only polarize a very narrow zone negative to −0.78 V (vs. SCE, saturated calomel electrode. The remaining area of the steel substrate still has a very high residual corrosion rate. Computational methods can be used to predict the corrosion rate of AlZn coating, and the simulation results were validated by the results of a weight loss experiment.

  10. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rubing, E-mail: zrb86411680@126.com [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Deming [Beijing General Research Institute of Mining and Metallurgy, Beijing 100044 (China); Chen, Guiqing [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yuesheng [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  11. Preparation of Ni-C Ultrafine Composite from Waste Material

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Rabah

    2017-06-01

    Full Text Available This work depicts the preparation of Ni-C ultrafine composite from used engine oil. The used oil was emulsified with detergent loaded with Ni (OH2. The loaded emulsion was sprayed on electric plasma generated between two C electrodes to a DC main 28 V and 70-80 A. The purged Ni-doped carbon fume was trapped on a polymer film moistened with synthetic adhesive to fix the trapped smoke. Characterization of the deposit was made using SEM. XRD examined the crystal morphology. Carbon density in the cloud was calculated. The average size and thickness of the deposited composite is 120-160 nm. Aliphatic hydrocarbons readily decompose to gaseous products. Solid carbon smoke originates from aromatic compounds. Plasma heat blasts the oil in short time to decompose in one step.

  12. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    International Nuclear Information System (INIS)

    Hazra, S.; Das, J.; Bandyopadhyay, P.P.

    2015-01-01

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness

  13. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, S. [Integrated Test Range, Chandipur, Balasore, Odisha 756025 (India); Das, J. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, 721302 (India); Bandyopadhyay, P.P., E-mail: ppb@mech.iitkgp.ernet.in [Department of Mechanical Engineering, IIT Kharagpur, 721302 (India)

    2015-03-15

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness.

  14. Plasma-Sprayed Fine-grained Zirconium Silicate and Its Dielectric Properties.

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Pala, Zdeněk; Nevrlá, Barbara; Neufuss, Karel

    2017-01-01

    Roč. 26, č. 5 (2017), s. 2388-2393 ISSN 1059-9495 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : electrical properties * insulators * plasma spraying * silica-substituted zirconia * zircon Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 1.331, year: 2016

  15. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy

    International Nuclear Information System (INIS)

    Chen, Weiping; Fu, Zhiqiang; Fang, Sicong; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: • FeNiCrCo 0.3 Al 0.7 high entropy alloy is prepared via MA and SPS. • Two BCC phases and one FCC phase were obtained after SPS. • The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure). • Bulk FeNiCrCo 0.3 Al 0.7 HEA exhibits excellent mechanical properties. - Abstract: The present paper reports the synthesis of FeNiCrCo 0.3 Al 0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01 Å and one FCC phase with the lattice parameter of 3.72 Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo 0.3 Al 0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo 0.3 Al 0.7 alloy are 2033 ± 41 MPa, 2635 ± 55 MPa, 8.12 ± 0.51% and 624 ± 26H v , respectively. The fracture mechanism of bulk FeNiCrCo 0.3 Al 0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture

  16. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  17. Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes

    Science.gov (United States)

    Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.

    2006-12-01

    The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.

  18. Bonding characteristics in NiAl intermetallics with O impurity: a first-principles computational tensile test

    International Nuclear Information System (INIS)

    Hu Xuelan; Zhang Ying; Lu Guanghong; Wang Tianmin

    2009-01-01

    We have performed a first-principles computational tensile test on NiAl intermetallics with O impurity along the [001] crystalline direction on the (110) plane to investigate the tensile strength and the bonding characteristics of the NiAl-O system. We show that the ideal tensile strength is largely reduced due to the presence of O impurity in comparison with pure NiAl. The investigations of the atomic configuration and bond-length evolution show that O prefers to bond with Al, forming an O-Al cluster finally with the break of O-Ni bonds. The O-Ni bonds are demonstrated to be weaker than the O-Al bonds, and the reduced tensile strength originates from such weaker O-Ni bonds. A void-like structure forms after the break of the O-Ni and some Ni-Al bonds. Such a void-like structure can act as the initial nucleation or the propagation path of the crack, and thus produce large effects on the mechanical properties of NiAl.

  19. Study of the central collisions in the reactions Ni + Al and Ni + Ni at 28 A.MeV; Etude des collisions centrales dans les reactions Ni + Al et Ni + Ni a 28 A.MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, L.

    1995-12-01

    The work is in characterisation of mechanisms in the energy range of onset of multifragmentation (excitation energy of composed nucleus around 4 - 5 AMeV). This work focused on an experiment performed at the SARA facility, in Grenoble, using the AMPHORA multi detection array. I have been particularly interested in central collisions in the Ni + Al and Ni + Ni systems. The possibility to detect complete events for Ni + Al, and quasi-complete events for the Ni + Ni case, is the reason of this choice. Furthermore Ni + Ni presents the interest of a symmetrical system, for which the excitation energy per nucleon is maximum. The study of these reactions has been focused on the quasi-complete events (events for which at least 80 % of the total charge has been detected). Heavy ions produced in peripheral collisions are very likely emitted along the beam line or stopped in the plastic detectors, energy thresholds are too high for the quasi-target products detection, consequently by requiring complete or quasi-complete measurement of the total charge, we are able to detect mostly central events. The knowledge of informations like charge, energy or detection angles allows to isolate the source(s) and to reconstruct the size and the excitation energy of the source(s). Comparisons with simulations like sequential emission (GEMINI code), very deep inelastic collision or instantaneous emission (Berliner code) allows to characterise the first stage of the collision (binary collisions or central collisions) and the type of deexcitation of the source(s). Some calculations was also performed with the statistical model code MODGAN. Indeed azimuthal correlations seem to be a good tool in getting more information about involved reaction mechanisms. Comparisons with MODGAN provide information about angular momentum of the source and time delay between emissions of the two particles (separation between sequential or instantaneous process). (author). 69 refs.

  20. Superstructure formation in PrNi_2Al_3 and ErPd_2Al_3

    International Nuclear Information System (INIS)

    Eustermann, Fabian; Hoffmann, Rolf-Dieter; Janka, Oliver; Oldenburg Univ.

    2017-01-01

    The intermetallic phase ErPd_2Al_3 was obtained by arc-melting of the elements and subsequent annealing for crystal growth. The sample was studied by X-ray diffraction on powders and single crystals. The structure of ErPd_2Al_3 was refined from X-ray diffraction data and revealed a superstructure of PrNi_2Al_3 - a CaCu_5 derivative (P6/m, a=1414.3(1), c=418.87(3) pm wR=0.0820, 1060 F"2 values, 48 variables). The same superstructure was subsequently found for PrNi_2Al_3 (P6/m, a=1407.87(4), c=406.19(2) pm, wR=0.0499, 904 F"2 values, 47 variables). In the crystal structure, the aluminium and transition metal atoms form a polyanionic network according to [T_2Al_3]"δ"-, while rare earth atoms fill cavities within the networks. They are coordinated by six transition metal and twelve aluminum atoms. In contrast to the PrNi_2Al_3 type structure reported so far, two crystallographic independent rare-earth sites are found of which one (1b) is shifted by 1/2 z, causing a distortion in the structure along with a recoloring of the T and Al atoms in the network.

  1. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    Science.gov (United States)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  2. Protection of 310l Stainless Steel from Wear at Elevated Temperatures using Conicraly Thermal Spray Coatings with and without Sic Addition

    Science.gov (United States)

    Zhang, Yan; Zhang, Tao; Li, Kaiyang; Li, Dongyang

    2017-10-01

    Due to its high oxidation resistance, 310L stainless steel is often used for thermal facilities working at high-temperatures. However, the steel may fail prematurely at elevated temperatures when encounter surface mechanical attacks such as wear. Thermal spray coatings have been demonstrated to be effective in protecting the steel from wear at elevated temperatures. In this study, we investigated the effectiveness of high velocity oxy-fuel(HVOF) spraying CoNiCrAlY/SiC coatings in resisting wear of 310L stainless steel at elevated temperature using a pin-on-disc wear tester. In order to further improve the performance of the coating, 5%SiC was added to the coating. It was demonstrated that the CoNiCrAlY/SiC coating after heat treatment markedly suppressed wear. However, the added SiC particles did not show benefits to the wear resistance of the coating. Microstructures of CoNiCrAlY coatings with and without the SiC addition were characterized in order to understand the mechanism responsible for the observed phenomena.

  3. Prospects for designing structural cast eutectic alloys on Al-Ce-Ni system base

    International Nuclear Information System (INIS)

    Belov, N.A.; Naumova, E.S.

    1996-01-01

    The phase diagram of Al-Ce-Ni system is built for an aluminium corner at component concentration up to 16 mass %Ce and 8 mass%Ni. A ternary eutectic reaction is established at 12%Ce, 5%Ni and 626 deg C. The ternary eutectic alloy is similar in structure to rapidly cooled Al base alloys with transition metals. The possibility to design new cast alloys based on three-phase (Al)+NiAl 3 +CeAl 4 eutectics is under consideration. Al-Zn-Mg-Cu, Al-Sc and Al-Zr base alloys can be used as (Al) constituent of the eutectics. The new alloys may be considered as heat resistant ones due to the fact that no structural changes are observed in castings on heating up to 350 deg C. 18 refs.; 4 figs.; 2 tabs

  4. Disorder trapping in Ni3(Al, Ti) by solidification from the undercooled melt

    International Nuclear Information System (INIS)

    Goetzinger, R.; Kurz, W.

    1997-01-01

    Modelling of rapid solidification predicts disorder trapping in the superlattice structure of Ni 3 Al. However, experimental investigations on this compound suffer from ambiguities concerning the solidification path. There is a phase selection competition between the ordered fcc γ'-phase (Ni 3 Al), the ordered bcc β-phase (NiAl), the disordered fcc γ-phase (Ni), the stable γ'/β eutectic and the metastable γ/β eutectic, and there are subsequent solid state transformations. A replacement of several at.% Al by Ti leads to a stabilization of the γ'-phase and to an avoidance of most of the problems encountered on Ni 3 Al. The experiments on Ni 3 (Al, Ti) presented here clearly show the expected disordered crystallization from the undercooled melt. This was proven by measuring the dendrite growth velocity of electromagnetically levitated droplets and by analysing the data in the framework of dendrite and kinetic growth models. Complementary microstructural investigations were performed on the as-solidified samples. (orig.)

  5. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    International Nuclear Information System (INIS)

    Wu Yuying; Liu Xiangfa; Jiang Binggang; Huang Chuanzhen

    2009-01-01

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  6. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China)], E-mail: wyy532001@163.com; Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Shandong Binzhou Bohai Piston Co., Ltd., Binzhou 256602, Shandong (China); Jiang Binggang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Huang Chuanzhen [School of Mechanical Engineering, Shandong University, Jinan 250061 (China)

    2009-05-27

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  7. An analytical methodology to predict the coating characteristics of plasma-sprayed ceramic powders

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.

    1990-01-01

    Experimental and analytical studies have been conducted at the Idaho National Engineering Laboratory (INEL) to investigate gas, particle, and coating dynamics in the plasma spray process. Nine experiments were conducted using a Taguchi statistical parametric approach. The thermal plasma produced by the commercial plasma spray torch and the related plasma/particle interaction were then numerically modeled from the cathode tip to varied standoff distances in the free plume for the nine experiments, which ranged in power from 28 to 43 kW. The flow and temperature fields in the plasma were solved using the governing conservation equations with suitable boundary conditions. This information was then used as boundary conditions to solve the plasma/particle interaction problem for the nine experiments. The particle dynamics (10- to 75-μm particles) for a yttria-stabilized zirconia powder were then simulated by computer. Particle morphology is discussed with respect to the changes in the process parameters. The predicted temperature and velocity of the zirconia particles were then used as initial conditions to a coating dynamics code. The code predicts the thickness and porosity of the zirconia coatings for the specific process parameters. The predicted coating characteristics exhibit reasonable correlation with the actual characteristics obtained from the Taguchi experimental studies. 12 refs., 7 figs., 6 tabs

  8. Plasma Spraying and Characterization of Chromium Carbide-Nickel Chromium Coatings

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Prantnerová, M.

    2016-01-01

    Roč. 9, č. 4 (2016), s. 281-290, č. článku PCCC-2016-09-16-339. ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Plasma spraying * Chromium carbide * Slurry abrasion * Dry rubber wheel test * Friction * Microhardness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass http://www.pccc.icrc.ac.ir/?xid=0113010121000001804&id=976

  9. Al{sub 2} O{sub 3}:Cr,Ni: a possible thermoluminescent dosemeter; Al{sub 2} O{sub 3}: Cr, Ni un posible dosimetro termoluminiscente

    Energy Technology Data Exchange (ETDEWEB)

    Mariani R, Francisco; Roman B, Alvaro; Saavedra S, Renato [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Ibarra S, Angel [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain). Seccion Materiales para Fusion

    1997-12-31

    Results from a study on the thermoluminescent (Tl) emission from Al{sub 2} O{sub 3}:Cr,Ni are presented. The measurements were obtained for evaluation of the Al{sub 2} O{sub 3}:Cr,Ni dosimetric properties. Different crystal batches were exposed to two kind of ionizing radiation (X-ray and {beta}{sup -}). The Tl spectrum has a main peak with high thermal and optical stability, deviating from linearity for doses lower than 3.6 Gy. Furthermore, this material shows advantages (thermal resistance, reusability, multiple heating cycles) compared to TLD-100. Measured Al{sub 2} O{sub 3}:Cr,Ni properties indicate that it could be used as a dosemeter. (author). 5 refs., 4 figs.

  10. Modification of NiAl intermetallic coatings processed by PTA with chromium carbides

    International Nuclear Information System (INIS)

    Yano, Diogo Henrique Sepel; Brunetti, Cristiano; Pintaude, Giuseppe; Oliveira, Ana Sofia Climaco Monteiro d'

    2010-01-01

    Equipment that operate under high-temperatures can be protected with NiAl intermetallic coatings mainly because of their metallurgical stability. This study as it evaluates the effect of chromium carbide added to Ni-Al intermetallic coatings processed by PTA. Three Ni-Al-Cr23C6 powder mixtures with different carbide fractions (15, 30 and 45 wt%) and another without carbides were deposited by PTA on an AISI 304 stainless steel plate, using two different current intensities (100 and 150A). Coatings were evaluated regarding the presence of welding defects, and resultant microstructures were characterized by X-ray diffraction and scanning electron microscopy. Vickers microhardness and EDS chemical composition were also determined. NiAl and Cr_7C_3 development was confirmed by X-ray diffraction analysis. A combination of NiAl/Cr-Fe-Ni phases was identified. The hardness was strongly related to the formed phases and their amounts. Besides presenting advances toward the development of coatings which can withstand severe operation conditions, the present study shows that PTA hardfacing is able to produce reinforced intermetallic coatings for high-temperature applications. (author)

  11. Study on microstructure of Al coating on beryllium substrates

    International Nuclear Information System (INIS)

    Li Ruiwen; Xian Xiaobin; Zou Juesheng; Zhang Pengcheng

    2002-01-01

    Magnetron sputtering ion plating and plasma spraying have been used to make aluminium coating on beryllium substrate. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Auger electron energy spectrum (AES) and X-ray stress analysis were used to study microstructure and interface and residual stress and diffusion content of Al coating. The results show that width of diffusion zone made by magnetron sputtering ion plating is about 1 μm, coating is composed of columnar grains and internal stress of Al coating is about zero. Coating deposited by plasma spraying is not homogeneous and there are microcracks at interface

  12. Microstructure and mechanical properties of multiphase NiAl-based alloys

    Science.gov (United States)

    Pank, D. R.; Koss, D. A.; Nathal, M. V.

    1990-01-01

    The effect of the gamma-prime phase on the deformation behavior and fracture resistance of melt-spun ribbons and consolidated bulk specimens of a series of Nial-based alloys with Co and Hf additions has been examined. The morphology, location, and volume fraction of the gamma-prime phase are significant factors in enhancing the fracture resistance of the normally brittle NiAl-based alloys. In particular, the results indicate that a continuous-grain-boundary film of gamma-prime can impart limited room-temperature ductility regardless of whether B2 or L10 NiAl is present. Guidelines for microstructure control in multiphase NiAl-based alloys are also presented.

  13. Al2 O3:Cr,Ni: a possible thermoluminescent dosemeter

    International Nuclear Information System (INIS)

    Mariani R, Francisco; Roman B, Alvaro; Saavedra S, Renato; Ibarra S, Angel

    1996-01-01

    Results from a study on the thermoluminescent (Tl) emission from Al 2 O 3 :Cr,Ni are presented. The measurements were obtained for evaluation of the Al 2 O 3 :Cr,Ni dosimetric properties. Different crystal batches were exposed to two kind of ionizing radiation (X-ray and β - ). The Tl spectrum has a main peak with high thermal and optical stability, deviating from linearity for doses lower than 3.6 Gy. Furthermore, this material shows advantages (thermal resistance, reusability, multiple heating cycles) compared to TLD-100. Measured Al 2 O 3 :Cr,Ni properties indicate that it could be used as a dosemeter. (author)

  14. Processing and microstructure of melt spun NiAl alloys

    Science.gov (United States)

    Locci, I. E.; Noebe, R. D.; Moser, J. A.; Lee, D. S.; Nathal, M.

    1989-01-01

    The influence of various melt spinning parameters and the effect of consolidation on the microstructure of melt spun NiAl and NiAl + W alloys have been examined by optical and electron microscopy techniques. It was found that the addition of 0.5 at. pct W to NiAl results in a fine dispersion of W particles after melt spinning which effectively controls grain growth during annealing treatments or consolidation at temperatures between 1523 and 1723 K. Increased wheel speeds are effective at reducing both the ribbon thickness and grain size, such that proper choice of both composition and casting parameters can produce structures with grain sizes as small as 2 microns. Finally, fabrication of continuous fiber-reinforced composites which used pulverized ribbon as the matrix material was demonstrated.

  15. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, Emine

    2015-07-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y{sub 2}O{sub 3}-ZrO{sub 2}, YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La){sub 2}Zr{sub 2}O{sub 7}) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al{sub 2}O{sub 3}) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La{sub 2}Zr{sub 2}O{sub 7}. Hence, the goal of this research was to investigate plasma-sprayed Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as

  16. Microstructural features and heat flow analysis of atomized and spray-formed Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1998-01-01

    Microstructural features of rapidly solidified powders and preforms of Al 80 Fe 10 V 4 Si 6 alloy produced by spray forming process have been studied. The atomization and spray deposition were carried out using a confined gas atomization process and the microstructural features were characterized using scanning electron microscopy and transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The microstructure of a wide size range of atomized powders invariably revealed cellular and dendritic morphology. The extent of dendritic region and the dendritic arm spacing were observed to increase with power particle size. The TEM investigations indicated the presence of ultrafine second-phase particles in the intercellular or interdendritic regions. In contrast, the spray deposits of the alloy showed considerable variation in microstructure and size and dispersion of the second-phase particles at specific distances from the deposit-substrate interface and the exterior regions of the deposit. Nevertheless, considerable homogeneity was observed in the microstructure toward the center of the spray deposit. The formation and distribution of a cubic phase α-Al(Fe, V)Si has been characterized in both atomized powders and spray deposits. A one-dimensional heat flow model has been used to analyze the evolution of microstructure during atomization and also during spray deposition processing of this alloy. The results indicate that thermal history of droplets in the spray on deposition surface and their solidification behavior considerably influence the microstructural features of the spray deposits

  17. Microstructure and mechanical properties of spray-deposited Mg-12.55Al-3.33Zn-0.58Ca-1Nd alloy

    International Nuclear Information System (INIS)

    Bai Pucun; Dong Taishang; Hou Xiaohu; Zhao Chunwang; Xing Yongming

    2010-01-01

    A Mg-Al-Zn-Ca-Nd magnesium alloy was prepared by spray forming technology, and the spray-deposited alloy was subsequently hot-extruded with a reduction rate of 16:1 at 623 K. The mechanical properties of the extruded alloy were investigated, and the result shows that the spray-formed Mg alloy offers superior tensile strength with poor ductility. The morphologies, fracture characteristic and chemical compositions of the extruded alloy were then explored by scanning electron microscopy with energy dispersive spectrometer. Furthermore, microstructure of the extruded alloy was examined by X-ray diffractometry and transmission electron microscopy. The results indicate that the microstructure of the spray-deposited magnesium alloy consists of α-Mg and Al 2 Ca phases, and the Al 2 Ca compound is distributed along the grain boundaries of the primary α-Mg. Moreover, twin substructure is found to exist in microstructure of the Al 2 Ca phase, rare earth Nd in the Al 2 Ca phase in the form of solid solution.

  18. Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance

    Science.gov (United States)

    Belka, R.; Kowalski, S.; Żórawski, W.

    2017-08-01

    Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.

  19. Molar Volume Analysis of Molten Ni-Al-Co Alloy by Measuring the Density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang; FU Yuechao; YANG Lingchuan

    2004-01-01

    The density of molten Ni-Al-Co alloys was measured in the temperature range of 1714~1873K using a modified pycnometric method, and the molar volume of molten alloys was analyzed. The density of molten Ni-Al-Co alloys was found to decrease with increasing temperature and Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys increases with increasing Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys shows a negative deviation from the linear molar volume.

  20. Cold spray deposition of Ti{sub 2}AlC coatings for improved nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Benjamin R. [University of Wisconsin, Madison, WI (United States); Garcia-Diaz, Brenda L. [Savannah River National Laboratory, Aiken, SC (United States); Hauch, Benjamin [University of Wisconsin, Madison, WI (United States); Olson, Luke C.; Sindelar, Robert L. [Savannah River National Laboratory, Aiken, SC (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [University of Wisconsin, Madison, WI (United States)

    2015-11-15

    Coatings of Ti{sub 2}AlC MAX phase compound have been successfully deposited on Zircaloy-4 (Zry-4) test flats, with the goal of enhancing the accident tolerance of LWR fuel cladding. Low temperature powder spray process, also known as cold spray, has been used to deposit coatings ∼90 μm in thickness using powder particles of <20 μm. X-ray diffraction analysis showed the phase-content of the deposited coatings to be identical to the powders indicating that no phase transformation or oxidation had occurred during the coating deposition process. The coating exhibited a high hardness of about 800 H{sub K} and pin-on-disk wear tests using abrasive ruby ball counter-surface showed the wear resistance of the coating to be significantly superior to the Zry-4 substrate. Scratch tests revealed the coatings to be well-adhered to the Zry-4 substrate. Such mechanical integrity is required for claddings from the standpoint of fretting wear resistance and resisting wear handling and insertion. Air oxidation tests at 700 °C and simulated LOCA tests at 1005 °C in steam environment showed the coatings to be significantly more oxidation resistant compared to Zry-4 suggesting that such coatings can potentially provide accident tolerance to nuclear fuel cladding. - Highlights: • Deposited Ti{sub 2}AlC coatings on Zircaloy-4 substrates with a low pressure powder spray process, also known as cold spray. • Coatings have high hardness and wear resistance for both damage resistance during rod insertion and fretting wear resistance. • The oxidation resistance of Ti{sub 2}AlC coated Zircaloy-4 at 700 °C and 1005 °C was significantly superior to uncoated Zircaloy. • Cold spray of Ti{sub 2}AlC demonstrates considerable promise as a near-term solution for accident tolerant Zr-alloy fuel claddings.