WorldWideScience

Sample records for plasma sprayed al2o3

  1. Evaluating microhardness of plasma sprayed Al2O3 coatings using Vickers indentation technique

    International Nuclear Information System (INIS)

    Yin Zhijian; Tao Shunyan; Zhou Xiaming; Ding Chuanxian

    2007-01-01

    In this work, the microhardness of plasma sprayed Al 2 O 3 coatings was evaluated using the Vickers indentation technique, and the effects of measurement direction, location and applied loads were investigated. The measured data sets were then statistically analysed employing the Weibull distribution to evaluate their variability within the coatings. It was found that the Vickers hardness (VHN) increases with decreasing applied indenter load, which can be explained in terms of Kick's law and the Meyer index k of 1.93, as well as relating to the microstructural characteristics of plasma sprayed coatings and the elastic recovery taking place during indentation. In addition, VHN, measured on the cross section of coatings, was obviously higher than that on its top surface. The obtained Weibull modulus and variation coefficient indicate that the VHN was less variable when measured at a higher applied load and on the cross section of coating. The obvious dependence of the VHN on the specific indentation location within through-thickness direction was also realized. These phenomena described above in this work were related to the special microstructure and high anisotropic behaviour of plasma sprayed coatings

  2. Microstructure and mechanical properties of plasma sprayed Al2O3 – 13%TiO2 Ceramic Coating

    Directory of Open Access Journals (Sweden)

    Wahab Juyana A

    2017-01-01

    Full Text Available This paper focused on the effect of deposition conditions on the microstructural and mechanical properties of the ceramic coating. In this study, Al2O3 – 13%TiO2 coated mild steel were prepared by using atmospheric plasma spray technology with different plasma power ranging from 25 kW to 40 kW. The as-sprayed coatings consist of γ-Al2O3 phase as the major phase and small amount of the titania phase existed in the coating structure. High degree of fully melted region was observed in the surface morphology for the coating sprayed with high plasma power, which lead to the high hardness and low percentage of porosity. In this study, nanoindentation test was carried out to investigate mechanical properties of the coating and the results showed that the coatings possess high elastic behaviour, which beneficial in engineering practice.

  3. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  4. Atmospheric plasma sprayed (APS) coatings of Al2O3-TiO2 system for photocatalytic application.

    Science.gov (United States)

    Stengl, V; Ageorges, H; Ctibor, P; Murafa, N

    2009-05-01

    The goal of this study is to examine the photocatalytic ability of coatings produced by atmospheric plasma spraying (APS). The plasma gun used is a common gas-stabilized plasma gun (GSP) working with a d.c. current and a mixture of argon and hydrogen as plasma-forming gas. The TiO(2) powders are particles of about 100 nm which were agglomerated to a mean size of about 55 mum, suitable for spraying. Composition of the commercial powder is 13 wt% of TiO(2) in Al(2)O(3), whereas also in-house prepared powder with the same nominal composition but with agglomerated TiO(2) and conventional fused and crushed Al(2)O(3) was sprayed. The feedstock materials used for this purpose are alpha-alumina and anatase titanium dioxide. The coatings are analyzed by scanning electron microscopy (SEM), energy dispersion probe (EDS) and X-ray diffraction. Photocatalytic degradation of acetone is quantified for various coatings. All plasma sprayed coatings show a lamellar structure on cross section, as typical for this process. Anatase titania from feedstock powder is converted into rutile titania and alpha-alumina partly to gamma-alumina. Coatings are proven to catalyse the acetone decomposition when irradiated by UV rays.

  5. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  6. Effects of spray parameters on the microstructure and property of Al2O3 coatings sprayed by a low power plasma torch with a novel hollow cathode

    International Nuclear Information System (INIS)

    Li Changjiu; Sun Bo

    2004-01-01

    Al 2 O 3 coating is deposited using a low power plasma torch with a novel hollow cathode through axial powder injection under a plasma power up to several kilowatts. The effects of the main processing parameters including plasma arc power, operating gas flow and spray distance on particle velocity during spraying, and the microstructure and property of the coating are investigated. The microstructure of the Al 2 O 3 coating is examined using optical microscopy and X-ray diffraction analysis. The property of the coating is characterized by dry rubber wheel abrasive wear test. The velocity of in-flight particle is measured using a velocity/temperature measurement system for spray particle based on thermal radiation from the particle. The dependency of the microstructure and property of the coating on spray particle conditions are examined by comparing the particle velocity, and microstructure and abrasive wear weight loss of subsequent coating deposited by low power plasma spray with those of the coating by conventional plasma spray at a power one order higher. X-ray diffraction analysis of the coating revealed that Al 2 O 3 particles during low power plasma spraying reach to sufficiently melting state prior to impact on the substrate with a velocity comparable to that in conventional plasma spraying. The experiment results have shown that processing parameters have significant influence on the particle conditions and performance of deposited Al 2 O 3 coating. The coating of comparable microstructure and properties to that deposited by conventional plasma spray can be produced under a power one order lower. From the present study, it can be suggested that a comparable coating can be produced despite plasma power level if the comparable particle velocity and molten state are achieved

  7. Comparative Study of the Corrosion Resistance of Air-Plasma-Sprayed Ca2SiO4 and Al2O3 Coatings in Salt Water

    Directory of Open Access Journals (Sweden)

    Yuan Xiao

    2018-03-01

    Full Text Available In this study, Ca2SiO4 coating was sprayed on stainless steel substrate and the corrosion resistance of the as-sprayed coating was studied in salt water. At the same time, Al2O3 coatings were produced by air-plasma-sprayed technology as comparison. Immersion test was carried out to evaluate the protection performance of coatings. Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS plots were also analyzed. The results indicated that Ca2SiO4 coatings showed a better protection performance than Al2O3 coatings. During the immersion, various calcium carbonate crystals appeared on the surface of Ca2SiO4 coatings. Ca(OH2 was released from Ca2SiO4 coatings into NaCl aqueous solution, increasing the alkalinity, which is in favor of the formation of passivation film, and thus improves the corrosion resistance. Ca2SiO4 coatings became denser after immersion due to the fact that the pores and micro cracks were filled with hydration products i.e., hydrated calcium silicate (C–S–H gel. On the contrary, the microstructure of Al2O3 coatings became loose and obvious rusty spots were observed on the surface after the immersion test.

  8. Atmospheric plasma sprayed (APS) coatings of Al2O3–TiO2 system for photocatalytic application

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Ageorges, H.; Ctibor, Pavel; Murafa, Nataliya

    2009-01-01

    Roč. 8, č. 5 (2009), s. 733-738 ISSN 1474-905X. [European Meeting on Solar Chemistry and Photocatalysis:Environmental Applications /5th./. Palermo, 04.10.2008-08.10.2008] R&D Projects: GA AV ČR IAAX00430803 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z20430508 Keywords : Alumina * titania * plasma spraying * reflectivity * bangap * phase composition Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.708, year: 2009

  9. Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite

    Science.gov (United States)

    Ariharan, S.; Sengupta, Pradyut; Nisar, Ambreen; Agnihotri, Ankur; Balaji, N.; Aruna, S. T.; Balani, Kantesh

    2017-02-01

    Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.

  10. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying.

    Science.gov (United States)

    Wang, Y; Tian, W; Yang, Y

    2009-02-01

    The preparation and characterization of RE modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying are described in this paper. Taking individual nano particles as starting materials, by wet ball milling, spray drying, sintering and plasma treating, nanocrystalline plasma sprayable feedstock is prepared. The as-prepared feedstocks were analyzed by XRD, SEM, EDS, TEM and HRTEM methods. As shown from analyses results, the reconstituted agglomerate feedstock possesses spherical geometry, proper particle size, homogeneous composition distribution and nano scaled grains. There are three dimensional net structures in the prepared feedstock, which could be retained in coatings if the feedstock does not melt or partially melts during the plasma spray process. The three dimensional net structures could play an important role in improving crack propagation resistance and wear resistance of coatings. The reconstitution process and characterization methods discussed in this paper can also be applied to prepare intraclass nanocrystalline feedstock such as ZrO2/Y2O3 and Cr2O3 et al.

  11. DEVELOPMENT OF WEAR RESISTANT COATINGS FORMED BY PLASMA SPRAYING OF ALLOY Ni–Fe–Cr–Si–B–C SYSTEM REINFORCED WITH CERAMICS Al2O3

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available . Creating a functionally oriented, including nanostructured, anti-friction materials and coatings with qualitatively new complex of service properties is an important scientific and practical problem. In particular, for the cable industry it is urgent task of ensuring the high performance properties of fast deteriorating stretching and supporting rollers. Working surfaces of these parts operate under practically dry friction conditions with constantly updated material of stretching wire. Plasma spraying is one of the widely used methods of surface engineering to create wear resistant coatings and which is characterized with process flexibility and the ability to create coatings using various materials and alloys including composite ones. The installation UPU-3D with the PP-25 plasma torch was used for plasma spraying. The thickness of the sprayed layer was 0.8–1.1 mm. As a material for the deposition of composite coatings a powder mixture of self-fluxing nickel alloy PG-HN80SR4 (system Ni–Fe–Cr–Si–B–C and a neutral oxide ceramics Al2O3 was used. The amount of ceramics varied from 15 to 33 %. This ceramic oxide was selected due to the desire to reduce coatings’ costs while providing high durability. Carried out phase and microstructural studies have shown when ceramics was added in an amount more than 20 % a formation of conglomerates formed by not melted alumina particles often was observed. These conglomerates serve as crack formation centers in the coating. The phase composition of the coatings practically does not depend on the content of ceramics compounds. Tribological tests have shown that the best results were obtained when the content of the oxide ceramic in the coating was in the range from 15 to 20 %.

  12. Computer simulation of ZrO2 + 8 % Y2O3 and Al2O3 powder particles heating under plasma spraying

    International Nuclear Information System (INIS)

    Smurov, I.; Gusarov, A.; Hurevich, V.; Kundas, S.; Kashko, T.

    2001-01-01

    The optimization of plasma spraying processes and investigation of the influence of different parameters and variables on particle trajectories, final temperature distributions and velocities were the aim of this study. A mathematical model for simulation of powder particle heating and acceleration in a plasma jet with particle evaporation and diameter reduction is developed. The choice of the evaporation model strongly depends on the pressure of surrounded gas, for low and atmospheric pressures models were developed. A software with a database for material properties was developed, the first allows to conduct simulation of plasma spraying and contains several models for simulating the different stages of plasma spraying, providing a common interface and access to the database for all the models. The input or output data can be represented as ordinary graphic, distributed diagram or by special way, i.e. animation of particle moving and heating in plasma jet, diagram of phase changing etc. By using this program the process of stabilized zirconium oxide and aluminium oxide coating plasma spraying was simulated. (nevyjel)

  13. Frictional properties of CeO$_{2}$-Al$_{2}$O$_{3}$-ZrO$_{2}$ plasma-sprayed film under mixed and boundary lubricating conditions

    CERN Document Server

    Kita, H; Osumi, K; 10.2109/jcersj.112.615

    2004-01-01

    In order to find a counterpart for reducing the frictional coefficient of Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma-sprayed film, the sliding properties in mixed and boundary lubricating conditions was investigated. It was found that combination of a CrN- coated cast iron pin and an Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma sprayed plate provided the lowest frictional coefficient among several combinations chosen from practical materials. The coefficient of friction was much lower than that of the materials combination widely used for piston ring and cylinder liner. It was inferred that the combination of a pin made of hard materials with high density, a smooth surface such as CrN-coated cast iron and a porous plate can reduce the frictional coefficient because less sliding resistance is implemented and porosity retains oil.

  14. Characterisations Of Al2O3-13% Wt TiO2 Deposition On Mild Steel Via Plasma Spray Method

    International Nuclear Information System (INIS)

    Yusoff, N. H.; Isa, M. C.; Ghazali, M. J.; Muchtar, A.; Forghani, S.; Daud, A. R.

    2011-01-01

    To date, plasma sprayed alumina titania have been widely used as wear resistance coatings in textile, machinery and printing industries. Previous studies showed that the coating microstructures and properties were strongly depended on various parameters such as ceramic composition, grain size powders and spray parameters, thus, influencing the melting degree of the alumina titania during the deposition process. The aim of this study focuses on the evolution of the micron sizes of alumina-13%wt titania at different plasma spray power, ranging from 20kW to 40kW. It was noted that the coating porosity of alumina-13%wt titania were decreased from 6.2% to 4% by increasing the plasma power from 20 to 40 kW. At lower power value, partially melted powders were deposited, generating over 6% porosity within the microstructures. Percentage of porosity about 5.6% gave the best ratio of bi-modal structures, providing the highest microhardness value. Furthermore, the effect of microstructure and porosity formation on wear resistance was also discussed. Coatings with less porosity exhibited better resistance to wear, in which the wear resistance of coated mild steel possessed only ∼5 x 10 -4 cm 3 /Nm with 4% of porosity.

  15. Preparation of Al2O3/Mo nanocomposite powder via chemical route and spray drying

    International Nuclear Information System (INIS)

    Lo, M.; Cheng, F.; Wei, W.J.

    1996-01-01

    A route to prepare nanometer-sized Mo particulates in Al 2 O 3 was attempted by a combination of solution reactions in molecular scale and forcing precipitation by a spray-drying technique. MoO 3 was first dissolved in ammonia water and then added in the slurry with high purity, submicrometer Al 2 O 3 powder. Mixed suspension was spray-dried, and then the dried granules were reduced by hydrogen gas and further hot-pressing to a bulky composite at various temperatures. Dissolution of Mo oxide, adsorption reactions on alumina surface, and surface potential of alumina particles in homogeneous ammonia suspension were studied. Characterization of the granules, including compactability, flowing properties, surface morphology, grain growth of Mo and Al 2 O 3 , and mixing homogeneity, were examined. Homogeneity of the spray-dried granules was determined by the calculation of mixing index and the observation of the microstructure of sintered body. The existence of intergranular, intragranular, and nanosized Mo particulates within Al 2 O 3 grains was observed by transmission electron microscopy (TEM). All the evidences revealed that homogeneous composites with nanometer-sized Mo had been successfully prepared by this attempt with the proposed chemical route and following spray-drying process. copyright 1996 Materials Research Society

  16. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    Science.gov (United States)

    Palanivelu, R.; Ruban Kumar, A.

    2014-10-01

    Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14-20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  17. Room-temperature aqueous plasma electrolyzing Al2O3 nano-coating on carbon fiber

    Science.gov (United States)

    Zhang, Yuping; Meng, Yang; Shen, Yonghua; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2017-10-01

    A novel room-temperature aqueous plasma electrolysis technique has been developed in order to prepared Al2O3 nano-coating on each fiber within a carbon fiber bundle. The microstructure and formation mechanism of the Al2O3 nano-coating were systematically investigated. The oxidation resistance and tensile strength of the Al2O3-coated carbon fiber was measured at elevated temperatures. It showed that the dense Al2O3 nano-coating was relatively uniformly deposited with 80-120 nm in thickness. The Al2O3 nano-coating effectively protected the carbon fiber, evidenced by the slower oxidation rate and significant increase of the burn-out temperature from 800 °C to 950 °C. Although the bare carbon fiber remained ∼25 wt.% after oxidation at 700 °C for 20 min, a full destruction was observed, evidenced by the ∼0 GPa of the tensile strength, compared to ∼1.3 GPa of the Al2O3-coated carbon fiber due to the effective protection from the Al2O3 nano-coating. The formation mechanism of the Al2O3 nano-coating on carbon fiber was schematically established mainly based on the physic-chemical effect in the cathodic plasma arc zone.

  18. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    International Nuclear Information System (INIS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-01-01

    Graphical abstract: - Highlights: • Hydroxyapatite was synthesized by sol–gel route. • Bilayer (AT13/HAP) coating improves wear resistance of CP-Ti implant surface. • The microhardness values of bilayer coating surface were increased 4 times compared to uncoated sample surface. - Abstract: Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al 2 O 3 -13 wt%TiO 2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14–20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces

  19. Testing of Flame Sprayed Al2O3 Matrix Coatings Containing TiO2

    Directory of Open Access Journals (Sweden)

    Czupryński A.

    2016-09-01

    Full Text Available The paper presents the results of the properties of flame sprayed ceramic coatings using oxide ceramic materials coating of a powdered aluminium oxide (Al2O3 matrix with 3% titanium oxide (TiO2 applied to unalloyed S235JR grade structural steel. A primer consisting of a metallic Ni-Al-Mo based powder has been applied to plates with dimensions of 5×200×300 mm and front surfaces of Ø40×50 mm cylinders. Flame spraying of primer coating was made using a RotoTec 80 torch, and an external coating was made with a CastoDyn DS 8000 torch. Evaluation of the coating properties was conducted using metallographic testing, phase composition research, measurement of microhardness, substrate coating adhesion (acc. to EN 582:1996 standard, erosion wear resistance (acc. to ASTM G76-95 standard, and abrasive wear resistance (acc. to ASTM G65 standard and thermal impact. The testing performed has demonstrated that flame spraying with 97% Al2O3 powder containing 3% TiO2 performed in a range of parameters allows for obtaining high-quality ceramic coatings with thickness up to ca. 500 µm on a steel base. Spray coating possesses a structure consisting mainly of aluminium oxide and a small amount of NiAl10O16 and NiAl32O49 phases. The bonding primer coat sprayed with the Ni-Al-Mo powder to the steel substrate and external coating sprayed with the 97% Al2O3 powder with 3% TiO2 addition demonstrates mechanical bonding characteristics. The coating is characterized by a high adhesion to the base amounting to 6.5 MPa. Average hardness of the external coating is ca. 780 HV. The obtained coatings are characterized by high erosion and abrasive wear resistance and the resistance to effects of cyclic thermal shock.

  20. High temperature oxidation-sulfidation behavior of Cr-Al2O3 and Nb-Al2O3 composites densified by spark plasma sintering

    International Nuclear Information System (INIS)

    Saucedo-Acuna, R.A.; Monreal-Romero, H.; Martinez-Villafane, A.; Chacon-Nava, J.G.; Arce-Colunga, U.; Gaona-Tiburcio, C.; De la Torre, S.D.

    2007-01-01

    The high temperature oxidation-sulfidation behavior of Cr-Al 2 O 3 and Nb-Al 2 O 3 composites prepared by mechanical alloying (MA) and spark plasma sintering (SPS) has been studied. These composite powders have a particular metal-ceramic interpenetrating network and excellent mechanical properties. Oxidation-sulfidation tests were carried out at 900 deg. C, in a 2.5%SO 2 + 3.6%O 2 + N 2 (balance) atmosphere for 48 h. The results revealed the influence of the sintering conditions on the specimens corrosion resistance, i.e. the Cr-Al 2 O 3 and Nb-Al 2 O 3 composite sintered at 1310 deg. C/4 min showed better corrosion resistance (lower weight gains) compared with those found for the 1440 deg. C/5 min conditions. For the former composite, a protective Cr 2 O 3 layer immediately forms upon heating, whereas for the later pest disintegration was noted. Thus, under the same sintering conditions the Nb-Al 2 O 3 composites showed the highest weight gains. The oxidation products were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy

  1. Tribological Properties of Ti(Al,O)/Al2O3 Composite Coating by Thermal Spraying

    Science.gov (United States)

    Salman, Asma; Gabbitas, Brian; Cao, Peng; Zhang, Deliang

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity air fuel (HVAF) thermally sprayed wear resistant Ti(Al,O)/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting and dummy blocks aluminium extrusion. A feedstock of Ti(Al,O)/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity air-fuel (HVAF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The wear resistance of the coating was investigated by a tribometer using a spherical ended alumina pin as a counter body under dry and lubricating conditions. The results showed that composite coating has lower wear rate at high temperature than at room temperature without using lubricant. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  2. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition

    International Nuclear Information System (INIS)

    Chen Xing; Yang Chengxiao; Guan Leding; Yan Biao

    2008-01-01

    Aluminum matrix ceramic particle reinforced composites (AMCs) is a kind of composite with great importance. Aluminum matrix composite reinforced with TiB 2 /Al 2 O 3 ceramic particles was successfully in situ synthesized in Al-TiO 2 -B 2 O 3 system in this paper, using spray deposition with hot-press treatment technique. Five groups of composites with different reinforcement volume contents were prepared and the comparisons of porosity, ultimate tensile strength (UTS), elongation and Brinell hardness (BH) between the composites with and without hot-press treating were carried out. The composite with 21.0% reinforcement volume content was analyzed by X-ray diffraction (XRD), Environmental Scanning Electron Microscope (ESEM), Transmission Electron Microscope (TEM) and Energy Disperse Spectroscopy (EDS). The results revealed the formation and uniform distribution of fine reinforcements in the matrix after hot-press treating, while a new intermetallic phase Al 3 Ti was found besides TiB 2 /Al 2 O 3 ceramic phase

  3. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    Science.gov (United States)

    Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.

    2009-08-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  4. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    International Nuclear Information System (INIS)

    Salman, A; Gabbitas, B; Zhang, D; Li, J

    2009-01-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al 2 O 3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al 2 O 3 composite powder was produced from a mixture of Al and TiO 2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700 deg. C). The results showed that the composite coating has lower wear rate at high temperature (700deg. C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  5. Hot corrosion performance of LVOF sprayed Al2O3–40% TiO2 ...

    Indian Academy of Sciences (India)

    ficients of thermal expansions of the two. ... size 40 mesh just prior to deposition of the coating. Al2O3–. 40% TiO2 ... the laboratory Kanthal wire tube furnace, which was cali- ... formation of TiO2, Al2O3 and Al2Ti7O15 phases in the coat- ing.

  6. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    Science.gov (United States)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  7. Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement

    Science.gov (United States)

    Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.

    2014-02-01

    In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.

  8. Plasma-Assisted ALD TiN/Al2O3 stacks for MIMIM Trench Capacitor Applications

    NARCIS (Netherlands)

    Hoogeland, D.; Jinesh, K.B.; Voogt, F.C.; Besling, W.F.A.; Lamy, Y.; Roozeboom, F.; Sanden, van de M.C.M.; Kessels, W.M.M.; Gendt, de S.

    2009-01-01

    In this paper we report on the overall plasma-assisted ALD processes of Al2O3 and TiN conducted in a single reactor chamber and at a single temperature (340 oC). The individual Al2O3 and TiN films in the stack were consecutively deposited in such a way that they were separated by purge intervals

  9. Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS)

    Science.gov (United States)

    Cai, Lili; Ma, Wen; Ma, Bole; Guo, Feng; Chen, Weidong; Dong, Hongying; Shuang, Yingchai

    2017-08-01

    La2Zr2O7-SrZrO3 composite thermal barrier coatings (TBCs) were prepared by air plasma spray (APS). The La2Zr2O7-SrZrO3 composite TBCs covered with calcium-magnesium-aluminum-silicate (CMAS) powder, as well as the powder mixture of CMAS and spray-dried La2Zr2O7-SrZrO3 composite powder, were heat-treated at 1250 °C in air for 1, 4, 8, and 12 h. The phase constituents and microstructures of the reaction products were characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Experimental results showed that the La2Zr2O7-SrZrO3 composite TBCs had higher CMAS resistance than 8YSZ coating. A dense new layer developed between CMAS and La2Zr2O7-SrZrO3 composite TBCs during interaction, and this new layer consisted mostly of apatite (Ca2La8(SiO4)6O2) and c-ZrO2. The newly developed layer effectively protected the La2Zr2O7-SrZrO3 composite TBCs from further CMAS attack.

  10. Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Linde, Kasper; Hansen, Thomas Klint

    2011-01-01

    containing 16wt.% Mo (atomic ratio Co/Mo=1/3), which did not contain crystalline MoO3 and only small amounts of CoAl2O4. The hydrotreating activity was approximately 75% of that of commercial cobalt molybdenum catalysts prepared by wet impregnation of pre-shaped alumina extrudates. Since the commercial...... obtained consisted mostly of γ-Al2O3 with some CoAl2O4, as evidenced by X-ray diffraction (XRD) and UV–vis spectroscopy. Bulk MoO3 was not detected by XRD, except at the highest molybdenum content (32wt.%) and in the unsupported sample, indicating that molybdenum is well dispersed on the surface.......After activation by sulfidation the activity of the catalysts were measured for the three hydrotreating reactions hydrodesulfurization, hydrodenitrogenation and hydrogenation using a model oil containing dibenzothiophene, indole and naphthalene in n-heptane solution. The best catalyst was the FSP-produced material...

  11. Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure

    International Nuclear Information System (INIS)

    Ruppalt, Laura B.; Cleveland, Erin R.; Champlain, James G.; Prokes, Sharka M.; Brad Boos, J.; Park, Doewon; Bennett, Brian R.

    2012-01-01

    In this report, we study the effectiveness of hydrogen plasma surface treatments for improving the electrical properties of GaSb/Al 2 O 3 interfaces. Prior to atomic layer deposition of an Al 2 O 3 dielectric, p-GaSb surfaces were exposed to hydrogen plasmas in situ, with varying plasma powers, exposure times, and substrate temperatures. Good electrical interfaces, as indicated by capacitance-voltage measurements, were obtained using higher plasma powers, longer exposure times, and increasing substrate temperatures up to 250 °C. X-ray photoelectron spectroscopy reveals that the most effective treatments result in decreased SbO x , decreased Sb, and increased GaO x content at the interface. This in situ hydrogen plasma surface preparation improves the semiconductor/insulator electrical interface without the use of wet chemical pretreatments and is a promising approach for enhancing the performance of Sb-based devices.

  12. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    NARCIS (Netherlands)

    Langereis, E.; Keijmel, J.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2008-01-01

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25–150 °C, –CH3 and –OH were unveiled as dominant surface groups after the Al(CH3)3precursor and O2 plasma half-cycles, respectively. At

  13. Two-Nozzle Flame Spray Pyrolysis (FSP) Synthesis of CoMo/Al2O3 Hydrotreating Catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Pham, David K.; Brorson, Michael

    2013-01-01

    and the hydrodenitrogenation activity improved from 70 to 90 % relative activity. This suggests that better promotion of the active molybdenum sulfide phase was achieved when using two-nozzle FSP synthesis, probably due to less formation of the undesired phase CoAl2O4, which makes Co unavailable for promotion.......Two-nozzle frame spray analysis (FSP) synthesis of CoMo/Al2O3 where Co and Al are sprayed in separate flames was applied to minimize the formation of CoAl2O4 observed in one-nozzle flame spray pyrolysis (FSP) synthesis and the materials were characterized by N2-adsorption (BET), X-ray diffraction...... (XRD), UV–vis diffuse reflectance spectroscopy, Raman spectroscopy, transmission electron microscopy, and catalytic performances in hydrotreating. By varying the flame mixing distances (81–175 mm) the amount of CoAl2O4 could be minimized. As evidenced by UV–vis spectroscopy, CoAl2O4 was detected only...

  14. Plasma-assisted atomic layer deposition of TiN/Al2O3 stacks for metal-oxide-semiconductor capacitor applications

    NARCIS (Netherlands)

    Hoogeland, D.; Jinesh, K.B.; Roozeboom, F.; Besling, W.F.A.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2009-01-01

    By employing plasma-assisted atomic layer deposition, thin films of Al2O3 and TiN are subsequently deposited in a single reactor at a single substrate temperature with the objective of fabricating high-quality TiN/Al2O3 / p-Si metal-oxide-semiconductor capacitors. Transmission electron microscopy

  15. Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings

    Science.gov (United States)

    Berger, Lutz-Michael; Sempf, Kerstin; Sohn, Yoo Jung; Vaßen, Robert

    2018-04-01

    The formation and decomposition of aluminum titanate (Al2TiO5, tialite) in feedstock powders and coatings of the binary Al2O3-TiO2 system are so far poorly understood. A commercial fused and crushed Al2O3-40%TiO2 powder was selected as the feedstock for the experimental series presented in this paper, as the composition is close to that of Al2TiO5. Part of that powder was heat-treated in air at 1150 and 1500 °C in order to modify the phase composition, while not influencing the particle size distribution and processability. The powders were analyzed by thermal analysis, XRD and FESEM including EDS of metallographically prepared cross sections. Only a maximum content of about 45 wt.% Al2TiO5 was possible to obtain with the heat treatment at 1500 °C due to inhomogeneous distribution of Al and Ti in the original powder. Coatings were prepared by plasma spraying using a TriplexPro-210 (Oerlikon Metco) with Ar-H2 and Ar-He plasma gas mixtures at plasma power levels of 41 and 48 kW. Coatings were studied by XRD, SEM including EDS linescans of metallographically prepared cross sections, and microhardness HV1. With the exception of the powder heat-treated at 1500 °C an Al2TiO5-Ti3O5 (tialite-anosovite) solid solution Al2- x Ti1+ x O5 instead of Al2TiO5 existed in the initial powder and the coatings.

  16. Parametric study of plasma-mediated thermoluminescence produced by Al2O3 sub-micron powders

    Science.gov (United States)

    Morávek, T.; Ambrico, P. F.; Ambrico, M.; Schiavulli, L.; Ráheľ, J.

    2017-10-01

    Sub-micron Al2O3 powders with a surface activated by dielectric barrier discharge exhibit improved performance in wet deposition of ceramic layers. In addressing the possible mechanisms responsible for the observed improvement, a comprehensive thermoluminescence (TL) study of plasma-activated powders was performed. TL offers the unique possibility of exploring the population of intrinsic electrons/holes in the charge trapping states. This study covers a wide range of experimental conditions affecting the TL of powders: treatment time, plasma working gas composition, change of discharge configuration, step-annealing of powder, exposure to laser irradiation and aging time. Deconvoluted TL spectra were followed for the changes in their relative contributions. The TL spectra of all tested gases (air, Ar, N2 and 5% He in N2) consist of the well-known main dosimetric peak at 450 K and a peak of similar magnitude at higher temperatures, centered between 700 and 800 K depending on the working gas used. N2 plasma treatment gave rise to a new specific TL peak at 510 K, which exhibited several peculiarities. Initial thermal annealing of Al2O3 powders led to its significant amplification (unlike the other peaks); the peak was insensitive to optical bleaching, and it exhibited slow gradual growth during the long-term aging test. Besides its relevance to the ceramic processing studies, a comprehensive set of data is presented that provides a useful and unconventional view on plasma-mediated material changes.

  17. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    Science.gov (United States)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-04-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  18. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    Science.gov (United States)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-03-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  19. Time resolved emission spectroscopy investigations of pulsed laser ablated plasmas of ZrO2 and Al2O3

    International Nuclear Information System (INIS)

    Hadoko, A D; Lee, P S; Lee, P; Mohanty, S R; Rawat, R S

    2006-01-01

    With the rising trend of synthesizing ultra thin films and/or quantum-confined materials using laser ablation, optimization of deposition parameters plays an essential role in obtaining desired film characteristics. This paper presents the initial step of plasma optimization study by examining temporal distribution of the plasma formation by pulsed laser ablation of materials. The emitted spectra of ZrO 2 and Al 2 O 3 are obtained ∼3mm above the ablated target to derive the ablated plasma characteristics. The plasma temperature is estimated to be at around 2.35 eV, with electron density of 1.14 x 10 16 (cm -3 ). Emission spectra with different gate delay time (40-270 ns) are captured to study the time resolved plume characteristics. Transitory elemental species are identified

  20. Microstructure and Transparent Super-Hydrophobic Performance of Vacuum Cold-Sprayed Al2O3 and SiO2 Aerogel Composite Coating

    Science.gov (United States)

    Li, Jie; Zhang, Yu; Ma, Kai; Pan, Xi-De; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2018-02-01

    In this study, vacuum cold spraying was used as a simple and fast way to prepare transparent super-hydrophobic coatings. Submicrometer-sized Al2O3 powder modified by 1,1,2,2-tetrahydroperfluorodecyltriethoxysilane and mixed with hydrophobic SiO2 aerogel was employed for the coating deposition. The deposition mechanisms of pure Al2O3 powder and Al2O3-SiO2 mixed powder were examined, and the effects of powder structure on the hydrophobicity and light transmittance of the coatings were evaluated. The results showed that appropriate contents of SiO2 aerogel in the mixed powder could provide sufficient cushioning to the deposition of submicrometer Al2O3 powder during spraying. The prepared composite coating surface showed rough structures with a large number of submicrometer convex deposited particles, characterized by being super-hydrophobic. Also, the transmittance of the obtained coating was higher than 80% in the range of visible light.

  1. Remote plasma-assisted nitridation (RPN): applications to Zr and Hf silicate alloys and Al2O3

    International Nuclear Information System (INIS)

    Hinkle, Chris; Lucovsky, Gerry

    2003-01-01

    Remote plasma-assisted nitridation or RPN is demonstrated to be a processing pathway for nitridation of Zr and Hf silicate alloys, and for Al 2 O 3 , as well. The dependence of nitrogen incorporation on the process pressure is qualitatively similar to what has been reported for the plasma-assisted nitridation of SiO 2 , the lower the process pressure the greater the nitrogen incorporation in the film. The increased incorporation of nitrogen has been correlated with the penetration of the plasma-glow into the process chamber, and the accompanying increase in the concentration of N 2 + ions that participate in the reactions leading to bulk incorporation. The nitrogen incorporation as been studied by Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS) and X-ray absorption spectroscopy (XAS)

  2. Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties

    Science.gov (United States)

    Kumar, Rohit; Chaubey, A. K.; Bathula, Sivaiah; Prashanth, K. G.; Dhar, Ajay

    2018-03-01

    Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness ( R a = 6.53 µm) compared to the sample sintered at 1500 °C ( R a = 0.66 µm) corroborating the abrasion wear test results.

  3. Comparison between Al2O3 surface passivation films deposited with thermal ALD, plasma ALD and PECVD

    NARCIS (Netherlands)

    Dingemans, G.; Engelhart, P.; Seguin, R.; Mandoc, M.M.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    Surface passivation schemes based on Al2O3 have enabled increased efficiencies for silicon solar cells. The key distinguishing factor of Al2O3 is the high fixed negative charge density (Qf = 1012-1013 cm-2), which is especially beneficial for p- and p+ type c-Si, as it leads to a high level of

  4. Evaluating the toughness of APS and HVOF-sprayed Al2O3-ZrO2-coatings by in-situ- and macroscopic bending

    Czech Academy of Sciences Publication Activity Database

    Kiilakoski, J.; Mušálek, Radek; Lukáč, František; Koivuluoto, H.; Vuoristo, P.

    2018-01-01

    Roč. 38, č. 4 (2018), s. 1908-1918 ISSN 0955-2219 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Thermal spray * Al2O3-ZrO2 * Toughening * Fracture * Mechanical testing Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 3.411, year: 2016 https://www.sciencedirect.com/science/article/pii/S0955221917308051

  5. A contribution to understanding the results of instrumented indentation on thermal spray coatings - Case study on Al2O3 and stainless steel

    Czech Academy of Sciences Publication Activity Database

    Nohava, J.; Mušálek, Radek; Matějíček, Jiří; Vilémová, Monika

    2014-01-01

    Roč. 240, February (2014), s. 243-249 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GAP108/12/1872; GA ČR(CZ) GPP108/12/P552 Institutional support: RVO:61389021 Keywords : Thermal spray coating * Instrumented indentation * Al2O3 * Stainless steel * Scale effect Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.998, year: 2014 http://www.sciencedirect.com/science/article/pii/S0257897213011869#

  6. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/γ-Al2O3.

    Science.gov (United States)

    Zhu, Tao; Chen, Rui; Xia, Ni; Li, Xiaoyang; He, Xianxian; Zhao, Wenjuan; Carr, Tim

    2015-01-01

    Volatile organic compounds' (VOCs) effluents, which come from many industries, are triggering serious environmental problems. As an emerging technology, non-thermal plasma (NTP) technology is a potential technology for VOCs emission control. NTP coupled with F-TiO2/γ-Al2O3 is used for toluene removal from a gaseous influent at normal temperature and atmospheric pressure. NTP is generated by dielectric barrier discharge, and F-TiO2/γ-Al2O3 can be prepared by sol-gel method in the laboratory. In the experiment, the different packed materials were packed into the plasma reactor, including γ-Al2O3, TiO2/γ-Al2O3 and F-TiO2/γ-Al2O3. Through a series of characterization methods such as X-ray diffraction, scanning electronic microscopy and Brunner-Emmet-Teller measurements, the results show that the particle size distribution of F-TiO2 is relatively smaller than that of TiO2, and the pore distribution of F-TiO2 is more uniformly distributed than that of TiO2. The relationships among toluene removal efficiency, reactor input energy density, and the equivalent capacitances of air gap and dielectric barrier layer were investigated. The results show that the synergistic technology NTP with F-TiO2/γ-Al2O3 resulted in greater enhancement of toluene removal efficiency and energy efficiency. Especially, when packing with F-TiO2/γ-Al2O3 in NTP reactor, toluene removal efficiency reaches 99% and higher. Based on the data analysis of Fourier Transform Infrared Spectroscopy, the experimental results showed that NTP reactor packed with F-TiO2/γ-Al2O3 resulted in a better inhibition for by-products formation effectively in the gas exhaust.

  7. Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications

    Science.gov (United States)

    Chen, Xiuyong; Yuan, Jianhui; Huang, Jing; Ren, Kun; Liu, Yi; Lu, Shaoyang; Li, Hua

    2014-08-01

    This study aims to further enhance the anti-corrosion performances of Al coatings by constructing superhydrophobic surfaces. The Al coatings were initially arc-sprayed onto steel substrates, followed by deposition of polyurethane (PU)/nano-Al2O3 composites by a suspension flame spraying process. Large-scale corrosion-resistant superhydrophobic PU/nano-Al2O3-Al coatings were successfully fabricated. The coatings showed tunable superhydrophilicity/superhydrophobicity as achieved by changing the concentration of PU in the starting suspension. The layer containing 2.0 wt.%PU displayed excellent hydrophobicity with the contact angle of ∼151° and the sliding angle of ∼6.5° for water droplets. The constructed superhydrophobic coatings showed markedly improved anti-corrosion performances as assessed by electrochemical corrosion testing carried out in 3.5 wt.% NaCl solution. The PU/nano-Al2O3-Al coatings with superhydrophobicity and competitive anti-corrosion performances could be potentially used as protective layers for marine infrastructures. This study presents a promising approach for fabricatiing superhydrophobic coatings for corrosion-resistant applications.

  8. Production of Al2O3–SiC nano-composites by spark plasma sintering

    International Nuclear Information System (INIS)

    Mansour Razavi; Ali Reza Farajipour; Mohammad Zakeri; Mohammad Reza Rahimipour; Ali Reza Firouzbakht

    2017-01-01

    In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600°C for 10min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329MPa, respectively, in Al2O3–20wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale. [es

  9. Production of Al2O3–SiC nano-composites by spark plasma sintering; Producción de nano-composites – SiC–Al2O3 por spark plasma sinterizado

    Energy Technology Data Exchange (ETDEWEB)

    Mansour Razavi; Ali Reza Farajipour; Mohammad Zakeri; Mohammad Reza Rahimipour; Ali Reza Firouzbakht

    2017-11-01

    In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600°C for 10min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329MPa, respectively, in Al2O3–20wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale. [Spanish] En este trabajo se muestran compuestos de Al2O3-SiC producidos por SPS, en vacío, a 1.600 °C durante 10 min. Para la preparación de muestras, se molieron polvos de Al2O3 durante 5 h con la segunda fase de micro-y-nano polvo de SiC. Posteriormente, estos polvos molidos se sinterizaron mediante SPS. Después del proceso de sinterización, se realizaron estudios de fase, densificación y propiedades mecánicas de los compuestos de Al2O3-SiC obtenidos. Los resultados mostraron que micro-SiC en las muestras tiene un efecto importante en su densidad aparente, dureza y resistencia. La mayor densidad relativa, dureza y resistencia fueron respectivamente del 99,7%, 324,6 HV y 2.329 MPa para Al2O3 con un 20% en peso micro-SiC. Debido al corto tiempo de sinterización, el crecimiento los granos fue limitado y se mantuvieron en escala nanométrica.

  10. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method.

    Science.gov (United States)

    Zhu, Xinbo; Tu, Xin; Mei, Danhua; Zheng, Chenghang; Zhou, Jinsong; Gao, Xiang; Luo, Zhongyang; Ni, Mingjiang; Cen, Kefa

    2016-07-01

    In this work, plasma-catalytic removal of low concentrations of acetone over CuO/γ-Al2O3 catalysts was carried out in a cylindrical dielectric barrier discharge (DBD) reactor. The combination of plasma and the CuO/γ-Al2O3 catalysts significantly enhanced the removal efficiency of acetone compared to the plasma process using the pure γ-Al2O3 support, with the 5.0 wt% CuO/γ-Al2O3 catalyst exhibiting the best acetone removal efficiency of 67.9%. Catalyst characterization was carried out to understand the effect the catalyst properties had on the activity of the CuO/γ-Al2O3 catalysts in the plasma-catalytic reaction. The results indicated that the formation of surface oxygen species on the surface of the catalysts was crucial for the oxidation of acetone in the plasma-catalytic reaction. The effects that various operating parameters (discharge power, flow rate and initial concentration of acetone) and the interactions between these parameters had on the performance of the plasma-catalytic removal of acetone over the 5.0 wt% CuO/γ-Al2O3 catalyst were investigated using central composite design (CCD). The significance of the independent variables and their interactions were evaluated by means of the Analysis of Variance (ANOVA). The results showed that the gas flow rate was the most significant factor affecting the removal efficiency of acetone, whilst the initial concentration of acetone played the most important role in determining the energy efficiency of the plasma-catalytic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

    Directory of Open Access Journals (Sweden)

    Jörg Haeberle

    2013-11-01

    Full Text Available We report on results on the preparation of thin (2O3 films on silicon substrates using thermal atomic layer deposition (T-ALD and plasma enhanced atomic layer deposition (PE-ALD in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt and 200 °C. We show data from spectroscopic ellipsometry (thickness, refractive index, growth rate over 4” wafers and correlate them to X-ray photoelectron spectroscopy (XPS results. The 200 °C T-ALD and PE-ALD processes yield films with similar refractive indices and with oxygen to aluminum elemental ratios very close to the stoichiometric value of 1.5. However, in both also fragments of the precursor are integrated into the film. The PE-ALD films show an increased growth rate and lower carbon contaminations. Reducing the deposition temperature down to rt leads to a higher content of carbon and CH-species. We also find a decrease of the refractive index and of the oxygen to aluminum elemental ratio as well as an increase of the growth rate whereas the homogeneity of the film growth is not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films.

  12. Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Carcia, P. F.; McLean, R. S.; Groner, M. D.; Dameron, A. A.; George, S. M.

    2009-01-01

    Thin films grown by Al 2 O 3 atomic layer deposition (ALD) and SiN plasma-enhanced chemical vapor deposition (PECVD) have been tested as gas diffusion barriers either individually or as bilayers on polymer substrates. Single films of Al 2 O 3 ALD with thicknesses of ≥10 nm had a water vapor transmission rate (WVTR) of ≤5x10 -5 g/m 2 day at 38 deg. C/85% relative humidity (RH), as measured by the Ca test. This WVTR value was limited by H 2 O permeability through the epoxy seal, as determined by the Ca test for the glass lid control. In comparison, SiN PECVD films with a thickness of 100 nm had a WVTR of ∼7x10 -3 g/m 2 day at 38 deg. C/85% RH. Significant improvements resulted when the SiN PECVD film was coated with an Al 2 O 3 ALD film. An Al 2 O 3 ALD film with a thickness of only 5 nm on a SiN PECVD film with a thickness of 100 nm reduced the WVTR from ∼7x10 -3 to ≤5x10 -5 g/m 2 day at 38 deg. C/85% RH. The reduction in the permeability for Al 2 O 3 ALD on the SiN PECVD films was attributed to either Al 2 O 3 ALD sealing defects in the SiN PECVD film or improved nucleation of Al 2 O 3 ALD on SiN.

  13. The formation of tungsten doped Al_2O_3/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis

    International Nuclear Information System (INIS)

    Stojadinović, Stevan; Vasilić, Rastko; Radić, Nenad; Tadić, Nenad; Stefanov, Plamen; Grbić, Boško

    2016-01-01

    Highlights: • Tungsten doped Al_2O_3/ZnO coatings are formed by plasma electrolytic oxidation (PEO). • Coatings are mainly composed of alpha alumina, ZnO and metallic tungsten. • Photocatalytic activity of doped Al_2O_3/ZnO coatings is higher than of undoped ones. • The increase of photoluminescence corresponds to decrease of photocatalytic activity. • Tungsten acts as a charge trap to reduce the recombination rate of electron/hole pairs. - Abstract: Tungsten doped Al_2O_3/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na_2WO_4·2H_2O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al_2O_3, ZnO, metallic tungsten and WO_3. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al_2O_3/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al_2O_3/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al_2O_3/ZnO coatings is higher thanof undoped Al_2O_3/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na_2WO_4·2H_2O. Tungsten in Al_2O_3/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the coatings, indicating slower recombination of electron-hole pairs.

  14. Pentacene thin-film transistors and inverters with plasma-enhanced atomic-layer-deposited Al2O3 gate dielectric

    International Nuclear Information System (INIS)

    Koo, Jae Bon; Lim, Jung Wook; Kim, Seong Hyun; Yun, Sun Jin; Ku, Chan Hoe; Lim, Sang Chul; Lee, Jung Hun

    2007-01-01

    The performances of pentacene thin-film transistor with plasma-enhanced atomic-layer-deposited (PEALD) 150 nm thick Al 2 O 3 dielectric are reported. Saturation mobility of 0.38 cm 2 /V s, threshold voltage of 1 V, subthreshold swing of 0.6 V/decade, and on/off current ratio of about 10 8 have been obtained. Both depletion and enhancement mode inverter have been realized with the change of treatment method of hexamethyldisilazane on PEALD Al 2 O 3 gate dielectric. Full swing depletion mode inverter has been demonstrated at input voltages ranging from 5 V to - 5 V at supply voltage of - 5 V

  15. Production of Al2O3–SiC nano-composites by spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mansour Razavi

    2017-07-01

    Full Text Available In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600 °C for 10 min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5 h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329 MPa, respectively, in Al2O3–20 wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale.

  16. Investigations of AlGaN/GaN MOS-HEMT with Al2O3 deposition by ultrasonic spray pyrolysis method

    International Nuclear Information System (INIS)

    Chou, Bo-Yi; Hsu, Wei-Chou; Liu, Han-Yin; Wu, Yu-Sheng; Lee, Ching-Sung; Sun, Wen-Ching; Wei, Sung-Yen; Yu, Sheng-Min; Chiang, Meng-Hsueh

    2015-01-01

    This work investigates Al 2 O 3 /AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOS-HEMTs) grown on SiC substrate by using the non-vacuum ultrasonic spray pyrolysis deposition (USPD) method. The Al 2 O 3 was deposited as gate dielectric and surface passivation simultaneously to effectively suppress gate leakage current, enhance output current density, reduce RF drain current collapse, and improve temperature-dependent stabilities performance. The present MOS-HEMT design has shown improved device performances with respect to a Schottky-gate HEMT, including drain-source saturation current density at zero gate bias (I DSS : 337.6 mA mm −1  → 462.9 mA mm −1 ), gate-voltage swing (GVS: 1.55 V → 2.92 V), two-terminal gate-drain breakdown voltage (BV GD : −103.8 V → −183.5 V), unity-gain cut-off frequency (f T : 11.3 GHz → 17.7 GHz), maximum oscillation frequency (f max : 14.2 GHz → 19.1 GHz), and power added effective (P.A.E.: 25.1% → 43.6%). The bias conditions for measuring f T and f max of the studied MOS-HEMT (Schottky-gate HEMT) are V GS  = −2.5 (−2) V and V DS  = 7 V. The corresponding V GS and V DS biases are −2.5 (−2) V and 15 V for measuring the P.A.E. characteristic. Moreover, small capacitance-voltage (C–V) hysteresis is obtained in the Al 2 O 3 -MOS structure by using USPD. Temperature-dependent characteristics of the present designs at 300–480 K are also studied. (paper)

  17. Mikrostruktur dan Karakterisasi Sifat Mekanik Lapisan Cr3C2-NiAl-Al2O3 Hasil Deposisi Dengan Menggunakan High Velocity Oxygen Fuel Thermal Spray Coating

    Directory of Open Access Journals (Sweden)

    Edy Riyanto

    2012-03-01

    Full Text Available Surface coating processing of industrial component with thermal spray coatings have been applied in many industrial fields. Ceramic matrix composite coating which consists of Cr3C2-Al2O3-NiAl had been carried out to obtain layers of material that has superior mechanical properties to enhance component performance. Deposition of CMC with High Velocity Oxygen Fuel (HVOF thermal spray coating has been employed. This study aims to determine the effect of powder particle size on the microstructure, surface roughness and hardness of the layer, by varying the NiAl powder particle size. Test results show NiAl powder particle size has an influence on the mechanical properties of CMC coating. Hardness of coating increases and surface roughness values of coating decrease with smaller NiAl particle size.  

  18. Influence of chemical composition on dielectric properties of Al2O3-ZrO2 plasma deposits

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Neufuss, Karel

    2003-01-01

    Roč. 29, - (2003), s. 527-532 ISSN 0272-8842 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma spray, ceramics, oxides Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.704, year: 2003

  19. Spark plasma sintering of α-Si3N4 ceramics with Al2O3 and Y2O3 as additives and its morphology transformation

    International Nuclear Information System (INIS)

    Ceja-Cardenas, L.; Lemus-Ruiz, J.; Jaramillo-Vigueras, D.; Torre, S.D. de la

    2010-01-01

    The spark plasma sintering SPS technique has been used to densify pure α-Si 3 N 4 commercial powder, having Y 2 O 3 and Al 2 O 3 additions; from 0, 2.5 and 5.0 wt% to 0, 1.5 and 3 wt%, respectively. Such powder admixtures were previously spray-dried at 160 o C in such a way that powder was thoroughly homogenized. Set sintering treatment included: 0-20 min holding time and 38 MPa axial load, sintering temperature of 1500 o C and heating rate of 300 o C/min. The maximum relative density developed on studied specimens ranged from 99.4 to 99.8% and could only be attained once the β-phase nucleated from the α-silicon nitride matrix. Obtained Si 3 N 4 composites combine both α- and β-phases. The later phase becomes evident trough the rod-like geometry, which forms throughout the presence of a liquid face. The largest hardness value developed (1588 Hv (20kgf) ) on studied ceramics (3M-series - 3 min) matched close to the corresponding counterpart found in literature (1600 Hv), the former developed in much shorter sintering times. Using X-ray diffraction XRD and scanning electron microscope SEM analyses, the two major phases of Si 3 N 4 were identified in the resultant microstructures. The morphology evolution of Si 3 N 4 particles as occurred upon SPS-sintering is analyzed.

  20. Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al2O3 films deposited by remote plasma atomic layer deposition

    International Nuclear Information System (INIS)

    Jung, Hyunsoo; Choi, Hagyoung; Lee, Sanghun; Jeon, Heeyoung; Jeon, Hyeongtag

    2013-01-01

    In the present study, we investigated the gas and moisture permeation barrier properties of Al 2 O 3 films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH 3 ) 3 ] as the Al source and O 2 plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al 2 O 3 at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradation test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10 −4 gm −2 day −1 and 1.2 × 10 −3 gm −2 day −1 , respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O 2 plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties

  1. Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Alnama

    2016-06-01

    Full Text Available Plasma plume of Al2O3–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  2. Spray pyrolysis synthesis of γ-Al_2O_3 supported metal and metal phosphide catalysts and their activity in the hydrodeoxygenation of a bio-oil model compound

    International Nuclear Information System (INIS)

    Ly, Hoang Vu; Im, Kyungmin; Go, Youngchae; Galiwango, Emmanuel; Kim, Seung-Soo; Kim, Jinsoo; Choi, Jae Hyung; Woo, Hee Chul

    2016-01-01

    Highlights: • Spherical γ-Al_2O_3 supported metal and metal phosphide catalysts were synthesized by spray pyrolysis method. • Hydrodeoxygenation (HDO) of 2-furyl methyl ketone (FMK) was conducted using metal/metal phosphide catalysts. • FMK was converted into 2-allyl furan and methyl cyclohexane. • The highest FMK conversion of 83% was achieved over 10 wt% Ni/γ-Al_2O_3 catalysts at reaction temperature of 400 °C. - Abstract: In this study, spherical γ-Al_2O_3 supported metal and metal phosphide (Ni, Co, Ni_2P and CoP) catalysts were successfully prepared by combining sol-gel and spray pyrolysis methods. First boehmite sol was prepared based on the Yoldas process and then the corresponding metal salts were added to the sol at the desired concentration, followed by spray pyrolysis of the mixed solution. As the well-mixed solution was transformed to spherical γ-Al_2O_3 supported metal and metal phosphide catalysts during spray pyrolysis process, the metal species were uniformly distributed in the mesoporous γ-Al_2O_3 supports. The product catalysts were investigated under different conditions for hydrodeoxygenation of bio-oil model compound, 2-furyl methyl ketone (FMK), which is the main component of the bio-oil product from pyrolysis of Saccharina japonica. Among the investigated catalysts, the 10 wt% Ni/γ-Al_2O_3 catalyst after calcination at 800 °C showed the highest FMK conversion of 83.02% at the reaction temperature of 400 °C. The gas and liquid products were analyzed by gas chromatography (GC) with TCD/FID detectors and GC–MS, respectively, to determine the product compositions.

  3. Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition.

    Science.gov (United States)

    Jia, Endong; Zhou, Chunlan; Wang, Wenjing

    2015-01-01

    Plasma-enhanced atom layer deposition (PEALD) can deposit denser films than those prepared by thermal ALD. But the improvement on thickness uniformity and the decrease of defect density of the films deposited by PEALD need further research. A PEALD process from trimethyl-aluminum (TMA) and oxygen plasma was investigated to study the influence of the conditions with different plasma powers and deposition temperatures on uniformity and growth rate. The thickness and refractive index of films were measured by ellipsometry, and the passivation effect of alumina on n-type silicon before and after annealing was measured by microwave photoconductivity decay method. Also, the effects of deposition temperature and annealing temperature on effective minority carrier lifetime were investigated. Capacitance-voltage and conductance-voltage measurements were used to investigate the interface defect density of state (D it) of Al2O3/Si. Finally, Al diffusion P(+) emitter on n-type silicon was passivated by PEALD Al2O3 films. The conclusion is that the condition of lower substrate temperature accelerates the growth of films and that the condition of lower plasma power controls the films' uniformity. The annealing temperature is higher for samples prepared at lower substrate temperature in order to get the better surface passivation effects. Heavier doping concentration of Al increased passivation quality after annealing by the effective minority carrier lifetime up to 100 μs.

  4. Hydrogen–argon plasma pre-treatment for improving the anti-corrosion properties of thin Al2O3 films deposited using atomic layer deposition on steel

    International Nuclear Information System (INIS)

    Härkönen, Emma; Potts, Stephen E.; Kessels, Wilhelmus M.M.; Díaz, Belén; Seyeux, Antoine; Światowska, Jolanta; Maurice, Vincent; Marcus, Philippe; Radnóczi, György; Tóth, Lajos; Kariniemi, Maarit; Niinistö, Jaakko; Ritala, Mikko

    2013-01-01

    The effect of H 2 –Ar plasma pre-treatment prior to thermal atomic layer deposition (ALD) and plasma-enhanced atomic layer deposition (PEALD) of Al 2 O 3 films on steel for corrosion protection was investigated. Time-of-flight secondary ion mass spectrometry and transmission electron microscopy were used to observe the changes in the interface. The electrochemical properties of the samples were studied with polarization measurements, and the coating porosities were calculated from the polarization results for easier comparison of the coatings. Prior to thermal ALD the plasma pre-treatment was observed to reduce the amount of impurities at the interface and coating porosity by 1–3 orders of magnitude. The anti-corrosion properties of the PEALD coatings could also be improved by the pre-treatment. However, exposure of the pre-treatment plasma activated steel surface to oxygen plasma species in PEALD led to facile oxide layer formation in the interface. The oxide layer formed this way was thicker than the native oxide layer and appeared to be detrimental to the protective properties of the coating. The best performance for PEALD Al 2 O 3 coatings was achieved when, after the plasma pre-treatment, the surface was given time to regrow a thin protective interfacial oxide prior to exposure to the oxygen plasma. The different effects that thermal and plasma-enhanced ALD have on the substrate-coating interface were compared. The reactivity of the oxygen precursor was shown to have a significant influence on substrate surface in the early stages of film growth and thereafter also on the overall quality of the protective film. - Highlights: • Influence of H 2 –Ar plasma pre-treatment to ALD coatings on steel was studied. • The pre-treatment modified the coating–substrate interface composition and thickness. • The pre-treatment improved the barrier properties of the coatings

  5. Synthesis of High Crystalline Al-Doped ZnO Nanopowders from Al2O3 and ZnO by Radio-Frequency Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Min-Kyeong Song

    2015-01-01

    Full Text Available High crystalline Al-doped ZnO (AZO nanopowders were prepared by in-flight treatment of ZnO and Al2O3 in Radio-Frequency (RF thermal plasma. Micron-sized (~1 μm ZnO and Al2O3 powders were mixed at Al/Zn ratios of 3.3 and 6.7 at.% and then injected into the RF thermal plasma torch along the centerline at a feeding rate of 6.6 g/min. The RF thermal plasma torch system was operated at the plate power level of ~140 kVA to evaporate the mixture oxides and the resultant vapor species were condensed into solid particles by the high flow rate of quenching gas (~7000 slpm. The FE-SEM images of the as-treated powders showed that the multipod shaped and the whisker type nanoparticles were mainly synthesized. In addition, these nanocrystalline structures were confirmed as the single phase AZO nanopowders with the hexagonal wurtzite ZnO structure by the XRD patterns and FE-TEM results with the SAED image. However, the composition changes of 0.3 and 1.0 at.% were checked for the as-synthesized AZO nanopowders at Al/Zn ratios of 3.3 and 6.7 at.%, respectively, by the XRF data, which can require the adjustment of Al/Zn in the mixture precursors for the applications of high Al doping concentrations.

  6. Spark plasma sintering and mechanical properties of $ZrO_{2} (Y_{2}O_{3})-Al_{2}O_{3}$ composites

    CERN Document Server

    Jin Sheng H; Dalla Torre, S; Miyamoto, H; Miyamoto, K

    2000-01-01

    Spark plasma sintering (SPS) was conducted on nanocrystalline ZrO/sub 2/(Y/sub 2/O/sub 3/)-20 mol% Al/sub 2/O/sub 3/ powder at a heat rate of 600 degrees C/min with a short holding time. Full density was obtained at sintering temperatures >1300 degrees C. Considerable grain growth occurred relative to the initial powder particles, but smaller grain size and higher density can be obtained as compared to hot-pressing. High flexural strength and fracture toughness were also achieved for the SPS-resulted composite. (8 refs).

  7. Effect of nitrogen plasma treatment at the Al2O3/Fe interface in magnetic tunnel junction

    International Nuclear Information System (INIS)

    Shim, Heejae; Cho, B. K.; Kim, Jin-Tae; Kim, T. W.; Park, W. J.

    2003-01-01

    We investigated the effects of nitrogen plasma treatment on top surface of Fe pinned layer for short times (t ex =0, 10, 30, and 60 s) in magnetic tunnel junctions and annealing of the junctions. The nitrogen-treated junctions show much reduced magnetoresistance (MR) ratio and significantly lower resistance-area (RA) products compared with the untreated junction, i.e., MR≅3%, RA≅30 kΩ μm 2 for t ex =10 s and MR≅10%, RA≅60 kΩ μm 2 for t ex =0 s. The untreated junction showed enhanced MR ratio up to about 17% and higher RA (≅70 kΩ μm2) upon thermal annealing at T a =230 deg. C, as expected. For the nitrogen-treated junctions, while the MR ratio also increases up to about 16% upon annealing at T a =230 deg. C, which is almost the same value as the one of the optimal reference junction, the RA values of the annealed junctions still keep as low as their initial values. We believe that the redistribution of nitrogen during the annealing process is responsible for the change of properties of nitrogen-treated junction. The bias dependence of MR and the estimation of effective barrier height and thickness are studied and found to be consistent with the observed changes in nitrogen-treated junctions

  8. Investigation of the flatband voltage (V(FB)) shift of Al2O3 on N2 plasma treated Si substrate.

    Science.gov (United States)

    Kim, Hyungchul; Lee, Jaesang; Jeon, Heeyoung; Park, Jingyu; Jeon, Hyeongtag

    2013-09-01

    The relationships between the physical and electrical characteristics of films treated with N2 plasma followed by forming gas annealing (FGA) were investigated. The Si substrates were treated with various radio frequency (RF) power levels under a N2 ambient. Al2O3 films were then deposited on Si substrates via remote plasma atomic-layer deposition. The plasma characteristics, such as the radical and ion density, were investigated using optical emission spectroscopy. Through X-ray photoelectron spectroscopy, the chemical-bonding configurations of the samples treated with N2 plasma and FGA were examined. The quantity of Si-N bonds increased as the RF power was increased, and Si--O--N bonds were generated after FGA. The flatband voltage (VFB) was shifted in the negative direction with increasing RF power, but the VFB values of the samples after FGA shifted in the positive direction due to the formation of Si--O--N bonds. N2 plasma treatment with various RF power levels slightly increased the leakage current due to the generation of defect sites.

  9. Synthesis and characterization of Al2O3 and SiO2 films with fluoropolymer content using rf-plasma magnetron sputtering technique

    International Nuclear Information System (INIS)

    Islam, Mohammad; Inal, Osman T.

    2008-01-01

    Pure and molecularly mixed inorganic films for protection against atomic oxygen in lower earth orbit were prepared using radio-frequency (rf) plasma magnetron sputtering technique. Alumina (Al 2 O 3 ) and silica (SiO 2 ) films with average grain size in the range of 30-80 nm and fully dense or dense columnar structure were synthesized under different conditions of pressure and power. Simultaneous oxide sputtering and plasma polymerization (PP) of hexafluoropropylene (HFP) led to the formation of molecularly mixed films with fluoropolymer content. The degree of plasma polymerization was strongly influenced by total chamber pressure and the argon to HFP molar ratio (n Ar /n M ). An order of magnitude increase in pressure due to argon during codeposition changed the plasma-polymerization mechanism from radical-chain- to radical-radical-type processes. Subsequently, a shift from linear CH 2 group based chain polymerization to highly disordered fluoropolymer content with branching and cross-linking was observed. Fourier transform infrared spectroscopy studies revealed chemical interaction between depositing SiO 2 and PP-HFP through appearance of absorption bands characteristic of Si-F stretching and expansion of SiO 2 network. The relative amount and composition of plasma-polymerized fluoropolymer in such films can be controlled by changing argon to HFP flow ratio, total chamber pressure, and applied power. These films offer great potential for use as protective coatings in aerospace applications

  10. Plasma treatment for influence of cold in different phases of formation of calcium phosphate on the surface of nanocomposite Al_2O_3/ZrO_2

    International Nuclear Information System (INIS)

    Santos, K.H.; Ferreira, J.A.; Osiro, D.; Nascimento, L.I.S.; Pallone, E.M.J.A.; Alves Junior, C.

    2016-01-01

    Among the different techniques used in surface treatment of biomaterials, the plasma has been noted for its ability to promote changes in surface roughness of the treated material. The objective of this study was to evaluate the influence of treatment by plasma in the formation of calcium phosphate nanocomposite on the surface of Al2O3/ZrO2 (5% by vol.). For this, samples were formed, calcined, sintered, surface treated and coated biomimeticamente plasma for 14 days. The surface characterization was performed by confocal microscopy and spectroscopy, Fourier transform infrared (FTIR). After coating, the samples were characterized by FTIR and X-ray diffraction X-ray (XRD). It was observed that the treatments improved surface roughness. Furthermore, regardless of the surface treatment were observed only three phases of calcium phosphates: HA α -TCP and -β-TCP. It is worth noting that depending on the composition, there are variations in the amount of phosphates, as well as the percentages of the different phases. (author)

  11. Atomic layer-by-layer oxidation of Ge (100) and (111) surfaces by plasma post oxidation of Al2O3/Ge structures

    International Nuclear Information System (INIS)

    Zhang, Rui; Huang, Po-Chin; Lin, Ju-Chin; Takenaka, Mitsuru; Takagi, Shinichi

    2013-01-01

    The ultrathin GeO x /Ge interfaces formed on Ge (100) and (111) surfaces by applying plasma post oxidation to thin Al 2 O 3 /Ge structures are characterized in detail using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. It is found that the XPS signals assigned to Ge 1+ and the 2+ states in the GeO x layers by post plasma oxidation have oscillating behaviors on Ge (100) surfaces in a period of ∼0.3 nm with an increase in the GeO x thickness. Additionally, the oscillations of the signals assigned to Ge 1+ and 2+ states show opposite phase to each other. The similar oscillation behaviors are also confirmed on Ge (111) surfaces for Ge 1+ and 3+ states in a period of ∼0.5 nm. These phenomena can be strongly regarded as an evidence of the atomic layer-by-layer oxidation of GeO x /Ge interfaces on Ge (100) and (111) surfaces.

  12. Linear reciprocating wear behaviour of plasma-sprayed Al2O3 ...

    Indian Academy of Sciences (India)

    Balmukund Dhakar

    2017-08-31

    Aug 31, 2017 ... However, few reports are available on the compound effects of the variations in ... polished samples is studied by using field emission scan- ning electron microscope (FESEM, Zeiss Supra-55). The phases present in the ... calculated by measured track depth and width by Altisurf. 500 optical profiler (figure ...

  13. Pengaruh NiCrAlY, Ni/Cr2O3/CrxCy Sebagai Variasi Bond Coat Dengan Penambahan Lapisan Al2O3 dan YSZ Pada Inconel 625 Terhadap Struktur Mikro Lapisan Menggunakan Metode Flame Spraying

    Directory of Open Access Journals (Sweden)

    Aprian Immanuel

    2017-01-01

    Full Text Available Thermal Barrier Coating (TBC berfungsi untuk mengurangi temperatur substrat serta meningkatkan daya tahannya terhadap korosi dan oksidasi. Pada penelitian ini, digunakan flame spraying dari variasi bond coat (Ni-Cr-Al-Y, (Ni/CrO3/CrXCY dan tanpa bond coat serta melapisi kembali lapisan bond coat dengan Al2O3 dan ZrO2 – 8%Y2O3 sebagai Thermal Barrier Coating untuk diteliti pengaruhnya terhadap struktur mikro lapisan yang terbentuk. Hasil flame spray diamati dengan SEM pada variasi bond coat NiCrAlY ditemukan beberapa serbuk dari material top coat dengan beberapa kondisi yaitu meleleh (melted, meleleh sebagian (semi melted, dan tidak meleleh (unmelted. Ditemukan poros yang merata hampir di seluruh permukaan sampel dan munculnya pengintian retak. Perbedaan sebelum dan sesudah perlakuan ada pada persebaran setiap unsur di setiap spesimen, dan lapisan oksida yang terbentuk pada seluruh variasi bond coat

  14. Plasma-assisted atomic layer deposition of Al(2)O(3) and parylene C bi-layer encapsulation for chronic implantable electronics.

    Science.gov (United States)

    Xie, Xianzong; Rieth, Loren; Merugu, Srinivas; Tathireddy, Prashant; Solzbacher, Florian

    2012-08-27

    Encapsulation of biomedical implants with complex three dimensional geometries is one of the greatest challenges achieving long-term functionality and stability. This report presents an encapsulation scheme that combines Al(2)O(3) by atomic layer deposition with parylene C for implantable electronic systems. The Al(2)O(3)-parylene C bi-layer was used to encapsulate interdigitated electrodes, which were tested invitro by soak testing in phosphate buffered saline solution at body temperature (37 °C) and elevated temperatures (57 °C and 67 °C) for accelerated lifetime testing up to 5 months. Leakage current and electrochemical impedance spectroscopy were measured for evaluating the integrity and insulation performance of the coating. Leakage current was stably about 15 pA at 5 V dc, and impedance was constantly about 3.5 MΩ at 1 kHz by using electrochemical impedance spectroscopy for samples under 67 °C about 5 months (approximately equivalent to 40 months at 37 °C). Alumina and parylene coating lasted at least 3 times longer than parylene coated samples tested at 80 °C. The excellent insulation performance of the encapsulation shows its potential usefulness for chronic implants.

  15. Oxidation behaviour at 1123 K of AISI 304-Ni/Al-Al2O3/TiO2 multilayer system deposited by flame spray

    Directory of Open Access Journals (Sweden)

    Cervera, I.

    2011-04-01

    Full Text Available The oxidation behaviour of alumina/titania (97/3, 87/13 and 60/40 ceramic coatings using a Ni-Al coupling layer was studied in a thermobalance. Both layers were deposited on an AISI 304 stainless steel base metal by the flame spray technique. The coated steel was heated from room temperature to 1,123 K at 40 K min –1, oxidized in air for 50 h, and then cooled to room temperature at 40 K min–1. The mass gain was mainly attributed to the oxidation of Ni-Al coupling layer. Kinetic laws, DW·S –1 (mg.mm–2 vs. time (hours were close to a parabolic plot for each sample. Surface composition of ceramic top layer and the cross section of multilayer system were analysed using a wide range of experimental techniques including Scanning Electron Microscopy (SEM, equipped with a link energy dispersive X-Ray spectroscopy (EDX and X-Ray diffraction (XRD before and after the oxidation process. Coatings 97/3 and 87/13 presented a stable structure after flame spray deposition and they did not evolve with the oxidation process, while most of the 60/40 coating changed to a metastable structure after deposition and to a more stable structure after oxidation with high micro-cracks content. SEM and EDX microanalysis of the cross-sections showed that significant oxidation and a weak intergranular precipitation had been produced in the coupling layer and on the stainless steel base metal, respectively.El comportamiento a oxidación de recubrimientos cerámicos alúmina/titania (97/3, 87/13, 60/40 usando una capa de anclaje Ni-Al se ha estudiado mediante una termobalanza. Ambas capas se han depositado sobre un acero inoxidable AISI 304 utilizando la técnica de proyección llama (FS. El acero recubierto se ha calentado desde la temperatura ambiente hasta 1.123 K a 40 K min–1, se ha oxidado al aire durante 50 h, y luego se ha enfriado hasta la temperatura ambiente a 40 K min–1. La ganancia en masa se atribuye a la oxidación de la capa de enganche Ni-Al. La cin

  16. Charge trapping characteristics of Au nanocrystals embedded in remote plasma atomic layer-deposited Al2O3 film as the tunnel and blocking oxides for nonvolatile memory applications

    International Nuclear Information System (INIS)

    Lee, Jaesang; Kim, Hyungchul; Park, Taeyong; Ko, Youngbin; Ryu, Jaehun; Jeon, Heeyoung; Park, Jingyu; Jeon, Hyeongtag

    2012-01-01

    Remote plasma atomic layer deposited (RPALD) Al 2 O 3 films were investigated to apply as tunnel and blocking layers in the metal-oxide-semiconductor capacitor memory utilizing Au nanocrystals (NCs) for nonvolatile memory applications. The interface stability of an Al 2 O 3 film deposited by RPALD was studied to observe the effects of remote plasma on the interface. The interface formed during RPALD process has high oxidation states such as Si +3 and Si +4 , indicating that RPALD process can grow more stable interface which has a small amount of fixed oxide trap charge. The significant memory characteristics were also observed in this memory device through the electrical measurement. The memory device exhibited a relatively large memory window of 5.6 V under a 10/-10 V program/erase voltage and also showed the relatively fast programming/erasing speed and a competitive retention characteristic after 10 4 s. These results indicate that Al 2 O 3 films deposited via RPALD can be applied as the tunnel and blocking oxides for next-generation flash memory devices.

  17. Improvement in electrical insulating properties of 10-nm-thick Al2O3 film grown on Al/TiN/Si substrate by remote plasma annealing at low temperatures

    International Nuclear Information System (INIS)

    Kim, Jihoon; Song, Jaewon; Kwon, Ohsung; Kim, Sungkeun; Hwang, Cheol Seong; Park, Sang-Hee'Ko; Yun, Sun Jin; Jeong, Jaehack; Hyun, Kwang Soo

    2002-01-01

    The electrical conduction properties of 10-nm-thick atomic-layer deposited Al 2 O 3 thin films with Al bottom and Pt top electrodes were characterized for use in field emission display. The as-deposited films, grown at 300 deg. C, exhibited such a high electrical leakage that their electrical properties could not be measured. However, post-treatment at 300 deg. C under a remote O 2 or H 2 O plasma for 30 min improved the insulating properties of the Al 2 O 3 films. However, the electrical conduction mechanism, particularly in the high field (>4 MV/cm) was not Fowler-Nordheim (F-N) tunneling but was influenced by space charge limited conduction implying that there were many traps inside the dielectric film or the electrode interfaces. Postannealing of the top electrode at 300 deg. C in an oxygen atmosphere resulted in a F-N conduction mechanism by removing the interfacial traps. The calculated barrier height at the Al/Al 2 O 3 interface from the F-N fitting of the current density versus voltage curves using the electron effective mass (m * ) of 0.5 m 0 was approximately 2.0 eV

  18. Diffusion barriers of Al2O3 to reduce the bondcoat-oxidation of MCrAlY alloys

    International Nuclear Information System (INIS)

    Schmitt-Thomas, K.G.; Dietl, U.

    1992-01-01

    Under operating conditions in gas turbines plasma sprayed MCrAlY bondcoats (M = Co and/or Ni) for thermal barrier coatings are exposed to a strong oxidation attack. One possibility to reduce bondcoat oxidation is the application of diffusion barriers. Onto the bondcoat, diffusion barriers of Al 2 O 3 are deposited by CVD, PVD and plasma pulse process. The oxidation behaviour of these coating systems were examined at a temperature of 1273 K for times up to 250 hours. The CVD and PVD Al 2 O 3 - coated specimens show compared to the uncoated specimens smaller oxidation rates. The porous Al 2 O 3 coatings, produced by plasma pulse process are not fit for oxidation protection of the bondcoat. There is hope for further improvement of the oxidation resistance by optimizing the CVD- and PVD-process parameters. (orig.) [de

  19. Bonding of TRIP-Steel/Al2O3-(3Y-TZP Composites and (3Y-TZP Ceramic by a Spark Plasma Sintering (SPS Apparatus

    Directory of Open Access Journals (Sweden)

    Aslan Miriyev

    2016-07-01

    Full Text Available A combination of the high damage tolerance of TRIP-steel and the extremely low thermal conductivity of partially stabilized zirconia (PSZ can provide controlled thermal-mechanical properties to sandwich-shaped composite specimens comprising these materials. Sintering the (TRIP-steel-PSZ/PSZ sandwich in a single step is very difficult due to differences in the sintering temperature and densification kinetics of the composite and the ceramic powders. In the present study, we successfully applied a two-step approach involving separate SPS consolidation of pure (3Y-TZP and composites containing 20 vol % TRIP-steel, 40 vol % Al2O3 and 40 vol % (3Y-TZP ceramic phase, and subsequent diffusion joining of both sintered components in an SPS apparatus. The microstructure and properties of the sintered and bonded specimens were characterized. No defects at the interface between the TZP and the composite after joining in the 1050–1150 °C temperature range were observed. Only limited grain growth occurred during joining, while crystallite size, hardness, shear strength and the fraction of the monoclinic phase in the TZP ceramic virtually did not change. The slight increase of the TZP layer’s fracture toughness with the joining temperature was attributed to the effect of grain size on transformation toughening.

  20. Suspension plasma sprayed composite coating using amorphous powder feedstock

    International Nuclear Information System (INIS)

    Chen Dianying; Jordan, Eric H.; Gell, Maurice

    2009-01-01

    Al 2 O 3 -ZrO 2 composite coatings were deposited by the suspension plasma spray process using molecularly mixed amorphous powders. X-ray diffraction (XRD) analysis shows that the as-sprayed coating is composed of α-Al 2 O 3 and tetragonal ZrO 2 phases with grain sizes of 26 nm and 18 nm, respectively. The as-sprayed coating has 93% density with a hardness of 9.9 GPa. Heat treatment of the as-sprayed coating reveals that the Al 2 O 3 and ZrO 2 phases are homogeneously distributed in the composite coating

  1. Industrially relevant Al2O3 deposition techniques for the surface passivation of Si solar cells

    NARCIS (Netherlands)

    Schmidt, J.; Werner, F.; Veith, B.; Zielke, D.; Bock, R.; Tiba, M.V.; Poodt, P.; Roozeboom, F.; Li, A.; Cuevas, A.; Brendel, R.

    2010-01-01

    We present independently confirmed efficiencies of 21.4% for PERC cells with plasma-assisted atom-ic-layer-deposited (plasma ALD) Al2O3 rear passivation and 20.7% for cells with thermal ALD-Al2O3. Additionally, we evaluate three different industrially relevant techniques for the deposition of

  2. Spatial structure of radio frequency ring-shaped magnetized discharge sputtering plasma using two facing ZnO/Al2O3 cylindrical targets for Al-doped ZnO thin film preparation

    Directory of Open Access Journals (Sweden)

    Takashi Sumiyama

    2017-05-01

    Full Text Available Spatial structure of high-density radio frequency ring-shaped magnetized discharge plasma sputtering with two facing ZnO/Al2O3 cylindrical targets mounted in ring-shaped hollow cathode has been measured and Al-doped ZnO (AZO thin film is deposited without substrate heating. The plasma density has a peak at ring-shaped hollow trench near the cathode. The radial profile becomes uniform with increasing the distance from the target cathode. A low ion current flowing to the substrate of 0.19 mA/cm2 is attained. Large area AZO films with a resistivity of 4.1 – 6.7×10-4 Ω cm can be prepared at a substrate room temperature. The transmittance is 84.5 % in a visible region. The surface roughnesses of AZO films are 0.86, 0.68, 0.64, 1.7 nm at radial positions of r = 0, 15, 30, 40 mm, respectively, while diffraction peak of AZO films is 34.26°. The grains exhibit a preferential orientation along (002 axis.

  3. Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction.

    Science.gov (United States)

    Mao, Lingai; Chen, Zhizong; Wu, Xinyue; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming; Jiang, Boqiong; Han, Jingyi; Wu, Zuliang; Lu, Hao; Nozaki, Tomohiro

    2018-04-05

    A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37-40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO 2 /γ-Al 2 O 3 ; while it was 10%-20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O 3 catalyst reactor with the same CeO 2 /γ-Al 2 O 3 catalyst, indicating that O 3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O 3 adsorption on CeO 2 /γ-Al 2 O 3 promotes the production of adsorbed O 2 - and O 2 2‒ , which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO 2 /γ-Al 2 O 3 catalyst. H 2 O inhibits benzene decomposition; however, it improves CO 2 selectivity. The deactivated CeO 2 /γ-Al 2 O 3 catalyst can be regenerated by performing discharges at 100 °C and 192-204 J/L. The decomposition mechanism of benzene over CeO 2 /γ-Al 2 O 3 catalyst was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Preparation and characterization of DLC/SiO2/Al2O3 nanofiltration ...

    Indian Academy of Sciences (India)

    MS received 12 July 2012; revised 27 September 2012 ... support were deposited using plasma-enhanced chemical vapour deposi- ... the nanofiltration membrane with DLC/SiO2/Al2O3 were observed at various annealing temperatures.

  5. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  6. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    Science.gov (United States)

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  7. Catalytic Methane Decomposition over Fe-Al2O3

    KAUST Repository

    Zhou, Lu; Enakonda, Linga Reddy; Saih, Youssef; Loptain, Sergei; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2016-01-01

    The presence of a Fe-FeAl2O4 structure over an Fe-Al2O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750°C, Fe-Al2O3 prepared by means of a fusion method, containing 86.5wt% Fe

  8. Comparison of the structure and wear resistance of Al2O3 -13 wt%TiO2 coatings made by GSP and WSP plasma process with two different powders

    Czech Academy of Sciences Publication Activity Database

    Ageorges, H.; Ctibor, Pavel

    2008-01-01

    Roč. 202, č. 18 (2008), s. 4362-4368 ISSN 0257-8972 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Alumina * titania * plasma spraying * wear resistance * slurry abrasion Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.860, year: 2008

  9. Al2 O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Zhang, Jinbao; Hultqvist, Adam; Zhang, Tian; Jiang, Liangcong; Ruan, Changqing; Yang, Li; Cheng, Yibing; Edoff, Marika; Johansson, Erik M J

    2017-10-09

    Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO 2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al 2 O 3 underlayer for perovskite solar cells. The thickness of the Al 2 O 3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al 2 O 3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al 2 O 3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al 2 O 3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al 2 O 3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al 2 O 3 underlayers for flexible solar cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2018-05-01

    Full Text Available Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear.

  11. Formation and surface characterization of nanostructured Al2O3 ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Formation and surface characterization of nanostructured Al2O3–TiO2 coatings by Vairamuthu Raj and Mohamed Sirajudeen Mumjitha. (pp 1411–1418).

  12. Pengaruh komposisi komposit al2o3/ysz dan variasi feed rate terhadap ketahanan termal dan kekuatan lekat pada Ysz-al2o3/ysz double layer tbc

    Directory of Open Access Journals (Sweden)

    Parindra Kusriantoko

    2014-03-01

    Full Text Available TBC (Thermal Barrier Coating dengan YSZ-Al2O3/YSZ top coat (TCdan MCrAlY sebagai bond coat (BC yang selanjutnya disebut sebagai YSZ-Al2O3/YSZ double layer TBC dibuat dengan menggunakan metode flame spray.Hasil pelapisan sebelum dan sesudah diuji termal dikarakterisasi menggunakan SEM, EDX dan XRD.Dari hasil penelitian didapatkan bahwa semakin tinggi powder feed rate akan berpengaruh pada morfologi permukaan lapisan. Feed rate makin rendah menyebabkan struktur yang cenderung kasar dan tidak padat dan cenderung berporos. Lapisan komposit Al2O3/YSZ juga sangat berpengaruh pada pertumbuhan TGO (Thermally Grown Oxide setelah dilakukan uji termal, dimana komposisi paling bagus dengan pertumbuhan TGO paling rendah adalah 15%Al2O3/8YSZ. Hasil pengujian TGA menunjukkan semua sampel mulai teroksidasi pada temperatur 1000-1030oC dan didapatkan sampel paling stabil adalah 15% Al2O3/8YSZ 14 dan 20 gr/min. Dari pengujian XRD sampel yang memiliki fasa yang paling stabil adalah 15%Al2O3/8YSZ dengan fasa t-ZrO2 dan m-ZrO2. Dari pengujian Thermal Torch dan Pull Off komposisi 15%Al2O3/8YSZjuga memiliki ketahanan terhadap pengerusakan yang paling baik dan kelekatan yang baik sebesar 10 MPa.

  13. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  14. Mechanochemically synthesized Al2O3-TiC nanocomposite

    International Nuclear Information System (INIS)

    Mohammad Sharifi, E.; Karimzadeh, F.; Enayati, M.H.

    2010-01-01

    Al 2 O 3 -TiC nanocomposite was synthesized by ball milling of aluminum, titanium oxide and graphite powder mixtures. Effect of the milling time and heat treatment temperatures were investigated. The structural evolution of powder particles after different milling times was studied by X-ray diffractometry and scanning electron microscopy. The results showed that after 40 h of ball milling the Al/TiO 2 /C reacted with a self-propagating combustion mode producing Al 2 O 3 -TiC nanocomposite. In final stage of milling, alumina and titanium carbide crystallite sizes were less than 10 nm. After annealing at 900 o C for 1 h, Al 2 O 3 and TiC crystallite sizes remained constant, however increasing annealing temperature to 1200 o C increased Al 2 O 3 and TiC crystallite size to 65 and 30 nm, respectively. No phase change was observed after annealing of the synthesized Al 2 O 3 -TiC powder.

  15. Preparation and properties of Ni80Fe20/Al2O3/Co magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Chen Jing; Du Jun; Wu Xiaoshan; Pan Minghu; Long Jianguo; Zhang Wei; Lu Mu; Hu An; Zhai Hongru

    2000-01-01

    With plasma oxidisation to create an insulating layer of Al 2 O 3 , the authors have repeatedly fabricated Ni 80 Fe 20 /Al 2 O 3 /Co magnetic tunnel junctions which show obvious tunneling magnetoresistance (TMR) effect. At room temperature, the maximum TMR ratio reaches 6.0%. The switch field can be less than 800 A/m with a relative step width of about 2400 A/m. The junction resistance changes from hundreds of ohms to hundreds of kilo-ohms

  16. Phase transitions in complex oxide systems based on Al2O3 and ZrO2

    International Nuclear Information System (INIS)

    Gorski, L.

    1999-01-01

    Different compositions of materials based on Al 2 O 3 and ZrO 2 and protective coatings sprayed from them working in the high temperature region are studied. There are especially thermal barrier coatings of increasing resistance to thermal shocks and conditions of corrosion and erosion caused by the hot gases and liquids. Such conditions are encountered in many technical branches among others in jet and Diesel engines. These coatings are deposited by the plasma spraying process and their resistance to thermal shocks is studied on special experimental arrangement in the conditions near to coatings applications. Both above processes are characterized by a short time temperature action with subsequent high cooling rate, which may cause phase transitions other than in the conditions of thermodynamical equilibrium. These transitions are studied by X-ray diffraction analysis methods. The microstructure changes accompanied to phase transitions are determined by light microscopy and scanning electron microscopy methods. The cases of coating degradation caused by thermal shocks have been observed. The highest resistance to thermal fatigue conditions (up to thermal shocks) show coatings based on Al 2 O 3 containing aluminium titanate and coatings based on ZrO 2 stabilised by 7-8% of Y 2 O 3 . (author)

  17. Catalytic Methane Decomposition over Fe-Al2O3

    KAUST Repository

    Zhou, Lu

    2016-05-09

    The presence of a Fe-FeAl2O4 structure over an Fe-Al2O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750°C, Fe-Al2O3 prepared by means of a fusion method, containing 86.5wt% FeAl2O4 and 13.5wt% Fe0, showed a stable CMD activity at 750°C for as long as 10h. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Leaching of Al2O3 in simulated repository conditions

    International Nuclear Information System (INIS)

    Svensson, B.-M.; Dahl, L.

    1978-06-01

    Al 2 O 3 material has been leached at 90 deg C in: simulated ground water at pH 8.5, embedded in bentonite + silica sand saturated with the same water, and in simulated ground water at pH 6 and pH 10. Leaching periods varied from 30 days to 300 days. We observed slight weight increments in all cases from deposits on samples from the environment. These mask weight losses from Al 2 O 3 that may have occurred. (author)

  19. Dielectric and microwave absorption properties of TiO_2/Al_2O_3 coatings and improved microwave absorption by FSS incorporation

    International Nuclear Information System (INIS)

    Yang, Zhaoning; Luo, Fa; Hu, Yang; Duan, Shichang; Zhu, Dongmei; Zhou, Wancheng

    2016-01-01

    In this paper, TiO_2/Al_2O_3 ceramic coatings were prepared by atmospheric plasma spraying (APS) technique. The phase composition and morphological characterizations of the synthesized TiO_2/Al_2O_3 powders and coatings were performed by X-ray diffraction and scanning electron microscopy (SEM), respectively. The dielectric properties of these coatings were discussed in the frequency range from 8.2 to 12.4 GHz (X-band). By calculating the microwave-absorption as a single-layer absorber, their microwave absorption properties were investigated at different content and thickness in details. Furthermore, by combination of the Frequency selective surface (FSS) and ceramic coatings, a double absorption band of the reflection loss spectra had been observed. The microwave absorbing properties of coatings both in absorbing intensity and absorbing bandwidth were improved. The reflection loss values of TiO_2/Al_2O_3 coatings exceeding −10 dB (larger than 90% absorption) can be obtained in the whole frequency range of X-band with 17 wt% TiO_2 content when the coating thickness is 2.3 mm. - Highlights: • Dielectric properties of TiO_2/Al_2O_3 ceramics fabricated by APS technique are reported for the first time. • Microwave absorption properties of TiO_2/Al_2O_3 composites are improved by FSS. • Reflection loss values exceeding −10 dB can be obtained in the whole X-band when coating thickness is 2.3 mm.

  20. Radio-frequency plasma spraying of ceramics

    International Nuclear Information System (INIS)

    Okada, T.; Hamatani, H.; Yoshida, T.

    1989-01-01

    This study was aimed at developing a novel spraying process using a radio-frequency (rf) plasma. Experiments of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 spraying showed that the initial powder size was the most important parameter for depositing dense coatings. The optimum powder sizes of Al 2 O 3 and ZrO 2 - 8 wt% Y 2 O 3 were considered to be around 100 and 80 μm, respectively. The use of such large-size powders compared with those used by conventional dc plasma spraying made it possible to deposit adherent ceramics coatings of 150 to 300 μm on as-rolled SS304 substrates. It was also shown that low particle velocity of about 10 m/s, which is peculiar to rf plasma spraying, was sufficient for particle deformation, though it imposed a severe limitation on the substrate position. These experimental results prove that rf plasma spraying is an effective process and a strong candidate to open new fields of spraying applications

  1. On the growth of Al2O3 scales

    International Nuclear Information System (INIS)

    Heuer, A.H.; Nakagawa, T.; Azar, M.Z.; Hovis, D.B.; Smialek, J.L.; Gleeson, B.; Hine, N.D.M.; Guhl, H.; Lee, H.-S.; Tangney, P.; Foulkes, W.M.C.; Finnis, M.W.

    2013-01-01

    Understanding the growth of Al 2 O 3 scales requires knowledge of the details of the chemical reactions at the scale–gas and scale–metal interfaces, which in turn requires specifying how the creation/annihilation of O and Al vacancies occurs at these interfaces. The availability of the necessary electrons and holes to allow for such creation/annihilation is a crucial aspect of the scaling reaction. The electronic band structure of polycrystalline Al 2 O 3 thus plays a decisive role in scale formation and is considered in detail, including the implications of a density functional theory (DFT) calculation of the band structure of a Σ7 {45 ¯ 10} bicrystal boundary, for which the atomic structure of the boundary was known from an independent DFT energy-minimization calculation and comparisons with an atomic-resolution transmission electron micrograph of the same boundary. DFT calculations of the formation energy of O and Al vacancies in bulk Al 2 O 3 in various charge states as a function of the Fermi energy suggested that electronic conduction in Al 2 O 3 scales most likely involves excitation of both electrons and holes, which are localized on singly charged O vacancies, V O · and doubly charged Al vacancies, V Al ″ , respectively. We also consider the variation of the Fermi level across the scale and bending (“tilting”) of the conduction band minimum and valence band maximum due to the electric field developed during the scaling reaction. The band structure calculations suggest a new mechanism for the “reactive element” effect—a consequence of segregation of Y, Hf, etc., to grain boundaries in Al 2 O 3 scales, which results in improved oxidation resistance—namely, that the effect is due to the modification of the near-band edge grain-boundary defect states rather than any blocking of diffusion pathways, as previously postulated. Secondly, Al 2 O 3 scale formation is dominated by grain boundary as opposed to lattice diffusion, and there is

  2. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  3. Muonium in Al2O3 powder at low temperature

    International Nuclear Information System (INIS)

    Kiefl, R.F.; Warren, J.B.; Oram, C.J; Brewer, J.H.; Harshman, D.R.

    1982-04-01

    Measurements of muonium (μ + e - ) spin relaxation in a finely powdered sample of γ-Al 2 O 3 in a He (or Ne) atmosphere indicate that the muonium atoms escape the powder grains with a high efficiency at low temperatures (T < 30 K). The muonium spin relaxation rate is proportional to the fraction of the powder surface area not covered by adsorbed He (Ne)

  4. Atomically Thin Al2O3 Films for Tunnel Junctions

    Science.gov (United States)

    Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.

    2017-06-01

    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

  5. In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating

    International Nuclear Information System (INIS)

    Balani, K.; Zhang, T.; Karakoti, A.; Li, W.Z.; Seal, S.; Agarwal, A.

    2008-01-01

    Carbon nanotubes (CNT) are potential reinforcements for toughening the ceramic matrix. The critical issue of avoiding CNT agglomeration and introducing CNT-matrix anchoring has challenged many researchers to improve the mechanical properties of the CNT reinforced nanocomposite. In the current work, dispersed CNTs are grown on Al 2 O 3 powder particles in situ by the catalytic chemical vapor deposition (CCVD) technique. Consequently, 0.5 wt.% CNT-reinforced Al 2 O 3 particles were successfully plasma sprayed to obtain a 400 μm thick coating on the steel substrate. In situ CNTs grown on Al 2 O 3 shows a promising enhancement in hardness and fracture toughness of the plasma-sprayed coating attributed to the existence of strong metallurgical bonding between Al 2 O 3 particles and CNTs. In addition, CNT tentacles have imparted multi-directional reinforcement in securing the Al 2 O 3 splats. High-resolution transmission electron microscopy shows interfacial fusion between Al 2 O 3 and CNT and the formation of Y-junction nanotubes

  6. ??????????? ??????????????? ????? ??????-???????? ????????????? ?????????? ??????? ?aO?Al2O3?TiO2 ??? ???????? ?????? ?????

    OpenAIRE

    ???????, ????; ??????, ?????????

    2011-01-01

    ? ????? ?????? ?????????? ???????? ?????????????? ??????????? ????????????? ??? ??????-????????? ???????????????? ?????????? ??????? ?aO?Al2O3?TiO2, ?? ???????? ??????? ? ???????????? ??????? ??? ???????? ? ?????? ????????? ?????? ?????. ???????? ?????????? ???????? ??? ??????????? ?????????? ??????? ????????? ???????????? ?????????? ??? ??????????? 12000?, ?? ????????? ?????????????? ????????????? ???????, ????????? ???? ? ?????????? ????? ???????? ??????? ???????????. ????????, ?? ?? ...

  7. Wear protection in cutting tool applications by PACVD (Ti,Al)N and Al2O3 coatings

    International Nuclear Information System (INIS)

    Kathrein, M.; Heiss, M.; Rofner, R.; Schleinkofer, U.; Schintlmeister, W.; Schatte, J.; Mitterer, C.

    2001-01-01

    Various (Ti,Al)N-, Al 2 O 3 -, and (Ti,Al)N/Al 2 O 3 multilayer coatings were deposited onto cemented carbide cutting tool inserts by a plasma assisted chemical vapor deposition (PACVD) technique. Al 2 O 3 coatings were deposited using the gaseous mixture AlCl 3 , Ar, H 2 , and O 2 . (Ti,Al)N intermediate layers were deposited in the same device using the process mentioned and the gases AICl 3 , Ar, H 2 , TiCl 4 and N 2 . The unique properties of (Ti,Al)N/Al 2 O 3 multilayer coatings result in superior wear protection for cutting inserts applied in severe multifunction cutting processes. The influence of different deposition temperatures an structure and properties of the coatings like crystallographic phases, chemical composition, mechanical and technological properties is shown. PACVD (Ti,Al)N/Al 2 O 3 coated cutting inserts with fine grained crystalline α/κ-Al 2 O 3 offer performance advantages which are superior with respect to coatings deposited by chemical vapor deposition (CVD) due to the low deposition temperature applied. (author)

  8. Rise and fall of ferromagnetism in O-irradiated Al2O3 single crystals

    International Nuclear Information System (INIS)

    Li, Qiang; Xu, Juping; Liu, Jiandang; Du, Huaijiang; Ye, Bangjiao

    2015-01-01

    In dilute magnetic semiconductors studies, sapphire was usually used as non-magnetic substrate for films. We observed weak ferromagnetic component in Al 2 O 3 single crystal substrate, and excluded the possibility of ferromagnetic contaminations carefully by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The ferromagnetism rise and fall during the process of annealing-oxygen irradiation-annealing of the sapphire. The ferromagnetic changes are consistent with Al-vacancy related defects detected by positron annihilation spectroscopy. With first-principle calculations, we confirm that Al-vacancy can introduce magnetic moment for 3 μB in Al 2 O 3 crystal and form stable V Al -V Al ferromagnetic coupling at room temperature

  9. Wear Behavior of Cold Pressed and Sintered Al2O3/TiC/CaF2Al2O3/TiC Laminated Ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    Xuefeng YANG; Jian CHENG; Peilong SONG; Shouren WANG; Liying YANG; Yanjun WANG; Ken MAO

    2013-01-01

    A novel laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite was fabricated through cold pressing and sintering to achieve better anti-wear performance,such as low friction coefficient and low wear rate.Al2O3/TiC/CaF2 and Al2O3/TiC composites were alternatively built layer-by-layer to obtain a sandwich structure.Solid lubricant CaF2 was added evenly into the Al2O3/TiC/CaF2 layer to reduce the friction and wear.Al2O3/TiC ceramic was also cold pressed and sintered for comparison.Friction analysis of the two ceramics was then conducted via a wear-and-tear machine.Worn surface and surface compositions were examined by scanning electron microscopy and energy dispersion spectrum,respectively.Results showed that the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite has lower friction coefficient and lower wear rate than those of Al2O3/TiC ceramic alone because of the addition of CaF2 into the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite.Under the friction load,the tiny CaF2 particles were scraped from the Al2O3/TiC/CaF2 layer and spread on friction pairs before falling off into micropits.This process formed a smooth,self-lubricating film,which led to better anti-wear properties.Adhesive wear is the main wear mechanism of Al2O3/TiC/CaF2 layer and abrasive wear is the main wear mechanism of Al2O3/TiC layer.

  10. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    Science.gov (United States)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-08-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  11. Analysis of Al2O3 Nanostructure Using Scanning Microscopy

    Directory of Open Access Journals (Sweden)

    Marek Kubica

    2018-01-01

    Full Text Available It has been reported that the size and shape of the pores depend on the structure of the base metal, the type of electrolyte, and the conditions of the anodizing process. The paper presents thin Al2O3 oxide layer formed under hard anodizing conditions on a plate made of EN AW-5251 aluminum alloy. The oxidation of the ceramic layer was carried out for 40–80 minutes in a three-component SAS electrolyte (aqueous solution of acids: sulphuric 33 ml/l, adipic 67 g/l, and oxalic 30 g/l at a temperature of 293–313 K, and the current density was 200–400 A/m2. Presented images were taken by a scanning microscope. A computer analysis of the binary images of layers showed different shapes of pores. The structure of ceramic Al2O3 layers is one of the main factors determining mechanical properties. The resistance to wear of specimen-oxide coating layer depends on porosity, morphology, and roughness of the ceramic layer surface. A 3D oxide coating model, based on the computer analysis of images from a scanning electron microscope (Philips XL 30 ESEM/EDAX, was proposed.

  12. Analysis of Al2O3 Nanostructure Using Scanning Microscopy

    Science.gov (United States)

    Kubica, Marek; Bara, Marek

    2018-01-01

    It has been reported that the size and shape of the pores depend on the structure of the base metal, the type of electrolyte, and the conditions of the anodizing process. The paper presents thin Al2O3 oxide layer formed under hard anodizing conditions on a plate made of EN AW-5251 aluminum alloy. The oxidation of the ceramic layer was carried out for 40–80 minutes in a three-component SAS electrolyte (aqueous solution of acids: sulphuric 33 ml/l, adipic 67 g/l, and oxalic 30 g/l) at a temperature of 293–313 K, and the current density was 200–400 A/m2. Presented images were taken by a scanning microscope. A computer analysis of the binary images of layers showed different shapes of pores. The structure of ceramic Al2O3 layers is one of the main factors determining mechanical properties. The resistance to wear of specimen-oxide coating layer depends on porosity, morphology, and roughness of the ceramic layer surface. A 3D oxide coating model, based on the computer analysis of images from a scanning electron microscope (Philips XL 30 ESEM/EDAX), was proposed. PMID:29861823

  13. Improvement of High-Temperature Stability of Al2O3/Pt/ZnO/Al2O3 Film Electrode for SAW Devices by Using Al2O3 Barrier Layer

    Directory of Open Access Journals (Sweden)

    Xingpeng Liu

    2017-12-01

    Full Text Available In order to develop film electrodes for the surface acoustic wave (SAW devices operating in harsh high-temperature environments, novel Al2O3/Pt/ZnO/Al2O3 multilayered film electrodes were prepared by laser molecular beam epitaxy (LMBE at 150 °C. The first Al2O3 layer was used as a barrier layer to prevent the diffusion of Ga, La, and Si atoms from the La3Ga5SiO14 (LGS substrate to the film electrode and thus improved the crystalline quality of ZnO and Pt films. It was found that the resistance of the Al2O3/Pt/ZnO/Al2O3 electrode did not vary up to a temperature of 1150 °C, suggesting a high reliability of electrode under harsh high-temperature environments. The mechanism of the stable resistance of the Al2O3/Pt/ZnO/Al2O3 film electrodes at high temperature was investigated by analyzing its microstructure. The proposed Al2O3/Pt/ZnO/Al2O3 film electrode has great potential for application in high-temperature SAW devices.

  14. Luminescent properties of Al2O3: Tb powders

    International Nuclear Information System (INIS)

    Esparza G, A.E.; Garcia, M.; Falcony, C.; Azorin N, J.

    2000-01-01

    In this work the photo luminescent and cathode luminescent characteristics of aluminium oxide (Al 2 O 3 ) powders impurified with terbium (Tb) were studied for their use in dosimetry. The optical, structural, morphological characteristics of the powders as function of variation in the impurity concentration and the annealing temperature will be presented. As regards the optical properties of powders (photoluminescence and cathode luminescence) it was observed a characteristic emission associated with radiative transitions between electron energy levels of terbium, the spectra associated with this emission consists of several peaks associated with such transitions. In the structural and morphological characterization (X-ray diffraction and scanning electron microscopy) it was appreciated that in accordance the annealing temperature of powders is augmented it is evident the apparition of certain crystalline phases. The results show that this is a promissory material for radiation dosimetry. (Author)

  15. Capacitance and conductance versus voltage characterization of Al2O3 layers prepared by plasma enhanced atomic layer deposition at 25 °C≤ T ≤ 200 °C

    International Nuclear Information System (INIS)

    Henkel, Karsten; Tallarida, Massimo; Schmeißer, Dieter; Gargouri, Hassan; Gruska, Bernd; Arens, Michael

    2014-01-01

    In this work, plasma enhanced atomic layer deposited (PE-ALD) samples were prepared at substrate temperatures in the range between room temperature (RT) and 200 °C and investigated by capacitance–voltage and conductance–voltage recordings. The measurements are compared to standard thermal atomic layer deposition (T-ALD) at 200 °C. Very low interface state density (D it ) ∼10 11  eV −1  cm −2 could be achieved for the PE-ALD process at 200 °C substrate temperature after postdeposition anneal (PDA) in forming gas at 450 °C. The PDA works very effectively for both the PE-ALD and T-ALD at 200 °C substrate temperature delivering also similar values of negative fixed charge density (N fix ) around −2.5 × 10 12  cm −2 . At the substrate temperature of 150 °C, highest N fix (−2.9 × 10 12  cm −2 ) and moderate D it (2.7 × 10 11  eV −1  cm −2 ) values were observed. The as deposited PE-ALD layer at RT shows both low D it in the range of (1 to 3) × 10 11  eV −1 cm −2 and low N fix (−4.4 × 10 11  cm −2 ) at the same time. The dependencies of N fix , D it , and relative permittivity on the substrate temperatures and its adjustability are discussed

  16. Temperature-programmed reaction of CO2 reduction in the presence of hydrogen over Fe/Al2O3, Re/Al2O3 and Cr-Mn-O/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Mirzabekova, S.R.; Mamedov, A.B.; Krylov, O.V.

    1996-01-01

    Regularities in CO 2 reduction have been studied using the systems Fe/Al 2 O 3 , Re/Al 2 O 3 and Cr-Mn-O/Al 2 O 3 under conditions of thermally programmed reaction by way of example. A sharp increase in the reduction rate in the course of CO 2 interaction with reduced Fe/Al 2 O 3 and Re/Al 2 O 3 , as well as with carbon fragments with addition in CO 2 flow of 1-2%H 2 , has been revealed. The assumption is made on intermediate formation of a formate in the process and on initiating effect of hydrogen on CO 2 reduction by the catalyst. Refs. 26, figs. 10

  17. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    International Nuclear Information System (INIS)

    Angelov, O; Stoyanova, D; Ivanova, I; Todorova, S

    2016-01-01

    The influence of Al 2 O 3 , Ag and Al 2 O 3 /Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al 2 O 3 and Ag targets or through sequential sputtering of Al 2 O 3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al 2 O 3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al 2 O 3 /Ag bilayer films (Al 2 O 3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida . A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida . (paper)

  18. Structure and mechanical properties of plasma sprayed coatings of titania and alumina

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Boháč, Petr; Stranyánek, Martin; Čtvrtlík, Radim

    2006-01-01

    Roč. 26, č. 16 (2006), s. 3509-3514 ISSN 0955-2219 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : Plasma spraying * Optical microscopy * Mechanical properties * TiO2 * Al2O3 Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.576, year: 2006

  19. Al2O3 Passivation Effect in HfO2·Al2O3 Laminate Structures Grown on InP Substrates.

    Science.gov (United States)

    Kang, Hang-Kyu; Kang, Yu-Seon; Kim, Dae-Kyoung; Baik, Min; Song, Jin-Dong; An, Youngseo; Kim, Hyoungsub; Cho, Mann-Ho

    2017-05-24

    The passivation effect of an Al 2 O 3 layer on the electrical properties was investigated in HfO 2 -Al 2 O 3 laminate structures grown on indium phosphide (InP) substrate by atomic-layer deposition. The chemical state obtained using high-resolution X-ray photoelectron spectroscopy showed that interfacial reactions were dependent on the presence of the Al 2 O 3 passivation layer and its sequence in the HfO 2 -Al 2 O 3 laminate structures. Because of the interfacial reaction, the Al 2 O 3 /HfO 2 /Al 2 O 3 structure showed the best electrical characteristics. The top Al 2 O 3 layer suppressed the interdiffusion of oxidizing species into the HfO 2 films, whereas the bottom Al 2 O 3 layer blocked the outdiffusion of In and P atoms. As a result, the formation of In-O bonds was more effectively suppressed in the Al 2 O 3 /HfO 2 /Al 2 O 3 /InP structure than that in the HfO 2 -on-InP system. Moreover, conductance data revealed that the Al 2 O 3 layer on InP reduces the midgap traps to 2.6 × 10 12 eV -1 cm -2 (compared to that of HfO 2 /InP, that is, 5.4 × 10 12 eV -1 cm -2 ). The suppression of gap states caused by the outdiffusion of In atoms significantly controls the degradation of capacitors caused by leakage current through the stacked oxide layers.

  20. Rare-earth-ion-doped Al2O3 waveguides for active integrated optical devices

    NARCIS (Netherlands)

    Bradley, J.; Ay, F.; Blauwendraat, Tom; Worhoff, Kerstin; Pollnau, Markus; Orlovic, Valentin A.; Panchenko, Vladislav; Scherbakov, Ivan A.

    2007-01-01

    Reactively co-sputtered amorphous $Al_2O_3$ waveguide layers with low propagation losses have been deposited. In order to define channel waveguides in such $Al_2O_3$ films, the etching behaviour of $Al_2O_3$ has been investigated using an inductively coupled reactive ion etch system. The etch rate

  1. Radiation endurance in Al2O3 nanoceramics

    Science.gov (United States)

    García Ferré, F.; Mairov, A.; Ceseracciu, L.; Serruys, Y.; Trocellier, P.; Baumier, C.; Kaïtasov, O.; Brescia, R.; Gastaldi, D.; Vena, P.; Beghi, M. G.; Beck, L.; Sridharan, K.; di Fonzo, F.

    2016-09-01

    The lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments. Here, using thin films as a model system, we provide new insights into the radiation tolerance of oxide nanoceramics exposed to increasing damage levels at 600 °C -namely 20, 40 and 150 displacements per atom. Specifically, we investigate the evolution of the structural features, the mechanical properties, and the response to impact loading of Al2O3 thin films. Initially, the thin films contain a homogeneous dispersion of nanocrystals in an amorphous matrix. Irradiation induces crystallization of the amorphous phase, followed by grain growth. Crystallization brings along an enhancement of hardness, while grain growth induces softening according to the Hall-Petch effect. During grain growth, the excess mechanical energy is dissipated by twinning. The main energy dissipation mechanisms available upon impact loading are lattice plasticity and localized amorphization. These mechanisms are available in the irradiated material, but not in the as-deposited films.

  2. TiN/Al2O3/ZnO gate stack engineering for top-gate thin film transistors by combination of post oxidation and annealing

    Science.gov (United States)

    Kato, Kimihiko; Matsui, Hiroaki; Tabata, Hitoshi; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Control of fabrication processes for a gate stack structure with a ZnO thin channel layer and an Al2O3 gate insulator has been examined for enhancing the performance of a top-gate ZnO thin film transistor (TFT). The Al2O3/ZnO interface and the ZnO layer are defective just after the Al2O3 layer formation by atomic layer deposition. Post treatments such as plasma oxidation, annealing after the Al2O3 deposition, and gate metal formation (PMA) are promising to improve the interfacial and channel layer qualities drastically. Post-plasma oxidation effectively reduces the interfacial defect density and eliminates Fermi level pinning at the Al2O3/ZnO interface, which is essential for improving the cut-off of the drain current of TFTs. A thermal effect of post-Al2O3 deposition annealing at 350 °C can improve the crystalline quality of the ZnO layer, enhancing the mobility. On the other hand, impacts of post-Al2O3 deposition annealing and PMA need to be optimized because the annealing can also accompany the increase in the shallow-level defect density and the resulting electron concentration, in addition to the reduction in the deep-level defect density. The development of the interfacial control technique has realized the excellent TFT performance with a large ON/OFF ratio, steep subthreshold characteristics, and high field-effect mobility.

  3. Superficial modifications in TiO2 and Al2O3 ceramics

    Directory of Open Access Journals (Sweden)

    Santos Flávio de Paula

    2003-01-01

    Full Text Available The properties of hydrophilicity or hydrophobicity of materials are defined mainly, though not exclusively, by their composition, morphology and surface energy. In this work, titanium dioxide (TiO2 and aluminum oxide-alumina (Al2O3 ceramics prepared by uniaxial pressing were studied in terms of surface energy. The surfaces of these ceramics were treated with nitrogen plasma, using a stainless steel reactor excited by a 13,6 MHz radio frequency operating at 50 W input power and 13 Pa nitrogen pressure. The surface morphology was investigated by scanning electron microscopy (SEM analysis. Surface energy and contact angle measurements were taken using a RAMÉ-HART goniometer. These measurements were taken as function of time, over a 21-day period. The contact angle and surface energy values were found to change by almost 34% in comparison to their initial values immediately following plasma treatment. Nonetheless, the hydrophilic character of the Al2O3 and TiO2 remained constant throughout the test period.

  4. Al2O3 dielectric layers on H-terminated diamond: Controlling surface conductivity

    Science.gov (United States)

    Yang, Yu; Koeck, Franz A.; Dutta, Maitreya; Wang, Xingye; Chowdhury, Srabanti; Nemanich, Robert J.

    2017-10-01

    This study investigates how the surface conductivity of H-terminated diamond can be preserved and stabilized by using a dielectric layer with an in situ post-deposition treatment. Thin layers of Al2O3 were grown by plasma enhanced atomic layer deposition (PEALD) on H-terminated undoped diamond (100) surfaces. The changes of the hole accumulation layer were monitored by correlating the binding energy of the diamond C 1s core level with electrical measurements. The initial PEALD of 1 nm Al2O3 resulted in an increase of the C 1s core level binding energy consistent with a reduction of the surface hole accumulation and a reduction of the surface conductivity. A hydrogen plasma step restored the C 1s binding energy to the value of the conductive surface, and the resistance of the diamond surface was found to be within the range for surface transfer doping. Further, the PEALD growth did not appear to degrade the surface conductive layer according to the position of the C 1s core level and electrical measurements. This work provides insight into the approaches to establish and control the two-dimensional hole-accumulation layer of the H-terminated diamond and improve the stability and performance of H-terminated diamond electronic devices.

  5. The behavior of ZrO_2/20%Y_2O_3 and Al_2O_3 coatings deposited on aluminum alloys at high temperature regime

    International Nuclear Information System (INIS)

    Pintilei, G.L.; Crismaru, V.I.; Abrudeanu, M.; Munteanu, C.; Baciu, E.R.; Istrate, B.; Basescu, N.

    2015-01-01

    Highlights: • In both the ZrO_2/20%Y_2O_3 and Al_2O_3 coatings the high temperature caused a decrease of pores volume and a lower thickness of the interface between successive splats. • The NiCr bond layer in the sample with a ZrO_2/20%Y_2O_3 suffered a fragmentation due to high temperature exposure and thermal expansion which can lead to coating exfoliation. • The NiCr bond layer in the sample with an Al_2O_3 coating showed an increase of pore volume due to high temperature. - Abstract: Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO_2/20%Y_2O_3 and Al_2O_3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  6. RBS characterization of Al2O3 films doped with Ce and Mn

    International Nuclear Information System (INIS)

    Martinez-Martinez, R.; Rickards, J.; Garcia-Hipolito, M.; Trejo-Luna, R.; Martinez-Sanchez, E.; Alvarez-Fregoso, O.; Ramos-Brito, F.; Falcony, C.

    2005-01-01

    Rutherford backscattering (RBS) with 4 He energies from 2 to 6 MeV has been used to study the properties of thin amorphous photoluminescent Al 2 O 3 :Ce,Mn films grown by spray pyrolysis on Corning 7059 glass substrates. The source solutions were AlCl 3 , CeCl 3 and MnCl 2 dissolved in deionized water. Different molar concentrations (Ce 10%; Mn 1%, 3%, 5%, 7% and 10%) were investigated under the same deposition conditions at a substrate temperature of 300 deg. C. The RBS spectra show a homogeneous depth profile of both Ce and Mn within the films, and the measured quantities are consistent with the original solution concentrations. An important amount of Cl, which plays a significant role in luminescent properties, was detected, in both the doped and undoped samples

  7. The MgO-Al2O3-SiO2 system - Free energy of pyrope and Al2O3-enstatite. [in earth mantle formation

    Science.gov (United States)

    Saxena, S. K.

    1981-01-01

    The model of fictive ideal components is used to determine Gibbs free energies of formation of pyrope and Al2O3-enstatite from the experimental data on coexisting garnet and orthopyroxene and orthopyroxene and spinel in the temperature range 1200-1600 K. It is noted that Al2O3 forms an ideal solution with MgSiO3. These thermochemical data are found to be consistent with the Al2O3 isopleths that could be drawn using most recent experimental data and with the reversed experimental data on the garnet-spinel field boundary.

  8. CHF Enhancement in Flow Boiling using Al2O3 Nano-Fluid and Al2O3 Nano-Particle Deposited Tube

    International Nuclear Information System (INIS)

    Kim, Tae Il; Chun, T. H.; Chang, S. H.

    2010-01-01

    Nano-fluids are considered to have strong ability to enhance CHF. Most CHF experiments using nano-fluids were conducted in pool boiling conditions. However there are very few CHF experiments with nano-fluids in flow boiling condition. In the present study, flow boiling CHF experiments using bare round tube with Al 2 O 3 nano-fluid and Al 2 O 3 nano-particle deposited tube with DI water were conducted under atmospheric pressure. CHFs were enhanced up to ∼ 80% with Al 2 O 3 nano-fluid and CHFs with Al 2 O 3 nano-particle deposited tube were also enhanced up to ∼ 80%. Inner surface of test section tube were observed by SEM and AFM after CHF experiments

  9. Post deposition annealing effect on the properties of Al2O3/InP interface

    Science.gov (United States)

    Kim, Hogyoung; Kim, Dong Ha; Choi, Byung Joon

    2018-02-01

    Post deposition in-situ annealing effect on the interfacial and electrical properties of Au/Al2O3/n-InP junctions were investigated. With increasing the annealing time, both the barrier height and ideality factor changed slightly but the series resistance decreased significantly. Photoluminescence (PL) measurements showed that the intensities of both the near band edge (NBE) emission from InP and defect-related bands (DBs) from Al2O3 decreased with 30 min annealing. With increasing the annealing time, the diffusion of oxygen (indium) atoms into Al2O3/InP interface (into Al2O3 layer) occurred more significantly, giving rise to the increase of the interface state density. Therefore, the out-diffusion of oxygen atoms from Al2O3 during the annealing process should be controlled carefully to optimize the Al2O3/InP based devices.

  10. Study of Multi-Function Micro-Plasma Spraying Technology

    International Nuclear Information System (INIS)

    Wang Liuying; Wang Hangong; Hua Shaochun; Cao Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al 2 O 3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended

  11. Model Research On Synthesis Of Al2O3-C Layers By MOCVD

    Directory of Open Access Journals (Sweden)

    Sawka A.

    2015-06-01

    Full Text Available These are model studies whose aim is to obtain information that would allow development of new technology for synthesizing monolayers of Al2O3-C with adjusted microstructure on cemented carbides. The Al2O3-C layer will constitute an intermediate layer on which the outer layer of Al2O3 without carbon is synthesized. The purpose of the intermediate layer is to block the cobalt diffusion to the synthesized outer layer of Al2O3 and to stop the diffusion of air oxygen to the substrate during the synthesis of the outer layer. This layer should be thin, continuous, dense and uniform in thickness.

  12. Characterization of alumina scales formed during isothermal and cyclic oxidation of plasma-sprayed TBC systems at 1150 C

    International Nuclear Information System (INIS)

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.; Rigney, E.D.

    1999-01-01

    The isothermal- and cyclic-oxidation behavior of thermal barrier coating (TBC) systems consisting of vacuum plasma-sprayed (VPS) Ni-22Cr-10Al/Y (wt%) bond coatings and air plasma-sprayed (APS) Y 2 O 3 -stabilized ZrO 2 (YSZ) top coatings (on single-crystal superalloys) was investigated. The microstructures, flaw contents, and fracture behavior of the Al 2 O 3 scales formed during oxidation testing at 1150 C were characterized (by analysis of coating and scale fracture surfaces and metallographic cross sections). Significant localized fracture and buckling of the Al 2 O 3 scales that formed along the bond-coat--top-coat interfaces were observed after cyclic oxidation of TBCs. However, substantial amounts of localized scale damage did not induce rapid TBC failure. Decohesion of the columnar alumina scales on the rough bond-coat surfaces occurred by both internal Al 2 O 3 fracture (parallel to the metal surface) and oxide-metal delamination. There were microstructural indications of Al 2 O 3 scale crack healing by sintering into planar arrays of voids. Alumina scales that formed on convex NiCrAlY surfaces (with radii of 50 microm or less) after cyclic oxidation, whereas scales formed by isothermal oxidation contained few visible voids. Accelerated void growth in Al 2 O 3 scales on the irregular NiCrAlY surfaces appeared to be creep-related and was attributed to the synergistic effects of geometric and thermal stresses

  13. Formation of epitaxial Al 2O 3/NiAl(1 1 0) films: aluminium deposition

    Science.gov (United States)

    Lykhach, Y.; Moroz, V.; Yoshitake, M.

    2005-02-01

    Structure of epitaxial Al 2O 3 layers formed on NiAl(1 1 0) substrates has been studied by means of reflection high-energy electron diffraction (RHEED). The elucidated structure was compared to the model suggested for 0.5 nm-thick Al 2O 3 layers [K. Müller, H. Lindner, D.M. Zehner, G. Ownby, Verh. Dtsch. Phys. Ges. 25 (1990) 1130; R.M. Jaeger, H. Kuhlenbeck, H.J. Freund, Surf. Sci. 259 (1991) 235]. The stepwise growth of Al 2O 3 film, involving deposition and subsequent oxidation of aluminium onto epitaxial 0.5 nm-thick Al 2O 3 layers, has been investigated. Aluminium was deposited at room temperature, whereas its oxidation took place during annealing at 1070 K. The Al 2O 3 thickness was monitored by means of Auger electron spectroscopy (AES). It was found that Al 2O 3 layer follows the structure of 0.5 nm thick Al 2O 3 film, although a tilting of Al 2O 3(1 1 1) surface plane with respect to NiAl(1 1 0) surface appeared after Al deposition.

  14. Calculation of Al2O3 contents in Al2O3-PTFE composite thick films fabricated by using the aerosol deposition

    International Nuclear Information System (INIS)

    Kim, Hyung-Jun; Kim, Yoon-Hyun; Nam, Song-Min; Yoon, Young-Joon; Kim, Jong-Hee

    2010-01-01

    Low-temperature fabrication of Al 2 O 3 -PTFE (poly tetra fluoro ethylene) composite thick films for flexible integrated substrates was attempted by using the aerosol deposition method. For optimization of composite thick films, a novel calculation method for the ceramic contents in the composites was attempted. Generally, a thermogravimetry (TG) analysis is used to calculate the ceramic contents in the ceramic-polymer composites. However, the TG analysis requires a long measurement time in each analysis, so we studied a novel calculation method that used a simple dielectric measurement. We used Hashin-Shtrikman bounds to obtain numerical results for the relationship between the dielectric constant of the composites and the contents of Al 2 O 3 . A 3-D electrostatic simulation model similar to the deposited Al 2 O 3 -PTFE composite thick films was prepared, and the simulation result was around the lower bound of the Hashin-Shtrikman bounds. As a result, we could calculate the Al 2 O 3 contents in the composites with a low error of below 5 vol.% from convenient dielectric measurements, and the Al 2 O 3 contents ranged from 51 vol.% to 54 vol.%.

  15. Comparisons of switching characteristics between Ti/Al2O3/Pt and TiN/Al2O3/Pt RRAM devices with various compliance currents

    Science.gov (United States)

    Qi, Yanfei; Zhao, Ce Zhou; Liu, Chenguang; Fang, Yuxiao; He, Jiahuan; Luo, Tian; Yang, Li; Zhao, Chun

    2018-04-01

    In this study, the influence of the Ti and TiN top electrodes on the switching behaviors of the Al2O3/Pt resistive random access memory devices with various compliance currents (CCs, 1-15 mA) has been compared. Based on the similar statistical results of the resistive switching (RS) parameters such as V set/V reset, R HRS/R LRS (measured at 0.10 V) and resistance ratio with various CCs for both devices, the Ti/Al2O3/Pt device differs from the TiN/Al2O3/Pt device mainly in the forming process rather than in the following switching cycles. Apart from the initial isolated state, the Ti/Al2O3/Pt device has the initial intermediate state as well. In addition, its forming voltage is relatively lower. The conduction mechanisms of the ON and OFF state for both devices are demonstrated as ohmic conduction and Frenkel-Poole emission, respectively. Therefore, with the combined modulations of the CCs and the stop voltages, the TiN/Al2O3/Pt device is more stable for nonvolatile memory applications to further improve the RS performance.

  16. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Zhiyong; Lai, Yanqing; Zhang, Zhian; Zhang, Kai; Li, Jie

    2014-01-01

    Graphical abstract: Al2O3-coated separator with developed porous channels is prepared by coating Al2O3 polymer solution on routine separator. The batteries with Al2O3-coated separator exhibited a reversible capacity of as high as 593 mAh g-1 at the rate of 0.2 C after 50th charge/discharge cycle. The enhancement in the electrochemical performance could be attributed to the reduced charge transfer resistance after the introduction of Al2O3 coating layer. Besides, the Al2O3 coating layer, acting as a physical barrier for polysulfides, can effectively prevent polysulfides shuttling between the cathode and the anode. We believe that the Al2O3-coated separator is promising in the lithium sulfur battery applications. - Highlights: • Al 2 O 3 -coated separator is used as the separator of lithium sulfur battery. • The cell with Al 2 O 3 -coated separator exhibits excellent cycling stability and high rate capability. • Al 2 O 3 -coated separator is promising in the lithium sulfur battery applications. - Abstract: In this paper, Al 2 O 3 -coated separator with developed porous channels is prepared to improve the electrochemical performance of lithium sulfur batteries. It is demonstrated that the Al 2 O 3 -coating layer is quite effective in reducing shuttle effect and enhancing the stability of the sulfur electrode. The initial discharge capacity of the cell with Al 2 O 3 -coated separator can reach 967 mAh g −1 at the rate of 0.2 C. After 50th charge/discharge cycle, this cell can also deliver a reversible capacity of as high as 593.4 mAh g −1 . Significantly, the charge-transfer resistance of the electrode tends to be reducing after using Al 2 O 3 -coated separator. The improved cell performance is attributed to the porous architecture of the Al 2 O 3 -coating layer, which serves as an ion-conducting skeleton for trapping and depositing dissolved sulfur-containing active materials, as confirmed by scanning electron microscopy (SEM) and energy-dispersive X

  17. Tribological evaluation for experimental design Al_2O_3 obtained via low pressure injection moulding (LPIM)

    International Nuclear Information System (INIS)

    Dotta, A.L.B.; Costa, C.A.; Farias, M.C.M.; Cunha, M.A da

    2016-01-01

    This work represents the tribological study of Al_2O_3 obtained by LPIM using the experimental design technique to evaluate the interaction of the tribological parameters with the friction and wear. The LPIM process was performed at 90 °C for 24 h. The average friction coefficient for the factorial experimental design varied significantly with the load and the speed when Al_2O_3 was tested with the steel counter body. In general, the wear coefficient was lower for the tribological pair Al_2O_3-steel, in which occurred the formation of an iron oxide tribofilm on the surface. As for the Al_2O_3-Al_2O_3 pair, an intergranular fracture of the surface occurred, in addition to the presence of material adhered on the tracks. (author)

  18. Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits

    Directory of Open Access Journals (Sweden)

    K.-H. Cho

    2013-10-01

    Full Text Available We have characterized the microwave loss of high-Q parallel plate capacitors fabricated from thin-film Al/Al2O3/Re heterostructures on (0001 Al2O3 substrates. The superconductor-insulator-superconductor trilayers were grown in situ in a hybrid deposition system: the epitaxial Re base and polycrystalline Al counterelectrode layers were grown by sputtering, while the epitaxial Al2O3 layer was grown by pulsed laser deposition. Structural analysis indicates a highly crystalline epitaxial Al2O3 layer and sharp interfaces. The measured intrinsic (low-power, low-temperature quality factor of the resonators is as high as 3 × 104. These results indicate that low-loss grown Al2O3 is an attractive candidate dielectric for high-fidelity superconducting qubit circuits.

  19. Photochemistry of the α-Al2O3-PETN Interface

    Directory of Open Access Journals (Sweden)

    Roman V. Tsyshevsky

    2016-02-01

    Full Text Available Optical absorption measurements are combined with electronic structure calculations to explore photochemistry of an α-Al2O3-PETN interface formed by a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12 and a wide band gap aluminum oxide (α-Al2O3 substrate. The first principles modeling is used to deconstruct and interpret the α-Al2O3-PETN absorption spectrum that has distinct peaks attributed to surface F0-centers and surface—PETN transitions. We predict the low energy α-Al2O3 F0-center—PETN transition, producing the excited triplet state, and α-Al2O3 F0-center—PETN charge transfer, generating the PETN anion radical. This implies that irradiation by commonly used lasers can easily initiate photodecomposition of both excited and charged PETN at the interface. The feasible mechanism of the photodecomposition is proposed.

  20. Sintering of Cu–Al2O3 nano-composite powders produced by a thermochemical route

    Directory of Open Access Journals (Sweden)

    MARIJA KORAC

    2007-11-01

    Full Text Available This paper presents the synthesis of nano-composite Cu–Al2O3 powder by a thermochemical method and sintering, with a comparative analysis of the mechanical and electrical properties of the obtained solid samples. Nano-crystalline Cu–Al2O3 powders were produced by a thermochemical method through the following stages: spray-drying, oxidation of the precursor powder, reduction by hydrogen and homogenization. Characterization of powders included analytical electron microscopy (AEM coupled with energy dispersive spectroscopy (EDS, differenttial thermal and thermogravimetric (DTA–TGA analysis and X-ray diffraction (XRD analysis. The size of the produced powders was 20–50 nm, with a noticeable presence of agglomerates. The composite powders were characterized by a homogenous distribution of Al2O3 in a copper matrix. The powders were cold pressed at a pressure of 500 MPa and sintered in a hydrogen atmosphere under isothermal conditions in the temperature range from 800 to 900 °C for up to 120 min. Characterization of the Cu–Al2O3 sintered system included determination of the density, relative volume change, electrical and mechanical properties, examination of the microstructure by SEM and focused ion beam (FIB analysis, as well as by EDS. The obtained nano-composite, the structure of which was, with certain changes, presserved in the final structure, provided a sintered material with a homogenеous distribution of dispersoid in a copper matrix, with exceptional effects of reinforcement and an excellent combination of mechanical and electrical properties.

  1. Hydrogenation of FeCoZr-Al2O3 nanocomposites studied by Moessbauer spectroscopy and magnetometry

    International Nuclear Information System (INIS)

    Saad, A.; Kasiuk, J.; Fedotova, J.; Szilagyi, E.; Przewoznik, J.; Kapusta, Cz.; Marszalek, M.

    2009-01-01

    Hydrogenation effects on crystalline and magnetic structure of nanocomposites (FeCoZr) x (Al 2 O 3 ) 100-x , 38 ≤ x ≤ 63 at.% are studied by 57 Fe Moessbauer spectroscopy and magnetometry. Variations of local structure, blocking temperature and mean FeCoZr nanoparticles' volume are discussed with respect to (i) composition and (ii) two competing processes-H 2 incorporation and annealing-occurred during treatment in H 2 plasma.

  2. Fabrication and Characterization of 5 vol.% (Al2O3p + 8 vol.% (Al2O3f/A336 Hybrid Micron and Nano-Composites

    Directory of Open Access Journals (Sweden)

    Ren Luyang

    2017-01-01

    Full Text Available Hybrid composites are fabricated by adding two reinforcements into matrix materials so that the expected excellent properties can be achieved through the combined advantages of short fibres, and different size particles (micron or nano, which provide a high degree of design freedom. In this paper, hybrid preforms were produced with the different size reinforcement of the Al2O3 particles and short fibres. The Al-Si alloy-based hybrid composites reinforced by 5 vol. % Al2O3 particles and 8 vol. % Al2O3 fibres were fabricated by preform-squeezing casting route. The structure and performance of composite materials were studied with Transmission Electron Microscopy (TEM and Scanning Electron Microscopy (SEM. The results show that the reinforcements, both particles and fibres, distribute homogeneously in the matrix materials, and the properties of composites are found to improve in comparison with the matrix Al-Si alloy.

  3. Preparation of porous Al2O3-Ti-C perform by combustion synthesis

    Directory of Open Access Journals (Sweden)

    K.Granat

    2009-04-01

    Full Text Available Using combustion synthesis porous ceramic preforms for composite reinforcing were produced. Prepared mixture of alumina Saffilfibres, Ti powder and graphite flakes, after drying were placed in waveguide of microwave reactor. Supplied with constant power of 540Wmagnetron ignited and maintained reaction in flowing stream of CO2 gas. Al2O3 fibres should improve preliminary endurance of perform,whereas Ti powder processed to hard titanium carbides and oxides. During microwave heating ignited plasma additionally improveprocess and partly fused metallic Ti. Recorded temperature curves were similar for various samples. The highest synthesis temperature revealed samples containing 10% of Al2O3 , 10% of Ti and 5% of graphite, all percentages atomic. Microscopic observation showed considerable microstructure inhomogeneity of some samples. Both irregular component ordering and partly processed Ti particles inside preform exclude them for subsequent infiltration. Chemical analyze EDS of Ti based compounds partly confirmed work purpose, evidencing presence of Ti oxides and carbides. Independently of graphite content these compounds formed folded strips around solid or empty volume. Depends on CO2 availability, reaction could be slowed down resulting in more compacted Ti compounds. Created as a result of combustion synthesis Ti compound after infiltration with liquid metal properly bounded with the matrix. It could be assumed that redox reaction proceeded and on surface of Ti compound alumina and Al-Ti compounds were created. The preforms of proper strength and homogeneous structure were infiltrated with AlSi7Mg by squeeze casting method. In relation to typical composite reinforced only with fibres no significant increase of defects quantity was observed. Preliminary examination of mechanical properties confirmed that assumed work purpose is reasonable.

  4. In situ formation of CA6 platelets in Al2O3 and Al2O3/ZrO2 matrices

    OpenAIRE

    Belmonte , M.; SÁnchez-Herencia , A.; Moreno , R.; Miranzo , P.; Moya , J.; Tomsia , A.

    1993-01-01

    Al2O3 and Al2O3/ZrO2 compacts containing CaO as a dopant have been sintered under different conditions and atmospheres: air, high vacuum (> 10-6torr). SEM observations have been made on the polished surfaces of sintered and also of annealed samples. Only after the annealing treatment in air at temperatures ranging from 1400° to 1 500°C, a massive formation of CA6 platelets was detected in samples sintered in low oxygen partial pressure atmospheres.ln order to clarify the mechanism of formatio...

  5. Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites

    International Nuclear Information System (INIS)

    Fathy, A.; El-Kady, Omyma

    2013-01-01

    Highlights: ► The copper–alumina composites were prepared by powder metallurgy (P/M) method with nano-Cu/Al 2 O 3 powders. ► The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. ► The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. ► The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. ► Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. - Abstract: Copper–alumina composites were prepared by powder metallurgy (P/M) technology. Nano-Cu/Al 2 O 3 powders, was deoxidized from CuO/Al 2 O 3 powders which synthesized by thermochemical technique by addition of Cu powder to an aqueous solution of aluminum nitrate. The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. The large variation in the thermal conductivities can be related to the microstructural characteristics of the interface between Al 2 O 3 and the Cu-matrix. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. The reduction of thermal conductivity and coefficient of thermal expansion were

  6. Fabrication of hierarchical porous ZnO-Al2O3 microspheres with enhanced adsorption performance

    Science.gov (United States)

    Lei, Chunsheng; Pi, Meng; Xu, Difa; Jiang, Chuanjia; Cheng, Bei

    2017-12-01

    Hierarchical porous ZnO-Al2O3 microspheres were fabricated through a simple hydrothermal route. The as-prepared hierarchical porous ZnO-Al2O3 composites were utilized as adsorbents to remove organic dye Congo red (CR) from water. The ZnO-Al2O3 composites had morphology of microspheres with diameters in the range of 12-16 μm, which were assembled by nanosheets with thicknesses of approximately 60 nm. The adsorption kinetics of CR onto the ZnO-Al2O3 composites was properly fitted by the pseudo-second-order kinetic model. The equilibrium adsorption data were perfectly described by the Langmuir isotherm and had a maximum adsorption capacity that reached 397 mg/g, which was significantly higher than the value of the pure alumina (Al2O3) and zinc oxide (ZnO) samples. The superior CR removal efficiency of the ZnO-Al2O3 composites was attributed to its well-developed hierarchical porous structures and larger specific surface area (201 m2/g), which were conducive to the diffusion and adsorption of CR molecules. Moreover, the regeneration study reveals that the ZnO-Al2O3 composites have suitable stability and reusability. The results also indicate that the as-prepared sample can act as a highly effective adsorbent in anionic dye removal from wastewater.

  7. Interface behaviour of Al2O3/Ti joints produced by liquid state bonding

    International Nuclear Information System (INIS)

    Lemus R, J.; Guevara L, A. O.; Zarate M, J.

    2014-08-01

    The main objective of this work was to determine various aspects during brazing of Al 2 O 3 samples to commercially titanium alloy grade 4 with biocompatibility properties, using a Au-foil as joining element. Al 2 O 3 ceramic was previously produced by sintering of powder cylindrical shape at 1550 grades C for 120 minutes. Previously to joining experiments, the surface of Al 2 O 3 samples were coating, by chemical vapor depositions (CVD) process, with a Mo layer of 2 and 4 μm thick and then stacked together with the Ti samples. Joining experiments were carried out on Al 2 O 3 -Mo/Au/Ti combinations at temperature of 1100 grades C using different holding times under vacuum atmosphere. The experimental results show a successful joining Mo-Al 2 O 3 to Ti. Analysis by scanning electron microscopy (Sem) revealed that joining of Al 2 O 3 to metal occurred by the formation of a homogeneous diffusion zone with no interfacial cracking or porosity at the interface. Results by electron probe micro analysis (EPMA) of Al 2 O 3 -Mo/Au/Ti combinations revealed that Mo traveled inside the joining elements and remained as solid solutions, however during cooling process Mo had a tendency to stay as a precipitate phase and atomic distributions of elements show a concentration line of Mo inside the joining element Au. On the other hand, well interaction of Ti with Au form different phases; like Ti 3 Au and Ti Au. (author)

  8. Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-12-01

    Full Text Available Mullite whiskers reinforced SiC/Al2O3 composites were prepared by microwave sintering in a microwave chamber with TE666 resonant mode. Original SiC particles were coated with SiO2 using sol-gel processing and mixed with Al2O3 particles. Mullite was formed in the reaction between SiO2 and Al2O3. The isostatically pressed cylindrical pellets were sintered from 1350 °C to 1600 °C for 30 min. Physical and chemical responses were investigated by detecting changes in reflected power during the microwave sintering process. XRD was carried out to characterize the samples and showed that mullite could be formed at 1200 °C. Bridging of mullite whiskers between Al2O3 and SiC particles was observed by SEM and is due to a so-called local hot spot effect, which was the unique feature for microwave sintering. The optimized microwave sintering temperature was 1500 °C corresponding to the maximum amount of mullite whiskers within SiC/Al2O3 composites. The high electro-magnetic field enhanced the decomposition of mullite at higher temperatures above 1550 °C. The mechanical properties of mullite whiskers reinforced SiC/Al2O3 composites are much better than the SiC/Al2O3 composites without mullite whiskers.

  9. Influence of Al2O3 reinforcement on precipitation kinetic of Cu–Cr nanocomposite

    International Nuclear Information System (INIS)

    Sheibani, S.; Ataie, A.; Heshmati-Manesh, S.; Caballero, A.; Criado, J.M.

    2011-01-01

    Highlights: ► Cr precipitation in Cu-1 wt.% Cr solid solution is based on nucleation and growth models. ► The overall ageing process is accelerated by the presence of Al 2 O 3 reinforcement. ► Al 2 O 3 –Cu interfaces act as primary nucleation sites. ► Structural defects act as secondary nucleation sites. - Abstract: In this paper, the kinetic of precipitation process in mechanically alloyed Cu-1 wt.% Cr and Cu-1 wt.% Cr/3 wt.% Al 2 O 3 solid solution was compared using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The ageing kinetics in Cu–Cr and Cu–Cr/Al 2 O 3 can be described using Johnson–Mehl–Avrami (JMA) and Sestak–Berggren (SB) models, respectively. These different behaviors have been discussed in details. It was found that in presence of Al 2 O 3 reinforcement, the ageing activation energy is decreased and the overall ageing process is accelerated. This behavior is probably due to higher dislocation density previously obtained during ball milling and Al 2 O 3 –Cu interface. TEM observations confirm that Al 2 O 3 –Cu interface and structural defects act as a primary and secondary nucleation sites, respectively.

  10. Phase relations in the SiC-Al2O3-Pr2O3 system

    International Nuclear Information System (INIS)

    Pan, W.; Wu, L.; Jiang, Y.; Huang, Z.

    2016-01-01

    Phase relations in the Si-Al-Pr-O-C system, including the SiC-Al 2 O 3 -Pr 2 O 3 , the Al 2 O 3 -Pr 2 O 3 -SiO 2 and the SiC-Al 2 O 3 -Pr 2 O 3 -SiO 2 subsystems, were determined by means of XRD phase analysis of solid-state-reacted samples fabricated by using SiC, Al 2 O 3 , Pr 2 O 3 and SiO 2 powders as the starting materials. Subsolidus phase diagrams of the systems were presented. Two Pr-aluminates, namely PrAlO 3 (PrAP) and PrAl 11 O 18 (β(Pr) β-Al 2 O 3 type) were formed in the SiC-Al 2 O 3 -Pr 2 O 3 system. SiC was compatible with both of them. Pr-silicates of Pr 2 SiO 5 , Pr 2 Si 2 O 7 and Pr 9.33 Si 6 O 26 (H(Pr) apatite type) were formed owing to presence of SiO 2 impurity in the SiC powder. The presence of the SiO 2 extended the ternary system of SiC-Al 2 O 3 -Pr 2 O 3 into a quaternary system of SiC-Al 2 O 3 -SiO 2 -Pr 2 O 3 (Si-Al-Pr-O-C). SiC was compatible with Al 2 O 3 , Pr 2 O 3 and the Pr-silicates. The effect of SiO 2 on the phase relations and liquid phase sintering of SiC ceramics was discussed.

  11. Erosion protection of carbon-epoxy composites by plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Alonso, F.; Fagoaga, I.; Oregui, P.

    1991-01-01

    This paper deals with the production of plasma-sprayed erosion-resistant coatings on carbon-fibre - epoxy composites, and the study of their erosion behaviour. The heat sensitivity of the composite substrate requires a specific spraying procedure in order to avoid its degradation. In addition, several bonding layers were studied to allow spraying of the protective coatings. Two different functional coatings were sprayed onto an aluminium-glass bonding layer, a WC-12Co cermet and an Al 2 O 3 ceramic oxide. The microstructure and properties of these coatings were studied and their erosion behaviour determined experimentally in an erosion-testing device. (orig.)

  12. Influence of thin porous Al2O3 layer on aluminum cathode to the Hα line shape in glow discharge

    International Nuclear Information System (INIS)

    Steflekova, V.; Sisovic, N. M.; Konjevic, N.

    2009-01-01

    The results of the Balmer alfa line shape study in a plane cathode-hollow anode Grimm discharge with aluminum (Al) cathode covered with thin layer of porous Al 2 O 3 are presented. The comparison with same line profile recorded with pure Al cathode shows lack of excessive Doppler broadened line wings, which are always detected in glow discharge with metal cathode. The effect is explained by the lack of strong electric field in the cathode sheath region, which is missing in the presence of thin oxide layer in, so called, spray discharge.

  13. Low temperature route synthesis of SiC–Al2O3 hetero-structural nanofibers

    International Nuclear Information System (INIS)

    Dai, Xiao; Wang, Hao; Cao, Fengfeng; Yi, Qinghua; Cong, Shan; Wang, Yun; Song, Pingyuan; Zhai, Pengfei; Zou, Guifu; Dong, Chao

    2014-01-01

    SiC–Al 2 O 3 hetero-structural nanofibers have been synthesized by the chemical solution approach at 200 ° C. The diameters of nanofibers are in the range of 60–100 nm while the lengths are from tens of micrometers to hundreds of micrometers. The microstructural analysis shows that the fibers possess a like-epitaxial relationship between (104) of hexagonal Al 2 O 3 and (111) of cubic SiC. Additionally, the optical investigation of the nanofibers suggests there are some defects in the low annealing temperature synthesized SiC–Al 2 O 3 nanofibers. (paper)

  14. Al2 O3:Cr,Ni: a possible thermoluminescent dosemeter

    International Nuclear Information System (INIS)

    Mariani R, Francisco; Roman B, Alvaro; Saavedra S, Renato; Ibarra S, Angel

    1996-01-01

    Results from a study on the thermoluminescent (Tl) emission from Al 2 O 3 :Cr,Ni are presented. The measurements were obtained for evaluation of the Al 2 O 3 :Cr,Ni dosimetric properties. Different crystal batches were exposed to two kind of ionizing radiation (X-ray and β - ). The Tl spectrum has a main peak with high thermal and optical stability, deviating from linearity for doses lower than 3.6 Gy. Furthermore, this material shows advantages (thermal resistance, reusability, multiple heating cycles) compared to TLD-100. Measured Al 2 O 3 :Cr,Ni properties indicate that it could be used as a dosemeter. (author)

  15. High energy transmission of Al2O3 doped with light transition metals

    KAUST Repository

    Schuster, Cosima

    2012-01-31

    The transmission of transparent colored ceramics based on Al2O3doped with light transition metals is measured in the visible and infrared range. To clarify the role of the dopands we perform ab initiocalculations. We discuss the electronic structure and present optical spectra obtained in the independent particle approximation. We argue that the gross spectral features of Co- and Ni-doped Al2O3 samples are described by our model, while the validity of the approach is limited for Cr-doped Al2O3.

  16. High energy transmission of Al2O3 doped with light transition metals

    KAUST Repository

    Schuster, Cosima; Klimke, J.; Schwingenschlö gl, Udo

    2012-01-01

    The transmission of transparent colored ceramics based on Al2O3doped with light transition metals is measured in the visible and infrared range. To clarify the role of the dopands we perform ab initiocalculations. We discuss the electronic structure and present optical spectra obtained in the independent particle approximation. We argue that the gross spectral features of Co- and Ni-doped Al2O3 samples are described by our model, while the validity of the approach is limited for Cr-doped Al2O3.

  17. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    Science.gov (United States)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  18. Front Surface Tandem Filters using Sapphire (Al2O3) Substrates for Spectral Control in thermophotovoltaic Energy Conversion Systems

    International Nuclear Information System (INIS)

    T Rahmlow, Jr.; J Lazo-Wasem; E Gratrix; P Fourspring; D DePoy

    2005-01-01

    Front surface filters provide an effective means of improving thermophotovoltaic (TPV) system efficiency through spectral control of incident radiant energy. A front surface filter reflects the below band gap photons that can not be converted by the TPV cell back towards the high temperature radiator and allows convertible above band gap photons to pass through the filter into the TPV cell for conversion to electricity. The best spectral control efficiency to date has been demonstrated by front surface, tandem filters that combine an interference filter and an InPAs layer (plasma filter) in series. The InPAs material is a highly doped, epitaxially grown layer on an InP substrate. These tandem filter designs have been fabricated with energy and angle weighted spectral efficiencies of 76% for TPV cells with a 2.08(micro)m (0.6eV) band gap [1]. An alternative to the InPAs layer on an InP substrate is an Al 2 O 3 (sapphire) substrate. The use of Al 2 O 3 may increase transmission of above band gap photons, increase the mechanical strength of the tandem filter, and lower the cost of the tandem filter, all at the expense of lower spectral efficiency. This study presents design and fabrication results for front surface tandem filters that use an Al 2 O 3 substrate for 2.08(micro)m band gap TPV cells

  19. Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    International Nuclear Information System (INIS)

    Hai-Qing, Xiao; Chun-Lan, Zhou; Xiao-Ning, Cao; Wen-Jing, Wang; Lei, Zhao; Hai-Ling, Li; Hong-Wei, Diao

    2009-01-01

    Al 2 O 3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 10 12 cm −2 is detected in the Al 2 O 3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO 2 and plasma enhanced chemical vapor deposition SiN x :H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al 2 O 3 . (cross-disciplinary physics and related areas of science and technology)

  20. The influence of thermal annealing on the characteristics of different AL2O3 thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Ranogajec-Komor, M.; Vincekovic, M.; Knezevic, Z.; Miljanic, S.

    2002-01-01

    The manufacturers of TL detectors usually recommend the annealing temperature and time, however they do not give instructions about the heating and cooling rates. From the aspect of practical routine work, every laboratory has to find the optimum heating and cooling method. In this work the influence of various parameters of annealing on the properties of TL dosimeters (sensitivity, reproducibility, the shape of the glow curve) was investigated. Various Al 2 O 3 :dosimeters were used. The TL dosimeters based on Al 2 O 3 can be used in different dose ranges depending on the crystal structure of the dosimeter material as well as the kind and concentration of the activator. In this work Al 2 O 3 :C 4 and Al 2 O 3 :Mg,Y with 0.5% and 1% of activator were investigated

  1. Al2O3 coating fabricated on titanium by cathodic microarc electrodeposition

    International Nuclear Information System (INIS)

    Jin Qian; Xue Wenbin; Li Xijin; Zhu Qingzhen; Wu Xiaoling

    2009-01-01

    A Al 2 O 3 coating was prepared on titanium substrate by cathodic microarc electrodeposition method in Al(NO 3 ) 3 ethanol solution. The coating thickness was about 80 μm when a 400 V cathodic potential was applied. The morphology and phase constituent of the Al 2 O 3 coating were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The isothermal oxidation at 700 deg. C and electrochemical corrosion behavior of the coated titanium were analyzed. The coating was composed of γ-Al 2 O 3 and little α-Al 2 O 3 phases. The oxidation resistance of the titanium subjected to cathodic microarc treatment was obviously improved. The polarization test indicated that the coated titanium has better corrosion resistance.

  2. Selective hydrogenation of maleic anhydride over Pd/Al2O3 ...

    Indian Academy of Sciences (India)

    Keywords. Pd/Al2O3 catalyst; maleic anhydride; selective hydrogenation; succinic anhydride. 1. Introduction ... attracted a significant amount of attention because the majority of its ... added, and the colour of the resulting mixture turned brown.

  3. MIM capacitors with various Al2O3 thicknesses for GaAs RFIC application

    International Nuclear Information System (INIS)

    Zhou Jiahui; Xu Wenjun; Li Qi; Li Simin; He Zhiyi; Li Haiou; Chang Hudong; Liu Honggang; Liu Guiming

    2015-01-01

    The impact of various thicknesses of Al 2 O 3 metal—insulator—metal (MIM) capacitors on direct current and radio frequency (RF) characteristics is investigated. For 20 nm Al 2 O 3 , the fabricated capacitor exhibits a high capacitance density of 3850 pF/mm 2 and acceptable voltage coefficients of capacitance of 681 ppm/V 2 at 1 MHz. An outstanding VCC-α of 74 ppm/V 2 at 1 MHz, resonance frequency of 8.2 GHz and Q factor of 41 at 2 GHz are obtained by 100 nm Al 2 O 3 MIM capacitors. High-performance MIM capacitors using GaAs process and atomic layer deposition Al 2 O 3 could be very promising candidates for GaAs RFIC applications. (paper)

  4. Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics

    Institute of Scientific and Technical Information of China (English)

    SI Tingzhi; LIU Ning; ZHANG Qingan; YOU Xianqing

    2008-01-01

    The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt. % TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (N) on fatigue crack growth (Δα). The mechanical properties and thermal fatigue resistance of TiC/Al2O3 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.

  5. Dispersion of nano-nickel into γ-Al2O3 studied by positron

    International Nuclear Information System (INIS)

    Jun Zhu; Wang, S.J.; Luo, X.H.

    2003-01-01

    The positron annihilation lifetime spectra were measured as a function of the content of the nano-nickel, of temperature, as well as of the heating time for the supported nano-nickel catalyst that was prepared by mechanical mixture nano-metal nickel particles with gamma-alumina (γ-Al 2 O 3 ). The lifetime spectra were well resolved into four lifetime components. The longest lifetime τ 4 was assigned to ortho-positronium annihilating in the secondary pore of the γ-Al 2 O 3 . The results showed that part of the nano-nickel had entered into γ-Al 2 O 3 by thermal diffusion at heating above 200 deg. C and had interacted with the face of the γ-Al 2 O 3 , but the length of diffusion is not very large

  6. Dispersion of nano-nickel into γ-Al 2O 3 studied by positron

    Science.gov (United States)

    Jun, Zhu; Wang, S. J.; Luo, X. H.

    2003-10-01

    The positron annihilation lifetime spectra were measured as a function of the content of the nano-nickel, of temperature, as well as of the heating time for the supported nano-nickel catalyst that was prepared by mechanical mixture nano-metal nickel particles with gamma-alumina ( γ-Al 2O 3). The lifetime spectra were well resolved into four lifetime components. The longest lifetime τ4 was assigned to ortho-positronium annihilating in the secondary pore of the γ-Al 2O 3. The results showed that part of the nano-nickel had entered into γ-Al 2O 3 by thermal diffusion at heating above 200°C and had interacted with the face of the γ-Al 2O 3, but the length of diffusion is not very large.

  7. Crystalline and electronic structure of epitaxial γ-Al2O3 films

    International Nuclear Information System (INIS)

    Wu, Huiyan; Lu, Dawei; Zhu, Kerong; Xu, Guoyong; Wang, Hu

    2013-01-01

    Epitaxial γ-Al 2 O 3 films were fabricated on SrTiO 3 (1 0 0) substrates using pulsed laser deposition (PLD) technique. The high quality of epitaxial growth γ-Al 2 O 3 films was confirmed by X-ray diffraction (XRD). Atomic force microscopy (AFM) images indicated the smooth surfaces and the step-flow growth of the films. In order to illuminate the electronic properties and the local structure of the epitaxial γ-Al 2 O 3 , we experimentally measured the X-ray absorption near-edge structure (XANES) spectrum at the O K-edge and compared the spectrum with the theoretical simulations by using various structure models. Our results based on XANES spectrum analysis indicated that the structure of the epitaxial γ-Al 2 O 3 film was a defective spinel with Al vacancies, which prefer to be located at the octahedral sites

  8. Potential of HfN, ZrN, and TiH as hot carrier absorber and Al2O3/Ge quantum well/Al2O3 and Al2O3/PbS quantum dots/Al2O3 as energy selective contacts

    Science.gov (United States)

    Shrestha, Santosh; Chung, Simon; Liao, Yuanxun; Wang, Pei; Cao, Wenkai; Wen, Xiaoming; Gupta, Neeti; Conibeer, Gavin

    2017-08-01

    The hot carrier (HC) solar cell is one of the most promising advanced photovoltaic concepts. It aims to minimise two major losses in single junction solar cells due to sub-band gap loss and thermalisation of above band gap photons by using a small bandgap absorber, and, importantly, collecting the photo-generated carriers before they thermalise. In this paper we will present recent development of the two critical components of the HC solar cell, i.e., the absorber and energy selective contacts (ESCs). For absorber, fabrication and carrier cooling rates in potential bulk materials — hafnium nitride, zirconium nitride, and titanium hydride are presented. Results of ESCs employing double barrier resonant tunneling structures Al2O3/Ge quantum well (QW)/Al2O3 and Al2O3/PbS quantum dots (QDs)/Al2O3 are also presented. These results are expected to guide further development of practical HC solar cell devices.

  9. Polarization Behavior of Squeeze Cast Al2O3 Fiber Reinforced Aluminum Matrix Composites

    International Nuclear Information System (INIS)

    Ham, S. H.; Kang, Y. C.; Cho, K. M.; Park, I. M.

    1992-01-01

    Electrochemical polarization behavior of squeeze cast Al 2 O 3 short fiber reinforced Al alloy matrix composites was investigated for the basic understanding of the corrosion properties of the composites. The composites were fabricated with variations of fiber volume fraction and matrix alloys. It was found that the reinforced composites are more susceptible to corrosion attack than the unreinforced matrix alloys in general. Corrosion resistance shows decreasing tendency with increasing Al 2 O 3 fiber volume fraction in AC8A matrix. Effect of the matrix alloys revealed that the AC8A Al matrix composite is less susceptible to corrosion attack than the 2024 and 7075 Al matrix composites. Effect of plastic deformation on electrochemical polarization behavior of the squeeze cast Al/Al 2 O 3 composites was examined after extrusion of AC8A-10v/o Al 2 O 3 . Result shows that corrosion resistance is deteriorated after plastic deformation

  10. Effect of particle shape on thermal conductivity of Al2O3 nanofluids

    International Nuclear Information System (INIS)

    Kim, Hyun Jin; Lee, Seung Hyun; Kwon, Hey Lim; Jang, Seok Pil; Lim, Hyung Mi

    2009-01-01

    In this paper, thermal conductivities of water-based Al 2 O 3 nanofluids with brick, blade, platelet and rod type nanoparticle are measured by transient hot wire method to investigate the effect of nanoparticle shape on thermal conductivity. Water-based Al 2 O 3 nanofluids are prepared by two-step method and that of volume fraction is 3%. Temperature dependency of thermal conductivity of water-based Al 2 O 3 nanofluids is also studied by measuring of thermal conductivity from 22 .deg. C to 42 .deg. C. TEM micrograph, zeta potential and BET are measured to investigate suspension and disperse stability of water-based Al 2 O 3 nanofluids. Furthermore, Experimental results are compared with theoretical models such as Hamilton-Crosser model considering the shape effects on thermal conductivity.

  11. Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials

    National Research Council Canada - National Science Library

    Krell, Andreas; Hutzler, Thomas; Klimke, Jens

    2006-01-01

    Sintered sub-micrometer alumina (alpha-Al2O3) is the hardest transparent armor. However, its trigonal structure gives rise to a strong thickness effect that makes thicker components translucent. Cubic ceramics (no birefringence...

  12. Synthesis of MgO nanoparticle loaded mesoporous Al2O3 and its defluoridation study

    International Nuclear Information System (INIS)

    Dayananda, Desagani; Sarva, Venkateswara R.; Prasad, Sivankutty V.; Arunachalam, Jayaraman; Parameswaran, Padmanabhan; Ghosh, Narendra N.

    2015-01-01

    Highlights: • Simple and cost effective preparation of MgO nanoparticles loaded mesoporous Al 2 O 3 . • Adsorbents possess high surface area and mesoporous structure. • Higher fluoride removal capacity of MgO loaded Al 2 O 3 than that of pure Al 2 O 3 . • Faster fluoride adsorption kinetics of MgO loaded Al 2 O 3 from water. - Abstract: MgO nanoparticle loaded mesoporous alumina has been synthesized using a simple aqueous solution based cost effective method for removal of fluoride from water. Wide angle powder X-ray diffraction, nitrogen adsorption desorption analysis, transmission electron microscopy techniques and energy dispersive X-ray spectroscopy were used to characterize the synthesized adsorbents. Synthesized adsorbents possess high surface area with mesoporous structure. The adsorbents have been thoroughly investigated for the adsorption of F − using batch adsorption method. MgO nanoparticle loading on mesoporous Al 2 O 3 enhances the F − adsorption capacity of Al 2 O 3 from 56% to 90% (initial F − concentration = 10 mg L −1 ). Kinetic study revealed that adsorption kinetics follows the pseudo-second order model, suggesting the chemisorption mechanism. The F − adsorption isotherm data was explained by both Langmuir and Freundlich model. The maximum adsorption capacity of 40MgO@Al 2 O 3 was 37.35 mg g −1 . It was also observed that, when the solutions having F − concentration of 5 mg L −1 and 10 mg L −1 was treated with 40MgO@Al 2 O 3 , the F − concentration in treated water became <1 mg L −1 , which is well below the recommendation of WHO

  13. Characterization of γ- Al2O3 nanopowders synthesized by Co-precipitation method

    International Nuclear Information System (INIS)

    Jbara, Ahmed S.; Othaman, Zulkafli; Ati, Ali A.; Saeed, M.A.

    2017-01-01

    Co-precipitation technique has been used to synthesize gamma-Al 2 O 3 (γ-Al 2 O 3 ) nanopowders under annealing temperature effect. The crystalline phase and purity for the prepared powder were characterized by different spectroscopy techniques. XRD analysis confirms the gamma phase of alumina nanopowders with particle diameter ranging from 6 to 24 nm, which confirms the quantum dots formation, which is also supported by the BET measurement. The surface area of the prepared nanopowders is in the range of 109–367 m 2 /g. Morphology analysis indicates that γ-Al 2 O 3 nanopowders are consisted of grains almost spherical in shape. Some agglomeration of nanoparticles occurs, which become more regular hexagonal shaped with the increasing annealing temperature. The small nanoparticles size and the high surface area from a simple procedure for preparing γ-Al 2 O 3 may make it more suitable for use as an adsorbent for malachite green. - Highlights: • Co-precipitation technique is used to synthesize gamma- Al 2 O 3 nanopowders. • Pure gamma- Al 2 O 3 phase was obtained having maximum nanoparticle size is 24 nm. • The quantum dots were formed inside powder. • High surface area of nanopowders at the low annealing temperature. • Increasing annealing temperature causes the hexagonal agglomeration shape.

  14. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3

    International Nuclear Information System (INIS)

    Jiang, Xiang; Luo, Ruilian; Peng, Feifei; Fang, Yutang; Akiyama, Tomohiro; Wang, Shuangfeng

    2015-01-01

    Highlights: • Novel MEPCM modified with nano-Al 2 O 3 was prepared via emulsion polymerization. • The paraffin microcapsules presented a well-defined microstructure. • The composite achieved high encapsulation efficiency. • The thermal conductivity of MEPCM was enhanced due to the nano-Al 2 O 3 particles. - Abstract: A sort of new microencapsulated phase change materials (MEPCM) based on paraffin wax core and poly(methyl methacrylate-co-methyl acrylate) shell with nano alumina (nano-Al 2 O 3 ) inlay was synthesized through emulsion polymerization. Various techniques were used to characterize the as-prepared products so as to investigate the effect of nano-Al 2 O 3 on morphology and thermal performance, including scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and thermal conductivity measurement. The results showed that the products achieved the best performance with 16% (monomer mass) nano-Al 2 O 3 added under the optimal preparation conditions. The DSC results indicated that the phase change temperature of the composite exhibited appropriate phase change temperature and achieved high encapsulation efficiency. The thermal conductivity of the paraffin microcapsules is also significantly improved owing to the presence of high thermal conductive nano-Al 2 O 3 . This synthetic technique can be a perspective way to prepare the MEPCM with enhanced thermal transfer and phase change properties for potential applications to energy-saving building materials

  15. In situ formation of CA6 platelets in Al2O3 and Al2O3/ZrO2 matrices

    International Nuclear Information System (INIS)

    Belmonte, M.; Sanchez-Herencia, A.J.; Moreno, R.; Miranzo, P.; Moya, J.S.; Tomsia, A.P.

    1993-01-01

    Al 2 O 3 and Al 2 O 3 /ZrO 2 compacts containing CaO as a dopant have been sintered under different conditions and atmospheres: air, high vacuum (> 10 -6 torr). SEM observations have been made on the polished surfaces of sintered and also of annealed samples. Only after the annealing treatment in air at temperatures ranging from 1400 to 1500 C, a massive formation of CA 6 platelets was detected in samples sintered in low oxygen partial pressure atmospheres. In order to clarify the mechanism of formation of this secondary phase at the grain boundaries, CaO has been introduced in the form of either plaster of Paris (to reproduce a possible contamination provided by the molds in slip casting) or CaCO 3 . The obtained results indicate the important role of the firing atmosphere on the precipitation of secondary phases at grain boundary. (orig.)

  16. The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy

    International Nuclear Information System (INIS)

    García Ferré, Francisco; Bertarelli, Emanuele; Chiodoni, Angelica; Carnelli, Davide; Gastaldi, Dario; Vena, Pasquale; Beghi, Marco G.; Di Fonzo, Fabio

    2013-01-01

    In this work, ellipsometry, Brillouin spectroscopy and nanoindentation are combined to assess the mechanical properties of a nanocrystalline Al 2 O 3 /a-Al 2 O 3 composite coating with high accuracy and precision. The nanocomposite is grown by pulsed laser deposition at either room temperature or 600 °C. The adhesive strength is evaluated by nanoscratch tests. In the room temperature process the coating attains an unusual combination of compactness, strong interfacial bonding, moderate stiffness (E = 195 ± 9 GPa and ν = 0.29 ± 0.02) and significant hardness (H = 10 ± 1 GPa), resulting in superior plastic behavior and a relatively high ratio of hardness to elastic modulus (H/E = 0.049). These features are correlated to the nanostructure of the coating, which comprises a regular dispersion of ultrafine crystalline Al 2 O 3 nanodomains (2–5 nm) in a dense and amorphous alumina matrix, as revealed by transmission electron microscopy. For the coating grown at 600 °C, strong adhesion is also observed, with an increase of stiffness and a significant enhancement of hardness (E = 277 ± 9 GPa, ν = 0.27 ± 0.02 and H = 25 ± 1 GPa), suggesting an outstanding resistance to wear (H/E = 0.091)

  17. Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure

    Science.gov (United States)

    Liu, Jian; Yang, Huafeng; Ma, Zhongyuan; Chen, Kunji; Zhang, Xinxin; Huang, Xinfan; Oda, Shunri

    2018-01-01

    We reported an Al2O3/HfO2/Al2O3 sandwich structure resistive switching device with significant improvement of multilevel cell (MLC) operation capability, which exhibited that four stable and distinct resistance states (one low resistance state and three high resistance states) can be achieved by controlling the Reset stop voltages (V Reset-stop) during the Reset operation. The improved MLC operation capability can be attributed to the R HRS/R LRS ratio enhancement resulting from increasing of the series resistance and decreasing of leakage current by inserting two Al2O3 layers. For the high-speed switching applications, we studied the initial switching dynamics by using the measurements of the pulse width and amplitude dependence of Set and Reset switching characteristics. The results showed that under the same pulse amplitude conditions, the initial Set progress is faster than the initial Reset progress, which can be explained by thermal-assisted electric field induced rupture model in the oxygen vacancies conductive filament. Thus, proper combination of varying pulse amplitude and width can help us to optimize the device operation parameters. Moreover, the device demonstrated ultrafast program/erase speed (10 ns) and good pulse switching endurance (105 cycles) characteristics, which are suitable for high-density and fast-speed nonvolatile memory applications.

  18. Properties of copper matrix reinforced with nano- and micro-sized Al2O3 particles

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2008-01-01

    The mixture of electrolytic copper powder with 5 wt.% of commercial Al 2 O 3 powder (average particle size: 15 and 0.75 μm, respectively) and the inert gas atomized prealloyed copper powder (average particle size: 30 μm) containing 2.5 wt.% aluminum were separately milled in air up to 20 h in the planetary ball mill. During milling aluminum in the prealloyed copper powders was oxidized in situ by internal oxidation with oxygen from the air forming very fine nano-sized Al 2 O 3 particles. The internal oxidation of 2.5 wt.% aluminum generated 4.7 wt.% of Al 2 O 3 in the copper matrix. Powders and compacts were characterized by light and scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction analysis. Microhardness and electrical conductivity were also included in measurements. The microhardness of Cu-2.5 wt.% Al compacts was 3.6 times higher than that of compacts processed from electrolytic copper powder. This increase in microhardness is a consequence of a fine dispersion of Al 2 O 3 particles and refined grain structure. The average values of electrical conductivity of compacts processed from Cu-5 wt.% Al 2 O 3 and Cu-2.5 wt.% Al powders previously milled for 20 h and were 88% and 70% IACS, respectively, which is a rather significant increase if compared with values of 60% and 23% IACS of compacts processed from as-received and non-milled powders. The microhardness of 20-h milled compacts decreases with the heat treatment at 800 deg. C. Due to the effect of nano-sized Al 2 O 3 particles Cu-2.5 wt.% Al compacts show lower decrease in microhardness. The results are discussed in terms of the effect of Al 2 O 3 particle size and fine grain structure on the reinforcing of the copper matrix

  19. Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant

    International Nuclear Information System (INIS)

    Kole, Madhusree; Dey, T K

    2010-01-01

    Various suspensions containing Al 2 O 3 nanoparticles ( 2 O 3 nanoparticles as well as temperature between 10 and 80 0 C. The prepared nanofluid, containing only 0.035 volume fraction of Al 2 O 3 nanoparticles, displays a fairly higher thermal conductivity than the base fluid and a maximum enhancement (k nf /k bf ) of ∼10.41% is observed at room temperature. The thermal conductivity enhancement of the Al 2 O 3 nanofluid based on engine coolant is proportional to the volume fraction of Al 2 O 3 . The volume fraction and temperature dependence of the thermal conductivity of the studied nanofluids present excellent correspondence with the model proposed by Prasher et al (2005 Phys. Rev. Lett. 94 025901), which takes into account the role of translational Brownian motion, interparticle potential and convection in fluid arising from Brownian movement of nanoparticles for thermal energy transfer in nanofluids. Viscosity data demonstrate transition from Newtonian characteristics for the base fluid to non-Newtonian behaviour with increasing content of Al 2 O 3 in the base fluid (coolant). The data also show that the viscosity increases with an increase in concentration and decreases with an increase in temperature. An empirical correlation of the type log(μ nf ) = A exp(-BT) explains the observed temperature dependence of the measured viscosity of Al 2 O 3 nanofluid based on car engine coolant. We further confirm that Al 2 O 3 nanoparticle concentration dependence of the viscosity of nanofluids is very well predicted on the basis of a recently reported theoretical model (Masoumi et al 2009 J. Phys. D: Appl. Phys. 42 055501), which considers Brownian motion of nanoparticles in the nanofluid.

  20. Characterization of Al2O3 surface passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Albadri, Abdulrahman M.

    2014-01-01

    A study of the passivation of silicon surface by aluminum oxide (Al 2 O 3 ) is reported. A correlation of fixed oxide charge density (Q f ) and interface trap density (D it ) on passivation efficiency is presented. Low surface recombination velocity (SRV) was obtained even by as-deposited Al 2 O 3 films and this was found to be associated to the passivation of interface states. Fourier transfer infrared spectroscopy spectra show the existence of an interfacial silicon oxide thin layer in both as-deposited and annealed Al 2 O 3 films. Q f is found positive in as-deposited films and changing to negative upon subsequent annealing, providing thus an enhancement of the passivation in p-type silicon wafers, associated to field effects. Secondary ion mass spectrometry analysis confirms the correlation between D it and hydrogen concentration at the Al 2 O 3 /Si interface. A lowest SRV of 15 cm/s was obtained after an anneal at 400 °C in nitrogen atmosphere. - Highlights: • Al 2 O 3 provides superior passivation for silicon surfaces. • Atomic layer deposition-Al 2 O 3 was deposited at a low temperature of 200 °C. • A lowest surface passivation velocity of 15 cm/s was obtained after an anneal at 400 °C in nitrogen. • As-deposited Al 2 O 3 films form very thin SiO 2 layer responsible of low interface trap densities. • High negative fixed charge density of (− 2 × 10 12 cm −2 ) was achieved upon annealing at 400 °C

  1. The Influence of α- and γ-Al2O3 Phases on the Thermoelectric Properties of Al-doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Van Nong, Ngo; Le, Thanh Hung

    2013-01-01

    A systematic investigation on the microstructure and thermoelectric properties of Al-doped ZnO using α- and γ-Al2O3 as dopants was conducted in order to understand the doping effect and its mechanism. The samples were prepared by the spark plasma sintering technique from precursors calcined...... at various temperatures. Clear differences in microstructure and thermoelectric properties were observed between the samples doped with α- and γ-Al2O3. At any given calcination temperature, γ-Al2O3 resulted in the formation of a larger amount of the ZnAl2O4 phase in the Al-doped ZnO samples. The average...... grain size was found to be smaller for the γ-Al2O3-doped samples than that for the α-Al2O3-doped ones under the same sintering condition. It is proposed that the ZnAl2O4 phase is the reason for the observed suppression of grain growth and also for the slightly reduced lattice thermal conductivity...

  2. Al2O3 doped TiO2 ceramic waste forms

    International Nuclear Information System (INIS)

    Uno, Masayoshi; Kinoshita, Hajime; Sakai, Etsuro; Ikeda, Akira; Matsumoto, Y.; Yamanaka, Shinsuke

    1999-01-01

    Melting of the mixture of Nd 2 O 3 , CeO 2 , SrO, TiO 2 and Al 2 O 3 at 1673 K for 1 hour produced one RE 2 Ti 3 O 9 phase compound. Differential Scanning Calorimetry (DSC) measurement showed that the melting temperature of this compound was 1646 K. Density of the alumina doped oxide was higher than that of the oxide obtained by the pressing and sintering without alumina. Vickers hardness of the oxide obtained by the pressing and sintering was 5.3 GPa and nearly same as that of glass waste. That of the alumina doped oxide was around 7 GPa. 7 days Soxhlet leach test (MCC-5) followed by Inductively Coupled Plasma Spectrometry (ICP) showed that normalized leaching rate of Ti for the oxide obtained by the pressing and sintering was 5.54 x 10 -3 kg/m 2 and that for the alumina doped oxide was 2.24 x 10 -3 kg/m 2 . The value of Sr for the pressed and sintered sample was 0.034 x 10 -3 kg/m 2 but that for alumina doped sample was below the detection limit (0.01 x 10 -3 kg/m 2 ). Al was not detected from the leachate of the alumina doped sample. (author)

  3. N2O Decomposition over Cu–Zn/γ–Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Runhu Zhang

    2016-12-01

    Full Text Available Cu–Zn/γ–Al2O3 catalysts were prepared by the impregnation method. Catalytic activity was evaluated for N2O decomposition in a fixed bed reactor. The fresh and used catalysts were characterized by several techniques such as BET surface area, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The Cu–Zn/γ–Al2O3 catalysts exhibit high activity and stability for N2O decomposition in mixtures simulating real gas from adipic acid production, containing N2O, O2, NO, CO2, and CO. Over the Cu–Zn/γ–Al2O3 catalysts, 100% of N2O conversion was obtained at about 601 °C at a gas hourly space velocity (GHSV of 7200 h−1. Cu–Zn/γ–Al2O3 catalysts also exhibited considerably good durability, and no obvious activity loss was observed in the 100 h stability test. The Cu–Zn/γ–Al2O3 catalysts are promising for the abatement of this powerful greenhouse gas in the chemical industry, particularly in adipic acid production.

  4. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    Science.gov (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  5. Synthesis and properties of γ-Ga2O3-Al2O3 solid solutions

    Science.gov (United States)

    Afonasenko, T. N.; Leont'eva, N. N.; Talzi, V. P.; Smirnova, N. S.; Savel'eva, G. G.; Shilova, A. V.; Tsyrul'nikov, P. G.

    2017-10-01

    The textural and structural properties of mixed oxides Ga2O3-Al2O3, obtained via impregnating γ-Al2O3 with a solution of Ga(NO3)3 and subsequent heat treatment, are studied. According to the results from X-ray powder diffraction, gallium ions are incorporated into the structure of aluminum oxide to form a solid solution of spinel-type γ-Ga2O3-Al2O3 up to a Ga2O3 content of 50 wt % of the total weight of the sample, accompanied by a reduction in the specific surface area, volume, and average pore diameter. It is concluded that when the Ga2O3 content exceeds 50 wt %, the β-Ga2O3 phase is observed along with γ-Ga2O3-Al2O3 solid solution. 71Ga and 27Al NMR spectroscopy shows that gallium replaces aluminum atoms from the tetrahedral position to the octahedral coordination in the structure of γ-Ga2O3-Al2O3.

  6. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications

    Directory of Open Access Journals (Sweden)

    M.F. Zawrah

    2016-12-01

    Full Text Available In this study, Al2O3–H2O nanofluids were synthesized using sodium dodecylbenzenesulfonate (SDBS dispersant agent by ultra-sonication method. Different amounts of SDBS i.e. 0.1, 0.2, 0.3, 0.6, 1 and 1.5 wt.% were tested to stabilize the prepared nanofluids. The stability of nanofluids was verified using optical microscope, transmission electron microscope and Zeta potential. After selecting the suitable amount of dispersant, nanofluids with different volume fractions of Al2O3 were prepared. Zeta potential measurement of nanofluids with low alumina and intermediate fractions showed good dispersion of Al2O3 nanoparticles in water, but nanofluids with high mass fraction were easier to aggregate. The stabilized nanofluids were subjected for measuring of rheological behavior and electrical conductivity. The electrical conductivity was correlated to the thermal conductivity according to Wiedemann–Franz law. The results revealed that the nanofluid containing 1% SDBS was the most stable one and settling was observed for the fluid contained 0.75 vol.% of Al2O3 nanoparticles which gave higher viscosity. The rheological measurements indicated that the viscosity of nanofluids decreased firstly with increasing shear rate (shear thinning behavior. Addition of nanoparticles into the base liquid enhanced the electrical conductivity up to 0.2 vol.% of Al2O3 nano-particles after which it decreased.

  7. Sensitization by UV light of α-Al2O3:C polycrystalline detectors

    International Nuclear Information System (INIS)

    Meira B, L. C.; Rubio F, H.; Neres de A, E.; Santos, A.

    2014-08-01

    This paper describes an increase in sensitivity to gamma and beta radiation on α-Al 2 O 3 :C polycrystalline detector, which has been produced by a sol-gel process, following previous exposure to ultraviolet light. The increased sensitivity of the detector as a function of the exposure time and ultraviolet wavelength was studied. Since the main luminescent centers have emission peaks at different wavelengths, selective measurements of thermoluminescent emission intensity were done, in order to investigate the possible conversion of centers as a result of the exposition to ultraviolet light. Experimental results indicate that the nature and parameters of the luminescent centers in α-Al 2 O 3 :C sol-gel material can be very different of those in α-Al 2 O 3 :C single crystal. (author)

  8. Characterization of thermoluminescent response of Al2O3:Tm/Teflon for gamma rays dosimetry

    International Nuclear Information System (INIS)

    Carvalho Junior, Alvaro B. de; Barros, Vinicius S.M. de; Elihimas, Diego Rafael M.; Khoury, Helen J.; Azevedo, Walter M. de

    2011-01-01

    In this work, α-Al 2 O 3 doped with Tm 3+ was prepared by combustion synthesis techniques for thermoluminescent (TL) ionizing radiation dosimetry applications. After this, Al 2 O 3 :Tm (0.1%) pellets were manufactured from a 2:1 homogeneous mixture of Al 2 O 3 :Tm (0.1%) and powdered Teflon (PTFE). Ten pellets were used to characterize the dosimetric properties. The dosimetric characterization was performed by analyses of the reproducibility, sensitivity of the TL response vs. dose between 1 and 10 Gy to 60 Co source and fading. The results showed a glow curve with a peak near to 225 deg C, a linear TL response with the gamma radiation dose in the range investigated and a reproducibility < 10%. These results indicate a potential use of these pellets for gamma radiation dosimetry. (author)

  9. Thermal stability of atomic layer deposition Al2O3 film on HgCdTe

    Science.gov (United States)

    Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.

    2015-06-01

    Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.

  10. Characterization of Al2O3-Co ceramic composite obtained by high energy mill

    International Nuclear Information System (INIS)

    Souza, J.L.; Assis, R.B. de; Carlos, E.M.; Oliveira, T.P.; Costa, F.A. da

    2014-01-01

    This work aims to characterize the ceramic composite Al 2 O3-Co obtained by high energy grinding. The composites were obtained by milling Al 2 O 3 and Co in a high energy mill at a speed of 400 rpm, in proportions of 5 to 20% Cobalt (Co). Ceramic composites with 5 and 20% cobalt were sintered at 1200 and 1300 ° C, with a 60-minute plateau and a heating rate of 10 ° C / min. The samples were characterized by X-ray diffraction (XRD), thermogravimetry and differential scanning calorimetry (TG / DSC) and scanning electron microscopy (SEM). The results show the significant effect of cobalt percentage and high energy grinding on the final properties of the Al 2 O 3 - Co ceramic composite, presenting satisfactory values for the composite with a 20% cobalt percentage, showing to be a promising material for application in cutting tools

  11. Al2O3 adherence on CoCrAl alloys

    International Nuclear Information System (INIS)

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al 2 O 3 as both the dispersion and protective oxide; and the production of an HfO 2 dispersion while simultaneously aluminizing the alloy. It was found that an Al 2 O 3 dispersion will act to promote the adherence of an external scale of Al 2 O 3 to a degree comparable to previously tested dispersions and an HfO 2 dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization

  12. Strain Distribution of Au and Ag Nanoparticles Embedded in Al2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Honghua Huang

    2014-01-01

    Full Text Available Au and Ag nanoparticles embedded in amorphous Al2O3 matrix are fabricated by the pulsed laser deposition (PLD method and rapid thermal annealing (RTA technique, which are confirmed by the experimental high-resolution transmission electron microscope (HRTEM results, respectively. The strain distribution of Au and Ag nanoparticles embedded in the Al2O3 matrix is investigated by the finite-element (FE calculations. The simulation results clearly indicate that both the Au and Ag nanoparticles incur compressive strain by the Al2O3 matrix. However, the compressive strain existing on the Au nanoparticle is much weaker than that on the Ag nanoparticle. This phenomenon can be attributed to the reason that Young’s modulus of Au is larger than that of Ag. This different strain distribution of Au and Ag nanoparticles in the same host matrix may have a significant influence on the technological potential applications of the Au-Ag alloy nanoparticles.

  13. Effect of Al2O3 and TiO2 nanoparticles on aquatic organisms

    International Nuclear Information System (INIS)

    Gosteva, I; Morgalev, Yu; Morgaleva, T; Morgalev, S

    2015-01-01

    Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Δ 50 =5 nm, Δ 50 =50 nm, Δ 50 =90 nm), aluminum oxide alpha-forms (Δ 50 =7 nm and Δ 50 =70 nm) and macro forms (TiO 2 Δ 50 =350 nm, Al 2 O 3 A 50 =4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO 2 and nAl 2 O 3 on the fluorescence of the bacterial biosensor 'Ekolyum', the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO 2 and nAl 2 O 3 toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO 2 and nAl 2 O 3 effect depends on the type of the test- organism and the test reaction under study. We specified L(E)C 50 and acute toxicity categories for all the studied nanoparticles. We determined that nTiO 2 (Δ 50 =5 nm) belong to the category «Acute toxicity 1», nTiO 2 (A 50 =90 nm) and nAl 2 O 3 (Δ 50 =70 nm) – to the category «Acute toxicity 2», nAl 2 O 3 (Δ 50 =7 nm) – to the category «Acute toxicity 3». No acute toxicity was registered for nTiO 2 (Δ 50 =50 nm) and macro form TiO 2 . (paper)

  14. Photoluminescence properties of the Eu-doped alpha-Al2O3 microspheres

    International Nuclear Information System (INIS)

    Liu, Dianguang; Zhu, Zhenfeng

    2014-01-01

    Highlights: • Al 2 O 3 :Eu 3+ phosphors were prepared via a microwave solvothermal route. • The particles were hierarchically nanostructured microspheres packaged by nanosheets. • The powders presented excellent orange–red emission when excited at 393 nm. • Critical concentration and distance of Eu 3+ in Al 2 O 3 is 0.007, 18 Å, respectively. -- Abstract: Al 2 O 3 :Eu 3+ samples were synthesized via microwave solvothermal method and thermal decomposition of Eu 3+ doped precursors. The sample characterizations were carried out by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence (PL) spectra. XRD results indicated that Eu 3+ doped samples were most of α-Al 2 O 3 phase after being calcined at 1473 K. SEM results showed that the obtained α-Al 2 O 3 based powders via microwave solvothermal method were microspheres with an average diameter about 1.6 μm. PL spectra showed that upon excitation at 393 nm, the orange–red emission bands at the wavelength longer than 560 nm were from 5 D 0 → 7 F J (J = 1, 2) transitions. The asymmetry ratio of ( 5 D 0 → 7 F 2 )/( 5 D 0 → 7 F 1 ) intensity is about 1 and this value suggests that Eu 3+ ions occupy the same ratio of symmetry and asymmetry sites. It is shown that the 0.7 mol% of doping concentration of Eu 3+ ions in α-Al 2 O 3 :Eu 3+ is optimum. According to Dexter’s theory, the critical distance between Eu 3+ ions for energy transfer was determined to be 18 Å

  15. Antireflective bilayer coatings based on Al2O3 film for UV region

    Directory of Open Access Journals (Sweden)

    Marszałek Konstanty

    2015-03-01

    Full Text Available Bilayer antireflective coatings consisting of aluminium oxide Al2O3/MgF2 and Al2O3/SiO2 are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5 × 10-3 Pa in the presence of oxygen, and magnesium fluoride was prepared by thermal evaporation on heated optical lenses made from quartz glass (Corning HPFS. Substrate temperature was maintained at 250 _C during the deposition. Thickness and deposition rate were controlled with a thickness measuring system Inficon XTC/2. The experimental results of the optical measurements carried out during and after the deposition process have been presented. Physical thickness measurements were made during the deposition process and resulted in 44 nm/52 nm for Al2O3/MgF2 and 44 nm/50 nm for Al2O3/SiO2 system. Optimization was carried out for ultraviolet region with minimum of reflectance at 300 nm. The influence of post deposition annealing on the crystal structure was determined by X-ray measurements. In the range from ultraviolet to the beginning of visible region, the reflectance of both systems decreased and reached minimum at 290 nm. The value of reflectance at this point, for the coating Al2O3/MgF2 was equal to R290nm = 0.6 % and for Al2O3/SiO2R290nm = 1.1 %. Despite the difference between these values both are sufficient for applications in the UV optical systems for medicine and UV laser technology.

  16. Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms

    Science.gov (United States)

    Gosteva, I.; Morgalev, Yu; Morgaleva, T.; Morgalev, S.

    2015-11-01

    Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Δ50=5 nm, Δ50=50 nm, Δ50=90 nm), aluminum oxide alpha-forms (Δ50=7 nm and Δ50=70 nm) and macro forms (TiO2 Δ50=350 nm, Al2O3 A50=4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO2 and nAl2O3 on the fluorescence of the bacterial biosensor "Ekolyum", the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO2 and nAl2O3 toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO2 and nAl2O3 effect depends on the type of the test- organism and the test reaction under study. We specified L(E)C50 and acute toxicity categories for all the studied nanoparticles. We determined that nTiO2 (Δ50=5 nm) belong to the category «Acute toxicity 1», nTiO2 (A50=90 nm) and nAl2O3 (Δ50=70 nm) - to the category «Acute toxicity 2», nAl2O3 (Δ50=7 nm) - to the category «Acute toxicity 3». No acute toxicity was registered for nTiO2 (Δ50=50 nm) and macro form TiO2.

  17. Miscibility of amorphous ZrO2-Al2O3 binary alloy

    Science.gov (United States)

    Zhao, C.; Richard, O.; Bender, H.; Caymax, M.; De Gendt, S.; Heyns, M.; Young, E.; Roebben, G.; Van Der Biest, O.; Haukka, S.

    2002-04-01

    Miscibility is a key factor for maintaining the homogeneity of the amorphous structure in a ZrO2-Al2O3 binary alloy high-k dielectric layer. In the present work, a ZrO2/Al2O3 laminate thin layer has been prepared by atomic layer chemical vapor deposition on a Si (100) wafer. This layer, with artificially induced inhomogeneity (lamination), enables one to study the change in homogeneity of the amorphous phase in the ZrO2/Al2O3 system during annealing. High temperature grazing incidence x-ray diffraction (HT-XRD) was used to investigate the change in intensity of the constructive interference peak of the x-ray beams which are reflected from the interfaces of ZrO2/Al2O3 laminae. The HT-XRD spectra show that the intensity of the peak decreases with an increase in the anneal temperature, and at 800 °C, the peak disappears. The same samples were annealed by a rapid thermal process (RTP) at temperatures between 700 and 1000 °C for 60 s. Room temperature XRD of the RTP annealed samples shows a similar decrease in peak intensity. Transmission electronic microscope images confirm that the laminate structure is destroyed by RTP anneals and, just below the crystallization onset temperature, a homogeneous amorphous ZrAlxOy phase forms. The results demonstrate that the two artificially separated phases, ZrO2 and Al2O3 laminae, tend to mix into a homogeneous amorphous phase before crystallization. This observation indicates that the thermal stability of ZrO2-Al2O3 amorphous phase is suitable for high-k applications.

  18. Synthesis of Mg–Al2O3 nanocomposites by mechanical alloying

    International Nuclear Information System (INIS)

    Liu, Jinling; Suryanarayana, C.; Ghosh, Dipankar; Subhash, Ghatu; An, Linan

    2013-01-01

    Highlights: ► Mg nanocomposites were synthesized by high-energy ball milling. ► A uniform distribution of the nano-sized reinforcements in the matrix was successfully obtained. ► The thermal stability of the formed nanocomposite was evaluated by annealing it at a high temperature. ► A reaction occurred between the initial Mg powder and Al formed as a result of the displacement reaction, leading to the formation of Mg 17 Al 12 , Al 0.58 Mg 0.42 , and Al 3 Mg 2 phases. -- Abstract: Mg–Al 2 O 3 nanocomposite powders, with Al 2 O 3 particles of 50 nm size, were synthesized by mechanical alloying starting from a mixture of 70 vol.% pure Mg and 30 vol.% Al 2 O 3 powders. A steady-state condition was obtained on milling the powder mix for about 20 h, when the crystallite size of the Mg powder was about 10 nm. The structural evolution during milling was monitored using scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction methods. The results showed that a mixture of Mg, Al 2 O 3 , and MgO phases were obtained on mechanical alloying. On annealing the milled powders at 600 °C for 30 min, a displacement reaction occurred between the Mg and Al 2 O 3 phases, when the formation of a mixture of pure Al and MgO phases was observed. Also, a reaction occurred between the initial Mg powder and Al formed as a result of the displacement reaction, leading to the formation of Mg 17 Al 12 , Al 0.58 Mg 0.42 , and Al 3 Mg 2 phases. Thus, the powder annealed after milling the Mg + Al 2 O 3 powder mix for 25 h consisted of Al, MgO and Al 3 Mg 2 phases

  19. Molybdenum disilicide composites produced by plasma spraying

    International Nuclear Information System (INIS)

    Castro, R.G.; Hollis, K.J.; Kung, H.H.; Bartlett, A.H.

    1998-01-01

    The intermetallic compound, molybdenum disilicide (MoSi 2 ) is being considered for high temperature structural applications because of its high melting point and superior oxidation resistance at elevated temperatures. The lack of high temperature strength, creep resistance and low temperature ductility has hindered its progress for structural applications. Plasma spraying of coatings and structural components of MoSi 2 -based composites offers an exciting processing alternative to conventional powder processing methods due to superior flexibility and the ability to tailor properties. Laminate, discontinuous and in situ reinforced composites have been produced with secondary reinforcements of Ta, Al 2 O 3 , SiC, Si 3 N 4 and Mo 5 Si 3 . Laminate composites, in particular, have been shown to improve the damage tolerance of MoSi 2 during high temperature melting operations. A review of research which as been performed at Los Alamos National Laboratory on plasma spraying of MoSi 2 -based composites to improve low temperature fracture toughness, thermal shock resistance, high temperature strength and creep resistance will be discussed

  20. Reduction of Al2O3 in niobium--lithium systems at 10000C

    International Nuclear Information System (INIS)

    Selle, J.E.; DeVan, J.H.

    1977-07-01

    Various grades of aluminum oxide (Al 2 O 3 ) were sealed inside capsules of niobium and niobium-1% zirconium alloy which were then exposed to liquid lithium for 3000 hr at 1000 0 C. Similar unsealed capsules were exposed to a high vacuum. Reduction of the Al 2 O 3 occurred in the lithium-treated capsules, but no reaction occurred in the vacuum-treated capsules. Metallography and electron-microprobe analysis showed that reaction products in the form of compounds of niobium, aluminum, and zirconium were formed. Lithium acted as a sink for oxygen

  1. Co2+ adsorption in porous oxides Mg O, Al2O3 and Zn O

    International Nuclear Information System (INIS)

    Moreno M, J. E.; Granados C, F.; Bulbulian, S.

    2009-01-01

    The porous oxides Mg O, Al 2 O 3 and Zn O were synthesized by the chemical combustion in solution method and characterized be means of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The adsorption behavior of Co 2+ ions present in aqueous solution were studied on the synthesized materials by means of experiments lots type to ambient temperature. It was found that the cobalt ions removal was of 90% in Mg O, 65% in Zn O and 72% in Al 2 O 3 respectively, indicating that the magnesium oxide is the best material to remove Co 2+ presents in aqueous solution. (Author)

  2. The Evolution of Al2O3 Content in Ancient Chinese Glasses

    Directory of Open Access Journals (Sweden)

    Wang Cheng-yu

    2016-01-01

    Full Text Available Based on the evidence from museums, collectors, the dug out of the grave, the evolution of Al2O3 content in Chinese glasses from Western Zhou to Qing dynasty was documented in this paper in detail. It was found that Al2O3 contents in ancient Chinese glasses were relatively higher than those of outside of China in the world. This is the character of the ancient Chinese glasses which is caused by not only the high Al contents in the raw materials but also by the Chinese people’s preference of the milky glasses similar to jade

  3. Narrow in-gap states in doped Al2O3

    KAUST Repository

    Casas-Cabanas, Montse

    2011-10-01

    Based on XRD data testifying that the M ions occupy substitutional sites, transmittance measurement are discussed in comparison to electronic structure calculations for M-doped Al2O3 with M = V, Mn, and Cr. The M 3d states are found approximatively 2 eV above the top of the host valence band. The fundamental band gap of Al2O3 is further reduced in the V and Mn cases due to a splitting of the narrow band at the Fermi energy. Nevertheless the measured transmittance in the visible range remains high in all three cases. © 2011 Elsevier B.V. All rights reserved.

  4. Narrow in-gap states in doped Al2O3

    KAUST Repository

    Casas-Cabanas, Montse; Fré sard, Marion; Lü ders, Ulrike; Fré sard, Raymond; Schuster, Cosima B.; Schwingenschlö gl, Udo

    2011-01-01

    Based on XRD data testifying that the M ions occupy substitutional sites, transmittance measurement are discussed in comparison to electronic structure calculations for M-doped Al2O3 with M = V, Mn, and Cr. The M 3d states are found approximatively 2 eV above the top of the host valence band. The fundamental band gap of Al2O3 is further reduced in the V and Mn cases due to a splitting of the narrow band at the Fermi energy. Nevertheless the measured transmittance in the visible range remains high in all three cases. © 2011 Elsevier B.V. All rights reserved.

  5. TEM characterization of Al-C-Cu-Al2O3 composites produced by mechanical milling

    International Nuclear Information System (INIS)

    Santos-Beltran, A.; Gallegos-Orozco, V.; Estrada-Guel, I.; Bejar-Gomez, L.; Espinosa-Magana, F.; Miki-Yoshida, M.; Martinez-Sanchez, R.

    2007-01-01

    Novel Al-based composites (Al-C-Cu-Al 2 O 3 ) obtained by mechanical milling (MM), were characterized by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). Analyses of composites were carried out in both, the as-milled and the as-sintered conditions. C nanoparticles were found in the as-milled condition and Al 2 O 3 nanofibers were found in as-sintered products, as determined by EELS. C and Cu react with Al to crystallize in Al 3 C 4 and Al 2 Cu structures, respectively

  6. Antireflective bilayer coatings based on Al2O3 film for UV region

    OpenAIRE

    Marszałek Konstanty; Winkowski Paweł; Marszałek Marta

    2015-01-01

    Bilayer antireflective coatings consisting of aluminium oxide Al2O3/MgF2 and Al2O3/SiO2 are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5 × 10-3 Pa in the presence of oxygen, and magnesium fluoride was prepared by thermal evaporation on heated optical lenses made from quartz glass (Corning HPFS). Substrate temperature was maintained at 250 _C during the deposition. Thickness and deposition rate were controlled with a thickness measuring syste...

  7. Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atomic layer deposited Al2O3

    NARCIS (Netherlands)

    Terlinden, N.M.; Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    Al2O3 synthesized by plasma-assisted atomic layer deposition yields excellent surface passivation of crystalline silicon (c-Si) for films down to ~ 5 nm in thickness. Optical second-harmonic generation was employed to distinguish between the influence of field-effect passivation and chemical

  8. A comparison of the doppler-broadened positron annihilation spectra of neutron irradiated Al 2O 3 and MgAl 2O 3

    Science.gov (United States)

    Jones, P. L.; Schaffer, J. P.; Cocks, F. H.; Clinard, F. W.; Hurley, G. F.

    1985-01-01

    Radiation damage studies of oxides and ceramics have become of increasing importance due to the projected use of these materials in thermonuclear fusion reactors as electronic insulators and first wall materials. In addition these materials are important in RAD waste disposal. As part of a study of the defect structure in radiation damaged ceramics Doppler-broadened positron annihilation spectra have been obtained for a series of single crystal sapphire (α-Al 2O 3) and polycrystal (1:1) and (1:2) magnesium aluminate spinel (MgO·Al 2O 3 and MgO-2Al 2O 3) samples. These samples were irradiated in EBR-II to a fluence of 3 × 10 25 n/m 2 (E > 0.1 MeV) at 740°C, and 2 × 10 26 n/m 2 (E > 0.1 MeV) at ~ 550°C respectively. Positron annihilation spectra lineshapes for the irradiated, annealed, and as-received samples of both materials were compared using S parameter analysis. These calculations were made on deconvoluted gamma ray spectra that were free of any instrumental broadening effects. In this way, absolute S parameter changes could be calculated. The observed changes in the S parameter are consistent with independent volume swelling measurements for both the α-A1 2O 3 and the (1:2) MgAl 2O 4 samples. However, the change in S parameter measured for the (1:1) spinel is contrary to the measured volume change. This apparent anomaly indicates a predominence of interstitial as opposed to vacancy type defects in this material.

  9. Preparation and Characterization of PVC-Al2O3-LiClO4 Composite Polymeric Electrolyte

    International Nuclear Information System (INIS)

    Azizan Ahmad; Mohd Yusri Abdul Rahman; Siti Aminah Mohd Noor; Mohd Reduan Abu Bakar

    2009-01-01

    Ionic conductivity of composite polymer electrolyte PVC-Al 2 O 3 -LiClO 4 as a function of Al 2 O 3 concentration has been studied. The electrolyte samples were prepared by solution casting technique. Their ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with Al 2 O 3 concentration. The highest room temperature conductivity of the electrolyte of 3.43 x 10 -10 S.cm -1 was obtain at 25 % by weight of Al 2 O 3 and that without Al 2 O 3 filler was found to be 2.43 x 10 -11 S.cm -1 . The glass transition temperature decreases with the increase of Al 2 O 3 percentage due to the increasing amorphous state, meanwhile the degradation temperature increases with the increase of Al 2 O 3 percentage. Both of these thermal properties influence the enhancement of the conductivity value. The morphology of the samples shows the even distribution of the Al 2 O 3 filler in the samples. However, the filler starts to agglomerate in the sample when high percentage of Al 2 O 3 is being used. In conclusion, the addition of Al 2 O 3 filler improves the ionic conductivity of PVC- Al 2 O 3 -LiCIO 4 solid polymer electrolyte. (author)

  10. Improved silicon surface passivation of APCVD Al2O3 by rapid thermal annealing

    NARCIS (Netherlands)

    Black, L.E.; Allen, T.; McIntosh, K.R.; Cuévas, A.

    2016-01-01

    Short-duration post-deposition thermal treatments at temperatures above those normally used for annealing activation have the potential to further improve the already excellent passivation of crystalline silicon (c-Si) achieved by Al2O3, but have so far received little attention. In this work we

  11. Preparation and Characterization of NiMo/Al2O3Catalyst for Hydrocracking Processing

    Directory of Open Access Journals (Sweden)

    Widiyadi Aditya

    2018-01-01

    Full Text Available Hydrocracking is a chemical process used in petroleum refineries for converting high boiling hydrocarbons in petroleum crude oils to more valuable lower boiling products such as gasoline, kerosene, and diesel oil that operate at high temperature and pressure. Catalyst was used in hydrocracking to reduce temperature and pressure. Hydrocracking catalyst are composed of active components and support. Alumina is widely used in hydrocracking process as catalyst support due to its high surface area, high thermal stability, and low prices. The objective of this research was preparated NiMo/Al2O3 catalyst that used as hydrocracking catalyst. Catalyst was synthesized by wetness impregnation method and simple heating method with various kind of Al2O3. The physicochemical properties of catalyst were investigated by X-ray diffraction (XRD to determine type of crystal and scanning electron microscopy (SEM to determine morphology of the catalyst. The NiMo/Al2O3 catalyst prepared by aluminium potassium sulfate dodecahydrate exhibited the highest crystallinity of 90.23% and it is clear that MoO3 and NiO crystallites are highly dispersed on the NiMo/Al2O3 catalyst which indicates as the best catalyst. The catalytic activity in hydrocracking process was successfully examined to convert fatty acid into hydrocarbon.

  12. Sorption of Cs onto γ-Al2O3 using batch technique

    International Nuclear Information System (INIS)

    Wang Xiangke

    2004-01-01

    The sorption of Cs onto γ-Al 2 O 3 is studied by using batch technique, ultra-filtration method and UV vis spectrophotometer at room temperature, pH 4.0, 6.0 and 8.0, the ionic strength of NaClO 4 is from 0.001 mol/L to 0.1 mol/L. The concentration of humic acid in the solution is determined at wavelength of 254 nm. The sorption of humic acid on the γ-Al 2 O 3 is strong (≅98% HA is sorbed on the surface of alumina at pH zpc =9.2)) and strongly dependent on pH values. At pH>9.2, the sorption of HA is decreased markedly with the increasing of pH. Humic acid has a little negative effect on the sorption of Cs onto alumina, this may be attributed to the formation of HA-Cs complexation in the solution. The sorption of Cs onto γ-Al 2 O 3 is weakly dependent on the pH and independent on the ionic strength. Freundlich isotherm can fit the sorption isotherms very well. The sorption of Cs onto γ-Al 2 O 3 may be contributed to cation exchange and surface complexation mechanisms. (authors)

  13. A thin layer fiber-coupled luminescence dosimeter based on Al2O3:C

    DEFF Research Database (Denmark)

    Klein, F.A.; Greilich, Steffen; Andersen, Claus Erik

    2011-01-01

    In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence of the intr......In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence...... of the introduced polymer host matrix on the dosimetric properties was observed. Depth-dose measurements with the new detectors in a 142.66 MeV proton and 270.55 MeV/u carbon ion beam are presented as example applications. We used an RL protocol with saturated crystals allowing for time-effective measurements...... without sensitivity corrections. For protons, a relative luminescence efficiency hHCP of 0.715 0.014 was found in the Bragg peak. For carbon ions, a value of 0.498 0.001 was found in the entrance channel, 0.205 0.015 in the Bragg peak, and a mean of 0.413 0.050 in the tail region. The mean range...

  14. Electrophoretic deposition and reaction-bond sintering of Al2O3/Ti ...

    Indian Academy of Sciences (India)

    In the present work, high temperature of sintering pro- cess (1050◦C in an inert atmosphere) caused diffusion of. Figure 1. SEM of Al2O3–Ti composite coatings ... Increasing the surface roughness caused to increase the friction coefficient due to mechanical engagement in the surface.21 With the increase in the amount of ...

  15. Experiment and prediction on thermal conductivity of Al2O3/ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    Experiment and prediction on thermal conductivity of Al2O3/ZnO nano thin film interface structure. PING YANG*, LIQIANG ZHANG, HAIYING YANG†, DONGJING LIU and XIALONG LI. Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS,. School of Mechanical Engineering, Jiangsu University, ...

  16. Microstructural characterization in diffusion bonded TiC–Al 2 O 3 ...

    Indian Academy of Sciences (India)

    The diffusion bonded TiC–Al2O3/Cr18–Ni8 joint was investigated by a variety of characterization techniques such as scanning electron microscope (SEM) with energy dispersion ... Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (South Campus), Jinan 250061, P.R. China ...

  17. Exposure of metallic copper surface on Cu-Al2O3-carbon catalysts

    NARCIS (Netherlands)

    Menon, P.G.; Prasad, J.

    1970-01-01

    The bifunctional nature of Cu---Al2O3-on-carbon catalysts, used in the direct catalytic conversion of ethanol to ethyl acetate, prompted an examination of the dispersion of Cu on the composite catalyst. For this, the N2O-method of Osinga et al. for estimation of bare metallic copper surface on

  18. Acid-base properties of the surface of the α-Al2O3 suspension

    Science.gov (United States)

    Ryazanov, M. A.; Dudkin, B. N.

    2009-12-01

    The distribution of the acid-base centers on the surface of α-Al2O3 suspension particles was studied by potentiometric titration, and the corresponding p K spectra were constructed. It was inferred that the double electric layer created by the supporting electrolyte substantially affected the screening of the acid-base centers on the particle surface of the suspension.

  19. Direct nanoimprint lithography of Al2O3 using a chelated monomer-based precursor

    International Nuclear Information System (INIS)

    Ganesan, Ramakrishnan; Dinachali, Saman Safari; Lim, Su Hui; Saifullah, M S M; He, Chaobin; Low, Hong Yee; Chong, Wee Tit; Lim, Andrew H H; Yong, Jin Jie; Thian, Eng San

    2012-01-01

    Nanostructuring of Al 2 O 3 is predominantly achieved by the anodization of aluminum film and is limited to obtaining porous anodized aluminum oxide (AAO). One of the main restrictions in developing approaches for direct fabrication of various types of Al 2 O 3 patterns, such as lines, pillars, holes, etc, is the lack of a processable aluminum-containing resist. In this paper, we demonstrate a stable precursor prepared by reacting aluminum tri-sec-butoxide with 2-(methacryloyloxy)ethyl acetoacetate, a chelating monomer, which can be used for large area direct nanoimprint lithography of Al 2 O 3 . Chelation in the precursor makes it stable against hydrolysis whilst the presence of a reactive methacrylate group renders it polymerizable. The precursor was mixed with a cross-linker and their in situ thermal free-radical co-polymerization during nanoimprinting rigidly shaped the patterns, trapped the metal atoms, reduced the surface energy and strengthened the structures, thereby giving a ∼100% yield after demolding. The imprinted structures were heat-treated, leading to the loss of organics and their subsequent shrinkage. Amorphous Al 2 O 3 patterns with line-widths as small as 17 nm were obtained. Our process utilizes the advantages of sol–gel and methacrylate routes for imprinting and at the same time alleviates the disadvantages associated with both these methods. With these benefits, the chelating monomer route may be the harbinger of the universal scheme for direct nanoimprinting of metal oxides. (paper)

  20. Reductive amination of ethanol to ethylamines over Ni/Al_2O_3 catalysts

    International Nuclear Information System (INIS)

    Park, Jun Hyun; Hong, Eunpyo; An, Sang Hee; Shin, Chae-Ho; Lim, Dong-Hee

    2017-01-01

    Ni(x)/Al_2O_3 (x=wt%) catalysts with Ni loadings of 5-25 wt% were prepared via a wet impregnation method on an γ-Al_2O_3 support and subsequently applied in the reductive amination of ethanol to ethylamines. Among the various catalysts prepared, Ni(10)/Al2O3 exhibited the highest metal dispersion and the smallest Ni particle size, resulting in the highest catalytic performance. To reveal the effects of reaction parameters, a reductive amination process was performed by varying the reaction temperature (T), weight hourly space velocity (WHSV), and NH_3 and H_2 partial pressures in the reactions. In addition, on/off experiments for NH_3 and H_2 were also carried out. In the absence of NH_3 in the reactant stream, the ethanol conversion and selectivities towards the different ethylamine products were significantly reduced, while the selectivity to ethylene was dominant due to the dehydration of ethanol. In contrast, in the absence of H_2, the selectivity to acetonitrile significantly increased due to dehydrogenation of the imine intermediate. Although a small amount of catalyst deactivation was observed in the conversion of ethanol up to 10 h on stream due to the formation of nickel nitride, the Ni(10)/Al_2O_3 catalyst exhibited stable catalytic performance over 90 h under the optimized reaction conditions (i.e., T=190 .deg. C, WHSV=0.9 h"-"1, and EtOH/NH_3/H_2 molar ratio=1/1/6).

  1. A short-time fading study of Al2O3:C

    International Nuclear Information System (INIS)

    Nascimento, L.F.; Vanhavere, F.; Silva, E.H.; Deene, Y. De

    2015-01-01

    This paper studies the short-time fading from Al 2 O 3 :C by measuring optically stimulated luminescence (OSL) signals (Total OSL: T OSL , and Peak OSL: P OSL ) from droplets and Luxel™ pellets. The influence of various bleaching regimes (blue, green and white) and light power is compared. The fading effect is the decay of the OSL signal in the dark at room temperature. Al 2 O 3 :C detectors were submitted to various bleaching regimes, irradiated with a reference dose and read out after different time spans. Investigations were carried out using 2 mm size droplet detectors, made of thin Al 2 O 3 :C powder mixed with a photocured polymer. Tests were compared to Luxel™-type detectors (Landauer Inc.). Short-time post-irradiation fading is present in OSL results (T OSL and P OSL ) droplets for time spans up to 200 s. The effect of short-time fading can be lowered/removed when treating the detectors with high-power and/or long time bleaching regimes; this result was observed in both T OSL and P OSL from droplets and Luxel™. - Highlights: • Droplet composed of thin powder of Al 2 O 3 :C was prepared using a photo-curable polymer. • Powder grain sizes ranged from 5 μm to 35 μm. • Short-time fading was measured for irradiated samples. • Various bleaching regimes and light power was tested. • Droplets were compared to a commercially dosimeter, Luxel™

  2. Positron Annihilation Lifetime Study of Pure and Doped Polyvinyl Chloride with Al2O3

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; Hamdy, F. M. M.; Alaa, H.B.

    2005-01-01

    Positron annihilation lifetime of pure and doped polyvinyl chloride (PVC) with Al 2 O 3 reflect the effect of concentration as well as temperature on free volume. Therefore, variations of the ortho-positronium (o-Ps) lifetime and its intensity have been correlated with changes in the dielectric properties of the pure and doped PVC. The o-Ps lifetime and its intensity show a linear dependence with a discontinuity at 20 % concentration of Al 2 O 3 . The size and the fractional of the o-Ps hole volume were estimated from the positron annihilation parameters. Therefore, the temperature dependence of the electrical conductivity and the positron annihilation parameters on pure and doped PVC with 20 % Al 2 O 3 were studied in the range from 20 to 140 degree C. The shift of the glass transition temperature to lower temperature for the 20 % Al 2 O 3 doped PVC might explain the increase in the electrical conductivity with the concentration of the additive

  3. Neutron studies of nanostructured CuO-Al2O3 NOx removal catalysts

    International Nuclear Information System (INIS)

    Ozawa, Masakuni; Loong Chun-Keung

    1997-01-01

    Nanostructured powders of automotive catalytic system CuO0Al 2 O 3 , targeted for nitrogen oxides (NOx) removal under lean-burn engine conditions, were investigated using neutron diffraction and small-angle neutron scattering. The crystal phases, structural transformations and microstructure of 10 mol% Cu-Al 2 O 3 powders are characterized according to the heat-treatment conditions. These properties are correlated with the pore structure and NOx removal efficiency determined by nitrogen adsorption isotherm, electron spin resonance, and temperature programmed reaction measurements. The γ-(Cu, Al) 2 O 3 phase and the mass-fractal-like aggregate of particles (size ∼ 26 nm) at annealing temperatures below 900 degrees C were found to be crucial to the high NOx removal performance. The transformation to bulk crystalline phases of α-Al 2 O 3 + CuAl 2 O 4 spinel above ∼1050 degrees C corresponds to a drastic drop of Nox removal efficiency. The usefulness of neutron-scattering techniques as well as their complementarity with other traditional methods of catalytic research are discussed

  4. Voigt modelling of size–strain analysis: Application to α-Al2O3 ...

    Indian Academy of Sciences (India)

    Unknown

    urea mixture, annealed samples and commercial α-Al2O3 sample. It is likely from the ... used for line broadening studies, the Stokes deconvolu- tion (Stokes 1948) ... unbiased approach to obtain the 'true specimen broad- ened' profile ... Experimental ... the Warren–Averbach method, simplified integral breadth method and ...

  5. H2 assisted NH3-SCR over Ag/Al2O3 for automotive applications

    DEFF Research Database (Denmark)

    Fogel, Sebastian

    -BEA can give a high NOx conversion in a broad temperature window without the need to dose H2 at higher temperatures. The aim of this study has been to investigate the combined Ag/Al2O3 and Fe-BEA catalyst system both at laboratory-scale and in full-scale enginebench testing. The catalysts were combined...... both in a sequential dual-bed layout and a dual-layer layout where the catalysts were coated on top of each other. The Ag/Al2O3 catalyst was also investigated with the aim of improving the sulphur tolerance and low-temperature activity by testing different alumina-supports. A large focus of this study...... the layers allowing diffusion of reaction intermediates between them. Ag/Al2O3 only and the combined Ag/Al2O3 – Fe-BEA systems were active during the transient NEDC. The NOx conversions were not very high which is related to the very low temperature of the NEDC and the lower than expected activity of the Ag...

  6. Dynamic grain growth in superplastic Y-TZP and Al2O3/YTZ

    International Nuclear Information System (INIS)

    Nieh, T.G.; Tomasello, C.M.; Wadsworth, J.

    1990-01-01

    This paper reports that both static and dynamic grain growth have been studied during superplastic deformation of fine-grained yttria-stabilized tetragonal zirconia (Y-TZP) and alumina reinforced yttria-stabilized tetragonal zirconia (Al 2 O 3 /YTZ). Grain growth was observed in both materials at temperatures above 1350 degrees C. In the case of Y-TZP, both static and dynamic grain growth were found to obey a similar equation of the form: D 3 -D 0 3 = kt where D is the instantaneous grain size, D 0 is the initial grain size, t is the time, and k is a kinetic constant which depends primarily on temperature and grain boundary energy. The activation energies for Y-TZP were approximately 580 and 520 kJ/mol, for static and dynamic grain growth, respectively. In the case of Al 2 O 3 /YTZ, it was found that the grain growth rate for the Al 2 O 3 phase was slower than that for the ZrO 2 phase. The growth rate of the ZrO 2 phase in Al 2 O 3 /YTZ is, however, similar to that in monolithic ZrO 2 i.e., Y-TZP

  7. Tribological behavior of Nano-Al2O3 and PEEK reinforced PTFE composites

    Science.gov (United States)

    Wang, Banghan; Lv, Qiujuan; Hou, Genliang

    2017-01-01

    The Nano-Al2O3 and PEEK particles synergetic filled PTFE composites were prepared by mechanical blending-molding-sintering method. The tribological behavior of composites with different volume fraction of fillers was tested on different test conditions by a MMW-1A block-on-ring friction and wear tester. The transfer film on counterpart 5A06 Aluminum alloy ring was inspected and anslyzed with scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The results demonstrated that the lowest friction coefficient was gained when the PTFE composite was filled with only 10% PEEK. The friction coefficient decreases gradually with the increasing content of PEEK. The special wear rate of 10% PEEK/PTFE were decreased clearly with filled different contents of nano-Al2O3 particles. The special wear rate of the sample with 5% nano-Al2O3 and 10% PEEK had the lowest volume wear rate. The sliding speed effect significantly on the tribological behavior of nano-Al2O3/PEEK/PTFE composites.

  8. Crack-resistant Al2O3–SiO2 glasses

    Science.gov (United States)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  9. Theory of Al2O3 incorporation in SiO2

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2002-01-01

    Different possible forms of Al2O3 units in a SiO2 network are studied theoretically within the framework of density-functional theory. Total-energy differences between the various configurations are obtained, and simple thermodynamical arguments are used to provide an estimate of their relative...

  10. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    Science.gov (United States)

    Bansal, Narottam P.; Hyatt, Mark J.

    1989-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  11. Crack-resistant Al2O3-SiO2 glasses.

    Science.gov (United States)

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-07

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  12. Ir-Ru/Al2O3 catalysts used in satellite propulsion

    Directory of Open Access Journals (Sweden)

    T.G. Soares Neto

    2003-09-01

    Full Text Available Ir/Al2O3, Ir-Ru/Al2O3 and Ru/Al2O3, catalysts with total metal contents of 30% were prepared using the methods of incipient wetness and incipient coimpregnation wetness and were tested in a 2N microthruster. Their performances were then compared with that of the Shell 405 commercial catalyst (30% Ir/Al2O3. Tests were performed in continuous and pulsed regimes, where there are steep temperature and pressure gradients, from ambient values up to 650 ºC and 14 bar. Performance stability, thrust produced, temperature and stagnation pressure in the chamber and losses of mass were analyzed and compared to the corresponding parameters in Shell 405 tests. It was observed that the performance of all the above-mentioned catalysts was comparable to that of the commercial one, except for in loss of mass, where the values was higher, which was attributed to the lower mechanical resistance of the support.

  13. Thermally stimulated conductivity and thermoluminescence from Al2O3 : C

    DEFF Research Database (Denmark)

    Agersnap Larsen, N.; Bøtter-Jensen, L.; McKeever, S.W.S.

    1999-01-01

    Simultaneous measurements of thermoluminescence (TL) and thermally stimulated conductivity (TSC) are reported on single-crystal dosimetry-quality Al2O3:C following gamma irradiation at room temperature. Analysis of the data reveals a superposition of several first-order TL and TSC peaks caused...

  14. Monolayer dispersion of CoO on Al2O3 probed by positronium atom

    International Nuclear Information System (INIS)

    Liu, Z.W.; Zhang, H.J.; Chen, Z.Q.

    2014-01-01

    CoO/Al 2 O 3 catalysts were prepared by wet impregnation method with CoO contents ranging from 0 wt% to 24 wt%. X-ray diffraction and X-ray photoelectron spectroscopy measurements suggest formation of CoO after calcined in N 2 . Quantitative X-ray diffraction analysis indicates monolayer dispersion capacity of CoO in CoO/Al 2 O 3 catalysts to be about 3 wt%. Positron annihilation lifetime and coincidence Doppler broadening measurements were performed to study the dispersion state of CoO on Al 2 O 3 . The positron lifetime measurements reveal two long lifetime components τ 3 and τ 4 , which correspond to ortho-positronium annihilation lifetime in microvoids and large pores, respectively. It was found that the positronium atom is very sensitive to the dispersion state of CoO on Al 2 O 3 . The presence of CoO significantly decreases both the lifetime and the intensity of τ 4 . Detailed analysis of the coincidence Doppler broadening measurements suggests that with the CoO content lower than the monolayer dispersion, spin conversion reaction of positronium is induced by CoO. When the cobalt content is higher than the monolayer dispersion capacity, inhibition of positronium formation becomes the dominate effect.

  15. Er3+-Al2O3 nanoparticles doping of borosilicate glass

    International Nuclear Information System (INIS)

    Massera, Jonathan; Petit, Laeticia; Hupa, Leena; Hupa, Mikko; Koponen, Joona; Glorieux, Benoit

    2015-01-01

    Novel borosilicate glasses were developed by adding in the glass batch Er 3+ -Al 2 O 3 nanoparticles synthetized by using a soft chemical method. A similar nanoparticle doping with modified chemical vapour deposition (MCVD) process was developed to increase the efficiency of the amplifying silica fibre in comparison to using MCVD and solution doping. It was shown that with the melt quench technique, a Er 3+ -Al 2 O 3 nanoparticle doping neither leads to an increase in the Er 3+ luminescence properties nor allows one to control the rare-earth chemical environment in a borosilicate glass. The site of Er 3+ in the Er 3+ -Al 2 O 3 nanoparticle containing glass seems to be similar as in glasses with the same composition prepared using standard raw materials. We suspect the Er 3+ ions to diffuse from the nanoparticles into the glass matrix. There was no clear evidence of the presence of Al 2 O 3 nanoparticles in the glasses after melting. (author)

  16. Optical spectroscopic study of Al2O3:Ti3+ under hydrostatic pressure

    NARCIS (Netherlands)

    García-Revilla, S.; Rodríguez, F.; Hernández, I.; Valiente, R.; Pollnau, Markus

    2002-01-01

    This work investigates the effect of hydrostatic pressure on the excitation, emission and lifetime of Ti3+-doped Al2O3 in the 0–110 kbar range. The application of pressure induces band shifts that are correlated with the corresponding local structural changes undergone by the TiO6 complex. The

  17. Preparation and Characterization of NiMo/Al2O3Catalyst for Hydrocracking Processing

    Science.gov (United States)

    Widiyadi, Aditya; Guspiani, Gema Adil; Riady, Jeffry; Andreanto, Rikky; Chaiunnisa, Safina Dea; Widayat

    2018-02-01

    Hydrocracking is a chemical process used in petroleum refineries for converting high boiling hydrocarbons in petroleum crude oils to more valuable lower boiling products such as gasoline, kerosene, and diesel oil that operate at high temperature and pressure. Catalyst was used in hydrocracking to reduce temperature and pressure. Hydrocracking catalyst are composed of active components and support. Alumina is widely used in hydrocracking process as catalyst support due to its high surface area, high thermal stability, and low prices. The objective of this research was preparated NiMo/Al2O3 catalyst that used as hydrocracking catalyst. Catalyst was synthesized by wetness impregnation method and simple heating method with various kind of Al2O3. The physicochemical properties of catalyst were investigated by X-ray diffraction (XRD) to determine type of crystal and scanning electron microscopy (SEM) to determine morphology of the catalyst. The NiMo/Al2O3 catalyst prepared by aluminium potassium sulfate dodecahydrate exhibited the highest crystallinity of 90.23% and it is clear that MoO3 and NiO crystallites are highly dispersed on the NiMo/Al2O3 catalyst which indicates as the best catalyst. The catalytic activity in hydrocracking process was successfully examined to convert fatty acid into hydrocarbon.

  18. Radioluminescence in Al2O3: C - analytical and numerical simulation results

    DEFF Research Database (Denmark)

    Pagonis, V.; Lawless, J.; Chen, R.

    2009-01-01

    The phenomenon of radioluminescence (RL) has been reported in a number of materials including Al2O3 : C, which is one of the main dosimetric materials. In this work, we study RL using a kinetic model involving two trapping states and two kinds of recombination centres. The model has been previous...

  19. Porous HA-Al2O3 composite characterization using corn starch as a porogen agent

    International Nuclear Information System (INIS)

    Silva, L.A.J. da; Galdino, A.G.S.; Cardoso, G.B.C.; Zavaglia, C.A.C.

    2011-01-01

    The porous ceramics based on hydroxyapatite have great potential for application in bone grafts due to its chemical similarity with the mineral phase of bone tissue, but have poor biomechanical properties, which cause limitations in its applications. This work aims to analyze the structural characteristics of porous ceramics obtained by addition of hydroxyapatite (HA, sintered in the laboratory), Corn Starch (CS, commercial) and Al 2 O 3 (ALCOA), at different temperatures. Samples were made of dense HA (100% HA), porous (70% HA - 30% CS) and with addition of 2.5%, 5% and 7.5% Al 2 O 3 porous composition. The samples were sintered at 1250°C, 1300 deg C and 135 0°C and characterized by: XRF, XRD, SEM and density by the Archimedes method. Concludes It is the possibility of obtaining samples porous HA / Al 2 O 3 using starch as porogenic agent. The temperature and concentration of Al 2 O 3 most appropriate were: 1250°C and 7.5%. (author)

  20. The synthesis of higher alcohols using modified Cu/ZnO/Al@#2@#O@#3@# catalysts

    NARCIS (Netherlands)

    Slaa, J.C.; Slaa, J.C.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1992-01-01

    This paper gives a review of research work in the synthesis of higher alcohols over catalysts based on Cu/ZnO/Al2O3, emphasizing three main topics: (i) the effect on selectivity of the addition of several compounds to this catalyst, (ii) the effect on selectivity of the reaction conditions used, and

  1. Fiber-coupled Al_2O_3:C radioluminescence dosimetry for total body irradiations

    International Nuclear Information System (INIS)

    Buranurak, S.; Andersen, C.E.

    2016-01-01

    In vivo dosimetry can be important and relevant in radiotherapy, especially when commissioning new treatment techniques at hospitals. This study investigates the potential use of fiber-coupled radioluminescence (RL) dosimetry based on Al_2O_3:C or organic plastic scintillators for this purpose in the context of Total Body Irradiations (TBIs) where patients are treated with large fields of 6 or 18 MV photons at an extended source-to-surface distance (SSD). The study shows that Al_2O_3:C dosimetry using the saturated-RL protocol may be suitable for real-time in vivo dosimetry during TBI treatments from the perspective of the good agreement with alanine dosimetry and other critical phantom tests, including the ability to cope with the large stem signal experienced during TBI treatments at extended SSD. In contrast, the chromatic stem removal technique often used for organic plastic scintillators did not work well in large fields with the tested calibration procedure and instrumentation. An apparent dose-rate effect discussed in a previous study of the RL properties of Al_2O_3:C (Andersen et al., 2011) was found to have resulted from an overlooked dead time problem in the counting system, and this potential caveat can therefore be removed from the list of potential problems associated with fiber-coupled Al_2O_3:C dosimetry using the saturated-RL protocol. This further has implications for TBI dosimetry using the RL Al_2O_3:C system due to large dose-rate differences between calibrations at the iso-center and in vivo measurements at extended source-to-surface distances. - Highlights: • Fiber-coupled dosimetry can be used for measurements during total body irradiations. • An apparent dose-effect associated with radioluminescence from Al2O3:C was resolved. • The gated-counting stem removal procedure worked well for Al2O3:C in pulsed accelerator beams. • The chromatic stem removal procedure did not work well with the tested instrumentation and organic plastic

  2. Adhesion of Y2O3-Al2O3-SiO2 coatings to typical aerospace substrates

    International Nuclear Information System (INIS)

    Marraco-Borderas, C.; Nistal, A.; Garcia, E.; Sainz, M.A.; Martin de la Escalera, F.; Essa, Y.; Miranzo, P.

    2016-01-01

    High performance lightweight materials are required in the aerospace industry. Silicon carbide, carbon fiber reinforced carbon and slicon carbide composites comply with those requirements but they suffer from oxidation at the high temperature of the service conditions. One of the more effective approaches to prevent this problem is the use of protecting ceramic coatings, where the good adhesion between substrates and coatings are paramount to guarantee the optimal protection performance. In the present work, the adhesion between those substrates and glass coatings of the Y2O3-Al2O3-SiO2 system processed by oxyacetylene flame spraying is analyzed. Increasing load scratch tests are employed for determining the failure type, maximum load and their relation with the elastic and mechanical properties of the coatings. The results points to the good adhesion of the coatings to silicon carbide and carbon fibre reinforced silicon carbide while the carbon fiber reinforced carbon is not a suitable material to be coated. (Author)

  3. Wear Characteristics of Ceramic Coating Materials by Plasma Spray under the Lubricative Environment

    International Nuclear Information System (INIS)

    Kim, Chang Ho

    2001-02-01

    This paper is to investigate the wear behaviors of two types of ceramics, Al 2 O 3 and TiO 2 , by coated plasma thermal spray method under the lubricative environment. The lubricative environments are grease fluids, a general hydraulic fluids, and bearing fluids. The wear testing machine used a pin on disk type. Wear characteristics, which were friction force, friction coefficient and the specific wear rate, according to the lubricative environments were obtained at the four kinds of load, and the sliding velocity is 0.2m/sec. After the wear experiments, the wear surfaces of the each test specimen were observed by a scanning electronic microscope. The obtained results are as follows. : 1. The friction coefficients of TiO 2 coating materials are 0.11 ∼ 0.16 range and those of Al 2 O 3 are 0.24 ∼ 0.39. The friction coefficient of two coating materials is relative to the hardness of these materials. 2. The friction coefficient of TiO 2 coating materials in three lubricative environments is almost same to each other in spite of changing of applied loads. 3. The friction coefficient of Al 2 O 3 coating materials is more large in low load than high load. And the friction coefficient in grease is more large than a general hydraulic and bearing fluids had almost same friction coefficient. 4. The specific wear rate in TiO 2 is greatly increasing according to change the applied loads, but that in Al 2 O 3 is slightly. And the wear in grease is the least among three lubricating environments. 5. On the wear mechanism by SEM image observation, the wear of Al 2 O 3 is adhesive wear and TiO 3 is abrasive wear

  4. Surface amorphization in Al2O3 induced by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Okubo, N.; Ishikawa, N.; Sataka, M.; Jitsukawa, S.

    2013-01-01

    Microstructure in single crystalline Al 2 O 3 developed during irradiation by swift heavy ions has been investigated. The specimens were irradiated by Xe ions with energies from 70 to 160 MeV at ambient temperature. The fluences were in the range from 1.0 × 10 13 to 1.0 × 10 15 ions/cm 2 . After irradiations, X-ray diffractometry (XRD) measurements and cross sectional transmission electron microscope (TEM) observations were conducted. The XRD results indicate that in the initial stage of amorphization in single crystalline Al 2 O 3 , high-density S e causes the formation of new planes and disordering. The new distorted lattice planes formed in the early stage of irradiation around the fluence of 5.0 × 10 13 ions/cm 2 for single crystalline Al 2 O 3 irradiated with 160 MeV-Xe ions. Energy dependence on structural modification was also examined in single crystalline Al 2 O 3 irradiated by swift heavy ions. The XRD results indicate that the swift heavy ion irradiation causes the lattice expansion and the structural modification leading to amorphization progresses above the energy around 100 MeV in this XRD study. The TEM observations demonstrated that amorphization was induced in surface region in single crystalline Al 2 O 3 irradiated by swift heavy ions above the fluence expected from the results of XRD. Obvious boundary was observed in the cross sectional TEM images. The crystal structure of surface region above the boundary was identified to be amorphous and deeper region to be single crystal. The threshold fluence of amorphization was found to be around 1.0 × 10 14 ions/cm 2 in the case over 80 MeV swift heavy ion irradiation and the fluence did not depend on the crystal structures

  5. The influence of powder particle size on properties of Cu-Al2O3 composites

    Directory of Open Access Journals (Sweden)

    Rajković V.

    2009-01-01

    Full Text Available Inert gas atomized prealloyed copper powder containing 2 wt.% Al (average particle size ≈ 30 μm and a mixture consisting of copper (average particle sizes ≈ 15 μm and 30 μm and 4 wt.% of commercial Al2O3 powder particles (average particle size ≈ 0.75 μm were milled separately in a high-energy planetary ball mill up to 20 h in air. Milling was performed in order to strengthen the copper matrix by grain size refinement and Al2O3 particles. Milling in air of prealloyed copper powder promoted formation of finely dispersed nano-sized Al2O3 particles by internal oxidation. On the other side, composite powders with commercial micro-sized Al2O3 particles were obtained by mechanical alloying. Following milling, powders were treated in hydrogen at 400 0C for 1h in order to eliminate copper oxides formed on their surface during milling. Hot-pressing (800 0C for 3 h in argon at pressure of 35 MPa was used for compaction of milled powders. Hot-pressed composite compacts processed from 5 and 20 h milled powders were additionally subjected to high temperature exposure (800°C for 1 and 5h in argon in order to examine their thermal stability. The results were discussed in terms of the effects of different size of starting powders, the grain size refinement and different size of Al2O3 particles on strengthening, thermal stability and electrical conductivity of copper-based composites.

  6. Investigating the electronic properties of Al2O3/Cu(In,GaSe2 interface

    Directory of Open Access Journals (Sweden)

    R. Kotipalli

    2015-10-01

    Full Text Available Atomic layer deposited (ALD Al2O3 films on Cu(In,GaSe2 (CIGS surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf and interface-trap charge density (Dit, for as-deposited (AD and post-deposition annealed (PDA ALD Al2O3 films on CIGS surfaces using capacitance–voltage (C-V and conductance-frequency (G-f measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm−2, whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm−2. The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm−2 eV−1 for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns, preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.

  7. Surface amorphization in Al2O3 induced by swift heavy ion irradiation

    Science.gov (United States)

    Okubo, N.; Ishikawa, N.; Sataka, M.; Jitsukawa, S.

    2013-11-01

    Microstructure in single crystalline Al2O3 developed during irradiation by swift heavy ions has been investigated. The specimens were irradiated by Xe ions with energies from 70 to 160 MeV at ambient temperature. The fluences were in the range from 1.0 × 1013 to 1.0 × 1015 ions/cm2. After irradiations, X-ray diffractometry (XRD) measurements and cross sectional transmission electron microscope (TEM) observations were conducted. The XRD results indicate that in the initial stage of amorphization in single crystalline Al2O3, high-density Se causes the formation of new planes and disordering. The new distorted lattice planes formed in the early stage of irradiation around the fluence of 5.0 × 1013 ions/cm2 for single crystalline Al2O3 irradiated with 160 MeV-Xe ions. Energy dependence on structural modification was also examined in single crystalline Al2O3 irradiated by swift heavy ions. The XRD results indicate that the swift heavy ion irradiation causes the lattice expansion and the structural modification leading to amorphization progresses above the energy around 100 MeV in this XRD study. The TEM observations demonstrated that amorphization was induced in surface region in single crystalline Al2O3 irradiated by swift heavy ions above the fluence expected from the results of XRD. Obvious boundary was observed in the cross sectional TEM images. The crystal structure of surface region above the boundary was identified to be amorphous and deeper region to be single crystal. The threshold fluence of amorphization was found to be around 1.0 × 1014 ions/cm2 in the case over 80 MeV swift heavy ion irradiation and the fluence did not depend on the crystal structures.

  8. Sintering behavior and property of bioglass modified HA-Al2O3 composite

    Directory of Open Access Journals (Sweden)

    Wang Li-li

    2012-01-01

    Full Text Available The bioglass modified HA-Al2O3 composites were successfully fabricated by mixing HA, synthesized by wet chemical method between precursor materials H3PO4 and Ca(OH2, with 25wt% Al2O3 and different content of bioglass (5%, 25%, 45%, 65wt% respectively, with a mole fraction of 53.9%SiO2, 22.6%Na2O, 21.8%CaO, and 1.7wt%P2O5, sintered in air at various temperatures (750-950°C for 2h. when the content of bioglass is below 45wt% in the composite, HA decomposes completely and transforms to β-TCP. The main phase in this case are β-TCP, Al2O3 and Ca3(AlO32.When the content of bioglass is above 45wt% in the composite, the decomposition of HA to β-TCP is suppressed and the main phases in this case are Al2O3 and HA, DCP□CaHPO4□ and β-TCP, which almost have the same chemical composition, forming ternary-glass phase, and have better bioactive than pure HA. It can also be found that at the certain addition of bioglass, the higher sintered temperature, the bigger volume density and flexural strength of the composite are, but when the sintered temperature reaches 950°C, they decrease. This modified HA-Al2O3 composites by calcium silicate glass have a much lower sintering temperature and decrease the production cost much.

  9. Measurement of Young’s modulus and residual stress of atomic layer deposited Al2O3 and Pt thin films

    Science.gov (United States)

    Purkl, Fabian; Daus, Alwin; English, Timothy S.; Provine, J.; Feyh, Ando; Urban, Gerald; Kenny, Thomas W.

    2017-08-01

    The accurate measurement of mechanical properties of thin films is required for the design of reliable nano/micro-electromechanical devices but is increasingly challenging for thicknesses approaching a few nanometers. We apply a combination of resonant and static mechanical test structures to measure elastic constants and residual stresses of 8-27 nm thick Al2O3 and Pt layers which have been fabricated through atomic layer deposition. Young’s modulus of poly-crystalline Pt films was found to be reduced by less than 15% compared to the bulk value, whereas for amorphous Al2O3 it was reduced to about half of its bulk value. We observed no discernible dependence of the elastic constant on thickness or deposition method for Pt, but the use of plasma-enhanced atomic layer deposition was found to increase Young’s modulus of Al2O3 by 10% compared to a thermal atomic layer deposition. As deposited, the Al2O3 layers had an average tensile residual stress of 131 MPa. The stress was found to be higher for thinner layers and layers deposited without the help of a remote plasma. No residual stress values could be extracted for Pt due to insufficient adhesion of the film without an underlying layer to promote nucleation.

  10. Synergistic toxic effect of nano-Al2O3 and As(V) on Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Wang Demin; Hu Ji; Forthaus, Brett E.; Wang Jianmin

    2011-01-01

    Engineered nanomaterials (ENMs) alone could negatively impact the environment and human health. However, their role in the presence of other toxic substances is not well understood. The toxicity of nano-Al 2 O 3 , inorganic As(V), and a combination of both was examined with C. dubia as the model organisms. Bare nano-Al 2 O 3 particles exhibited partial mortality at concentrations of greater than 200 mg/L. When As(V) was also present, a significant amount of As(V) was accumulated on the nano-Al 2 O 3 surface, and the calculated LC 50 of As(V) in the presence of nano-Al 2 O 3 was lower than that it was without the nano-Al 2 O 3 . The adsorption of As(V) on the nano-Al 2 O 3 surface and the uptake of nano-Al 2 O 3 by C. dubia were both verified. Therefore, the uptake of As(V)-loaded nano-Al 2 O 3 was a major reason for the enhanced toxic effect. - Highlights: → Nano-Al 2 O 3 particles alone do not have significant toxic effect on C. dubia. → However, nano-Al 2 O 3 particles significantly enhance the toxicity of As(V). → The uptake of As-loaded nano-Al 2 O 3 by C. dubia plays the major role on the toxicity. - Nano-Al 2 O 3 could accumulate background As(V) and enhance As(V) toxicity on C. dubia through the uptake of As(V)-loaded nano-Al 2 O 3 particles.

  11. In situ attenuated total reflection infrared (ATR-IR) study of the adsorption of NO2-, NH2OH, and NH4+ on Pd/Al2O3 and Pt/Al2O3.

    NARCIS (Netherlands)

    Ebbesen, S.D.; Mojet, Barbara; Lefferts, Leonardus

    2008-01-01

    In relation to the heterogeneous hydrogenation of nitrite, adsorption of NO2-, NH4+, and NH2OH from the aqueous phase was examined on Pt/Al2O3, Pd/Al2O3, and Al2O3. None of the investigated inorganic nitrogen compounds adsorb on alumina at conditions presented in this study. NO2-(aq) and NH4+(aq) on

  12. Thermal stability and fracture toughness of epoxy resins modified with epoxidized castor oil and Al2O3 nanoparticles

    International Nuclear Information System (INIS)

    Zhu, Lin; Jin, Fanlong; Park, Soojin

    2012-01-01

    This study examined the effects of the epoxidized castor oil (ECO) and Al 2 O 3 content on the thermal stability and fracture toughness of the diglycidylether of bisphenol-A (DGEBA)/ECO/Al 2 O 3 ternary composites using a range of techniques. The thermal stability of the composites was decreased by the addition of ECO and Al 2 O 3 nanoparticles. The fracture toughness of the composites was improved significantly by the addition of ECO and Al 2 O 3 nanoparticles. The composite containing 3 wt % Al 2 O 3 nanoparticles showed the maximum flexural strength. Scanning electron microscopy (SEM) revealed tortuous cracks in the DGEBA/ECO/Al 2 O 3 composites, which prevented deformation and crack propagation

  13. Surface study and thickness control of thin Al2O3 film on Cu-9%Al(111) single crystal

    International Nuclear Information System (INIS)

    Yamauchi, Yasuhiro; Yoshitake, Michiko; Song Weijie

    2004-01-01

    We were successful in growing a uniform flat Al 2 O 3 film on the Cu-9%Al(111) surface using the improved cleaning process, low ion energy and short time sputtering. The growth of ultra-thin film of Al 2 O 3 on Cu-9%Al was investigated using Auger electron spectroscopy (AES) and a scanning electron microscope (SEM). The Al 2 O 3 film whose maximum thickness was about 4.0 nm grew uniformly on the Cu-9%Al surface. The Al and O KLL Auger peaks of Al 2 O 3 film shifted toward low kinetic energy, and the shifts were related to Schottky barrier formation and band bending at the Al 2 O 3 /Cu-9%Al interface. The thickness of Al 2 O 3 film on the Cu-9%Al surface was controlled by the oxygen exposure

  14. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  15. Deposition of thin film of titanium on ceramic substrate using the discharge for hollow cathode for Al2O3/Al2O3 indirect brazing

    Directory of Open Access Journals (Sweden)

    Mary Roberta Meira Marinho

    2009-01-01

    Full Text Available Thin films of titanium were deposited onto Al2O3 substrate by hollow cathode discharge method for the formation of a ceramic-ceramic joint using indirect brazing method. An advantage of using this technique is that a relatively small amount of titanium is required for the metallization of the ceramic surface when compared with other conventional methods. Rapidly solidified brazing filler of Cu49Ag45Ce6 in the form of ribbons was used. The thickness of deposited titanium layer and the brazing temperature/time were varied. The quality of the brazed joint was evaluated through the three point bending flexural tests. The brazed joints presented high flexural resistance values up to 176 MPa showing the efficiency of the technique.

  16. Monitoring the ecotoxicity of γ-Al2O3 and Ni/γ-Al2O3 nanomaterials by means of a battery of bioassays.

    Science.gov (United States)

    Svartz, Gabriela; Papa, Mariana; Gosatti, Marina; Jordán, Marianela; Soldati, Analia; Samter, Paula; Guraya, María M; Pérez Coll, Cristina; Perez Catán, Soledad

    2017-10-01

    The increasing application of nanoparticles (NPs) to a variety of new technologies has become a matter of concern due to the potential toxicity of these materials. Many questions about the fate of NPs in the environment and the subsequent impact on ecosystems need to be answered. The aim of this work was to evaluate the ecotoxicity of two alumina-based nanoceramics, γ-Al2O3 (NC) and Ni/ γ-Al2O3 (NiNC) by means of three different standardized tests: Biochemical Oxygen Demand (BOD5), bioassay with luminescent bacteria (Vibrio fischeri; Microtox), and bioassay on amphibian larvae (Rhinella arenarum) (AMPHITOX). BOD5 values of a very biodegradable mixture (glucose/glutamic acid) decreased with the addition of NiNC(43.8%) and NC (31.6%) with respect to control samples (52.9%). Microtox test results indicated that NiNC presents higher toxicity than NC, with EC50s values of 16.1% and 29.9% respectively; a reduced toxicity was observed, however, in presence of organic matter, thus obtaining EC50s of 37.8% and 19.4%. The results of AMPHITOX test showed a significant increase in the toxicity of both substances over time, the NiNC toxicity being greater than that of NC. The values of 96h-LC50 and 504h-LC50 determined for NiNC were 1.58 and 0.83mg/L, respectively, and 14.5 and 10.5mg/L for NC samples. Amphibian larvae exhibited collapsed cavities, edema, axial flexures, and behavioral alterations as hyperkinesia and reduced movements. These results evidence the vulnerability of wildlife to xenobiotics and the need to develop specific standardized ecotoxicity tests in order to help environmental sustainability and natural species conservation. Copyright © 2017. Published by Elsevier Inc.

  17. Hydrostatic pressing effect on some properties of Al2O3 and Sc2O3 base ceramics

    International Nuclear Information System (INIS)

    Artemova, K.K.; Rudenko, L.A.; Maslova, G.Ya.; Levkovich, N.A.; Orlova, L.A.

    1981-01-01

    Found is the effect of hydrostatic pressing pressure on some physico-mechanical properties of the ceramic on the Al 2 O 3 and Se 2 O 3 base. Mathematical models, describing dependences of the strength of materials made of Al 2 O 3 and Sc 2 O 3 on sintering conditions and on hydrostatic pressing pressure, are plotted. Production regimes on the Al 2 O 3 and Sc 2 O 3 base ceramics with improved properties are optimized [ru

  18. The behavior of ZrO2/20%Y2O3 and Al2O3 coatings deposited on aluminum alloys at high temperature regime

    Science.gov (United States)

    Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Baciu, E. R.; Istrate, B.; Basescu, N.

    2015-10-01

    Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO2/20%Y2O3 and Al2O3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  19. Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus

    Science.gov (United States)

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-01-01

    Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942

  20. Promotion Effect of CaO Modification on Mesoporous Al2O3-Supported Ni Catalysts for CO2 Methanation

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2016-01-01

    Full Text Available The catalysts Ni/Al2O3 and CaO modified Ni/Al2O3 were prepared by impregnation method and applied for methanation of CO2. The catalysts were characterized by N2 adsorption/desorption, temperature-programmed reduction of H2 (H2-TPR, X-ray diffraction (XRD, and temperature-programmed desorption of CO2 and H2 (CO2-TPD and H2-TPD techniques, respectively. TPR and XRD results indicated that CaO can effectively restrain the growth of NiO nanoparticles, improve the dispersion of NiO, and weaken the interaction between NiO and Al2O3. CO2-TPD and H2-TPD results suggested that CaO can change the environment surrounding of CO2 and H2 adsorption and thus the reactants on the Ni atoms can be activated more easily. The modified Ni/Al2O3 showed better catalytic activity than pure Ni/Al2O3. Ni/CaO-Al2O3 showed high CO2 conversion especially at low temperatures compared to Ni/Al2O3, and the selectivity to CH4 was very close to 1. The high CO2 conversion over Ni/CaO-Al2O3 was mainly caused by the surface coverage by CO2-derived species on CaO-Al2O3 surface.

  1. Preparation and Characterization of Liquid Crystalline Polyurethane/Al2O3/Epoxy Resin Composites for Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Shaorong Lu

    2012-01-01

    Full Text Available Liquid crystalline polyurethane (LCPU/Al2O3/epoxy resin composites were prepared by using LCPU as modifier. The mechanical properties, thermal stability, and electrical properties of the LCPU/Al2O3/epoxy resin composites were investigated systematically. The thermal oxidation analysis indicated that LCPU/Al2O3/epoxy resin composites can sustain higher thermal decomposition temperature. Meanwhile, coefficient of thermal expansion (CTE was also found to decrease with addition of LCPU and nano-Al2O3.

  2. Refractories in the Al2O3-ZrO2-SiO2 system

    International Nuclear Information System (INIS)

    Banerjee, S.P.; Bhadra, A.K.; Sircar, N.R.

    1978-01-01

    The effect of addition of ZrO 2 in different proportions in the refractories of the Al 2 O 3 -SiO 2 system was studied. The investigation was confined to two broad ranges of compositions incorporating zirconia (15-30 percent and 80-85 percent) in the Al 2 O 3 -ZrO 2 -SiO 2 system. The overall attainment of properties is dependent upon the mode of fabrication and firing, and bears a relationship with the phase assemblages and the relative proportion thereof. Of the different characteristics, the trend of dissociation of zircon has been found to be specially significant vis-a-vis the temperature of firing and thermal shock resistance. Reassociation of the dissociated products has been ascribed to bring forth improved resistance to thermal spalling. The different products developed during this investigation are considered to be very promising which find useful applications in view of the properties attained by them. (auth.)

  3. Preparation of ZnO-Al2O3 Particles in a Premixed Flame

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2000-01-01

    Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air-methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement...... temperature and a decreasing precursor vapour pressure. The combustion of precursor mixtures leads to composite particles consisting of zinc aluminate ZnAl2O4 intermixed with either ZnO or Al2O3 phases. The zinc aluminate particles are dendritic aggregates, resembling the alumina particles, and are evidently...... synthesized to the full extent allowed by the overall precursor composition. The addition of even small amounts of alumina to ZnO increases the specific surface area of the composites significantly, for e.g. zinc aluminate particles to approximately 150 m2/g. The gas-to-particle conversion is initiated...

  4. Forming of composites Al2O3-ZrO2 by direct coagulation casting method

    International Nuclear Information System (INIS)

    Tomaszewska-Grzeda, A.; Szafran, M.

    2003-01-01

    The role of enzymes in the DCC process in the decomposition of an appropriately selected substance which results in slow liberation over the whole volume of molecules changing the pH or also in the synthesis of salts modifying the double electric layer. The results of using the urease-urea system and the properties of ceramic casting slips, green samples and after sintering with aluminium oxide and Al 2 O 3 -nZrO 2 composites are presented in the paper. The obtained results of studies show a considerable probability of obtaining in the future of Al 2 O 3 -nZrO 2 composites of good strength parameters resulting from their high degree of thickening, providing that a deagglomeration method of nZrO 2 in the above presented processes will be elaborated. (author)

  5. Determination of the thickness of Al2O3 barriers in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Buchanan, J.D.R.; Hase, T.P.A.; Tanner, B.K.; Hughes, N.D.; Hicken, R.J.

    2002-01-01

    The barrier thickness in magnetic spin-dependent tunnel junctions with Al 2 O 3 barriers has been measured using grazing incidence x-ray reflectivity and by fitting the tunneling current to the Simmons model. We have studied the effect of glow discharge oxidation time on the barrier structure, revealing a substantial increase in Al 2 O 3 thickness with oxidation. The greater thickness of barrier measured using grazing incidence x-ray reflectivity compared with that obtained by fitting current density-voltage to the Simmons electron tunneling model suggests that electron tunneling is localized to specific regions across the barrier, where the thickness is reduced by fluctuations due to nonconformal roughness

  6. Geant4 calculations for space radiation shielding material Al2O3

    Science.gov (United States)

    Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir

    2015-07-01

    Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.

  7. Versatile sputtering technology for Al2O3 gate insulators on graphene

    Directory of Open Access Journals (Sweden)

    Miriam Friedemann, Mirosław Woszczyna, André Müller, Stefan Wundrack, Thorsten Dziomba, Thomas Weimann and Franz J Ahlers

    2012-01-01

    Full Text Available We report a novel, sputtering-based fabrication method of Al2O3 gate insulators on graphene. Electrical performance of dual-gated mono- and bilayer exfoliated graphene devices is presented. Sputtered Al2O3 layers possess comparable quality to oxides obtained by atomic layer deposition with respect to a high relative dielectric constant of about 8, as well as low-hysteresis performance and high breakdown voltage. We observe a moderate carrier mobility of about 1000 cm2 V− 1 s−1 in monolayer graphene and 350 cm2 V− 1 s−1 in bilayer graphene, respectively. The mobility decrease can be attributed to the resonant scattering on atomic-scale defects, likely originating from the Al precursor layer evaporated prior to sputtering.

  8. Probing the stability of Al 2O 3/Ge structures with ion beams

    Science.gov (United States)

    Bom, N. M.; Soares, G. V.; Krug, C.; Baumvol, I. J. R.; Radtke, C.

    2012-02-01

    Al 2O 3 films were deposited on Ge substrates by reactive sputtering. Resulting samples were submitted to different post-deposition annealings (PDAs) in order to probe composition modifications induced by such treatments. Nuclear reaction profiling (NRP) revealed that O incorporation depends on PDA temperature and on the employed atmosphere (water or oxygen). We also found that O from the gas phase strongly interacts with the Ge semiconductor substrate when PDA is performed with water at 500 °C. Ion scattering analyses evidenced an increase of Ge concentration throughout the Al 2O 3 dielectric layer and on the sample surface associated with the oxidation of the Ge substrate. These findings are explained by GeO desorption resulting from chemical reactions occurring at the dielectric/Ge interface.

  9. TEM study of a hot-pressed Al2O3-NbC composite material

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2005-03-01

    Full Text Available Alumina-based composites have been developed in order to improve the mechanical properties of the monolithic matrix and to replace the WC-Co material for cutting tool applications. Al2O3 reinforced with refractory carbides improves hardness, fracture toughness and wear resistance to values suitable for metalworking applications. Al2O3-NbC composites were uniaxially hot-pressed at 1650 °C in an inert atmosphere and their mechanical properties and microstructures were analyzed. Sintered density, average grain size, microhardness and fracture toughness measurements and microstructural features were evaluated. Results have shown that the mechanical properties of alumina-NbC are comparable to other carbide systems. Microstructural analysis has shown that the niobium carbide particles are mainly located at the grain boundaries of alumina grains, which is an evidence of the "pinning effect", produced by NbC particles.

  10. TEM and AFM study of WO3 nanosize growth on α-Al2O3

    International Nuclear Information System (INIS)

    Al-Mohammad, A.

    2007-07-01

    WO 3 thin films have been deposited by thermal evaporation on (0001) and (1012 ) planes of alumina oxide single crystal and annealed either in Oxygen or in air atmosphere. The morphology and crystallographic structure of films (as-deposited and annealed films) have been characterized by Atomic Force Microscope (AFM), transmission electron microscope (TEM), and transmission electron diffraction (TED). During annealing, the films undergo important morphological and structural changes. The annealed films exhibit large grains. These grains have the monoclinic structure in epitaxial orientations. The grains are made of twinned microdomains elongated in the [100] direction resulting of a preferential growth. The microdomains are along the three different directions on the (0001) α-Al 2 O 3 surface and only one direction on the (1012 ) α-Al 2 O 3 one.(author)

  11. Bioinspired, Graphene/Al2O3 Doubly Reinforced Aluminum Composites with High Strength and Toughness.

    Science.gov (United States)

    Zhang, Yunya; Li, Xiaodong

    2017-11-08

    Nacre, commonly referred to as nature's armor, has served as a blueprint for engineering stronger and tougher bioinspired materials. Nature organizes a brick-and-mortar-like architecture in nacre, with hard bricks of aragonite sandwiched with soft biopolymer layers. However, cloning nacre's entire reinforcing mechanisms in engineered materials remains a challenge. In this study, we employed hybrid graphene/Al 2 O 3 platelets with surface nanointerlocks as hard bricks for primary load bearer and mechanical interlocking, along with aluminum laminates as soft mortar for load distribution and energy dissipation, to replicate nacre's architecture and reinforcing effects in aluminum composites. Compared with aluminum, the bioinspired, graphene/Al 2 O 3 doubly reinforced aluminum composite demonstrated an exceptional, joint improvement in hardness (210%), strength (223%), stiffness (78%), and toughness (30%), which are even superior over nacre. This design strategy and model material system should guide the synthesis of bioinspired materials to achieve exceptionally high strength and toughness.

  12. Geant4 calculations for space radiation shielding material Al2O3

    Directory of Open Access Journals (Sweden)

    Capali Veli

    2015-01-01

    Full Text Available Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV – 1 GeV using GEANT4 calculation code.

  13. Ag+ implantation in Al2O3, LiNbO3 and quartz

    International Nuclear Information System (INIS)

    Rahmani, M.; Townsend, P.D.

    1989-01-01

    Silver implantation in insulators produces colloids whose growth is a function of ion dose, ion energy, implant temperature and crystal orientation. Data for three materials are compared. Colloid growth is favoured by higher energy implants at temperatures where the silver is mobile. Preferential diffusion along the Z axis of Al 2 O 3 , LiNbO 3 and quartz results in a higher fraction of the implanted silver ions appearing in the form of colloids for Y cut crystals than for those of Z cut. Annealing characteristics also show a strong dependence on crystal cut. For the LiNbO 3 the colloids in Z cut crystals anneal most rapidly whereas for Al 2 O 3 those in Y cut material are least stable, their loss being accompanied by a reduction in F centres. (author)

  14. Fe-Al2O3 nanocomposites prepared by high-energy ball milling

    DEFF Research Database (Denmark)

    Linderoth, Søren; Pedersen, M.S.

    1994-01-01

    Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x(upsilon) alm......Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x...

  15. Pressureless infiltration of porous Al2O3 preform in molten 6061 commercial aluminium alloy

    International Nuclear Information System (INIS)

    Marin, J.; Olivares, L.; Moreno, C.; Ordonez, S.; Martinez, V.

    2001-01-01

    This paper presents an infiltration study of Al 2 O 3 samples containing, approximately, 40% of pores with 1μ average radios. These samples were totally infiltrated with Al-6061 at 1100 deg C for 24 hs in air. Microstructural analysis showed the presence of an alumina matrix infiltrated through mechanisms that combine reactive processes and capillarity, and thus being coherent with the presence of open and closed porosity. The metallographic analysis showed open porosity infiltrated with Al-6061 by capillarity, while SEM micrographs corresponding to this system also showed closed pores filled with metal, that was transported into the ceramic matrix through a reactivate infiltration mechanism. The EDAX analysis for the Al 2 O 3 /Al 6061 system showed areas rich in silicon and copper at the metal-ceramic interface, while the ceramic phase showed the presence of Mg. XRD identified the presence of the MgAl 2 O 4 spinel in the ceramic phase

  16. Positron annihilation study of radiation defects in α-Al2O3

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Aono, Yasuhisa; Takenaka, Minoru

    1989-01-01

    Positron annihilation studies have been performed for the radiation-induced defects in α-Al 2 O 3 specimens. Before irradiation polycrystals of α-Al 2 O 3 showed positron annihilation lifetime about 125 psec. But this value was increased by 60 MeV O 6+ ion irradiation to about 155 psec. This is considered to be corresponding to positron lifetime at O-vacancy sites. But, this lifetime disappeared gradually in the period of several months probably because of recombination of vacancies and interstitial atoms at room temperature. On the other hand, it was found that in single crystals positron lifetime before irradiation is between these two values. This is probably due to lack of oxygen atoms in single crystals in the fabrication process and it already has O-vacancies in the matrix before irradiation. (author)

  17. Preparation of nano-sized α-Al2O3 from oil shale ash

    International Nuclear Information System (INIS)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan

    2010-01-01

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized α-Al 2 O 3 . Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of α-Al 2 O 3 . The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO 2 ), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles.

  18. Fatigue strength of Al2O3 and Si3N4 ceramics

    International Nuclear Information System (INIS)

    Sonsino, C.M.

    1992-01-01

    Various Al 2 O 3 ceramics and random samples of two Si 3 N 4 ceramics were examined, with all specimens differing in terms of material and manufacturing parameters. Of the Al 2 O 3 ceramics, randomly selected specimens were tested for their banding strength at room temperature, and three specifically selected specimens were tested for their compressive strength at room temperature, at 800 C and at 1200 C. A number of specimen variants were examined by cyclic fatigue tests at room temperature and 800 C, and at 1200 C in one case, the specimens used being slightly notched specimens (α n = 1,02 and 1,08), or more heavily notched speciments (α n = 1.77, 1.90 and 2.24), with bending loads being either cyclic or growing. The Si 3 N 4 specimens were randomly chosen for bending tests and cyclic fatigue tests, at room temperature. (orig./MM) [de

  19. High strength Al–Al2O3p composites: Optimization of extrusion parameters

    DEFF Research Database (Denmark)

    Luan, B.F.; Hansen, Niels; Godfrey, A.

    2011-01-01

    Composite aluminium alloys reinforced with Al2O3p particles have been produced by squeeze casting followed by hot extrusion and a precipitation hardening treatment. Good mechanical properties can be achieved, and in this paper we describe an optimization of the key processing parameters...... on an investigation of their mechanical properties and microstructure, as well as on the surface quality of the extruded samples. The evaluation shows that material with good strength, though with limited ductility, can be reliably obtained using a production route of squeeze casting, followed by hot extrusion....... The parameters investigated are the extrusion temperature, the extrusion rate and the extrusion ratio. The materials chosen are AA 2024 and AA 6061, each reinforced with 30vol.% Al2O3 particles of diameter typically in the range from 0.15 to 0.3μm. The extruded composites have been evaluated based...

  20. Preparation of Mo/Al2O3 Sulfide Catalysts Modified by Ir Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Cinibulk, Josef; Vít, Zdeněk

    2002-01-01

    Roč. 143, - (2002), s. 443-451 ISSN 0167-2991. [International Symposium Scientific Bases for the Preparation of Heterogeneous Catalysts /8./. Louvain-la-Neuve, 09.09.2002-12.09.2002] R&D Projects: GA AV ČR IAA4072103 Keywords : catalysts modified * sulfide catalysts * Mo/Al2O3 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.468, year: 2002

  1. BF3/nano-γ-Al2O3 Promoted Knoevenagel Condensation at Room Temperature

    Directory of Open Access Journals (Sweden)

    B. F. Mirjalili

    2015-10-01

    Full Text Available The Knoevenagel condensation of aromatic aldehydes with barbituric acid, dimedone and malononitrile occurred in the presence of BF3/nano-γ-Al2O3 at room temperature in ethanol. This catalyst is characterized by powder X-ray diffraction (XRD, fourier transform infrared spectroscopy (FT-IR, thermal gravimetric analysis (TGA, field emission scanning electron microscopy (FESEM and energy-dispersive X-ray spectroscopy (EDS.

  2. Pair potentials for alumina from ab initio results on the Al2O3 molecule

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Cicek, Z.; Tosi, M.P.

    2000-08-01

    We use results from an ab initio investigation by Chang et al. on energetically low-lying stationary points of the Al 2 O 3 molecule to determine interionic potentials for the Al-O, O-O and Al-Al pairs. Our results are discussed in the perspective of previous studies of the condensed phases of alumina, with special regard to the structure of its molten state. (author)

  3. Magnetic properties of a cermet on the base of Al2O3

    International Nuclear Information System (INIS)

    Tien, C.; Charnaya, E.V.; Gropyanov, V.M.; Mikhailova, I.S.; Wur, C.S.; Abramovich, A.A.

    2000-01-01

    The zero-field-cooled and field-cooled magnetizations, magnetization versus field, and remanent magnetization were measured for a cermet on the base of Al 2 O 3 using a SQUID magnetometer in the temperature range of 2-360 K. It was shown that magnetic properties of the cermet are determined by independent ferromagnetic, paramagnetic and spin-glass contributions. The spin-glass behavior was studied

  4. Bending Strength of EN AC-44200 – Al2O3 Composites at Elevated Temperatures

    OpenAIRE

    Kurzawa A.; Kaczmar J. W.

    2017-01-01

    The paper presents results of bend tests at elevated temperatures of aluminium alloy EN AC-44200 (AlSi12) based composite materials reinforced with aluminium oxide particles. The examined materials were manufactured by squeeze casting. Preforms made of Al2O3 particles, with volumetric fraction 10, 20, 30 and 40 vol.% of particles joined with sodium silicate bridges were used as reinforcement. The preforms were characterised by open porosity ensuring proper infiltration with the EN AC-44200 (A...

  5. Temperature dependence of the Al2O3:C response in medical luminescence dosimetry

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler; Andersen, Claus Erik

    2007-01-01

    is not varied. The RL response only depends on the irradiation temperature. We recommend that calibration should be carried out at the same irradiation temperature at which the measurement is performed (i.e. at body temperature for in vivo measurements). The overall change in the integrated OSL and RL signals...... and detection wavelengths. The reported temperature dependence seems to be a general property of Al2O3:C. (C) 2006 Elsevier Ltd. All rights reserved....

  6. The synthesis of higher alcohols using modified Cu/ZnO/Al@#2@#O@#3@# catalysts

    OpenAIRE

    Slaa, J.C.; Slaa, J.C.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1992-01-01

    This paper gives a review of research work in the synthesis of higher alcohols over catalysts based on Cu/ZnO/Al2O3, emphasizing three main topics: (i) the effect on selectivity of the addition of several compounds to this catalyst, (ii) the effect on selectivity of the reaction conditions used, and (iii) the reaction network leading to the different products found. Although the use of alkali compounds has been studied most extensively, other compounds, for example those containing manganese,...

  7. Dielectric properties of DC reactive magnetron sputtered Al2O3 thin films

    International Nuclear Information System (INIS)

    Prasanna, S.; Mohan Rao, G.; Jayakumar, S.; Kannan, M.D.; Ganesan, V.

    2012-01-01

    Alumina (Al 2 O 3 ) thin films were sputter deposited over well-cleaned glass and Si substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al 2 O 3 -Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed. - Highlights: ► Al 2 O 3 thin films were deposited by DC reactive magnetron sputtering. ► The films were found to be amorphous up to annealing temperature of 550 C. ► An increase in rms roughness of the films was observed with annealing. ► Al-Al 2 O 3 -Al thin film capacitors were fabricated and dielectric constant was 7.5. ► The activation energy decreased with increase in frequency.

  8. Far infrared spectroscopy of solids. I. Impurity states in Al2O3. II. Electron-hole droplets in Ge

    International Nuclear Information System (INIS)

    Aurbauch, R.L.

    1975-01-01

    Far infrared Fourier transform spectroscopy was used to study the low lying vibronic states of Mn 3+ in Al 2 O 3 and the plasma absorption of electron-hole droplets in Ge. The transmission of Mn-doped samples of Al 2 O 3 was measured in the frequency range from 3 to 30 cm -1 in applied magnetic fields up to 50 kG. Absorption lines were observed due to both ground and excited state transitions. Polarization measurements established that these absorption lines were due to electric dipole transitions. Temperature dependence measurements were used to derive a level diagram for the low lying states of Mn 3+ . A phenomenological model based on an electronic Hamiltonian was developed which successfully describes the data. The empirically determined trigonal field and spin-orbit quenching parameters of this model are 0.7 and 0.1 respectively. This quenching is attributed to the dynamic Jahn--Teller interaction. The plasma absorption of small (α) electron-hole drops in Ge was measured in the frequency range from 30 to 300 cm -1 . The observed absorption is in good agreement with measurements by Vavilov and other workers. A theoretical model which includes both intraband and interband contributions to the dielectric constant in the Rayleigh limit of Mie theory is used to describe the observed lineshape. Measurements of plasma absorption of large (γ) drops in inhomogeneously stressed Ge were made in magnetic fields up to 50 kG. The lineshape at zero applied field was calculated in the large sphere limit of Mie theory including intraband terms and a zero-strain interband term. Qualitative agreement with experiment was obtained. The peak absorption shifted quadratically with applied magnetic field and the total plasma absorption increased. No oscillatory structure was observed in the field-dependence of the total absorption

  9. Development of α - Al_2O_3:C films nanoparticulate for application in digital radiology

    International Nuclear Information System (INIS)

    Silva, Edna C.; Fontainha, Crissia C.; Ferraz, Wilmar B.; Faria, Luiz O.

    2011-01-01

    Phosphorescent ceramics are widely used in Ionizing radiation sensors. In nuclear applications, alpha-alumina doped with carbon (α-Al_2O_3: C) is most commonly used because of its excellent properties photoluminescent (OSL) and thermoluminescent (TL) in ionizing radiation detections. Another application of OSL and TL materials is the use in digital radiography. Recently, Computerized Radiography (CR) equipment, which use OSL materials, have been replacing the old X-ray devices. In this work we investigated the thermoluminescence of α-Al_2O_3 doped with different percentages of carbon, sintered in reducing atmospheres, in temperatures from 1300 to 1750 ° C. The results indicate that micro alumina doped with 0.5% of carbon and nano-alumina doped with 2% of carbon present TL signal of the order of 30 to 100 times the signal of the TLD-100, the most widely used TL dosimeter in the world. The results indicate that α-Al_2O_3: C nano-particulate has great potential for application in digital thermoluminescent radiography, because of its high TL response to radiation Ionization and the possibility of forming TL digital images with resolution increased by about 1000 times, depending on the size of the nanoparticles

  10. Hole centers in γ-irradiated, oxidized Al2O3

    International Nuclear Information System (INIS)

    Lee, K.H.; Holmberg, G.E.; Crawford, J.H. Jr.

    1976-01-01

    ESR observations of centers with S = 1/2, g approximately equal to 2, S = 1, g approximately equal to 2 have been made at 77 K on oxidized Al 2 O 3 after γ-irradiation at 30 0 C. From the radiation growth data, it is shown that the S = 1/2 centers are precursors of the S = 1 centers. In addition, when the S = 1 centers anneal out at about 110 0 C, the S = 1/2 centers reappear and eventually anneal out at about 260 0 C. Previously Gamble (Gamble, F.T.; Ph.D. Thesis, U. of Connecticut (1963)) and Cox (Cox, R.T.; Ph.D. Thesis, U. of Grenoble (1972) unpublished), respectively, observed S = 1/2 and S = 1 paramagnetic centers in electron-irradiated nominally pure Al 2 O 3 and γ-irradiated, oxidized, titanium-doped Al 2 O 3 . The models proposed for these centers were one hole and two holes trapped on oxygen ions adjacent to Al 3+ vacancies. Our results further substantiate these models. (author)

  11. Chemical quenching of positronium in Fe2O3/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Li, C.; Zhang, H.J.; Chen, Z.Q.

    2010-01-01

    Fe 2 O 3 /Al 2 O 3 catalysts were prepared by solid state reaction method using α-Fe 2 O 3 and γ-Al 2 O 3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ 3 and τ 4 are attributed to positronium annihilation in two types of pores distributed inside Al 2 O 3 grain and between the grains, respectively. With increasing Fe 2 O 3 content from 3 wt% to 40 wt%, the lifetime τ 3 keeps nearly unchanged, while the longest lifetime τ 4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe 2 O 3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ 4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.

  12. Chemical quenching of positronium in Fe 2O 3/Al 2O 3 catalysts

    Science.gov (United States)

    Li, C.; Zhang, H. J.; Chen, Z. Q.

    2010-09-01

    Fe 2O 3/Al 2O 3 catalysts were prepared by solid state reaction method using α-Fe 2O 3 and γ-Al 2O 3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al 2O 3 grain and between the grains, respectively. With increasing Fe 2O 3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe 2O 3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.

  13. Characterization of dispersion strengthened copper with 3wt%Al2O3 by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rajković Višeslava

    2004-01-01

    Full Text Available The copper matrix has been dispersion strengthened with 3wt.%Al2O3 by mechanical alloying. Commercial alumina powder with an average particle size of 0.75mm was used for alloying. The mechanical alloying process was performed in a planetary ball mill up to 20h in air. After milling all powders were treated in H2 at 4000C for 1h, and finally hot pressing was used for compaction (800oC, 3h, Ar. Structure observations revealed a lamellar structure (Al2O3 particles largely restricted to interlamellar planes between adjacent copper lamellae accompanied also by structure refinement. These structural changes were mostly completed in the early stage of milling, and retained after compaction. Micro hardness was found to progressively increase with milling time. So, after 5h of milling the micro hardness of the Cu+3twt%Al2O3 compact was 1540MPa, i.e. 2.5 times greater than for the as-received electrolytic copper powder (638MPa compacted under identical conditions, while after 20h of milling it was 2370 MPa. However after exposing the tested compact at 800oC up to 5h, the achieved hardening effect vanished.

  14. Compactibility of Al/Al2O3 Isotropic Composite with Variation of Holding Time Sintering.

    Directory of Open Access Journals (Sweden)

    Eddy S Siradj

    2008-11-01

    Full Text Available The requirement of component with structural ability, light weight and also strength is increasing base on Metal Matrix Composites (MMCs by aluminum as matrix (AMCs. A structural ability is connected to composites compactibility which is depend on quality of interfacial bounding. Powder metallurgy is one of method to produce composite with powder mixing, compacting and sintering. Volume fractions reinforced and sintering time can influence composites compactibility. Volume fractions reinforced variable can produce different reinforcement effect. Beside that, on sintering enables the formation of new phase during sintering time. In this research, Al/Al2O3 isotropic composites are made with aluminum as matrix and alumina (Al2O3 as reinforced. Volume fraction reinforced used 10%. 20%. 30% and 40%. Sintering temperature and compaction pressure are each 600oC and 15 kN. The tests that applied are compression and metallographic test. The result that obtained is optimum compactibility of Al/Al2O3 composite reached at holding time 2 hour. During sintering, new phase can occur that is aluminum oxides (alumina, with unstable properties. The best volume fraction reinforced and holding time sintering are 40% and 2 hours.

  15. Computer simulation of the structural transformation in liquid Al2O3

    International Nuclear Information System (INIS)

    Vo Van Hoang; Oh, Suhk Kun

    2005-01-01

    We investigate the pressure-induced structural transformation in liquid Al 2 O 3 by a molecular dynamics (MD) method. Simulations were done in the basic cube, under periodic boundary conditions, containing 3000 ions with Born-Mayer-type pair potentials. The structure of the liquid Al 2 O 3 model with a real density at ambient pressure is in good agreement with Landron's experiment. In order to study the structural transformation, seven models of liquid alumina at temperature 2500 K and at densities in the range 2.80-4.5 g cm -3 have been built. The microstructure of Al 2 O 3 systems has been analysed through the pair radial distribution functions, coordination number distributions, interatomic distances and bond-angle distributions. And we found clear evidence of a structural transition in liquid alumina from a tetrahedral to an octahedral network. According to our results, this transformation occurred at densities in the range 3.6-4.5 g cm -3 . We also obtained an anomalous density dependence of the self-diffusion constant in the region of the structural transformation

  16. Improved real-time dosimetry using the radioluminescence signal from Al2O3:C

    International Nuclear Information System (INIS)

    Damkjaer, S.M.S.; Andersen, C.E.; Aznar, M.C.

    2008-01-01

    Carbon-doped aluminum oxide (Al 2 O 3 :C) is a highly sensitive luminescence material for ionizing radiation dosimetry, and it is well established that the optically stimulated luminescence (OSL) signal from Al 2 O 3 :C can be used for absorbed-dose measurements. During irradiation, Al 2 O 3 :C also emits prompt radioluminescence (RL) which allows for real-time dose verification. The RL-signal is not linear in the absorbed dose due to sensitivity changes and the presence of shallow traps. Despite this the signal can be processed to obtain a reliable dose rate signal in real time. Previously a simple algorithm for correcting the RL-signal has been published and here we report two improvements: a better and more stable calibration method which is independent of a reference dose rate and a correction for the effect of the shallow traps. Good agreement was found between reference doses and doses derived from the RL-signal using the new algorithm (the standard deviation of the residuals were ∼2% including phantom positioning errors). The RL-algorithm was found to greatly reduce the influence of shallow traps in the range from 0 to 3 Gy and the RL dose-rate measurements with a time resolution of 0.1 s closely matched dose-rate changes monitored with an ionization chamber

  17. HDPE-Al2O3-HAp composites for biomedical applications: processing and characterizations.

    Science.gov (United States)

    Nath, Shekhar; Bodhak, Subhadip; Basu, Bikramjit

    2009-01-01

    The objective of this work is to demonstrate how the stiffness, hardness, as well as the biocompatibility property, of bioinert high-density polyethylene (HDPE) can be significantly improved by the combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different volume fractions of hydroxyapatite and alumina, limited to a total of 40 vol %, have been incorporated in HDPE matrix. All the hybrid composites and monolithic HDPE were developed under optimized hot pressing condition (130 degrees C, 0.5 h, 92 MPa pressure). The results of the mechanical property characterization reveal that higher elastic modulus (6.2 GPa) and improved hardness (226.5 MPa) could be obtained in the developed HDPE-20 vol %-HAp-20 vol % Al(2)O(3) composite. Under the selected fretting conditions against various counterbody materials (steel, Al(2)O(3), and ZrO(2)), an extremely low COF of (0.07-0.11) and higher wear resistance (order of 10(-6) mm(3)/Nm) are obtained with the HDPE/20 vol % HAp/20 vol % Al(2)O(3) composite in both air and simulated body fluid environment. Importantly, in-vitro cell culture study using L929 fibroblast cells confirms favorable cell adhesion properties in the developed hybrid composite. (c) 2008 Wiley Periodicals, Inc.

  18. Enhanced reactivity and related optical changes of Ag nanoparticles on amorphous Al2O3 supports

    International Nuclear Information System (INIS)

    Peláez, R J; Castelo, A; Afonso, C N; Borrás, A; Espinós, J P; Riedel, S; Leiderer, P; Boneberg, J

    2013-01-01

    Pairs of samples containing Ag nanoparticles (NPs) of different dimensions have been produced under the same conditions but on different substrates, namely standard glass slides and a thin layer of amorphous aluminum oxide (a-Al 2 O 3 ) on-glass. Upon storage in ambient conditions (air and room temperature) the color of samples changed and a blue-shift and damping of the surface plasmon resonance was observed. The changes are weaker for the samples on-glass and tend to saturate after 12 months. In contrast, the changes for the samples on a-Al 2 O 3 appear to be still progressing after 25 months. While x-ray photoelectron spectroscopy shows a slight sulfurization and negligible oxidation of the Ag for the on-glass samples upon 25 months aging, it shows that Ag is strongly oxidized for the on a-Al 2 O 3 samples and sulfurization is negligible. Both optical and chemical results are consistent with the production of a shell at the expense of a reduction of the metal core dimensions, the latter being responsible for the blue-shift and related to the small ( 2 O 3 supports goes along with specific morphological changes of the Ag NPs and the observation of nitrogen. (paper)

  19. Neutron irradiation damage in Al2O3 and Y2O3

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Bunch, J.M.; Ranken, W.A.

    1975-01-01

    Two ceramics under consideration for use in fusion reactors, Al 2 O 3 and Y 2 O 3 , were irradiated in the EBR-II fission reactor at 650, 875, and 1025 0 K to fluences between 2 and 6 x 10 21 n/cm 2 (E greater than 0.1 MeV). Samples evaluated include sapphire, Lucalox, alumina, Y 2 O 3 , and Y 2 O 3 -10 percent ZrO 2 (Yttralox). All Al 2 O 3 specimens swelled significantly (1 to 3 percent), with most of the growth observed in sapphire along the c-axis at the higher temperatures. Al 2 O 3 samples irradiated at 875 to 1025 0 K contained a high density of small aligned ''pores''. Irradiated Y 2 O 3 -based ceramics exhibited dimensional stability and a defect content consisting primarily of unresolved damage and/or dislocation loops. The behavior of these ceramics under irradiation is discussed, and the relevance of fission neutron damage studies to fusion reactor applications is considered. (auth)

  20. Workability and mechanical properties of ultrasonically cast Al–Al2O3 nanocomposites

    International Nuclear Information System (INIS)

    Mula, Suhrit; Pabi, S.K.; Koch, Carl C; Padhi, P.; Ghosh, S.

    2012-01-01

    Workability and mechanical properties of the ultrasonically cast Al–X wt% Al 2 O 3 (X=2, 3.57 and 4.69) metal matrix nanocomposites were reported in the present investigation. The Al–Al 2 O 3 (average size ∼10 nm) composites showed maximum reduction ratios of 2, 1.75 and 1.41 at room temperature, and 8, 7 and 6 at 300 °C. The elastic modulus, nanoindentation hardness, microhardness and Vickers hardness were measured on the as-cast, cold and hot rolled specimens. The tensile properties were also evaluated for the as-cast composites for different wt% of reinforcement. The microstructural examination was done by optical, scanning and transmission electron microscopy. The strength and workability of the nanocomposites were discussed in the light of dislocation/particle interaction, particle size and its concentration, inter-particle spacing and working temperature. 2 wt% of Al 2 O 3 reinforcement showed better combination of workability and mechanical properties possibly due to better distribution of particulates in the matrix.

  1. On the dielectric strengths of atmospheric plasma sprayed Al2O3 ,Y2O3 , ZrO2 - 7% Y2O3 and (Ba,Sr)TiO3 coatings

    Czech Academy of Sciences Publication Activity Database

    Kotlan, Jiří; Seshadri, R.C.; Sampath, S.; Ctibor, Pavel; Pala, Zdeněk; Mušálek, Radek

    2015-01-01

    Roč. 41, č. 9 (2015), s. 11169-11176 ISSN 0272-8842 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : X-ray methods * Grain size * Electrical properties * Insulators * Dielectric strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.758, year: 2015 http://www.sciencedirect.com/science/article/pii/S0272884215009955#

  2. Silicon passivation and tunneling contact formation by atomic layer deposited Al2O3/ZnO stacks

    NARCIS (Netherlands)

    Garcia-Alonso Garcia, D.; Smit, S.; Bordihn, S.; Kessels, W.M.M.

    2013-01-01

    The passivation of Si by Al2O3/ZnO stacks, which can serve as passivated tunneling contacts or heterojunctions in silicon photovoltaics, was investigated. It was demonstrated that stacks with Al2O3 thicknesses >3 nm lead to lower surface recombination velocities (Seff,max <4 cm s-1) on n- and p-type

  3. WOx supported on γ-Al2O3 with different morphologies as model catalysts for alkanol dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Dachuan; Wang, Huamin; Kovarik, Libor; Gao, Feng; Wan, Chuan; Hu, Jian Z.; Wang, Yong

    2018-04-21

    The distinctive morphological and surface characteristics of platelet-like γ-Al2O3 were compared to a regular, commercial γ-Al2O3. γ-Al2O3 platelets display dominant (110) surface facets and higher densities of coordinative unsaturated penta-coordinate Al3+ (Al3+penta) sites than regular γ-Al2O3, as measured by solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). Such Al3+penta sites are also the preferred surface anchoring sites for tungsten oxide (WOx) species consistent with NMR analysis indicating that these sites are consumed upon WOx adsorption. The higher Al3+penta density on γ-Al2O3 platelets leads to greater WOx dispersion (or smaller WOx clusters), as demonstrated by scanning transmission electron microscopy and ultraviolet–visible spectroscopy, and WOx species at intermediate WOx surface concentration are the most active for the probe reaction of 2-butanol dehydration. WOx on γ-Al2O3 platelets approaches the highest turnover rates at higher surface densities than WOx on regular γ-Al2O3, yet with similar highest rate values for both series of catalysts. This indicates that different Al2O3 supports mainly affect the dispersion of supported WOx rather than the intrinsic reactivity of individual WOx clusters with similar size.

  4. Characteristics of Cu–Al2O3 composites of various starting particle size obtained by high-energy milling

    Directory of Open Access Journals (Sweden)

    VIŠESLAVA RAJKOVIĆ

    2009-05-01

    Full Text Available The powder Cu– Al2O3 composites were produced by high-energy milling. Various combinations of particle size and mixtures and approximately constant amount of Al2O3 were used as the starting materials. These powders were separately milled in air for up to 20 h in a planetary ball mill. The copper matrix was reinforced by internal oxidation and mechanical alloying. During the milling, internal oxidation of pre-alloyed Cu-2 mass %-Al powder generated 3.7 mass % Al2O3 nano-sized particles finely dispersed in the copper matrix. The effect of different size of the starting copper and Al2O3 powder particles on the lattice parameter, lattice distortion and grain size, as well as on the size, morphology and microstructure of the Cu– Al2O3 composite powder particles was studied.

  5. NMR Spectroscopy of the Hydrated Layer of Composite Particles Based on Nanosized Al2O3 and Vitreous Humor

    Science.gov (United States)

    Turov, V. V.; Gerashchenko, I. I.; Markina, A. I.

    2013-11-01

    The hydrated layer of composite particles prepared using Al2O3 and cattle vitreous humor was investigated using NMR spectroscopy. It was found that water bound to Al2O3 nanoparticles was present in the form of clusters with different degrees of association and energies of interaction with the surface. Water bound to the surface of the Al2O3/vitreous humor composite became more uniform upon immobilization of vitreous humor components on the surface of the Al2O3. With this, the clusters of adsorbed water had characteristics that were close to those found in air and weakly polar CHCl3 media. Addition of polar CH3CN led to the formation of very small water clusters. PMR spectra of the surface of the Al2O3/vitreous humor composite in the presence of trifluoroacetic acid differentiated four types of hydrated structures that differed in the degree of water association.

  6. Synthesis and characterization of high volume fraction Al-Al2O3 nanocomposite powders by high-energy milling

    International Nuclear Information System (INIS)

    Prabhu, B.; Suryanarayana, C.; An, L.; Vaidyanathan, R.

    2006-01-01

    Al-Al 2 O 3 metal matrix composite (MMC) powders with volume fractions of 20, 30, and 50% Al 2 O 3 were synthesized by high-energy milling of the blended component powders. The particle sizes of Al 2 O 3 studied were 50 nm, 150 nm, and 5 μm. A uniform distribution of the Al 2 O 3 reinforcement in the Al matrix was successfully obtained after milling the powders for a period of 20 h at a ball-to-powder ratio of 10:1 in a SPEX mill. The uniform distribution of Al 2 O 3 in the Al matrix was confirmed by characterizing these nanocomposite powders by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray mapping, and X-ray diffraction (XRD) techniques

  7. Development & characterization of alumina coating by atmospheric plasma spraying

    Science.gov (United States)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  8. Strength and thermal stability of Cu-Al2O3 composite obtained by internal oxidation

    Directory of Open Access Journals (Sweden)

    Jovanovic, M. T.

    2010-12-01

    Full Text Available The objective of the work is to study the effects of the high-energy milling on strengthening, thermal stability and electrical conductivity of Cu-Al2O3 composite. The prealloyed copper powders, atomized in inert gas and containing 3 wt. % Al, were milled up to 20 h in the planetary ball mill to oxidize in situ aluminium with oxygen from the air. Composite compacts were obtained by hot-pressing in an argon atmosphere at 800 °C for 3 h under the pressure of 35MPa. The microstructural characterization was performed by the optical microscope, scanning electron microscope (SEM, transmission electron microscope (TEM and X-ray diffraction analysis (XRD. The microhardness, electrical conductivity and density measurements were also carried out. The effect of internal oxidation and high-energy milling on strengthening of Cu-Al2O3 composite was significant, The increase of the microhardness of composite compacts (292 HV is almost threefold comparing to compacts processed from the as-received Cu-3 wt. % Al powder (102 HV. The grain size of Cu-Al2O3 compacts processed from 5 and 20 h-milled powders was 75 and 45 nm, respectively. The small increase in the grain size and the small microhardness drop indicate the high thermal stability of Cu-Al2O3 composite during high-temperature exposure at 800 °C.El objetivo del trabajo es el estudio de los efectos de la pulverización con altas energías sobre la resistencia, estabilidad térmica y conductividad eléctrica del compuesto Cu-Al2O3. El polvo pre-aleado de cobre, obtenido a través de la atomización con gas inerte y con un contenido de 3wt. % Al, se molió durante 20 h en el molino planetario de bolas dando lugar a la oxidación in situ del aluminio con el oxígeno del aire. El compuesto compactado se ha obtenido mediante prensado en caliente en atmósfera de argón a 800 °C durante 3 h y a una presión de 35MPa. La caracterización microestructural se hizo a través de microscopia óptica, microscopia

  9. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector.

    Science.gov (United States)

    Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping

    2013-09-09

    GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.

  10. Effect of 10Ce-TZP/Al2O3 nanocomposite particle amount and sintering temperature on the microstructure and mechanical properties of Al/(10Ce-TZP/Al2O3) nanocomposites

    International Nuclear Information System (INIS)

    Soltani, N.; Pech-Canul, M.I.; Bahrami, A.

    2013-01-01

    Highlights: • Increasing the 10Ce-TZP/Al 2 O 3 content up to 7 wt.%, enhanced composites’ hardness. • Significant enhancement in compressive strength is obtained with 7% 10Ce-TZP/Al 2 O 3 . • Sintering at 450 °C, hardness and compressive strength are higher than at 400 °C. - Abstract: A zirconia/alumina nanocomposite stabilized with cerium oxide (Ce-TZP/Al 2 O 3 nanocomposite) can be a good substitute as reinforcement in metal matrix composites. In the present study, the effect of the amount of 10Ce-TZP/Al 2 O 3 particles on the microstructure and properties of Al/(10Ce-TZP/Al 2 O 3 ) nanocomposites was investigated. For this purpose, aluminum powders with average size of 30 μm were ball-milled with 10Ce-TZP/Al 2 O 3 nanocomposite powders (synthesized by aqueous combustion) in varying amounts of 1, 3, 5, 7, and 10 wt.%. Cylindrical-shape samples were prepared by pressing the powders at 600 MPa for 60 min while heating at 400–450 °C. The specimens were then characterized by scanning and transmission electron microscopy (SEM and TEM) in addition to different physical and mechanical testing methods in order to establish the optimal processing conditions. The highest compression strength was obtained in the composite with 7 wt.% (10Ce-TZP/Al 2 O 3 ) sintered at 450 °C

  11. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al2O3

    International Nuclear Information System (INIS)

    Gastrow, Guillaume von; Li, Shuo; Putkonen, Matti; Laitinen, Mikko; Sajavaara, Timo; Savin, Hele

    2015-01-01

    Highlights: • The ALD Al 2 O 3 passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al 2 O 3 interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al 2 O 3 Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10 11 eV −1 cm −2 , and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  12. Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3-Ni nano composite coatings

    International Nuclear Information System (INIS)

    Ciubotariu, Alina-Crina; Benea, Lidia; Lakatos-Varsanyi, Magda; Dragan, Viorel

    2008-01-01

    In this paper, the results on the electrochemical impedance spectroscopy and corrosion properties of electrodeposited nanostructured Al 2 O 3 -Ni composite coatings are presented. The nanocomposite coatings were obtained by codeposition of alumina nanoparticles (13 nm) with nickel during plating process. The coating thickness was 50 μm on steel support and an average of nano Al 2 O 3 particles inside of coatings at 15 vol.% was present. The structure of the coatings was investigated by scanning electron microscopy (SEM). It has been found that the codeposition of Al 2 O 3 particles with nickel disturbs the nickel coating's regular surface structure. The electrochemical behavior of the coatings in the corrosive solutions was investigated by polarization potentiodynamic and electrochemical impedance spectroscopy methods. As electrochemical test solutions 0.5 M sodium chloride and 0.5 M potassium sulphate were used in a three electrode open cell. The corrosion potential is shifted to more negative values for nanostructured coatings in 0.5 M sodium chloride. The polarization resistance in 0.5 M sodium chloride decreases in 24 h, but after that increases slowly. In 0.5 M potassium sulphate solution the polarization resistance decreases after 2 h and after 30 h of immersion the polarization resistance is higher than that of the beginning value. The corrosion rate calculated by polarization potentiodynamic curves obtained after 30 min from immersion in solution is smaller for nanostructured coatings in 0.5 M potassium sulphate (4.74 μm/year) and a little bit bigger in 0.5 M sodium chloride (5.03 μm/year)

  13. Low temperature bonding of heterogeneous materials using Al2O3 as an intermediate layer

    DEFF Research Database (Denmark)

    Sahoo, Hitesh Kumar; Ottaviano, Luisa; Zheng, Yi

    2018-01-01

    Integration of heterogeneous materials is crucial for many nanophotonic devices. The integration is often achieved by bonding using polymer adhesives or metals. A much better and cleaner option is direct wafer bonding, but the high annealing temperatures required make it a much less attractive...... atomic layer deposited Al2O3 an excellent choice for the intermediate layer. The authors have optimized the bonding process to achieve a high interface energy of 1.7 J/m2 for a low temperature annealing of 300 °C. The authors also demonstrate wafer bonding of InP to SiO2 on Si and GaAs to sapphire using...

  14. The anomalous behaviour of Ag-Al2O3 Cermet electroformed devices

    International Nuclear Information System (INIS)

    Khan, M.S.R.

    2003-06-01

    Cermet coating consisting of silver particles in an aluminium oxide matrix were prepared on glass substrates by vacuum deposition. Variation of the circulating current with potential difference was obtained in evaporated Al/Ag-Al 2 O 3 /Cu sandwich structures, 100 to 200 nm thick containing 10 wt % Ag. It was observed that the investigated sandwich structures exhibit anomalous behaviour such as electroforming with Voltage-Controlled-Negative Resistance (VCNR) in vacuo of ∼ 4 x 10 -6 torr. The formed characteristics were explained on the basis of filamentary model. (author)

  15. Low Leakage Superconducting Tunnel Junctions with a Single Crystal Al2O3 Barrier

    Science.gov (United States)

    2016-03-30

    10-6 Torr ). In this low-pressure oxygen environment, Auger electron spectroscopy (AES) study shows that while oxidation of the base layer is...three layers were grown in situ in an ultra high vacuum (UHV) system with a nominal base pressure of ~1×10-10 Torr . First, a 120~150 nm thick...high-temperature annealing in order to crystallize the amorphous AlOx into a single-crystal Al2O3. After the sample was cooled to room temperature

  16. Thermal conductivity measurements of PTFE and Al2O3 ceramic at sub-Kelvin temperatures

    Science.gov (United States)

    Drobizhev, Alexey; Reiten, Jared; Singh, Vivek; Kolomensky, Yury G.

    2017-07-01

    The design of low temperature bolometric detectors for rare event searches necessitates careful selection and characterization of structural materials based on their thermal properties. We measure the thermal conductivities of polytetrafluoroethylene (PTFE) and Al2O3 ceramic (alumina) in the temperature ranges of 0.17-0.43 K and 0.1-1.3 K, respectively. For the former, we observe a quadratic temperature dependence across the entire measured range. For the latter, we see a cubic dependence on temperature above 0.3 K, with a linear contribution below that temperature. This paper presents our measurement techniques, results, and theoretical discussions.

  17. Structure and phase transitions at the interface between α-Al2O3 and Pt

    Science.gov (United States)

    Ophus, Colin; Santala, Melissa K.; Asta, Mark; Radmilovic, Velimir

    2013-06-01

    The structure and thermodynamics of interfaces between (111) Pt and the basal plane of α-Al2O3 have been studied through a combination of high-resolution electron microscopy and first-principles calculations. Within the framework of ab initio thermodynamics the structure and excess free energies are calculated as functions of temperature (T) and oxygen partial pressure (PO2), for three competing interface terminations. Comparisons between measurements and calculations establish that the interface is oxygen terminated, and a structural phase transition is predicted in the range of experimentally accessible T and PO2 from the calculated interfacial free energies.

  18. Guiding of low-energy electrons by highly ordered Al2 O3 nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Víkor, G.; Pešić, Z.D.

    2007-01-01

    We report an experimental study of guided transmission of low-energy (200-350 eV) electrons through highly ordered Al2 O3 nanocapillaries with large aspect ratio (140 nm diameter and 15 μm length). The nanochannel array was prepared using self-ordering phenomena during a two-step anodization...... process of a high-purity aluminum foil. The experimental results clearly show the existence of the guiding effect, as found for highly charged ions. The guiding of the electron beam was observed for tilt angles up to 12°. As seen for highly charged ions, the guiding efficiency increases with decreasing...

  19. Investigation on structural, optical and electrical properties of polythiophene-Al2O3 composites

    Science.gov (United States)

    Vijeth, H.; Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Devendrappa, H.

    2018-05-01

    The polythiophene (PTH) and polythiophene-Al2O3 composites prepared by in situ chemical polymerisation in the presence of anionic surfactant camphor sulfonic acid (CSA). The formation of composite is confirmed by X-ray Diffraction (XRD) and Energy Dispersive X-ray spectroscopy (EDX) analysis. The surface morphology was studied using Field Emission Electron Microscopy (FESEM). Optical properties was studied using UV-visible spectroscopy, it observed decrease in the band gap reveals material has potential application in optical devices. The dielectric constant and AC conductivity of composite have been studied for different temperature in the frequency range 1 kHz -1 MHz.

  20. Kinetics of the electronic center annealing in Al2O3 crystals

    Science.gov (United States)

    Kuzovkov, V. N.; Kotomin, E. A.; Popov, A. I.

    2018-04-01

    The experimental annealing kinetics of the primary electronic F, F+ centers and dimer F2 centers observed in Al2O3 produced under neutron irradiation were carefully analyzed. The developed theory takes into account the interstitial ion diffusion and recombination with immobile F-type and F2-centers, as well as mutual sequential transformation with temperature of three types of experimentally observed dimer centers which differ by net charges (0, +1, +2) with respect to the host crystalline sites. The relative initial concentrations of three types of F2 electronic defects before annealing are obtained, along with energy barriers between their ground states as well as the relaxation energies.

  1. Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Kah Weng Siew

    2013-12-01

    Full Text Available Glycerol (a bio-waste generated from biodiesel production has been touted as a promising bio-syngas precursor via reforming route. Previous studies have indicated that carbon deposition is the major performance-limiting factor for nickel (Ni catalyst during glycerol steam reforming. In the current paper, dry (CO2-reforming of glycerol, a new reforming route was carried out over alumina (Al2O3-supported non-promoted and lanthanum-promoted Ni catalysts. Both sets of catalysts were synthesized via wet co-impregnation procedure. The physicochemical characterization of the catalyst showed that the promoted catalyst possessed smaller metal crystallite size, hence higher metal dispersion compared to the virgin Ni/Al2O3 catalyst. This was also corroborated by the surface images captured by the FESEM analysis. In addition, BET surface area measurement gave 92.05m²/g for non-promoted Ni catalyst whilst promoted catalysts showed an average of 1 to 6% improvement depending on the La loading. Reaction studies at 873 K showed that glycerol dry reforming successfully produced H2 with glycerol conversion and H2 yield that peaked at 9.7% and 25% respectively over 2wt% La content. The optimum catalytic performance by 2%La-Ni/Al2O3 can be attributed to the larger BET surface area and smaller crystallite size that ensured accessibility of active catalytic sites.  © 2013 BCREC UNDIP. All rights reservedReceived: 12nd May 2013; Revised: 7th October 2013; Accepted: 16th October 2013[How to Cite: Siew, K.W., Lee, H.C., Gimbun, J., Cheng, C.K. (2013. Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 160-166. (doi:10.9767/bcrec.8.2.4874.160-166][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4874.160-166

  2. Preparation and characterization of carbonate terminated polycrystalline Al2O3/Al films

    International Nuclear Information System (INIS)

    Tornow, C.; Noeske, P.-L.M.; Dieckhoff, S.; Wilken, R.; Gaertner, K.

    2005-01-01

    X-ray photoelectron spectroscopy (XPS) was applied to investigate the surface reactivity of polycrystalline Al films in contact with a gas mixture of carbon dioxide and oxygen at room temperature. Based on the characterization of interactions between these substrates and the individual gases at selected exposures, various surface functionalities were identified. Simultaneously dosing both carbon dioxide and oxygen is shown to create surface-terminating carbonate species, which contribute to inhibiting the formation of an Al 2 O 3 layer. Finally, a reaction scheme is suggested to account for the observed dependence of surface group formation on the dosing conditions

  3. Thermal stability of multilayered Pt-Al2O3 nanocoatings for high temperature CSP systems

    CSIR Research Space (South Africa)

    Nuru, ZY

    2015-10-01

    Full Text Available B), 115-120 Thermal stability of multilayered Pt-Al2O3 nanocoatings for high temperature CSP systems Z.Y. Nuru a, b, *, L. Kotsedi a, b, C.J. Arendse c, D. Motaung d, B. Mwakikunga d, K. Roro d, e, M. Maaza a, b a UNESCO-UNISA Africa Chair... Pretoria, South Africa e R&D Core-Energy, Council for Scientific and Industrial Research, P O Box 395, 0001 Pretoria, South Africa Abstract This contribution reports on the effect of thermal annealing on sputtered Pt–Al(sub2)O(sub3) multilayered...

  4. Improved real-time dosimetry using the radioluminescence signal from Al2O3:C

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Andersen, Claus Erik; Aznar, Marianne

    2008-01-01

    15th International Conference on Solid State Dosimetry Location: Delft Univ Technol, Delft, NETHERLANDS Date: JUL 08-13, 2007 Abstract: Carbon-doped aluminum oxide (Al2O3:C) is a highly sensitive luminescence material for ionizing radiation dosimetry, and it is well established that the optically...... to greatly reduce the influence of shallow traps in the range from 0 to 3 Gy and the RL dose-rate measurements with a time resolution of 0. 1 s closely matched dose-rate changes monitored with in ionization chamber. (c) 2007 Elsevier Ltd. All rights reserved....

  5. Ultrasensitive spectroscopy based on photonic waveguides on Al2O3/SiO2 platform

    Science.gov (United States)

    Heidari, Elham; Xu, Xiaochuan; Tang, Naimei; Mokhtari-Koushyar, Farzad; Dalir, Hamed; Chen, Ray T.

    2018-02-01

    Here a photonic waveguide on Al2O3/SiO2 platform is proposed to cover the 240 320 nm wavelength-range, which is of paramount significance in protein and nuclei acid quantification. Our optical waveguide increases path-length and overlap integration for light-matter interaction with proteins. The proposed system detects one order less proteins concentration as low as 12.5 μg/ml compared with NanoDropTM that detects Beer-Lambert-law.

  6. Microdefects in Al2O3 films and interfaces revealed by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Xu, J.; Somieski, B.; Hulett, L.D.; Pint, B.A.; Tortorelli, P.F.; Suzuki, R.; Ohdaira, T.

    1997-01-01

    We have studied microdefects and interfaces of Al 2 O 3 films on iron and nickel aluminide substrates using variable-energy positron lifetime spectroscopy. Di-vacancies, vacancy clusters, and microvoids were observed in the oxide scales. Their sizes and distributions were determined by the nature of the process used to synthesize the alumina film, and influenced by the composition of the alloy substrates. For oxide endash iron aluminide interfaces, positron lifetimes are longer than those for the alumina layer itself, suggesting a greater defect concentration at such sites. copyright 1997 American Institute of Physics

  7. Studies on Nanocrystalline TiN Coatings Prepared by Reactive Plasma Spraying

    Directory of Open Access Journals (Sweden)

    Dong Yanchun

    2008-01-01

    Full Text Available Titanium nitride (TiN coatings with nanostructure were prepared on the surface of 45 steel (Fe-0.45%C via reactive plasma spraying (denoted as RPS Ti powders using spraying gun with self-made reactive chamber. The microstructural characterization, phases constitute, grain size, microhardness, and wear resistance of TiN coatings were systematically investigated. The grain size was obtained through calculation using the Scherrer formula and observed by TEM. The results of X-ray diffraction and electron diffraction indicated that the TiN is main phase of the TiN coating. The forming mechanism of the nano-TiN was characterized by analyzing the SEM morphologies of surface of TiN coating and TiN drops sprayed on the surface of glass, and observing the temperature and velocity of plasma jet using Spray Watch. The tribological properties of the coating under nonlubricated condition were tested and compared with those of the AISI M2 high-speed steel and Al2O3 coating. The results have shown that the RPS TiN coating presents better wear resistance than the M2 high-speed steel and Al2O3 coating under nonlubricated condition. The microhardness of the cross-section and longitudinal section of the TiN coating was tested. The highest hardness of the cross-section of TiN coating is 1735.43HV100 g.

  8. Fluência em filtros cerâmicos de Al2O3 Creep in Al2O3 ceramic filters

    Directory of Open Access Journals (Sweden)

    V. R. Salvini

    2001-12-01

    Full Text Available O comportamento de fluência em materiais cerâmicos sólidos é afetado pela sua microestrutura. Fundamentalmente, são três os parâmetros que influenciam o comportamento de fluência nestes materiais: o constituinte mineralógico, a fase vítrea e a porosidade. Além destes fatores microestruturais, a fluência em cerâmicas celulares depende também da sua macroestrutura, constituída de um arranjo tridimensional de filamentos sólidos interligados. Assim, a análise dos resultados de fluência nestes materiais compreende duas etapas: na primeira deve-se identificar o modo de deformação dos filamentos cerâmicos (macroestrutura e na segunda, identificar o(s mecanismo(s de fluência da microestrutura através dos parâmetros n (expoente da tensão aplicada e Q (energia de ativação do processo. Neste trabalho avaliou-se a fluência em filtros cerâmicos de Al2O3 de 10 ppi sob compressão de 0,034; 0,051 e 0,068 MPa às temperaturas de 1500, 1550 e 1600 ºC ao ar. De acordo com os resultados obtidos, supõe-se que o modo de deformação por flambagem dos filamentos paralelos a carga aplicada é um dos principais fatores que contribui para o aumento da taxa de deformação do filtro e, portanto, dos valores de n e Q. Além do modo de deformação dos filamentos, observou-se que o tipo de ensaio de fluência (com ou sem troca de carga também influencia a determinação dos valores de n e Q.The creep behavior of solid ceramics is strongly affected by the microstructure. Fundamentally, there are three microstructural features which influence the creep behavior: the mineral content, the flux content and the apparent porosity. Additionally, the creep of cellular ceramics also depends on their macrostructure constituted by a tridimensional array of struts. Therefore, the creep analysis of these materials should consist of two stages. Firstly, identification of the macrostructure deformation mode and secondly, determination of the stress exponent

  9. Micro-nanocomposites Al2O3/ NbC/ WC and Al2O3/ NbC/ TaC

    International Nuclear Information System (INIS)

    Santos, Thais da Silva

    2014-01-01

    Alumina based ceramics belong to a class of materials designated as structural, which are widely used in cutting tools. Although alumina has good properties for application as a structural ceramics, composites with different additives have been produced with the aim of improving its fracture toughness and mechanical strength. New studies point out micro-nanocomposites, wherein the addition of micrometric particles should enhance mechanical strength, and nano-sized particles enhance fracture toughness. In this work, alumina based micro nanocomposites were obtained by including nano-sized NbC and micrometer WC particles at 2:1, 6:4, 10:5 and 15:10 vol% proportions, and also with the inclusion of nano-sized NbC and micrometer TaC particles at 2:1 vol% proportion. For the study of densification, micro-nanocomposites were sintered in a dilatometer with a heating rate of 20°C/min until a temperature of 1800°C in argon atmosphere. Based on the dilatometry results, specimens were sintered in a resistive graphite furnace under argon atmosphere between 1500°C and 1700°C by holding the sintering temperature for 30 minutes. Densities, crystalline phases, hardness and tenacity were determined, and micro-nanocomposites microstructures were analyzed. The samples Al 2 O 3 : NbC: TaC sintered at 1700 ° C achieved the greater apparent density (~ 95% TD) and the sample sintered at 1600 ° C showed homogeneous microstructure and increased hardness value (15.8 GPa) compared to the pure alumina . The compositions with 3% inclusions are the most promising for future applications. (author)

  10. Dimethylaluminum hydride for atomic layer deposition of Al2O3 passivation for amorphous InGaZnO thin-film transistors

    Science.gov (United States)

    Corsino, Dianne C.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Takahashi, Kiyoshi; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-06-01

    Atomic layer deposition (ALD) of Al2O3 using dimethylaluminum hydride (DMAH) was demonstrated as an effective passivation for amorphous InGaZnO thin-film transistors (TFTs). Compared with the most commonly used precursor, trimethylaluminum, TFTs fabricated with DMAH showed improved stability, resulting from the lower amount of oxygen vacancies, and hence fewer trap sites, as shown by X-ray photoelectron spectroscopy (XPS) depth profiling analysis. We found that prolonged plasma exposure during ALD can eliminate the hump phenomenon, which is only present for DMAH. The higher Al2O3 deposition rate when using DMAH is in line with the requirements of emerging techniques, such as spatial ALD, for improving fabrication throughput.

  11. A comparative study of tribological behavior of plasma and D-gun sprayed coatings under different wear modes

    International Nuclear Information System (INIS)

    Sundararajan, G.; Rao, D.S.; Prasad, K.U.M.; Joshi, S.V.

    1998-01-01

    In recent years, thermal sprayed protective coatings have gained widespread acceptance for a variety of industrial applications. A vast majority of these applications involve the use of thermal sprayed coatings to combat wear. While plasma spraying is the most versatile variant of all the thermal spray processes, the detonation gun (D-gun) coatings have been a novelty until recently because of their proprietary nature. The present study is aimed at comparing the tribological behavior of coatings deposited using the two above techniques by focusing on some popular coating materials that are widely adopted for wear resistant applications, namely, WC-12% Co, Al 2 O 3 , and Cr 3 C 2 -NiCr. To enable a comprehensive comparison of the above indicated thermal spray techniques as well as coating materials, the deposited coatings were extensively characterized employing microstructural evaluation, microhardness measurements, and XRD analysis for phase constitution. The behavior of these coatings under different wear modes was also evaluated by determining their tribological performance when subjected to solid particle erosion tests, rubber wheel sand abrasion tests, and pin-on-disk sliding wear tests. Among all the coating materials studied, D-gun sprayed WC-12% Co, in general, yields the best performance under different modes of wear, whereas plasma sprayed Al 2 O 3 shows least wear resistance to every wear mode

  12. Controlled High Filler Loading of Functionalized Al2O3-Filled Epoxy Composites for LED Thermal Management

    Science.gov (United States)

    Permal, Anithambigai; Devarajan, Mutharasu; Hung, Huong Ling; Zahner, Thomas; Lacey, David; Ibrahim, Kamarulazizi

    2018-03-01

    Thermal management in light-emitting diode (LED) has been extensively researched recently. This study is intended to develop an effective thermally conductive epoxy composite as thermal interface material (TIM) for headlamp LEDs. Silane-functionalized aluminum oxide (Al2O3) powder of different average particle sizes (44 and 10 µm) was studied for its feasibility as filler at its maximum loading. A detailed comparison of three different methods of particle dispersions, hand-mix, speed-mix and calendaring process (3-roll mill), has been reported. The dispersion of Al2O3 particles, the thermal conductivity and thermal degradation characteristics of the composites were investigated and explained in detail. At 75 wt.% filler loading, 10 and 44 µm Al2O3 achieved composite thermal conductivities of 1.13 and 2.08 W/mK, respectively, which is approximately 528 and 1055% of enhancement with respect to neat epoxy. The package-level thermal performance of the LED employing the Al2O3-filled TIMs was carried out using thermal transient analysis. The experimental junction-to-ambient thermal resistances ( R thJ-A) achieved were 6.65, 7.24, and 8.63 K/W for Al2O3_44µm, Al2O3_10µm and neat epoxy, respectively. The results revealed that the Al2O3_44µm fillers-filled composite performed better in both material-level and package-level thermal characteristics.

  13. Effect of ultrathin GeOx interfacial layer formed by thermal oxidation on Al2O3 capped Ge

    International Nuclear Information System (INIS)

    Han Le; Zhang Xiong; Wang Sheng-Kai; Xue Bai-Qing; Liu Hong-Gang; Wu Wang-Ran; Zhao Yi

    2014-01-01

    We propose a modified thermal oxidation method in which an Al 2 O 3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeO x interfacial layer, and obtain a superior Al 2 O 3 /GeO x /Ge gate stack. The GeO x interfacial layer is formed in oxidation reaction by oxygen passing through the Al 2 O 3 OBL, in which the Al 2 O 3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeO x interfacial layer would dramatically decrease as the thickness of Al 2 O 3 OBL increases, which is beneficial to achieving an ultrathin GeO x interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeO x interfacial layer has little influence on the passivation effect of the Al 2 O 3 /Ge interface. Ge (100) p-channel metal–oxide–semiconductor field-effect transistors (pMOSFETs) using the Al 2 O 3 /GeO x /Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (I on /I off ) ratio of above 1×10 4 , a subthreshold slope of ∼ 120 mV/dec, and a peak hole mobility of 265 cm 2 /V·s are achieved. (condensed matter: structural, mechanical, and thermal properties)

  14. Fabrication and Characteristics of Sintered Cutting Stainless Steel Fiber Felt with Internal Channels and an Al2O3 Coating

    Directory of Open Access Journals (Sweden)

    Shufeng Huang

    2018-03-01

    Full Text Available A novel sintered cutting stainless steel fiber felt with internal channels (SCSSFFC composed of a stainless-steel fiber skeleton, three-dimensional interconnected porous structure and multiple circular microchannels is developed. SCSSFFC has a jagged and rough surface morphology and possesses a high specific surface area, which is approximately 2.4 times larger than that of the sintered bundle-drawing stainless steel fiber felt with internal channels (SBDSSFFC and is expected to enhance adhesive strength. The sol-gel and wet impregnation methods are adopted to prepare SCSSFFC with an Al2O3 coating (SCSSFFC/Al2O3. The adhesive strength of SCSSFFC/Al2O3 is investigated using ultrasonic vibration and thermal shock tests. The experimental results indicate that the weight loss rate of the Al2O3 coating has a 4.2% and 8.42% reduction compared with those of SBDSSFFCs based on ultrasonic vibration and thermal shock tests. In addition, the permeability of SCSSFFC/Al2O3 is investigated based on forced liquid flow tests. The experimental results show that the permeability and inertial coefficients of SCSSFFC/Al2O3 are mainly affected by the coating rate, porosity and open ratio; however, the internal microchannel diameter has little influence. It is also found that SCSSFFC/Al2O3 yields superior permeability, as well as inertial coefficients compared with those of other porous materials reported in the literature.

  15. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Beata KUCHARSKA

    2016-05-01

    Full Text Available Nickel matrix composite coatings with ceramic disperse phase have been widely investigated due to their enhanced properties, such as higher hardness and wear resistance in comparison to the pure nickel. The main aim of this research was to characterize the structure and corrosion properties of electrochemically produced Ni/Al2O3 nanocomposite coatings. The coatings were produced in a Watts bath modified by nickel grain growth inhibitor, cationic surfactant and the addition of alumina particles (low concentration 5 g/L. The process has been carried out with mechanical and ultrasonic agitation. The Ni/Al2O3 nanocomposite coatings were characterized by SEM, XRD and TEM techniques. In order to evaluate corrosion resistance of produced coatings, the corrosion studies have been carried out by the potentiodynamic method in a 0.5 M NaCl solution. The corrosion current, corrosion potential and corrosion rate were determined. Investigations of the morphology, topography and corrosion damages of the produced surface layers were performed by scanning microscope techniques. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407

  16. Black corundum produced by heat treatment of α-Al2O3 in hydrogen

    International Nuclear Information System (INIS)

    Strelov, K.K.; Kamenskikh, V.A.; Gilev, Yu.P.; Permikina, N.M.; Anufrienko, V.F.; Ivan'kin, I.A.; Kharlamov, G.V.

    1987-01-01

    The goal of this work has been to compare the structure of white and black corundum. Among all forms of Al 2 O 3 samples, only α-Al 2 O 3 was observed to have undistorted unit-cell parameters. The x-ray diffractograms of black and white samples (even those differing somewhat in the impurity contents) were perfectly identical. The integrated signal intensities at 300 and 77 K are practically identical, which allows the authors to ascribeit to an antiferromagnetic phase. The formation of this phase can be due to iron impurities. However, the very small starting Fe 3+ concentration, the presence of its spectrum with very small variations in both the forms of corundum, and the considerable intensity of the wide signal lead them to another supposition regarding its nature. Possibly, an antiferromagnetic ordering of the reduced forms of aluminum (Al 2+ ) takes place. For the spectrum of the isolated Al 2+ ions, one may expect the appearance of six hyperfine-structure lines with a high constant. A large width of the EPR signal on account of the hyperfine structures does not contradict the assumption about the formation of an antiferromagnetic structure in the present case. The question remains unclear as to the stabilization sites of such structures, viz., whether they are formed with the participation of Al 2+ interstitial ions

  17. Prediction of fracture strength in Al2O3/SiCp ceramic matrix nanocomposites

    Directory of Open Access Journals (Sweden)

    Z. Zhang and D.L. Chen

    2007-01-01

    Full Text Available Based primarily on a recent publication [S.M. Choi, H. Awaji, Sci. Tech. Adv. Mater. 6 (2005 2–10.], where the dislocations around the nano-sized particles in the intra-granular type of ceramic matrix nanocomposites (CMNCs were modeled, dislocation activities in Al2O3/SiCp CMNCs were discussed in relation to the processing conditions. The dislocations around the nano-sized particles, caused by the thermal mismatch between the ceramic matrix and nano-sized particles, were assumed to hold out the effect of Orowan-like strengthening, although the conventional Owowan loops induced by the movement of dislocations were unlikely in the ceramic matrix at room temperature. A model involving the yield strength of metal matrix nanocomposites (MMNCs, where the Owowan strengthening effect was taken into consideration, was thus modified and extended to predict the fracture strength of the intra-granular type of CMNCs without and with annealing. On the basis of the characteristics of dislocations in the CMNCs, the load-bearing effect and Orowan-like strengthening were considered before annealing, while the load-bearing effect and enhanced dislocation density strengthening were taken into account after annealing. The model prediction was found to be in agreement with the experimental data of Al2O3/SiCp nanocomposites reported in the literature.

  18. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    Science.gov (United States)

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  19. Fractal analysis of crack paths in Al2O3-TiC-4%Co composites

    Institute of Scientific and Technical Information of China (English)

    LI Jing; YIN Yan-sheng; LIU Ying-cai; MA Lai-peng

    2006-01-01

    Al2O3-TiC-4%Co(volume fraction) composites(ATC) with high toughness (7.8±0.8 MPa·m1/2) and strength (782±60 MPa) were fabricated. In comparison with Al2O3-TiC composites(AT), the fracture toughness was significantly improved by 60%. The crack paths, generated by Vickers indentation on the polished surfaces of both composites, were analyzed from a fractal point of view to distinguish the possible toughening mechanisms involved. Quantitative evaluation of indentation cracks indicates that the crack deflection plays a more effective role. Cracks of the ATC composites show higher deflection angles and more deflections along the path. ATC composites present higher fractal dimension (D=1.07) than AT composites (D=1.02), which is directly related to the higher fracture toughness. A significant relationship between crack path and toughness is evident: the more irregular the geometry of the crack, the higher the fracture toughness.

  20. Influence of Al2O3 nanoparticles on the isothermal cure of an epoxy resin

    International Nuclear Information System (INIS)

    Sanctuary, R; Baller, J; Zielinski, B; Becker, N; Krueger, J K; Philipp, M; Mueller, U; Ziehmer, M

    2009-01-01

    The influence of Al 2 O 3 nanoparticles on the curing of an epoxy thermoset based on diglycidyl ether of bisphenol A was investigated using temperature-modulated differential scanning calorimetry (TMDSC) and rheology. Diethylene triamine was used as a hardener. TMDSC not only allows for a systematic study of the kinetics of cure but simultaneously gives access to the evolution of the specific heat capacities of the thermosets. The technique thus provides insight into the glass transition behaviour of the nanocomposites and hence makes it possible to shed some light on the interaction between the nanoparticles and the polymer matrix. The Al 2 O 3 fillers are shown to accelerate the growth of macromolecules upon isothermal curing. Several mechanisms which possibly could be responsible for the acceleration are described. As a result of the faster network growth chemical vitrification occurs at earlier times in the filled thermosets and the specific reaction heat decreases with increasing nanoparticle concentration. Rheologic measurements of the zero-shear viscosity confirm the faster growth of the macromolecules in the presence of the nanoparticles.

  1. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    Science.gov (United States)

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  2. Tribological properties of Al 7075 alloy based composites strengthened with Al2O3 fibres

    Directory of Open Access Journals (Sweden)

    K. Naplocha

    2011-04-01

    Full Text Available Wear resistance of 7075 aluminium alloy based composite materials reinforced with Al2O3 Saffil fibres was investigated. The measurementsof wear were performed applying the pin-on-disc method at dry friction conditions with the gray iron counterpart. The effects ofpressure of composite samples on the counterpart made of gray iron and the orientation of fibers in relation to the friction surface on wear rate were determined. The materials were produced by squeeze casting method where 80-90% porous ceramic preform were infiltrated.After T6 heat treatment hardness increased about 50-60% both for unreinforced alloy and composites containing strengthening Saffilfibres. Wear resistance of composite materials in relation to the unreinforced 7075 alloy was slightly worse at lower pressure of 0.8 MPa. Under higher pressure of 1.2 MPa wear resistance of unreinforced 7075 alloy was even better whereas no effect of orientation of fibers on wear in composite materials was observed. Additionally, significant wear of counterface in the presence of debris with fragmented Al2O3 fibres as abrasives was observed. Wear resistance improvement of composite materials was obtained when with alumina Saffil fibres Carbon C fibres in the preforms were applied.

  3. Al2O3 Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB Technique

    Directory of Open Access Journals (Sweden)

    Gabriele Baiocco

    2018-01-01

    Full Text Available Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less, and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al2O3 film on a magnesium alloy realized by the fluidized bed (FB technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al2O3 coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  4. Chemical Quenching of Positronium in CuO/Al2O3 Catalysts

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Liu Zhe-Wen; Chen Zhi-Quan; Wang Shao-Jie

    2011-01-01

    CuO/Al 2 O 3 catalysts were prepared by mixing CuO and γ-Al 2 O 3 nanopowders. Microstructure and chemical environment of the catalysts are characterized by positron annihilation spectroscopy. The positron annihilation lifetime measurements reveal two long lifetime components τ 3 and τ 4 , which correspond to ortho-positronium (o-Ps) annihilating in microvoids and large pores, respectively. With increasing CuO content from 0 to 40 wt%, both τ 4 and its intensity I 4 show significant decrease, which indicates quenching effect of o-Ps. The para-positronium (p-Ps) intensities derived from multi-Gaussian fitting of the coincidence Doppler broadening spectra also decreases gradually with increasing CuO content. This excludes the possibility of spin-conversion of positronium. Therefore, the chemical quenching by CuO is probably responsible for the decrease of o-Ps lifetime. Variation in the o-Ps annihilation rate λ 4 (1/τ 4 ) as a function of CuO content can be well fitted by a straight line, and the slope of the fitting line is (1.83 ± 0.05) × 10 −7 s −1 . (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Temperature dependence of the Al2O3:C response in medical luminescence dosimetry

    International Nuclear Information System (INIS)

    Edmund, Jens M.; Andersen, Claus E.

    2007-01-01

    Over the last years, attention has been given to applications of Al 2 O 3 :C in space and medical dosimetry. One such application is in vivo dose verification in radiotherapy of cancer patients and here we investigate the temperature effects on the radioluminescence (RL) and optically stimulated luminescence (OSL) signals in the room-to-body temperature region. We found that the OSL response changes with both irradiation and stimulation temperatures as well as the OSL integration time. We conclude that temperature effects on the OSL response can be removed by integration if the irradiation temperature is not varied. The RL response only depends on the irradiation temperature. We recommend that calibration should be carried out at the same irradiation temperature at which the measurement is performed (i.e. at body temperature for in vivo measurements). The overall change in the integrated OSL and RL signals with irradiation and stimulation temperature covers an interval from -0.2% to 0.6% per deg. C. This indicates the correction factor one must take into account when performing luminescence dosimetry at different temperatures. The same effects were observed regardless of crystal type, test doses and stimulation and detection wavelengths. The reported temperature dependence seems to be a general property of Al 2 O 3 :C

  6. Dynamic compaction of Al2O3-ZrO2 compositions

    International Nuclear Information System (INIS)

    Tunaboylu, B.; McKittrick, J.; Nutt, S.R.

    1994-01-01

    Shock compaction of Al 2 O 3 -ZrO 2 binary and ternary powder compositions resulted in dense, one-piece samples without visible cracks for pressures ≤12.6 GPa. Dynamic pressures were achieved by using a 6.5-m-long two-state gas gun. It is believed that plastic deformation by dislocation slip of α-Al 2 O 3 partially accommodates the tensile stresses created during the release of shock pressures. A fine and narrow particle size distribution is necessary to achieve high bulk densities, but the bulk structural integrity was not strongly related to the distribution. A high-pressure phase of ZrO 2 , which was formed from the monoclinic polymorph, was found at and above shock pressure of 6.3 GPa. No evidence of the orthorhombic cotunnite structure was observed. Compaction of glassy and submicrocrystalline rapidly solidified starting materials showed good structural integrity, although the bulk density was relatively low. It is not clear what the densification/bonding mechanism is in these materials, although it appears not to be plastic deformation. Microstructural analysis showed that fine and uniform microstructures are retained after compaction at appropriate dynamic pressures for all compositions, with some interparticle cohesion present

  7. Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments

    International Nuclear Information System (INIS)

    Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-01-01

    Thin layers of Al 2 O 3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p + emitters, due to a high density of fixed negative charges. Recent results indicate that Al 2 O 3 can also provide a good passivation of certain phosphorus-diffused n + c-Si surfaces. In this work, we studied the recombination at Al 2 O 3 passivated n + surfaces theoretically with device simulations and experimentally for Al 2 O 3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al 2 O 3 interface. This pronounced maximum was also observed experimentally for n + surfaces passivated either with Al 2 O 3 single layers or stacks of Al 2 O 3 capped by SiN x , when activated with a low temperature anneal (425 °C). In contrast, for Al 2 O 3 /SiN x stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n + diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al 2 O 3 /SiN x stacks can provide not only excellent passivation on p + surfaces but also on n + surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments

  8. Formation mechanism and control of MgO·Al2O3 inclusions in non-oriented silicon steel

    Science.gov (United States)

    Sun, Yan-hui; Zeng, Ya-nan; Xu, Rui; Cai, Kai-ke

    2014-11-01

    On the basis of the practical production of non-oriented silicon steel, the formation of MgO·Al2O3 inclusions was analyzed in the process of "basic oxygen furnace (BOF) → RH → compact strip production (CSP)". The thermodynamic and kinetic conditions of the formation of MgO·Al2O3 inclusions were discussed, and the behavior of slag entrapment in molten steel during RH refining was simulated by computational fluid dynamics (CFD) software. The results showed that the MgO/Al2O3 mass ratio was in the range from 0.005 to 0.017 and that MgO·Al2O3 inclusions were not observed before the RH refining process. In contrast, the MgO/Al2O3 mass ratio was in the range from 0.30 to 0.50, and the percentage of MgO·Al2O3 spinel inclusions reached 58.4% of the total inclusions after the RH refining process. The compositions of the slag were similar to those of the inclusions; furthermore, the critical velocity of slag entrapment was calculated to be 0.45 m·s-1 at an argon flow rate of 698 L·min-1, as simulated using CFD software. When the test steel was in equilibrium with the slag, [Mg] was 0.00024wt%-0.00028wt% and [Al]s was 0.31wt%-0.37wt%; these concentrations were theoretically calculated to fall within the MgO·Al2O3 formation zone, thereby leading to the formation of MgO·Al2O3 inclusions in the steel. Thus, the formation of MgO·Al2O3 inclusions would be inhibited by reducing the quantity of slag entrapment, controlling the roughing slag during casting, and controlling the composition of the slag and the MgO content in the ladle refractory.

  9. Plasma sprayed thermoregulating coatings

    International Nuclear Information System (INIS)

    Kudinov, V.V.; Puzanov, A.A.; Zambrzhitskij, A.P.; Soboleva, V.V.

    1979-01-01

    Shown is the possibility of plasma spraying application for thermoregulating coating formation. Given are test results of service properties of BeO, Al 2 O 2 plasma coatings on the substrates of the MA2-1 magnesium alloy. Described is a device for studying durability of coating optical parameters under ultraviolet irradiation in deep vacuum. Dynamics of absorption coefficient, growth caused by an increase in absorption centers amount under such irradiation is investigated

  10. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    OpenAIRE

    Boukoberine, Yamina; Hamada, Boudjema

    2016-01-01

    CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in ca...

  11. XAS study of V2O5/Al2O3 catalysts doped with rare earth oxides

    International Nuclear Information System (INIS)

    Centeno, M.A.; Malet, P.; Capitan, M.J.; Benitez, J.J.; Carrizosa, I.; Odriozola, J.A.

    1995-01-01

    This paper reports on XAS studies of well dispersed V 2 O 5 /Al 2 O 3 and V 2 O 5 /Sm 2 O 3 /Al 2 O 3 samples. XAS spectra at V-K and Sm-L III edges show that the rare earth oxide favours the formation of regular tetrahedral units, [VO 4 ], over the surface of the support. Positions of the preedge peak at the V-K edge, and intensities of the white line at the Sm-L III edge also suggest modifications in the electronic density around V and Sm atoms when they are simultaneously supported over Al 2 O 3 . ((orig.))

  12. Measurement of ZnO/Al2O3 Heterojunction Band Offsets by in situ X-Ray Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Lei Hong-Wen; Zhang Hong; Wang Xue-Min; Zhao Yan; Yan Da-Wei; Jiang Zhong-Qian; Yao Gang; Zeng Ti-Xian; Wu Wei-Dong

    2013-01-01

    ZnO films are grown on c-sapphire substrates by laser molecular beam epitaxy. The band offsets of the ZnO/Al 2 O 3 heterojunction are studied by in situ x-ray photoelectron spectroscopy. The valence band of Al 2 O 3 is found to be 3.59±0.05eV below that of ZnO. Together with the resulting conduction band offset of 2.04±0.05eV, this indicates that a type-I staggered band line exists at the ZnO/Al 2 O 3 heterojunction

  13. Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems

    International Nuclear Information System (INIS)

    Singh, K.J.; Kaur, Sandeep; Kaundal, R.S.

    2014-01-01

    Gamma-ray shielding properties have been estimated in terms of mass attenuation coefficient, half value layer and mean free path values, whereas, structural studies have been performed in terms of density, optical band gap, glass transition temperature and longitudinal ultrasonic velocity parameters. X-ray diffraction, UV–visible, DSC and ultrasonic techniques have been used to explore the structural properties of PbO–SiO 2 –Al 2 O 3 and Bi 2 O 3 –SiO 2 –Al 2 O 3 glass systems. - Highlights: • Bi 2 O 3 –SiO 2 –Al 2 O 3 and PbO–SiO 2 –Al 2 O 3 glasses can replace conventional concretes as gamma-ray shielding materials. • Gamma-ray shielding properties improve with the addition of heavy metals. • Rigidity deteriorates with the increase in the content of heavy metals. • Bi 2 O 3 –SiO 2 –Al 2 O 3 glass system is better than PbO–SiO 2 –Al 2 O 3 glass system in terms of gamma-ray shielding as well as structural properties

  14. Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature

    International Nuclear Information System (INIS)

    Choi, Dong Hyuck; Park, Jung Eun; Park, Eun Duck

    2015-01-01

    The effect of preparation method on the catalytic activities of the Ni/Al 2 O 3 catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, K 2 CO 3 , and NH 4 OH were compared. The prepared catalysts were characterized by using N 2 physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, pulsed H 2 chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH or K 2 CO 3 as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature

  15. The Modification of Sodium Polyacrylate Water Solution Cooling Properties by AL2O3

    Directory of Open Access Journals (Sweden)

    Wojciech Gęstwa

    2010-01-01

    Based on cooling curves, it can be concluded that for the water solution of sodium polyacrylate with AL2O3 nanoparticles in comparison to water and 10% polymer water solution lower cooling speed is obtained. The cooling medium containing nanoparticles provides lower cooling speed in the smallest surface austenite occurance (500–600 C in the charts of the CTP for most nonalloy structural steels and low-alloy steels. However lower cooling temperature at the beginning of martensitic transformation causes the formation of smaller internal stresses, leading to smaller dimensional changes and hardening deformation. For the quenching media the wetting angle was appointed by the drop-shape method. These studies showed the best wettability of polymer water solution (sodium polyacrylate with the addition of AL2O3 nanoparticles, whose wetting angle was about 65 degrees. Obtaining the smallest wetting angle for the medium containing nanoparticles suggests that the heat transfer to the cooling medium is larger. This allows slower cooling at the same time ensuring its homogeneity. The obtained values of wetting angle confirm the conclusions drawn on the basis of cooling curves and allowus to conclude that in the case of the heat transfer rate it will have a lower value than for water and 10% polymer water solution. In the research on hardened carburized steel samples C10 and 16MnCr5 surface hardness, impact strength and changes in the size of cracks in Navy C-ring sample are examined. On this basis of the obtained results it can be concluded that polymer water solution with nanoparticles allows to obtain a better impact strength at comparable hardness on the surface. Research on the dimensional changes on the basis of the sample of Navy C-ring also shows small dimensional changes for samples carburized and hardened in 10% polymer water solution with the addition of nanoparticles AL2O3. Smaller dimensional changes were obtained for samples of steel 16MnCr5 thanfar C10. The

  16. Natural convection of Al2O3-water nanofluid in a wavy enclosure

    Science.gov (United States)

    Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.

    2017-06-01

    Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat

  17. Effects of temperature and ionization density in medical luminescence dosimetry using Al2O3:C

    International Nuclear Information System (INIS)

    Morgenthaler Edmund, J.

    2007-11-01

    A new system containing small crystals of aluminum oxide doped with carbon (Al 2 O 3 :C) attached to optical fiber cables has recently been introduced. During irradiation, the system monitors the radioluminescence (RL)from the crystals and after irradiation, an optically stimulated luminescence (OSL) signal can be read out by stimulating the crystal with light. This thesis applies the initial part and the total area of the resulting OSL decay curve for dosimetry measurements and investigates the effects of temperature and proton energy, i.e. ionization density, on the RL and OSL signals from Al 2 O 3 :C. In the temperature study, it was found that the OSL signal depends on both irradiation and stimulation temperature while the RL signal is effected only by the irradiation temperature. The initial OSL signal is increasing with temperature whereas the total OSL area is decreasing. Therefore, if the irradiation temperature is kept constant, one can find an integration time which provides an OSL signal independent of stimulation temperature. Overall, the RL and OSL signals vary between -0.2 to 0.6% per C. Thermal effects were simulated with a band structure model and indicated that the temperature effects are caused by the combined efforts of energetic shallow traps and thermal excitation from intermediate states in deeper traps. In the study of ionization density, we investigated protons with energies between 10 and 60 MeV (4.57 to 1.08 keV/μm in water). Experimentally, we observed that the initial OSL signalprovided a signal independent of linear energy transfer (LET) for allenergies at 0.3 Gy. The total OSL area showed an LET dependent behavior atall doses and energies. We used track structure theory (TST) to give possible explanations for the LET dependence of the OSL signal. From these calculations, we found that the initial OSL signal is, in general, not LET independent which makes Al2O3:C unsuitable for OSL proton dosimetry. The initial OSL signal can, however

  18. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation

    KAUST Repository

    Zhang, Zailei; Zhu, Yihan; Asakura, Hiroyuki; Zhang, Bin; Zhang, Jiaguang; Zhou, Maoxiang; Han, Yu; Tanaka, Tsunehiro; Wang, Aiqin; Zhang, Tao; Yan, Ning

    2017-01-01

    with outstanding stability in several reactions under demanding conditions. The Pt atoms are firmly anchored in the internal surface of mesoporous Al2O3, likely stabilized by coordinatively unsaturated pentahedral Al3+ centres. The catalyst keeps its structural

  19. EFFECT OF IMPREGNATION PROCEDURE OF Pt/γ-Al2O3 CATALYSTS UPON CATALYTIC OXIDATION OF CO

    Directory of Open Access Journals (Sweden)

    Triyono Triyono

    2010-06-01

    Full Text Available The oxidation of carbon monoxide by oxygen using two catalysts prepared by two different methods has been investigated. In the first method, catalyst prepared by immersing γ-Al2O3 into the hexa-chloroplatinic acid solution at 80oC for 4 h, resulted Pt/γ-Al2O3 catalyst having platinum highly dispersed on the support. While that of immersing γ-Al2O3 in the hexa-chloroplatinic acid solution at room temperature for 12 h, produced Pt/ γ-Al2O3 catalyst where platinum dispersion was much lower. Catalytic activity test showed that platinum well dispersed on the support enhanced the activity of oxidation of carbon monoxide. The platinum impregnated at room temperature resulted in the poor activity.   Keyword: Catalyst, CO Oxidation, Platinum.

  20. High-performance flexible resistive memory devices based on Al2O3:GeOx composite

    Science.gov (United States)

    Behera, Bhagaban; Maity, Sarmistha; Katiyar, Ajit K.; Das, Samaresh

    2018-05-01

    In this study a resistive switching random access memory device using Al2O3:GeOx composite thin films on flexible substrate is presented. A bipolar switching characteristic was observed for the co-sputter deposited Al2O3:GeOx composite thin films. Al/Al2O3:GeOx/ITO/PET memory device shows excellent ON/OFF ratio (∼104) and endurance (>500 cycles). GeOx nanocrystals embedded in the Al2O3 matrix have been found to play a significant role in enhancing the switching characteristics by facilitating oxygen vacancy formation. Mechanical endurance was retained even after several bending. The conduction mechanism of the device was qualitatively discussed by considering Ohmic and SCLC conduction. This flexible device is a potential candidate for next-generation electronics device.

  1. The effect of native Al2O3 skin disruption on properties of fine Al powder compacts

    International Nuclear Information System (INIS)

    Balog, Martin; Poletti, Cecilia; Simancik, Frantisek; Walcher, Martin; Rajner, Walter

    2011-01-01

    Research highlights: → The effect of various powder metallurgy compaction routes on the microstructures and properties of ultra-fine atomized Al powder compacts. → Applied compaction route affects the deformation and fracture of native Al 2 O 3 layer present on the surface of as-atomized powder. → Distribution, morphology and interconnectivity of in situ introduced Al 2 O 3 dispersoids distinctly determine the compacts properties. - Abstract: In the presented study we characterize how various powder metallurgical routes (extrusion, forging, and HIP/sintering) affect the fracture of native Al 2 O 3 layer present on the surface of ultra-fine atomized Al powders. It is shown that the different distribution, morphology and interconnectivity of in situ introduced Al 2 O 3 dispersoids strongly affect the thermal stability and mechanical and thermal properties of subsequent powder compacts.

  2. Characterization of Bragg gratings in Al2O3 waveguides fabricated by focused ion beam milling and laser interference lithography

    NARCIS (Netherlands)

    Ay, F.; Bernhardi, Edward; Agazzi, L.; Bradley, J.; Worhoff, Kerstin; Pollnau, Markus; de Ridder, R.M.

    Optical grating cavities in Al2O3 channel waveguides were successfully defined by focused ion beam milling and laser interference lithography. Both methods are shown to be suitable for realizing resonant structures for on-chip waveguide lasers.

  3. Facile and Selective Synthesis of 2-Substituted Benzimidazoles Catalyzed by FeCl3/ Al2O3

    Directory of Open Access Journals (Sweden)

    Guo-Feng Chen

    2012-01-01

    Full Text Available 2-Substituted benzimidazoles were synthesized in a single pot from aromatic aldehydes and o-phenylenediamine catalyzed by FeCl3/ Al2O3 in DMF at ambient temperature attained good yields and high selectivity.

  4. Improved charge trapping flash device with Al2O3/HfSiO stack as blocking layer

    International Nuclear Information System (INIS)

    Zheng Zhi-Wei; Huo Zong-Liang; Zhu Chen-Xin; Xu Zhong-Guang; Liu Jing; Liu Ming

    2011-01-01

    In this paper, we investigate an Al 2 O 3 /HfSiO stack as the blocking layer of a metal—oxide—nitride—oxide—silicon-type (MONOS) memory capacitor. Compared with a memory capacitor with a single HfSiO layer as the blocking layer or an Al 2 O 3 /HfO 2 stack as the blocking layer, the sample with the Al 2 O 3 /HfSiO stack as the blocking layer shows high program/erase (P/E) speed and good data retention characteristics. These improved performances can be explained by energy band engineering. The experimental results demonstrate that the memory device with an Al 2 O 3 /HfSiO stack as the blocking layer has great potential for further high-performance nonvolatile memory applications. (interdisciplinary physics and related areas of science and technology)

  5. Raman spectra of MgSiO3 . 10% Al2O3-perovskite at various pressures and temperatures

    International Nuclear Information System (INIS)

    Liu Lingun; Irifune, T.

    1995-01-01

    Variations of Raman spectra of MgSiO 3 . 10% Al 2 O 3 -perovskite were investigated up to about 270 kbar at room temperature and in the range 108-425 K at atmospheric pressure. Like MgSiO 3 -perovskite, the Raman frequencies of MgSiO 3 . 10% Al 2 O 3 -perovskite increase nonlinearly with increasing pressure and decrease linearly with increasing temperature within the experimental uncertainties and the range investigated. A comparison of these data with those of MgSiO 3 -perovskite suggests that MgSiO 3 . 10% Al 2 O 3 -perovskite is slightly more compressible than MgSiO 3 -perovskite, and that the volume thermal expansion for MgSiO 3 . 10% Al 2 O 3 -perovskite is also slightly greater than that for MgSiO 3 -perovskite. (orig.)

  6. Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Lin Zhaoqing; Squartini, Tiziano

    2011-01-01

    Research highlights: → In this study, Fe 3 Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. → Laser cladding of Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can increase wear resistance of substrate. → In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of Ti 3 Al and B. → This principle can be used to improve the Fe 3 Al + TiB 2 laser-cladded coating. - Abstract: Laser cladding of the Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of amount of Ti 3 Al and B. This principle can be used to improve the Fe 3 Al + TiB 2 laser cladded coating, it was found that with addition of Al 2 O 3 , the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  7. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    Science.gov (United States)

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  8. Investigating the nanostructure and thermal properties of chiral poly(amide-imide)/Al2O3 compatibilized with 3-aminopropyltriethoxysilane

    International Nuclear Information System (INIS)

    Mallakpour, Shadpour; Dinari, Mohammad

    2013-01-01

    Graphical abstract: - Highlights: • Chiral polymer with different functional groups was prepared in green route. • The surface of Al 2 O 3 -NPs was treated by KH550 as a silane coupling agent. • NCs of poly(amide-imide) and Al 2 O 3 were synthesized by ultrasonic irradiation. • TEM results show good dispersion of Al 2 O 3 -NPs in the poly(amide-imide) matrix. • The thermal and mechanical properties of the hybrid materials were improved. - Abstract: Novel chiral poly(amide-imide) (PAI)/Al 2 O 3 nanocomposites were prepared via incorporating surface modified Al 2 O 3 nanoparticles into polymer matrices for the first time. In the process of preparing the nanocomposites, severe aggregation of Al 2 O 3 nanoparticles could be reduced by surface modification and γ-aminopropyltriethoxysilane. The optically active PAI chains were formed from the polycondensation reaction of N,N′-(pyromellitoyl)-bis-phenylalanine diacid with 2-(3,5-diaminophenyl)-benzimidazole in green condition. The obtained polymer and inorganic metal oxide nanoparticles were used to prepare chiral PAI/Al 2 O 3 nanocomposites through ultrasonic irradiation. The resulting nanoparticle filled composites were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis (TGA) techniques. TGA thermographs confirmed that the heat stability of the prepared nanoparticle-reinforced composites was improved. Mechanical properties showed that the film containing 10 wt% of modified Al 2 O 3 had a tensile strength of the order of 83.6 MPa, relative to the 64.3 MPa of the pure PAI

  9. Al2O3 e-Beam Evaporated onto Silicon (100)/SiO2, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Samha, Hussein; Linford, Matthew R.

    2013-09-25

    We report the XPS characterization of a thin film of Al2O3 (35 nm) deposited via e-beam evaporation onto silicon (100). The film was characterized with monochromatic Al Ka radiation. An XPS survey scan, an Al 2p narrow scan, and the valence band spectrum were collected. The Al2O3 thin film is used as a diffusion barrier layer for templated carbon nanotube (CNT) growth in the preparation of microfabricated thin layer chromatography plates.

  10. The effect of the gas composition on hydrogen-assisted NH3-SCR over Ag/Al2O3

    DEFF Research Database (Denmark)

    Tamm, Stefanie; Fogel, Sebastian; Gabrielsson, Pär

    2013-01-01

    In addition to high activity in hydrocarbon-SCR, Ag/Al2O3 catalysts show excellent activity for NOx reduction for H2-assisted NH3-SCR already at 200°C. Here, we study the influence of different gas compositions on the activity of a pre-sulfated 6wt% Ag/Al2O3 catalyst for NOx reduction, and oxidat...

  11. Synthesis behavior of nanocrystalline Al-Al2O3 composite during low time mechanical milling process

    International Nuclear Information System (INIS)

    Alizadeh, Mostafa; Aliabadi, Morteza Mirzaei

    2011-01-01

    Research highlights: → In the low time milling the effect of Al 2 O 3 amount is investigated → Al 2 O 3 particles are distributed uniformly in the Al matrix → In the low time milling it is possible to produce nanostructured composite powder → Median size and bulk density measurements demonstrate reaching the steady state. - Abstract: In this work, four different volume fractions of Al 2 O 3 (10, 20, 30 and 40 vol.%) were mixed with the fine Al powder and the powder blends were milled for 5 h. Scanning electron microscopy analysis, particle size analysis and bulk density measurements were used to investigate the morphological changes and achieving the steady state conditions. The results showed that increasing the Al 2 O 3 content can provide the steady state particle size in 5 h milling process. It was found that increasing the volume fraction of Al 2 O 3 leads to increasing the uniformity of Al 2 O 3 . Standard deviations of microhardness measurements confirmed this result. The XRD pattern and XRF investigations depicted that increasing the Al 2 O 3 content causes an increase in the crystal defects, micro-strain and Fe contamination during 5 h milling process of nanocrystalline composite powders while the grain size is decreased. To investigate the effect of milling time, Al-30 vol.% Al 2 O 3 (which achieved steady state during 5 h milling process) was milled for 1-4 h. The results depicted that the milling time lower than 5 h, do not achieve to steady state conditions.

  12. Mechanical properties of Al2O3-doped (2 wt.%) ZnO films

    International Nuclear Information System (INIS)

    Kuriki, Shina; Kawashima, Toshitaka

    2007-01-01

    We report a new method of evaluating the adhesion of Al 2 O 3 -doped (2 wt.%) ZnO (AZO) thin films. The AZO films were deposited by DC reactive magnetron sputtering on plastic film (PET: polyethyleneterephthalate) at various sputtering pressures, power, and reactive gas-flow ratios. The adhesion test of the films was carried out using the nanoindentation system. The fracture point as determined by the load-displacement curve occurred at the time of separation between the thin film and the substrate. The integration value of load and displacement to the fracture point is defined as the degree of adhesion (S W ). The AZO films showed that adhesion increase as sputtering power increases and sputtering pressure decreases

  13. Combined TEM and NC-AFM study of Al2O3-supported Pt nanoparticles

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Simonsen, Søren Bredmose; Chorkendorff, Ib

    Sintering, the growth of large particles at the expense of smaller ones, is one of the main causes of catalysts deactivation, since the physicochemical properties of a nanoparticle may depend strongly on its size, shape and composition. For application as heterogeneous catalysts, the nanoparticle...... kinks and edges often play an important role for the catalytic activity. In order to preserve these sites, it is important to stabilize the supported nanoparticles with sizes of a few nanometers during operational conditions at often high temperatures and in the relevant gas environments. A prototypical...... nanocatalyst system for studying coarsening consists of Pt nanoparticles supported on an Al2O3 material which is relevant as an oxidation catalyst in diesel and lean-burn engine exhaust after-treatment technologies. In this study we address the effect on sintering of the shape of Pt nanoparticles supported...

  14. AN EXPERIMENTAL STUDY ON HEAT TRANSFER AND FRICTION FACTOR OF AL2O3 NANOFLUID

    Directory of Open Access Journals (Sweden)

    K.V. Sharma

    2011-12-01

    Full Text Available L. Syam Sundar1 and K.V. Sharma2This paper reports experimental investigations of fully developed laminar convective heat transfer and friction factor characteristics of different volume concentrations of Al2O3 nanofluid in a plain tube, fitted with different twist ratios of twisted tape inserts. Experiments are conducted with water and nanofluid in the range of 700

  15. Effect of preparation method on catalytic activity of Ni/ γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Miranda Morales, Barbara

    2017-01-01

    The performance of catalysts was shown to be strongly dependent on their methods of preparation. A study to examine the relationship between catalyst preparation procedures and the structure, dispersion, activity, and selectivity of the finished catalyst is reported. 10 wt.%Ni/γ-Al 2 O 3 catalysts were prepared by incipient wetness impregnation and by wet impregnation. The catalysts were used in the conversion of glycerol in gas phase and atmospheric pressure. The selectivity and activity of the catalysts were affected by the preparation method employed. The catalysts were characterized by thermogravimetric analysis (TGA), temperature-programmed reduction (TPR), N 2 -physorption, H 2 -chemisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and temperature-programmed oxidation (TPO). The Ni particle size and dispersion of the catalysts affected the selectivity to hydrogenolysis and dehydration routes, and the formation of carbon deposits was also affected. (author) [es

  16. Chemisorption of carbon dioxide and ethene on eta-Al2O3

    International Nuclear Information System (INIS)

    Schubart, W.; Knoezinger, H.

    1985-01-01

    The chemisorption of ethene on eta-Al 2 O 3 has been studied by thermal desorption spectroscopy (TDS) as a function of the degree of surface hydroxylation. The effect of CO 2 poisoning and the D 2 exchange with chemisorbed C 2 H 4 was investigated. While CO 2 shows a broad distribution of interaction energies, three (or four) distinct chemisorption states can be detected for C 2 H 4 . It is suggested that C 2 H 4 forms vinyl species via heterolytic cleavage of C-H bonds on acid-base pair sites. These presumably contain strong defects (ensembles of anion vacanies) and OH-groups coordinated to tetrahedral Al 3+ in immediate vicinity. Differences in coordination and local environment are assumed to be responsible for the formation of the three (or four) distinct chemisorption states. (orig.) [de

  17. Characterization of dispersed and aggregated Al2O3 morphologies for predicting nanofluid thermal conductivities

    International Nuclear Information System (INIS)

    Feng Xuemei; Johnson, Drew W.

    2013-01-01

    Nanofluids are reported to have enhanced thermal conductivities resulting from nanoparticle aggregation. The goal of this study was to explore through experimental measurements, dispersed and aggregated morphology effects on enhanced thermal conductivities for Al 2 O 3 nanoparticles with a primary size of 54.2 ± 2.0 nm. Aggregation effects were investigated by measuring thermal conductivity of different particle morphologies that occurred under different aggregation conditions. Fractal dimensions and aspect ratios were used to quantify the aggregation morphologies. Fractal dimensions were measured using static light scattering and imaging techniques. Aspect ratios were measured using dynamic light scattering, scanning electron microscopy, and atomic force microscopy. Results showed that the enhancements in thermal conductivity can be predicted with effective medium theory when aspect ratio was considered.

  18. Al2O3- BSST Based Chemical Sensors for Ammonia Gas Sensing

    Directory of Open Access Journals (Sweden)

    L. A. Patil

    2009-10-01

    Full Text Available Gas sensing behaviour of pure and modified (Ba0.9Sr0.1(Sn0.5Ti0.5O3 (BSST thick films is reported in this article. The surface of the BSST thick film was modified by dipping it into aqueous solution of AlCl3, for different intervals of time. These films were then dried at 500 0C for 24 hours in air ambient for transformation of AlCl3 into Al2O3, for the evaporation of organic binders and also to improve the texture of the film. The gas response, selectivity, response and recovery time of the sensors were measured and presented. The role played by the aluminium species to improve the gas sensing performance of the sensors is discussed.

  19. Improving the photoluminescence response of Er-Tm: Al2O3 films by Yb codoping

    International Nuclear Information System (INIS)

    Xiao Zhisong; Serna, R.; Afonso, C.N.; Cheng Guoan; Vickridge, I.

    2007-01-01

    Amorphous Al 2 O 3 films doped with Er, Tm and Yb have been prepared by pulsed laser deposition. A broadband emission in the range 1400-1700 nm with two peaks around 1540 and 1640 nm has been observed, both in the Er-Tm and Er-Tm-Yb codoped films. The Tm-related photoluminescence (PL) intensity at 1640 nm is enhanced when codoping with Yb thus suggesting the existence of multiple energy transfer processes from Yb to Er and Er to Tm. The Er-Tm-Yb codoped film exhibits a broadband emission with a full-width half-maximum of 184 nm similar to that of the film codoped with Tm and Er but having higher Tm to Er concentration ratio and higher PL lifetime values

  20. Microstructural analysis of aluminum oxide boron carbide (Al2 O3-B4 C)

    International Nuclear Information System (INIS)

    Oliveira, E.E.M.; Bressiani, Ana H.A.; Bressiani, J.C.

    1996-01-01

    The densification Al 2 O 3 -B 4 C of composite was accomplished under two conditions: I- tungsten resistance furnace in commercial argon atmosphere without gas treatment system.II- graphite resistance furnace in argon atmosphere with gas treatment for humidity removal. The sintering with gas treatment showed higher density and smaller loss of mass for all composition related to the sintering in tungsten resistance furnace without gas treatment system. Microstructural characterization also showed that grain growth of alumina matrix is greatly influenced by particle size and concentration of B 4 C. Samples sintered at temperatures higher than 1750 deg C without gas treatment presented the formation of phase Al 3 B O 6 which was identified by transmission electron microscopy. (author)

  1. Obtaining and characterization catalyst Ki/Al_2O_3 by physical dispersion process via wet

    International Nuclear Information System (INIS)

    Silva, M.C. da; Dantas, J.; Costa, A.C.F.M.; Costa, N.C.O.; Freitas, N.L. de

    2014-01-01

    The aim of this study is the Obtention and characterization of catalysts being supported alumina impregnated with KI by physical dispersion in wet via attritor mill in periods of 30 and 60 minutes. Before and after impregnation the catalysts were characterized by XRD, X ray fluorescence, particle size distribution, textural analysis (BET). The results show the presence of the stable crystalline phase Al_2O_3 in all samples after impregnation and the second phase formed from KI and K_2O. There was a decrease in the agglomerates incorporated with the potassium due to the milling process. It was observed that the highest specific surface area was obtained by the impregnated sample into a 60 min. (author)

  2. Sample dependent correlation between TL and LM-OSL in Al2O3:C

    International Nuclear Information System (INIS)

    Dallas, G.I.; Polymeris, G.S.; Stefanaki, E.C.; Afouxenidis, D.; Tsirliganis, N.C.; Kitis, G.

    2008-01-01

    Al 2 O 3 :C single crystals are known to exhibit different, sample dependent, glow-curve shapes. The relation between the Thermoluminescence (TL) traps and the linear modulated optically stimulation luminescence (LM-OSL) traps is of high importance. In the present work a correlation study is attempted using 23 single crystals with dimensions between 400 and 500μm. The correlation study involved two steps. In the first step, both TL glow curves and LM-OSL decay curves are deconvoluted and a one-to-one correlation between TL peaks and LM-OSL components is attempted. In the second step the TL glow-curves are corrected for thermal quenching, the corrected curves are deconvoluted and a new correlation between TL and LM-OSL individual components is performed

  3. Thermally assisted OSL from deep traps in Al2O3:C

    International Nuclear Information System (INIS)

    Polymeris, G.S.; Raptis, S.; Afouxenidis, D.; Tsirliganis, N.C.; Kitis, G.

    2010-01-01

    The present work suggests an alternative experimental method in order to not only measure the signal of the deep traps in Al 2 O 3 :C without heating the sample to temperatures greater than 500 o C, but also use this signal for high dose level dosimetry purposes as well. This method consists of photo transfer OSL measurements performed at elevated temperatures using the blue LEDs (470 nm, FWHM 20 nm) housed at commercial Riso TL/OSL systems, after the sample was previously heated up to 500 o C in order to empty its main TL dosimetric trap. The influence of this procedure on specific features such as glow curve shape and sensitivity of the main TL glow peak was also studied.

  4. Dosimetry of Al2O3 optically stimulated luminescent dosimeter at high energy photons and electrons

    Science.gov (United States)

    Yusof, M. F. Mohd; Joohari, N. A.; Abdullah, R.; Shukor, N. S. Abd; Kadir, A. B. Abd; Isa, N. Mohd

    2018-01-01

    The linearity of Al2O3 OSL dosimeters (OSLD) were evaluated for dosimetry works in clinical photons and electrons. The measurements were made at a reference depth of Zref according to IAEA TRS 398:2000 codes of practice at 6 and 10 MV photons and 6 and 9 MeV electrons. The measured dose was compared to the thermoluminescence dosimeters (TLD) and ionization chamber commonly used for dosimetry works for higher energy photons and electrons. The results showed that the measured dose in OSL dosimeters were in good agreement with the reported by the ionization chamber in both high energy photons and electrons. A reproducibility test also reported excellent consistency of readings with the OSL at similar energy levels. The overall results confirmed the suitability of OSL dosimeters for dosimetry works involving high energy photons and electrons in radiotherapy.

  5. Adsorption heats of olefins on supported MoO3/Al2O3 catalists

    International Nuclear Information System (INIS)

    Grinev, V.E.; Madden, M.; Khalit, V.A.; Aptekar', E.L.; Aldag, A.; Krylov, O.V.

    1983-01-01

    Adsorption heats of C 2 H 4 , C 3 H 6 and C 4 H 8 on supported MoO 3 /Al 2 O 3 catalysts containing 6, 10 and 15 wt. % of MoO 3 at 25, 77 and 195 deg are determimed. Adsorption heat of an olefin increases with a growing length of its carbonic chain. The number of adsorbed olefin molecules grows with an increase in the MoO 3 concentration, while initial adsorption heats decrease. The number of adsorbed olefins is proportional to mean rate of molybdenum reduction in catalysts. Adsorption heats of oxygen on the surface of the catalysts with preliminarily adsorbed olefins are determined. It is shown that adsorption of oxygen and olefins proceeeds both on the same and on different centres of the surface. Mechanisms of surface interactions are discussed

  6. A new high-κ Al2O3 based metal-insulator-metal antifuse

    Science.gov (United States)

    Tian, Min; Zhong, Huicai; Li, Li; Wang, Zhigang

    2018-06-01

    In this paper, a new metal-insulator-metal (MIM) antifuse was fabricated with the high κ Al2O3 deposited by atomic layer deposition (ALD) as the dielectric. On this high κ antifuse structure, the very low on-state resistance was obtained under certain programming conditions. It is the first time that the antifuse on-state resistance has been found decreasing along with the increase of dielectric film thickness, which is attributed to a large current overshoot during breakdown. For the device with a dielectric thickness of 12 nm, very large overshoot current (∼60 mA) was observed and extremely low on-state resistance (∼10 Ω) was achieved.

  7. Numerical Simulation of Water/Al2O3 Nanofluid Turbulent Convection

    Directory of Open Access Journals (Sweden)

    Vincenzo Bianco

    2010-01-01

    Full Text Available Turbulent forced convection flow of a water-Al2O3 nanofluid in a circular tube subjected to a constant and uniform temperature at the wall is numerically analyzed. The two-phase mixture model is employed to simulate the nanofluid convection, taking into account appropriate thermophysical properties. Particles are assumed spherical with a diameter equal to 38 nm. It is found that convective heat transfer coefficient for nanofluids is greater than that of the base liquid. Heat transfer enhancement is increasing with the particle volume concentration and Reynolds number. Comparisons with correlations present in the literature are accomplished and a very good agreement is found with Pak and Cho (1998. As for the friction factor, it shows a good agreement with the classical correlation used for normal fluid, such as Blasius formula.

  8. Pulsed Laser deposition of Al2O3 thin film on silicon

    International Nuclear Information System (INIS)

    Lamagna, A.; Duhalde, S.; Correra, L.; Nicoletti, S.

    1998-01-01

    Al 2 O 3 thin films were fabricated by pulsed laser deposition (PLD) on Si 3 N 4 /Si, to improve the thermal and electrical isolation of gas sensing devices. The microstructure of the films is analysed as a function of the deposition conditions (laser fluence, oxygen pressure, target-substrate distance and substrate temperature). X-ray analysis shows that only a sharp peak that coincides with the corundum (116) reflection can be observed in all the films. But, when they are annealed at temperatures above 1,200 degree centigrade, a change in the crystalline structure of some films occurs. The stoichiometry and morphology of the films with and without thermal treatment are compared using environmental scanning electron microscopy (SEM) and EDAX analysis. (Author) 14 refs

  9. Subchannel analysis of Al2O3 nanofluid as a coolant in VMHWR

    International Nuclear Information System (INIS)

    Zarifi, Ehsan; Tashakor, Saman

    2015-01-01

    The main objective of this study is to predict the thermal hydraulic behavior of nanofluids as the coolant in the fuel assembly of variable moderation high performance light water reactor (VMHWR). VMHWR is the new version of high performance light water reactor (HPLWR) conceptual design. Light water reactors at supercritical pressure (VMHWR, HPLWR), being currently under design, are the new generation of nuclear reactors. Water-based nanofluids containing various volume fractions of Al 2 O 3 nanoparticles are analyzed. The conservation equations and conduction heat transfer equation for fuel and clad have been derived and discretized by the finite volume method. The transfer of mass, momentum and energy between adjacent subchannels are split into diversion crossflow and turbulent mixing components. The governed non linear algebraic equations are solved by using analytical iteration methods. Finally the nanofluid analysis results are compared with the pure water results.

  10. Radiation curing of γ-Al2O3 filled epoxy resin

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Kim, Dong Jin; Nho, Young Chang

    2003-01-01

    Epoxy resins are widely utilized as high performance thermosetting resins for many industrial applications but characterized by a relatively low toughness. Recently, the incorporation with rigid inorganic was suggested to improve the mechanical properties of epoxy resins. In the present work, an attempt has been taken to disperse nano-sized γ- Al 2 O 3 particles into diglycidyl ether of bisphenol-A (DGEBA) epoxy resins for improvement of the mechanical properties. These hybrid epoxy-alumina composites were prepared using by the γ-ray curing technique that was conducted with 100kGy under nitrogen at room temperature. The composites were characterized by determining gel content, UTM (Instron model 4443), SEM, FT-IR studies

  11. Analysis of penetration of steel and Al2O3 targets

    International Nuclear Information System (INIS)

    Littlefield, D.L.; Anderson, C.E. Jr.; Skaggs, S.R.

    1994-01-01

    A series of penetration experiments was conducted to investigate the ballistic performance of steel and 99.5% pure Al 2 O 3 targets using a L/D=10 tungsten alloy projectile. The impact velocity for the experiments was nominally 1.6 km/s. Flash radiographs were used to record the positions of the nose and tail of the projectile at discrete times. The experiments have been analyzed using an analytic penetration model. The steel data were matched quite well using reasonable values for the flow stress of the steel and tungsten alloy. Agreement with the ceramic data was not satisfactory, so the model was modified to account for constitutive behavior more relatistic in ceramic materials. Experimental data for the ceramic target were replicated reasonably well using the modified model when the slope of the yield strength/pressure curve was 0.75. copyright American Institute of Physics

  12. Real-time luminescence from Al2O3 fiber dosimeters

    International Nuclear Information System (INIS)

    Polf, J.C.; Yukihara, E.G.; Akselrod, M.S.; McKeever, S.W.S.

    2004-01-01

    The real-time luminescence signal from Al 2 O 3 single crystal fibers, monitored during simultaneous irradiation and optical stimulation, was investigated using computer simulations and experimental measurements. Both radioluminescence (RL) and optically stimulated luminescence (OSL) signals were studied. The simulations were performed initially using a simple one-trap/one-recombination-center energy band model, and then extended to include shallow and deep electron traps as well. Real-time luminescence experiments were performed for different radiation dose rates and optical stimulation powers using periodic laser stimulation of the samples through a fiber optic cable, and the experimental results were compared with the predictions from the computer simulations. The luminescence signal was observed, both theoretically and experimentally, to increase from its initial value to a steady-state level. The steady-state RL and OSL levels were found to be dependent on dose rate, the steady-state level of the real-time OSL being independent of laser power. It was also shown that the total integrated absorbed dose throughout the irradiation period can be determined by correcting the real-time OSL signal for depletion caused by each laser stimulation pulse. The effects of the shallow and deep traps on the time-dependence of the real-time luminescence signal were studied comparing the experimental data from several Al 2 O 3 fibers known to have different trapping state concentrations. The additional traps were found to slow the response of the real-time luminescence such that the time to reach steady state was increased as the additional traps were added

  13. Some problems of manufacturing and industrial application of CoMo-Al2O3 catalyst

    International Nuclear Information System (INIS)

    Walendziewski, J.

    1991-01-01

    The monograph presents results of studies of some selected problems relating to CoMo-Al 2 O 3 catalyst: method of production alumina support and catalyst; application of catalyst in the selected hydro refining processes; physicochemical properties of the used catalyst; reclamation of metal compounds from the spent catalyst. Results of investigations of catalyst preparation illustrate how the physicochemical properties of alumina support and catalyst, mainly porous structure could be controlled by the selection of raw materials and parameters of aluminum hydroxide precipitation, method of forming and calcination temperature of support. Application of the catalyst of modified porous structure has shown its high activity in hydro refining process of light cracking catalytic oil (over 95% hydrodesulphurization) and mild hydro cracking process of vacuum gas oil (sulphur content in product below 0.03% wt.). As an effect of studying of hydro refining process of aromatic hydrocarbon fraction it has been found that H 2 S concentration in reaction mixture is the main factor influencing process selectivity. Some effect on the selectivity exerts also other process parameters and chemical composition of the catalyst - cobalt molybdenum content ratio and promoters content. Long term exploitation of the domestic CoMo-Al 2 O 3 catalyst in hydrodesulphurization process indicates its satisfied thermal stability although results in deteriorating of mechanical resistance, lowering of specific surface area, increase in mean pore radius and decrease in acidity of catalyst. In the last chapter of the monograph the results of investigations of reclamation of metal compounds (molybdic acid, aluminum hydroxide, cobalt carbonate) from the spent catalyst as well as an original technology of manufacture of the fresh one using these compounds have been presented. (author). 338 refs, 31 figs, 32 tabs

  14. Synthesis of new metal-matrix Al-Al2O3-graphene composite materials

    Science.gov (United States)

    Elshina, L. A.; Muradymov, R. V.; Kvashnichev, A. G.; Vichuzhanin, D. I.; Molchanova, N. G.; Pankratov, A. A.

    2017-08-01

    The mechanism of formation of ceramic microparticles (alumina) and graphene in a molten aluminum matrix is studied as a function of the morphology and type of precursor particles, the temperature, and the gas atmosphere. The influence of the composition of an aluminum composite material (as a function of the concentration and size of reinforcing particles) on its mechanical and corrosion properties, melting temperature, and thermal conductivity is investigated. Hybrid metallic Al-Al2O3-graphene composite materials with up to 10 wt % alumina microparticles and 0.2 wt % graphene films, which are uniformly distributed over the metal volume and are fully wetted with aluminum, are synthesized during the chemical interaction of a salt solution containing yttria and boron carbide with molten aluminum in air. Simultaneous introduction of alumina and graphene into an aluminum matrix makes it possible to produce hybrid metallic composite materials having a unique combination of the following properties: their thermal conductivity is higher than that of aluminum, their hardness and strength are increased by two times, their relative elongation during tension is increased threefold, and their corrosion resistance is higher than that of initial aluminum by a factor of 2.5-4. We are the first to synthesize an in situ hybrid Al-Al2O3-graphene composite material having a unique combination of some characteristics. This material can be recommended as a promising material for a wide circle of electrical applications, including ultrathin wires, and as a structural material for the aerospace industry, the car industry, and the shipbuilding industry.

  15. Bending Strength of EN AC-44200 – Al2O3 Composites at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-03-01

    Full Text Available The paper presents results of bend tests at elevated temperatures of aluminium alloy EN AC-44200 (AlSi12 based composite materials reinforced with aluminium oxide particles. The examined materials were manufactured by squeeze casting. Preforms made of Al2O3 particles, with volumetric fraction 10, 20, 30 and 40 vol.% of particles joined with sodium silicate bridges were used as reinforcement. The preforms were characterised by open porosity ensuring proper infiltration with the EN AC-44200 (AlSi12 liquid alloy. The largest bending strength was found for the materials containing 40 vol.% of reinforcing ceramic particles, tested at ambient temperature. At increased test temperature, bending strength Rg of composites decreased in average by 30 to 50 MPa per 100°C of temperature increase. Temperature increase did not significantly affect cracking of the materials. Cracks propagated mainly along the interfaces particle/matrix, with no effect of the particles falling-out from fracture surfaces. Direction of cracking can be affected by a small number of agglomerations of particles or of non-reacted binder. In the composites, the particles strongly restrict plastic deformation of the alloy, which leads to creation of brittle fractures. At elevated temperatures, however mainly at 200 and 300°C, larger numbers of broken, fragmented particles was observed in the vicinity of cracks. Fragmentation of particles occurred mainly at tensioned side of the bended specimens, in the materials with smaller fraction of Al2O3 reinforcement, i.e. 10 and 20 vol.%.

  16. EXAFS Characterization of Dendrimer-Derived Pt/γ-Al2O3

    International Nuclear Information System (INIS)

    Siani, A.; Alexeev, O. S.; Williams, C. T.; Ploehn, H. J.; Amiridis, M. D.

    2007-01-01

    The various steps involved in the preparation of a Pt/γ-Al2O3 material using hydroxyl-terminated generation four (G4OH) PAMAM dendrimers as templates were monitored by EXAFS. The results indicate that Cl ligands in the Pt precursors (H2PtCl6 and K2PtCl4) were partially replaced by aquo ligands upon hydrolysis to form [PtCl3(H2O)3]+ and [PtCl2(H2O)2] species. After interaction of such species with G4OH, Cl ligands from the first coordination shell of Pt were further replaced by nitrogen atoms from the dendrimer interior, indicating the complexation of Pt with the dendrimer. This process was accompanied by a transfer of the electron density from the dendrimer to Pt, indicating that the former plays the role of a ligand. Following treatment of the H2PtCl6/G4OH and K2PtCl4/G4OH composites with NaBH4, no substantial changes were detecteded in the electronic or coordination environment of Pt, and no formation of metal nanoparticles was observed. However, when the reduction treatment was performed with H2, the formation of extremely small Pt clusters incorporating no more than 4 Pt atoms was observed. These Pt species remained strongly bonded to the dendrimer and their nuclearity depends on the length of the H2 treatment. Formation of Pt nanoparticles with an average diameter of approximately 10 A was finally observed after the deposition of H2PtCl6/G4OH on γ-Al2O3 and drying, suggesting that their formation may be related to the collapse of the dendrimer structure. The Pt nanoparticles formed appear to have high mobility, since subsequent thermal treatment in O2/H2 led to further sintering

  17. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2016-01-01

    Full Text Available Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3 specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3.

  18. The improvement of the mechanical properties of PMMA denture base by Al2O3 particles with nitrile rubber

    Science.gov (United States)

    Alhareb, Ahmed Omran; Akil, Hazizan Md; Ahmad, Zainal Arifin

    2017-07-01

    Poly methyl methacrylate (PMMA) is mostly used for fabrication of denture base by heat-curing technique. Therefore, the purpose of this study is to investigate the effect of Al2O3 filler as toughening particles together with nitrile butadiene rubber (NBR) particles as impact modifier were used to reinforce PMMA denture base materials on the impact strength (IS) and fracture toughness (KIC). PMMA powder was mixed with liquid methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. The powder components are PMMA, benzoyl peroxide, NBR (5, 7.5 and 10 wt%), and Al2O3 filler (5 wt%) treated by silane. The liquid components are 90% of methyl methacrylate and 10 % ethylene glycol dimethacryate. FTIR analyses confirmed that the Al2O3 filler was successfully treated with silane as coupling agent. The morphology of fracture surfaces was characterized using field emission scanning electron microscopy (FESEM). The results shown that IS and KIC improved significantly when using treated the Al2O3 filler. IS has increased to 56% (8.26 KJ/m2) and 73% (2.77 MPa.m1/2) for KIC when treated Al2O3 filler compared to unreinforced PMMA matrix. Statistical analyses of data results were significantly improved (PNBR with treated Al2O3 filler compared to other the compositions.

  19. Vacancy-type defects in Al2O3/GaN structure probed by monoenergetic positron beams

    Science.gov (United States)

    Uedono, Akira; Nabatame, Toshihide; Egger, Werner; Koschine, Tönjes; Hugenschmidt, Christoph; Dickmann, Marcel; Sumiya, Masatomo; Ishibashi, Shoji

    2018-04-01

    Defects in the Al2O3(25 nm)/GaN structure were probed by using monoenergetic positron beams. Al2O3 films were deposited on GaN by atomic layer deposition at 300 °C. Temperature treatment above 800 °C leads to the introduction of vacancy-type defects in GaN due to outdiffusion of atoms from GaN into Al2O3. The width of the damaged region was determined to be 40-50 nm from the Al2O3/GaN interface, and some of the vacancies were identified to act as electron trapping centers. In the Al2O3 film before and after annealing treatment at 300-900 °C, open spaces with three different sizes were found to coexist. The density of medium-sized open spaces started to decrease above 800 °C, which was associated with the interaction between GaN and Al2O3. Effects of the electron trapping/detrapping processes of interface states on the flat band voltage and the defects in GaN were also discussed.

  20. Relation of lifetime to surface passivation for atomic-layer-deposited Al2O3 on crystalline silicon solar cell

    International Nuclear Information System (INIS)

    Cho, Young Joon; Song, Hee Eun; Chang, Hyo Sik

    2015-01-01

    Highlights: • We investigated the relation of potassium contamination on Si solar wafer to lifetime. • We deposited Al 2 O 3 layer by atomic layer deposition (ALD) on Si solar wafer after several cleaning process. • Potassium can be left on Si surface by incomplete cleaning process and degrade the Al 2 O 3 passivation quality. - Abstract: We investigated the relation of potassium contamination on a crystalline silicon (c-Si) surface after potassium hydroxide (KOH) etching to the lifetime of the c-Si solar cell. Alkaline solution was employed for saw damage removal (SDR), texturing, and planarization of a textured c-Si solar wafer prior to atomic layer deposition (ALD) Al 2 O 3 growth. In the solar-cell manufacturing process, ALD Al 2 O 3 passivation is utilized to obtain higher conversion efficiency. ALD Al 2 O 3 shows excellent surface passivation, though minority carrier lifetime varies with cleaning conditions. In the present study, we investigated the relation of potassium contamination to lifetime in solar-cell processing. The results showed that the potassium-contaminated samples, due to incomplete cleaning of KOH, had a short lifetime, thus establishing that residual potassium can degrade Al 2 O 3 surface passivation

  1. A comparative study between the thermoluminescence response of micro and nanoparticles of alpha-Al2O3 crystals

    International Nuclear Information System (INIS)

    Fontainha, Crissia C.

    2009-01-01

    In this work we report a comparative study between the thermoluminescence (TL) response of micro and nanoparticles of α-Al 2 O 3 :C crystals, when exposed to UV and gamma radiation. Commercially available α-Al 2 O 3 with particles in the range of nanometers (nanoparticles) and micrometers (microparticles), both in the powder form, were used to evaluate the quality of the TL signal when doping the nanosized sample with Carbon using the same method used elsewhere to obtain the very TL sensitive microsized α-Al 2 O 3 . The samples were doped with different percentages of Carbon through out the intentional inclusion of oxygen vacancies into its structure. This process produced high sensitive TL crystalline α-Al 2 O 3 :C samples from commercial microparticulate pure α-Al 2 O 3 for percentage of Carbon in the range of 0.05%. The same process applied to nanoparticulated α-Al 2 O 3 seems to produce poor TL signal which is not applicable to dosimetric and digital radiographic imaging purposes. (author)

  2. Effect of phase interaction on catalytic CO oxidation over the SnO_2/Al_2O_3 model catalyst

    International Nuclear Information System (INIS)

    Chai, Shujing; Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang; Xian, Hui; Mi, Wenbo; Li, Xingang

    2017-01-01

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO_2 and Al_2O_3. • Interaction between SnO_2 and Al_2O_3 phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn"4"+ cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO_2/Al_2O_3 model catalysts. Our results show that interaction between the Al_2O_3 and SnO_2 phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO_2/Al_2O_3 catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO_2, which probably results from the change of electron concentration on the interface of the SnO_2 and Al_2O_3 phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn"4"+ cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO_2-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  3. Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film

    Directory of Open Access Journals (Sweden)

    Cuiling Sun

    2017-12-01

    Full Text Available The effects of UV-ozone (UVO treatment on the sensing behaviours of extended-gate field-effect transistors (EGFETs that use Al2O3 as the sensing film have been investigated. The Al2O3 sensing films are UVO-treated with various duration times and the corresponding EGFET sensing behaviours, such as sensitivity, hysteresis, and long-term stability, are electrically evaluated under various measurement conditions. Physical analysis is also performed to characterize the surface conditions of the UVO-treated sensing films using X-ray photoelectron spectroscopy and atomic force microscopy. It is found that UVO treatment effectively reduces the buried sites in the Al2O3 sensing film and subsequently results in reduced hysteresis and improved long-term stability of EGFET. Meanwhile, the observed slightly smoother Al2O3 film surface post UVO treatment corresponds to decreased surface sites and slightly reduced pH sensitivity of the Al2O3 film. The sensitivity degradation is found to be monotonically correlated with the UVO treatment time. A treatment time of 10 min is found to yield an excellent performance trade-off: clearly improved long-term stability and reduced hysteresis at the cost of negligible sensitivity reduction. These results suggest that UVO treatment is a simple and facile method to improve the overall sensing performance of the EGFETs with an Al2O3 sensing film.

  4. The effect of pre-dose on thermally and optically stimulated luminescence from α-Al2O3:C,Mg and α-Al2O3:C.

    Science.gov (United States)

    Kalita, J M; Chithambo, M L

    2018-06-15

    We report the effect of pre-dose on the thermoluminescence (TL) and optically stimulated luminescence (OSL) dose response of α-Al 2 O 3 :C,Mg and α-Al 2 O 3 :C. Before any luminescence measurement, the samples were irradiated with different doses, namely 100, 500 and 1000 Gy to populate the deep electron traps. This is the pre-dose. The results from TL and OSL studies are compared with results from samples used without any pre-measurement dose. The TL glow curves and OSL decay curves of α-Al 2 O 3 :C,Mg recorded after pre-doses of 100, 500 and 1000 Gy are identical to those from a sample used without any pre-dose. Further, the TL and OSL dose response of all α-Al 2 O 3 :C,Mg samples are similar regardless of pre-dose. In comparison, the TL glow curves and OSL decay curves of α-Al 2 O 3 :C are influenced by pre-dose. We conclude that the differences in the TL and OSL dose response of various pre-dosed samples of α-Al 2 O 3 :C are due to the concentration of charge in the deep traps. On the other hand, owing to the lower concentration of such deep traps in α-Al 2 O 3 :C,Mg, the TL or OSL dose responses are not affected by pre-dose in this material. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of Gas Pressure and Temperature on Stereometric Properties of Al+Al2O3 Composite Coatings Deposited by LPCS Method

    Directory of Open Access Journals (Sweden)

    Winnicki M.

    2014-10-01

    Full Text Available The paper deals with effect of working gas pressure and temperature on surface stereometry of coatings deposited by low-pressure cold spray method. Examinations were focused on aluminium coatings which are commonly used to protect substrate against corrosion. A commercial Al spherical feedstock powder with admixture of Al2O3 (Al + 60vol.-% Al2O3, granulation -50+10 µm, was used to coat steel, grade S235JR. Thedeposited coatings were studied to determine their stereometry, i.e. roughness, transverse and longitudinal waviness, topography of surface and thickness as the functions of gas pressure and temperature. A profilometer and focal microscope were used to evaluate the stereometric properties. In order to reduce the number of variables, the remaining process parameters, i.e. shape and size of de Laval nozzle, nozzle-to-substrate distance, powder mass flow rate, linear velocity of spraying gun, were kept unchanged. The investigation confirmed influence of temperature and pressure on coating thickness as well as on the surface seterometry.

  6. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.

    Science.gov (United States)

    Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M

    2017-10-11

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as

  7. Quantitative optical fluorescence microprobe measurements of stresses around indentations in Al2O3 and Al2O3/SiC nanocomposites: The influence of depth resolution and specimen translucency

    International Nuclear Information System (INIS)

    Guo Sheng; Todd, R.I.

    2011-01-01

    Residual stresses around 1 kg Vickers indentations in Al 2 O 3 and Al 2 O 3 /SiC nanocomposites were measured using high-resolution Cr 3+ fluorescence microscopy. Experiments and modelling showed that the use of non-confocal microscopes can lead to significant underestimation of the surface stress in Al 2 O 3 because of the sampling of subsurface regions where the stresses are lower. The nanocomposites were less sensitive to the depth resolution of the microscope because their strong absorption limited the depth from which fluorescent radiation was collected. The use of confocal microscope settings allowed accurate measurements to be made and the indentation stresses were found to be very similar in Al 2 O 3 and the Al 2 O 3 /SiC nanocomposites. The stresses measured were significantly different from the predictions of the Yoffe model for indentation stresses. This was because of indentation cracking, which is not accounted for in the model. Cracking was also considered to be important in determining the plastic zone size in ceramics, which is much smaller relative to the indentation size than in metals.

  8. Phase selection in the containerless solidification of undercooled CaO · 6Al2O3 melts

    International Nuclear Information System (INIS)

    Li Mingjun; Kuribayashi, Kazuhiko

    2004-01-01

    The CaO · 6Al 2 O 3 melts were solidified on an aero-acoustic levitator under a containerless processing condition at various undercoolings. A high-speed video was operated to monitor the recalescence behavior, from which the growth velocity as a function of melt undercooling was determined. The microstructures were observed and the crystalline phases were identified using the X-ray diffraction technique, indicting that the Al 2 O 3 was solidified when the melt temperature was higher than the peritectic temperature, T p . When the melt was undercooled below T p , the CaO · 6Al 2 O 3 (CA 6 ) peritectic phase was crystallized directly from the undercooled melts. With respect to the direct formation of the peritectic phase, further analysis from the viewpoints of competitive nucleation indicated that the minimum free energy principle may be applied to elucidate the nucleation of CA 6 phase. In terms of the competitive growth behavior, the interface attachment kinetics for Al 2 O 3 and CA 6 phases are calculated by using the classical BCT model indicating that although the Al 2 O 3 phase doped by CaO has about four times larger interface kinetic coefficient than that of the CA 6 peritectic phase, the growth kinetics of Al 2 O 3 in the melt with the CaO · 6Al 2 O 3 chemical composition is not sufficiently high to replace the CA 6 phase as the primary phase. Therefore, once CA 6 is nucleated, it can develop into a macro crystal as the primary phase. The competitive nucleation and growth behavior in the CA 6 system is different from those in other well-studied peritectic alloys and the present investigation on the phase formation will be an essential supplement to the phase selection theory

  9. A theoretical and experimental XAS study of monolayer dispersive supported CuO/γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Chen Dongliang; Wu Ziyu

    2006-01-01

    The local structures of supported CuO/γ-Al 2 O 3 monolayer dispersive catalysts with different CuO loadings have been investigated by EXAFS and multiple scattering XANES simulations. The EXAFS results show that the first nearest neighbors around the Cu atoms in the CuO/γ-Al 2 O 3 catalysts are similar to that of the polycrystalline CuO powder, which is independent of the CuO loadings. Moreover, the Cu K-XANES FEFF8 calculations for CuO reveal that the monolayer-dispersed CuO species are of small distorted (CuO 4 ) m n+ clusters, which is mainly composed of a distorted CuO 6 octahedron incorporated in the surface octahedral vacant sites of the γ-Al 2 O 3 support. We consider that the CuO species for the CuO/γ-Al 2 O 3 catalysts with loadings of 0.4 and 0.8 mmol/100 m 2 are distorted (CuO 4 ) m n+ clusters composed mainly of a distorted CuO 6 octahedron incorporated in the surface octahedral vacant sites of the γ-Al 2 O 3 support after calcinations at high temperature in air for a few hours. On the contrary, for the CuO/γ-Al 2 O 3 with loading of 1.2 mmol/100 m 2 , the local structure of Cu atoms in CuO/γ-Al 2 O 3 is similar to that of polycrystalline CuO powder

  10. Preparation of nanocomposite γ-Al2O3/polyethylene separator crosslinked by electron beam irradiation for lithium secondary battery

    Science.gov (United States)

    Nho, Young-Chang; Sohn, Joon-Yong; Shin, Junhwa; Park, Jong-Seok; Lim, Yoon-Mook; Kang, Phil-Hyun

    2017-03-01

    Although micro-porous membranes made of polyethylene (PE) offer excellent mechanical strength and chemical stability, they exhibit large thermal shrinkage at high temperature, which causes a short circuit between positive and negative electrodes in cases of unusual heat generation. We tried to develop a new technology to reduce the thermal shrinkage of PE separators by introducing γ-Al2O3 particles treated with coupling agent on PE separators. Nanocomposite γ-Al2O3/PE separators were prepared by the dip coating of polyethylene(PE) separators in γ-Al2O3/poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP)/crosslinker (1,3,5-trially-1,3,5-triazine-2,4,6(1 H,3 H,5 H)-trione (TTT) solution with humidity control followed by electron beam irradiation. γ-Al2O3/PVDF-HFP/TTT (95/5/2)-coated PE separator showed the highest electrolyte uptake (157%) and ionic conductivity (1.3 mS/cm). On the basis of the thermal shrinkage test, the nanocomposite γ-Al2O3/PE separators containing TTT irradiated by electron beam exhibited a higher thermal resistance. Moreover, a linear sweep voltammetry test showed that the irradiated nanocomposite γ-Al2O3/PE separators have electrochemical stabilities of up to 5.0 V. In a battery performance test, the coin cell assembled with γ-Al2O3/PVDF-HFP/TTT-coated PE separator showed excellent discharge cycle performance.

  11. Impact of Ag and Al2O3 nanoparticles on soil organisms: In vitro and soil experiments

    International Nuclear Information System (INIS)

    Fajardo, C.; Saccà, M.L.; Costa, G.; Nande, M.; Martin, M.

    2014-01-01

    In vitro analyses were conducted to assess the impact of Al 2 O 3 and Ag nanoparticles on two common soil bacteria, Bacillus cereus and Pseudomonas stutzeri. Al 2 O 3 nanoparticles did not show significant toxicity at any dose or time assayed, whereas exposure to 5 mg L −1 Ag nanoparticles for 48 h caused bactericidal effects. Moreover, alterations at the morphological level were observed by transmission electron microscopy (TEM); Ag but not Al 2 O 3 nanoparticles evoked the entrance of B. cereus cells in an early sporulation stage and both nanoparticles penetrated P. stutzeri cells. At the molecular level, a dramatic increase (8.2-fold) in katB gene expression was found in P. stutzeri following Al 2 O 3 nanoparticles exposure, indicative of an oxidative stress-defence system enhancement in this bacterium. In the microcosm experiment, using two different natural soils, Al 2 O 3 or Ag nanoparticles did not affect the Caenorhabditis elegans toxicity endpoints growth, survival, or reproduction. However, differences in microbial phylogenetic compositions were detected by fluorescence in situ hybridization (FISH). The use of katB- and pykA-based sequences showed that the microbial transcriptional response to nanoparticle exposure decreased, suggesting a decrease in cellular activity. These changes were attributable to both the nanoparticles treatment and soil characteristics, highlighting the importance of considering the soil matrix on a case by case basis. - Highlights: • Al 2 O 3 or Ag NPs impact on bacteria was assessed at phenotypic and molecular level. • katB gene involved in oxidative-stress response was overexpressed in P. stutzeri following Al 2 O 3 NPs exposure. • A decrease in bacterial transcriptional response was detected in NPs-treated soils. • A soil-dependent response to specific NP treatment was observed. • In NPs-treated soils no acute toxic effects on C. elegans were found

  12. Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan; Wang, Jung-Chang; Chen, Teng-Chieh

    2011-01-01

    Highlights: → The Al 2 O 3 nanofluid prepared with a surfactant with an HLB value = 12 had the lowest nanoparticle precipitation rate. → The nanofluids prepared with both a dispersant and surfactant had the lowest thermal conductivity . → The thermal conductivity decreased with storage time for all of the Al 2 O 3 nanofluids. → An increase in operating temperature leads to an increase in the thermal conductivity of Al 2 O 3 nanofluids. -- Abstract: Nanofluids that contain nanoparticles with excellent heat transfer characteristics dispersed in a continuous liquid phase are expected to exhibit superior thermal and fluid characteristics to those in a single liquid phase primarily because of their much greater collision frequency and larger contact surface between solid nanoparticles and the liquid phase. One of the major challenges in the use of nanofluids to dissipate the heat generated in electronic equipment such as LEDs is nanoparticles' precipitation due to their poor suspension in the fluid after periods of storage or operation, thereby leading to deterioration in the nanofluids' heat transfer rate. In this study, ultrasonic vibration was employed to prepare Al 2 O 3 nanofluids with a surfactant, a dispersant, and a combination of the two to evaluate their suspension and heat transfer characteristics. The experimental results show the Al 2 O 3 nanofluid prepared with a non-ionic surfactant with a hydrophile lipophile balance (HLB) value of 12 to have the lowest nanoparticle precipitation rate and, accordingly, the highest degree of emulsification stability. Moreover, the nanofluids prepared with both the dispersant and surfactant had the greatest dynamic viscosity and lowest degree of thermal conductivity. Both the precipitation rate and dynamic viscosity of the nanoparticles increased, and their thermal conductivity coefficient decreased, the longer they remained in the Al 2 O 3 nanofluids. Further, an increase in operating temperature caused an

  13. Time-dependent dielectric breakdown of atomic-layer-deposited Al2O3 films on GaN

    Science.gov (United States)

    Hiraiwa, Atsushi; Sasaki, Toshio; Okubo, Satoshi; Horikawa, Kiyotaka; Kawarada, Hiroshi

    2018-04-01

    Atomic-layer-deposited (ALD) Al2O3 films are the most promising surface passivation and gate insulation layers in non-Si semiconductor devices. Here, we carried out an extensive study on the time-dependent dielectric breakdown characteristics of ALD-Al2O3 films formed on homo-epitaxial GaN substrates using two different oxidants at two different ALD temperatures. The breakdown times were approximated by Weibull distributions with average shape parameters of 8 or larger. These values are reasonably consistent with percolation theory predictions and are sufficiently large to neglect the wear-out lifetime distribution in assessing the long-term reliability of the Al2O3 films. The 63% lifetime of the Al2O3 films increases exponentially with a decreasing field, as observed in thermally grown SiO2 films at low fields. This exponential relationship disproves the correlation between the lifetime and the leakage current. Additionally, the lifetime decreases with measurement temperature with the most remarkable reduction observed in high-temperature (450 °C) O3-grown films. This result agrees with that from a previous study, thereby ruling out high-temperature O3 ALD as a gate insulation process. When compared at 200 °C under an equivalent SiO2 field of 4 MV/cm, which is a design guideline for thermal SiO2 on Si, high-temperature H2O-grown Al2O3 films have the longest lifetimes, uniquely achieving the reliability target of 20 years. However, this target is accomplished by a relatively narrow margin and, therefore, improvements in the lifetime are expected to be made, along with efforts to decrease the density of extrinsic Al2O3 defects, if any, to promote the practical use of ALD Al2O3 films.

  14. Influence of LaSiOx passivation interlayer on band alignment between PEALD-Al2O3 and 4H-SiC determined by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Wang, Qian; Cheng, Xinhong; Zheng, Li; Shen, Lingyan; Zhang, Dongliang; Gu, Ziyue; Qian, Ru; Cao, Duo; Yu, Yuehui

    2018-01-01

    The influence of lanthanum silicate (LaSiOx) passivation interlayer on the band alignment between plasma enhanced atomic layer deposition (PEALD)-Al2O3 films and 4H-SiC was investigated by high resolution X-ray photoelectron spectroscopy (XPS). An ultrathin in situ LaSiOx interfacial passivation layer (IPL) was introduced between the Al2O3 gate dielectric and the 4H-SiC substrate to enhance the interfacial characteristics. The valence band offset (VBO) and corresponding conduction band offset (CBO) for the Al2O3/4H-SiC interface without any passivation were extracted to be 2.16 eV and 1.49 eV, respectively. With a LaSiOx IPL, a VBO of 1.79 eV and a CBO of 1.86 eV could be obtained across the Al2O3/4H-SiC interface. The difference in the band alignments was dominated by the band bending or band shift in the 4H-SiC substrate as a result of different interfacial layers (ILs) formed at the interface. This understanding of the physical details of the band alignment could be a good foundation for Al2O3/LaSiOx/4H-SiC heterojunctions applied in the 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs).

  15. Behaviour of plasma spray coatings under disruption simulation

    International Nuclear Information System (INIS)

    Brossa, F.; Rigon, G.; Looman, B.

    1988-01-01

    The behaviour of metallic and ceramic protective coatings under disruption simulations was studied correlating the damage with their physical and structural parameters. Plasma Spray (PS) and Vacuum Plasma Spray (VPS) were the techniques used for the production of the coatings. W-5% Re was selected for divertor plates, and TiC, TiO 2 , Al 2 O 3 , low-Z ceramic materials for the first wall protection on 316 SS, Cu and Al as substrates. An electron beam gun was used to simulate the plasma disruptions. The tests were carried out from 0.6 to 6 MJ/m 2 . The thermal effects were studied by metallographic and EDXA analysis. The damage was observed comparing the degree of protection provided by each coating to discover the minimum thickness necessary to prevent the underlying material from melting. Good protective coatings must have a high melting point, great porosity and low thermal conductivity. Such coatings act as thermal barriers, increasing the surface temperature and radiating back large parts of the energy. (orig.)

  16. Influência de aditivos dispersantes nas propriedades de concretos refratários de Al2O3 e Al2O3-MgO Influence of dispersants in Al2O3 and Al2O3-MgO refractory castables

    Directory of Open Access Journals (Sweden)

    I. R. de Oliveira

    2004-03-01

    Full Text Available O estado de dispersão das partículas constituintes da matriz de concretos apresenta uma influência direta no comportamento reológico desses materiais, determinando as técnicas que podem ser usadas para a sua aplicação. Diferentes aditivos são utilizados visando uma dispersão eficiente, a qual constitui um requisito importante na otimização do empacotamento das partículas e da resistência mecânica de concretos. Entretanto, a influência desses aditivos nas propriedades de concretos tem sido muito pouco estudada. Neste trabalho investigou-se o efeito de três dispersantes nas propriedades e desempenho na secagem de diferentes composições refratárias. A presença de poliacrilato de sódio resultou em concretos com elevada permeabilidade e maior porosidade. Por outro lado, em composições no sistema Al2O3-MgO a presença de hexametafosfato de sódio proporcionou concretos com permeabilidade extremamente baixa acarretando numa secagem mais lenta, enquanto o ácido cítrico apresentou um desempenho intermediário. Tais efeitos nas propriedades dos concretos foram correlacionados às características intrínsecas dos aditivos.The state of dispersion of the castables matrix particles presents a direct influence in their rheological behavior, determining the techniques that can be used for their installation. Different additives have been used aiming an efficient dispersion, which constitutes an important requirement in the optimization of the particles packing and mechanical resistance of castables. However, the influence of those additives in the castables properties has not been extensively studied. In this work, the effect of 3 dispersants was investigated in the properties and drying behavior of different refractory compositions. The presence of sodium polyacrylate resulted in castables with higher permeability and larger porosity. On the other hand, in Al2O3-MgO compositions the presence of sodium hexametaphosphate provided

  17. Characterization of humic acid reactivity modifications due to adsorption onto α-Al 2O 3

    KAUST Repository

    Janot, Noémie

    2012-03-01

    Adsorption of purified Aldrich humic acid (PAHA) onto α-Al 2O 3 is studied by batch experiments at different pH, ionic strength and coverage ratios R (mg of PAHA by m 2 of mineral surface). After equilibration, samples are centrifuged and the concentration of PAHA in the supernatants is measured. The amount of adsorbed PAHA per m 2 of mineral surface is decreasing with increasing pH. At constant pH value, the amount of adsorbed PAHA increases with initial PAHA concentration until a pH-dependent constant value is reached. UV/Visible specific parameters such as specific absorbance SUVA 254, ratio of absorbance values E 2/E 3 and width of the electron-transfer absorbance band Δ ET are calculated for supernatant PAHA fractions of adsorption experiments at pH 6.8, to have an insight on the evolution of PAHA characteristics with varying coverage ratio. No modification is observed compared to original compound for R≥20mgPAHA/gα-Al2O3. Below this ratio, aromaticity decreases with initial PAHA concentration. Size-exclusion chromatography - organic carbon detection measurements on these supernatants also show a preferential adsorption of more aromatic and higher-sized fractions. Spectrophotometric titrations were done to estimate changes of reactivity of supernatants from adsorption experiments made at pH ≈6.8 and different PAHA concentrations. Evolutions of UV/Visible spectra with varying pH were treated to obtain titration curves that are interpreted within the NICA-Donnan framework. Protonation parameters of non-sorbed PAHA fractions are compared to those obtained for the PAHA before contact with the oxide. The amount of low proton-affinity type of sites and the value of their median affinity constant decrease after adsorption. From PAHA concentration in the supernatant and mass balance calculations, "titration curves" are experimentally proposed for the adsorbed fractions for the first time. These changes in reactivity to our opinion could explain the difficulty

  18. Analysis of the co-deposition of Al2O3 particles with nickel by an electrolytic route: The influence of organic additives presence and Al2O3 concentration

    Science.gov (United States)

    Temam, H. B.; Temam, E. G.

    2016-04-01

    Alloy coatings were prepared by co-deposition of Al2O3 particles in Ni matrix on carbon steel substrate from nickel chloride bath in which metallic powders were held in suspension. The influence of metal powder amount in the bath on chemical composition, morphology, thickness, microhardness and corrosion behavior of obtained coatings, has been investigated. It was shown that the presence of Al2O3 particles in deposit greatly improves the hardness and the wear resistance of alloy coatings. Characterization by microanalysis (EDX) of the various deposits elaborated confirms that the rate of particles incorporated increases as the concentration of solid particles increasing. The results showed that the presence of organic additives in Ni-Al2O3 electrolyte deposition led to an increase in the hardness and corrosion resistance of the deposits.

  19. Laser Cladding of Ti-6Al-4V Alloy with Ti-Al2O3 Coating for Biomedical Applications

    Science.gov (United States)

    Mthisi, A.; Popoola, A. P. I.; Adebiyi, D. I.; Popoola, O. M.

    2018-05-01

    The indispensable properties of Ti-6Al-4V alloy coupled with poor tribological properties and delayed bioactivity make it a subject of interest to explore in biomedical application. A quite number of numerous coatings have been employed on titanium alloys, with aim to overcome the poor properties exhibited by this alloy. In this work, the possibility of laser cladding different ad-mixed powders (Ti - 5 wt.% Al2O3 and Ti - 8wt.% Al2O3) on Ti-6Al-4V at various laser scan speed (0.6 and 0.8 m/min) were investigated. The microstructure, phase constituents and corrosion of the resultant coatings were characterized by scanning electron microscope (SEM), Optical microscope, X-Ray diffractometer (XRD) and potentiostat respectively. The electrochemical behaviour of the produced coatings was studied in a simulated body fluid (Hanks solution). The microstructural results show that a defect free coating is achieved at low scan speed and ad-mixed of Ti-5 wt. % Al2O3. Cladding of Ti - Al2O3 improved the corrosion resistance of Ti-6Al-4V alloy regardless of varying neither scan speed nor ad-mixed percentage. However, Ti-5 wt.% Al2O3 coating produced at low scan speed revealed the highest corrosion resistance among the coatings due to better quality coating layer. Henceforth, this coating may be suitable for biomedical applications.

  20. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    Science.gov (United States)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  1. The adsorption of Run (n = 1-4) on γ-Al2O3 Surface: A DFT study

    Science.gov (United States)

    Liu, Zhe; Guo, Yafei; Chen, Yu; Shen, Rong

    2018-05-01

    The density functional theory (DFT) was adopted to study the adsorption and growth of Run (n = 1-4) clusters on γ-Al2O3 surface, which is of great significances for the design of many important catalysts, especially for carbon dioxide methanation. It is found that both the Rusbnd Ru bond length and adsorption energy Eads of Ru clusters with the surface increase with the Run clusters increasing. The growth ability of the supported Run cluster is weaker than the gas phase Run clusters through comparing their respective growth process, which ascribes to the stabilization of γ-Al2O3 support. An interesting discovery is that the basin structure was supposed to be the most favorable adsorption geometry for Run clusters. Additionally, the distances between Ru atoms in the adsorbed clusters are longer than that in their isolated counterparts. Bader charge analysis was conducted for the most stable configurations of Run (n = 1-4) clusters on γ-Al2O3 surface as well. And the results suggest that Run (n = 1-4) clusters serve as the electron donators. The result of projected density of states (PDOS) shows that strong adsorption of Ru atom on the γ-Al2O3 surface correlates with strong interaction between d orbital of Ru atom and p orbital of Al or O atom of the Al2O3 support.

  2. Formation of Al2O3-HfO2 Eutectic EBC Film on Silicon Carbide Substrate

    Directory of Open Access Journals (Sweden)

    Kyosuke Seya

    2015-01-01

    Full Text Available The formation mechanism of Al2O3-HfO2 eutectic structure, the preparation method, and the formation mechanism of the eutectic EBC layer on the silicon carbide substrate are summarized. Al2O3-HfO2 eutectic EBC film is prepared by optical zone melting method on the silicon carbide substrate. At high temperature, a small amount of silicon carbide decomposed into silicon and carbon. The components of Al2O3 and HfO2 in molten phase also react with the free carbon. The Al2O3 phase reacts with free carbon and vapor species of AlO phase is formed. The composition of the molten phase becomes HfO2 rich from the eutectic composition. HfO2 phase also reacts with the free carbon and HfC phase is formed on the silicon carbide substrate; then a high density intermediate layer is formed. The adhesion between the intermediate layer and the substrate is excellent by an anchor effect. When the solidification process finished before all of HfO2 phase is reduced to HfC phase, HfC-HfO2 functionally graded layer is formed on the silicon carbide substrate and the Al2O3-HfO2 eutectic structure grows from the top of the intermediate layer.

  3. Deposition of Fe-Ni nanoparticles on Al2O3 for dechlorination of chloroform and trichloroethylene

    International Nuclear Information System (INIS)

    Hsieh, S.-H.; Horng, J.-J.

    2006-01-01

    This research proposes an efficient method for depositing Fe-Ni nanoparticles on Al 2 O 3 microparticles to decompose containments in ground water, such as chloroform and trichloroethylene. The Fe-Ni nanoparticles can be deposited onto the surface of Al 2 O 3 microparticles by electroless plating technique. The reasons why the Fe-Ni nanoparticles would be deposited on the surface of Al 2 O 3 microparticles is to avoid the agglomeration of Fe-Ni nanoparticles due to their surface effect and magnetic property. The results show that the sizes of Fe-Ni particles on Al 2 O 3 particles are between several and several hundreds of nanometers, the contents of Fe and Ni in Fe-Ni nanoparticles can be adjusted from 8 to 60 at.% for Fe and 40 to 92 at.% for Ni, the specific surface area of Fe-Ni nanoparticles can reach to 117 m 2 /g, and the reaction mechanism of dechlorination of chloroform of 2 mg/L by Fe-Ni/Al 2 O 3 particles of 5 g/L appears to be pseudo first order with a half life of 0.7 h and the half life is 0.25 h for the dechlorination of trichloroethylene of 2 mg/L

  4. A study of the effect of Al2O3 reflector on response function of NaI(Tl) detector

    International Nuclear Information System (INIS)

    Tam, Hoang Duc; Chuong, Huynh Dinh; Thanh, Tran Thien; Van Tao, Chau

    2016-01-01

    This study aims to assess the effect of Al 2 O 3 reflector surrounding the NaI(Tl) crystal on the detector response function, based on Monte Carlo simulation, which can verify the precise model of the NaI(Tl) detector. The method used in determining the suitable thickness of Al 2 O 3 reflector is to compare the calculated and experimental values of full-energy peak efficiency. The results show that the Al 2 O 3 reflector should have a thickness of 0.8–1.2 mm for the maximum deviation between the experimental and simulated efficiency of 3.2% at all concerning energies. In addition, the obtained results are in good agreement with the response function of simulation and experimental spectra. - Highlights: • The study was conducted to verify the model of Monte Carlo simulation. • The effect of Al 2 O 3 reflector on the detector response function was investigated. • The optimum thickness of Al 2 O 3 reflector is suggested.

  5. Interfacial Cation-Defect Charge Dipoles in Stacked TiO2/Al2O3 Gate Dielectrics.

    Science.gov (United States)

    Zhang, Liangliang; Janotti, Anderson; Meng, Andrew C; Tang, Kechao; Van de Walle, Chris G; McIntyre, Paul C

    2018-02-14

    Layered atomic-layer-deposited and forming-gas-annealed TiO 2 /Al 2 O 3 dielectric stacks, with the Al 2 O 3 layer interposed between the TiO 2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO 2 /Al 2 O 3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO 2 /Al 2 O 3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of Al Ti and Ti Al point-defect dipoles produced by local intermixing of the Al 2 O 3 /TiO 2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.

  6. Liquidus Temperature of SrO-Al2O3-SiO2 Glass-Forming Compositions

    DEFF Research Database (Denmark)

    Abel, Brett M.; Morgan, James M.; Mauro, John C.

    2013-01-01

    . In the composition range of interest for industrial glasses, Tliq tends to decrease with increasing strontium-to-alumina ratio. We find that cristobalite, mullite, and slawsonite are the dominant devitrification phases for the compositions with high SiO2, SiO2+Al2O3, and SrO contents, respectively. By comparison...... with the phase diagrams for CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 systems, we have found that for the highest [RO]/[Al2O3] ratios, Tliq exhibits a minimum value for R = Ca. Based on the phase diagram established here, the composition of glass materials, for example, for liquid crystal display substrates, belonging...... to the SrO-Al2O3-SiO2 family may be designed with a more exact control of the glass-forming ability by avoiding the regions of high liquidus temperature....

  7. Hydrodesulfurization of Iraqi Atmospheric Gasoil by Ti-Ni-Mo/γ-Al2O3 Prepared Catalyst

    Directory of Open Access Journals (Sweden)

    Abdul Halim Abdul Karim Mohammed

    2017-11-01

    Full Text Available This study investigates the improvement of Iraqi atmospheric gas oil characteristics which contains 1.402 wt. % sulfur content and 16.88 wt. % aromatic content supplied from Al-Dura Refinery by using hydrodesulfurization (HDS process using Ti-Ni-Mo/γ-Al2O3 prepared catalyst in order to achieve low sulfur and aromatic saturation gas oil. Hydrodearomatization (HDA occurs simultaneously with hydrodesulfurization (HDS process. The effect of titanium on the conventional catalyst Ni-Mo/γ-Al2O3 was investigated by physical adsorption and catalytic activity test.Ti-Ni-Mo/γ-Al2O3 catalyst was prepared under vacuum impregnation condition to ensure efficient precipitation of metals within the carrier γ-Al2O3. The loading percentage of metals as oxide; titanium oxide 3 wt. %, nickel oxide 5 wt. % and molybdenum oxide 12 wt. %. The performance of the synthesized catalyst for removing sulfur and aromatic saturation were tested at various temperatures 275 to 350°C, LHSV 1 to 4h-1, constant pressure 40 bar and H2/HC ratio 500 ml/ml.Results showed that the sulfur and aromatic content were reduced at all operating conditions. Maximum sulfur removal was 75.52 wt. % in gas oil on Ti-Ni-Mo/γ-Al2O3 at temperature 350˚C, LHSV 1h-1, while minimum aromatic content achieved was 15.6 wt. % at the same conditions.

  8. Pembuatan Katalis Asam (Ni/γ-Al2O3 dan Katalis Basa (Mg/γ-Al2O3 untuk Aplikasi Pembuatan Biodiesel dari Bahan Baku Minyak Jelantah

    Directory of Open Access Journals (Sweden)

    . Savitri

    2016-05-01

    Full Text Available Biodiesel is an alternative energy fuel a substitute for diesel oil produced from vegetable oil or animal fat which have the advantage easily used, they are biodegradable, not toxic and sulfur free. This research aims to do process of prosucing biodiesel using acid catalysts (Ni/γ-Al2O3 for a esterification process and base catalyst (Mg/γ-Al2O3 for transesterification  process with the variation of catalyst concentration Ni/γ-Al2O3 (0.5%; 0.75%; 1% and 2% and the time (60 minutes, 120 minutes, and 180 minutes. Research of methodology starting to the process impregnation Ni and Mg metal into a buffer γ-Al2O3, characterization a catalyst with XRD, FTIR, and the SAA, and the esterification process to lower levels of FFA and transesterification process for making it biodiesel. The characterization with X-RD does not appear a new peak, only just occurred a shift peak, and declines intensity of Ni/γ-Al2O3 and Mg/γ-Al2O3. The analysis result of the SAA, a decline in the surface area (the decline in active side of catalyst suspected the process impregnation not run perfect because Ni and Mg metal only distributed on the surface of buffer pore. The results of the FTIR analysis does not occur the addition of acidity and alkalinity. The steady of catalyst concentration from esterification process is 1% within 120 minutes produce levels of FFA 6.85%.  Keywords: Biodiesel, esterification, impregnation, used cooking oil, transesterificationDOI : http://dx.doi.org/10.15408/jkv.v2i1.3104

  9. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes.

    Science.gov (United States)

    Song, Yingjun; Wang, David K; Birkett, Greg; Martens, Wayde; Duke, Mikel C; Smart, Simon; Diniz da Costa, João C

    2016-07-29

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m(-2) h(-1) for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93-99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%.

  10. XRCT characterisation of Ti particles inside porous Al2O3

    International Nuclear Information System (INIS)

    Vasic, S.; Grobety, B.; Kuebler, J.; Graule, T.; Baumgartner, L.

    2010-01-01

    Computed X-ray tomography was used to characterise distribution and sphericity of Ti granules within highly porous (> 35%) Al 2 O 3 powder compacts, as they are key parameters for a successful infiltration by Fe-based alloys. Setting of reconstruction constraints, image editing as well as data processing are the most challenging parts of computed X-ray tomography and principal sources of errors that bias the generated data. Thus, corrective measures have to be applied and the reliability of generated data has to be proved with respect to statistical, stereological and volumetric aspects. Combining an adapted Interface Particle Treatment Algorithm with the Marching Cube Method, Equilibrium Random State Model, cluster splitting and conventional laser diffraction measurements a significant improvement of the three-dimensional reconstructed data was achieved. This study points out the need of the applied algorithms for the proof and improvement of generated data by computed X-ray tomography and gives a short survey of methods that can be applied.

  11. High energy proton simulation of 14-MeV neutron damage in Al2O3

    International Nuclear Information System (INIS)

    Muir, D.W.; Bunch, J.M.

    1975-01-01

    High-energy protons are a potentially useful tool for simulating the radiation damage produced by 14-MeV neutrons in CTR materials. A comparison is given of calculations and measurements of the relative damage effectiveness of these two types of radiation in single-crystal Al 2 O 3 . The experiments make use of the prominent absorption band at 206 nm as an index to lattice damage, on the assumption that peak absorption is proportional to the concentration of lattice vacancies. The induced absorption is measured for incident proton energies ranging from 5 to 15 MeV and for 14-MeV neutrons. Recoil-energy spectra are calculated for elastic and inelastic scattering using published angular distributions. Recoil-energy spectra also are calculated for the secondary alpha particles and 12 C nuclei produced by (p,p'α) reactions on 16 O. The recoil spectra are converted to damage-energy spectra and then integrated to yield the damage-energy cross section at each proton energy and for 14 MeV neutrons. A comparison of the calculations with experimental results suggests that damage energy, at least at high energies, is a reasonable criterion for estimating this type of radiation damage. (auth)

  12. Numerical Study of Heat Transfer Enhancement in Heat Exchanger Using AL2O3 Nanofluids

    Directory of Open Access Journals (Sweden)

    Hussein Talal Dhaiban

    2016-04-01

    Full Text Available In this study, the flow and heat transfer characteristics of Al2O3-water nanofluids for a range of the Reynolds number of 3000, 4500, 6000 and 7500 with a range of volume concentration of 1%, 2%, 3% and 4% are studied numerically. The test rig consists of cold liquid loop, hot liquid loop and the test section which is counter flow double pipe heat exchanger with 1m length. The inner tube is made of smooth copper with diameter of 15mm. The outer tube is made of smooth copper with diameter of 50mm. The hot liquid flows through the outer tube and the cold liquid (or nanofluid flow through the inner tube. The boundary condition of this study is thermally insulated the outer wall with uniform velocity at (0.2, 0.3, 0.4 and 0.5 m/s at the cold loop and constant velocity at (0.5 m/s at the hot loop. The results show that the heat transfer coefficient and Nusselt number increased by increasing Reynolds number and particle concentration. Numerical results indicate that the maximum enhancement in Nusselt number and heat transfer coefficient were 9.5% and 13.5% respectively at Reynolds number of 7100 and particles volume fraction of 4%. Results of nanofluids also showed a good agreement with the available empirical correlation at particles volume fractions of 1%, 2% and 3%, but at volume fractions of 4% a slight deviation is obtained.

  13. Preparation of Pd/γ- Al2O3 catalyst utilized in chemisorption of hydrogen isotopes

    International Nuclear Information System (INIS)

    David, Elena; Stefanescu, Doina; Stanciu, V.

    1997-01-01

    Separation and hydrogen isotope determination require packings with special properties, utilizable in separation columns. Consequently, such packings as catalysts using γ-aluminia and metallic palladium active component as holder were obtained. The γ-aluminia used as holder has been prepared starting from λ salts, easy soluble in water, such as Al 2 (NO 3 ) 3 ·9H 2 O, at a preset (6.2-6.4) controlled pH. At a first stage the Al(OH) 3 results which by calcination at controlled temperature transforms in γ-Al 2O3 . On this holder, in which the specific surface and porosity has been determined, metallic palladium has been deposed, using for impregnation a 2% PdCl 2 solution. The content of deposed palladium was determined as the difference between the content in the initial solution and solution remaining after holder impregnation. This content has been determined by atomic absorption and is within 0.5 - 1.2% Pd. After impregnation the catalyst has been dried, then granulated at the 0.16 mm size and activated by hydrogen at a flow rate of 300 vol H 2 /volume

  14. Electron trapping in neutron-irradiated very thin films of Al2O3

    International Nuclear Information System (INIS)

    Srivastava, P.C.; Bardhan, A.R.

    1979-01-01

    Oxide layers of thicknesses less than 100 A have been prepared by thermal-oxidation of a base metal electrode film of aluminium. These films were then neutron-irradiated from a laboratory Ra-Be source to a fluence of approximately 10 11 neutrons cm -2 and the sandwich structure, Al-Al 2 O 3 -Au, was completed by depositing a thin metal film of gold over the irradiated oxide layer. D.C. steady and transient flow through the sandwich structures have been studied. Results obtained in the experiments with irradiated sandwiches have been compared with unirradiated ones to show that traps are introduced because of the damage caused by the incident neutrons. Transient voltage measurement across the junction gives a trap density of approximately 10 18 cm -3 . A capture cross-section of the order 10 -28 cm 2 is estimated for the traps. It is found that the (identified) traps are uniformly distributed within an energy of 0.099 eV below the conduction band edge of aluminium oxide. The physical nature of the traps is discussed by comparing the capture cross-sections of the physically known trapping centres. The possibility of vacancies or F-centres acting as traps (for the identified ones) has been suggested. (author)

  15. Solution Combustion Preparation Of Nano-Al2O3: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    M. Farahmandjou

    2015-06-01

    Full Text Available The aluminum oxide materials are widely used in ceramics, refractories and abrasives due to their hardness, chemical inertness, high melting point, non-volatility and resistance to oxidation and corrosion. The paper describes work done on synthesis of α-alumina by using the simple, non-expensive solution combustion method using glycine as fuel.Aluminum oxide (Al2O3 nanoparticles were synthesized by aluminum nitrate 9-hydrate as precursor and glycine as fuel. The samples were characterized by high resolution transmission electron microscopy (HRTEM, field effect scanning electron microscopy (FESEM, X-ray diffraction (XRD and electron dispersive spectroscopy (EDS. As there are many forms of transition aluminas produced during this process, x-ray diffraction (XRD technique was used to identify α-alumina. The diameter of sphere-like as-prepared nanoparticles was about 10 nm as estimated by XRD technique and direct HRTEM observation. The surface morphological studies from SEM depicted the size of alumina decreases with increasing annealing temperature. Absorbance peak of UV-Vis spectrum showed the small bandgap energy of 2.65 ev and the bandgap energy increased with increasing annealing temperature because of reducing the size.

  16. The Influence of impact on Composite Armour System Kevlar-29/polyester-Al2O3

    Science.gov (United States)

    Ramadhan, A. A.; Abu Talib, A. R.; Mohd Rafie, A. S.; Zahari, R.

    2012-09-01

    An experimental investigation of high velocity impact responses of composite laminated plates using a helium gas gun has been presented in this paper. The aim of this study was to develop the novel composite structure that meets the specific requirements of ballistic resistance which used for body protections, vehicles and other applications. Thus the high velocity impact tests were performed on composite Kevlar-29 fiber/polyester resin with alumina powder (Al2O3). The impact test was conducted by using a cylindrical steel projectile of 7.62mm diameter at a velocity range of 160-400 m/s. The results (shown in this work) are in terms of varying plate thickness and the amount of energy absorbed by the laminated plates meanwhile we obtained that the 12mm thickness of composite plate suitable for impact loading up to 200m/s impact velocity. Therefore this composite structure (it is used to reduce the amount of Kevlar) considered most economical armoure products. We used the ANSYS AUTODYN 3D- v.12 software for our simulations. The results have been obtained a4.1% maximum errors with experimental work of energy absorption.

  17. Microscopic Sources of Paramagnetic Noise on α-Al2O3 Substrates for Superconducting Qubits

    Science.gov (United States)

    Dubois, Jonathan; Lee, Donghwa; Lordi, Vince

    2014-03-01

    Superconducting qubits (SQs) represent a promising route to achieving a scalable quantum computer. However, the coupling between electro-dynamic qubits and (as yet largely unidentified) ambient parasitic noise sources has so far limited the functionality of current SQs by limiting coherence times of the quantum states below a practical threshold for measurement and manipulation. Further improvement can be enabled by a detailed understanding of the various noise sources afflicting SQs. In this work, first principles density functional theory (DFT) calculations are employed to identify the microscopic origins of magnetic noise sources in SQs on an α-Al2O3 substrate. The results indicate that it is unlikely that the existence of intrinsic point defects and defect complexes in the substrate are responsible for low frequency noise in these systems. Rather, a comprehensive analysis of extrinsic defects shows that surface aluminum ions interacting with ambient molecules will form a bath of magnetic moments that can couple to the SQ paramagnetically. The microscopic origin of this magnetic noise source is discussed and strategies for ameliorating the effects of these magnetic defects are proposed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Low-Waste Recycling of Spent CuO-ZnO-Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Stanisław Małecki

    2018-03-01

    Full Text Available CuO-ZnO-Al2O3 catalysts are designed for low-temperature conversion in the process of hydrogen and ammonia synthesis gas production. This paper presents the results of research into the recovery of copper and zinc from spent catalysts using pyrometallurgical and hydrometallurgical methods. Under reducing conditions, at high temperature, having appropriately selected the composition of the slag, more than 66% of the copper can be extracted in metallic form, and about 70% of zinc in the form of ZnO from this material. Hydrometallurgical processing of the catalysts was carried out using two leaching solutions: alkaline and acidic. Almost 62% of the zinc contained in the catalysts was leached to the alkaline solution, and about 98% of the copper was leached to the acidic solution. After the hydrometallurgical treatment of the catalysts, an insoluble residue was also obtained in the form of pure ZnAl2O4. This compound can be reused to produce catalysts, or it can be processed under reducing conditions at high temperature to recover zinc. The recovery of zinc and copper from such a material is consistent with the policy of sustainable development, and helps to reduce the environmental load of stored wastes.

  19. Microstructure evaluation of Al-Al2O3 composite produced by mechanical alloying method

    International Nuclear Information System (INIS)

    Zebarjad, S.M.; Sajjadi, S.A.

    2006-01-01

    Mechanical alloying process using ball-milling techniques, has received much attention as a powerful tool for fabrication of several advanced materials, including amorphous, quasicrystals, nanocrystalline and composite materials, etc. This research is focused on production of Al-Al 2 O 3 composite materials by mechanical alloying method and on investigation of its microstructure. For this purpose a horizontal ball mill was designed and manufactured. Aluminum and alumina powders, with specified size and weight percent, were added to the mill. The mixed powders were milled at different times. The milled powders were pressed and sintered under argon gas control. Microstructure of produced composite was investigated by scanning electron microscope. The results show that increasing milling time causes to make fine alumina powders as well as uniform distribution within aluminum, also in steady-state stage increasing milling time has not significant effect on their size distribution within aluminum. The results of atomic analysis of initial and milled powders at different times show that at the beginning of milling, the powders will tend to absorb iron and gradually their susceptibility decrease until steady-state condition is prevailed. The result of infrared spectroscopy does not show any evidence of compounds except alumina

  20. Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.

    Science.gov (United States)

    Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian

    2015-11-01

    A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.

  1. Annealing effects on electron-beam evaporated Al2O3 films

    International Nuclear Information System (INIS)

    Shang Shuzhen; Chen Lei; Hou Haihong; Yi Kui; Fan Zhengxiu; Shao Jianda

    2005-01-01

    The effects of post-deposited annealing on structure and optical properties of electron-beam evaporated Al 2 O 3 single layers were investigated. The films were annealed in air for 1.5 h at different temperatures from 250 to 400 deg. C. The optical constants and cut-off wavelength were deduced. Microstructure of the samples was characterized by X-ray diffraction (XRD). Profile and surface roughness measurement instrument was used to determine the rms surface roughness. It was found that the cut-off wavelength shifted to short wavelength as the annealing temperature increased and the total optical loss decreased. The film structure remained amorphous even after annealing at 400 deg. C temperature and the samples annealed at higher temperature had the higher rms surface roughness. The decreasing total optical loss with annealing temperature was attributed to the reduction of absorption owing to oxidation of the film by annealing. Guidance to reduce the optical loss of excimer laser mirrors was given

  2. Annealing effects on electron-beam evaporated Al 2O 3 films

    Science.gov (United States)

    Shuzhen, Shang; Lei, Chen; Haihong, Hou; Kui, Yi; Zhengxiu, Fan; Jianda, Shao

    2005-04-01

    The effects of post-deposited annealing on structure and optical properties of electron-beam evaporated Al 2O 3 single layers were investigated. The films were annealed in air for 1.5 h at different temperatures from 250 to 400 °C. The optical constants and cut-off wavelength were deduced. Microstructure of the samples was characterized by X-ray diffraction (XRD). Profile and surface roughness measurement instrument was used to determine the rms surface roughness. It was found that the cut-off wavelength shifted to short wavelength as the annealing temperature increased and the total optical loss decreased. The film structure remained amorphous even after annealing at 400 °C temperature and the samples annealed at higher temperature had the higher rms surface roughness. The decreasing total optical loss with annealing temperature was attributed to the reduction of absorption owing to oxidation of the film by annealing. Guidance to reduce the optical loss of excimer laser mirrors was given.

  3. Structure of high alumina content Al2O3-SiO2 composition glasses.

    Science.gov (United States)

    Weber, Richard; Sen, Sabyasachi; Youngman, Randall E; Hart, Robert T; Benmore, Chris J

    2008-12-25

    The structure of binary aluminosilicate glasses containing 60-67 mol % Al2O3 were investigated using high-resolution 27Al NMR and X-ray and neutron diffraction. The glasses were made by aerodynamic levitation of molten oxides. The 67% alumina composition required a cooling rate of approximately 1600 degrees C s(1-) to form glass from submillimeter sized samples. NMR results show that the glasses contain aluminum in 4-, 5-, and 6-fold coordination in the approximate ratio 4:5:1. The average Al coordination increases from 4.57 to 4.73 as the fraction of octahedral Al increases with alumina content. The diffraction results on the 67% composition are consistent with a disordered Al framework with Al ions in a range of coordination environments that are substantially different from those found in the equilibrium crystalline phases. Analysis of the neutron and X-ray structure factors yields an average bond angle of 125 +/- 4 degrees between an Al ion and the adjoining cation via a bridging oxygen. We propose that the structure of the glass is a "transition state" between the alumina-rich liquid and the equilibrium mullite phase that are dominated by 4- and 6-coordinated aluminum ions, respectively.

  4. Improving the cooling performance of automobile radiator with Al2O3/water nanofluid

    International Nuclear Information System (INIS)

    Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Jamnani, M. Seifi; Hoseini, S.M.

    2011-01-01

    In this paper, forced convective heat transfer in a water based nanofluid has experimentally been compared to that of pure water in an automobile radiator. Five different concentrations of nanofluids in the range of 0.1-1 vol.% have been prepared by the addition of Al 2 O 3 nanoparticles into the water. The test liquid flows through the radiator consisted of 34 vertical tubes with elliptical cross section and air makes a cross flow inside the tube bank with constant speed. Liquid flow rate has been changed in the range of 2-5 l/min to have the fully turbulent regime (9 x 10 3 4 ). Additionally, the effect of fluid inlet temperature to the radiator on heat transfer coefficient has also been analyzed by varying the temperature in the range of 37-49 o C. Results demonstrate that increasing the fluid circulating rate can improve the heat transfer performance while the fluid inlet temperature to the radiator has trivial effects. Meanwhile, application of nanofluid with low concentrations can enhance heat transfer efficiency up to 45% in comparison with pure water. - Highlights: → Application of nanofluid in the car radiator has been studied experimentally. → Heat transfer enhancement of about 45% compared to water has been recorded. → Increasing particle concentration and velocity improves heat transfer performance.

  5. Emission Depth Distribution Function of Al 2s Photoelectrons in Al2O3

    Science.gov (United States)

    Hucek, S.; Zemek, J.; Jablonski, A.; Tilinin, I. S.

    The escape probability of Al 2s photoelectrons leaving an aluminum oxide sample (Al2O3) has been studied as a function of depth of origin. It has been found that the escape probability (the so-called emission depth distribution function - DDF) depends strongly on the photoelectron emission direction with respect to that of the incident X-ray beam. In particular, in the emission direction close to that of photon propagation, the DDF differs substantially from the simple Beer-Lambert law and exhibits a nonmonotonic behavior with a maximum in the near-surface region at a depth of about 10 Å. Experimental results are in good agreement with theoretical predictions based on Monte Carlo simulations of the electron transport and with analytical solution of the linearized Boltzmann kinetic equation with appropriate boundary conditions. Both theoretical approaches take into account multiple elastic scattering of photoelectrons on their way out of the sample. It is shown that the commonly used straight line approximation (SLA), which neglects elastic scattering effects, fails to describe adequately experimental data at emission directions close to minima of the differential photoelectric cross section.

  6. Thermo-luminescence and photoluminescence studies of Al2O3 irradiated with heavy ions

    International Nuclear Information System (INIS)

    Jheeta, K.S.

    2008-06-01

    Thermo-luminescence (TL) spectra of single crystals of Al 2 O 3 (sapphire) irradiated with 200 MeV swift Ag ions at different fluence in the range 1x10 11 to 1x10 13 ions/cm 2 has been recorded at room temperature by keeping the warming rate 2K/min. The TL glow curve of the irradiated samples has a simple structure with a prominent peak at ∼ 500 K with one small peak at 650 K. The intensity of main peak increases with the ion fluence. This has been attributed to the creation of new traps on irradiation. Also, a shift of 8 K in the peak position towards low temperature side has been observed at higher fluence 1x10 13 ions/cm 2 . In addition, photoluminescence (PL) spectra of irradiated samples have been recorded at room temperature upon 2.8 eV excitation. A broad band consisting of mainly two emission bands, respectively at 2.5 and 2.3 eV corresponding to F 2 and F 2 2+ defect centers is observed. The intensity of these bands shows an increasing trend up to fluence 5x10 12 ions/cm 2 and then decreases at higher fluence 1x10 13 ions/cm 2 . The results are interpreted in terms of creation of newly defect centers, clustering/aggregation and radiation-induced annihilation of defects. (author)

  7. Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts

    Directory of Open Access Journals (Sweden)

    Zeinali Heris Saeed

    2011-01-01

    Full Text Available Abstract In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.

  8. The Influence of impact on Composite Armour System Kevlar-29/polyester-Al2O3

    International Nuclear Information System (INIS)

    Ramadhan, A A; Talib, A R Abu; Rafie, A S Mohd; Zahari, R

    2012-01-01

    An experimental investigation of high velocity impact responses of composite laminated plates using a helium gas gun has been presented in this paper. The aim of this study was to develop the novel composite structure that meets the specific requirements of ballistic resistance which used for body protections, vehicles and other applications. Thus the high velocity impact tests were performed on composite Kevlar-29 fiber/polyester resin with alumina powder (Al 2 O 3 ). The impact test was conducted by using a cylindrical steel projectile of 7.62mm diameter at a velocity range of 160-400 m/s. The results (shown in this work) are in terms of varying plate thickness and the amount of energy absorbed by the laminated plates meanwhile we obtained that the 12mm thickness of composite plate suitable for impact loading up to 200m/s impact velocity. Therefore this composite structure (it is used to reduce the amount of Kevlar) considered most economical armoure products. We used the ANSYS AUTODYN 3D- v.12 software for our simulations. The results have been obtained a4.1% maximum errors with experimental work of energy absorption.

  9. Growth of pentacene on α -Al2O3 (0001) studied by in situ optical spectroscopy

    Science.gov (United States)

    Zhang, Lei; Fu, X.; Hohage, M.; Zeppenfeld, P.; Sun, L. D.

    2017-09-01

    The growth of pentacene thin films on a sapphire α -Al2O3 (0001) surface was investigated in situ using differential reflectance spectroscopy (DRS). Two different film structures are observed depending on the substrate temperature. If pentacene is deposited at room temperature, a wetting layer consisting of flat-lying molecules is formed after which upright-standing molecular layers with a herringbone structure start to grow. At low substrate temperature of 100 K, the long molecular axis of the pentacene molecules remains parallel to the surface plane throughout the entire growth regime up to rather large thicknesses. Heating thin films deposited at 100 K to room temperature causes the pentacene molecules beyond the wetting layer to stand up and assemble into a herringbone structure. Another interesting observation is the dewetting of the first flat-lying monolayer upon exposure to air, leading to the condensation of islands consisting of upright-standing molecules. Our results emphasize the interplay between growth kinetics and thermodynamics and its influence on the molecular orientation in organic thin films.

  10. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    Directory of Open Access Journals (Sweden)

    Yamina Boukoberine

    2016-09-01

    Full Text Available CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in catalyst results in a decrease of the thiophene HDS activity. This decrease is probably caused by the formation of heavy compounds and the deactivation of the zeolite at high temperatures.

  11. Effect of Volume Fraction of Particle on Wear Resistance of Al2O3/Steel Composites at Elevated Temperature

    Institute of Scientific and Technical Information of China (English)

    BAO Chong-gao; WANG En-ze; GAO Yi-min; XING Jian-dong

    2005-01-01

    Based on previous work,abrasive wear resistance of Al2 O3/steel composites with different Al2 O3 parti cle volume fraction (VOF) at 900 C was investigated.The experimental results showed that a suitable particle VOF is important to protect the metal matrix from wear at elevated temperature.Both too high and too low particle VOF lead to a poor abrasive wear because a bulk matrix is easily worn off by grits when it exceeds the suitable VOF and also because when VOF is low,the Al2O3 particles are easily dug out by grits during wearing as well.When the particle VOF is 39%,the wear resistance of tested composites is excellent.

  12. Green synthesis of nanocrystalline α-Al2O3 powders by both wet-chemical and mechanochemical methods

    Science.gov (United States)

    Gao, Huiying; Li, Zhiyong; Zhao, Peng

    2018-03-01

    Nanosized α-Al2O3 powders were prepared with AlCl3ṡ6H2O and NH4HCO3 as raw materials by both wet-chemical and mechanochemical methods, through the synthesis of the ammonium aluminum carbonate hydroxide (AACH) precursor followed by calcination. The environmentally benign starch was used as an effective dispersant during the preparation of nanocrystalline α-Al2O3 powders. X-ray diffraction (XRD), thermogravimetric differential thermal analysis (TG-DTA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to characterize the precursor AACH and products. The results show that nanosized spherical α-Al2O3 powders without hard agglomeration and with particle size in the range of 20-40 nm can be obtained by the two methods. Comparing the two “green” processes, the mechanochemical method has better prospects for commercial production.

  13. Temperature-Dependent Electrical Properties of Al2O3-Passivated Multilayer MoS2 Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Seok Hwan Jeong

    2018-03-01

    Full Text Available It is becoming more important for electronic devices to operate stably and reproducibly under harsh environments, such as extremely low and/or high temperatures, for robust and practical applications. Here, we report on the effects of atomic-layer-deposited (ALD aluminum oxide (Al2O3 passivation on multilayer molybdenum disulfide (MoS2 thin-film transistors (TFTs and their temperature-dependent electrical properties, especially at a high temperature range from 293 K to 380 K. With the aid of ultraviolet-ozone treatment, an Al2O3 layer was uniformly applied to cover the entire surface of MoS2 TFTs. Our Al2O3-passivated MoS2 TFTs exhibited not only a dramatic reduction of hysteresis but also enhancement of current in output characteristics. In addition, we investigated the temperature-dependent behaviors of the TFT performance, including intrinsic carrier mobility based on the Y-function method.

  14. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  15. Characterization of microstructure and mechanical properties of friction stir welded AlMg5- Al_2O_3 nanocomposites

    International Nuclear Information System (INIS)

    Babu, N. Kishore; Kallip, Kaspar; Leparoux, Marc; AlOgab, Khaled A.; Reddy, G.M.; Talari, M.K.

    2016-01-01

    In the present study, powder metallurgy processed unmilled AlMg5, milled AlMg5 and milled AlMg5-0.5 vol% Al_2O_3 nanocomposite have been successfully friction stir welded (FSW). The effect of friction stir welding on the evolution of weld microstructures; hardness and tensile properties were studied and discussed in detail. FSW of unmilled AlMg5 resulted in significant grain refinement and strain hardening in the nugget zone induced by the thermo-mechanical processing, thereby increasing the stir zone hardness and tensile strengths to 100 HV and 324 MPa when compared to 80 HV and 300 MPa of base metal, respectively. In contrast, the FSW of milled AlMg5 and milled AlMg5-0.5 vol% Al_2O_3 samples showed a reduction in UTS values to 375 MPa and 401 MPa in the stir zone compared to 401 MPa and 483 MPa of respective base metal values. Transmission electron microscopic (TEM) investigation of weld stir zones revealed the homogenous distribution of Al_4C_3 nanophases in milled AlMg5 and Al_2O_3 nanoparticles in milled AlMg5-0.5 vol% Al_2O_3 samples throughout the aluminium matrix. It was revealed that the pre-stored energy from the prior ball milling and hot pressing processes, higher deformation energy and grain boundary pinning effect due to the presence of reinforcement particles has resulted in a higher recrystallization tendency and retarded grain growth during FSW of milled samples. The welds prepared with milled AlMg5-0.5 vol% Al_2O_3 exhibited higher hardness and tensile strength in the stir zone when compared to all other conditions which was attributed to Hall Petch effect due to fine grain size and Orowan strengthening effect due to Al_2O_3 reinforcements.

  16. Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcusaureus isolated from skin exudates

    International Nuclear Information System (INIS)

    Ansari, Mohammad Azam; Khan, Haris M.; Khan, Aijaz A.; Pal, Ruchita; Cameotra, Swaranjit Singh

    2013-01-01

    To date very little studies are available in the literature on the interaction of Al 2 O 3 nanoparticles with multidrug-resistant strains of Staphylococcusaureus. Considering the paucity of earlier reports the objective of present study was to investigate the antibacterial activity of Al 2 O 3 NPs ( 2 O 3 NPs were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction. The MIC was found to be in the range of 1,700–3,400 μg/ml. Almost no growth was observed at 2,000 μg/ml for up to 10 h. SEM micrograph revealed that the treated cells were significantly damaged, showed indentation on cell surface and clusters of NPs on bacterial cell wall. HR-TEM micrograph shows disruption and disorganization of cell membrane and cell wall. The cell membrane was extensively damaged and, most probably, the intracellular content has leaked out. Al 2 O 3 NPs not only adhered at the surface of cell membrane, but also penetrated inside the bacterial cells, cause formation of irregular-shaped pits and perforation on their surfaces and may also interact with the cellular macromolecules causing adverse effect including cell death. The data presented here are novel in that Al 2 O 3 NPs are effective bactericidal agents regardless of the drug resistance mechanisms that confer importance to these bacteria as an emergent pathogen. Therefore, in depth studies regarding the interaction of Al 2 O 3 NPs with cells, tissues, and organs as well as the optimum dose required to produce therapeutic effects need to be ascertained before we can expect a more meaningful role of the Al 2 O 3 NPs in medical application

  17. Effect of Al2O3 nanoparticles in plasticized PMMA-LiClO4 based solid polymer electrolyte

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2017-05-01

    We have studied the broadband complex conductivity spectra covering a 0.01 Hz-3 GHz frequency range for plasticized PMMA-LiClO4 based solid polymer electrolyte embedded with Al2O3 nanoparticle. We have analyzed the conductivity spectra using the random free-energy barrier model (RBM) coupled with electrode polarization contribution in the low frequency region and at high temperatures. The temperature dependence of the ionic conductivity obtained from the analysis has been analyzed using Vogel-Tammann-Fulcher equation. The maximum ionic conductivity ˜ 1.93×10-4 S/cm has been obtained for 1 wt% Al2O3 nanoparticle.

  18. Energies of Electronic States of Ni (II) Ion in NiO-Al2O3 Catalyst Prepared by Impregnation

    International Nuclear Information System (INIS)

    Obadovic, D. Z.; Kiurski, J.; Marinkovic-Neducin, R. P.

    2007-01-01

    The behavior of NiO-Al2O3 catalysts is strongly dependent on the preparation method, as well as on pretreatment conditions. In the present work we investigated the influences of Ni(II) ion on NiO-Al2O3 catalysts properties due to the preparation by impregnation method. Based on experimental diffuse reflectance spectroscopy (DRS) data of electronic d-d transitions of Ni (II) promoter ion the energies of electronic states in spinel-like structure were calculated, and the most probable scheme of molecular orbital have been proposed

  19. Stem signal suppression in fiber-coupled Al2O3:C dosimetry for 192Ir brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus Erik; Edmund, J.M.

    2011-01-01

    was adapted for on-line in-vivo dosimetry using fiber-coupled carbon doped aluminum oxide (Al2O3:C). The technique involved a two-channel optical filtration of the radioluminescence (RL) emitted from a pre-irradiated Al2O3:C crystal with enhanced sensitivity. The system responded linearly in the absorbed dose......The stem signal, composed of fluorescence and Čerenkov light, becomes a significant source of uncertainty in fiber-coupled afterloaded brachytherapy dosimetry when the source dwells near the fiber cable but far from the detector. A stem suppression technique originally developed for scintillators...

  20. Photoluminescence enhancement in porous SiC passivated by atomic layer deposited Al2O3 films

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2016-01-01

    Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved.......Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved....

  1. Analysis of the main dosimetric peak of Al2O3:C compounds with a model of interacting traps

    International Nuclear Information System (INIS)

    Ortega, F.; Marcazzó, J.; Molina, P.; Santiago, M.; Lester, M.; Henniger, J.; Caselli, E.

    2013-01-01

    The glow curve of Al 2 O 3 :C compounds has been analyzed by employing a model consisting of two active traps, thermally disconnected traps and one recombination centre. The analysis takes into account interaction among traps and the thermal quenching of the thermoluminescent emission. - Highlights: • Glow curves of Al 2 O 3 :C for two doses have been analysed taking into account interactions among traps. • The system of differential equations describing the kinetics has been uncoupled. • The new system of equations takes into account equations without derivatives. • The algorithm used will not become stiff. • The kinetics parameters obtained do not depend on the dose

  2. Steam reforming of different biomass tar model compounds over Ni/Al_2O_3 catalysts

    International Nuclear Information System (INIS)

    Artetxe, Maite; Alvarez, Jon; Nahil, Mohamad A.; Olazar, Martin; Williams, Paul T.

    2017-01-01

    Highlights: • Order of reactivity: anisole > furfural > indene > phenol > toluene > methyl naphthalene. • Higher coke deposition for oxygenates (1.5–2.8%) than for aromatics (0.5–0.8%). • Amorphous coke is deposited for oxygenates and filamentous carbon for aromatics. • Ni content of 20 wt.% shows the higher conversion (90%) and H_2 potential (63%). - Abstract: This work focuses on the removal of the tar derived from biomass gasification by catalytic steam reforming on Ni/Al_2O_3 catalysts. Different tar model compounds (phenol, toluene, methyl naphthalene, indene, anisole and furfural) were individually steam reformed (after dissolving each one in methanol), as well as a mixture of all of them, at 700 °C under a steam/carbon (S/C) ratio of 3 and 60 min on stream. The highest conversions and H_2 potential were attained for anisole and furfural, while methyl naphthalene presented the lowest reactivity. Nevertheless, the higher reactivity of oxygenates compared to aromatic hydrocarbons promoted carbon deposition on the catalyst (in the 1.5–2.8 wt.% range). When the concentration of methanol is decreased in the feedstock and that of toluene or anisole is increased, the selectivity to CO is favoured in the gaseous products, thus increasing coke deposition on the catalyst and decreasing catalyst activity for the steam reforming reaction. Moreover, an increase in Ni loading in the catalyst from 5 to 20% enhances carbon conversion and H_2 formation in the steam reforming of a mixture of all the model compounds studied, but these values decrease for a Ni content of 40%. Coke formation also increased by increasing Ni loading, attaining its maximum value for 40% Ni (6.5 wt.%).

  3. Conduction mechanisms in thin atomic layer deposited Al2O3 layers

    International Nuclear Information System (INIS)

    Spahr, Holger; Montzka, Sebastian; Reinker, Johannes; Hirschberg, Felix; Kowalsky, Wolfgang; Johannes, Hans-Hermann

    2013-01-01

    Thin Al 2 O 3 layers of 2–135 nm thickness deposited by thermal atomic layer deposition at 80 °C were characterized regarding the current limiting mechanisms by increasing voltage ramp stress. By analyzing the j(U)-characteristics regarding ohmic injection, space charge limited current (SCLC), Schottky-emission, Fowler-Nordheim-tunneling, and Poole-Frenkel-emission, the limiting mechanisms were identified. This was performed by rearranging and plotting the data in a linear scale, such as Schottky-plot, Poole-Frenkel-plot, and Fowler-Nordheim-plot. Linear regression then was applied to the data to extract the values of relative permittivity from Schottky-plot slope and Poole-Frenkel-plot slope. From Fowler-Nordheim-plot slope, the Fowler-Nordheim-energy-barrier was extracted. Example measurements in addition to a statistical overview of the results of all investigated samples are provided. Linear regression was applied to the region of the data that matches the realistic values most. It is concluded that ohmic injection and therefore SCLC only occurs at thicknesses below 12 nm and that the Poole-Frenkel-effect is no significant current limiting process. The extracted Fowler-Nordheim-barriers vary in the range of up to approximately 4 eV but do not show a specific trend. It is discussed whether the negative slope in the Fowler-Nordheim-plot could in some cases be a misinterpreted trap filled limit in the case of space charge limited current

  4. THE THERMODYNAMIC PROPERTIES OF MELTS OF DOUBLE SYSTEM MgO – Al2O3, MgO – SiO2, MgO – CaF2, Al2O3 – SiO2, Al2O3 – CaF2, SiO2 – CaF2

    Directory of Open Access Journals (Sweden)

    В. Судавцова

    2012-04-01

    Full Text Available Methodology of prognostication of thermodynamics properties of melts is presented from the coordinatesof liquidus of diagram of the state in area of equilibria a hard component is solution, on which energies ofmixing of Gibbs are expected in the double border systems of MgO – Al2O3, MgO – SiO2, MgO – CaF2,Al2O3 – SiO2, Al2O3 - CaF2, SiO2 - CaF2. For the areas of equilibrium there is quasibinary connection(MgAl2O4, Mg2SiO4, Al6Si2O13 – a grout at calculations was used equalization of Hauffe-Wagner. Theobtained data comport with literary

  5. OLED Encapsulation by Room Temperature Plasma-Assisted ALD Al2O3 Films

    NARCIS (Netherlands)

    Keuning, W.; Creatore, M.; Langereis, E.; Lifka, H.; Weijer, van de P.; Sanden, van de M.C.M.

    2009-01-01

    Organic light emitting diodes (OLEDs, both small molecule and polymer LEDs) require excellent gas and moisture permeation barrier layers to increase their lifetime. The quality of the barrier layer is ultimately controlled by the presence of defects in the layer. Although a barrier layer may be

  6. Atomic to Nanoscale Investigation of Functionalities of Al2O3 Coating Layer on Cathode for Enhanced Battery Performance

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Zhang, Xiaofeng; Xu, Rui; Amine, Khalil; Xiao, Jie; Zhang, Jiguang; Wang, Chong M.

    2016-01-06

    Surface coating of cathode has been identified as an effective approach for enhancing the capacity retention of layered structure cathode. However, the underlying operating mechanism of such a thin layer of coating, in terms of surface chemical functionality and capacity retention, remains unclear. In this work, we use aberration corrected scanning transmission electron microscopy and high efficient spectroscopy to probe the delicate functioning mechanism of Al2O3 coating layer on Li1.2Ni0.2Mn0.6O2 cathode. We discovered that in terms of surface chemical function, the Al2O3 coating suppresses the side reaction between cathode and the electrolyte upon the battery cycling. At the same time, the Al2O3 coating layer also eliminates the chemical reduction of Mn from the cathode particle surface, therefore avoiding the dissolution of the reduced Mn into the electrolyte. In terms of structural stability, we found that the Al2O3 coating layer can mitigate the layer to spinel phase transformation, which otherwise will initiate from the particle surface and propagate towards the interior of the particle with the progression of the battery cycling. The atomic to nanoscale effects of the coating layer observed here provide insight for optimized design of coating layer on cathode to enhance the battery properties.

  7. Memory effects and systematic errors in the RL signal from fiber coupled Al2O3:C for medical dosimetry

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Andersen, Claus Erik

    2010-01-01